WO2023238301A1 - 電力変換装置、モータ駆動装置及びヒートポンプ装置 - Google Patents
電力変換装置、モータ駆動装置及びヒートポンプ装置 Download PDFInfo
- Publication number
- WO2023238301A1 WO2023238301A1 PCT/JP2022/023192 JP2022023192W WO2023238301A1 WO 2023238301 A1 WO2023238301 A1 WO 2023238301A1 JP 2022023192 W JP2022023192 W JP 2022023192W WO 2023238301 A1 WO2023238301 A1 WO 2023238301A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waveform shape
- unit
- power conversion
- waveform
- switching
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 157
- 238000001514 detection method Methods 0.000 claims description 88
- 238000003745 diagnosis Methods 0.000 claims description 62
- 230000008859 change Effects 0.000 claims description 29
- 239000003507 refrigerant Substances 0.000 claims description 28
- 238000000605 extraction Methods 0.000 claims description 24
- 230000002596 correlated effect Effects 0.000 claims description 7
- 239000000284 extract Substances 0.000 claims description 5
- 238000010801 machine learning Methods 0.000 claims description 2
- VPAYJEUHKVESSD-UHFFFAOYSA-N trifluoroiodomethane Chemical compound FC(F)(F)I VPAYJEUHKVESSD-UHFFFAOYSA-N 0.000 claims description 2
- 230000004048 modification Effects 0.000 abstract description 6
- 238000012986 modification Methods 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 45
- 238000010438 heat treatment Methods 0.000 description 25
- 230000005856 abnormality Effects 0.000 description 14
- 239000003990 capacitor Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 230000000630 rising effect Effects 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000005057 refrigeration Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 2
- 229910001219 R-phase Inorganic materials 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P23/00—Arrangements or methods for the control of AC motors characterised by a control method other than vector control
Definitions
- a diagram showing a configuration example of a power conversion device according to Embodiment 1. A diagram showing a configuration example of a restraint energization control section included in the control section according to Embodiment 1.
- a diagram showing a configuration example of a power conversion device according to Embodiment 2 A diagram showing a configuration example of a power conversion device according to Embodiment 3 A diagram illustrating an example of a physical quantity to be extracted and a feature quantity after extraction in the feature quantity extracting unit of the power conversion device according to Embodiment 3.
- FIG. 1 is a diagram showing a configuration example of a heat pump device 100 as an application example of the power conversion device 1 according to the first embodiment.
- heat pump device 100 includes power conversion device 1 according to Embodiment 1 and refrigeration cycle device 50.
- the refrigeration cycle device 50 includes a compressor 51, a four-way valve 52, a heat exchanger 53, an expansion mechanism 54, and a heat exchanger 55, and these parts are sequentially connected via refrigerant piping 56 to operate the refrigeration cycle. It is formed.
- a compression mechanism 57 that compresses refrigerant and a motor 58 that operates this compression mechanism 57 are provided inside the compressor 51.
- the motor 58 is a three-phase motor having three-phase windings: U-phase, V-phase, and W-phase.
- the power conversion device 1 includes an inverter 310 and a control section 400.
- Motor 58 is connected to inverter 310.
- the inverter 310 is connected to a DC voltage source (not shown in FIG. 1), and operates using the bus voltage applied from the DC voltage source as a power source.
- the inverter 310 converts DC power supplied from a DC voltage source into AC power, and drives the motor 58 by supplying the converted AC power to the motor 58.
- the normal operation mode is an operation mode for rotationally driving the motor 58.
- the control unit 400 In the normal operation mode, the control unit 400 generates a PWM (Pulse Width Modulation) signal and outputs it to the inverter 310.
- PWM Pulse Width Modulation
- the heating operation mode unlike the normal operation mode, the motor 58 is heated by energizing the motor 58 without rotating it, and the liquid refrigerant accumulated inside the compressor 51 is warmed, vaporized, and discharged. It is in driving mode. Since the heating operation mode is normally performed during operation standby, heating of the motor 58 is also called "preheating."
- a direct current or a high frequency current that the motor 58 cannot follow is passed through the motor 58, and the heat generated in the motor 58 is used to heat the liquid refrigerant accumulated inside the compressor 51.
- DC energization performing constraint energization by passing a direct current through the motor 58
- high frequency energization performing constraint energization by flowing a high frequency current to the motor 58.
- FIG. 2 is a diagram showing a configuration example of the power conversion device 1 according to the first embodiment.
- Power conversion device 1 is connected to commercial power source 110 and motor 58 .
- the power conversion device 1 converts the first AC power based on the power supply voltage supplied from the commercial power supply 110 into second AC power having a desired amplitude and phase, and supplies the second AC power to the motor 58 .
- the commercial power source 110 is a three-phase AC power source in the example of FIG. 2, it may be a single-phase AC power source.
- the power converter 1 includes a rectifier 130, state quantity detectors 501, 502, 505, and 506, a capacitor 210, an inverter 310, and a controller 400. Note that the power conversion device 1 and the motor 58 constitute a motor drive device 2.
- the rectifying section 130 includes, for example, a bridge circuit composed of four rectifying elements (not shown) and a reactor.
- the rectifier 130 rectifies the AC voltage of the first AC power supplied from the commercial power source 110 and converts it into DC power.
- the rectifier 130 may include a boost chopper circuit or the like.
- the capacitor 210 is connected to the output end of the rectifier 130 and smoothes the DC power converted by the rectifier 130.
- the capacitor 210 is, for example, an electrolytic capacitor, a film capacitor, or the like. Note that the power converter 1 only needs to be able to supply DC power to the inverter 310, so the commercial power supply 110, rectifier 130, and capacitor 210 may be replaced with a DC power supply, a battery, or the like.
- the state quantity detection unit 501 detects a state quantity indicating the operating state of the power conversion device 1.
- the state quantity detection unit 501 detects, for example, the voltage value of the DC power supplied from the capacitor 210 to the inverter 310, the current value of the DC power supplied from the capacitor 210 to the inverter 310, and the like.
- the inverter 310 is a power converter connected to both ends of the capacitor 210.
- Inverter 310 includes switching elements 311a to 311f and free wheel diodes 312a to 312f.
- the inverter 310 turns on and off the switching elements 311a to 311f under the control of the control unit 400 and converts the DC power output from the rectifier 130 and the capacitor 210 into second AC power having a desired amplitude and phase. AC power is generated and output to the motor 58.
- the switching elements 311a to 311f are, for example, IGBTs (Insulated Gate Bipolar Transistors), MOSFETs (Metal Oxide Semiconductor Field Effect Tr). transistors), bipolar transistors, etc., but are not limited to these.
- the circuit configuration of the inverter 310 is not particularly limited, and may be a full bridge circuit, a single-phase bridge circuit, a half bridge circuit, or the like.
- the inverter 310 includes a waveform shape changing section 340 that can change the waveform shape of the switching waveforms of the switching elements 311a to 311f.
- the waveform shape changing section 340 can output two or more waveform shapes as the waveform shapes of the switching waveforms of the switching elements 311a to 311f.
- the waveform shape changing unit 340 is configured to be able to change the waveform shape of the switching waveform of the switching elements 311a to 311f, but the waveform shape of the switching waveform of at least one switching element among the switching elements 311a to 311f is The shape can be changed.
- the control unit 400 acquires the state quantities detected by the state quantity detection units 501, 502, 505, and 506, and controls the inverter 310 based on the obtained state quantities. The operation is controlled, specifically, the on/off of the switching elements 311a to 311f of the inverter 310 is controlled.
- the control section 400 includes a basic pulse generation section 410 and a waveform shape control signal output section 420.
- the waveform shape control signal output unit 420 changes the switching waveforms of the switching elements 311a to 311f in the waveform shape changing unit 340 of the inverter 310 according to the state quantities detected by the state quantity detection units 501, 502, 505, and 506.
- the waveform shape of the switching waveform of the switching elements 311a to 311f is set, and a control signal indicating the set waveform shape is output.
- the waveform shape control signal output unit 420 turns on and off the switching elements 311a to 311f based on the basic pulse generated by the basic pulse generation unit 410 for controlling the operation of the switching elements 311a to 311f of the inverter 310.
- the waveform shape changing unit 340 of the inverter 310 controls the magnitude of the drive signal output to the switching elements 311a to 311f and the timing of outputting the drive signal in order to actually drive the switching elements 311a to 311f.
- the waveform shape control signal output section 420 outputs a control signal for controlling the operation of the waveform shape modification section 340 to the waveform shape modification section 340 .
- the control unit 400 performs waveform shape control for each waveform shape changer 340.
- the control unit 400 acquires the state quantities detected by the state quantity detection units 501, 502, 505, and 506 from the state quantity detection units 501, 502, 505, and 506, and Although the operation of the inverter 310 is controlled based on the amount, the present invention is not limited thereto.
- the control unit 400 can control the operation of the inverter 310 based on the state quantity acquired from at least one state quantity detection unit among the state quantity detection units 501, 502, 505, and 506.
- the power conversion device 1 does not need to arrange all the state quantity detection units 502, 505, and 506 as shown in FIG.
- the power conversion device 1 may include the state quantity detection section anywhere as long as the state quantity can be detected at a position other than that shown in the figure. Further, as will be described later, in the constraint energization control, it is also possible to perform open loop control without using any state quantity.
- the basic pulse generation unit 410 and the waveform shape control signal output unit 420 both operate based on the state quantities acquired from the state quantity detection units 501, 502, 505, and 506.
- the functions of the basic pulse generation section 410 and the waveform shape control signal output section 420 may be combined into one component.
- the motor 58 is a load connected to the power converter 1.
- the motor 58 is, for example, a motor for driving a compressor. In the normal operation mode, the motor 58 rotates according to the amplitude and phase of the second AC power supplied from the inverter 310, and performs a compression operation. For example, when the compressor 51 is a hermetic compressor, the load torque of the motor 58 that drives the compressor 51 can often be regarded as a constant torque load.
- the motor 58 may have a Y-connection, a ⁇ -connection, or a specification in which the Y-connection and the ⁇ -connection can be switched for motor windings (not shown). Further, in the heating operation mode, the motor 58 is supplied with power for restraint energization supplied from the inverter 310 and heats the liquid refrigerant stagnant inside the compressor 51 .
- the load connected to the power conversion device 1 is not limited to the motor 58 for driving the compressor, but may be a fan motor or a motor included in a hand dryer. Further, the load connected to the power converter 1 is not limited to the motor 58, and may be a load other than the motor 58.
- the power conversion device 1 can change the waveform shapes of the switching waveforms of the switching elements 311a to 311f of the inverter 310 using the waveform shape control signal output section 420 and the waveform shape changing section 340. I can do it. Specifically, the power conversion device 1 can change the switching speed, delay time, etc. when the switching elements 311a to 311f of the inverter 310 perform a switching operation.
- FIG. 4 is a diagram showing examples of turn-on Joule loss, turn-on current, and turn-on voltage when the switching speeds of switching elements 311a to 311f of inverter 310 are slowed down in power converter 1 according to Embodiment 1.
- FIG. 5 is a diagram showing an example of turn-on Joule loss, turn-on current, and turn-on voltage when the switching speed of switching elements 311a to 311f of inverter 310 is increased in power converter 1 according to the first embodiment.
- A indicates turn-on Joule loss
- B indicates turn-on current
- C indicates turn-on voltage.
- the horizontal axis indicates time.
- the turn-on current is the current flowing through the switching element 311a
- the turn-on voltage is the voltage applied across the switching element 311a
- the turn-on Joule loss is the product of the turn-on current and the turn-on voltage
- the measurement target is the switching element 311a. It is not limited to the element 311a, and other switching elements 311b to 311f may be used. Note that FIGS.
- FIG. 6 is a diagram showing an example of the relationship between noise and loss generated in a general switching element. As mentioned above, there is a trade-off relationship between noise and loss generated in switching elements. Therefore, in general switching elements, as shown in Figure 6, increasing the switching speed increases noise but decreases loss, and slowing the switching speed decreases noise but increases loss. .
- the waveform shape control signal output unit 420 controls the noise generated in the switching elements 311a to 311f while satisfying the specified requirements.
- the waveform shapes of the switching waveforms of the switching elements 311a to 311f are changed to reduce the loss caused by the switching elements 311a to 311f.
- the waveform shape control signal output unit 420 outputs the switching elements 311a to 311f while the loss generated in the switching elements 311a to 311f satisfies the specified requirements.
- the waveform shapes of the switching waveforms of the switching elements 311a to 311f are changed so as to reduce the noise generated in the switching elements 311a to 311f.
- the waveform shape changing section 340 is connected to the control power supply Vdd and the ground GND.
- the waveform shape changing section 340 changes the number of PMOSs or NMOSs to be operated based on the control signal from the waveform shape control signal output section 420, thereby outputting it to the switching element 311a in each period of the turn-on period and the turn-off period.
- the amplitude value of the gate current IG which is the drive signal, can be changed in n ways to adjust the switching speed of the switching element 311a.
- the waveform shape changing unit 340 can increase the absolute value of the gate current IG output to the switching element 311a as the number of PMOSs or NMOSs to be operated increases, and the switching speed of the switching element 311a can be increased.
- control signals 9 shows that there are m control signals in parallel from the waveform shape control signal output section 420 to the waveform shape change section 340, but this is just an example, and the number of control signals is m. Not limited.
- the number of control signals may be a number that can indicate whether each PMOS and each NMOS can operate, or it may be one as long as it is an analog signal that indicates voltage or the like.
- FIG. 10 is a first diagram showing the relationship between the gate current IG output by the waveform shape changing unit 340 and the gate voltage VG indicating the rising speed of the switching element 311a in the power conversion device 1 according to the first embodiment. be.
