WO2023237075A1 - 基于三角定位的结节定位方法、装置和电子设备 - Google Patents

基于三角定位的结节定位方法、装置和电子设备 Download PDF

Info

Publication number
WO2023237075A1
WO2023237075A1 PCT/CN2023/099278 CN2023099278W WO2023237075A1 WO 2023237075 A1 WO2023237075 A1 WO 2023237075A1 CN 2023099278 W CN2023099278 W CN 2023099278W WO 2023237075 A1 WO2023237075 A1 WO 2023237075A1
Authority
WO
WIPO (PCT)
Prior art keywords
nodule
points
actual
target
lung
Prior art date
Application number
PCT/CN2023/099278
Other languages
English (en)
French (fr)
Inventor
成兴华
Original Assignee
上海市胸科医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210651124.0A external-priority patent/CN115024752A/zh
Priority claimed from CN202210651148.6A external-priority patent/CN115005851A/zh
Application filed by 上海市胸科医院 filed Critical 上海市胸科医院
Publication of WO2023237075A1 publication Critical patent/WO2023237075A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • the present application relates to the field of medical technology, and in particular to a nodule positioning method, device and electronic equipment based on triangulation positioning.
  • the current digital lung reconstruction navigation technology is mainly designed for lung segment surgery, and the lung segment where the nodule is located is determined based on the reconstruction of pulmonary blood vessels and trachea to guide the surgery.
  • pulmonary wedge resection requires clear projection positions of pulmonary nodules on the lung surface and helps doctors position them during surgery. Therefore, related lung digital reconstruction navigation methods cannot guide pulmonary wedge resection.
  • pulmonary wedge resection mainly relies on preoperative puncture under CT navigation, and placement of markers at the projection position of the nodule on the lung surface to achieve localization.
  • the doctor predicts the corresponding position of the nodule based on the position of the marker, thereby achieving precise wedge resection.
  • preoperative puncture positioning also has many shortcomings, such as: (1) The patient suffers great pain and fear during the puncture (about 15-30 minutes) and while waiting for the operation after the puncture (tens of minutes to hours) ; (2) Repeated CT irradiation increases radiation exposure; (3) Anesthesiologists and nurses are required to provide care and management after puncture positioning; (4) Complications such as pneumothorax and bleeding cannot be treated in time, and the risk is high; (5) Limited by Due to the lack of space, equipment and personnel, many hospitals are unable to carry out this technology, which limits the promotion of precise pulmonary nodule resection surgery.
  • this application provides a nodule positioning method based on triangulation positioning, a nodule positioning device and electronic equipment based on triangulation positioning, so as to avoid the operation of preoperative puncture positioning, reduce surgical trauma and operation time, and facilitate the operation. Quick recovery afterwards.
  • the embodiment of the present application provides a nodule positioning method based on triangulation positioning.
  • the nodule positioning method based on triangulation positioning may include: obtaining a thin-section CT image of the patient, and constructing a three-dimensional map of the patient's target part based on the thin-section CT image.
  • the surface of the three-dimensional digital model includes multiple anatomical mark points and multiple triangular positioning areas determined based on the determined anatomical mark points, and the three-dimensional digital model is marked with nodules; determine the projection point of the nodule in the target triangular positioning area and Three target anatomical mark points corresponding to the target triangulation area; determine the distance between the actual position of the nodule and the three target anatomical mark points based on the projection point of the nodule and the three target anatomical mark points; based on the correspondence between the three target anatomical mark points Three actual marking points and three distances are used to determine the actual location of the nodule; among them, the three actual marking points are positioned and determined inside the patient's chest cavity through triangulation.
  • the target site may be the lungs
  • the anatomical marking points may include right lung anatomical marking points and left lung anatomical marking points
  • the right lung anatomical marking points may include at least one of the following: upper lung Apex point, the intersection point of the posterior segment of the right upper lung and the dorsal segment of the lower lung, the intersection point of the horizontal fissure and the oblique fissure of the right lung, the intersection point of the horizontal fissure and the medial edge of the right upper lung, the first costal indentation point of the right upper lung, the lower edge of the right lower lung
  • the left lung anatomical marking points can be at least Including one of the following
  • the above step of determining the projection point of the nodule in the target triangulation area and the three target anatomical mark points corresponding to the target triangulation area may include: determining the target triangulation area and the target triangulation area. Locate the three target anatomical mark points corresponding to the area; construct a plane based on the three target anatomical mark points; determine the projection point of the nodule that projects the actual position of the nodule onto the plane.
