WO2023238233A1 - Shell-and-tube type heat exchanger, and refrigeration cycle device - Google Patents

Shell-and-tube type heat exchanger, and refrigeration cycle device Download PDF

Info

Publication number
WO2023238233A1
WO2023238233A1 PCT/JP2022/022945 JP2022022945W WO2023238233A1 WO 2023238233 A1 WO2023238233 A1 WO 2023238233A1 JP 2022022945 W JP2022022945 W JP 2022022945W WO 2023238233 A1 WO2023238233 A1 WO 2023238233A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
sub
holes
refrigerant
distribution
Prior art date
Application number
PCT/JP2022/022945
Other languages
French (fr)
Japanese (ja)
Inventor
亮 築山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/022945 priority Critical patent/WO2023238233A1/en
Publication of WO2023238233A1 publication Critical patent/WO2023238233A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present disclosure relates to a shell-and-tube heat exchanger and a refrigeration cycle device.
  • a shell-and-tube heat exchanger is known as a heat exchanger that exchanges heat between a refrigerant and a heat medium such as water or brine.
  • a shell and tube heat exchanger a plurality of heat transfer tubes are inserted into a shell, and heat exchange is performed between a heat medium in the shell and a refrigerant flowing through the plurality of heat transfer tubes.
  • Patent Document 1 discloses a shell-and-tube heat exchanger equipped with a refrigerant flow divider provided on the inlet side of a plurality of heat exchanger tubes as a configuration for evenly distributing refrigerant to a plurality of heat exchanger tubes. There is.
  • the refrigerant flow divider disclosed in Patent Document 1 is a cylindrical member that is open on the refrigerant inlet side and sealed at the other end, and has a plurality of refrigerant outlet holes in the circumferential direction of the cylinder.
  • This refrigerant flow divider is arranged within the shell so as to provide a space between the refrigerant flow divider and the inlets of the plurality of heat transfer tubes, through which the refrigerant flows.
  • the flow direction of the inflowing refrigerant is changed in the circumferential direction by the sealed end of the refrigerant divider, and then exits from the plurality of refrigerant outlet holes of the refrigerant divider to fill the space. flow and then into each heat transfer tube.
  • a space for changing the flow direction of the refrigerant is provided in a cylindrical refrigerant flow divider, and a space is also provided between the refrigerant flow divider and the heat transfer tubes. Is required. Therefore, the volume of the refrigerant flow divider and the space between the refrigerant flow divider and the heat transfer tubes increases, resulting in an increase in the size of the shell-and-tube heat exchanger.
  • the present disclosure has been made against the background of the above-mentioned problems, and provides a shell-and-tube heat exchanger and a refrigeration cycle device that can downsize a distribution section that distributes refrigerant to heat transfer tubes.
  • a shell-and-tube heat exchanger includes a shell to which a fluid inlet pipe and a fluid outlet pipe are connected, and a plurality of shells housed in the shell, through which a refrigerant flows in a first direction from each inlet to an outlet.
  • heat exchanger tubes, and a distribution section that is housed in the shell and that distributes refrigerant from the refrigerant inlet pipes to the inlets of the plurality of heat exchanger tubes, the distribution section having a first distribution section perpendicular to the first direction.
  • the first distribution plate has one or more first recesses provided on the first distribution surface and recessed in the first direction, and one or more first recesses provided in each of the one or more first recesses, a plurality of first holes penetrating the first distribution plate, the plurality of first holes are at different positions in a second direction perpendicular to the first direction, and the second distribution plate from a plurality of second recesses provided in the second distribution surface and recessed in the first direction, and a plurality of second holes provided in each of the plurality of second recesses and penetrating the second distribution plate.
  • a plurality of hole groups are formed, and the plurality of second holes included in each of the plurality of hole groups have mutually different positions in a third direction perpendicular to the first direction and the second direction. and one of the plurality of second recesses is located in a projection area in which the plurality of first holes of the first distribution plate are projected onto the second distribution plate.
  • a refrigeration cycle device includes a compressor that compresses refrigerant, a radiator that radiates heat from the refrigerant that flows out from the compressor, an expansion mechanism that reduces the pressure of the refrigerant that flows out from the radiator, and an expansion mechanism that depressurizes the refrigerant that flows out from the expansion mechanism.
  • an evaporator for evaporating the refrigerant the evaporator being the shell-and-tube heat exchanger described above.
  • the distribution unit that distributes refrigerant to the inlets of a plurality of heat exchanger tubes can be made smaller compared to the conventional one.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle device 100 according to Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view of a heat exchanger 10 according to Embodiment 1.
  • FIG. 1 is a schematic exploded perspective view of a heat exchanger 10 according to Embodiment 1.
  • FIG. 3 is an exploded view of main parts according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of the distribution section 3 according to the first embodiment.
  • FIG. 7 is a developed view of a refrigerant inlet cover 15A, a distribution section 3A, and an inlet side tube plate 17 according to a second embodiment.
  • FIG. 7 is a developed view of a refrigerant inlet cover 15B and a distribution section 3B according to Embodiment 3.
  • FIG. 7 is a diagram illustrating the shape of a sub-plate recess 72 according to Embodiment 3.
  • FIG. 7 is a developed view of a refrigerant inlet cover 15C and a distribution section 3C according to Embodiment 4.
  • FIG. 7 is a developed view of a refrigerant inlet cover 15D and a distribution section 3D according to Embodiment 5.
  • FIG. 7 is a developed view of a distribution section 3E according to a sixth embodiment.
  • FIG. 7 is a diagram illustrating the shape of a sub-plate recess 62F according to Embodiment 7.
  • FIG. 7 is a diagram illustrating the shape of a sub-plate recess 62G according to Embodiment 8.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle device 100 according to the first embodiment.
  • the refrigeration cycle device 100 of this embodiment includes a compressor 101, a radiator 102, an expansion mechanism 103, and an evaporator 104.
  • Compressor 101, radiator 102, expansion mechanism 103, and evaporator 104 are connected by refrigerant piping 105, thereby forming a refrigerant circuit in which refrigerant circulates.
  • the refrigerant used in the refrigeration cycle device 100 is, for example, an HFC refrigerant such as R410A, R407C, R404A, or R32, an HFO refrigerant such as HFO-1234yf, or a natural refrigerant such as hydrocarbon, helium, or propane.
  • the compressor 101 is a fluid machine that sucks in low-pressure gas refrigerant, compresses it, and discharges it as high-pressure gas refrigerant.
  • the compressor 101 is, for example, an inverter-driven compressor whose operating frequency can be adjusted.
  • the radiator 102 exchanges heat between the refrigerant flowing inside the heat transfer tube and another fluid, and condenses and liquefies the refrigerant.
  • the expansion mechanism 103 is, for example, an electronic expansion valve whose opening degree can be controlled.
  • the expansion mechanism 103 reduces the pressure of the refrigerant flowing out from the radiator 102 and expands it.
  • the expansion mechanism 103 may be a temperature-sensitive expansion valve, or a capillary tube may be provided instead of the expansion mechanism 103.
  • the evaporator 104 exchanges heat between the refrigerant flowing inside the heat transfer tube and another fluid, and evaporates and gasifies the refrigerant.
  • the operation of the refrigeration cycle device 100 of this embodiment will be explained based on the flow of refrigerant circulating in the refrigerant circuit.
  • the compressor 101 compresses the refrigerant, converts it into a high-temperature, high-pressure gas state, and discharges the refrigerant.
  • the gas refrigerant discharged by the compressor 101 flows into the radiator 102 through the refrigerant pipe 105.
  • the radiator 102 the refrigerant exchanges heat with other fluids and is condensed and liquefied. At this time, the refrigerant radiates heat to the other fluid, thereby heating the other fluid.
  • the refrigerant condensed and liquefied in the radiator 102 passes through the expansion mechanism 103.
  • the expansion mechanism 103 reduces the pressure of the refrigerant.
  • the refrigerant whose pressure has been reduced by the expansion mechanism 103 flows into the evaporator 104 .
  • the refrigerant exchanges heat with other fluids and evaporates into gas.
  • the other fluid is cooled by the refrigerant absorbing heat from the other fluid.
  • the refrigerant evaporated and gasified in the evaporator 104 is sucked into the compressor 101 again.
  • the refrigeration cycle device 100 is, for example, an air conditioner that heats or cools a room, a refrigeration device that cools a freezer compartment such as a warehouse, a showcase, or a refrigerator, or a water heater that heats water in a tank.
  • a shell-and-tube heat exchanger 10 which will be described later, is employed.
  • the structure of the heat exchanger 10 will be explained below.
  • FIG. 2 is a schematic cross-sectional view of the heat exchanger 10 according to the first embodiment.
  • FIG. 2 shows a horizontal section of the heat exchanger 10 viewed from above.
  • the flow of the refrigerant is shown by solid line arrows, and the flow of fluid is shown by broken line arrows.
  • the heat exchanger 10 includes a shell 1, a plurality of heat exchanger tubes 2, and a distribution section 3.
  • the distribution section 3 is illustrated for the purpose of showing the position of the distribution section 3, and the structure of the distribution section 3 will be explained from FIG. 3 onwards.
  • the first direction is a direction from the inlet 21 of the heat exchanger tube 2 to the outlet 22.
  • the second direction is a direction perpendicular to the first direction, and in this embodiment is the direction of gravity.
  • the direction from the front to the back of the page is the second direction.
  • the third direction is a direction perpendicular to the first direction and the second direction.
  • the direction from the top to the bottom of the page is the third direction.
  • the forward directions of the first direction, the second direction, and the third direction are indicated by the directions pointed by the arrows.
  • first direction the forward directions of the first direction, the second direction, and the third direction
  • second direction the forward directions of the first direction, the second direction, and the third direction
  • opposite directions are respectively referred to as a first reverse direction, a second reverse direction, and a third reverse direction.
  • the shell 1 is a cylindrical container. In this embodiment, a cylindrical shell 1 will be described as an example.
  • a refrigerant inlet pipe 11 , a refrigerant outlet pipe 12 , a fluid inlet pipe 13 , and a fluid outlet pipe 14 are connected to the shell 1 .
  • the refrigerant inlet pipe 11 is a pipe for flowing a refrigerant into the heat exchanger tubes 2 inside the shell 1 .
  • the refrigerant inlet pipe 11 is connected to the refrigerant pipe 105 shown in FIG.
  • the refrigerant outlet pipe 12 is a pipe for causing the refrigerant that has flowed out of the heat transfer tube 2 to flow out from inside the shell 1 .
  • the refrigerant outlet pipe 12 is connected to the refrigerant pipe 105 shown in FIG.
  • the refrigerant inlet pipe 11 and the refrigerant outlet pipe 12 extend in the same direction as the direction in which the heat exchanger tubes 2 extend, that is, in the first direction.
  • the fluid inlet pipe 13 is a pipe for flowing fluid such as water or brine into the shell 1.
  • the fluid outlet pipe 14 is a pipe for discharging a fluid such as water or brine from inside the shell 1.
  • the fluid inlet pipe 13 and the fluid outlet pipe 14 are connected to the body of the shell 1 so as to communicate with the interior of the shell 1 .
  • the heat exchanger 10 further includes a refrigerant inlet cover 15 and a refrigerant outlet cover 16.
  • a sealed space is formed by the shell 1, the refrigerant inlet cover 15, and the refrigerant outlet cover 16.
  • the refrigerant inlet cover 15 is a cover provided at one end of the cylindrical shell 1 in the axial direction.
  • a fluid inlet pipe 13 is inserted into the refrigerant inlet cover 15 .
  • Fluid inlet pipe 13 is connected to shell 1 via refrigerant inlet cover 15 .
  • the refrigerant outlet lid 16 is a lid provided at the other end of the cylindrical shell 1 in the axial direction.
  • a refrigerant outlet pipe 12 is inserted into the refrigerant outlet cover 16 .
  • the refrigerant outlet pipe 12 is connected to the shell 1 via a refrigerant outlet cover 16.
  • the plurality of heat exchanger tubes 2 are tubes through which refrigerant flows.
  • the plurality of heat exchanger tubes 2 extend along the axial direction of the cylindrical shell 1, that is, the first direction.
  • the plurality of heat exchanger tubes 2 are installed at intervals within the shell 1, and heat exchange occurs between a fluid such as water or brine flowing around the heat exchanger tubes 2 and a refrigerant flowing through the heat exchanger tubes 2. It will be done.
  • the heat exchanger 10 further includes an inlet side tube sheet 17 and an outlet side tube sheet 18.
  • the inlet side tube plate 17 is a plate that supports the end of the heat exchanger tube 2 on the inlet side.
  • the inlet side tube plate 17 is provided in the shell 1 so that its flat plate surface faces the refrigerant inlet cover 15.
  • the outlet side tube plate 18 is a plate that supports the end of the heat exchanger tube 2 on the outlet side.
  • the outlet side tube plate 18 is provided in the shell 1 so that its flat plate surface faces the refrigerant outlet cover 16.
  • a plurality of heat exchanger tubes 2 are inserted into the inlet side tube sheet 17 and the outlet side tube sheet 18 in generally parallel manner.
  • the inlet side tube sheet 17 and the heat exchanger tubes 2, and the outlet side tube sheet 18 and the heat exchanger tubes 2 are fixed by brazing.
  • FIG. 3 is a schematic exploded perspective view of the heat exchanger 10 according to the first embodiment.
  • FIG. 3 schematically shows the arrangement of each part constituting the heat exchanger 10.
  • the distribution section 3 includes a first distribution plate 4 and a second distribution plate 5.
  • the first distribution plate 4 is provided on the downstream side of the refrigerant inlet cover 15 in the flow direction of the refrigerant, and has a first distribution surface 41 that is perpendicular to the first direction.
  • the first distribution surface 41 is provided so as to face the inner surface of the refrigerant inlet cover 15 .
  • the first distribution plate 4 causes the refrigerant flowing into the shell 1 from the refrigerant inlet pipe 11 to flow in the second direction or in the opposite direction to the second direction, and causes the refrigerant to flow out downstream.
  • the second distribution plate 5 is provided downstream of the first distribution plate 4 and upstream of the inlet tube plate 17 in the flow direction of the refrigerant, and has a second distribution surface 51 that is perpendicular to the first direction.
  • the second distribution surface 51 is provided to face the downstream surface of the first distribution plate 4.
  • the second distribution plate 5 causes the refrigerant that has passed through the first distribution plate 4 to flow in a third direction that is orthogonal to the first direction and the second direction, or in the opposite direction to the third direction, and causes the refrigerant to flow out to the downstream side. .
  • the refrigerant that has passed through the second distribution plate 5 flows into each of the plurality of heat transfer tubes 2 inserted into the inlet side tube plate 17.
  • the refrigerant exchanges heat with a heat medium such as water or brine in the shell 1.
  • the refrigerant that has passed through the heat transfer tubes 2 flows out to the refrigerant outlet pipe 12.
  • the first distribution plate 4 and the second distribution plate 5 are plates made of metal such as aluminum, aluminum alloy, or stainless steel, for example.
  • the first distribution plate 4 and the second distribution plate 5 have a thickness (length in the first direction) of about 10 mm to 50 mm, which is It is sufficiently thin compared to the length of the heat tube 2 (length in the first direction). Note that the thicknesses of the first distribution plate 4 and the second distribution plate 5 are not limited to those illustrated here.
  • the refrigerant inlet cover 15, first distribution plate 4, second distribution plate 5, and inlet side tube plate 17 are stacked in this order, and there is substantially no gap between adjacent ones.
  • the heat exchanger tube 2 has an inlet 21 and an outlet 22.
  • the direction from the inlet 21 to the outlet 22 of the heat exchanger tube 2 coincides with the first direction.
  • the inlet 21 is inserted into the inlet tube sheet 17 and the outlet 22 is inserted into the outlet tube sheet 18. Both ends of the heat exchanger tubes 2 may protrude from the inlet tube sheet 17 or the outlet tube sheet 18, respectively.
  • FIG. 4 is a developed view of the main parts according to the first embodiment.
  • the refrigerant inlet cover 15 is provided with an opening 151 .
  • the opening 151 is a hole into which the refrigerant inlet pipe 11 is inserted.
  • the opening 151 is provided on the lower side in the direction of gravity, which is the second direction.
  • the first distribution surface 41 of the first distribution plate 4 is provided with a first recess 42 and a first hole 43.
  • the first distribution surface 41 is a surface along the second direction and the third direction.
  • the first recess 42 is a groove recessed in the first direction.
  • the first recess 42 does not penetrate the first distribution plate 4.
  • the planar shape of the first recess 42 is an elongated hole shape extending in the second direction.
  • the first hole 43 is a hole provided in the first recess 42 and passing through the first distribution plate 4.
  • a plurality of first holes 43 are provided in the first recess 42 .
  • the plurality of first holes 43 are arranged at intervals along the second direction. As shown in FIG. 4, the plurality of first holes 43 are arranged in one row along the second direction, and the positions in the third direction are the same, but the plurality of first holes 43 in the third direction are The positions do not have to be exactly the same. It is sufficient that the positions of the plurality of first holes 43 in the second direction are different from each other.
  • the first hole 43 located at the lowest position in the direction of gravity is provided at a position facing the opening 151.
  • the second distribution surface 51 of the second distribution plate 5 is provided with a second recess 52 and a second hole 53.
  • the second distribution surface 51 is a surface along the second direction and the third direction.
  • the second recess 52 is a groove recessed in the first direction.
  • the second recess 52 does not penetrate the second distribution plate 5.
  • the plurality of second recesses 52 are arranged at intervals from each other along the second direction.
  • the planar shape of each of the plurality of second recesses 52 is an elongated hole shape extending in the third direction.
  • the length in the longitudinal direction of the second recess 52 at both ends in the second direction is the shortest, and the length in the longitudinal direction of the second recess 52 in the center in the second direction is the longest.
  • the length of the second recess 52 in the longitudinal direction corresponds to the length of the second distribution plate 5 in the third direction at the position of the second recess 52 .
  • the second hole 53 is a hole provided in the second recess 52 and passing through the second distribution plate 5.
  • One or more second holes 53 are provided in each of the plurality of second recesses 52.
  • the plurality of second holes 53 provided in one second recess 52 may be collectively referred to as a hole group.
  • the plurality of second holes 53 in the hole group are arranged at different intervals along the third direction.
  • the plurality of second holes 53 in the hole group are arranged in one line along the third direction, and the positions in the second direction are the same, but the positions of the plurality of second holes 53 in the second direction are strictly does not have to be the same. It is sufficient that the positions of the plurality of second holes 53 constituting the hole group in the third direction are different from each other.
  • the number of second holes 53 provided in each of the plurality of second recesses 52 corresponds to the length of the second recess 52 in the third direction, and the longer the length of the second recess 52 in the third direction, The number of second holes 53 is large.
  • Inlets 21 of a plurality of heat exchanger tubes 2 are located in the openings of the inlet side tube plate 17, respectively.
  • the total number of the plurality of second holes 53 matches the total number of heat exchanger tubes 2.
  • the position of each of the second holes 53 in a plane including the second direction and the third direction matches the position of the heat exchanger tube 2 in the same plane. That is, the heat exchanger tube 2 is provided at a position facing each of the plurality of second holes 53.
  • FIG. 5 is a schematic cross-sectional view of the distribution section 3 according to the first embodiment.
  • FIG. 5 shows a cross section taken along line II in FIG. 4 with the first distribution plate 4 and the second distribution plate 5 disassembled. Note that in the use state, the first distribution plate 4 and the second distribution plate 5 are overlapped.
  • a plurality of first holes 43 are provided at the bottom of the first recess 42 of the first distribution plate 4 along the second direction.
  • a projection area in which the first holes 43 are projected onto the second distribution plate 5 is shown as a projection area 44.
  • One of the plurality of second recesses 52 is located in this projection area 44 .
  • FIG. 5 only the projection areas 44 of some of the first holes 43 are labeled with reference numerals in order to avoid complication of the drawing, but the projection areas 44 of all the first holes 43 are the same as those of the second recesses 52. facing either one.
  • FIG. 5 shows an example in which the first hole 43 and the second hole 53 face each other, part or all of the first hole 43 does not have to face the second hole 53.
  • the first hole 43 only needs to face the second recess 52 .
  • the flow of the refrigerant will be explained with reference to FIG.
  • the refrigerant that has flowed into the opening 151 provided at the lower part of the refrigerant inlet cover 15 flows into the lower part of the first recess 42 of the first distribution plate 4 .
  • the refrigerant flowing into the first recess 42 flows in the opposite direction in the second direction, that is, toward the upper side in the direction of gravity. In the process of flowing upward in the direction of gravity through the first recess 42 , the refrigerant passes through any one of the plurality of first holes 43 and flows toward the downstream side of the first distribution plate 4 .
  • the refrigerant that has flowed out from each of the first holes 43 flows into the second recess 52 that faces the first hole 43 that has flowed out.
  • the projected area 44 (see FIG. 5) of the first hole 43 faces the center of the second recess 52 in the third direction, and the refrigerant flowing out of the first hole 43 is transferred to the third recess of the corresponding second recess 52. Inflow to the center in the direction.
  • the refrigerant flowing into the second recess 52 flows in the second recess 52 in the third direction and in the opposite direction to the third direction. In the process of flowing within the second recess 52, the refrigerant passes through any one of the plurality of second holes 53 provided in the second recess 52 and flows to the downstream side of the second distribution plate 5.
  • the refrigerant flowing out from each of the second holes 53 flows into the inlet 21 of the heat exchanger tube 2 (see FIG. 3) of the inlet side tube plate 17.
  • the distribution unit 3 of this embodiment is configured by stacking two plates, a first distribution plate 4 and a second distribution plate 5, in total.
  • the first recess 42 of the first distribution plate 4 realizes distribution of the refrigerant in the second direction
  • the second recess 52 of the second distribution plate 5 realizes the distribution of the refrigerant in the third direction.
  • the space used for distributing the refrigerant is a recess and a hole provided in the first distribution plate 4 and the second distribution plate 5, and the volume thereof is disclosed in the patent document Smaller than 1. Therefore, the distribution section 3 that distributes the refrigerant to the heat exchanger tubes 2 can be downsized. Downsizing of the distribution section 3 leads to downsizing of the shell-and-tube heat exchanger 10.