- FIG. 11 is a second diagram showing the relationship between the gate current IG output by the waveform shape changing unit 340 and the gate voltage VG indicating the rising speed of the switching element 311a in the power conversion device 1 according to the first embodiment. be.
- the waveform shape changing unit 340 can increase the rise of the gate voltage VG , that is, increase the switching speed of the switching element 311a, as the output gate current IG increases. can.
- FIGS. 10 shows that is, increase the switching speed of the switching element 311a
- FIG. 12 is a third diagram showing the relationship between the gate current IG output by the waveform shape changing unit 340 and the gate voltage VG indicating the rising speed of the switching element 311a in the power conversion device 1 according to the first embodiment. be.
- the waveform shape changing unit 340 can divide the turn-on period and change the magnitude of the gate current IG in each period. That is, the waveform shape changing section 340 can finely adjust the magnitude of the gate current IG during one turn-on period.
- the power converter 1 can reduce the noise generated in the switching element 311a while reducing the noise generated in the switching element 311a, as shown in FIG. 8, compared to the case where the same gate current IG is output during the turn-on period. control can be performed to reduce the loss caused by
- the waveform shape changing unit 340 divides the period in which the gate current IG is output during the turn-off period of the switching element 311a, first outputs the gate current IG with a large amplitude - Ig2, and then outputs the gate current IG with a large amplitude. You may output the gate current IG with a small current -Ig1, or first output the gate current IG with a small amplitude current -Ig1, and then output the gate current IG with a large amplitude current -Ig2. You can also output it.
- the waveform shape changing section 340 can change the output pattern of the gate current IG every switching period of the switching element 311a.
- the waveform shape changing unit 340 can change the switching waveform to a different waveform shape every switching cycle of the switching element 311a while the power conversion device 1 is in operation.
- the waveform shape control signal output section 420 can change the waveform shape of the switching waveform of the switching element 311a at the same cycle as the switching cycle of the switching element 311a.
- the waveform shape control signal output unit 420 may change the waveform shape of the switching waveform of the switching element 311a at a cycle that is a positive integer multiple of the switching cycle of the switching element 311a.
- the processor 91 is a CPU (Central Processing Unit, also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, a DSP (Digital Signal Processor)), or a system LSI (Large Scale Intel). gration).
- the memory 92 includes RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEP. Non-volatile or volatile memory such as ROM (registered trademark) (Electrically Erasable Programmable Read Only Memory) An example is semiconductor memory.
- the memory 92 is not limited to these, and may be a magnetic disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
- FIG. 16 is a diagram showing a configuration example of a power conversion device 1A according to the second embodiment.
- the power conversion device 1A and the motor 58 constitute a motor drive device 2A.
- a physical quantity detection unit 503 is added to the configuration of the power conversion device 1 shown in FIG.
- the control section 400 is replaced with a control section 400A.
- the basic pulse generation section 410 is replaced with a basic pulse generation section 410A
- the waveform shape control signal output section 420 is replaced with a waveform shape control signal output section 420A
- the setting section 421 is replaced with a setting section 421A.
- the other configurations are the same or equivalent to the power conversion device 1 shown in FIG. 2, and the same or equivalent components are denoted by the same reference numerals, and redundant explanations will be omitted.
- the physical quantity detection unit 503 detects a first physical quantity that is correlated with electromagnetic noise generated in the power conversion device 1A due to switching of the switching elements 311a to 311f included in the inverter 310.
- the electromagnetic noise generated in the power converter 1A includes conduction noise generated in the power converter 1A and radiation noise generated in the power converter 1A.
- the arrangement position of the physical quantity detection unit 503 is not limited to the example shown in FIG. 16.
- the power conversion device 1A includes one physical quantity detection unit 503 in the example of FIG. 16, it may include a plurality of physical quantity detection units 503. Note that in this paper, the physical quantity detection unit 503 that detects the first physical quantity may be referred to as a “first detection unit”.
- the setting unit 421B sets the waveform shapes of the switching waveforms of the switching elements 311a to 311f when changed by the waveform shape changing unit 340, according to the feature extracted by the feature extracting unit 422. .
- the waveform shape control signal output section includes the feature amount extraction section that extracts the feature amount from the first physical quantity.
- the setting section sets a waveform shape of a switching waveform of the switching element to be changed by the waveform shape changing section, according to the feature extracted by the feature extracting section.
- the power converter according to the third embodiment has a waveform shape of the switching waveform of the switching element when changing the switching waveform of the switching element with higher precision than the power converter according to the second embodiment. can be set.
- FIG. 19 is a diagram showing a configuration example of a power conversion device 1C according to the fourth embodiment.
- the power converter 1C and the motor 58 constitute a motor drive device 2C.
- the control section 400B is replaced with a control section 400C
- the waveform shape control signal output section 420B is replaced with a waveform shape control signal output section 420C.
- the feature quantity extraction section 422 is deleted, while a storage section 423 and a state diagnosis section 424 are added.
- the other configurations are the same or equivalent to the power conversion device 1B shown in FIG. 17, and the same or equivalent components are denoted by the same reference numerals, and redundant explanations will be omitted.
- the storage unit 423 stores the detection value of the first physical quantity detected by the physical quantity detection unit 503. Furthermore, the storage unit 423 stores the waveform shapes of the switching waveforms of the switching elements 311a to 311f set by the setting unit 421B in association with the first physical quantity. Thereby, the power conversion device 1C according to the fourth embodiment can output information such as the past operation history of the power conversion device 1C to the outside.
- the state diagnosis unit 424 stores the detection value of the first physical quantity detected by the physical quantity detection unit 503 in association with a past waveform shape that is the same as the waveform shape set by the setting unit 421B according to the first physical quantity.
- the operating state of the power conversion device 1C is diagnosed based on the stored value of the first physical quantity stored in the unit 423.
- the state diagnosis unit 424 controls the output of a control signal indicating the set waveform shape from the setting unit 421BB to the waveform shape changing unit 340, depending on the diagnosis result.
- the state diagnosis unit 424 reads from the storage unit 423 the past stored value of the first physical quantity that is stored in association with the same past waveform shape as the waveform shape currently set by the setting unit 421B, and The detected value of the first physical quantity, which is the first physical quantity, is compared with the stored value of the first physical quantity, which is the first physical quantity in the past. As a result of comparing the detected value of the first physical quantity and the stored value of the first physical quantity, the state diagnosis unit 424 determines that some change, that is, an abnormality has occurred in the power conversion device 1C, if the difference exceeds a prescribed threshold value.
- the waveform shape control signal output unit 420C controls the setting unit 421B to stop outputting the control signal to the waveform shape changing unit 340.
- the state diagnosis unit 424 determines that, if the difference is within a prescribed threshold value, there is no change in the power conversion device 1C. , that is, it is determined that no abnormality has occurred.
- the waveform shape control signal output unit 420C controls the setting unit 421B to continue outputting the control signal to the waveform shape changing unit 340.
- the condition diagnostic unit 424 performs the above-described diagnosis at a prescribed cycle.
- the state diagnosis unit 424 can detect a change in common mode impedance in the power conversion device 1C as a difference.
- cases in which there is a change in common mode impedance include cases in which parasitic capacitance such as a load changes, cases in which the physical quantity detection unit 503 fails, cases in which a snubber circuit element (not shown) deteriorates, and the like.
- cases where the parasitic capacitance such as load changes include cases where the structure of the compressor 51 including the motor 58 changes, cases where the dielectric constant changes due to refrigerant stagnation in the refrigeration cycle device 50, and the like.
- the state diagnosis section 424 can also detect a case where the waveform shape changing section 340 has failed.
- the storage unit 423 further stores the operation information of the inverter 310 acquired from the basic pulse generation unit 410A that controls the operation of the inverter 310 in association with the first physical quantity and the waveform shape.
- the operation information of the inverter 310 is, for example, information on the basic pulse generated by the basic pulse generation unit 410A, but may include information other than the basic pulse.
- the state diagnosis unit 424 uses the detection value of the first physical quantity detected by the physical quantity detection unit 503 and the same waveform shape as the waveform shape set by the setting unit 421BB according to the first physical quantity and the driving information. and the stored value of the first physical quantity stored in the storage unit 423 in association with the operation information, the operating state of the power conversion device 1C is diagnosed.
- the state diagnosis unit 424 controls the output of a control signal indicating the set waveform shape from the setting unit 421B to the waveform shape changing unit 340, depending on the diagnosis result.
- the waveform shape control signal output unit 420C controls the setting unit 421B to stop outputting the control signal to the waveform shape changing unit 340.
- the state diagnosis unit 424 determines that, if the difference is within a prescribed threshold value, there is no change in the power conversion device 1C. , that is, it is determined that no abnormality has occurred.
- the waveform shape control signal output unit 420C controls the setting unit 421B to continue outputting the control signal to the waveform shape changing unit 340.
- the condition diagnostic unit 424 performs the above-described diagnosis at a prescribed cycle.
- the state diagnosis unit 424 is not limited to using one threshold value when determining whether or not an abnormality has occurred, and may use a plurality of threshold values. By using a plurality of threshold values, the state diagnosis unit 424 can distinguish the degree of an occurring abnormality, such as a failure, into a minor failure, a major failure, or the like. For example, when the condition diagnosis unit 424 determines that there is a minor failure, the state diagnosis unit 424 does not stop outputting the control signal from the setting unit 421B to the waveform shape changing unit 340, returns the output of the control signal to the initial value, and performs feedback control again. Alternatively, the output of the control signal may be fixed and the operation of the power conversion device 1C may be continued.
- the state diagnosis unit 424 may determine that a major failure has occurred when the number of times that a minor failure has been determined reaches a predetermined number of times.
- the condition diagnosis section 424 determines that there is a serious failure, it controls the setting section 421B to stop outputting the control signal to the waveform shape changing section 340, as described above.
- the waveform shape control signal output section controls the output of a control signal indicating the set waveform shape from the setting section to the waveform shape changing section based on the diagnosis result of the condition diagnosis section.
- the storage unit may be configured to store the operation information of the inverter in association with the first physical quantity and the waveform shape.
- the condition diagnosis unit detects the detection value of the first physical quantity detected by the physical quantity detection unit, the past waveform shape that is the same as the waveform shape set by the setting unit according to the first physical quantity, and the same as the driving information.
- the operating state of the power conversion device may be diagnosed based on the stored value of the first physical quantity stored in the storage unit in association with both past operation information.
- the waveform shape control signal output section controls the output of a control signal indicating the set waveform shape from the setting section to the waveform shape changing section based on the diagnosis result of the condition diagnosis section.
- FIG. 20 is a diagram illustrating a configuration example of power conversion device 1D according to Embodiment 5.
- a motor drive device 2D is configured by the power conversion device 1D and the motor 58.
- the control section 400C is replaced with a control section 400D
- the waveform shape control signal output section 420C is replaced with a waveform shape control signal output section 420D.
- the storage section 423 is replaced with a storage section 423D
- the state diagnosis section 424 is replaced with a state diagnosis section 424D.
- a feature extraction section 422 is added to the waveform shape control signal output section 420D in FIG.
- the other configurations are the same or equivalent to the power conversion device 1C shown in FIG. 19, and the same or equivalent components are denoted by the same reference numerals, and redundant explanations will be omitted.
- the feature amount extraction unit 422 is similar to the feature amount extraction unit 422 in FIG. 17 described in the third embodiment.
- the storage unit 423D and the state diagnosis unit 424D differ from the storage unit 423 and the state diagnosis unit 424 in FIG. 19 described in the fourth embodiment in that the processing target is a feature quantity instead of the first physical quantity.
- the storage unit 423D and the state diagnosis unit 424D according to the fifth embodiment are the same as the storage unit 423 and the state diagnosis unit 424 described in the third embodiment, except that the processing targets are changed.
- the storage section 423D stores the feature amount extracted by the feature amount extraction section 422. Furthermore, the storage unit 423D stores the waveform shapes of the switching waveforms of the switching elements 311a to 311f set by the setting unit 421B in association with the feature amounts. Thereby, the power conversion device 1D according to the fifth embodiment can output information such as the past operation history of the power conversion device 1D to the outside.
- the state diagnosis unit 424D stores the extracted value of the feature extracted by the feature extracting unit 422 in association with a past waveform shape that is the same as the waveform shape set by the setting unit 421B according to the extracted value of the feature.
- the operating state of the power conversion device 1D is diagnosed based on the stored values of the feature quantities stored in the unit 423D.
- the state diagnosis section 424D controls the output of a control signal indicating the set waveform shape from the setting section 421B to the waveform shape changing section 340, depending on the diagnosis result.
- the storage unit 423D may further store operational information of the inverter 310 acquired from the basic pulse generation unit 410A that controls the operation of the inverter 310 in association with the feature amount and the waveform shape.
- the operation information of the inverter 310 is, for example, a basic pulse generated by the basic pulse generation unit 410A, but may include information other than the basic pulse.
- the waveform shape control signal output section stores the feature amount extracted by the feature amount extraction section, and also controls the switching of the switching element set by the setting section.
- a storage unit is provided that stores the waveform shape of the waveform in association with the feature amount.
- the waveform shape control signal output section stores the extraction value of the feature extracted by the feature extraction section in the storage section in association with the same waveform shape as the waveform shape set in the setting section according to the feature amount.
- the operating state of the power converter is diagnosed based on the stored values of the feature quantities.
- the waveform shape control signal output section controls the output of a control signal indicating the set waveform shape from the setting section to the waveform shape changing section based on the diagnosis result of the condition diagnosis section.