  • the above step of determining the distance between the actual position of the nodule and the three target anatomical mark points based on the projection point of the nodule and the three target anatomical mark points may include: determining the distance between the projection point and the three target anatomical mark points. The first distance between the three target anatomical mark points; determining the second distance between the projection point and the actual position of the nodule; determining the distance between the actual position of the nodule and the three target anatomical mark points based on the second distance and the three first distances .
  • the above step of determining the actual location of the nodule based on three actual mark points and three distances corresponding to the three target anatomical mark points may include: determining the corresponding locations of the three target anatomical mark points. three actual mark points; determine the line segment shortening coefficient based on the distance between the three actual mark points and the distance between the three target anatomical mark points; the distance between the actual position of the nodule and the three target anatomical mark points, the line segment shortening The coefficient determines the actual position of the nodule and the target distance of the three actual marker points; the actual position of the nodule is determined based on the three actual marker points and the three target distances.
  • the above-mentioned actual determination of nodules based on three actual marker points and three target distances is The step of determining the actual location may include: dividing the three actual marker points into three groups; where each group includes two actual marker points; the actual marker points included in different groups are not exactly the same; for each group Two actual marking points, make a circle with the two actual marking points as the center of the circle, and determine the intersection point of the two circles; among them, the radius of the circle corresponding to the actual marking point is the target distance corresponding to the actual marking point; based on the three groups corresponding Three intersection points determine the actual location of the nodule.
  • the above step of determining the actual location of the nodule based on the three intersection points corresponding to the three groups may include: if the three intersection points corresponding to the three groups are different; The center position of the corresponding three intersection points is used as the actual position of the nodule.
  • the above-mentioned nodule positioning method based on triangulation positioning may also include: marking the actual location of the nodule at the target site of the patient through electrocautery.
  • Embodiments of the present application also provide a nodule positioning device based on triangulation positioning.
  • the nodule positioning device based on triangulation positioning may include: a model building module configured to acquire a thin-slice CT of a patient. Image, a three-dimensional digital model of the patient's target part is constructed based on the thin-section CT image; wherein, the surface of the three-dimensional digital model includes multiple anatomical mark points and multiple triangular positioning areas determined based on the determined anatomical mark points, and the three-dimensional digital model is marked with knots Node; a projection point determination module, the projection point determination module is configured to determine the projection point of the nodule in the target triangulation area and three target anatomical mark points corresponding to the target triangulation area; a distance determination module, the distance The determination module is configured to determine the distance between the actual position of the nodule and the three target anatomical landmark points based on the projection point of the nodule and the three target anatomical landmark points; the actual position determination
  • the target site may be the lungs
  • the anatomical marking points may include right lung anatomical marking points and left lung anatomical marking points
  • the right lung anatomical marking points may include at least one of the following: upper lung Apex point, the intersection point of the posterior segment of the right upper lung and the dorsal segment of the lower lung, the intersection point of the horizontal fissure and the oblique fissure of the right lung, the intersection point of the horizontal fissure and the medial edge of the right upper lung, the first costal indentation point of the right upper lung, the lower edge of the right lower lung
  • the left lung anatomical marking points can be at least Including one of the following
  • the above-mentioned projection point determination module can also be configured to: determine the target triangulation positioning area and three target anatomical mark points corresponding to the target triangulation positioning area; based on the three target anatomical mark points Construct a plane; determine the projection point of the nodule that projects the actual position of the nodule onto the plane.
  • the above distance determination module can also be configured to: determine the distance between the projection point and The first distance between the three target anatomical mark points; determining the second distance between the projection point and the actual position of the nodule; determining the distance between the actual position of the nodule and the three target anatomical mark points based on the second distance and the three first distances .
  • the above-mentioned actual position determination module can also be configured to: determine three actual marker points corresponding to the three target anatomical marker points; based on the distance between the three actual marker points, The distance between the three target anatomical marking points determines the line segment shortening coefficient; the distance between the actual position of the nodule and the three target anatomical marking points and the line segment shortening coefficient determine the target distance between the actual position of the nodule and the three actual marking points; based on Three actual marker points and three target distances determine the actual location of the nodule.
  • the above-mentioned actual position determination module can also be configured to: divide the three actual marker points into three groups; wherein each group includes two actual marker points; different groups The actual marked points included in are not exactly the same; for the two actual marked points in each group, make a circle with the two actual marked points as the center of the circle, and determine the intersection of the two circles; among them, the radius of the circle corresponding to the actual marked point is the target distance corresponding to the actual marker point; the actual position of the nodule is determined based on the three intersection points corresponding to the three groups.
  • the above-mentioned actual position determination module can also be configured to: if the three intersection points corresponding to the three groups are different; use the center position of the three intersection points corresponding to the three groups as The actual location of the nodule.