  • the distribution of the two-phase refrigerant to the heat exchanger tubes 2 can be improved.
  • the volume is large as in the refrigerant flow divider of Patent Document 1
  • the flow rate of the two-phase refrigerant flowing into the heat exchanger 10 functioning as the evaporator 104 is low, the liquid refrigerant tends to fall due to gravity. Become. In this case, a phenomenon occurs in which a large amount of gas refrigerant flows into the upper heat transfer tube, and a large amount of liquid refrigerant flows into the lower heat transfer tube.
  • the volume of the distribution section 3 can be made smaller than that of the conventional one, so that the two-phase refrigerant that has flowed into the distribution section 3 can be uniformly distributed among the plurality of heat exchanger tubes 2. Therefore, the evaporation capacity of the heat exchanger 10 functioning as the evaporator 104 can be improved.
  • Embodiment 2 In this embodiment, differences from Embodiment 1 will be mainly described.
  • the suffix A is added to the reference numerals of the configurations that are different from those in the first embodiment.
  • FIG. 6 is a developed view of the refrigerant inlet cover 15A, the distribution section 3A, and the inlet side tube plate 17 according to the second embodiment.
  • the opening areas of the plurality of first holes 43A of the first distribution plate 4A of this embodiment are not uniform. Specifically, the opening area of each of the first holes 43A increases as the number of second holes 53 provided in the second recess 52 facing the first hole 43A increases.
  • the number of second holes 53 matches the number of heat exchanger tubes 2.
  • the number of the plurality of second holes 53 provided in the second recess 52 gradually increases from the top to the bottom, reaches a maximum at the center, gradually decreases downward, and reaches the minimum at the bottom. .
  • the opening area of the first hole 43A gradually increases from the top to the bottom, reaches the maximum at the center, gradually decreases downward, and reaches the minimum at the bottom. It is desirable that the opening area of the first holes 43A be proportional to the number of second holes 53 in the second recess 52 facing each first hole 43A.
  • the length of the first recess 42 in the third direction may be different depending on the inner diameter of the first hole 43.
  • the length of the first recess 42 in the third direction gradually increases from the top downward, reaches a maximum at the center, gradually decreases downward, and reaches the shortest at the bottom. It's okay to be.
  • the opening area of each of the plurality of first holes 43A in this embodiment is larger than the number of the plurality of second holes 53 provided in the plurality of second recesses 52 facing the first holes 43A. It's so big. Therefore, the amount of refrigerant passing through each of the plurality of first holes 43A increases as the number of the plurality of second holes 53 provided in the plurality of second recesses 52 facing the first holes 43A increases. Therefore, the amount of refrigerant flowing into each of the plurality of second holes 53 can be made uniform. Thereby, the amount of refrigerant flowing into each of the plurality of heat exchanger tubes 2 from each of the plurality of second holes 53 can be made uniform.
  • Embodiment 3 In this embodiment, differences from Embodiment 1 will be mainly described.
  • a suffix B is added to the reference numerals of the configurations that are different from those in the first embodiment.
  • FIG. 7 is a developed view of the refrigerant inlet cover 15B and the distribution section 3B according to the third embodiment.
  • the distribution section 3B includes a sub-plate group consisting of an upstream sub-plate 6 and a downstream sub-plate 7 in addition to the first distribution plate 4B and the second distribution plate 5.
  • the outer shapes of the first distribution plate 4B, the upstream sub-plate 6, and the downstream sub-plate 7 are illustrated as elongated holes with broken lines, but this is due to space limitations and may differ from the actual The outer shape is the same as that of the second distribution plate 5. This also applies to FIG. 7 and subsequent figures.
  • the opening 151B of the refrigerant inlet cover 15B is provided at the center of the refrigerant inlet cover 15B.
  • the sub-plate group is provided between the refrigerant inlet cover 15B and the first distribution plate 4B, and is overlapped with the first distribution plate 4B.
  • the sub-plate group is composed of a plurality of sub-plates stacked on top of each other in the first direction, and in FIG. 7, a total of two sub-plates, an upstream sub-plate 6 and a downstream sub-plate 7, are illustrated.
  • the first distribution plate 4B and the sub-plate group constitute a laminated header.
  • the distribution surface 61 of the upstream sub-plate 6 is provided with a sub-plate recess 62 and a sub-plate hole 63.
  • the distribution surface 61 is a surface along the second direction and the third direction.
  • the sub-plate recess 62 is a groove recessed in the first direction.
  • the sub-plate recess 62 does not penetrate the upstream sub-plate 6.
  • a plurality of sub-plate holes 63 are provided for one sub-plate recess 62. In the example of FIG. 7, two sub-plate holes 63 are provided for one sub-plate recess 62.
  • the distribution surface 71 of the downstream sub-plate 7 is provided with a sub-plate recess 72 and a sub-plate hole 73.
  • the distribution surface 71 is a surface along the second direction and the third direction.
  • the sub-plate recess 72 is a groove recessed in the first direction.
  • the sub-plate recess 72 does not penetrate the downstream sub-plate 7.
  • the same number of sub-plate recesses 72 as sub-plate holes 63 are provided.
  • two sub-plate recesses 72 are spaced apart in the second direction.
  • a plurality of sub-plate holes 73 are provided for one sub-plate recess 72.
  • two sub-plate holes 73 are provided for one sub-plate recess 72.
  • FIG. 8 is a diagram illustrating the shape of the sub-plate recess 72 according to the third embodiment.
  • the center in the second direction and the third direction is referred to as a base 721.
  • One sub-plate hole 73 is provided on the upper side of the base 721 in the drawing, and one sub-plate hole 73 is provided on the lower side of the base 721 in the drawing.
  • the base 721 is located between the two sub-plate holes 73 in the second direction.
  • the base portion 721 and the sub-plate holes 73 are arranged in one row along the second direction.
  • the sub-plate recess 72 branches the refrigerant flowing from the upstream side toward the base 721 into a third direction and a direction opposite to the third direction, and directs each branched refrigerant into a second direction opposite or a second direction. It forms a flow path that leads to.
  • the sub-plate recess 72 has a base 721 , a first portion 722 , a second portion 723 , a third portion 724 , and a fourth portion 725 .
  • the first portion 722 extends from the base 721 in the third direction.
  • the second portion 723 extends from the base 721 in the third direction.
  • the third portion 724 extends from the end of the first portion 722 toward the upper sub-plate hole 73.
  • the third portion 724 has an obliquely upward slope.
  • the fourth portion 725 extends from the end of the second portion 723 toward the lower sub-plate hole 73.
  • the fourth portion 725 has a diagonally downward slope.
  • each part of the sub-plate recess 62 and the first recess 42B are different from the dimensions of each part of the sub-plate recess 72 shown in FIG. 8, the shape of each part is the same as the shape of each part of the sub-plate recess 72 ( (See Figure 7).
  • a sub-plate hole 63 is provided at each of the upper and lower ends of one sub-plate recess 62.
  • a first hole 43 is provided at each of the upper and lower ends of one first recess 42B.
  • a sub-plate recess 72 is arranged in a projected area of the sub-plate hole 63 onto the downstream sub-plate 7.
  • the base portion 721 is located in a projected region of the sub-plate hole 63 onto the downstream sub-plate 7.
  • the first recess 42B is arranged in a projection area of the sub-plate hole 73 projected onto the first distribution plate 4B.
  • the base of the first recess 42B is located in the projection area of the sub-plate hole 73 onto the first distribution plate 4B.
  • the second recess 52 is located in the projection area of the first hole 43 onto the second distribution plate 5.
  • the refrigerant flowing out from each of the sub-plate holes 63 flows into the center of the sub-plate recess 72 of the downstream sub-plate 7 (base 721 in FIG. 8).
  • the refrigerant flowing into the sub-plate recess 72 branches into a third direction and a direction opposite to the third direction, the former flowing in the second direction opposite to the third direction, and the latter flowing in the second direction, each passing through the sub-plate hole 73. , flows downstream of the downstream sub-plate 7.
  • the refrigerant flowing out from each of the sub-plate holes 73 flows into the center of the first recess 42B of the first distribution plate 4B (a position corresponding to the base 721 in FIG. 8).
  • the refrigerant flowing into the first recess 42B branches into a third direction and a direction opposite to the third direction, the former flowing in the second direction opposite to the third direction, and the latter flowing in the second direction, each passing through the first hole 43. , flows downstream of the first distribution plate 4B.
  • the refrigerant flowing from each of the first holes 43 flows into the second recess 52 facing the first hole 43.
  • the projected area 44 (see FIG. 5) of the first hole 43 faces the center of the second recess 52 in the third direction, and the refrigerant flowing out of the first hole 43 is transferred to the third recess of the corresponding second recess 52. Inflow to the center in the direction.
  • the refrigerant flowing into the second recess 52 flows in the second recess 52 in the third direction and in the opposite direction to the third direction. In the process of flowing within the second recess 52, the refrigerant passes through any one of the plurality of second holes 53 provided in the second recess 52 and flows to the downstream side of the second distribution plate 5.
  • the refrigerant flowing out from each of the second holes 53 flows into the inlet 21 of the heat exchanger tube 2 (see FIG. 3) of the inlet side tube plate 17.
  • the distribution section 3B of this embodiment has a sub-plate group superimposed on the first distribution plate 4B.
  • the sub-plate group includes an upstream sub-plate 6 and a downstream sub-plate 7 as a plurality of sub-plates stacked in the first direction.
  • the upstream sub-plate 6 and the downstream sub-plate 7 are respectively formed with sub-plate recesses 62 and 72 recessed in the first direction and sub-plate holes 63 and 73.
  • the sub-plate holes 63 and 73 are provided in the sub-plate recesses 62 and 72, respectively, and pass through the upstream sub-plate 6 and the downstream sub-plate 7.
  • the number of the plurality of sub-plate holes 63 in the upstream sub-plate 6 on the upstream side in the first direction is equal to the number of the plurality of sub-plate holes 63 on the downstream side in the first direction.
  • the number is smaller than the number of the plurality of sub-plate holes 73 of the sub-plate 7.
  • the sub-plate recess 72 of the downstream sub-plate 7 is located in a projection area in which the plurality of sub-plate holes 63 of the upstream sub-plate 6 are projected onto the downstream sub-plate 7 .
  • the upstream sub-plate 6 and the downstream sub-plate 7 are stacked, and the refrigerant is distributed in the third direction and the second direction. Refrigerant distribution can be made more uniform.
  • the refrigerant is branched into the third direction and the second direction in the respective recesses.
  • One each of the upstream sub-plate 6, the downstream sub-plate 7, and the first distribution plate 4B can branch the refrigerant in two directions, so even when two-phase refrigerant flows into the heat exchanger 10, , the distribution of the two-phase refrigerant can be made closer to uniformity.
  • Embodiment 4 In this embodiment, differences from Embodiment 1 and Embodiment 3 will be mainly explained.
  • the suffix C is added to the reference numerals of the configurations that are different from those in the first and third embodiments.
  • FIG. 9 is a developed view of the refrigerant inlet cover 15C and the distribution section 3C according to the fourth embodiment. Although illustration of the inlet side tube plate 17 is omitted in FIG. 9, the inlet side tube plate 17 is provided in the same manner as in FIG. 4.
  • the distribution section 3C includes an upstream sub-plate 6 in addition to a first distribution plate 4C and a second distribution plate 5C.
  • the opening 151C of the refrigerant inlet cover 15C is provided at the center of the refrigerant inlet cover 15C.
  • the upstream sub-plate 6 has the same structure as the upstream sub-plate 6 shown in the third embodiment.
  • the downstream sub-plate 7 of Embodiment 3 is not provided, but a first distribution plate 4C is provided overlapping the upstream sub-plate 6.
  • the first distribution plate 4C has the same structure as the downstream sub-plate 7 shown in the third embodiment.
  • the first recess 42C has the same shape as the sub-plate recess 72 of the third embodiment.
  • the second distribution plate 5C has a second recess 52C that is different from the second recess 52 of the first embodiment.
  • the second recess 52C includes a first portion 521C, a second portion 522C, and a connecting portion 523C provided between the first portion 521C and the second portion 522.
  • the first portion 521C, the second portion 522C, and the connecting portion 523C are all grooves recessed in the first direction and do not penetrate the second distribution plate 5C.
  • the first portion 521C and the second portion 522C are arranged side by side in the second direction, and each correspond to the second recesses 52 arranged vertically in the first embodiment.
  • the first portion 521C and the second portion 522C are each elongated holes extending in the third direction.
  • the connecting portion 523C forms a flow path that branches the refrigerant flowing from the upstream side into a third direction and a direction opposite to the third direction, and guides each of the branched refrigerants in a second direction opposite or in the second direction. are doing.
  • the shape of the connecting portion 523C is substantially the same as the shape of the sub-plate recess 72 of the downstream sub-plate 7 shown in FIG.
  • Some of the plurality of second holes 53 provided in the second recess 52C are provided in the first portion 521C, and the remaining second holes 53 are provided in the second portion 522C.
  • a connecting portion 523C of the second recess 52C is located in a projected area of the first hole 43 onto the second distribution plate 5C.
  • the projection area of the first hole 43 is located at the center of the second recess 52C in the second direction and the third direction (a position corresponding to the base 721 in FIG. 8).
  • the refrigerant that has flowed into the opening 151C provided at the center of the refrigerant inlet cover 15C flows into the center of the sub-plate recess 62 of the upstream sub-plate 6 (a position corresponding to the base 721 in FIG. 8).
  • the refrigerant flowing into the sub-plate recess 62 branches into a third direction and a direction opposite to the third direction, the former flowing in the second direction opposite to the third direction, and the latter flowing in the second direction, passing through the sub-plate holes 63. , flows to the downstream side of the upstream sub-plate 6.
  • the refrigerant flowing out from each of the sub-plate holes 63 flows into the center of the first recess 42C of the first distribution plate 4C (a position corresponding to the base 721 in FIG. 8).
  • the refrigerant flowing into the first recess 42C branches into a third direction and a direction opposite to the third direction, the former flowing in the second direction opposite to the third direction, and the latter flowing in the second direction, each passing through the first hole 43. , flows downstream of the first distribution plate 4C.
  • the refrigerant flowing from each of the first holes 43 flows into the connecting portion 523C of the second recess 52C facing the first hole 43.
  • the projected area 44 (see FIG. 5) of the first hole 43 faces the center of the second recess 52C in the second direction and the third direction, and the refrigerant flowing out of the first hole 43 is transferred to the corresponding connecting portion 523C.
  • the refrigerant that has flowed into the connecting portion 523C is branched into a third direction and an opposite direction to the third direction, the former flowing in the opposite direction to the second direction, and the latter flowing in the second direction, passing through the second hole 53, and branching into the third direction. It flows to the downstream side of the two-way distribution plate 5.
  • the refrigerant flowing out from each of the second holes 53 flows into the inlet 21 of the heat exchanger tube 2 (see FIG. 3) of the inlet side tube plate 17.
  • the second recessed portion 52C of the distribution portion 3C of the present embodiment includes a first portion 521C in which some of the plurality of second holes 53 of the hole group are formed, and a first portion 521C and a second recessed portion 52C of the distribution portion 3C of the present embodiment. and a second portion 522C in which the remainder of the plurality of second holes 53 of the hole group are formed.
  • the second recess 52C includes a connecting portion 523C provided between the first portion 521C and the second portion 522C in the second direction. The connecting portion 523C is located in a projection area where the first hole 43 is projected onto the second distribution plate 5C.
  • the refrigerant is branched into the third direction and the second direction in the respective recesses. Since the upstream sub-plate 6, the first distribution plate, and 4C can branch the refrigerant in two directions, even when the two-phase refrigerant flows into the heat exchanger 10, the distribution of the two-phase refrigerant can be prevented. can be made close to uniform.
  • the refrigerant is branched into the third direction and the second direction in the second recess 52C of the second distribution plate 5C. Also in the second distribution plate 5C, branching of the refrigerant in two directions can be achieved, so the number of sub-plates can be reduced compared to the third embodiment.
  • Embodiment 5 In this embodiment, differences from Embodiment 3 will be mainly explained. In this embodiment, a suffix D is added to the reference numerals of the components that are different from those in the third embodiment.
  • FIG. 10 is a developed view of the refrigerant inlet cover 15D and the distribution section 3D according to the fifth embodiment. Although illustration of the inlet side tube plate 17 is omitted in FIG. 10, the inlet side tube plate 17 is provided in the same manner as in FIG. 4.
  • the distribution section 3D includes an upstream sub-plate 6D and a downstream sub-plate 7D in addition to the first distribution plate 4C and the second distribution plate 5C.
  • the opening 151D of the refrigerant inlet cover 15D is provided at the center of the refrigerant inlet cover 15D.
  • a sub-plate recess 62D is provided on the distribution surface 61 of the upstream sub-plate 6D.
  • the sub-plate recess 62D has the same function as the sub-plate recess 62 of Embodiment 3 in the function of dividing the refrigerant in the third direction and the opposite direction to the third direction, and in the second direction and the opposite direction to the second direction.
  • the sub-plate recess 62D has a shape that repeats twice the branching of the refrigerant in the third direction and the opposite direction to the third direction, and the branching of the refrigerant in the second direction and the opposite direction to the second direction. ing.
  • Four sub-plate holes 63D are provided in one sub-plate recess 62D.
  • a sub-plate recess 72D is located in a projected region of the sub-plate hole 63D onto the downstream sub-plate 7D.
  • the downstream sub-plate 7D includes a sub-plate recess 72D and a sub-plate hole 73D.
  • the shape of each sub-plate recess 72D is the same as the shape of the sub-plate recess 72 of the third embodiment.
  • the same number of sub-plate recesses 72D as sub-plate holes 63D are provided, and in this embodiment, four sub-plate recesses 72D are provided.
  • Each of the plurality of sub-plate recesses 72D has two sub-plate holes 73D, and the refrigerant that has flowed into the sub-plate recesses 72D is branched into two and then flows out.
  • the first recess 42D is located in the projection area of the sub-plate hole 73D onto the first distribution plate 4D.
  • the opening areas of the plurality of first holes 43D of the first distribution plate 4D are not uniform.
  • the first hole 43D has an elongated hole shape. Specifically, the opening area of each first hole 43D increases as the number of second holes 53 provided in the second recess 52 facing the first hole 43D increases.
  • the number of second holes 53 matches the number of heat exchanger tubes 2.
  • the number of the plurality of second holes 53 provided in the second recess 52 gradually increases from the top to the bottom, reaches a maximum at the center, gradually decreases downward, and reaches the minimum at the bottom.
  • the opening area of the first hole 43D gradually increases from the top to the bottom, reaches the maximum at the center, gradually decreases downward, and reaches the minimum at the bottom. It is desirable that the opening area of the first holes 43D and the number of second holes 53 of the second recess 52 facing each first hole 43D are proportional.
  • the length of the first recess 42D in the third direction is larger than the length of the first recess 42A in the third embodiment.
  • the length of the first recess 42D in the third direction is increased so as to include the first hole 43D which is an elongated hole extending in the third direction.
  • a plurality of first holes 43D are provided in one first recess 42D.
  • the opening areas of the plurality of sub-plate holes 73D are not uniform. Specifically, the opening area of each sub-plate hole 73D is larger as the opening area of the first hole 43D facing the sub-plate hole 73D is larger.
  • refrigerant flow The flow of the refrigerant will be explained with reference to FIG.
  • the refrigerant that has flowed into the opening 151D provided at the center of the refrigerant inlet cover 15D flows into the center of the sub-plate recess 62D of the upstream sub-plate 6 in the second and third directions.
  • the refrigerant that has flowed into the sub-plate recess 62D branches into a third direction and a direction opposite to the third direction, with the former flowing in the opposite direction to the second direction, and the latter flowing in the second direction.
  • the refrigerant that has flowed in the opposite direction in the second direction is further branched into a third direction and in the opposite direction in the third direction, the former flowing in the opposite direction to the second direction, and the latter flowing in the second direction, respectively, through sub-plate holes 63D. , and flows to the downstream side of the upstream sub-plate 6D.
  • the refrigerant that first branches in the third direction and flows in the second direction is further branched into a third direction and a third direction, with the former flowing in the second direction and the latter flowing in the second direction. It flows in the second direction, passes through each sub-plate hole 63D, and flows to the downstream side of the upstream sub-plate 6D.
  • the refrigerant flowing out from each of the sub-plate holes 63D flows into the center of the sub-plate recess 72D of the downstream sub-plate 7D (a position corresponding to the base 721 in FIG. 8).
  • the refrigerant that has flowed into the sub-plate recess 72D branches into a third direction and a direction opposite to the third direction, with the former flowing in the opposite direction to the second direction, and the latter flowing in the second direction, each passing through the sub-plate hole 73D. , flows downstream of the downstream sub-plate 7D.
  • the refrigerant flowing out from the sub-plate hole 73D flows into the first recess 42D of the first distribution plate 4D.
  • the refrigerant that has flowed into the first recess 42D flows in the third direction and the opposite direction to the third direction, and in the second direction and the opposite direction to the second direction. Flows downstream.
  • the refrigerant flowing out from each of the first holes 43D flows into the second recess 52 facing the first hole 43D.
  • the projected area 44 (see FIG. 5) of the first hole 43D faces the second recess 52, and the refrigerant flowing out of the first hole 43D branches and flows in a third direction and a direction opposite to the third direction. In the process of flowing, it passes through the second hole 53 and flows to the downstream side of the second distribution plate 5.
  • the refrigerant flowing out from each of the second holes 53 flows into the inlet 21 of the heat exchanger tube 2 (see FIG. 3) of the inlet side tube plate 17.
  • the opening area of each of the plurality of first holes 43D in this embodiment is larger than the number of the plurality of second holes 53 provided in the plurality of second recesses 52 facing the first holes 43D. It's so big. Therefore, the amount of refrigerant passing through each of the plurality of first holes 43D increases as the number of the plurality of second holes 53 provided in the plurality of second recesses 52 facing the first holes 43D increases. Therefore, the amount of refrigerant flowing into each of the plurality of second holes 53 can be made uniform. Thereby, the amount of refrigerant flowing into each of the plurality of heat exchanger tubes 2 from each of the plurality of second holes 53 can be made uniform.