- the storage unit may be configured to store the inverter operating information in association with the feature amount and the waveform shape.
- the condition diagnosis unit extracts the extraction value of the feature extracted by the feature extraction unit, the past waveform shape that is the same as the waveform shape set in the setting unit according to the feature, and the same past driving information as the driving information.
- the operating state of the power conversion device may be diagnosed based on the stored value of the feature amount stored in the storage unit in association with both information.
- the waveform shape control signal output section controls the output of a control signal indicating the set waveform shape from the setting section to the waveform shape changing section based on the diagnosis result of the condition diagnosis section.
- FIG. 21 is a diagram showing a configuration example of a power conversion device 1E according to the sixth embodiment.
- a motor drive device 2E is configured by a power conversion device 1E and a motor 58.
- a physical quantity detection unit 504 is added to the configuration of the power conversion device 1A shown in FIG.
- the control section 400A is replaced with a control section 400E.
- the basic pulse generation section 410A is replaced with a basic pulse generation section 410E
- the waveform shape control signal output section 420A is replaced with a waveform shape control signal output section 420E
- the setting section 421A is replaced with a setting section 421E.
- the other configurations are the same or equivalent to the power conversion device 1A shown in FIG. 16, and the same or equivalent components are denoted by the same reference numerals, and redundant explanations will be omitted.
- the physical quantity detection unit 504 detects a second physical quantity that is correlated with the loss generated in the power conversion device 1E due to switching of the switching elements 311a to 311f included in the inverter 310.
- the physical quantity detection unit 504 is, for example, a thermocouple, and detects a second physical quantity that is correlated with the loss generated in the power conversion device 1E by detecting the heat generated in the installed portion, that is, the temperature.
- the physical quantity detecting unit 504 is a thermocouple
- the physical quantity detecting unit 504 is installed, for example, around the switching elements 311a to 311f, a substrate (not shown) on which the switching elements 311a to 311f, etc. are mounted, a heat sink, or the like.
- the installation position of the physical quantity detection unit 504 is not limited to the example shown in FIG. 21. Further, although the power conversion device 1E includes one physical quantity detection unit 504 in the example of FIG. 21, it may include a plurality of physical quantity detection units 504. Note that in this paper, the physical quantity detection unit 504 that detects the second physical quantity may be referred to as a “second detection unit”.
- the setting unit 421E determines the waveform shape of the switching waveforms of the switching elements 311a to 311f based on the second physical quantity detected by the physical quantity detection unit 504 and a second threshold that is a threshold of allowable loss in the power converter 1E. Set. Among restricted energizations, losses occur particularly in direct energization. Therefore, in the heating operation mode, when the second physical quantity detected by the physical quantity detection unit 504 exceeds the second threshold value, if the waveform shape of the switching waveform of the switching elements 311a to 311f is changed, the original It becomes possible to suppress the loss of the power conversion device 1E within a range that does not interfere with the control.
- a physical quantity detection unit 504 that detects a second physical quantity correlated with the loss occurring in the power conversion device 1E is applied to the configuration of the power conversion device 1A according to the second embodiment shown in FIG.
- the configuration is not limited to this.
- Physical quantity detection section 504 can be applied to any of the configurations of power converters 1B to 1D according to Embodiments 3 to 5, and the effects of each embodiment can be obtained.
- the waveform shape control signal output section is configured to output the second physical quantity detected by the second detection section and the loss allowable in the power converter.
- the waveform shape of the switching waveform of the switching element is set based on the second threshold value, which is the threshold value.
- the waveform shape changing section changes the waveform shape of the switching waveform of the switching element based on the waveform shape set by the waveform shape control signal output section.
- FIG. 22 is a diagram showing a configuration example of a power conversion device 1A according to the seventh embodiment.
- the physical quantity detection section 503 is configured by a common mode transformer.
- the physical quantity detection unit 503 is, for example, a toroidal core 510 of a common mode choke coil of a filter circuit to which a detection winding is newly added.
- FIG. 23 is a diagram showing an image of the toroidal core 510 portion of the physical quantity detection unit 503 included in the power conversion device 1A according to the seventh embodiment.
- the physical quantity detection section 503 can serve as both a filter element and a physical quantity detection section.
- Embodiment 8 In the power conversion devices 1 to 1E of the first to seventh embodiments, the waveform shape control signal output unit 420 uses the learning results obtained by machine learning to change the switching waveforms of the switching elements 311a to 311f by the waveform shape changing unit 340. It is also possible to set the waveform shape.
- this article has described the configurations and operations of various power conversion devices suitable for use in heat pump devices that have a heating operation mode and perform restricted energization.
- these power conversion devices when the switching elements included in the inverter perform a switching operation, if the switching speed is high, a surge voltage becomes large and a large amount of electromagnetic noise is generated.
- the heat pump device sets the switching speed of the digital gate driver included in the power conversion device 1 according to the flammability of the refrigerant used in the heat pump device.
- Heat pump equipment can reduce surge voltage by slowing down the switching speed of the digital gate driver, and by suppressing the occurrence of discharge caused by electromagnetic noise, even if refrigerant leaks from the heat pump equipment, the refrigerant will be combusted. can be prevented.
- refrigerant used in the heat pump device examples include a single refrigerant selected from 1234yf, R1234ze (E), R1243zf, HFO1123, HFO1132 (E), R1132a, CF3I, and R290, or at least two of the refrigerants.
- a single refrigerant selected from 1234yf, R1234ze (E), R1243zf, HFO1123, HFO1132 (E), R1132a, CF3I, and R290, or at least two of the refrigerants.
- Mixed refrigerants containing two types of refrigerants can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
電力変換装置(1)は、スイッチング素子(311a~311f)を有するインバータ(310)を備え、インバータ(310)によって負荷を駆動するモータ(58)に電力を供給し、モータ(58)が回転駆動されない電力をモータ(58)に供給することで負荷を予熱する拘束通電を行う。電力変換装置(1)は、拘束通電を行う際に、スイッチング素子(311a~311f)のうちの少なくとも1つのスイッチング素子のスイッチング波形の波形形状を変更可能な波形形状変更部(340)、及び波形形状変更部(340)でスイッチング素子(311a~311f)のスイッチング波形を変更する際のスイッチング素子(311a~311f)のスイッチング波形の波形形状を設定し、設定した波形形状を示す制御信号を出力する波形形状制御信号出力部(420)を備える。
Description
本開示は、電力変換を行う電力変換装置、モータ駆動装置及びヒートポンプ装置に関する。
従来から、インバータにより、圧縮機モータの巻線の三相に圧縮動作時の運転周波数範囲より高い高周波交流電圧を印加して、圧縮機の内部に滞留した液冷媒を加熱する技術がある。この技術は、「拘束通電」と呼ばれている。また、従来から、スイッチング素子に異なるゲート抵抗値のゲート抵抗を切り替えて接続することで、スイッチング素子のスイッチング速度を変化させることが行われている。例えば、下記特許文献1には、複数のスイッチング素子を有するインバータ主回路を備えるインバータ制御装置において、スイッチング素子のゲート駆動波形を変更する際、スイッチング素子に接続されるゲート抵抗について、スイッチを用いて異なるゲート抵抗値のゲート抵抗に切り替える技術が開示されている。また、特許文献1には、拘束通電の実施時に、ゲート抵抗値を小さくする技術が開示されている。
上記特許文献1に記載の技術では、スイッチング素子のスイッチング速度を変化させるため、ゲート抵抗のゲート抵抗値によってスイッチング速度を切り替えているが、ゲート抵抗値の個数には限りがある。このため、特許文献1に記載の技術を使用した場合、拘束通電時におけるゲート抵抗値の切り替えは、通常運転時と同様の画一的な駆動条件で実施せざるを得ない。その結果、特許文献1に記載の技術では、拘束通電の実施時において、スイッチング素子のスイッチング速度を最適な条件にできず、ノイズの発生を所望の状態に制御できない場合がある、という問題があった。