  • Embodiment 6 In this embodiment, differences from Embodiment 3 will be mainly explained.
  • the suffix E is added to the reference numerals of the components that are different from those in the third embodiment.
  • FIG. 11 is a developed view of the distribution section 3E according to the sixth embodiment.
  • the distribution section 3E includes an upstream sub-plate 6, a downstream sub-plate 7, a first distribution plate 4E, and a second distribution plate 5.
  • the configurations of the upstream sub-plate 6, downstream sub-plate 7, and second distribution plate 5 are the same as in the third embodiment.
  • the opening area of the first hole 43E of the first distribution plate 4E is not uniform. Specifically, the opening area of each first hole 43E increases as the number of second holes 53 provided in the second recess 52 facing the first hole 43E increases.
  • the number of second holes 53 matches the number of heat exchanger tubes 2.
  • the number of the plurality of second holes 53 provided in the second recess 52 gradually increases from the top to the bottom, becomes the largest in the center, gradually decreases downward, and becomes the smallest at the bottom.
  • the opening area of the first hole 43E gradually increases from the top downward, reaches a maximum at the center, gradually decreases downward, and reaches a minimum at the bottom. It is desirable that the opening area of the first hole 43E be proportional to the number of second holes 53 in the second recess 52 facing each first hole 43E.
  • the opening area of each of the plurality of first holes 43E in this embodiment increases as the number of the plurality of second holes 53 provided in the plurality of second recesses 52 facing the first hole 43E increases. . Therefore, the amount of refrigerant passing through each of the plurality of first holes 43E increases as the number of the plurality of second holes 53 provided in the plurality of second recesses 52 facing the first holes 43E increases. Therefore, the amount of refrigerant flowing into each of the plurality of second holes 53 can be made uniform. Thereby, the amount of refrigerant flowing into each of the plurality of heat exchanger tubes 2 from each of the plurality of second holes 53 can be made uniform.
  • Embodiment 7 In this embodiment, a modified example of the shape of the curved recess described in Embodiments 3 to 6 will be described. This embodiment can be combined with any of Embodiments 3 to 6.
  • FIG. 12 is a diagram illustrating the shape of the sub-plate recess 62F according to the seventh embodiment.
  • the shape will be explained using the sub-plate recess 62F as an example, but this shape is also applied to the sub-plate recess 72 and the first recess 42 described in the third to sixth embodiments.
  • the center in the second direction and the third direction is referred to as a base 621F.
  • One sub-plate hole 63F1 is provided on the upper side of the base 621F in the drawing, and one sub-plate hole 63F2 is provided on the lower side of the base 621F in the drawing.
  • the base 621F is located between the two sub-plate holes 63F1 and 63F2 in the second direction.
  • the base 621F, the sub-plate hole 63F1, and the sub-plate hole 63F3 are arranged in one row along the second direction.
  • the sub-plate recess 62F branches the refrigerant flowing from the upstream side toward the base 621F into a third direction and a direction opposite to the third direction, and directs each of the branched refrigerants into a second direction opposite or a second direction. It forms a flow path that leads to.
  • the sub-plate recess 62F has a base 621F, a first portion 622F, a second portion 623F, a third portion 624F, and a fourth portion 625F.
  • the first portion 622F extends in the third direction from the base 621F.
  • the second portion 623F extends from the base 621F in the opposite third direction.
  • the third portion 624F extends from the end of the first portion 622F toward the upper sub-plate hole 63F1.
  • the third portion 624F has an upward slope.
  • the fourth portion 625F extends from the end of the second portion 623F toward the lower sub-plate hole 63F2.
  • the fourth portion 625F has a diagonally downward slope.
  • the opening area of the upper sub-plate hole 63F1 is larger than the opening area of the lower sub-plate hole 63F2.
  • the opening areas of the first part 622F and the third part 624F that lead the refrigerant to the sub-plate hole 63F1 having a larger opening area are the opening areas of the second part 623F and the fourth part 625F that lead the refrigerant to the sub-plate hole 63F2, respectively. Each area is larger than the other.
  • the second direction is the direction of gravity.
  • the sub-plate hole 63F1 provided in the sub-plate recess 62F is above the base 621F, and the sub-plate hole 63F2 is below the base 621F.
  • the volume of the first portion 622F is larger than the volume of the second portion 623F, and the volume of the third portion 324F is larger than the volume of the fourth portion 625F.
  • Embodiment 8 A modification of the shape of the curved recess described in Embodiments 3 to 7 will be described. This embodiment can be combined with any of Embodiments 3 to 7.
  • FIG. 13 is a diagram illustrating the shape of the sub-plate recess 62G according to the eighth embodiment.
  • the shape will be explained using the sub-plate recess 62G as an example, but this shape is also applied to the sub-plate recess 72 and the first recess 42 described in the third to seventh embodiments.
  • the sub-plate recess 62G has a base 621, a first portion 622G, a second portion 623G, a third portion 624, and a fourth portion 625.
  • the third portion 624 and the fourth portion 625 correspond to the third portion 624F and the fourth portion 625F of the seventh embodiment, respectively.
  • a first portion 622G of the sub-plate recess 62G connected to the upper sub-plate hole 63 extends from the base 621 in the third direction and the second direction. Further, the second portion 623G connected to the lower sub-plate hole 63 extends from the base 621 in the opposite direction in the third direction and in the opposite direction in the second direction. That is, the first portion 622G extending in the third direction from the base 621 is lowered, and the second portion 623G extending in the opposite direction from the base 621 in the third direction is raised.
  • the second direction is the direction of gravity.
  • the sub-plate recess 62G includes a base 621 into which the refrigerant flows from the upstream side, a first portion 622G extending diagonally upward from the base 621, and a second portion 623G extending diagonally downward from the base 621.
  • the refrigerant that has flowed into the base 621 can be guided preferentially to the upper sub-plate hole 63. This reduces the bias in the flow of the refrigerant downward due to the influence of gravity, and allows the refrigerant to be uniformly distributed between the lower sub-plate holes 63 and the upper sub-plate holes 63.
  • the number of sub-plates constituting the sub-plate groups shown in Embodiments 3 to 8 is not limited to two, and may be one or three or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A distribution part of this shell-and-tube type heat exchanger includes a first distribution plate and a second distribution plate. In the first distribution plate, formed are: one or a plurality of first recesses that are provided on a first distribution surface and are recessed in a first direction; and a plurality of first holes that are provided in each of the one or plurality of first recesses and that penetrate the first distribution plate. The plurality of first holes are positioned differently from each other in a second direction orthogonal to the first direction. In the second distribution plate, formed are: a plurality of second recesses that are provided on a second distribution surface and are recessed in the first direction; and a plurality of hole groups that include a plurality of second holes provided in each of the plurality of second recesses and that penetrate the second distribution plate. The plurality of second holes included in each of the plurality of hole groups are positioned differently from each other in a third direction orthogonal to the first direction and the second direction. One of the plurality of second recesses is positioned in a projection region in which the plurality of first holes of the first distribution plate are projected on the second distribution plate.

Description

シェルアンドチューブ式熱交換器及び冷凍サイクル装置Shell and tube heat exchanger and refrigeration cycle equipment
 本開示は、シェルアンドチューブ式熱交換器及び冷凍サイクル装置に関する。 The present disclosure relates to a shell-and-tube heat exchanger and a refrigeration cycle device.
 冷媒と水又はブライン等の熱媒体とを熱交換させる熱交換器として、シェルアンドチューブ式熱交換器が知られている。シェルアンドチューブ式熱交換器は、シェル内に複数の伝熱管が挿入されており、シェル内の熱媒体と、複数の伝熱管を流れる冷媒との間で熱交換が行われる。特許文献1には、複数の伝熱管に均等に冷媒を分配するための構成として、複数の伝熱管の入口側に設けられた冷媒分流器を備えたシェルアンドチューブ式熱交換器が開示されている。特許文献1の冷媒分流器は、冷媒入口側を開口し、他端を封止した円筒形状の部材であり、円筒の周方向に複数の冷媒出口孔を有する。この冷媒分流器は、複数の伝熱管の入口との間に冷媒が流れる空間を設けるようにして、シェル内に配置されている。冷媒分流器に冷媒が流入すると、流入した冷媒は、冷媒分流器の封止された端部によっていったん流れ方向を周方向に変えられ、冷媒分流器の複数の冷媒出口孔から出て、空間を流れ、その後、各伝熱管に流入する。 A shell-and-tube heat exchanger is known as a heat exchanger that exchanges heat between a refrigerant and a heat medium such as water or brine. In a shell and tube heat exchanger, a plurality of heat transfer tubes are inserted into a shell, and heat exchange is performed between a heat medium in the shell and a refrigerant flowing through the plurality of heat transfer tubes. Patent Document 1 discloses a shell-and-tube heat exchanger equipped with a refrigerant flow divider provided on the inlet side of a plurality of heat exchanger tubes as a configuration for evenly distributing refrigerant to a plurality of heat exchanger tubes. There is. The refrigerant flow divider disclosed in Patent Document 1 is a cylindrical member that is open on the refrigerant inlet side and sealed at the other end, and has a plurality of refrigerant outlet holes in the circumferential direction of the cylinder. This refrigerant flow divider is arranged within the shell so as to provide a space between the refrigerant flow divider and the inlets of the plurality of heat transfer tubes, through which the refrigerant flows. When the refrigerant flows into the refrigerant divider, the flow direction of the inflowing refrigerant is changed in the circumferential direction by the sealed end of the refrigerant divider, and then exits from the plurality of refrigerant outlet holes of the refrigerant divider to fill the space. flow and then into each heat transfer tube.
特開平8-200885号公報Japanese Unexamined Patent Publication No. 8-200885
 特許文献1に記載のシェルアンドチューブ式熱交換器は、冷媒の流れ方向を変えるための空間が筒状の冷媒分流器内にあり、かつ、この冷媒分流器と伝熱管との間にも空間が必要となる。したがって、冷媒分流器及びこの冷媒分流器と伝熱管との間の空間の容積が大きくなり、シェルアンドチューブ式熱交換器が大型化してしまう。 In the shell-and-tube heat exchanger described in Patent Document 1, a space for changing the flow direction of the refrigerant is provided in a cylindrical refrigerant flow divider, and a space is also provided between the refrigerant flow divider and the heat transfer tubes. Is required. Therefore, the volume of the refrigerant flow divider and the space between the refrigerant flow divider and the heat transfer tubes increases, resulting in an increase in the size of the shell-and-tube heat exchanger.
 本開示は、上記のような課題を背景としてなされたものであり、伝熱管に冷媒を分配する分配部を小型化できるシェルアンドチューブ式熱交換器及び冷凍サイクル装置を提供するものである。 The present disclosure has been made against the background of the above-mentioned problems, and provides a shell-and-tube heat exchanger and a refrigeration cycle device that can downsize a distribution section that distributes refrigerant to heat transfer tubes.
 本開示に係るシェルアンドチューブ式熱交換器は、流体入口配管及び流体出口配管が接続されたシェルと、前記シェル内に収容され、それぞれの入口から出口へ向かう第1方向に冷媒が流れる複数の伝熱管と、前記シェル内に収容され、冷媒入口配管からの冷媒を前記複数の伝熱管の前記入口に分配させる分配部とを備え、前記分配部は、前記第1方向に直交する第1分配面を有する第1分配プレートと、前記第1方向に直交する第2分配面を有し、前記第1分配プレートと前記複数の伝熱管の前記入口との間に設けられた第2分配プレートとを有し、前記第1分配プレートは、前記第1分配面に設けられ、前記第1方向に凹んだ1又は複数の第1凹部と、前記1又は複数の第1凹部それぞれに設けられ、前記第1分配プレートを貫通する複数の第1穴とが形成されており、前記複数の第1穴は、前記第1方向に直交する第2方向における位置が互いに異なっており、前記第2分配プレートは、前記第2分配面に設けられ、前記第1方向に凹んだ複数の第2凹部と、前記複数の第2凹部それぞれに設けられ、前記第2分配プレートを貫通する複数の第2穴からなる複数の穴群とが形成されており、前記複数の穴群のそれぞれに含まれる前記複数の第2穴は、前記第1方向及び前記第2方向に直交する第3方向における位置が互いに異なっており、前記第1分配プレートの前記複数の第1穴を前記第2分配プレートに投影した投影領域に、前記複数の第2凹部のいずれかが位置しているものである。 A shell-and-tube heat exchanger according to the present disclosure includes a shell to which a fluid inlet pipe and a fluid outlet pipe are connected, and a plurality of shells housed in the shell, through which a refrigerant flows in a first direction from each inlet to an outlet. heat exchanger tubes, and a distribution section that is housed in the shell and that distributes refrigerant from the refrigerant inlet pipes to the inlets of the plurality of heat exchanger tubes, the distribution section having a first distribution section perpendicular to the first direction. a first distribution plate having a surface, and a second distribution plate having a second distribution surface perpendicular to the first direction and provided between the first distribution plate and the inlets of the plurality of heat exchanger tubes; The first distribution plate has one or more first recesses provided on the first distribution surface and recessed in the first direction, and one or more first recesses provided in each of the one or more first recesses, a plurality of first holes penetrating the first distribution plate, the plurality of first holes are at different positions in a second direction perpendicular to the first direction, and the second distribution plate from a plurality of second recesses provided in the second distribution surface and recessed in the first direction, and a plurality of second holes provided in each of the plurality of second recesses and penetrating the second distribution plate. A plurality of hole groups are formed, and the plurality of second holes included in each of the plurality of hole groups have mutually different positions in a third direction perpendicular to the first direction and the second direction. and one of the plurality of second recesses is located in a projection area in which the plurality of first holes of the first distribution plate are projected onto the second distribution plate.
 本開示に係る冷凍サイクル装置は、冷媒を圧縮する圧縮機と、前記圧縮機から流出した冷媒を放熱させる放熱器と、前記放熱器から流出した冷媒を減圧させる膨張機構と、前記膨張機構から流出した冷媒を蒸発させる蒸発器と、を備え、前記蒸発器は、上記シェルアンドチューブ式熱交換器である。 A refrigeration cycle device according to the present disclosure includes a compressor that compresses refrigerant, a radiator that radiates heat from the refrigerant that flows out from the compressor, an expansion mechanism that reduces the pressure of the refrigerant that flows out from the radiator, and an expansion mechanism that depressurizes the refrigerant that flows out from the expansion mechanism. an evaporator for evaporating the refrigerant, the evaporator being the shell-and-tube heat exchanger described above.
 本開示によれば、冷媒を複数の伝熱管の入口に分配させる分配部を従来と比べて小型化できる。 According to the present disclosure, the distribution unit that distributes refrigerant to the inlets of a plurality of heat exchanger tubes can be made smaller compared to the conventional one.
実施の形態1に係る冷凍サイクル装置100の概略構成図である。1 is a schematic configuration diagram of a refrigeration cycle device 100 according to Embodiment 1. FIG. 実施の形態1に係る熱交換器10の断面模式図である。1 is a schematic cross-sectional view of a heat exchanger 10 according to Embodiment 1. FIG. 実施の形態1に係る熱交換器10の概略的な分解斜視図である。1 is a schematic exploded perspective view of a heat exchanger 10 according to Embodiment 1. FIG. 実施の形態1に係る主要部の展開図である。FIG. 3 is an exploded view of main parts according to the first embodiment. 実施の形態1に係る分配部3の断面模式図である。FIG. 3 is a schematic cross-sectional view of the distribution section 3 according to the first embodiment. 実施の形態2に係る冷媒入口蓋15A、分配部3A及び入口側管板17の展開図である。FIG. 7 is a developed view of a refrigerant inlet cover 15A, a distribution section 3A, and an inlet side tube plate 17 according to a second embodiment. 実施の形態3に係る冷媒入口蓋15B及び分配部3Bの展開図である。FIG. 7 is a developed view of a refrigerant inlet cover 15B and a distribution section 3B according to Embodiment 3. 実施の形態3に係るサブプレート凹部72の形状を説明する図である。7 is a diagram illustrating the shape of a sub-plate recess 72 according to Embodiment 3. FIG. 実施の形態4に係る冷媒入口蓋15C及び分配部3Cの展開図である。FIG. 7 is a developed view of a refrigerant inlet cover 15C and a distribution section 3C according to Embodiment 4. 実施の形態5に係る冷媒入口蓋15D及び分配部3Dの展開図である。FIG. 7 is a developed view of a refrigerant inlet cover 15D and a distribution section 3D according to Embodiment 5. 実施の形態6に係る分配部3Eの展開図である。FIG. 7 is a developed view of a distribution section 3E according to a sixth embodiment. 実施の形態7に係るサブプレート凹部62Fの形状を説明する図である。FIG. 7 is a diagram illustrating the shape of a sub-plate recess 62F according to Embodiment 7. 実施の形態8に係るサブプレート凹部62Gの形状を説明する図である。FIG. 7 is a diagram illustrating the shape of a sub-plate recess 62G according to Embodiment 8.
 以下、本開示に係るシェルアンドチューブ式熱交換器及び冷凍サイクル装置を、図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の各実施の形態に示す構成のうち、組合せ可能な構成のあらゆる組合せを含むものである。また、図面に示す冷凍サイクル装置は、本開示の冷凍サイクル装置が適用される機器の一例を示すものであり、図面に示された冷凍サイクル装置によって本開示の適用機器が限定されるものではない。また、以下の説明において、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、これらは説明のためのものであって、本開示を限定するものではない。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係又は形状等が実際のものとは異なる場合がある。さらに、以下の説明における温度及び圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム又は装置等における状態又は動作等において相対的に定まるものとする。 Hereinafter, a shell-and-tube heat exchanger and a refrigeration cycle device according to the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments, and can be variously modified without departing from the gist of the present disclosure. Further, the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments. Furthermore, the refrigeration cycle device shown in the drawings is an example of equipment to which the refrigeration cycle device of the present disclosure is applied, and the refrigeration cycle device shown in the drawings is not intended to limit the equipment to which the present disclosure is applied. . In addition, in the following explanation, terms indicating directions (for example, "upper", "lower", "right", "left", "front", "rear", etc.) are used as appropriate to facilitate understanding. These are for illustrative purposes only and are not intended to limit this disclosure. Furthermore, in each figure, the same reference numerals are the same or equivalent, and this is common throughout the entire specification. Note that in each drawing, the relative dimensional relationship or shape of each component may differ from the actual one. Furthermore, in the following explanation, the height of temperature and pressure, etc. is not determined in relation to absolute values, but is determined relatively depending on the state or operation of the system or device, etc. do.
実施の形態1.
(冷凍サイクル装置の構成)
 図1は、実施の形態1に係る冷凍サイクル装置100の概略構成図である。図1に示すように、本実施の形態の冷凍サイクル装置100は、圧縮機101と、放熱器102と、膨張機構103と、蒸発器104とを備える。圧縮機101と、放熱器102と、膨張機構103と、蒸発器104とが冷媒配管105によって接続されることにより、冷媒が循環する冷媒回路が構成される。
Embodiment 1.
(Configuration of refrigeration cycle device)
FIG. 1 is a schematic configuration diagram of a refrigeration cycle device 100 according to the first embodiment. As shown in FIG. 1, the refrigeration cycle device 100 of this embodiment includes a compressor 101, a radiator 102, an expansion mechanism 103, and an evaporator 104. Compressor 101, radiator 102, expansion mechanism 103, and evaporator 104 are connected by refrigerant piping 105, thereby forming a refrigerant circuit in which refrigerant circulates.
 冷凍サイクル装置100で用いられる冷媒は、例えばR410A、R407C、R404A又はR32などのHFC冷媒、HFO-1234yfなどのHFO系、もしくは炭化水素、ヘリウム又はプロパンのような自然冷媒などである。 The refrigerant used in the refrigeration cycle device 100 is, for example, an HFC refrigerant such as R410A, R407C, R404A, or R32, an HFO refrigerant such as HFO-1234yf, or a natural refrigerant such as hydrocarbon, helium, or propane.
 圧縮機101は、低圧のガス冷媒を吸入して圧縮し、高圧のガス冷媒として吐出する流体機械である。圧縮機101は、例えば運転周波数を調整可能なインバータ駆動の圧縮機である。 The compressor 101 is a fluid machine that sucks in low-pressure gas refrigerant, compresses it, and discharges it as high-pressure gas refrigerant. The compressor 101 is, for example, an inverter-driven compressor whose operating frequency can be adjusted.
 放熱器102は、伝熱管の内部を流通する冷媒と他の流体とを熱交換させ、冷媒を凝縮して液化させる。 The radiator 102 exchanges heat between the refrigerant flowing inside the heat transfer tube and another fluid, and condenses and liquefies the refrigerant.
 膨張機構103は、例えば開度を制御可能な電子式膨張弁である。膨張機構103は、放熱器102から流出した冷媒を減圧して膨張させる。なお、膨張機構103は感温式膨張弁であってもよいし、膨張機構103の代わりに毛細管を設けてもよい。 The expansion mechanism 103 is, for example, an electronic expansion valve whose opening degree can be controlled. The expansion mechanism 103 reduces the pressure of the refrigerant flowing out from the radiator 102 and expands it. Note that the expansion mechanism 103 may be a temperature-sensitive expansion valve, or a capillary tube may be provided instead of the expansion mechanism 103.
 蒸発器104は、伝熱管の内部を流通する冷媒と、他の流体とを熱交換させ、冷媒を蒸発してガス化させる。 The evaporator 104 exchanges heat between the refrigerant flowing inside the heat transfer tube and another fluid, and evaporates and gasifies the refrigerant.