本開示は、上記に鑑みてなされたものであって、拘束通電の実施時においても、ノイズの発生を所望の状態に制御可能な電力変換装置を得ることを目的とする。
上述した課題を解決し、目的を達成するため、本開示に係る電力変換装置は、複数のスイッチング素子を有するインバータを備え、インバータによって負荷を駆動するモータに電力を供給し、モータが回転駆動されない電力をモータに供給することで負荷を予熱する拘束通電を行う。電力変換装置は、拘束通電を行う際に、複数のスイッチング素子のうちの少なくとも1つのスイッチング素子のスイッチング波形の波形形状を変更可能な波形形状変更部を備える。また、電力変換装置は、波形形状変更部でスイッチング素子のスイッチング波形を変更する際のスイッチング素子の前記スイッチング波形の波形形状を設定し、設定した波形形状を示す制御信号を出力する波形形状制御信号出力部を備える。
本開示に係る電力変換装置によれば、拘束通電の実施時においても、ノイズの発生を所望の状態に制御できるという効果を奏する。
以下に、本開示の実施の形態に係る電力変換装置、モータ駆動装置及びヒートポンプ装置を図面に基づいて詳細に説明する。
実施の形態1.
図1は、実施の形態1に係る電力変換装置1の適用例としてのヒートポンプ装置100の構成例を示す図である。図1に示すように、ヒートポンプ装置100は、実施の形態1に係る電力変換装置1と、冷凍サイクル装置50とを備える。冷凍サイクル装置50では、圧縮機51、四方弁52、熱交換器53、膨張機構54及び熱交換器55を備え、これらの各部が冷媒配管56を介して順次接続されることで、冷凍サイクルが形成される。
図1は、実施の形態1に係る電力変換装置1の適用例としてのヒートポンプ装置100の構成例を示す図である。図1に示すように、ヒートポンプ装置100は、実施の形態1に係る電力変換装置1と、冷凍サイクル装置50とを備える。冷凍サイクル装置50では、圧縮機51、四方弁52、熱交換器53、膨張機構54及び熱交換器55を備え、これらの各部が冷媒配管56を介して順次接続されることで、冷凍サイクルが形成される。
圧縮機51の内部には、冷媒を圧縮する圧縮機構57と、この圧縮機構57を動作させるモータ58とが設けられている。モータ58は、U相、V相及びW相の三相の巻線を有する三相モータである。
電力変換装置1は、インバータ310と、制御部400とを備える。モータ58は、インバータ310に接続される。インバータ310は、図1では図示しない直流電圧源に接続され、直流電圧源から印加される母線電圧を電源として動作する。インバータ310は、直流電圧源から供給される直流電力を交流電力に変換し、変換した交流電力をモータ58に供給することでモータ58を駆動する。
制御部400は、インバータ310を制御するための制御信号を生成する。制御部400は、通常運転モード及び加熱運転モードの2つの運転モードを備えている。
通常運転モードは、モータ58を回転駆動するための運転モードである。通常運転モードにおいて、制御部400は、PWM(Pulse Width Modulation)信号を生成して、インバータ310に出力する。一方、加熱運転モードは、通常運転モードとは異なり、モータ58を回転駆動させないように通電することによりモータ58の加熱を行い、圧縮機51の内部に滞留した液冷媒を温め気化させて排出する運転モードである。加熱運転モードは、通常、運転待機中において行われるので、モータ58の加熱は、「予熱」とも呼ばれる。
加熱運転モードでは、モータ58に直流電流、又はモータ58が追従できない高周波電流を流すことにより、モータ58に発生する熱を利用して、圧縮機51の内部に滞留した液冷媒を加熱する拘束通電が行われる。ここで、モータ58に直流電流を流して拘束通電を行うことを、「直流通電」と呼び、モータ58に高周波電流を流して拘束通電を行うことを、「高周波通電」と呼ぶ。
制御部400は、基本パルス生成部410と、波形形状制御信号出力部420と、拘束通電制御部430とを備える。これらの各部の構成及び動作については、後述する。
図2は、実施の形態1に係る電力変換装置1の構成例を示す図である。電力変換装置1は、商用電源110及びモータ58に接続される。電力変換装置1は、商用電源110から供給される電源電圧による第1の交流電力を所望の振幅及び位相を有する第2の交流電力に変換してモータ58に供給する。商用電源110は、図2の例では三相交流電源であるが、単相交流電源であってもよい。電力変換装置1は、整流部130と、状態量検出部501,502,505,506と、コンデンサ210と、インバータ310と、制御部400とを備える。なお、電力変換装置1及びモータ58によって、モータ駆動装置2が構成される。
整流部130は、例えば、図示しない4つの整流素子から構成されるブリッジ回路、及びリアクトルを備える。整流部130は、商用電源110から供給される第1の交流電力による交流電圧を整流して直流電力に変換する。なお、整流部130は、昇圧チョッパ回路などを有していてもよい。
コンデンサ210は、整流部130の出力端に接続され、整流部130によって変換された直流電力を平滑化する。コンデンサ210は、例えば、電解コンデンサ、フィルムコンデンサなどである。なお、電力変換装置1は、インバータ310に直流電力を供給できればよいので、商用電源110、整流部130、及びコンデンサ210の部分を、直流電源、バッテリなどに置き換えてもよい。
状態量検出部501は、電力変換装置1の動作状態を示す状態量を検出する。状態量検出部501は、例えば、コンデンサ210からインバータ310に供給される直流電力の電圧値、コンデンサ210からインバータ310に供給される直流電力の電流値などを検出する。
インバータ310は、コンデンサ210の両端に接続される電力変換器である。インバータ310は、スイッチング素子311a~311f、及び還流ダイオード312a~312fを有する。インバータ310は、制御部400の制御によってスイッチング素子311a~311fをオンオフし、整流部130及びコンデンサ210から出力される直流電力を所望の振幅及び位相を有する第2の交流電力に変換、即ち第2の交流電力を生成して、モータ58に出力する。スイッチング素子311a~311fは、例えば、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、バイポーラトランジスタなどであるが、これらに限定されない。インバータ310の回路構成は、フルブリッジ回路、単相ブリッジ回路、ハーフブリッジ回路など、特に問わない。
また、実施の形態1において、インバータ310は、スイッチング素子311a~311fのスイッチング波形の波形形状を変更可能な波形形状変更部340を備える。波形形状変更部340は、スイッチング素子311a~311fのスイッチング波形の波形形状として、2以上の波形形状を出力可能である。図2の例では、波形形状変更部340は、スイッチング素子311a~311fのスイッチング波形の波形形状を変更可能な構成としているが、スイッチング素子311a~311fのうち少なくとも1つのスイッチング素子のスイッチング波形の波形形状を変更可能とする。インバータ310は、スイッチング素子311a~311fごとに波形形状変更部340を備える構成であってもよい。波形形状変更部340は、インバータ310の外部に位置する構成部であってもよい。波形形状変更部340の詳細な動作については後述する。
状態量検出部502は、電力変換装置1の動作状態を示す状態量を検出する。状態量検出部502は、例えば、インバータ310から負荷であるモータ58に供給される第2の交流電力の電圧値、インバータ310から負荷であるモータ58に供給される第2の交流電力の電流値などを検出する。状態量検出部505は、電力変換装置1の動作状態を示す状態量を検出する。状態量検出部505は、例えば、コンデンサ210からインバータ310に供給される直流電力の電流値などを検出する。状態量検出部506は、電力変換装置1の動作状態を示す状態量を検出する。状態量検出部506は、例えば、スイッチング素子311b,311d,311fに流れる電流などを検出する。
制御部400は、状態量検出部501,502,505,506から、状態量検出部501,502,505,506で検出された状態量を取得し、取得した状態量に基づいて、インバータ310の動作を制御、具体的には、インバータ310のスイッチング素子311a~311fのオンオフを制御する。前述したように、制御部400は、基本パルス生成部410及び波形形状制御信号出力部420を備える。
基本パルス生成部410は、状態量検出部501,502,505,506で検出された状態量に応じたデューティ比を演算すると共に、インバータ310のスイッチング素子311a~311fの動作を制御するための基本パルスを生成する。基本パルスは、例えば、状態量検出部501,502,505,506で検出された状態量に応じたデューティ比を有するPWM信号である。基本パルス生成部410は、インバータ310のスイッチング素子311a~311fの動作を制御するための基本パルスを波形形状制御信号出力部420に出力する。
波形形状制御信号出力部420は、状態量検出部501,502,505,506で検出された状態量に応じて、インバータ310の波形形状変更部340でスイッチング素子311a~311fのスイッチング波形を変更する際のスイッチング素子311a~311fのスイッチング波形の波形形状を設定し、設定した波形形状を示す制御信号を出力する。具体的に、波形形状制御信号出力部420は、基本パルス生成部410で生成されたインバータ310のスイッチング素子311a~311fの動作を制御するための基本パルスに基づいてスイッチング素子311a~311fをオンオフする際、インバータ310の波形形状変更部340が実際にスイッチング素子311a~311fを駆動するためにスイッチング素子311a~311fに出力する駆動信号の大きさ、及び駆動信号を出力するタイミングを制御する。波形形状制御信号出力部420は、波形形状変更部340の動作を制御するための制御信号を波形形状変更部340に出力する。制御部400は、インバータ310がスイッチング素子311a~311fごとに波形形状変更部340を備える構成、即ち6個の波形形状変更部340を備える構成である場合、波形形状変更部340ごとに波形形状制御信号出力部420を備える構成、即ち6個の波形形状制御信号出力部420を備える構成であってもよい。波形形状制御信号出力部420は、図2に示すように、設定部421を備える。設定部421が行う具体的な動作については後述する。
なお、制御部400は、図2の例では、状態量検出部501,502,505,506から、状態量検出部501,502,505,506で検出された状態量を取得し、取得した状態量に基づいて、インバータ310の動作を制御しているが、これに限定されない。制御部400は、状態量検出部501,502,505,506のうち少なくとも1つの状態量検出部から取得した状態量に基づいて、インバータ310の動作を制御することが可能である。また、電力変換装置1は、状態量検出部,502,505,506を図2の通り全て配置する必要は無い。電力変換装置1は、図示されている以外の位置でも状態量が検出できれば状態量検出部をどこに備えていてもよい。また、後述するように、拘束通電制御では、状態量を1つも使わずにオープンループで制御することも可能である。
また、制御部400において、基本パルス生成部410及び波形形状制御信号出力部420は、共に状態量検出部501,502,505,506から取得した状態量に基づいて動作をしていることから、基本パルス生成部410及び波形形状制御信号出力部420の機能を纏めて1つの構成部としてもよい。
モータ58は、電力変換装置1に接続される負荷である。モータ58は、例えば、圧縮機駆動用のモータである。通常運転モード時において、モータ58は、インバータ310から供給される第2の交流電力の振幅及び位相に応じて回転し、圧縮動作を行う。例えば、圧縮機51が密閉型圧縮機の場合、圧縮機51を駆動するモータ58の負荷トルクは定トルク負荷とみなせる場合が多い。モータ58は、図示しないモータ巻線について、Y結線であってもよいし、Δ結線であってもよいし、Y結線とΔ結線とが切り替え可能な仕様であってもよい。また、加熱運転モード時において、モータ58は、インバータ310から供給される拘束通電用の電力が供給され、圧縮機51の内部に滞留した液冷媒を加熱する。
なお、電力変換装置1に接続される負荷は、圧縮機駆動用のモータ58に限定されず、ファンモータ、ハンドドライヤに具備されるモータであってもよい。また、電力変換装置1に接続される負荷はモータ58に限定されるものではなく、モータ58以外の負荷であってもよい。
上述した構成より、実施の形態1に係る電力変換装置1は、波形形状制御信号出力部420及び波形形状変更部340によって、インバータ310のスイッチング素子311a~311fのスイッチング波形の波形形状を変更することができる。具体的には、電力変換装置1は、インバータ310のスイッチング素子311a~311fがスイッチング動作するときの、スイッチング速度、遅延時間などを変更することができる。
図3は、実施の形態1に係る制御部400が備える拘束通電制御部430の構成例を示す図である。拘束通電制御部430は、加熱判定部431と、直流通電指令生成部432と、高周波通電指令生成部433とを備える。また、加熱判定部431は、加熱指令部434と、通電切替部435とを備える。
直流通電指令生成部432は、加熱指令部434から出力される加熱量H*に基づいて、直流電圧指令Vdc*及び直流電圧位相指令θdcを含む直流通電指令を生成する。高周波通電指令生成部433は、加熱指令部434から出力される加熱量H*に基づいて、高周波電圧指令Vac*及び高周波電圧位相指令θacを含む高周波通電指令を生成する。
加熱指令部434は、圧縮機51に滞留した液冷媒の寝込量を推定して、液冷媒の追い出しに必要な加熱量H*を求めて直流通電指令生成部432及び高周波通電指令生成部433に出力する。また、加熱指令部434は、液冷媒の寝込量を推定した際に、通電切替信号を通電切替部435に出力すると共に、加熱要否を示す指令、具体的には、加熱要を示すON指令、又は加熱否を示すOFF指令を基本パルス生成部410に出力する。通電切替信号は、直流通電指令生成部432の出力である直流電圧指令Vdc*及び直流電圧位相指令θdcを含む直流通電指令と、高周波通電指令生成部433の出力である高周波電圧指令Vac*および高周波電圧位相指令θacを含む高周波通電指令とを切り替える切替信号である。
通電切替部435は、直流電圧指令Vdc*及び直流電圧位相指令θdcの組、又は高周波電圧指令Vac*及び高周波電圧位相指令θacの組の何れか、即ち直流通電指令又は高周波通電指令の何れかを選択し、選択した通電指令を拘束通電指令として基本パルス生成部410に出力する。
図4は、実施の形態1に係る電力変換装置1においてインバータ310のスイッチング素子311a~311fのスイッチング速度を遅くしたときのターンオンジュール損失、ターンオン電流、及びターンオン電圧の例を示す図である。図5は、実施の形態1に係る電力変換装置1においてインバータ310のスイッチング素子311a~311fのスイッチング速度を速くしたときのターンオンジュール損失、ターンオン電流、及びターンオン電圧の例を示す図である。
図4及び図5において、Aはターンオンジュール損失を示し、Bはターンオン電流を示し、Cはターンオン電圧を示している。図4及び図5において、横軸は時間を示している。例えば、ターンオン電流はスイッチング素子311aに流れる電流であり、ターンオン電圧はスイッチング素子311aの両端にかかる電圧であり、ターンオンジュール損失はターンオン電流とターンオン電圧とを乗算したものであるが、測定対象はスイッチング素子311aに限定されず、他のスイッチング素子311b~311fでもよい。なお、図4及び図5は、インバータ310のスイッチング素子311a~311fのスイッチング速度による各特性の違いを示すものであり、スイッチング速度の「遅い」及び「速い」の具体的な数値は特に問わない。図4及び図5に示すように、スイッチング速度を遅くすることで、Bのターンオン電流のピーク値で示されるノイズは小さくなるが、Aのターンオンジュール損失の面積で示される損失は大きくなる。また、図4及び図5に示すように、スイッチング速度を速くすることで、Bのターンオン電流のピーク値で示されるノイズは大きくなるが、Aのターンオンジュール損失の面積で示される損失は小さくなる。即ち、スイッチング素子311a~311fにおいて、発生するノイズ及び損失はトレードオフの関係にある。
電力変換装置1では、波形形状変更部340をデジタルゲートドライバによって構成する。或いは、電力変換装置1では、インバータ310のスイッチング素子311a~311f及び波形形状変更部340を、デジタルゲートドライバモジュールによって構成する。これにより、電力変換装置1は、ハードウェアを変更することなく、ソフトウェアの指令値を変更することで、インバータ310のスイッチング素子311a~311fのスイッチング速度を変更することができ、スイッチング素子311a~311fで発生するノイズ及び損失を所望の状態に制御することができる。なお、制御部400における波形形状制御信号出力部420の機能は、デジタルゲートドライバモジュール内に構成することも可能である。この構成の場合、既存の制御部400の機能を改修せずに利用することができる。
図6は、一般的なスイッチング素子で発生するノイズ及び損失の関係の例を示す図である。前述のように、スイッチング素子で発生するノイズ及び損失はトレードオフの関係にある。そのため、一般的なスイッチング素子においては、図6に示すように、スイッチング速度を速くすることでノイズは大きくなるが損失は小さくなり、スイッチング速度を遅くすることでノイズは小さくなるが損失は大きくなる。
図7は、実施の形態1に係る電力変換装置1においてインバータ310のスイッチング素子311a~311fのスイッチング速度を変更することによって得られる効果を示す第1の図である。電力変換装置1は、電力変換装置1が搭載される製品で規定されているノイズの範囲内で運転していても、モータ58の負荷状態が軽負荷から重負荷に変化すると、図7に示すようにスイッチング素子311a~311fで発生するノイズ及び損失の特性を示すカーブは右上の方に推移し、結果的にノイズが増えることになる。即ち、電力変換装置1では、負荷が重くなるほど、ノイズが増加する。そのため、電力変換装置1は、スイッチング素子311a~311fのスイッチング速度を遅くすることで、スイッチング素子311a~311fで発生するノイズを小さくすることができる。同様に、電力変換装置1は、電力変換装置1が搭載される製品で規定されている損失の範囲内で運転していても、モータ58の負荷状態が軽負荷から重負荷に変化すると、図7に示すようにスイッチング素子311a~311fで発生するノイズ及び損失の特性を示すカーブは右上の方に推移し、結果的に損失が増えることになる。即ち、電力変換装置1では、負荷が重くなるほど、損失が増加する。そのため、電力変換装置1は、スイッチング素子311a~311fのスイッチング速度を速くすることで、スイッチング素子311a~311fで発生する損失を小さくすることができる。
モータ58の負荷状態が軽負荷から重負荷に変化した場合、波形形状制御信号出力部420は、スイッチング素子311a~311fで発生するノイズが規定された要件を満たしつつ、スイッチング素子311a~311fで発生する損失を低減するように、スイッチング素子311a~311fのスイッチング波形の波形形状を変更する。又は、モータ58の負荷状態が軽負荷から重負荷に変化した場合、波形形状制御信号出力部420は、スイッチング素子311a~311fで発生する損失が規定された要件を満たしつつ、スイッチング素子311a~311fで発生するノイズを低減するように、スイッチング素子311a~311fのスイッチング波形の波形形状を変更する。
図8は、実施の形態1に係る電力変換装置1においてインバータ310のスイッチング素子311a~311fのスイッチング速度を変更することによって得られる効果を示す第2の図である。電力変換装置1、具体的には波形形状変更部340は、スイッチング素子311a~311fの1回のスイッチング動作において、例えば、ターンオン期間又はターンオフ期間を2以上の期間に分割し、分割した各期間においてスイッチング素子311a~311fに対するゲート電流又はゲート電圧の振幅を異なる大きさに変更する。電力変換装置1は、図8に示すようにスイッチング素子311a~311fのスイッチング波形を最適化することで、図6に示すような一般的なスイッチング素子では得られなかったスイッチング素子311a~311fで発生するノイズ及び損失の特性を得ることができる。
ここで、波形形状変更部340の構成について説明する。ここでは一例として、説明を簡単にするため、波形形状変更部340が1つのスイッチング素子311aのスイッチング波形の波形形状を変更可能な場合について説明する。図9は、実施の形態1に係る電力変換装置1の波形形状変更部340の構成例を示す図である。図9は、波形形状変更部340及びスイッチング素子311aによって構成される1つのデジタルゲートドライバの構成例を示す図でもある。波形形状変更部340は、図2に示すように、スイッチング素子311aを含む電力変換器であるインバータ310に含まれる。波形形状変更部340は、ターンオン用としてn個のPチャネル型のMOSFETであるPMOS(P-channel Metal Oxide Semiconductor)、n個のPMOSを動作させるためのn個のPreDriver、ターンオフ用としてn個のNチャネル型のMOSFETであるNMOS(N-channel Metal Oxide Semiconductor)、及びn個のNMOSを動作させるためのn個のPreDriverを備える。
波形形状変更部340は、制御電源Vdd及びグランドGNDに接続される。波形形状変更部340は、波形形状制御信号出力部420からの制御信号に基づいて動作させるPMOS又はNMOSの数を変更することで、ターンオン期間及びターンオフ期間の各期間において、スイッチング素子311aに出力する駆動信号であるゲート電流IGの振幅値をn通りに変更し、スイッチング素子311aのスイッチング速度を調整することができる。波形形状変更部340は、動作させるPMOS又はNMOSの数を多くするほど、スイッチング素子311aに出力するゲート電流IGの絶対値を大きくすることができ、スイッチング素子311aのスイッチング速度を速くすることができる。また、波形形状変更部340は、内部に備えるPMOS及びNMOSの数が多いほど、より細かなスイッチング素子311aのスイッチング速度の調整が可能になり、ゲート電流IGの増減の応答が速いほど1回のスイッチング期間で細かなゲート電流IGの調整が可能である。波形形状制御信号出力部420からの制御信号については、波形形状変更部340で動作させるPMOS又はNMOSの数を変更することができればよいので、アナログ信号でもよいし、デジタル信号でもよい。また、図9の例では、波形形状制御信号出力部420から波形形状変更部340への制御信号が並列でm本あることを示しているが、一例であり、制御信号の数はm本に限定されない。制御信号の数は、各PMOS及び各NMOSの動作の可否を示すことが可能な数であってもよいし、アナログ信号で電圧などを示すものであれば1つにすることも可能である。
図10は、実施の形態1に係る電力変換装置1において波形形状変更部340が出力するゲート電流IG及びスイッチング素子311aの立ち上がりの速度を示すゲート電圧VGの関係を示す第1の図である。図11は、実施の形態1に係る電力変換装置1において波形形状変更部340が出力するゲート電流IG及びスイッチング素子311aの立ち上がりの速度を示すゲート電圧VGの関係を示す第2の図である。波形形状変更部340は、図10及び図11に示すように、出力するゲート電流IGを大きくするほど、ゲート電圧VGの立ち上がりを速くする、即ちスイッチング素子311aのスイッチング速度を速くすることができる。また、波形形状変更部340は、図10及び図11に示すように、出力するゲート電流IGを小さくするほど、ゲート電圧VGの立ち上がりを遅くする、即ちスイッチング素子311aのスイッチング速度を遅くすることができる。これにより、電力変換装置1は、図6に示すように、スイッチング素子311aで発生するノイズを小さくしたいときは出力するゲート電流IGを小さくしてスイッチング速度を遅くし、スイッチング素子311aで発生する損失を小さくしたいときは出力するゲート電流IGを大きくしてスイッチング速度を速くすることができる。なお、図10及び図11に示すゲート電流IG及びゲート電圧VGの波形は理想的な例であって、図4及び図5に示すように、実際には、ゲート電流IGが一定の電流値になるまでには時間が掛かることになる。
図12は、実施の形態1に係る電力変換装置1において波形形状変更部340が出力するゲート電流IG及びスイッチング素子311aの立ち上がりの速度を示すゲート電圧VGの関係を示す第3の図である。波形形状変更部340は、図12に示すように、ターンオン期間を分割し、各期間でゲート電流IGの大きさを変更することができる。即ち、波形形状変更部340は、1回のターンオン期間において、ゲート電流IGの大きさを細かく調整することができる。これにより、電力変換装置1は、ターンオン期間中同じゲート電流IGを出力する場合と比較して、図8に示すように、スイッチング素子311aで発生するノイズを小さくしつつ、スイッチング素子311aで発生する損失を小さくするような制御を行うことができる。
図10から図12を用いてスイッチング素子311aのターンオン期間を例にして説明したが、スイッチング素子311aのターンオフ期間についても同様である。図13は、実施の形態1に係る電力変換装置1において基本パルス生成部410が出力する基本パルス及び波形形状変更部340が出力するゲート電流IGの関係の例を示す図である。図13において、|Ig2|>|Ig1|とする。波形形状変更部340は、スイッチング素子311aのターンオン期間においてゲート電流IGを出力する期間を分割し、最初に振幅の大きい電流Ig2のゲート電流IGを出力してから次に振幅の小さい電流Ig1のゲート電流IGを出力してもよいし、最初に振幅の小さい電流Ig1のゲート電流IGを出力してから次に振幅の大きい電流Ig2のゲート電流IGを出力してもよい。同様に、波形形状変更部340は、スイッチング素子311aのターンオフ期間においてゲート電流IGを出力する期間を分割し、最初に振幅の大きい電流-Ig2のゲート電流IGを出力してから次に振幅の小さい電流-Ig1のゲート電流IGを出力してもよいし、最初に振幅の小さい電流-Ig1のゲート電流IGを出力してから次に振幅の大きい電流-Ig2のゲート電流IGを出力してもよい。
このように、波形形状変更部340は、波形形状制御信号出力部420で設定される波形形状に基づいて、スイッチング素子311aのスイッチング波形の波形形状について、スイッチング素子311aのターンオン期間及びターンオフ期間のうち少なくとも1つの期間を2以上に分割し、分割した各期間においてスイッチング素子311aに対するゲート電流IGの振幅を異なる大きさに変更可能である。また、波形形状変更部340は、複数のトランジスタを備え、波形形状制御信号出力部420から出力される制御信号に基づいて動作させるトランジスタの数を変更することで、ゲート電流IGの振幅を変更することができる。
また、波形形状変更部340は、スイッチング素子311aのスイッチング周期ごとにゲート電流IGの出力パターンを変更することができる。波形形状変更部340は、電力変換装置1の動作中において、スイッチング素子311aのスイッチング周期ごとに異なる波形形状のスイッチング波形に変更可能である。この場合、波形形状制御信号出力部420は、スイッチング素子311aのスイッチング周期と同じ周期で、スイッチング素子311aのスイッチング波形の波形形状を変更することができる。波形形状制御信号出力部420は、スイッチング素子311aのスイッチング周期の正の整数倍の周期で、スイッチング素子311aのスイッチング波形の波形形状を変更してもよい。
なお、波形形状変更部340の構成について、図9に示す波形形状変更部340の構成は一例であって、これに限定されない。波形形状変更部340は、複数のMOS(Metal Oxide Semiconductor)によるデジタル制御によって、特許文献1に記載したようなゲート抵抗を物理的に切り替えるようなアナログ制御の場合と比較して、スイッチング素子311aのスイッチング速度をより細かに調整することができる。また、波形形状変更部340は、内部で使用するトランジスタについて、MOS以外のトランジスタを使用してもよい。
また、波形形状変更部340は、上記の例では取得した制御信号に応じて動作させるPMOS又はNMOSの数を変更し、動作させるPMOS又はNMOSの数に応じたゲート電流IGをスイッチング素子311aに出力していたが、これに限定されない。波形形状変更部340は、制御信号に応じたゲート電流IGの出力パターン即ち波形形状を予め記憶しておき、取得した制御信号に応じた出力パターン即ち波形形状でゲート電流IGを出力してもよい。また、波形形状変更部340は、過去に取得した制御信号及び過去に取得した制御信号のときのゲート電流IGの出力パターン即ち波形形状を記憶しておき、同じ制御信号を取得した際に記憶していた出力パターン即ち波形形状でゲート電流IGを出力してもよい。波形形状変更部340は、制御信号に応じたゲート電流IGの出力パターン即ち波形形状を記憶しておくことで、ゲート電流IGを出力する際の処理負荷を低減することができる。
また、波形形状変更部340は、図6の例では、スイッチング素子311aに出力する駆動信号としてゲート電流IGを変更することでスイッチング素子311aのスイッチング速度を調整し、スイッチング素子311aのスイッチング波形の波形形状を変更していたがこれに限定されない。波形形状変更部340は、スイッチング素子311aに出力する駆動信号をゲート電圧VGとし、ゲート電圧VGを変更することで、同様にスイッチング素子311aのスイッチング速度を調整し、スイッチング素子311aのスイッチング波形の波形形状を変更することができる。
このように、波形形状変更部340は、波形形状制御信号出力部420から出力される制御信号に基づいて、スイッチング素子311aのスイッチング波形の波形形状について、スイッチング素子311aのターンオン期間及びターンオフ期間のうち少なくとも1つの期間を2以上に分割し、分割した各期間においてスイッチング素子311aに対するゲート電圧VGの振幅を異なる大きさに変更可能である。また、波形形状変更部340は、複数のトランジスタを備え、波形形状制御信号出力部420から出力される制御信号に基づいて動作させるトランジスタの数を変更することで、ゲート電圧VGの振幅を変更することができる。
図14は、実施の形態1に係る電力変換装置1においてスイッチング素子311a~311fのスイッチング波形の波形形状を変更する動作を示すフローチャートである。電力変換装置1において、基本パルス生成部410は、状態量検出部501,502,505,506から取得した状態量に基づいて、インバータ310のスイッチング素子311a~311fを駆動するための基本パルスを生成する(ステップS1)。このように、制御部400において、基本パルス生成部410は、状態量検出部501,502,505,506から取得した状態量に基づいて、基本パルスを生成し、スイッチング素子311a~311fをターンオンするタイミング及びターンオフするタイミングを決定する。基本パルス生成部410は、生成した基本パルスを波形形状制御信号出力部420に出力する。
波形形状制御信号出力部420は、基本パルス生成部410から取得した基本パルス、及び状態量検出部501,502,505,506から取得した状態量に基づいて、インバータ310のスイッチング素子311a~311fのスイッチング波形の波形形状を変更するための波形形状を設定する。このように、制御部400において、波形形状制御信号出力部420は、状態量検出部501,502,505,506から取得した状態量に基づいて、基本パルス生成部410で決定されたスイッチング素子311a~311fをターンオンするタイミング及びターンオフするタイミングにおけるスイッチング波形の波形形状を設定する。波形形状制御信号出力部420は、波形形状変更部340に対して、設定した波形形状に応じて駆動信号の大きさ及び出力タイミングを変更可能な制御信号を出力する(ステップS2)。
波形形状変更部340は、インバータ310のスイッチング素子311a~311fに出力するゲート電流IGの波形形状、即ちスイッチング素子311a~311fのスイッチング波形の波形形状を、波形形状制御信号出力部420から取得した制御信号に基づいて変更する(ステップS3)。波形形状変更部340は、波形形状変更後のゲート電流IGをインバータ310のスイッチング素子311a~311fに出力する。
上述したように、実施の形態1に係る電力変換装置1は、上述した基本パルス生成部410及び波形形状制御信号出力部420の機能によって、インバータ310のスイッチング素子311a~311fを駆動するための駆動信号の大きさ及び出力タイミングを変更することができる。実施の形態1に係る電力変換装置1は、この機能を利用して拘束通電制御を行う。
まず、高周波通電では、モータ58が回転駆動されないような駆動信号が生成されるので、スイッチング素子311a~311fは、微小な電流で高速にスイッチング制御される。このため、高周波通電では、特にターンオン時において、発生ノイズが大きいという課題がある。このため、加熱運転モードにおける高周波通電では、微小な電流の電流波形をノイズがより小さくなる波形に整形する。電流波形の調整要素としては、駆動電圧、駆動電流、ターンオン及びターンオフのタイミング、デッドタイムなどである。また、負荷が圧縮機モータである場合、ロータ停止位置によって、相ごとにインダクタンスが異なるので、最適な駆動パラメータが異なる。このため、ロータ停止位置を考慮して、駆動パラメータを微調整することが望ましい。例えば、同一デューティで各相を駆動し、そのときの実効電流の大小を判別し、電流値の低い相のスイッチング速度を、電流値の高い相のスイッチングよりも低下させる方向に調整することが考えられる。このような制御は、上述した基本パルス生成部410及び波形形状制御信号出力部420の機能を用いれば、実現可能である。駆動パラメータを調整することで、高周波通電時において、電力変換装置1で発生するノイズの低減が可能となる。なお、このような制御は、状態量検出部501,502,505,506のうち少なくとも1つの状態量検出部から取得した状態量に基づいて実施することができるが、前述したように、状態量の情報を使用せずにオープンループで実施してもよい。拘束通電は、圧縮機51の内部に滞留した液冷媒を加熱することができればよいので、状態量の情報を使用せずに予め定めた波形形状による駆動条件で実施してもよい。
次に、電力変換装置1が備える制御部400のハードウェア構成について説明する。図15は、実施の形態1に係る電力変換装置1が備える制御部400を実現するハードウェア構成の一例を示す図である。制御部400は、プロセッサ91及びメモリ92により実現される。
プロセッサ91は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)、又はシステムLSI(Large Scale Integration)である。メモリ92は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)といった不揮発性又は揮発性の半導体メモリを例示できる。またメモリ92は、これらに限定されず、磁気ディスク、光ディスク、コンパクトディスク、ミニディスク、又はDVD(Digital Versatile Disc)でもよい。
以上説明したように、実施の形態1に係る電力変換装置は、複数のスイッチング素子を有するインバータを備え、インバータによって負荷を駆動するモータに電力を供給し、モータが回転駆動されない電力をモータに供給することで負荷を予熱する拘束通電を行う。電力変換装置は、波形形状変更部と、波形形状制御信号出力部とを備える。波形形状制御信号出力部は、拘束通電を行う際に、波形形状変更部でスイッチング素子のスイッチング波形を変更する際のスイッチング素子のスイッチング波形の波形形状を設定し、設定した波形形状を示す制御信号を出力する。波形形状変更部は、波形形状制御信号出力部で設定される波形形状に基づいて、スイッチング素子のスイッチング波形の波形形状を変更する。電力変換装置は、1回のスイッチング期間においてスイッチング素子に出力するゲート電流又はゲート電圧を細かく調整することができ、特許文献1などの方式では実現できなかったスイッチング素子のスイッチング波形の波形形状を実現することができる。これにより、電力変換装置は、拘束通電の実施時においても、ノイズの発生を所望の状態に制御することが可能となる。
実施の形態1に係る電力変換装置は、電力変換装置の動作状態を示す状態量を検出する状態量検出部を備えていてもよい。この構成の場合、波形形状制御信号出力部は、状態量検出部で検出された状態量に応じて、スイッチング素子のスイッチング波形の波形形状を設定し、設定した波形形状を示す制御信号を出力することができる。これにより、電力変換装置は、状態量検出部で検出された状態量に基づいて生成された制御信号が出力されるので、動作環境に応じた拘束通電の実施が可能となる。
実施の形態2.