(冷凍サイクル装置の動作)
 本実施の形態の冷凍サイクル装置100の動作を、冷媒回路を循環する冷媒の流れに基づいて説明する。冷凍サイクル装置100の運転開始が指示されると、圧縮機101が冷媒を圧縮し、高温高圧のガス状態にして吐出する。圧縮機101が吐出したガス冷媒は、冷媒配管105を通って放熱器102へ流入する。放熱器102において冷媒は、他の流体と熱交換し、凝縮液化する。このとき、冷媒が他の流体に放熱することによって、他の流体が加熱される。
(Operation of refrigeration cycle equipment)
The operation of the refrigeration cycle device 100 of this embodiment will be explained based on the flow of refrigerant circulating in the refrigerant circuit. When the refrigeration cycle apparatus 100 is instructed to start operating, the compressor 101 compresses the refrigerant, converts it into a high-temperature, high-pressure gas state, and discharges the refrigerant. The gas refrigerant discharged by the compressor 101 flows into the radiator 102 through the refrigerant pipe 105. In the radiator 102, the refrigerant exchanges heat with other fluids and is condensed and liquefied. At this time, the refrigerant radiates heat to the other fluid, thereby heating the other fluid.
 放熱器102で凝縮液化した冷媒は、膨張機構103を通過する。膨張機構103は冷媒を減圧する。膨張機構103が減圧した冷媒は、蒸発器104に流入する。蒸発器104において冷媒は、他の流体と熱交換し、蒸発ガス化する。このとき、冷媒が他の流体から吸熱することによって、他の流体が冷却される。蒸発器104で蒸発ガス化した冷媒は、圧縮機101に再び吸入される。 The refrigerant condensed and liquefied in the radiator 102 passes through the expansion mechanism 103. The expansion mechanism 103 reduces the pressure of the refrigerant. The refrigerant whose pressure has been reduced by the expansion mechanism 103 flows into the evaporator 104 . In the evaporator 104, the refrigerant exchanges heat with other fluids and evaporates into gas. At this time, the other fluid is cooled by the refrigerant absorbing heat from the other fluid. The refrigerant evaporated and gasified in the evaporator 104 is sucked into the compressor 101 again.
 冷凍サイクル装置100は、例えば、室内を暖房又は冷房する空気調和装置、倉庫、ショーケース又は冷蔵庫などの冷凍室の冷却を行う冷凍装置、タンク内の水を加熱する給湯装置である。 The refrigeration cycle device 100 is, for example, an air conditioner that heats or cools a room, a refrigeration device that cools a freezer compartment such as a warehouse, a showcase, or a refrigerator, or a water heater that heats water in a tank.
 放熱器102と蒸発器104のいずれか又は両方は、後述するシェルアンドチューブ式の熱交換器10が採用される。熱交換器10の構造について、以下、説明する。 For either or both of the radiator 102 and the evaporator 104, a shell-and-tube heat exchanger 10, which will be described later, is employed. The structure of the heat exchanger 10 will be explained below.
(熱交換器10の構成)
 図2は、実施の形態1に係る熱交換器10の断面模式図である。図2は、熱交換器10の水平断面を上から見た状態を示している。なお、図2及びこれ以降で示す図面では、冷媒の流れを実線矢印で示し、流体の流れを破線矢印で示している。熱交換器10は、シェル1と、複数の伝熱管2と、分配部3とを備えている。図2では、分配部3の位置を示すことを目的として分配部3を図示しており、分配部3の構造は図3以降で説明する。
(Configuration of heat exchanger 10)
FIG. 2 is a schematic cross-sectional view of the heat exchanger 10 according to the first embodiment. FIG. 2 shows a horizontal section of the heat exchanger 10 viewed from above. In addition, in FIG. 2 and the subsequent drawings, the flow of the refrigerant is shown by solid line arrows, and the flow of fluid is shown by broken line arrows. The heat exchanger 10 includes a shell 1, a plurality of heat exchanger tubes 2, and a distribution section 3. In FIG. 2, the distribution section 3 is illustrated for the purpose of showing the position of the distribution section 3, and the structure of the distribution section 3 will be explained from FIG. 3 onwards.
 ここで、本実施の形態及びこれ以降の実施の形態において説明に使用する方向を定義する。第1方向は、伝熱管2の入口21から出口22へ向かう方向である。図2では、紙面左から右に向かう方向が、第1方向である。第2方向は、第1方向に直交する方向であり、本実施の形態では重力方向である。図2では、紙面手前から奥に向かう方向が、第2方向である。第3方向は、第1方向及び第2方向と直交する方向である。図2では、紙面上から下に向かう方向が、第3方向である。図面では、矢印の指す向きによって第1方向、第2方向及び第3方向の順向きを示す。また、これ以降の説明では、第1方向、第2方向及び第3方向の順向きを、単に第1方向、第2方向及び第3方向、と称する。また、各方向の逆向きを、それぞれ、第1方向逆向き、第2方向逆向き、及び第3方向逆向きと称する。 Here, directions used for explanation in this embodiment and subsequent embodiments will be defined. The first direction is a direction from the inlet 21 of the heat exchanger tube 2 to the outlet 22. In FIG. 2, the direction from left to right in the paper is the first direction. The second direction is a direction perpendicular to the first direction, and in this embodiment is the direction of gravity. In FIG. 2, the direction from the front to the back of the page is the second direction. The third direction is a direction perpendicular to the first direction and the second direction. In FIG. 2, the direction from the top to the bottom of the page is the third direction. In the drawings, the forward directions of the first direction, the second direction, and the third direction are indicated by the directions pointed by the arrows. Further, in the following description, the forward directions of the first direction, the second direction, and the third direction are simply referred to as the first direction, the second direction, and the third direction. Further, the opposite directions are respectively referred to as a first reverse direction, a second reverse direction, and a third reverse direction.
 シェル1は、筒状の容器である。本実施の形態では、円筒状のシェル1を例に説明する。シェル1には、冷媒入口配管11と、冷媒出口配管12と、流体入口配管13と、流体出口配管14とが接続されている。冷媒入口配管11は、シェル1内の伝熱管2に冷媒を流入させるための配管である。冷媒入口配管11は、図1に示した冷媒配管105に接続される。冷媒出口配管12は、伝熱管2から流出した冷媒をシェル1内から流出させるための配管である。冷媒出口配管12は、図1に示した冷媒配管105に接続される。冷媒入口配管11及び冷媒出口配管12は、伝熱管2が延びる方向と同方向、すなわち第1方向に延びている。 The shell 1 is a cylindrical container. In this embodiment, a cylindrical shell 1 will be described as an example. A refrigerant inlet pipe 11 , a refrigerant outlet pipe 12 , a fluid inlet pipe 13 , and a fluid outlet pipe 14 are connected to the shell 1 . The refrigerant inlet pipe 11 is a pipe for flowing a refrigerant into the heat exchanger tubes 2 inside the shell 1 . The refrigerant inlet pipe 11 is connected to the refrigerant pipe 105 shown in FIG. The refrigerant outlet pipe 12 is a pipe for causing the refrigerant that has flowed out of the heat transfer tube 2 to flow out from inside the shell 1 . The refrigerant outlet pipe 12 is connected to the refrigerant pipe 105 shown in FIG. The refrigerant inlet pipe 11 and the refrigerant outlet pipe 12 extend in the same direction as the direction in which the heat exchanger tubes 2 extend, that is, in the first direction.
 流体入口配管13は、シェル1内に水又はブライン等の流体を流入させるための配管である。流体出口配管14は、シェル1内から水又はブライン等の流体を流出させるための配管である。流体入口配管13及び流体出口配管14は、シェル1内と連通するようにして、シェル1の胴体に接続されている。 The fluid inlet pipe 13 is a pipe for flowing fluid such as water or brine into the shell 1. The fluid outlet pipe 14 is a pipe for discharging a fluid such as water or brine from inside the shell 1. The fluid inlet pipe 13 and the fluid outlet pipe 14 are connected to the body of the shell 1 so as to communicate with the interior of the shell 1 .
 熱交換器10はさらに、冷媒入口蓋15と、冷媒出口蓋16とを備える。シェル1と、冷媒入口蓋15と、冷媒出口蓋16とによって、密閉された空間が形成されている。冷媒入口蓋15は、筒状のシェル1の軸方向の一端に設けられた蓋である。冷媒入口蓋15には、流体入口配管13が挿入されている。流体入口配管13は、冷媒入口蓋15を介してシェル1に接続されている。冷媒出口蓋16は、筒状のシェル1の軸方向の他端に設けられた蓋である。冷媒出口蓋16には、冷媒出口配管12が挿入されている。冷媒出口配管12は、冷媒出口蓋16を介してシェル1に接続されている。 The heat exchanger 10 further includes a refrigerant inlet cover 15 and a refrigerant outlet cover 16. A sealed space is formed by the shell 1, the refrigerant inlet cover 15, and the refrigerant outlet cover 16. The refrigerant inlet cover 15 is a cover provided at one end of the cylindrical shell 1 in the axial direction. A fluid inlet pipe 13 is inserted into the refrigerant inlet cover 15 . Fluid inlet pipe 13 is connected to shell 1 via refrigerant inlet cover 15 . The refrigerant outlet lid 16 is a lid provided at the other end of the cylindrical shell 1 in the axial direction. A refrigerant outlet pipe 12 is inserted into the refrigerant outlet cover 16 . The refrigerant outlet pipe 12 is connected to the shell 1 via a refrigerant outlet cover 16.
 複数の伝熱管2は、冷媒を流通させる管である。複数の伝熱管2は、筒状のシェル1の軸方向、すなわち第1方向に沿って延びている。複数の伝熱管2は、シェル1内において互いに間隔をあけて設置されており、伝熱管2の周囲を流れる水又はブライン等の流体と、伝熱管2を流れる冷媒との間で、熱交換が行われる。 The plurality of heat exchanger tubes 2 are tubes through which refrigerant flows. The plurality of heat exchanger tubes 2 extend along the axial direction of the cylindrical shell 1, that is, the first direction. The plurality of heat exchanger tubes 2 are installed at intervals within the shell 1, and heat exchange occurs between a fluid such as water or brine flowing around the heat exchanger tubes 2 and a refrigerant flowing through the heat exchanger tubes 2. It will be done.
 熱交換器10はさらに、入口側管板17と、出口側管板18とを備える。入口側管板17は、伝熱管2の入口側の端部を支持する板である。入口側管板17は、冷媒入口蓋15と平板面が対面するようにして、シェル1内に設けられている。出口側管板18は、伝熱管2の出口側の端部を支持する板である。出口側管板18は、冷媒出口蓋16と平板面が対面するようにして、シェル1内に設けられている。入口側管板17及び出口側管板18に、複数の伝熱管2が概ね平行に挿入されている。入口側管板17と伝熱管2、及び出口側管板18と伝熱管2は、ろうづけにより固定されている。 The heat exchanger 10 further includes an inlet side tube sheet 17 and an outlet side tube sheet 18. The inlet side tube plate 17 is a plate that supports the end of the heat exchanger tube 2 on the inlet side. The inlet side tube plate 17 is provided in the shell 1 so that its flat plate surface faces the refrigerant inlet cover 15. The outlet side tube plate 18 is a plate that supports the end of the heat exchanger tube 2 on the outlet side. The outlet side tube plate 18 is provided in the shell 1 so that its flat plate surface faces the refrigerant outlet cover 16. A plurality of heat exchanger tubes 2 are inserted into the inlet side tube sheet 17 and the outlet side tube sheet 18 in generally parallel manner. The inlet side tube sheet 17 and the heat exchanger tubes 2, and the outlet side tube sheet 18 and the heat exchanger tubes 2 are fixed by brazing.
 図3は、実施の形態1に係る熱交換器10の概略的な分解斜視図である。図3は、熱交換器10を構成する各部の配置を概略的に示している。分配部3は、第1分配プレート4と第2分配プレート5とを備える。 FIG. 3 is a schematic exploded perspective view of the heat exchanger 10 according to the first embodiment. FIG. 3 schematically shows the arrangement of each part constituting the heat exchanger 10. The distribution section 3 includes a first distribution plate 4 and a second distribution plate 5.
 第1分配プレート4は、冷媒の流れ方向において冷媒入口蓋15の下流側に設けられ、第1方向に直交する第1分配面41を有する。第1分配面41は、冷媒入口蓋15の内面と対面するようにして設けられている。第1分配プレート4は、冷媒入口配管11からシェル1内に流入した冷媒を、第2方向又は第2方向逆向きに流し、冷媒を下流側へ流出させる。 The first distribution plate 4 is provided on the downstream side of the refrigerant inlet cover 15 in the flow direction of the refrigerant, and has a first distribution surface 41 that is perpendicular to the first direction. The first distribution surface 41 is provided so as to face the inner surface of the refrigerant inlet cover 15 . The first distribution plate 4 causes the refrigerant flowing into the shell 1 from the refrigerant inlet pipe 11 to flow in the second direction or in the opposite direction to the second direction, and causes the refrigerant to flow out downstream.
 第2分配プレート5は、冷媒の流れ方向において第1分配プレート4の下流側かつ入口側管板17の上流側に設けられ、第1方向に直交する第2分配面51を有する。第2分配面51は、第1分配プレート4の下流側の面と対面するようにして設けられている。第2分配プレート5は、第1分配プレート4を通過した冷媒を、第1方向及び第2方向に直交する方向である第3方向又は第3方向逆向きに流し、冷媒を下流側へ流出させる。 The second distribution plate 5 is provided downstream of the first distribution plate 4 and upstream of the inlet tube plate 17 in the flow direction of the refrigerant, and has a second distribution surface 51 that is perpendicular to the first direction. The second distribution surface 51 is provided to face the downstream surface of the first distribution plate 4. The second distribution plate 5 causes the refrigerant that has passed through the first distribution plate 4 to flow in a third direction that is orthogonal to the first direction and the second direction, or in the opposite direction to the third direction, and causes the refrigerant to flow out to the downstream side. .
 第2分配プレート5を通過した冷媒は、入口側管板17に挿入された複数の伝熱管2それぞれに流入して流れる。伝熱管2を流れる過程において冷媒は、シェル1内の水又はブライン等の熱媒体と熱交換する。伝熱管2を通過した冷媒は、冷媒出口配管12へ流出する。 The refrigerant that has passed through the second distribution plate 5 flows into each of the plurality of heat transfer tubes 2 inserted into the inlet side tube plate 17. In the process of flowing through the heat exchanger tubes 2, the refrigerant exchanges heat with a heat medium such as water or brine in the shell 1. The refrigerant that has passed through the heat transfer tubes 2 flows out to the refrigerant outlet pipe 12.
 第1分配プレート4及び第2分配プレート5は、例えば、アルミニウム、アルミニウム合金又はステンレス等の金属で構成された板である。熱交換器10が空気調和装置に使用される場合、第1分配プレート4及び第2分配プレート5は、10mm~50mm程度の厚み(第1方向の長さ)を有しており、これは伝熱管2の長さ(第1方向の長さ)と比べて十分に薄い。なお、第1分配プレート4及び第2分配プレート5の厚みは、ここで例示したものに限定されない。 The first distribution plate 4 and the second distribution plate 5 are plates made of metal such as aluminum, aluminum alloy, or stainless steel, for example. When the heat exchanger 10 is used in an air conditioner, the first distribution plate 4 and the second distribution plate 5 have a thickness (length in the first direction) of about 10 mm to 50 mm, which is It is sufficiently thin compared to the length of the heat tube 2 (length in the first direction). Note that the thicknesses of the first distribution plate 4 and the second distribution plate 5 are not limited to those illustrated here.
 冷媒入口蓋15、第1分配プレート4、第2分配プレート5及び入口側管板17は、この順で重ねられており、隣接するもの同士の間には実質的に隙間がない。 The refrigerant inlet cover 15, first distribution plate 4, second distribution plate 5, and inlet side tube plate 17 are stacked in this order, and there is substantially no gap between adjacent ones.
 伝熱管2は、入口21と出口22とを有する。伝熱管2の入口21から出口22に向かう方向は、第1方向と一致している。入口21が、入口側管板17に挿入され、出口22が、出口側管板18に挿入されている。伝熱管2の両端部は、それぞれ、入口側管板17又は出口側管板18からはみ出していてもよい。 The heat exchanger tube 2 has an inlet 21 and an outlet 22. The direction from the inlet 21 to the outlet 22 of the heat exchanger tube 2 coincides with the first direction. The inlet 21 is inserted into the inlet tube sheet 17 and the outlet 22 is inserted into the outlet tube sheet 18. Both ends of the heat exchanger tubes 2 may protrude from the inlet tube sheet 17 or the outlet tube sheet 18, respectively.
 図4は、実施の形態1に係る主要部の展開図である。冷媒入口蓋15には、開口151が設けられている。開口151は、冷媒入口配管11が挿入される穴である。開口151は、第2方向である重力方向の下側に設けられている。 FIG. 4 is a developed view of the main parts according to the first embodiment. The refrigerant inlet cover 15 is provided with an opening 151 . The opening 151 is a hole into which the refrigerant inlet pipe 11 is inserted. The opening 151 is provided on the lower side in the direction of gravity, which is the second direction.
 第1分配プレート4の第1分配面41には、第1凹部42と、第1穴43とが設けられている。第1分配面41は、第2方向及び第3方向に沿った面である。 The first distribution surface 41 of the first distribution plate 4 is provided with a first recess 42 and a first hole 43. The first distribution surface 41 is a surface along the second direction and the third direction.
 第1凹部42は、第1方向に凹んだ溝である。第1凹部42は、第1分配プレート4を貫通していない。第1凹部42の平面形状は、図4の例では、第2方向に延びる長穴形状である。 The first recess 42 is a groove recessed in the first direction. The first recess 42 does not penetrate the first distribution plate 4. In the example of FIG. 4, the planar shape of the first recess 42 is an elongated hole shape extending in the second direction.
 第1穴43は、第1凹部42に設けられ、第1分配プレート4を貫通する穴である。複数の第1穴43が、第1凹部42に設けられている。複数の第1穴43は、第2方向に沿って互いに間隔をあけて配置されている。複数の第1穴43は、図4に示すように第2方向に沿って1列に配置されていて、第3方向における位置が同じであるが、複数の第1穴43の第3方向における位置は厳密に同じでなくてもよい。複数の第1穴43の第2方向における位置が、互いに異なっていればよい。重力方向において最も下にある第1穴43は、開口151と対向する位置に設けられている。 The first hole 43 is a hole provided in the first recess 42 and passing through the first distribution plate 4. A plurality of first holes 43 are provided in the first recess 42 . The plurality of first holes 43 are arranged at intervals along the second direction. As shown in FIG. 4, the plurality of first holes 43 are arranged in one row along the second direction, and the positions in the third direction are the same, but the plurality of first holes 43 in the third direction are The positions do not have to be exactly the same. It is sufficient that the positions of the plurality of first holes 43 in the second direction are different from each other. The first hole 43 located at the lowest position in the direction of gravity is provided at a position facing the opening 151.
 第2分配プレート5の第2分配面51には、第2凹部52と、第2穴53とが設けられている。第2分配面51は、第2方向及び第3方向に沿った面である。 The second distribution surface 51 of the second distribution plate 5 is provided with a second recess 52 and a second hole 53. The second distribution surface 51 is a surface along the second direction and the third direction.
 第2凹部52は、第1方向に凹んだ溝である。第2凹部52は、第2分配プレート5を貫通していない。複数の第2凹部52は、第2方向に沿って互いに間隔をあけて配置されている。複数の第2凹部52それぞれの平面形状は、第3方向に延びる長穴形状である。第2方向の両端部にある第2凹部52の長手方向の長さが最も短く、第2方向の中央にある第2凹部52の長手方向の長さが最も長い。第2凹部52の長手方向の長さは、当該第2凹部52の位置における第2分配プレート5の第3方向の長さと対応している。 The second recess 52 is a groove recessed in the first direction. The second recess 52 does not penetrate the second distribution plate 5. The plurality of second recesses 52 are arranged at intervals from each other along the second direction. The planar shape of each of the plurality of second recesses 52 is an elongated hole shape extending in the third direction. The length in the longitudinal direction of the second recess 52 at both ends in the second direction is the shortest, and the length in the longitudinal direction of the second recess 52 in the center in the second direction is the longest. The length of the second recess 52 in the longitudinal direction corresponds to the length of the second distribution plate 5 in the third direction at the position of the second recess 52 .
 第2穴53は、第2凹部52に設けられ、第2分配プレート5を貫通する穴である。1又は複数の第2穴53が、複数の第2凹部52のそれぞれに設けられている。1つの第2凹部52に設けられた複数の第2穴53を、穴群と総称することがある。穴群は、複数あり、第2凹部52と同数だけある。穴群における複数の第2穴53は、第3方向に沿って違いに間隔をあけて配置されている。穴群における複数の第2穴53は、第3方向に沿って1行に配置されていて、第2方向における位置が同じであるが、複数の第2穴53の第2方向における位置は厳密に同じでなくてもよい。穴群を構成する複数の第2穴53の第3方向における位置が、互いに異なっていればよい。 The second hole 53 is a hole provided in the second recess 52 and passing through the second distribution plate 5. One or more second holes 53 are provided in each of the plurality of second recesses 52. The plurality of second holes 53 provided in one second recess 52 may be collectively referred to as a hole group. There are a plurality of hole groups, and there are the same number of hole groups as the second recesses 52. The plurality of second holes 53 in the hole group are arranged at different intervals along the third direction. The plurality of second holes 53 in the hole group are arranged in one line along the third direction, and the positions in the second direction are the same, but the positions of the plurality of second holes 53 in the second direction are strictly does not have to be the same. It is sufficient that the positions of the plurality of second holes 53 constituting the hole group in the third direction are different from each other.
 複数の第2凹部52それぞれに設けられた第2穴53の数は、第2凹部52の第3方向における長さと対応しており、第2凹部52の第3方向の長さが長いほど、第2穴53の数が多い。 The number of second holes 53 provided in each of the plurality of second recesses 52 corresponds to the length of the second recess 52 in the third direction, and the longer the length of the second recess 52 in the third direction, The number of second holes 53 is large.