図16は、実施の形態2に係る電力変換装置1Aの構成例を示す図である。実施の形態2では、電力変換装置1A及びモータ58によって、モータ駆動装置2Aが構成される。また、実施の形態2に係る電力変換装置1Aでは、図2に示す係る電力変換装置1の構成において、物理量検出部503が追加されている。また、図16では、制御部400が制御部400Aに置き替えられている。更に、制御部400Aでは、基本パルス生成部410が基本パルス生成部410Aに置き替えられ、波形形状制御信号出力部420が波形形状制御信号出力部420Aに置き替えられ、設定部421が設定部421Aに置き替えられている。その他の構成は、図2に示す電力変換装置1と同一又は同等であり、同一又は同等の構成部には同一の符号を付し、重複する説明は割愛する。
図16は、実施の形態2に係る電力変換装置1Aの構成例を示す図である。実施の形態2では、電力変換装置1A及びモータ58によって、モータ駆動装置2Aが構成される。また、実施の形態2に係る電力変換装置1Aでは、図2に示す係る電力変換装置1の構成において、物理量検出部503が追加されている。また、図16では、制御部400が制御部400Aに置き替えられている。更に、制御部400Aでは、基本パルス生成部410が基本パルス生成部410Aに置き替えられ、波形形状制御信号出力部420が波形形状制御信号出力部420Aに置き替えられ、設定部421が設定部421Aに置き替えられている。その他の構成は、図2に示す電力変換装置1と同一又は同等であり、同一又は同等の構成部には同一の符号を付し、重複する説明は割愛する。
物理量検出部503は、インバータ310が備えるスイッチング素子311a~311fのスイッチングによって電力変換装置1Aで発生する電磁ノイズと相関のある第1の物理量を検出する。電力変換装置1Aで発生する電磁ノイズには、電力変換装置1Aで発生する伝導ノイズ、及び電力変換装置1Aで発生する放射ノイズが含まれる。なお、電力変換装置1Aにおいて、物理量検出部503の配置位置は、図16の例に限定されない。また、電力変換装置1Aは、図16の例では物理量検出部503を1つ備えているが、複数の物理量検出部503を備えていてもよい。なお、本稿では、第1の物理量を検出する物理量検出部503を「第1の検出部」と記載することがある。
設定部421Aは、物理量検出部503によって検出された第1の物理量及び電力変換装置1Aにおいて許容される電磁ノイズの閾値である第1の閾値に基づいてスイッチング素子311a~311fのスイッチング波形の波形形状を設定する。拘束通電のうち、特に高周波通電では、電磁ノイズの発生が大きくなる。従って、加熱運転モードにおいて、物理量検出部503によって検出された第1の物理量が第1の閾値を超えた場合に、この制御を実施するようにすれば、必要最小限の範囲に留めることができる。これにより、スイッチング素子311a~311fのスイッチング波形の波形形状を変更する制御を、本来の制御に支障のない範囲で実施することが可能となる。
以上説明したように、実施の形態2に係る電力変換装置によれば、波形形状制御信号出力部の設定部は、第1の検出部によって検出された第1の物理量及び電力変換装置において許容される電磁ノイズの閾値である第1の閾値に基づいてスイッチング素子のスイッチング波形の波形形状を設定する。波形形状変更部は、設定部で設定される波形形状に基づいて、スイッチング素子のスイッチング波形の波形形状を変更する。これにより、電力変換装置は、実施の形態1の効果を享受しつつ、電力変換装置において許容される電磁ノイズを第1の閾値以下に抑えることができる。また、電力変換装置において発生し得る電磁ノイズを抑制する制御を、本来の制御に支障のない範囲で実施することができる。
実施の形態3.
図17は、実施の形態3に係る電力変換装置1Bの構成例を示す図である。実施の形態3では、電力変換装置1B及びモータ58によって、モータ駆動装置2Bが構成される。また、実施の形態3に係る電力変換装置1Bでは、図16の構成において、制御部400Aが制御部400Bに置き替えられ、波形形状制御信号出力部420Aが波形形状制御信号出力部420Bに置き替えられ、設定部421Aが設定部421Bに置き替えられている。更に、図17の波形形状制御信号出力部420Bでは、特徴量抽出部422が追加されている。その他の構成は、図16に示す電力変換装置1Aと同一又は同等であり、同一又は同等の構成部には同一の符号を付し、重複する説明は割愛する。
図17は、実施の形態3に係る電力変換装置1Bの構成例を示す図である。実施の形態3では、電力変換装置1B及びモータ58によって、モータ駆動装置2Bが構成される。また、実施の形態3に係る電力変換装置1Bでは、図16の構成において、制御部400Aが制御部400Bに置き替えられ、波形形状制御信号出力部420Aが波形形状制御信号出力部420Bに置き替えられ、設定部421Aが設定部421Bに置き替えられている。更に、図17の波形形状制御信号出力部420Bでは、特徴量抽出部422が追加されている。その他の構成は、図16に示す電力変換装置1Aと同一又は同等であり、同一又は同等の構成部には同一の符号を付し、重複する説明は割愛する。
特徴量抽出部422は、物理量検出部503で検出された第1の物理量から、特徴的な成分を特徴量として抽出する。即ち、特徴量抽出部422は、物理量検出部503で検出された第1の物理量から、不要な成分を除去する。
図18は、実施の形態3に係る電力変換装置1Bの特徴量抽出部422における抽出対象の物理量及び抽出後の特徴量の例を示す図である。特徴量抽出部422は、例えば、図18の左側に示す電磁ノイズなどの第1の物理量から、図18の右側に示す特徴量を抽出する。特徴量抽出部422で抽出される特徴量の成分は、例えば、キャリア周波数、キャリア周波数の高調波成分、電力変換装置1Bに含まれる図示しないLC回路のLC共振成分などである。特徴量抽出部422は、ハイパスフィルタ、バンドパスフィルタなどのフィルタ回路によって構成される。
実施の形態3において、設定部421Bは、特徴量抽出部422で抽出された特徴量に応じて、波形形状変更部340で変更する際のスイッチング素子311a~311fのスイッチング波形の波形形状を設定する。
電力変換装置1Bにおいて、波形形状制御信号出力部420Bは、物理量検出部503で検出された第1の物理量から不要な成分が除去された特徴量を用いて、波形形状変更部340で変更する際のスイッチング素子311a~311fのスイッチング波形の波形形状を設定することが可能である。
以上説明したように、実施の形態3に係る電力変換装置によれば、波形形状制御信号出力部は、第1の物理量から特徴量を抽出する特徴量抽出部を備える。設定部は、特徴量抽出部によって抽出された特徴量に応じて、波形形状変更部で変更する際のスイッチング素子のスイッチング波形の波形形状を設定する。これにより、実施の形態3に係る電力変換装置は、実施の形態2に係る電力変換装置と比較して、より精度良く、スイッチング素子のスイッチング波形を変更する際のスイッチング素子のスイッチング波形の波形形状を設定することができる。
実施の形態4.
図19は、実施の形態4に係る電力変換装置1Cの構成例を示す図である。実施の形態4では、電力変換装置1C及びモータ58によって、モータ駆動装置2Cが構成される。また、実施の形態4に係る電力変換装置1Cでは、図17の構成において、制御部400Bが制御部400Cに置き替えられ、波形形状制御信号出力部420Bが波形形状制御信号出力部420Cに置き替えられている。更に、図19の波形形状制御信号出力部420Cでは、特徴量抽出部422が削除される一方で、記憶部423及び状態診断部424が追加されている。その他の構成は、図17に示す電力変換装置1Bと同一又は同等であり、同一又は同等の構成部には同一の符号を付し、重複する説明は割愛する。
図19は、実施の形態4に係る電力変換装置1Cの構成例を示す図である。実施の形態4では、電力変換装置1C及びモータ58によって、モータ駆動装置2Cが構成される。また、実施の形態4に係る電力変換装置1Cでは、図17の構成において、制御部400Bが制御部400Cに置き替えられ、波形形状制御信号出力部420Bが波形形状制御信号出力部420Cに置き替えられている。更に、図19の波形形状制御信号出力部420Cでは、特徴量抽出部422が削除される一方で、記憶部423及び状態診断部424が追加されている。その他の構成は、図17に示す電力変換装置1Bと同一又は同等であり、同一又は同等の構成部には同一の符号を付し、重複する説明は割愛する。
実施の形態4において、記憶部423は、物理量検出部503で検出された第1の物理量の検出値を記憶する。また、記憶部423は、設定部421Bで設定されたスイッチング素子311a~311fのスイッチング波形の波形形状を第1の物理量に関連付けて記憶する。これにより、実施の形態4に係る電力変換装置1Cは、電力変換装置1Cの過去の動作履歴などの情報を外部に出力することができる。
状態診断部424は、物理量検出部503で検出された第1の物理量の検出値と、第1の物理量に応じて設定部421Bで設定された波形形状と同じ過去の波形形状に関連付けられて記憶部423に記憶されている第1の物理量の記憶値とに基づいて、電力変換装置1Cの動作状態を診断する。状態診断部424は、診断結果に応じて、設定部421BBから波形形状変更部340への設定した波形形状を示す制御信号の出力を制御する。
即ち、状態診断部424は、設定部421Bで現在設定されている波形形状と同じ過去の波形形状に関連付けられて記憶されている過去の第1の物理量の記憶値を記憶部423から読み出し、現在の第1の物理量である第1の物理量の検出値と、過去の第1の物理量である第1の物理量の記憶値とを比較する。状態診断部424は、第1の物理量の検出値と第1の物理量の記憶値とを比較した結果、その差分が規定された閾値を超える場合、電力変換装置1Cにおいて何らかの変化、即ち異常が発生したと判定する。状態診断部424によって異常が発生したと判定された場合、波形形状制御信号出力部420Cは、設定部421Bから波形形状変更部340への制御信号の出力を停止するように制御する。状態診断部424は、第1の物理量の検出値と第1の物理量の記憶値とを比較した結果、その差分が規定された閾値の範囲内であった場合、電力変換装置1Cにおいて変化はない、即ち異常が発生していないと判定する。状態診断部424によって異常が発生していないと判定された場合、波形形状制御信号出力部420Cは、設定部421Bから波形形状変更部340への制御信号の出力を継続するように制御する。状態診断部424は、上記のような診断を規定された周期で実施する。
ここで、物理量検出部503で検出された物理量がコモンモードノイズの場合、状態診断部424は、電力変換装置1Cでのコモンモードインピーダンスの変化を違いとして検出できる。コモンモードインピーダンスで変化があった場合とは、例えば、負荷などの寄生容量が変化した場合、物理量検出部503が故障した場合、図示しないスナバ回路素子が劣化した場合などである。負荷などの寄生容量が変化した場合とは、モータ58を備える圧縮機51の構造が変化した場合、冷凍サイクル装置50において冷媒寝込みによって誘電率が変化した場合などである。状態診断部424は、波形形状変更部340が故障した場合なども検出することができる。
なお、実施の形態4において、記憶部423は、更に、インバータ310の運転を制御する基本パルス生成部410Aから取得したインバータ310の運転情報を、第1の物理量及び波形形状と関連付けて記憶してもよい。インバータ310の運転情報とは、例えば、基本パルス生成部410Aで生成される基本パルスの情報であるが、基本パルス以外の情報を含んでいてもよい。
この場合、状態診断部424は、物理量検出部503で検出された第1の物理量の検出値と、第1の物理量及び運転情報に応じて設定部421BBで設定された波形形状と同じ波形形状、及び運転情報に関連付けられて記憶部423に記憶されている第1の物理量の記憶値とに基づいて、電力変換装置1Cの動作状態を診断する。状態診断部424は、診断結果に応じて、設定部421Bから波形形状変更部340への設定した波形形状を示す制御信号の出力を制御する。
即ち、状態診断部424は、設定部421Bで現在設定されている波形形状と同じ過去の波形形状、及び現在の運転情報と同じ過去の運転情報の両方に関連付けられて記憶されている過去の第1の物理量の記憶値を記憶部423から読み出し、現在の第1の物理量である第1の物理量の検出値と、過去の第1の物理量である第1の物理量の記憶値とを比較する。状態診断部424は、第1の物理量の検出値と第1の物理量の記憶値とを比較した結果、その差分が規定された閾値を超える場合、電力変換装置1Cにおいて何らかの変化、即ち異常が発生したと判定する。状態診断部424によって異常が発生したと判定された場合、波形形状制御信号出力部420Cは、設定部421Bから波形形状変更部340への制御信号の出力を停止するように制御する。状態診断部424は、第1の物理量の検出値と第1の物理量の記憶値とを比較した結果、その差分が規定された閾値の範囲内であった場合、電力変換装置1Cにおいて変化はない、即ち異常が発生していないと判定する。状態診断部424によって異常が発生していないと判定された場合、波形形状制御信号出力部420Cは、設定部421Bから波形形状変更部340への制御信号の出力を継続するように制御する。状態診断部424は、上記のような診断を規定された周期で実施する。
なお、状態診断部424は、異常が発生しているか否かを判定する際の閾値について、使用する閾値は1つに限定されず、複数の閾値を使用してもよい。状態診断部424は、複数の閾値を使用することで、発生している異常、例えば故障の程度を軽故障、重故障などに区別することができる。例えば、状態診断部424は、軽故障と判定した場合、設定部421Bから波形形状変更部340への制御信号の出力を停止せず、制御信号の出力を初期値に戻し、再度フィードバック制御を行う、又は制御信号の出力を固定して、電力変換装置1Cの動作を継続させてもよい。また、状態診断部424は、軽故障と判定した回数が規定された回数に達した場合、重故障が発生したと判定してもよい。状態診断部424は、重故障と判定した場合、前述のように、設定部421Bから波形形状変更部340への制御信号の出力を停止するように制御する。
以上説明したように、実施の形態4に係る電力変換装置において、波形形状制御信号出力部は、第1の検出部で検出された第1の物理量の検出値を記憶すると共に、設定部で設定されたスイッチング素子のスイッチング波形の波形形状を第1の物理量に関連付けて記憶する記憶部を備える。また、波形形状制御信号出力部は、物理量検出部で検出された第1の物理量の検出値と、第1の物理量に応じて設定部で設定された波形形状と同じ過去の波形形状に関連付けられて記憶部に記憶されている第1の物理量の記憶値とに基づいて、電力変換装置の動作状態を診断する状態診断部を備える。波形形状制御信号出力部は、状態診断部の診断結果に基づいて、設定部から波形形状変更部への設定した波形形状を示す制御信号の出力を制御する。これにより、実施の形態4に係る電力変換装置は、電力変換装置で発生した異常を検出した場合、インバータの動作を速やかに停止することが可能となる。
なお、上記の構成において、記憶部は、インバータの運転情報を第1の物理量及び波形形状と関連付けて記憶するように構成されていてもよい。また、状態診断部は、物理量検出部で検出された第1の物理量の検出値と、第1の物理量に応じて設定部で設定された波形形状と同じ過去の波形形状、及び運転情報と同じ過去の運転情報の両方に関連付けられて記憶部に記憶されている第1の物理量の記憶値とに基づいて、電力変換装置の動作状態を診断するように構成されていてもよい。波形形状制御信号出力部は、状態診断部の診断結果に基づいて、設定部から波形形状変更部への設定した波形形状を示す制御信号の出力を制御する。これにより、実施の形態4に係る電力変換装置は、電力変換装置で発生した異常を検出した場合、インバータの動作を速やかに停止することが可能となる。
実施の形態5.