 入口側管板17の開口には、それぞれ、複数の伝熱管2(図3参照)の入口21が位置している。複数の第2穴53の総数は、伝熱管2の総本数と一致している。第2穴53それぞれの第2方向と第3方向を含む平面における位置は、伝熱管2の同平面における位置と、一致している。すなわち、複数の第2穴53それぞれと対向する位置に、伝熱管2が設けられている。 Inlets 21 of a plurality of heat exchanger tubes 2 (see FIG. 3) are located in the openings of the inlet side tube plate 17, respectively. The total number of the plurality of second holes 53 matches the total number of heat exchanger tubes 2. The position of each of the second holes 53 in a plane including the second direction and the third direction matches the position of the heat exchanger tube 2 in the same plane. That is, the heat exchanger tube 2 is provided at a position facing each of the plurality of second holes 53.
 図5は、実施の形態1に係る分配部3の断面模式図である。図5は、図4のI-I線に沿った断面を、第1分配プレート4と第2分配プレート5とを分解した状態で示している。なお、使用状態においては、第1分配プレート4と第2分配プレート5とは重ねられる。第1分配プレート4の第1凹部42の底に、複数の第1穴43が第2方向に沿って設けられている。第1穴43を、第2分配プレート5に投影した投影領域を、投影領域44として示している。この投影領域44に、複数の第2凹部52のいずれかが位置している。図5では、図の煩雑化を防ぐために一部の第1穴43の投影領域44のみ符号を付しているが、すべての第1穴43の投影領域44が、それぞれ、第2凹部52のいずれかと対向している。 FIG. 5 is a schematic cross-sectional view of the distribution section 3 according to the first embodiment. FIG. 5 shows a cross section taken along line II in FIG. 4 with the first distribution plate 4 and the second distribution plate 5 disassembled. Note that in the use state, the first distribution plate 4 and the second distribution plate 5 are overlapped. A plurality of first holes 43 are provided at the bottom of the first recess 42 of the first distribution plate 4 along the second direction. A projection area in which the first holes 43 are projected onto the second distribution plate 5 is shown as a projection area 44. One of the plurality of second recesses 52 is located in this projection area 44 . In FIG. 5, only the projection areas 44 of some of the first holes 43 are labeled with reference numerals in order to avoid complication of the drawing, but the projection areas 44 of all the first holes 43 are the same as those of the second recesses 52. facing either one.
 図5では、第1穴43と第2穴53とが対向している例を図示しているが、第1穴43の一部又は全部が第2穴53と対向していなくてもよい。第1穴43は、第2凹部52と対向していればよい。 Although FIG. 5 shows an example in which the first hole 43 and the second hole 53 face each other, part or all of the first hole 43 does not have to face the second hole 53. The first hole 43 only needs to face the second recess 52 .
(冷媒の流れ)
 図4を参照して冷媒の流れを説明する。冷媒入口蓋15の下部に設けられた開口151に流入した冷媒は、第1分配プレート4の第1凹部42の下部に流入する。第1凹部42に流入した冷媒は、第2方向逆向き、すなわち重力方向上側に向かって流れる。第1凹部42を重力方向上側に向かって流れる過程において、冷媒は、複数の第1穴43のいずれかを通り、第1分配プレート4の下流側へ流れる。
(refrigerant flow)
The flow of the refrigerant will be explained with reference to FIG. The refrigerant that has flowed into the opening 151 provided at the lower part of the refrigerant inlet cover 15 flows into the lower part of the first recess 42 of the first distribution plate 4 . The refrigerant flowing into the first recess 42 flows in the opposite direction in the second direction, that is, toward the upper side in the direction of gravity. In the process of flowing upward in the direction of gravity through the first recess 42 , the refrigerant passes through any one of the plurality of first holes 43 and flows toward the downstream side of the first distribution plate 4 .
 第1穴43のそれぞれから流出した冷媒は、流出した第1穴43に対向する第2凹部52に流入する。第1穴43の投影領域44(図5参照)は、第2凹部52の第3方向における中央に対向しており、第1穴43を流出した冷媒は、対応する第2凹部52の第3方向における中央に、流入する。第2凹部52に流入した冷媒は、第3方向及び第3方向逆向きに第2凹部52内を流れる。第2凹部52内を流れる過程において、冷媒は、当該第2凹部52に設けられた複数の第2穴53のいずれかを通り、第2分配プレート5の下流側へ流れる。 The refrigerant that has flowed out from each of the first holes 43 flows into the second recess 52 that faces the first hole 43 that has flowed out. The projected area 44 (see FIG. 5) of the first hole 43 faces the center of the second recess 52 in the third direction, and the refrigerant flowing out of the first hole 43 is transferred to the third recess of the corresponding second recess 52. Inflow to the center in the direction. The refrigerant flowing into the second recess 52 flows in the second recess 52 in the third direction and in the opposite direction to the third direction. In the process of flowing within the second recess 52, the refrigerant passes through any one of the plurality of second holes 53 provided in the second recess 52 and flows to the downstream side of the second distribution plate 5.
 第2穴53のそれぞれから流出した冷媒は、入口側管板17の伝熱管2(図3参照)の入口21に流入する。 The refrigerant flowing out from each of the second holes 53 flows into the inlet 21 of the heat exchanger tube 2 (see FIG. 3) of the inlet side tube plate 17.
(実施の形態1の作用効果)
 本実施の形態の分配部3は、第1分配プレート4と第2分配プレート5という合計2枚の板が重ねられて構成されている。そして、第1分配プレート4の第1凹部42によって第2方向における冷媒の分配が実現され、第2分配プレート5の第2凹部52によって第3方向における冷媒の分配が実現される。
(Operations and effects of Embodiment 1)
The distribution unit 3 of this embodiment is configured by stacking two plates, a first distribution plate 4 and a second distribution plate 5, in total. The first recess 42 of the first distribution plate 4 realizes distribution of the refrigerant in the second direction, and the second recess 52 of the second distribution plate 5 realizes the distribution of the refrigerant in the third direction.
 このように、本実施の形態の分配部3は、冷媒の分配に用いる空間が、第1分配プレート4と第2分配プレート5とに設けられた凹部及び穴であって、その容積は特許文献1のものと比べて小さい。したがって、伝熱管2に冷媒を分配する分配部3を小型化することができる。分配部3の小型化により、シェルアンドチューブ式の熱交換器10の小型化につながる。 As described above, in the distribution section 3 of the present embodiment, the space used for distributing the refrigerant is a recess and a hole provided in the first distribution plate 4 and the second distribution plate 5, and the volume thereof is disclosed in the patent document Smaller than 1. Therefore, the distribution section 3 that distributes the refrigerant to the heat exchanger tubes 2 can be downsized. Downsizing of the distribution section 3 leads to downsizing of the shell-and-tube heat exchanger 10.
 本実施の形態のシェルアンドチューブ式の熱交換器10が、蒸発器104として用いられる場合には、分配部3の容積を小さくすることで、伝熱管2への二相冷媒の分配の均一性を向上させることができる。詳しくは、例えば特許文献1の冷媒分流器のように容積が大きいと、蒸発器104として機能する熱交換器10に流入する二相冷媒の流速が低い場合に、重力によって液冷媒が落下しやすくなる。そうすると、上側の伝熱管にはガス冷媒が多く流入し、下側の伝熱管には液冷媒が多く流入する、といった現象が起きる。複数の伝熱管に、ガス冷媒と液冷媒とが不均一に流入すると、冷媒の蒸発能力が低下してしまう。しかし、本実施の形態では、分配部3の容積を従来と比べて小さくできるので、分配部3に流入した二相冷媒を、複数の伝熱管2により均一に分配することができる。このため、蒸発器104として機能する熱交換器10における蒸発能力を改善することができる。 When the shell-and-tube heat exchanger 10 of this embodiment is used as the evaporator 104, by reducing the volume of the distribution section 3, the distribution of the two-phase refrigerant to the heat exchanger tubes 2 can be improved. can be improved. Specifically, for example, when the volume is large as in the refrigerant flow divider of Patent Document 1, when the flow rate of the two-phase refrigerant flowing into the heat exchanger 10 functioning as the evaporator 104 is low, the liquid refrigerant tends to fall due to gravity. Become. In this case, a phenomenon occurs in which a large amount of gas refrigerant flows into the upper heat transfer tube, and a large amount of liquid refrigerant flows into the lower heat transfer tube. If the gas refrigerant and liquid refrigerant flow unevenly into the plurality of heat transfer tubes, the evaporation capacity of the refrigerant will decrease. However, in the present embodiment, the volume of the distribution section 3 can be made smaller than that of the conventional one, so that the two-phase refrigerant that has flowed into the distribution section 3 can be uniformly distributed among the plurality of heat exchanger tubes 2. Therefore, the evaporation capacity of the heat exchanger 10 functioning as the evaporator 104 can be improved.
実施の形態2.
 本実施の形態では、実施の形態1との相違点を中心に説明する。本実施の形態では、実施の形態1と相違する構成の符号に、添え字Aを付けている。
Embodiment 2.
In this embodiment, differences from Embodiment 1 will be mainly described. In this embodiment, the suffix A is added to the reference numerals of the configurations that are different from those in the first embodiment.
 図6は、実施の形態2に係る冷媒入口蓋15A、分配部3A及び入口側管板17の展開図である。本実施の形態の第1分配プレート4Aの複数の第1穴43Aは、開口面積が、均一ではない。具体的に、第1穴43Aそれぞれの開口面積は、当該第1穴43Aに対向する第2凹部52に設けられた第2穴53の数が多いほど、大きい。第2穴53の数は、伝熱管2の数と一致している。第2凹部52に設けられた複数の第2穴53の数は、最上部から下へ徐々に増加し、中央において最大となり、下へ向かって徐々に減少し、最下部で最少となっている。これに対応して、第1穴43Aの開口面積は、最上部から下へ徐々に大きくなり、中央において最大となり、下へ向かって徐々に縮小し、最下部で最小となっている。第1穴43Aの開口面積と、各第1穴43Aに対向する第2凹部52の第2穴53の数とは、比例しているのが望ましい。 FIG. 6 is a developed view of the refrigerant inlet cover 15A, the distribution section 3A, and the inlet side tube plate 17 according to the second embodiment. The opening areas of the plurality of first holes 43A of the first distribution plate 4A of this embodiment are not uniform. Specifically, the opening area of each of the first holes 43A increases as the number of second holes 53 provided in the second recess 52 facing the first hole 43A increases. The number of second holes 53 matches the number of heat exchanger tubes 2. The number of the plurality of second holes 53 provided in the second recess 52 gradually increases from the top to the bottom, reaches a maximum at the center, gradually decreases downward, and reaches the minimum at the bottom. . Correspondingly, the opening area of the first hole 43A gradually increases from the top to the bottom, reaches the maximum at the center, gradually decreases downward, and reaches the minimum at the bottom. It is desirable that the opening area of the first holes 43A be proportional to the number of second holes 53 in the second recess 52 facing each first hole 43A.
 なお、図6では、複数の第2穴53の内径がすべて同じであるものとして説明している。しかし、複数の第2穴53の内径の一部が異なっている場合には、それぞれの第2凹部52に置ける複数の第2穴53の開口面積の合計が大きいほど、対応する第1穴43の開口面積が大きくなっているとよい。 Note that in FIG. 6, the explanation is given on the assumption that the inner diameters of the plurality of second holes 53 are all the same. However, when some of the inner diameters of the plurality of second holes 53 are different, the larger the total opening area of the plurality of second holes 53 placed in each of the second recesses 52, the more the corresponding first hole 43 It is good if the opening area of the opening is large.
 また、第1穴43の内径に合わせて、第1凹部42の第3方向における長さが異なっていてもよい。たとえば、図6の例において、第1凹部42の第3方向の長さは、最上部から下へ徐々に長くなり、中央において最大となり、下へ向かって徐々に縮小し、最下部で最短となってもよい。 Furthermore, the length of the first recess 42 in the third direction may be different depending on the inner diameter of the first hole 43. For example, in the example shown in FIG. 6, the length of the first recess 42 in the third direction gradually increases from the top downward, reaches a maximum at the center, gradually decreases downward, and reaches the shortest at the bottom. It's okay to be.
 以上のように、本実施の形態の複数の第1穴43Aのそれぞれの開口面積は、第1穴43Aに対向する複数の第2凹部52に設けられた複数の第2穴53の数が多いほど、大きい。このため、複数の第1穴43Aのそれぞれを通過する冷媒量は、第1穴43Aに対向する複数の第2凹部52に設けられた複数の第2穴53の数が多いほど、多くなる。したがって、複数の第2穴53それぞれに流入する冷媒量を、均一に近づけることができる。これにより、複数の第2穴53のそれぞれから複数の伝熱管2のそれぞれに流入する冷媒量を、均一に近づけることができる。 As described above, the opening area of each of the plurality of first holes 43A in this embodiment is larger than the number of the plurality of second holes 53 provided in the plurality of second recesses 52 facing the first holes 43A. It's so big. Therefore, the amount of refrigerant passing through each of the plurality of first holes 43A increases as the number of the plurality of second holes 53 provided in the plurality of second recesses 52 facing the first holes 43A increases. Therefore, the amount of refrigerant flowing into each of the plurality of second holes 53 can be made uniform. Thereby, the amount of refrigerant flowing into each of the plurality of heat exchanger tubes 2 from each of the plurality of second holes 53 can be made uniform.
実施の形態3.
 本実施の形態では、実施の形態1との相違点を中心に説明する。本実施の形態では、実施の形態1と相違する構成の符号に、添え字Bを付けている。
Embodiment 3.
In this embodiment, differences from Embodiment 1 will be mainly described. In this embodiment, a suffix B is added to the reference numerals of the configurations that are different from those in the first embodiment.
 図7は、実施の形態3に係る冷媒入口蓋15B及び分配部3Bの展開図である。図7では、入口側管板17の図示を省略しているが、入口側管板17は図4と同様に設けられている。分配部3Bは、第1分配プレート4B及び第2分配プレート5に加え、上流側サブプレート6及び下流側サブプレート7からなるサブプレート群を備えている。なお、図7では、第1分配プレート4B、上流側サブプレート6及び下流側サブプレート7の外形が破線で長穴形状に図示されているが、これは紙面の制約によるものであり、実際の外形は、第2分配プレート5と同じ外形である。このことは、図7以降においても当てはまる。 FIG. 7 is a developed view of the refrigerant inlet cover 15B and the distribution section 3B according to the third embodiment. Although illustration of the inlet side tube plate 17 is omitted in FIG. 7, the inlet side tube plate 17 is provided in the same manner as in FIG. 4. The distribution section 3B includes a sub-plate group consisting of an upstream sub-plate 6 and a downstream sub-plate 7 in addition to the first distribution plate 4B and the second distribution plate 5. In FIG. 7, the outer shapes of the first distribution plate 4B, the upstream sub-plate 6, and the downstream sub-plate 7 are illustrated as elongated holes with broken lines, but this is due to space limitations and may differ from the actual The outer shape is the same as that of the second distribution plate 5. This also applies to FIG. 7 and subsequent figures.
 冷媒入口蓋15Bの開口151Bは、冷媒入口蓋15Bの中央に設けられている。 The opening 151B of the refrigerant inlet cover 15B is provided at the center of the refrigerant inlet cover 15B.
 サブプレート群は、冷媒入口蓋15Bと第1分配プレート4Bとの間に設けられており、第1分配プレート4Bに重ね合わされている。サブプレート群は、第1方向に複数のサブプレートが重ね合わされて構成され、図7では上流側サブプレート6及び下流側サブプレート7という合計2枚のサブプレートが例示されている。本実施の形態では、第1分配プレート4Bとサブプレート群とで、積層ヘッダが構成されている。 The sub-plate group is provided between the refrigerant inlet cover 15B and the first distribution plate 4B, and is overlapped with the first distribution plate 4B. The sub-plate group is composed of a plurality of sub-plates stacked on top of each other in the first direction, and in FIG. 7, a total of two sub-plates, an upstream sub-plate 6 and a downstream sub-plate 7, are illustrated. In this embodiment, the first distribution plate 4B and the sub-plate group constitute a laminated header.
 上流側サブプレート6の分配面61には、サブプレート凹部62と、サブプレート穴63とが設けられている。分配面61は、第2方向及び第3方向に沿った面である。 The distribution surface 61 of the upstream sub-plate 6 is provided with a sub-plate recess 62 and a sub-plate hole 63. The distribution surface 61 is a surface along the second direction and the third direction.
 サブプレート凹部62は、第1方向に凹んだ溝である。サブプレート凹部62は、上流側サブプレート6を貫通していない。サブプレート穴63は、1つのサブプレート凹部62に対して複数設けられている。図7の例では、1つのサブプレート凹部62に対して2つのサブプレート穴63が設けられている。 The sub-plate recess 62 is a groove recessed in the first direction. The sub-plate recess 62 does not penetrate the upstream sub-plate 6. A plurality of sub-plate holes 63 are provided for one sub-plate recess 62. In the example of FIG. 7, two sub-plate holes 63 are provided for one sub-plate recess 62.
 下流側サブプレート7の分配面71には、サブプレート凹部72と、サブプレート穴73とが設けられている。分配面71は、第2方向及び第3方向に沿った面である。 The distribution surface 71 of the downstream sub-plate 7 is provided with a sub-plate recess 72 and a sub-plate hole 73. The distribution surface 71 is a surface along the second direction and the third direction.
 サブプレート凹部72は、第1方向に凹んだ溝である。サブプレート凹部72は、下流側サブプレート7を貫通していない。サブプレート凹部72は、サブプレート穴63と同数設けられている。図7では、2つのサブプレート凹部72が、第2方向に間隔をあけて配置されている。サブプレート穴73は、1つのサブプレート凹部72に対して複数設けられている。図7の例では、1つのサブプレート凹部72に対して2つのサブプレート穴73が設けられている。 The sub-plate recess 72 is a groove recessed in the first direction. The sub-plate recess 72 does not penetrate the downstream sub-plate 7. The same number of sub-plate recesses 72 as sub-plate holes 63 are provided. In FIG. 7, two sub-plate recesses 72 are spaced apart in the second direction. A plurality of sub-plate holes 73 are provided for one sub-plate recess 72. In the example of FIG. 7, two sub-plate holes 73 are provided for one sub-plate recess 72.
 図8は、実施の形態3に係るサブプレート凹部72の形状を説明する図である。サブプレート凹部72において、第2方向及び第3方向における中心を、基部721と称する。 FIG. 8 is a diagram illustrating the shape of the sub-plate recess 72 according to the third embodiment. In the sub-plate recess 72, the center in the second direction and the third direction is referred to as a base 721.
 基部721の紙面上側に、一つのサブプレート穴73が設けられ、基部721の紙面下側に、一つのサブプレート穴73が設けられている。2つのサブプレート穴73の第2方向における中間に、基部721が位置している。基部721とサブプレート穴73とは、第2方向に沿って1列に配置されている。 One sub-plate hole 73 is provided on the upper side of the base 721 in the drawing, and one sub-plate hole 73 is provided on the lower side of the base 721 in the drawing. The base 721 is located between the two sub-plate holes 73 in the second direction. The base portion 721 and the sub-plate holes 73 are arranged in one row along the second direction.
 サブプレート凹部72は、基部721に向かって上流側から流入した冷媒を、第3方向と第3方向逆向きとに分岐させ、分岐させたそれぞれの冷媒を、第2方向逆向き又は第2方向に導く流路を形成している。 The sub-plate recess 72 branches the refrigerant flowing from the upstream side toward the base 721 into a third direction and a direction opposite to the third direction, and directs each branched refrigerant into a second direction opposite or a second direction. It forms a flow path that leads to.
 このような流路の一例を図8に示している。サブプレート凹部72は、基部721と、第1部分722と、第2部分723と、第3部分724と、第4部分725とを有する。第1部分722は、基部721から第3方向に延びる。第2部分723は、基部721から第3方向逆向きに延びる。第3部分724は、第1部分722の端部から、上側のサブプレート穴73に向かって延びている。第3部分724は、斜め上に向かう傾斜を有している。第4部分725は、第2部分723の端部から、下側のサブプレート穴73に向かって延びている。第4部分725は、斜め下に向かう傾斜を有している。 An example of such a flow path is shown in FIG. The sub-plate recess 72 has a base 721 , a first portion 722 , a second portion 723 , a third portion 724 , and a fourth portion 725 . The first portion 722 extends from the base 721 in the third direction. The second portion 723 extends from the base 721 in the third direction. The third portion 724 extends from the end of the first portion 722 toward the upper sub-plate hole 73. The third portion 724 has an obliquely upward slope. The fourth portion 725 extends from the end of the second portion 723 toward the lower sub-plate hole 73. The fourth portion 725 has a diagonally downward slope.
 サブプレート凹部62及び第1凹部42Bは、各部の寸法が、図8に示したサブプレート凹部72の各部の寸法と異なるものの、各部の形状はサブプレート凹部72の各部の形状と同じである(図7参照)。一つのサブプレート凹部62の上端と下端それぞれにサブプレート穴63が設けられている。また、一つの第1凹部42Bの上端と下端それぞれに第1穴43が設けられている。 Although the dimensions of each part of the sub-plate recess 62 and the first recess 42B are different from the dimensions of each part of the sub-plate recess 72 shown in FIG. 8, the shape of each part is the same as the shape of each part of the sub-plate recess 72 ( (See Figure 7). A sub-plate hole 63 is provided at each of the upper and lower ends of one sub-plate recess 62. Further, a first hole 43 is provided at each of the upper and lower ends of one first recess 42B.
 サブプレート穴63を、下流側サブプレート7に投影した投影領域に、サブプレート凹部72が配置されている。好ましくは、サブプレート穴63を、下流側サブプレート7に投影した投影領域に、基部721が位置している。また、サブプレート穴73を、第1分配プレート4Bに投影した投影領域に、第1凹部42Bが配置されている。好ましくは、サブプレート穴73を、第1分配プレート4Bに投影した投影領域に、第1凹部42Bの基部が位置している。第1穴43を、第2分配プレート5に投影した投影領域に、第2凹部52が位置している。 A sub-plate recess 72 is arranged in a projected area of the sub-plate hole 63 onto the downstream sub-plate 7. Preferably, the base portion 721 is located in a projected region of the sub-plate hole 63 onto the downstream sub-plate 7. Further, the first recess 42B is arranged in a projection area of the sub-plate hole 73 projected onto the first distribution plate 4B. Preferably, the base of the first recess 42B is located in the projection area of the sub-plate hole 73 onto the first distribution plate 4B. The second recess 52 is located in the projection area of the first hole 43 onto the second distribution plate 5.
(冷媒の流れ)
 図7を参照して、冷媒の流れを説明する。冷媒入口蓋15Bの中央に設けられた開口151Bに流入した冷媒は、上流側サブプレート6のサブプレート凹部62の中央(図8の基部721に相当する位置)に流入する。サブプレート凹部62に流入した冷媒は、第3方向と第3方向逆向きとに分岐して、前者は第2方向逆向きに流れ、後者は第2方向に流れ、それぞれサブプレート穴63を通り、上流側サブプレート6の下流側へ流れる。
(refrigerant flow)
The flow of the refrigerant will be explained with reference to FIG. The refrigerant that has flowed into the opening 151B provided at the center of the refrigerant inlet cover 15B flows into the center of the sub-plate recess 62 of the upstream sub-plate 6 (a position corresponding to the base 721 in FIG. 8). The refrigerant flowing into the sub-plate recess 62 branches into a third direction and a direction opposite to the third direction, the former flowing in the second direction opposite to the third direction, and the latter flowing in the second direction, passing through the sub-plate holes 63. , flows to the downstream side of the upstream sub-plate 6.
 サブプレート穴63のそれぞれから流出した冷媒は、下流側サブプレート7のサブプレート凹部72の中央(図8の基部721)に流入する。サブプレート凹部72に流入した冷媒は、第3方向と第3方向逆向きとに分岐して、前者は第2方向逆向きに流れ、後者は第2方向に流れ、それぞれサブプレート穴73を通り、下流側サブプレート7の下流側へ流れる。 The refrigerant flowing out from each of the sub-plate holes 63 flows into the center of the sub-plate recess 72 of the downstream sub-plate 7 (base 721 in FIG. 8). The refrigerant flowing into the sub-plate recess 72 branches into a third direction and a direction opposite to the third direction, the former flowing in the second direction opposite to the third direction, and the latter flowing in the second direction, each passing through the sub-plate hole 73. , flows downstream of the downstream sub-plate 7.
 サブプレート穴73のそれぞれから流出した冷媒は、第1分配プレート4Bの第1凹部42Bの中央(図8の基部721に相当する位置)に流入する。第1凹部42Bに流入した冷媒は、第3方向と第3方向逆向きとに分岐して、前者は第2方向逆向きに流れ、後者は第2方向に流れ、それぞれ第1穴43を通り、第1分配プレート4Bの下流側へ流れる。 The refrigerant flowing out from each of the sub-plate holes 73 flows into the center of the first recess 42B of the first distribution plate 4B (a position corresponding to the base 721 in FIG. 8). The refrigerant flowing into the first recess 42B branches into a third direction and a direction opposite to the third direction, the former flowing in the second direction opposite to the third direction, and the latter flowing in the second direction, each passing through the first hole 43. , flows downstream of the first distribution plate 4B.
 第1穴43のそれぞれから流入した冷媒は、第1穴43に対向する第2凹部52に流入する。第1穴43の投影領域44(図5参照)は、第2凹部52の第3方向における中央に対向しており、第1穴43を流出した冷媒は、対応する第2凹部52の第3方向における中央に、流入する。第2凹部52に流入した冷媒は、第3方向及び第3方向逆向きに第2凹部52内を流れる。第2凹部52内を流れる過程において、冷媒は、当該第2凹部52に設けられた複数の第2穴53のいずれかを通り、第2分配プレート5の下流側へ流れる。 The refrigerant flowing from each of the first holes 43 flows into the second recess 52 facing the first hole 43. The projected area 44 (see FIG. 5) of the first hole 43 faces the center of the second recess 52 in the third direction, and the refrigerant flowing out of the first hole 43 is transferred to the third recess of the corresponding second recess 52. Inflow to the center in the direction. The refrigerant flowing into the second recess 52 flows in the second recess 52 in the third direction and in the opposite direction to the third direction. In the process of flowing within the second recess 52, the refrigerant passes through any one of the plurality of second holes 53 provided in the second recess 52 and flows to the downstream side of the second distribution plate 5.
 第2穴53のそれぞれから流出した冷媒は、入口側管板17の伝熱管2(図3参照)の入口21に流入する。 The refrigerant flowing out from each of the second holes 53 flows into the inlet 21 of the heat exchanger tube 2 (see FIG. 3) of the inlet side tube plate 17.
 以上のように、本実施の形態の分配部3Bは、第1分配プレート4Bに重ね合わされたサブプレート群を有する。サブプレート群は、第1方向に重ね合わされた複数のサブプレートとして、上流側サブプレート6と下流側サブプレート7とを有する。上流側サブプレート6及び下流側サブプレート7は、それぞれ、第1方向に凹んだサブプレート凹部62、72と、サブプレート穴63、73とが形成されている。サブプレート穴63、73は、それぞれ、サブプレート凹部62、72に設けられ、上流側サブプレート6及び下流側サブプレート7を貫通する。そして、複数のサブプレートのうち隣接する2つのサブプレートにおいて、第1方向の上流側にある上流側サブプレート6の複数のサブプレート穴63の数は、第1方向の下流側にある下流側サブプレート7の複数のサブプレート穴73の数よりも少ない。上流側サブプレート6の複数のサブプレート穴63を、下流側サブプレート7に投影した投影領域に、当該下流側サブプレート7のサブプレート凹部72が位置している。 As described above, the distribution section 3B of this embodiment has a sub-plate group superimposed on the first distribution plate 4B. The sub-plate group includes an upstream sub-plate 6 and a downstream sub-plate 7 as a plurality of sub-plates stacked in the first direction. The upstream sub-plate 6 and the downstream sub-plate 7 are respectively formed with sub-plate recesses 62 and 72 recessed in the first direction and sub-plate holes 63 and 73. The sub-plate holes 63 and 73 are provided in the sub-plate recesses 62 and 72, respectively, and pass through the upstream sub-plate 6 and the downstream sub-plate 7. In two adjacent sub-plates among the plurality of sub-plates, the number of the plurality of sub-plate holes 63 in the upstream sub-plate 6 on the upstream side in the first direction is equal to the number of the plurality of sub-plate holes 63 on the downstream side in the first direction. The number is smaller than the number of the plurality of sub-plate holes 73 of the sub-plate 7. The sub-plate recess 72 of the downstream sub-plate 7 is located in a projection area in which the plurality of sub-plate holes 63 of the upstream sub-plate 6 are projected onto the downstream sub-plate 7 .
 このように、本実施の形態の分配部3Bは、上流側サブプレート6及び下流側サブプレート7が積層されて、第3方向及び第2方向に冷媒が分配されるので、伝熱管2への冷媒の分配を均一に近づけることができる。 In this way, in the distribution section 3B of the present embodiment, the upstream sub-plate 6 and the downstream sub-plate 7 are stacked, and the refrigerant is distributed in the third direction and the second direction. Refrigerant distribution can be made more uniform.
 また、上流側サブプレート6、下流側サブプレート7及び第1分配プレーと4Bでは、それぞれの凹部において冷媒が第3方向及び第2方向に分岐される。上流側サブプレート6、下流側サブプレート7及び第1分配プレーと4Bのそれぞれ1枚で、2方向への冷媒の分岐を実現できるので、熱交換器10に二相冷媒が流入した場合においても、二相冷媒の分配を均一に近づけることができる。 Furthermore, in the upstream sub-plate 6, the downstream sub-plate 7, and the first distribution plate 4B, the refrigerant is branched into the third direction and the second direction in the respective recesses. One each of the upstream sub-plate 6, the downstream sub-plate 7, and the first distribution plate 4B can branch the refrigerant in two directions, so even when two-phase refrigerant flows into the heat exchanger 10, , the distribution of the two-phase refrigerant can be made closer to uniformity.
実施の形態4.
 本実施の形態では、実施の形態1及び実施の形態3との相違点を中心に説明する。本実施の形態では、実施の形態1及び実施の形態3と相違する構成の符号に、添え字Cを付けている。
Embodiment 4.
In this embodiment, differences from Embodiment 1 and Embodiment 3 will be mainly explained. In this embodiment, the suffix C is added to the reference numerals of the configurations that are different from those in the first and third embodiments.
 図9は、実施の形態4に係る冷媒入口蓋15C及び分配部3Cの展開図である。図9では、入口側管板17の図示を省略しているが、入口側管板17は図4と同様に設けられている。分配部3Cは、第1分配プレート4C及び第2分配プレート5Cに加え、上流側サブプレート6を備えている。 FIG. 9 is a developed view of the refrigerant inlet cover 15C and the distribution section 3C according to the fourth embodiment. Although illustration of the inlet side tube plate 17 is omitted in FIG. 9, the inlet side tube plate 17 is provided in the same manner as in FIG. 4. The distribution section 3C includes an upstream sub-plate 6 in addition to a first distribution plate 4C and a second distribution plate 5C.
 冷媒入口蓋15Cの開口151Cは、冷媒入口蓋15Cの中央に設けられている。 The opening 151C of the refrigerant inlet cover 15C is provided at the center of the refrigerant inlet cover 15C.
 上流側サブプレート6は、実施の形態3で示した上流側サブプレート6と同じ構造である。本実施の形態では、実施の形態3の下流側サブプレート7が設けられておらず、上流側サブプレート6に重ねて第1分配プレート4Cが設けられている。 The upstream sub-plate 6 has the same structure as the upstream sub-plate 6 shown in the third embodiment. In this embodiment, the downstream sub-plate 7 of Embodiment 3 is not provided, but a first distribution plate 4C is provided overlapping the upstream sub-plate 6.
 第1分配プレート4Cは、実施の形態3で示した下流側サブプレート7と同じ構造である。第1凹部42Cは、実施の形態3のサブプレート凹部72と同じ形状を有している。 The first distribution plate 4C has the same structure as the downstream sub-plate 7 shown in the third embodiment. The first recess 42C has the same shape as the sub-plate recess 72 of the third embodiment.
 第2分配プレート5Cは、第2凹部52Cが、実施の形態1の第2凹部52と異なる。第2凹部52Cは、第1部分521Cと、第2部分522Cと、第1部分521Cと第2部分522との間に設けられた連結部分523Cとを備える。第1部分521C、第2部分522C及び連結部分523Cは、すべて第1方向に凹んだ溝であり、第2分配プレート5Cを貫通していない。第1部分521Cと、第2部分522Cとは、第2方向に並んで配置されており、それぞれ、実施の形態1における上下に並んだ第2凹部52に相当する。本実施の形態では、第1部分521C及び第2部分522Cは、それぞれ、第3方向に延びる長穴である。 The second distribution plate 5C has a second recess 52C that is different from the second recess 52 of the first embodiment. The second recess 52C includes a first portion 521C, a second portion 522C, and a connecting portion 523C provided between the first portion 521C and the second portion 522. The first portion 521C, the second portion 522C, and the connecting portion 523C are all grooves recessed in the first direction and do not penetrate the second distribution plate 5C. The first portion 521C and the second portion 522C are arranged side by side in the second direction, and each correspond to the second recesses 52 arranged vertically in the first embodiment. In this embodiment, the first portion 521C and the second portion 522C are each elongated holes extending in the third direction.
 連結部分523Cは、上流側から流入した冷媒を、第3方向と第3方向逆向きとに分岐させ、分岐させたそれぞれの冷媒を、第2方向逆向き又は第2方向に導く流路を形成している。連結部分523Cの形状は、図8に示した下流側サブプレート7のサブプレート凹部72の形状と実質的に同じである。 The connecting portion 523C forms a flow path that branches the refrigerant flowing from the upstream side into a third direction and a direction opposite to the third direction, and guides each of the branched refrigerants in a second direction opposite or in the second direction. are doing. The shape of the connecting portion 523C is substantially the same as the shape of the sub-plate recess 72 of the downstream sub-plate 7 shown in FIG.
 第2凹部52Cに設けられた複数の第2穴53の一部が第1部分521Cに設けられ、第2穴53の残りが第2部分522Cに設けられている。 Some of the plurality of second holes 53 provided in the second recess 52C are provided in the first portion 521C, and the remaining second holes 53 are provided in the second portion 522C.
 第1穴43を第2分配プレート5Cに投影した投影領域に、第2凹部52Cのうちの連結部分523Cが位置している。好ましくは、第2凹部52Cの第2方向及び第3方向の中心(図8の基部721に相当する位置)に、第1穴43の投影領域が位置している。 A connecting portion 523C of the second recess 52C is located in a projected area of the first hole 43 onto the second distribution plate 5C. Preferably, the projection area of the first hole 43 is located at the center of the second recess 52C in the second direction and the third direction (a position corresponding to the base 721 in FIG. 8).
(冷媒の流れ)
 図9を参照して、冷媒の流れを説明する。冷媒入口蓋15Cの中央に設けられた開口151Cに流入した冷媒は、上流側サブプレート6のサブプレート凹部62の中央(図8の基部721に相当する位置)に流入する。サブプレート凹部62に流入した冷媒は、第3方向と第3方向逆向きとに分岐して、前者は第2方向逆向きに流れ、後者は第2方向に流れ、それぞれサブプレート穴63を通り、上流側サブプレート6の下流側へ流れる。
(refrigerant flow)
The flow of the refrigerant will be explained with reference to FIG. The refrigerant that has flowed into the opening 151C provided at the center of the refrigerant inlet cover 15C flows into the center of the sub-plate recess 62 of the upstream sub-plate 6 (a position corresponding to the base 721 in FIG. 8). The refrigerant flowing into the sub-plate recess 62 branches into a third direction and a direction opposite to the third direction, the former flowing in the second direction opposite to the third direction, and the latter flowing in the second direction, passing through the sub-plate holes 63. , flows to the downstream side of the upstream sub-plate 6.
 サブプレート穴63のそれぞれから流出した冷媒は、第1分配プレート4Cの第1凹部42Cの中央(図8の基部721に相当する位置)に流入する。第1凹部42Cに流入した冷媒は、第3方向と第3方向逆向きとに分岐して、前者は第2方向逆向きに流れ、後者は第2方向に流れ、それぞれ第1穴43を通り、第1分配プレート4Cの下流側へ流れる。 The refrigerant flowing out from each of the sub-plate holes 63 flows into the center of the first recess 42C of the first distribution plate 4C (a position corresponding to the base 721 in FIG. 8). The refrigerant flowing into the first recess 42C branches into a third direction and a direction opposite to the third direction, the former flowing in the second direction opposite to the third direction, and the latter flowing in the second direction, each passing through the first hole 43. , flows downstream of the first distribution plate 4C.
 第1穴43のそれぞれから流入した冷媒は、第1穴43に対向する第2凹部52Cの連結部分523Cに流入する。第1穴43の投影領域44(図5参照)は、第2凹部52Cの第2方向及び第3方向における中央に対向しており、第1穴43を流出した冷媒は、対応する連結部分523Cに、流入する。連結部分523Cに流入した冷媒は、第3方向及び第3方向逆向きに分岐して、前者は第2方向逆向きに流れ、後者は第2方向に流れ、それぞれ第2穴53を通り、第2分配プレート5の下流側へ流れる。 The refrigerant flowing from each of the first holes 43 flows into the connecting portion 523C of the second recess 52C facing the first hole 43. The projected area 44 (see FIG. 5) of the first hole 43 faces the center of the second recess 52C in the second direction and the third direction, and the refrigerant flowing out of the first hole 43 is transferred to the corresponding connecting portion 523C. There is an inflow into the country. The refrigerant that has flowed into the connecting portion 523C is branched into a third direction and an opposite direction to the third direction, the former flowing in the opposite direction to the second direction, and the latter flowing in the second direction, passing through the second hole 53, and branching into the third direction. It flows to the downstream side of the two-way distribution plate 5.
 第2穴53のそれぞれから流出した冷媒は、入口側管板17の伝熱管2(図3参照)の入口21に流入する。 The refrigerant flowing out from each of the second holes 53 flows into the inlet 21 of the heat exchanger tube 2 (see FIG. 3) of the inlet side tube plate 17.
 以上のように、本実施の形態の分配部3Cの第2凹部52Cは、穴群の複数の第2穴53のうち一部が形成された第1部分521Cと、第1部分521Cと第2方向に並んで配置され、穴群の複数の第2穴53のうち残りが形成された第2部分522Cとを備える。また、第2凹部52Cは、第2方向において第1部分521Cと第2部分522Cとの間に設けられた連結部分523Cとを含む。そして、第1穴43を第2分配プレート5Cに投影した投影領域に、連結部分523Cが位置している。 As described above, the second recessed portion 52C of the distribution portion 3C of the present embodiment includes a first portion 521C in which some of the plurality of second holes 53 of the hole group are formed, and a first portion 521C and a second recessed portion 52C of the distribution portion 3C of the present embodiment. and a second portion 522C in which the remainder of the plurality of second holes 53 of the hole group are formed. Further, the second recess 52C includes a connecting portion 523C provided between the first portion 521C and the second portion 522C in the second direction. The connecting portion 523C is located in a projection area where the first hole 43 is projected onto the second distribution plate 5C.
 上流側サブプレート6と第1分配プレーと4Cとでは、それぞれの凹部において冷媒が第3方向及び第2方向に分岐される。上流側サブプレート6と第1分配プレーと4Cのそれぞれ1枚で、2方向への冷媒の分岐を実現できるので、熱交換器10に二相冷媒が流入した場合においても、二相冷媒の分配を均一に近づけることができる。 In the upstream sub-plate 6, the first distribution plate, and 4C, the refrigerant is branched into the third direction and the second direction in the respective recesses. Since the upstream sub-plate 6, the first distribution plate, and 4C can branch the refrigerant in two directions, even when the two-phase refrigerant flows into the heat exchanger 10, the distribution of the two-phase refrigerant can be prevented. can be made close to uniform.
 さらに本実施の形態では、第2分配プレート5Cの第2凹部52Cにおいて、冷媒が第3方向及び第2方向に分岐される。第2分配プレート5Cにおいても、2方向への冷媒の分岐を実現できるので、実施の形態3と比べてサブプレートの枚数を削減できる。 Further, in this embodiment, the refrigerant is branched into the third direction and the second direction in the second recess 52C of the second distribution plate 5C. Also in the second distribution plate 5C, branching of the refrigerant in two directions can be achieved, so the number of sub-plates can be reduced compared to the third embodiment.
実施の形態5.
 本実施の形態では、実施の形態3との相違点を中心に説明する。本実施の形態では、実施の形態3と相違する構成の符号に、添え字Dを付けている。
Embodiment 5.
In this embodiment, differences from Embodiment 3 will be mainly explained. In this embodiment, a suffix D is added to the reference numerals of the components that are different from those in the third embodiment.
 図10は、実施の形態5に係る冷媒入口蓋15D及び分配部3Dの展開図である。図10では、入口側管板17の図示を省略しているが、入口側管板17は図4と同様に設けられている。分配部3Dは、第1分配プレート4C及び第2分配プレート5Cに加え、上流側サブプレート6D及び下流側サブプレート7Dを備えている。 FIG. 10 is a developed view of the refrigerant inlet cover 15D and the distribution section 3D according to the fifth embodiment. Although illustration of the inlet side tube plate 17 is omitted in FIG. 10, the inlet side tube plate 17 is provided in the same manner as in FIG. 4. The distribution section 3D includes an upstream sub-plate 6D and a downstream sub-plate 7D in addition to the first distribution plate 4C and the second distribution plate 5C.
 冷媒入口蓋15Dの開口151Dは、冷媒入口蓋15Dの中央に設けられている。 The opening 151D of the refrigerant inlet cover 15D is provided at the center of the refrigerant inlet cover 15D.
 上流側サブプレート6Dの分配面61には、サブプレート凹部62Dが設けられている。サブプレート凹部62Dは、第3方向及び第3方向の逆向き並びに第2方向及び第2方向の逆向きに冷媒を分流させるという機能において、実施の形態3のサブプレート凹部62と共通している。サブプレート凹部62Dは、第3方向及び第3方向の逆向きへの冷媒の分岐と、第2方向及び第2方向の逆向きへの冷媒の分岐と、を2回繰り返すような形状を有している。1つのサブプレート凹部62Dには、4つのサブプレート穴63Dが設けられている。サブプレート穴63Dを下流側サブプレート7Dに投影した投影領域には、サブプレート凹部72Dが位置している。 A sub-plate recess 62D is provided on the distribution surface 61 of the upstream sub-plate 6D. The sub-plate recess 62D has the same function as the sub-plate recess 62 of Embodiment 3 in the function of dividing the refrigerant in the third direction and the opposite direction to the third direction, and in the second direction and the opposite direction to the second direction. . The sub-plate recess 62D has a shape that repeats twice the branching of the refrigerant in the third direction and the opposite direction to the third direction, and the branching of the refrigerant in the second direction and the opposite direction to the second direction. ing. Four sub-plate holes 63D are provided in one sub-plate recess 62D. A sub-plate recess 72D is located in a projected region of the sub-plate hole 63D onto the downstream sub-plate 7D.
 下流側サブプレート7Dは、サブプレート凹部72Dとサブプレート穴73Dとを備えている。それぞれのサブプレート凹部72Dの形状は、実施の形態3のサブプレート凹部72の形状と同じである。サブプレート穴63Dと同数のサブプレート凹部72Dが設けられており、本実施の形態では4つのサブプレート凹部72Dが設けられている。複数のサブプレート凹部72Dは、それぞれ、2つのサブプレート穴73Dを有しており、サブプレート凹部72Dに流入した冷媒を2分岐させて流出させる。サブプレート穴73Dを第1分配プレート4Dに投影した投影領域には、第1凹部42Dが位置している。 The downstream sub-plate 7D includes a sub-plate recess 72D and a sub-plate hole 73D. The shape of each sub-plate recess 72D is the same as the shape of the sub-plate recess 72 of the third embodiment. The same number of sub-plate recesses 72D as sub-plate holes 63D are provided, and in this embodiment, four sub-plate recesses 72D are provided. Each of the plurality of sub-plate recesses 72D has two sub-plate holes 73D, and the refrigerant that has flowed into the sub-plate recesses 72D is branched into two and then flows out. The first recess 42D is located in the projection area of the sub-plate hole 73D onto the first distribution plate 4D.