図20は、実施の形態5に係る電力変換装置1Dの構成例を示す図である。実施の形態5では、電力変換装置1D及びモータ58によって、モータ駆動装置2Dが構成される。また、実施の形態5に係る電力変換装置1Dでは、図19の構成において、制御部400Cが制御部400Dに置き替えられ、波形形状制御信号出力部420Cが波形形状制御信号出力部420Dに置き替えられ、記憶部423が記憶部423Dに置き替えられ、状態診断部424が状態診断部424Dに置き替えられている。更に、図20の波形形状制御信号出力部420Dでは、特徴量抽出部422が追加されている。その他の構成は、図19に示す電力変換装置1Cと同一又は同等であり、同一又は同等の構成部には同一の符号を付し、重複する説明は割愛する。
図20は、実施の形態5に係る電力変換装置1Dの構成例を示す図である。実施の形態5では、電力変換装置1D及びモータ58によって、モータ駆動装置2Dが構成される。また、実施の形態5に係る電力変換装置1Dでは、図19の構成において、制御部400Cが制御部400Dに置き替えられ、波形形状制御信号出力部420Cが波形形状制御信号出力部420Dに置き替えられ、記憶部423が記憶部423Dに置き替えられ、状態診断部424が状態診断部424Dに置き替えられている。更に、図20の波形形状制御信号出力部420Dでは、特徴量抽出部422が追加されている。その他の構成は、図19に示す電力変換装置1Cと同一又は同等であり、同一又は同等の構成部には同一の符号を付し、重複する説明は割愛する。
特徴量抽出部422は、実施の形態3で説明した図17の特徴量抽出部422と同様である。一方、記憶部423D及び状態診断部424Dは、実施の形態4で説明した図19の記憶部423及び状態診断部424とは、第1の物理量に代えて特徴量が処理対象に変化している。即ち、実施の形態5に係る記憶部423D及び状態診断部424Dは、処理対象が変化している点を除けば、実施の形態3で説明した記憶部423及び状態診断部424と同様である。
実施の形態5において、記憶部423Dは、特徴量抽出部422で抽出された特徴量を記憶する。また、記憶部423Dは、設定部421Bで設定されたスイッチング素子311a~311fのスイッチング波形の波形形状を特徴量に関連付けて記憶する。これにより、実施の形態5に係る電力変換装置1Dは、電力変換装置1Dの過去の動作履歴などの情報を外部に出力することができる。
状態診断部424Dは、特徴量抽出部422で抽出された特徴量の抽出値と、特徴量の抽出値に応じて設定部421Bで設定された波形形状と同じ過去の波形形状に関連付けられて記憶部423Dに記憶されている特徴量の記憶値とに基づいて、電力変換装置1Dの動作状態を診断する。状態診断部424Dは、診断結果に応じて、設定部421Bから波形形状変更部340への設定した波形形状を示す制御信号の出力を制御する。
なお、実施の形態5において、記憶部423Dは、更に、インバータ310の運転を制御する基本パルス生成部410Aから取得したインバータ310の運転情報を、特徴量及び波形形状と関連付けて記憶してもよい。インバータ310の運転情報とは、例えば、基本パルス生成部410Aで生成される基本パルスであるが、基本パルス以外の情報を含んでいてもよい。
この場合、状態診断部424Dは、特徴量抽出部422で抽出された特徴量と、特徴量及び運転情報に応じて設定部421Bで設定された波形形状と同じ波形形状、及び運転情報に関連付けられて記憶部423Dに記憶されている特徴量とに基づいて、電力変換装置1Dの動作状態を診断する。状態診断部424Dは、設定部421Bから波形形状変更部340への設定した波形形状を示す制御信号の出力を制御する。
以上説明したように、実施の形態5に係る電力変換装置において、波形形状制御信号出力部は、特徴量抽出部で抽出された特徴量を記憶すると共に、設定部で設定されたスイッチング素子のスイッチング波形の波形形状を特徴量に関連付けて記憶する記憶部を備える。また、波形形状制御信号出力部は、特徴量抽出部で抽出された特徴量の抽出値と、特徴量に応じて設定部で設定された波形形状と同じ波形形状に関連付けられて記憶部に記憶されている特徴量の記憶値とに基づいて、電力変換装置の動作状態を診断する。波形形状制御信号出力部は、状態診断部の診断結果に基づいて、設定部から波形形状変更部への設定した波形形状を示す制御信号の出力を制御する。これにより、実施の形態5に係る電力変換装置は、電力変換装置で発生した異常を検出した場合、インバータの動作を速やかに停止することが可能となる。
なお、上記の構成において、記憶部は、インバータの運転情報を特徴量及び波形形状と関連付けて記憶するように構成されていてもよい。また、状態診断部は、特徴量抽出部で抽出された特徴量の抽出値と、特徴量に応じて設定部で設定された波形形状と同じ過去の波形形状、及び運転情報と同じ過去の運転情報の両方に関連付けられて記憶部に記憶されている特徴量の記憶値とに基づいて、電力変換装置の動作状態を診断するように構成されていてもよい。波形形状制御信号出力部は、状態診断部の診断結果に基づいて、設定部から波形形状変更部への設定した波形形状を示す制御信号の出力を制御する。これにより、実施の形態5に係る電力変換装置は、電力変換装置で発生した異常を検出した場合、インバータの動作を速やかに停止することが可能となる。
実施の形態6.
図21は、実施の形態6に係る電力変換装置1Eの構成例を示す図である。実施の形態6では、電力変換装置1E及びモータ58によって、モータ駆動装置2Eが構成される。また、実施の形態6に係る電力変換装置1Eでは、図16に示す係る電力変換装置1Aの構成において、物理量検出部504が追加されている。また、図21では、制御部400Aが制御部400Eに置き替えられている。更に、制御部400Eでは、基本パルス生成部410Aが基本パルス生成部410Eに置き替えられ、波形形状制御信号出力部420Aが波形形状制御信号出力部420Eに置き替えられ、設定部421Aが設定部421Eに置き替えられている。その他の構成は、図16に示す電力変換装置1Aと同一又は同等であり、同一又は同等の構成部には同一の符号を付し、重複する説明は割愛する。
図21は、実施の形態6に係る電力変換装置1Eの構成例を示す図である。実施の形態6では、電力変換装置1E及びモータ58によって、モータ駆動装置2Eが構成される。また、実施の形態6に係る電力変換装置1Eでは、図16に示す係る電力変換装置1Aの構成において、物理量検出部504が追加されている。また、図21では、制御部400Aが制御部400Eに置き替えられている。更に、制御部400Eでは、基本パルス生成部410Aが基本パルス生成部410Eに置き替えられ、波形形状制御信号出力部420Aが波形形状制御信号出力部420Eに置き替えられ、設定部421Aが設定部421Eに置き替えられている。その他の構成は、図16に示す電力変換装置1Aと同一又は同等であり、同一又は同等の構成部には同一の符号を付し、重複する説明は割愛する。
物理量検出部504は、インバータ310が備えるスイッチング素子311a~311fのスイッチングによって電力変換装置1Eで発生する損失と相関のある第2の物理量を検出する。物理量検出部504は、例えば、熱電対であり、設置された部分で発生する熱、即ち温度を検出することによって、電力変換装置1Eで発生する損失と相関のある第2の物理量を検出する。物理量検出部504が熱電対の場合、物理量検出部504は、例えば、スイッチング素子311a~311fの周辺、スイッチング素子311a~311fなどが実装される図示しない基板、ヒートシンクなどに設置される。なお、電力変換装置1Eにおいて、物理量検出部504の設置位置は図21の例に限定されない。また、電力変換装置1Eは、図21の例では、物理量検出部504を1つ備えているが、複数の物理量検出部504を備えていてもよい。なお、本稿では、第2の物理量を検出する物理量検出部504を「第2の検出部」と記載することがある。
設定部421Eは、物理量検出部504によって検出された第2の物理量及び電力変換装置1Eにおいて許容される損失の閾値である第2の閾値に基づいてスイッチング素子311a~311fのスイッチング波形の波形形状を設定する。拘束通電のうち、特に直流通電では、損失の発生が大きくなる。従って、加熱運転モードにおいて、物理量検出部504によって検出された第2の物理量が第2の閾値を超えた場合に、スイッチング素子311a~311fのスイッチング波形の波形形状を変更することにすれば、本来の制御に支障のない範囲で、電力変換装置1Eの損失を抑制することが可能となる。
なお、実施の形態6では、電力変換装置1Eで発生する損失と相関のある第2の物理量を検出する物理量検出部504を図16に示す実施の形態2に係る電力変換装置1Aの構成に適用したが、この構成に限定されない。物理量検出部504は、実施の形態3~5に係る電力変換装置1B~1Dの何れの構成にも適用可能であり、それぞれの実施の形態の効果を得ることができる。
以上説明したように、実施の形態6に係る電力変換装置によれば、波形形状制御信号出力部は、第2の検出部によって検出された第2の物理量及び電力変換装置において許容される損失の閾値である第2の閾値に基づいてスイッチング素子のスイッチング波形の波形形状を設定する。波形形状変更部は、波形形状制御信号出力部で設定される波形形状に基づいて、スイッチング素子のスイッチング波形の波形形状を変更する。これにより、電力変換装置は、実施の形態2~5の効果を享受しつつ、電力変換装置において許容される損失を第2の閾値以下に抑えることができる。また、電力変換装置において発生し得る損失を抑制する制御を、電磁ノイズを抑制しつつ、且つ本来の制御に支障のない範囲で実施することができる。
実施の形態7.