 第1分配プレート4Dの複数の第1穴43Dは、開口面積が、均一ではない。また、第1穴43Dは、長穴形状である。具体的に、第1穴43Dそれぞれの開口面積は、当該第1穴43Dに対向する第2凹部52に設けられた第2穴53の数が多いほど、大きい。第2穴53の数は、伝熱管2の数と一致している。第2凹部52に設けられた複数の第2穴53の数は、最上部から下へ徐々に増加し、中央において最大となり、下へ向かって徐々に減少し、最下部で最少となっている。これに対応して、第1穴43Dの開口面積は、最上部から下へ徐々に大きくなり、中央において最大となり、下へ向かって徐々に縮小し、最下部で最小となっている。第1穴43Dの開口面積と、各第1穴43Dに対向する第2凹部52の第2穴53の数とは、比例しているのが望ましい。 The opening areas of the plurality of first holes 43D of the first distribution plate 4D are not uniform. Moreover, the first hole 43D has an elongated hole shape. Specifically, the opening area of each first hole 43D increases as the number of second holes 53 provided in the second recess 52 facing the first hole 43D increases. The number of second holes 53 matches the number of heat exchanger tubes 2. The number of the plurality of second holes 53 provided in the second recess 52 gradually increases from the top to the bottom, reaches a maximum at the center, gradually decreases downward, and reaches the minimum at the bottom. . Correspondingly, the opening area of the first hole 43D gradually increases from the top to the bottom, reaches the maximum at the center, gradually decreases downward, and reaches the minimum at the bottom. It is desirable that the opening area of the first holes 43D and the number of second holes 53 of the second recess 52 facing each first hole 43D are proportional.
 さらに本実施の形態では、第1凹部42Dの第3方向における長さが、実施の形態3の第1凹部42Aの第3方向における長さと比べて大きい。第3方向に延びる長穴形状である第1穴43Dを包含するように、第1凹部42Dの第3方向における長さを長くしたものである。また、一つの第1凹部42Dに、複数の第1穴43Dが設けられている。 Furthermore, in this embodiment, the length of the first recess 42D in the third direction is larger than the length of the first recess 42A in the third embodiment. The length of the first recess 42D in the third direction is increased so as to include the first hole 43D which is an elongated hole extending in the third direction. Moreover, a plurality of first holes 43D are provided in one first recess 42D.
 複数のサブプレート穴73Dは、開口面積が、均一ではない。具体的に、サブプレート穴73Dそれぞれの開口面積は、当該サブプレート穴73Dに対向する第1穴43Dの開口面積が大きいほど、大きい。 The opening areas of the plurality of sub-plate holes 73D are not uniform. Specifically, the opening area of each sub-plate hole 73D is larger as the opening area of the first hole 43D facing the sub-plate hole 73D is larger.
 (冷媒の流れ)
 図10を参照して、冷媒の流れを説明する。冷媒入口蓋15Dの中央に設けられた開口151Dに流入した冷媒は、上流側サブプレート6のサブプレート凹部62Dの第2方向及び第3方向における中央に流入する。サブプレート凹部62Dに流入した冷媒は、第3方向と第3方向逆向きとに分岐して、前者は第2方向逆向きに流れ、後者は第2方向に流れる。第2方向逆向きに流れた冷媒は、さらに第3方向と第3方向逆向きとに分岐して、前者は第2方向逆向きに流れ、後者は第2方向に流れ、それぞれサブプレート穴63Dを通り、上流側サブプレート6Dの下流側へ流れる。最初に第3方向逆向きに分岐して第2方向逆向きに流れた冷媒は、さらに第3方向と第3方向逆向きとに分岐して、前者は第2方向逆向きに流れ、後者は第2方向に流れ、それぞれサブプレート穴63Dを通り、上流側サブプレート6Dの下流側へ流れる。
(refrigerant flow)
The flow of the refrigerant will be explained with reference to FIG. The refrigerant that has flowed into the opening 151D provided at the center of the refrigerant inlet cover 15D flows into the center of the sub-plate recess 62D of the upstream sub-plate 6 in the second and third directions. The refrigerant that has flowed into the sub-plate recess 62D branches into a third direction and a direction opposite to the third direction, with the former flowing in the opposite direction to the second direction, and the latter flowing in the second direction. The refrigerant that has flowed in the opposite direction in the second direction is further branched into a third direction and in the opposite direction in the third direction, the former flowing in the opposite direction to the second direction, and the latter flowing in the second direction, respectively, through sub-plate holes 63D. , and flows to the downstream side of the upstream sub-plate 6D. The refrigerant that first branches in the third direction and flows in the second direction is further branched into a third direction and a third direction, with the former flowing in the second direction and the latter flowing in the second direction. It flows in the second direction, passes through each sub-plate hole 63D, and flows to the downstream side of the upstream sub-plate 6D.
 サブプレート穴63Dのそれぞれから流出した冷媒は、下流側サブプレート7Dのサブプレート凹部72Dの中央(図8の基部721に相当する位置)に流入する。サブプレート凹部72Dに流入した冷媒は、第3方向と第3方向逆向きとに分岐して、前者は第2方向逆向きに流れ、後者は第2方向に流れ、それぞれサブプレート穴73Dを通り、下流側サブプレート7Dの下流側へ流れる。 The refrigerant flowing out from each of the sub-plate holes 63D flows into the center of the sub-plate recess 72D of the downstream sub-plate 7D (a position corresponding to the base 721 in FIG. 8). The refrigerant that has flowed into the sub-plate recess 72D branches into a third direction and a direction opposite to the third direction, with the former flowing in the opposite direction to the second direction, and the latter flowing in the second direction, each passing through the sub-plate hole 73D. , flows downstream of the downstream sub-plate 7D.
 サブプレート穴73Dから流出した冷媒は、第1分配プレート4Dの第1凹部42Dに流入する。第1凹部42Dに流入した冷媒は、第3方向と第3方向逆向き、及び第2方向と第2方向逆向きとに流れ、流れる過程において第1穴43Dを通り、第1分配プレート4Dの下流側へ流れる。 The refrigerant flowing out from the sub-plate hole 73D flows into the first recess 42D of the first distribution plate 4D. The refrigerant that has flowed into the first recess 42D flows in the third direction and the opposite direction to the third direction, and in the second direction and the opposite direction to the second direction. Flows downstream.
 第1穴43Dのそれぞれから流出した冷媒は、第1穴43Dに対向する第2凹部52に流入する。第1穴43Dの投影領域44(図5参照)は、第2凹部52に対向しており、第1穴43Dを流出した冷媒は、第3方向及び第3方向逆向きに分岐して流れ、流れる過程において第2穴53を通り、第2分配プレート5の下流側へ流れる。 The refrigerant flowing out from each of the first holes 43D flows into the second recess 52 facing the first hole 43D. The projected area 44 (see FIG. 5) of the first hole 43D faces the second recess 52, and the refrigerant flowing out of the first hole 43D branches and flows in a third direction and a direction opposite to the third direction. In the process of flowing, it passes through the second hole 53 and flows to the downstream side of the second distribution plate 5.
 第2穴53のそれぞれから流出した冷媒は、入口側管板17の伝熱管2(図3参照)の入口21に流入する。 The refrigerant flowing out from each of the second holes 53 flows into the inlet 21 of the heat exchanger tube 2 (see FIG. 3) of the inlet side tube plate 17.
 以上のように、本実施の形態の複数の第1穴43Dのそれぞれの開口面積は、第1穴43Dに対向する複数の第2凹部52に設けられた複数の第2穴53の数が多いほど、大きい。このため、複数の第1穴43Dのそれぞれを通過する冷媒量は、第1穴43Dに対向する複数の第2凹部52に設けられた複数の第2穴53の数が多いほど、多くなる。したがって、複数の第2穴53それぞれに流入する冷媒量を、均一に近づけることができる。これにより、複数の第2穴53のそれぞれから複数の伝熱管2のそれぞれに流入する冷媒量を、均一に近づけることができる。 As described above, the opening area of each of the plurality of first holes 43D in this embodiment is larger than the number of the plurality of second holes 53 provided in the plurality of second recesses 52 facing the first holes 43D. It's so big. Therefore, the amount of refrigerant passing through each of the plurality of first holes 43D increases as the number of the plurality of second holes 53 provided in the plurality of second recesses 52 facing the first holes 43D increases. Therefore, the amount of refrigerant flowing into each of the plurality of second holes 53 can be made uniform. Thereby, the amount of refrigerant flowing into each of the plurality of heat exchanger tubes 2 from each of the plurality of second holes 53 can be made uniform.
実施の形態6.
 本実施の形態では、実施の形態3との相違点を中心に説明する。本実施の形態では、実施の形態3と相違する構成の符号に、添え字Eを付けている。
Embodiment 6.
In this embodiment, differences from Embodiment 3 will be mainly explained. In this embodiment, the suffix E is added to the reference numerals of the components that are different from those in the third embodiment.
 図11は、実施の形態6に係る分配部3Eの展開図である。分配部3Eは、上流側サブプレート6と、下流側サブプレート7と、第1分配プレート4Eと、第2分配プレート5とを備える。上流側サブプレート6、下流側サブプレート7、及び第2分配プレート5の構成は、実施の形態3と同じである。 FIG. 11 is a developed view of the distribution section 3E according to the sixth embodiment. The distribution section 3E includes an upstream sub-plate 6, a downstream sub-plate 7, a first distribution plate 4E, and a second distribution plate 5. The configurations of the upstream sub-plate 6, downstream sub-plate 7, and second distribution plate 5 are the same as in the third embodiment.
 第1分配プレート4Eの第1穴43Eは、開口面積が、均一ではない。具体的に、第1穴43Eそれぞれの開口面積は、当該第1穴43Eに対向する第2凹部52に設けられた第2穴53の数が多いほど、大きい。第2穴53の数は、伝熱管2の数と一致している。第2凹部52に設けられた複数の第2穴53の数は、最上部から下へ徐々に増加し、中央において最多となり、下へ向かって徐々に減少し、最下部で最少となっている。これに対応して、第1穴43Eの開口面積は、最上部から下へ徐々に大きくなり、中央において最大となり、下へ向かって徐々に縮小し、最下部で最小となっている。第1穴43Eの開口面積と、各第1穴43Eに対向する第2凹部52の第2穴53の数とは、比例しているのが望ましい。 The opening area of the first hole 43E of the first distribution plate 4E is not uniform. Specifically, the opening area of each first hole 43E increases as the number of second holes 53 provided in the second recess 52 facing the first hole 43E increases. The number of second holes 53 matches the number of heat exchanger tubes 2. The number of the plurality of second holes 53 provided in the second recess 52 gradually increases from the top to the bottom, becomes the largest in the center, gradually decreases downward, and becomes the smallest at the bottom. . Correspondingly, the opening area of the first hole 43E gradually increases from the top downward, reaches a maximum at the center, gradually decreases downward, and reaches a minimum at the bottom. It is desirable that the opening area of the first hole 43E be proportional to the number of second holes 53 in the second recess 52 facing each first hole 43E.
 本実施の形態によれば、実施の形態3の作用効果に加え、次の作用効果を得ることができる。すなわち、本実施の形態の複数の第1穴43Eのそれぞれの開口面積は、第1穴43Eに対向する複数の第2凹部52に設けられた複数の第2穴53の数が多いほど、大きい。このため、複数の第1穴43Eのそれぞれを通過する冷媒量は、第1穴43Eに対向する複数の第2凹部52に設けられた複数の第2穴53の数が多いほど、多くなる。したがって、複数の第2穴53それぞれに流入する冷媒量を、均一に近づけることができる。これにより、複数の第2穴53のそれぞれから複数の伝熱管2のそれぞれに流入する冷媒量を、均一に近づけることができる。 According to this embodiment, in addition to the effects of Embodiment 3, the following effects can be obtained. That is, the opening area of each of the plurality of first holes 43E in this embodiment increases as the number of the plurality of second holes 53 provided in the plurality of second recesses 52 facing the first hole 43E increases. . Therefore, the amount of refrigerant passing through each of the plurality of first holes 43E increases as the number of the plurality of second holes 53 provided in the plurality of second recesses 52 facing the first holes 43E increases. Therefore, the amount of refrigerant flowing into each of the plurality of second holes 53 can be made uniform. Thereby, the amount of refrigerant flowing into each of the plurality of heat exchanger tubes 2 from each of the plurality of second holes 53 can be made uniform.
実施の形態7.
 本実施の形態では、実施の形態3~6で説明した曲がりを有する凹部の形状の変形例を説明する。本実施の形態は、実施の形態3~6のいずれかと組み合わせられる。
Embodiment 7.
In this embodiment, a modified example of the shape of the curved recess described in Embodiments 3 to 6 will be described. This embodiment can be combined with any of Embodiments 3 to 6.
 図12は、実施の形態7に係るサブプレート凹部62Fの形状を説明する図である。図12では、サブプレート凹部62Fを例にその形状を説明するが、この形状は、実施の形態3~6で説明したサブプレート凹部72及び第1凹部42にも適用される。 FIG. 12 is a diagram illustrating the shape of the sub-plate recess 62F according to the seventh embodiment. In FIG. 12, the shape will be explained using the sub-plate recess 62F as an example, but this shape is also applied to the sub-plate recess 72 and the first recess 42 described in the third to sixth embodiments.
 サブプレート凹部62Fにおいて、第2方向及び第3方向における中心を、基部621Fと称する。 In the sub-plate recess 62F, the center in the second direction and the third direction is referred to as a base 621F.
 基部621Fの紙面上側に、一つのサブプレート穴63F1が設けられ、基部621Fの紙面下側に、一つのサブプレート穴63F2が設けられている。2つのサブプレート穴63F1と63F2の第2方向における中間に、基部621Fが位置している。基部621Fとサブプレート穴63F1とサブプレート穴63F3とは、第2方向に沿って1列に配置されている。 One sub-plate hole 63F1 is provided on the upper side of the base 621F in the drawing, and one sub-plate hole 63F2 is provided on the lower side of the base 621F in the drawing. The base 621F is located between the two sub-plate holes 63F1 and 63F2 in the second direction. The base 621F, the sub-plate hole 63F1, and the sub-plate hole 63F3 are arranged in one row along the second direction.
 サブプレート凹部62Fは、基部621Fに向かって上流側から流入した冷媒を、第3方向と第3方向逆向きとに分岐させ、分岐させたそれぞれの冷媒を、第2方向逆向き又は第2方向に導く流路を形成している。 The sub-plate recess 62F branches the refrigerant flowing from the upstream side toward the base 621F into a third direction and a direction opposite to the third direction, and directs each of the branched refrigerants into a second direction opposite or a second direction. It forms a flow path that leads to.
 サブプレート凹部62Fは、基部621Fと、第1部分622Fと、第2部分623Fと、第3部分624Fと、第4部分625Fとを有する。第1部分622Fは、基部621Fから第3方向に延びる。第2部分623Fは、基部621Fから第3方向逆向きに延びる。第3部分624Fは、第1部分622Fの端部から、上側のサブプレート穴63F1に向かって延びている。第3部分624Fは、斜め上に向かう傾斜を有している。第4部分625Fは、第2部分623Fの端部から、下側のサブプレート穴63F2に向かって延びている。第4部分625Fは、斜め下に向かう傾斜を有している。 The sub-plate recess 62F has a base 621F, a first portion 622F, a second portion 623F, a third portion 624F, and a fourth portion 625F. The first portion 622F extends in the third direction from the base 621F. The second portion 623F extends from the base 621F in the opposite third direction. The third portion 624F extends from the end of the first portion 622F toward the upper sub-plate hole 63F1. The third portion 624F has an upward slope. The fourth portion 625F extends from the end of the second portion 623F toward the lower sub-plate hole 63F2. The fourth portion 625F has a diagonally downward slope.
 上側のサブプレート穴63F1の開口面積は、下側のサブプレート穴63F2の開口面積よりも大きい。そして、開口面積が大きい方のサブプレート穴63F1に冷媒を導く第1部分622F及び第3部分624Fの開口面積は、それぞれ、サブプレート穴63F2冷媒を導く第2部分623F及び第4部分625Fの開口面積のそれぞれよりも、大きい。すなわち、開口面積の大きいサブプレート穴63F1に通じる冷媒の流路の容積を、開口面積の小さいサブプレート穴63F2に通じる冷媒の流路の容積よりも大きくすることで、サブプレート穴63F1により多くの冷媒を供給する。 The opening area of the upper sub-plate hole 63F1 is larger than the opening area of the lower sub-plate hole 63F2. The opening areas of the first part 622F and the third part 624F that lead the refrigerant to the sub-plate hole 63F1 having a larger opening area are the opening areas of the second part 623F and the fourth part 625F that lead the refrigerant to the sub-plate hole 63F2, respectively. Each area is larger than the other. That is, by making the volume of the refrigerant flow path leading to the sub-plate hole 63F1 with a large opening area larger than the volume of the refrigerant flow path leading to the sub-plate hole 63F2 with a small opening area, a larger amount of air can be transferred to the sub-plate hole 63F1. Supply refrigerant.
 本実施の形態において、第2方向は、重力方向である。そして、サブプレート凹部62Fに設けられたサブプレート穴63F1は、基部621Fよりも上にあり、サブプレート穴63F2は、基部621Fよりも下にある。第1部分622Fの容積は、第2部分623Fの容積よりも大きく、第3部分324Fの容積は、第4部分625Fの容積よりも大きい。このように、重力方向上側にあるサブプレート穴63F1に冷媒を導く流路の容積を大きくすることで、重力の影響による下側への冷媒の流れの偏りを軽減して、サブプレート穴63F1とサブプレート穴63F2とに分配される冷媒を均一に近づけることができる。 In this embodiment, the second direction is the direction of gravity. The sub-plate hole 63F1 provided in the sub-plate recess 62F is above the base 621F, and the sub-plate hole 63F2 is below the base 621F. The volume of the first portion 622F is larger than the volume of the second portion 623F, and the volume of the third portion 324F is larger than the volume of the fourth portion 625F. In this way, by increasing the volume of the flow path that guides the refrigerant to the sub-plate hole 63F1 located on the upper side in the direction of gravity, the bias of the flow of refrigerant downward due to the influence of gravity is reduced, and the sub-plate hole 63F1 and The refrigerant distributed to the sub-plate holes 63F2 can be uniformly distributed.
実施の形態8.
 実施の形態3~7で説明した曲がりを有する凹部の形状の変形例を説明する。本実施の形態は、実施の形態3~7のいずれかと組み合わせられる。
Embodiment 8.
A modification of the shape of the curved recess described in Embodiments 3 to 7 will be described. This embodiment can be combined with any of Embodiments 3 to 7.
 図13は、実施の形態8に係るサブプレート凹部62Gの形状を説明する図である。図13では、サブプレート凹部62Gを例にその形状を説明するが、この形状は、実施の形態3~7で説明したサブプレート凹部72及び第1凹部42にも適用される。サブプレート凹部62Gは、基部621と、第1部分622Gと、第2部分623Gと、第3部分624と、第4部分625とを有する。第3部分624及び第4部分625は、それぞれ、実施の形態7の第3部分624F及び第4部分625Fに相当する。 FIG. 13 is a diagram illustrating the shape of the sub-plate recess 62G according to the eighth embodiment. In FIG. 13, the shape will be explained using the sub-plate recess 62G as an example, but this shape is also applied to the sub-plate recess 72 and the first recess 42 described in the third to seventh embodiments. The sub-plate recess 62G has a base 621, a first portion 622G, a second portion 623G, a third portion 624, and a fourth portion 625. The third portion 624 and the fourth portion 625 correspond to the third portion 624F and the fourth portion 625F of the seventh embodiment, respectively.
 上側のサブプレート穴63に連なるサブプレート凹部62Gの第1部分622Gは、基部621から第3方向かつ第2方向に延びている。また、下側のサブプレート穴63に連なる第2部分623Gは、基部621から第3方向逆向きかつ第2方向逆向きに延びている。すなわち、基部621から第3方向に延びる第1部分622Gは下降しており、基部621から第3方向逆向きに延びる第2部分623Gは上昇している。 A first portion 622G of the sub-plate recess 62G connected to the upper sub-plate hole 63 extends from the base 621 in the third direction and the second direction. Further, the second portion 623G connected to the lower sub-plate hole 63 extends from the base 621 in the opposite direction in the third direction and in the opposite direction in the second direction. That is, the first portion 622G extending in the third direction from the base 621 is lowered, and the second portion 623G extending in the opposite direction from the base 621 in the third direction is raised.
 本実施の形態において、第2方向は、重力方向である。そして、サブプレート凹部62Gは、上流側から冷媒が流入する基部621と、基部621から斜め上方向に延びる第1部分622Gと、基部621から斜め下方向に延びる第2部分623Gとを有する。このように、上側にあるサブプレート穴63に冷媒を導く第1部分622Gを、下降させることで、基部621に流入した冷媒を優先的に上側のサブプレート穴63に導くことができる。これにより、重力の影響による下側への冷媒の流れの偏りを軽減して、下側のサブプレート穴63と上側のサブプレート穴63とに分配される冷媒を均一に近づけることができる。 In this embodiment, the second direction is the direction of gravity. The sub-plate recess 62G includes a base 621 into which the refrigerant flows from the upstream side, a first portion 622G extending diagonally upward from the base 621, and a second portion 623G extending diagonally downward from the base 621. In this way, by lowering the first portion 622G that guides the refrigerant to the upper sub-plate hole 63, the refrigerant that has flowed into the base 621 can be guided preferentially to the upper sub-plate hole 63. This reduces the bias in the flow of the refrigerant downward due to the influence of gravity, and allows the refrigerant to be uniformly distributed between the lower sub-plate holes 63 and the upper sub-plate holes 63.
(変形例)
 実施の形態3~8で示したサブプレート群を構成するサブプレートの数は、2枚に限定されず、1枚又は3枚以上であってもよい。
(Modified example)
The number of sub-plates constituting the sub-plate groups shown in Embodiments 3 to 8 is not limited to two, and may be one or three or more.
 1 シェル、2 伝熱管、3 分配部、3B 分配部、3C 分配部、3D 分配部、3E 分配部、4 第1分配プレート、4A 第1分配プレート、4B 第1分配プレート、4C 第1分配プレート、4D 第1分配プレート、4E 第1分配プレート、5 第2分配プレート、5C 第2分配プレート、6 上流側サブプレート、6D 上流側サブプレート、7 下流側サブプレート、7D 下流側サブプレート、10 熱交換器、11 冷媒入口配管、12 冷媒出口配管、13 流体入口配管、14 流体出口配管、15 冷媒入口蓋、15A 冷媒入口蓋、15B 冷媒入口蓋、15C 冷媒入口蓋、15D 冷媒入口蓋、16 冷媒出口蓋、17 入口側管板、18 出口側管板、21 入口、22 出口、41 第1分配面、42 第1凹部、42A 第1凹部、42B 第1凹部、42C 第1凹部、42D 第1凹部、42E 第1凹部、43 第1穴、43A 第1穴、43D 第1穴、43E 第1穴、44 投影領域、51 第2分配面、52 第2凹部、52C 第2凹部、53 第2穴、61 分配面、62 サブプレート凹部、62D サブプレート凹部、62F サブプレート凹部、62G サブプレート凹部、63 サブプレート穴、63D サブプレート穴、63F1 サブプレート穴、63F2 サブプレート穴、71 分配面、72 サブプレート凹部、72D サブプレート凹部、73 サブプレート穴、73D サブプレート穴、100 冷凍サイクル装置、101 圧縮機、102 放熱器、103 膨張機構、104 蒸発器、105 冷媒配管、151 開口、151B 開口、151C 開口、151D 開口、324F 第3部分、521C 第1部分、522 第2部分、522C 第2部分、523C 連結部分、534 第2穴、621 基部、621F 基部、622F 第1部分、622G 第1部分、623F 第2部分、623G 第2部分、624 第3部分、624F 第3部分、625 第4部分、625F 第4部分、721 基部、722 第1部分、723 第2部分、724 第3部分、725 第4部分。 1 shell, 2 heat transfer tube, 3 distribution section, 3B distribution section, 3C distribution section, 3D distribution section, 3E distribution section, 4 first distribution plate, 4A first distribution plate, 4B first distribution plate, 4C first distribution plate , 4D first distribution plate, 4E first distribution plate, 5 second distribution plate, 5C second distribution plate, 6 upstream sub-plate, 6D upstream sub-plate, 7 downstream sub-plate, 7D downstream sub-plate, 10 Heat exchanger, 11 Refrigerant inlet piping, 12 Refrigerant outlet piping, 13 Fluid inlet piping, 14 Fluid outlet piping, 15 Refrigerant inlet lid, 15A Refrigerant inlet lid, 15B Refrigerant inlet lid, 15C Refrigerant inlet lid, 15D Refrigerant inlet lid, 16 Refrigerant outlet cover, 17 inlet side tube plate, 18 outlet side tube plate, 21 inlet, 22 outlet, 41 first distribution surface, 42 first recess, 42A first recess, 42B first recess, 42C first recess, 42D first recess 1 recess, 42E first recess, 43 first hole, 43A first hole, 43D first hole, 43E first hole, 44 projection area, 51 second distribution surface, 52 second recess, 52C second recess, 53 2 holes, 61 distribution surface, 62 subplate recess, 62D subplate recess, 62F subplate recess, 62G subplate recess, 63 subplate hole, 63D subplate hole, 63F1 subplate hole, 63F2 subplate hole, 71 distribution surface , 72 sub-plate recess, 72D sub-plate recess, 73 sub-plate hole, 73D sub-plate hole, 100 refrigeration cycle device, 101 compressor, 102 radiator, 103 expansion mechanism, 104 evaporator, 105 refrigerant piping, 151 opening, 151B Opening, 151C opening, 151D opening, 324F 3rd part, 521C 1st part, 5222 2nd, 522C, 523C consolidated part, 534th, 621 base, 621F base, 1st part, 622G, 622G 1 part, 623F second part, 623G second part, 624 third part, 624F third part, 625 fourth part, 625F fourth part, 721 base, 722 first part, 723 second part, 724 third part , 725 Part 4.

Claims (12)

  1.  流体入口配管及び流体出口配管が接続されたシェルと、
     前記シェル内に収容され、それぞれの入口から出口へ向かう第1方向に冷媒が流れる複数の伝熱管と、
     前記シェル内に収容され、冷媒入口配管からの冷媒を前記複数の伝熱管の前記入口に分配させる分配部とを備え、
     前記分配部は、
     前記第1方向に直交する第1分配面を有する第1分配プレートと、
     前記第1方向に直交する第2分配面を有し、前記第1分配プレートと前記複数の伝熱管の前記入口との間に設けられた第2分配プレートとを有し、
     前記第1分配プレートは、
     前記第1分配面に設けられ、前記第1方向に凹んだ1又は複数の第1凹部と、
     前記1又は複数の第1凹部それぞれに設けられ、前記第1分配プレートを貫通する複数の第1穴とが形成されており、
     前記複数の第1穴は、前記第1方向に直交する第2方向における位置が互いに異なっており、
     前記第2分配プレートは、
     前記第2分配面に設けられ、前記第1方向に凹んだ複数の第2凹部と、
     前記複数の第2凹部それぞれに設けられ、前記第2分配プレートを貫通する複数の第2穴からなる複数の穴群とが形成されており、
     前記複数の穴群のそれぞれに含まれる前記複数の第2穴は、前記第1方向及び前記第2方向に直交する第3方向における位置が互いに異なっており、
     前記第1分配プレートの前記複数の第1穴を前記第2分配プレートに投影した投影領域に、前記複数の第2凹部のいずれかが位置している
     シェルアンドチューブ式熱交換器。
    a shell to which fluid inlet piping and fluid outlet piping are connected;
    a plurality of heat transfer tubes housed within the shell, through which a refrigerant flows in a first direction from each inlet to an outlet;
    a distribution section that is housed in the shell and that distributes the refrigerant from the refrigerant inlet pipe to the inlets of the plurality of heat exchanger tubes;
    The distribution section is
    a first distribution plate having a first distribution surface perpendicular to the first direction;
    a second distribution plate having a second distribution surface perpendicular to the first direction and provided between the first distribution plate and the inlets of the plurality of heat exchanger tubes;
    The first distribution plate is
    one or more first recesses provided on the first distribution surface and recessed in the first direction;
    a plurality of first holes provided in each of the one or more first recesses and penetrating the first distribution plate;
    The plurality of first holes have different positions in a second direction perpendicular to the first direction,
    The second distribution plate is
    a plurality of second recesses provided on the second distribution surface and recessed in the first direction;
    a plurality of hole groups formed of a plurality of second holes provided in each of the plurality of second recesses and penetrating the second distribution plate;
    The plurality of second holes included in each of the plurality of hole groups have different positions in a third direction orthogonal to the first direction and the second direction,
    The shell-and-tube heat exchanger, wherein one of the plurality of second recesses is located in a projected area of the plurality of first holes of the first distribution plate projected onto the second distribution plate.
  2.  前記複数の第2凹部は、前記第2方向に沿って互いに離間して配置されている
     請求項1記載のシェルアンドチューブ式熱交換器。
    The shell-and-tube heat exchanger according to claim 1, wherein the plurality of second recesses are spaced apart from each other along the second direction.
  3.  前記複数の第1穴のそれぞれの開口面積は、当該第1穴に対向する前記複数の第2凹部に設けられた前記複数の第2穴の数が多いほど、大きい
     請求項2記載のシェルアンドチューブ式熱交換器。
    The shell and shell according to claim 2, wherein the opening area of each of the plurality of first holes increases as the number of the plurality of second holes provided in the plurality of second recesses facing the first hole increases. Tubular heat exchanger.
  4.  前記第1分配プレートに重ね合わされたサブプレート群を有し、
     前記サブプレート群は、前記第1方向に重ね合わされた複数のサブプレートを有し、
     前記複数のサブプレートは、それぞれ、
     前記第1方向に凹んだサブプレート凹部と、
     前記サブプレート凹部に設けられ、前記サブプレートを貫通する複数のサブプレート穴とが形成されており、
     前記複数のサブプレートのうち隣接する2つのサブプレートにおいて、
     前記第1方向の上流側にある前記サブプレートである上流側サブプレートの前記複数のサブプレート穴の数は、前記第1方向の下流側にある前記サブプレートである下流側サブプレートの前記複数のサブプレート穴の数よりも少なく、
     前記上流側サブプレートの前記複数の穴を、前記下流側サブプレートに投影した投影領域に、当該下流側サブプレートの前記サブプレート凹部が位置している
     請求項1~請求項3のいずれか一項に記載のシェルアンドチューブ式熱交換器。
    a group of sub-plates superimposed on the first distribution plate;
    The sub-plate group includes a plurality of sub-plates stacked in the first direction,
    Each of the plurality of sub-plates is
    a sub-plate recess recessed in the first direction;
    A plurality of sub-plate holes are formed in the sub-plate recess and passing through the sub-plate,
    In two adjacent sub-plates among the plurality of sub-plates,
    The number of the plurality of sub-plate holes of the upstream sub-plate which is the sub-plate located on the upstream side in the first direction is the number of the plurality of sub-plate holes of the downstream sub-plate which is the sub-plate located downstream in the first direction. less than the number of sub-plate holes in
    Any one of claims 1 to 3, wherein the sub-plate recess of the downstream sub-plate is located in a projection area in which the plurality of holes of the upstream sub-plate are projected onto the downstream sub-plate. Shell-and-tube heat exchanger as described in Section.
  5.  前記1又は複数の第1凹部は、複数の第1凹部であり、
     前記複数のサブプレートのうち、前記第1方向において最も下流側にあるサブプレートの前記複数のサブプレート穴を前記第1分配プレートに投影した投影領域に、前記複数の第1凹部のいずれか1つが位置している
     請求項4記載のシェルアンドチューブ式熱交換器。
    The one or more first recesses are a plurality of first recesses,
    Any one of the plurality of first recesses is placed in a projection area of the plurality of sub-plate holes of the sub-plate located furthest downstream in the first direction among the plurality of sub-plates, projected onto the first distribution plate. The shell-and-tube heat exchanger according to claim 4, wherein:
  6.  前記下流側サブプレートに設けられた前記複数のサブプレート穴は、前記第2方向に離間して配置された2つのサブプレート穴を含み、
     前記下流側サブプレートの前記サブプレート凹部は、
     前記上流側サブプレートの前記サブプレート穴の一つと対向し、前記第2方向において前記2つのサブプレート穴の中間に位置する基部と、
     前記基部から前記第3方向に延びる第1部分と、
     前記基部から前記第3方向逆向きに延びる第2部分と、
     前記第1部分の端部から、前記2つのサブプレート穴の一方に向かって延びる第3部分と、
     前記第2部分の端部から、前記2つのサブプレート穴の他方に向かって延びる第4部分と、を有する
     請求項4又は請求項5に記載のシェルアンドチューブ式熱交換器。
    The plurality of sub-plate holes provided in the downstream sub-plate include two sub-plate holes spaced apart in the second direction,
    The sub-plate recess of the downstream sub-plate is
    a base facing one of the sub-plate holes of the upstream sub-plate and located between the two sub-plate holes in the second direction;
    a first portion extending from the base in the third direction;
    a second portion extending from the base in the opposite third direction;
    a third portion extending from an end of the first portion toward one of the two sub-plate holes;
    The shell-and-tube heat exchanger according to claim 4 or 5, further comprising a fourth portion extending from an end of the second portion toward the other of the two sub-plate holes.
  7.  前記第2方向は、重力方向であり、
     前記2つのサブプレート穴の一方は、前記基部よりも上にあり、前記2つのサブプレート穴の他方は、前記基部よりも下にあり、
     前記第1部分の容積は、前記第2部分の容積よりも大きく、
     前記第3部分の容積は、前記第4部分の容積よりも大きい
     請求項6記載のシェルアンドチューブ式熱交換器。
    the second direction is the direction of gravity,
    one of the two sub-plate holes is above the base, and the other of the two sub-plate holes is below the base;
    The volume of the first part is larger than the volume of the second part,
    The shell-and-tube heat exchanger according to claim 6, wherein a volume of the third portion is larger than a volume of the fourth portion.
  8.  前記第2方向は、重力方向であり、
     前記サブプレートには、前記第2方向に離間して配置された2つの前記サブプレート穴が形成されており、
     前記サブプレート凹部は、
     上流側から冷媒が流入する位置にある基部と、
     前記基部から斜め上方向に延びる第1部分と、
     前記基部から斜め下方向に延びる第2部分と、
     前記第1部分の端部から、前記2つのサブプレート穴のうち前記基部よりも上にあるサブプレート穴に向かって延びる第3部分と、
     前記第2部分の端部から、前記2つのサブプレート穴のうち前記基部よりも下にあるサブプレート穴に向かって延びる第4部分と、を有する
     請求項4又は請求項5に記載のシェルアンドチューブ式熱交換器。
    the second direction is the direction of gravity,
    The sub-plate has two sub-plate holes spaced apart in the second direction,
    The sub-plate recess is
    a base located at a position where refrigerant flows from the upstream side;
    a first portion extending obliquely upward from the base;
    a second portion extending obliquely downward from the base;
    a third portion extending from an end of the first portion toward a sub-plate hole located above the base of the two sub-plate holes;
    and a fourth portion extending from an end of the second portion toward a sub-plate hole located below the base of the two sub-plate holes. Tubular heat exchanger.
  9.  前記第1分配プレートに重ね合わされたサブプレートを有し、
     前記サブプレートは、
     前記第1方向に凹んだサブプレート凹部と、
     前記サブプレート凹部の底に設けられ、前記サブプレートを貫通する複数のサブプレート穴とを有し、
     前記1又は複数の第1凹部は、複数の第1凹部であり、
     前記複数の第1凹部には、それぞれ、前記複数の第1穴が設けられており、
     前記複数のサブプレート穴のそれぞれを前記第1分配プレートに投影した投影領域に、前記複数の第1凹部のいずれか1つが位置している
     請求項1~請求項3のいずれか一項に記載のシェルアンドチューブ式熱交換器。
    a sub-plate superimposed on the first distribution plate;
    The sub-plate is
    a sub-plate recess recessed in the first direction;
    a plurality of sub-plate holes provided at the bottom of the sub-plate recess and passing through the sub-plate,
    The one or more first recesses are a plurality of first recesses,
    Each of the plurality of first recesses is provided with the plurality of first holes,
    According to any one of claims 1 to 3, any one of the plurality of first recesses is located in a projection area in which each of the plurality of sub-plate holes is projected onto the first distribution plate. shell and tube heat exchanger.
  10.  前記第2分配プレートの前記複数の第2凹部は、それぞれ、
     前記複数の穴群のうち一つの穴群に含まれる前記複数の第2穴の一部が形成された第1部分と、
     前記第1部分と前記第2方向に並んで配置され、前記一つの穴群に含まれる前記複数の第2穴の残りが形成された第2部分と、
     前記第2方向において前記第1部分と前記第2部分との間に設けられた連結部分とを含み、
     前記複数の第1穴を前記第2分配プレートに投影した前記投影領域に、前記連結部分が位置している
     請求項1~請求項9のいずれか一項に記載のシェルアンドチューブ式熱交換器。
    The plurality of second recesses of the second distribution plate each include:
    a first portion in which a portion of the plurality of second holes included in one of the plurality of hole groups is formed;
    a second portion arranged in line with the first portion in the second direction and in which the remainder of the plurality of second holes included in the one hole group are formed;
    a connecting part provided between the first part and the second part in the second direction,
    The shell-and-tube heat exchanger according to any one of claims 1 to 9, wherein the connecting portion is located in the projection area projected onto the second distribution plate. .
  11.  前記第2方向は、重力方向である
     請求項1~請求項10のいずれか一項に記載のシェルアンドチューブ式熱交換器。
    The shell-and-tube heat exchanger according to any one of claims 1 to 10, wherein the second direction is a direction of gravity.
  12.  冷媒を圧縮する圧縮機と、
     前記圧縮機から流出した冷媒を放熱させる放熱器と、
     前記放熱器から流出した冷媒を減圧させる膨張機構と、
     前記膨張機構から流出した冷媒を蒸発させる蒸発器と、を備え、
     前記蒸発器は、請求項1~請求項11のいずれか一項に記載のシェルアンドチューブ式熱交換器である
     冷凍サイクル装置。
    a compressor that compresses refrigerant;
    a radiator that radiates heat from the refrigerant flowing out from the compressor;
    an expansion mechanism that reduces the pressure of the refrigerant flowing out of the radiator;
    an evaporator that evaporates the refrigerant flowing out from the expansion mechanism,
    The evaporator is a shell-and-tube heat exchanger according to any one of claims 1 to 11. A refrigeration cycle device.
PCT/JP2022/022945 2022-06-07 2022-06-07 Shell-and-tube type heat exchanger, and refrigeration cycle device WO2023238233A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022945 WO2023238233A1 (en) 2022-06-07 2022-06-07 Shell-and-tube type heat exchanger, and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022945 WO2023238233A1 (en) 2022-06-07 2022-06-07 Shell-and-tube type heat exchanger, and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023238233A1 true WO2023238233A1 (en) 2023-12-14

Family

ID=89118064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022945 WO2023238233A1 (en) 2022-06-07 2022-06-07 Shell-and-tube type heat exchanger, and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2023238233A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241839A (en) * 1991-04-24 1993-09-07 Modine Manufacturing Company Evaporator for a refrigerant
JPH0611291A (en) * 1992-04-02 1994-01-21 Nartron Corp Laminated plate header for cooling system and manufacture thereof
JP2000193381A (en) * 1998-12-23 2000-07-14 American Air Liquide Inc Heat exchanger for preheating oxidizing gas
DE10020763A1 (en) * 1999-04-30 2000-11-02 Valeo Climatisation Lengthwise collector casing for heat exchanger, with net at solder bridges, sealed longitudinally and transversely to increase resistance to internal pressure
JP2003513056A (en) * 1999-11-03 2003-04-08 ビーエーエスエフ アクチェンゲゼルシャフト Catalytic gas phase oxidation producing (meth) acrolein and / or (meth) acrylic acid
JP2013538112A (en) * 2010-07-20 2013-10-10 ウニヴァルシテ ドゥ サヴォワ Fluid circulation module
WO2019073610A1 (en) * 2017-10-13 2019-04-18 三菱電機株式会社 Laminated header, heat exchanger and refrigeration cycle device
US20200064085A1 (en) * 2017-05-04 2020-02-27 Simone Girardi Fluid Distributor Assembly for Heat Exchangers
CN112923774A (en) * 2021-01-16 2021-06-08 西安交通大学 Distributor for shell-and-tube heat exchanger
WO2022085113A1 (en) * 2020-10-21 2022-04-28 三菱電機株式会社 Distributor, heat exchanger, and air conditioning device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241839A (en) * 1991-04-24 1993-09-07 Modine Manufacturing Company Evaporator for a refrigerant
JPH0611291A (en) * 1992-04-02 1994-01-21 Nartron Corp Laminated plate header for cooling system and manufacture thereof
JP2000193381A (en) * 1998-12-23 2000-07-14 American Air Liquide Inc Heat exchanger for preheating oxidizing gas
DE10020763A1 (en) * 1999-04-30 2000-11-02 Valeo Climatisation Lengthwise collector casing for heat exchanger, with net at solder bridges, sealed longitudinally and transversely to increase resistance to internal pressure
JP2003513056A (en) * 1999-11-03 2003-04-08 ビーエーエスエフ アクチェンゲゼルシャフト Catalytic gas phase oxidation producing (meth) acrolein and / or (meth) acrylic acid
JP2013538112A (en) * 2010-07-20 2013-10-10 ウニヴァルシテ ドゥ サヴォワ Fluid circulation module
US20200064085A1 (en) * 2017-05-04 2020-02-27 Simone Girardi Fluid Distributor Assembly for Heat Exchangers
WO2019073610A1 (en) * 2017-10-13 2019-04-18 三菱電機株式会社 Laminated header, heat exchanger and refrigeration cycle device
WO2022085113A1 (en) * 2020-10-21 2022-04-28 三菱電機株式会社 Distributor, heat exchanger, and air conditioning device
CN112923774A (en) * 2021-01-16 2021-06-08 西安交通大学 Distributor for shell-and-tube heat exchanger

Similar Documents

Publication Publication Date Title
CN110291353B (en) Condenser
US9494368B2 (en) Heat exchanger and air conditioner
JP6894520B2 (en) Condenser
US6959758B2 (en) Serpentine tube, cross flow heat exchanger construction
EP2399089B1 (en) Heat exchanger
JP6145189B1 (en) Heat exchanger and air conditioner
JP2020521103A (en) Heat exchanger
US9689594B2 (en) Evaporator, and method of conditioning air
JP2018162900A (en) Heat exchanger and air conditioner including the same
JP2018100800A (en) Heat exchanger and air conditioner
JP2021148389A (en) Heat exchanger
EP1373809B1 (en) Apparatus and method for discharging vapour and liquid
WO2023238233A1 (en) Shell-and-tube type heat exchanger, and refrigeration cycle device
JP7505748B2 (en) Heat exchanger
JP2011220551A (en) Evaporator unit
JP2002013841A (en) Evaporator and freezer
JP2001221580A (en) Heat exchanger
JP2011163736A (en) Heat exchanger, double cycle type refrigerator equipped with the same, and method for manufacturing heat exchanger
JP6788763B2 (en) Heat exchangers, indoor units, outdoor units, and air conditioners
JP2002228380A (en) Heat exchanger and cooling apparatus
JPWO2021106142A1 (en) Heat exchanger and air conditioner
JP7456099B2 (en) Heat exchanger
WO2024204114A1 (en) Shell-and-plate type heat exchanger and refrigeration device
US11739988B2 (en) Flooded evaporator
JP2004340546A (en) Evaporator for refrigerating machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945741

Country of ref document: EP

Kind code of ref document: A1