実施の形態7では、電力変換装置1A~1Eが備える物理量検出部503の具体的な構成について説明する。図22は、実施の形態7に係る電力変換装置1Aの構成例を示す図である。図22の例では、物理量検出部503は、コモンモードトランスによって構成されている。物理量検出部503は、例えば、フィルタ回路のコモンモードチョークコイルのトロイダルコア510に、検出用の巻線を新たに追加したものである。図23は、実施の形態7に係る電力変換装置1Aが備える物理量検出部503のトロイダルコア510の部分のイメージを示す図である。図23は、トロイダルコア510に、R相、S相、及びT相の巻線以外に、検出用の巻線を追加した状態を示している。このような構成により、物理量検出部503は、フィルタ素子及び物理量検出部の兼用が可能となる。
実施の形態7では、電力変換装置1A~1Eが備える物理量検出部503の具体的な構成について説明する。図22は、実施の形態7に係る電力変換装置1Aの構成例を示す図である。図22の例では、物理量検出部503は、コモンモードトランスによって構成されている。物理量検出部503は、例えば、フィルタ回路のコモンモードチョークコイルのトロイダルコア510に、検出用の巻線を新たに追加したものである。図23は、実施の形態7に係る電力変換装置1Aが備える物理量検出部503のトロイダルコア510の部分のイメージを示す図である。図23は、トロイダルコア510に、R相、S相、及びT相の巻線以外に、検出用の巻線を追加した状態を示している。このような構成により、物理量検出部503は、フィルタ素子及び物理量検出部の兼用が可能となる。
実施の形態8.
実施の形態1~7の電力変換装置1~1Eにおいて、波形形状制御信号出力部420は、機械学習によって得られた学習結果を用いて、波形形状変更部340によるスイッチング素子311a~311fのスイッチング波形の波形形状を設定することも可能である。
実施の形態1~7の電力変換装置1~1Eにおいて、波形形状制御信号出力部420は、機械学習によって得られた学習結果を用いて、波形形状変更部340によるスイッチング素子311a~311fのスイッチング波形の波形形状を設定することも可能である。
以上のように、本稿では、加熱運転モードを有し、拘束通電を行うヒートポンプ装置に用いて好適な種々の電力変換装置の構成及び動作について説明した。これらの電力変換装置において、インバータに具備されるスイッチング素子がスイッチング動作するときに、スイッチング速度が速いとサージ電圧が大きくなり、電磁ノイズが多く発生する。ヒートポンプ装置に燃焼性のある冷媒を使用する場合、冷媒が漏れた際には、電磁ノイズに起因して生じ得る放電によって、冷媒が燃焼する可能性がある。そのため、ヒートポンプ装置は、ヒートポンプ装置で使用される冷媒の燃焼性に応じて、電力変換装置1が備えるデジタルゲートドライバのスイッチング速度を設定する。例えば、ヒートポンプ装置は、ヒートポンプ装置で使用される冷媒の燃焼性が高いほど、電力変換装置1が備えるデジタルゲートドライバのスイッチング速度を遅くする。ヒートポンプ装置は、デジタルゲートドライバのスイッチング速度を遅くすることでサージ電圧を小さくでき、電磁ノイズが原因となる放電の発生を抑えることで、仮にヒートポンプ装置から冷媒が漏れた場合でも、冷媒が燃焼するのを防止することができる。
ヒートポンプ装置で使用される冷媒としては、例えば1234yf,R1234ze(E),R1243zf,HFO1123,HFO1132(E),R1132a,CF3I,R290のうちの何れかの単一冷媒、又は、冷媒のうちの少なくとも2つを含む混合冷媒を使用することができる。
以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1,1A~1E 電力変換装置、2,2A~2E モータ駆動装置、50 冷凍サイクル装置、51 圧縮機、52 四方弁、53,55 熱交換器、54 膨張機構、56 冷媒配管、57 圧縮機構、58 モータ、91 プロセッサ、92 メモリ、100 ヒートポンプ装置、110 商用電源、130 整流部、210 コンデンサ、310 インバータ、311a~311f スイッチング素子、312a~312f 還流ダイオード、340 波形形状変更部、400,400A~400E 制御部、410,410A,410E 基本パルス生成部、420,420A~420E 波形形状制御信号出力部、421,421A,421B,421E 設定部、422 特徴量抽出部、423,423D 記憶部、424,424D 状態診断部、430 拘束通電制御部、431 加熱判定部、432 直流通電指令生成部、433 高周波通電指令生成部、434 加熱指令部、435 通電切替部、501,502,505,506 状態量検出部、503,504 物理量検出部、510 トロイダルコア。
Claims (17)
- 複数のスイッチング素子を有するインバータを備え、前記インバータによって負荷を駆動するモータに電力を供給し、前記モータが回転駆動されない電力を前記モータに供給することで前記負荷を予熱する拘束通電を行う電力変換装置であって、
前記拘束通電を行う際に、複数の前記スイッチング素子のうちの少なくとも1つのスイッチング素子のスイッチング波形の波形形状を変更可能な波形形状変更部と、
前記波形形状変更部で前記スイッチング素子の前記スイッチング波形を変更する際の前記スイッチング素子の前記スイッチング波形の波形形状を設定し、設定した波形形状を示す制御信号を出力する波形形状制御信号出力部と、
を備える電力変換装置。 - 前記電力変換装置の動作状態を示す状態量を検出する状態量検出部を備え、
前記波形形状制御信号出力部は、前記状態量に応じて前記スイッチング素子の前記スイッチング波形の波形形状を設定して前記制御信号を出力する
請求項1に記載の電力変換装置。 - 前記スイッチング素子のスイッチングによって前記電力変換装置で発生する電磁ノイズと相関のある第1の物理量を検出する第1の検出部を備え、
前記波形形状制御信号出力部は、
前記第1の物理量と、前記電力変換装置において許容される前記電磁ノイズの閾値である第1の閾値に基づいて、前記スイッチング素子の前記スイッチング波形の波形形状を設定する設定部を備える
請求項1又は2に記載の電力変換装置。 - 前記波形形状制御信号出力部は、前記第1の物理量から特徴量を抽出する特徴量抽出部を備え、
前記設定部は、前記特徴量に応じて、前記波形形状変更部で変更する際の前記スイッチング素子の前記スイッチング波形の波形形状を設定する
請求項3に記載の電力変換装置。 - 前記波形形状制御信号出力部は、前記第1の検出部で検出された第1の物理量の検出値を記憶すると共に、前記設定部で設定された前記スイッチング素子の前記スイッチング波形の波形形状を前記第1の物理量に関連付けて記憶する記憶部を備える
請求項3に記載の電力変換装置。 - 前記波形形状制御信号出力部は、前記第1の検出部で検出された前記第1の物理量の検出値と、前記第1の物理量に応じて前記設定部で設定された前記波形形状と同じ過去の波形形状に関連付けられて前記記憶部に記憶されている前記第1の物理量の記憶値とに基づいて、前記電力変換装置の動作状態を診断する状態診断部を備え、
前記波形形状制御信号出力部は、前記状態診断部の診断結果に基づいて、前記設定部から前記波形形状変更部への設定した前記波形形状を示す制御信号の出力を制御する
請求項5に記載の電力変換装置。 - 前記記憶部は、更に、前記インバータの運転情報を前記第1の物理量及び前記波形形状と関連付けて記憶し、
前記波形形状制御信号出力部は、更に、
前記第1の検出部で検出された前記第1の物理量の検出値と、前記第1の物理量に応じて前記設定部で設定された前記波形形状と同じ過去の波形形状、及び前記運転情報と同じ過去の運転情報の両方に関連付けられて前記記憶部に記憶されている前記第1の物理量の記憶値とに基づいて、前記電力変換装置の動作状態を診断する状態診断部を備え、
前記波形形状制御信号出力部は、前記状態診断部の診断結果に基づいて、前記設定部から前記波形形状変更部への設定した前記波形形状を示す制御信号の出力を制御する
請求項5に記載の電力変換装置。 - 前記波形形状制御信号出力部は、前記特徴量抽出部で抽出された前記特徴量を記憶すると共に、前記設定部で設定された前記スイッチング素子の前記スイッチング波形の波形形状を前記特徴量に関連付けて記憶する記憶部を備える
請求項4に記載の電力変換装置。 - 前記波形形状制御信号出力部は、前記特徴量抽出部で抽出された前記特徴量の抽出値と、前記特徴量に応じて前記設定部で設定された前記波形形状と同じ波形形状に関連付けられて前記記憶部に記憶されている前記特徴量の記憶値とに基づいて、前記電力変換装置の動作状態を診断する状態診断部を備え、
前記波形形状制御信号出力部は、前記状態診断部の診断結果に基づいて、前記設定部から前記波形形状変更部への設定した前記波形形状を示す制御信号の出力を制御する
請求項8に記載の電力変換装置。 - 前記記憶部は、更に、前記インバータの運転情報を前記特徴量及び前記波形形状と関連付けて記憶し、
前記波形形状制御信号出力部は、更に、
前記特徴量抽出部で抽出された前記特徴量の抽出値と、前記特徴量に応じて前記設定部で設定された前記波形形状と同じ波形形状、及び前記運転情報と同じ過去の運転情報の両方に関連付けられて前記記憶部に記憶されている前記特徴量の抽出値とに基づいて、前記電力変換装置の動作状態を診断する状態診断部を備え、
前記波形形状制御信号出力部は、前記状態診断部の診断結果に基づいて、前記設定部から前記波形形状変更部への設定した前記波形形状を示す制御信号の出力を制御する
請求項8に記載の電力変換装置。 - 前記電磁ノイズと相関のある前記第1の物理量を検出する前記第1の検出部は、コモンモードトランスによって構成される
請求項3から10の何れか1項に記載の電力変換装置。 - 前記インバータで発生する損失と相関のある第2の物理量を検出する第2の検出部を備え、
前記設定部は、前記第2の物理量と、前記電力変換装置において許容される前記損失の閾値である第2の閾値とに基づいて、前記スイッチング素子の前記スイッチング波形の波形形状を設定する
請求項3から11の何れか1項に記載の電力変換装置。 - 前記波形形状制御信号出力部は、機械学習によって得られた学習結果を用いて、前記波形形状変更部による前記スイッチング素子の前記スイッチング波形の波形形状を設定する
請求項1から12の何れか1項に記載の電力変換装置。 - 前記スイッチング素子を含む前記インバータは、前記波形形状変更部を含むように構成される
請求項1から13の何れか1項に記載の電力変換装置。 - 請求項1から14の何れか1項に記載の電力変換装置を備えるモータ駆動装置。
- 請求項1から14の何れか1項に記載の電力変換装置を備えるヒートポンプ装置。
- 前記ヒートポンプ装置で使用される冷媒は、1234yf,R1234ze(E),R1243zf,HFO1123,HFO1132(E),R1132a,CF3I,R290のうちの何れかの単一冷媒、又は、前記冷媒のうちの少なくとも2つを含む混合冷媒である
請求項16に記載のヒートポンプ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/023192 WO2023238301A1 (ja) | 2022-06-08 | 2022-06-08 | 電力変換装置、モータ駆動装置及びヒートポンプ装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/023192 WO2023238301A1 (ja) | 2022-06-08 | 2022-06-08 | 電力変換装置、モータ駆動装置及びヒートポンプ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023238301A1 true WO2023238301A1 (ja) | 2023-12-14 |
Family
ID=89117747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/023192 WO2023238301A1 (ja) | 2022-06-08 | 2022-06-08 | 電力変換装置、モータ駆動装置及びヒートポンプ装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023238301A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009027881A (ja) * | 2007-07-23 | 2009-02-05 | Toyota Motor Corp | 半導体スイッチング素子の駆動制御装置 |
JP2012200042A (ja) * | 2011-03-18 | 2012-10-18 | Mitsubishi Electric Corp | インバータ制御装置及び冷凍空調装置 |
-
2022
- 2022-06-08 WO PCT/JP2022/023192 patent/WO2023238301A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009027881A (ja) * | 2007-07-23 | 2009-02-05 | Toyota Motor Corp | 半導体スイッチング素子の駆動制御装置 |
JP2012200042A (ja) * | 2011-03-18 | 2012-10-18 | Mitsubishi Electric Corp | インバータ制御装置及び冷凍空調装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5444381B2 (ja) | 可変速駆動装置内の直流リンクをプリチャージするシステム | |
JP5892997B2 (ja) | コンバータ回路、並びにそれを備えたモータ駆動制御装置、空気調和機、及び冷蔵庫 | |
JP5633442B2 (ja) | インバータ制御装置及び冷凍空調装置 | |
US7005829B2 (en) | System for precharging a DC link in a variable speed drive | |
US7555912B2 (en) | System for precharging a DC link in a variable speed drive | |
JP6111520B2 (ja) | 電力変換装置 | |
AU2011377665A1 (en) | Heat pump device, heat pump system, and inverter control method | |
JPH0937584A (ja) | モータ駆動方法及びそれを用いた電気機器 | |
WO2015045107A1 (ja) | 突入電流制限回路、及び電力変換装置 | |
JP2001289549A (ja) | 冷蔵庫制御装置 | |
JP2017208979A (ja) | 電源装置 | |
US20200300521A1 (en) | Heat pump device | |
WO2023238301A1 (ja) | 電力変換装置、モータ駆動装置及びヒートポンプ装置 | |
JP2018007502A (ja) | 電力変換装置、空気調和機および電力変換装置の制御方法 | |
WO2020066028A1 (ja) | モータ駆動装置及び空気調和機 | |
JP2017188989A (ja) | 電源装置 | |
WO2023238292A1 (ja) | 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 | |
JP7045529B2 (ja) | 電力変換装置および空気調和機 | |
WO2023238296A1 (ja) | 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器 | |
WO2023238291A1 (ja) | 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 | |
WO2023238293A1 (ja) | 空気調和機 | |
WO2023243003A1 (ja) | 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器 | |
KR20010037408A (ko) | 인버터 공기조화기의 실외팬제어방법 | |
JP7325673B2 (ja) | 電力変換装置及び空調機 | |
WO2020213317A1 (ja) | 電力変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22945804 Country of ref document: EP Kind code of ref document: A1 |