  • the above-mentioned nodule positioning device based on triangulation positioning may further include: an electrocautery marking module configured to use electrocautery on the target site of the patient. Mark the actual location of the nodule.
  • An embodiment of the present application also provides an electronic device.
  • the electronic device may include: a processing device and a storage device; a computer program is stored on the storage device, and the computer program executes the above-mentioned nodule positioning based on triangulation when the processed device is running. method.
  • the embodiments of the present application provide a nodule positioning method based on triangulation positioning, a nodule positioning device and electronic equipment based on triangulation positioning, which can use the anatomical mark points as reference points by locating the target part on the three-dimensional digital model of the patient.
  • the relative relationship between the projection point of the nodule and the anatomical point is measured to guide the location and resection of the nodule. This avoids preoperative puncture and positioning operations, reduces surgical trauma and operation time, and is conducive to rapid postoperative recovery.
  • Figure 1 is a schematic diagram of a lung nodule positioning method based on triangulation positioning provided by an embodiment of the present application
  • Figure 2 is a flow chart of a nodule positioning method based on triangulation provided by an embodiment of the present application
  • Figure 3 is a flow chart of another nodule positioning method based on triangulation positioning provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of an anatomical mark point of the right lung provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of an anatomical mark point of the left lung provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a triangular positioning area of the right lung provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of a triangular positioning area of the left lung provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of a three-dimensional digital model provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of a triangular positioning area of the right upper lung provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of a nodule position provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of another nodule location provided by the embodiment of the present application.
  • Figure 12 is a schematic diagram of an intraoperative nodule position provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of a technical path for pulmonary nodule resection provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a nodule positioning device based on triangulation positioning provided by an embodiment of the present application
  • Figure 15 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • embodiments of the present application provide a nodule positioning method, device and electronic device based on triangulation positioning, and mainly provide a method for positioning lung surface nodules through lung surface anatomical mark points and three-dimensional reconstruction models.
  • relevant lung three-dimensional reconstruction software can be used to guide local lung resection surgery, thereby avoiding preoperative puncture positioning operations, reducing surgical trauma, and reducing operating time, which is conducive to rapid postoperative recovery.
  • This embodiment can make use of unique anatomical landmarks in the lungs As a reference point, the relative relationship between the projection point of the pulmonary nodule on the lung surface and the anatomical point is measured on the lung digital reconstruction model to guide the nodule positioning and resection.
  • Step S202 Obtain a thin-section CT image of the patient, and construct a three-dimensional digital model of the patient's target part based on the thin-section CT image.
  • the surface of the three-dimensional digital model includes multiple anatomical mark points and multiple triangular positioning areas determined based on the determined anatomical mark points, and the three-dimensional digital model is marked with nodules.
  • CT is a technology that uses precisely collimated X-ray beams, gamma rays, ultrasound, etc., together with extremely sensitive detectors, to perform cross-sectional scans around a certain part of the human body one after another.
  • thin layer refers to the situation where the single scanning layer is ⁇ 5mm, and the interval between each scan of thin layer CT scan is small.
  • Anatomical marker points are all points on the surface of the target part, which can be understood as the points where the patient's actual marker points and actual nodule positions are projected on the surface of the target part through the Euler space shortest module projection algorithm.
  • Multiple actual marking points can be marked on the patient's lungs in advance, and the actual marking points correspond one-to-one with the anatomical marking points in the three-dimensional digital model.
  • Step S204 Determine the projection point of the nodule in the target triangulation area and three target anatomical mark points corresponding to the target triangulation area.
  • Step S206 Determine the distance between the actual position of the nodule and the three target anatomical mark points based on the projection point of the nodule and the three target anatomical mark points.
  • the three actual marking points are positioned and determined inside the patient's chest through triangulation, that is, they are positioned inside the patient's chest through the laser method.
  • the embodiment of the present application provides a nodule positioning method based on triangulation, which can use anatomical landmark points as reference points by measuring the relative relationship between the projection point of the nodule and the anatomical point on a three-dimensional digital model of the patient's target part. To guide nodule location and resection. This avoids preoperative puncture and positioning operations, reduces surgical trauma and operation time, and is conducive to rapid postoperative recovery.
  • This embodiment provides another nodule positioning method based on triangulation. This method is implemented on the basis of the above embodiment. Refer to the flow chart of another nodule positioning method based on triangulation shown in Figure 3. The method is The nodule localization method based on triangulation can include the following steps:
  • Step S302 Obtain a thin-section CT image of the patient, and construct a three-dimensional digital model of the patient's target part based on the thin-section CT image.
  • this embodiment can select the triangular positioning area according to the individualized reconstructed three-dimensional lung model.
  • Area selection The selection principle is to minimize the influence of the lung surface curve (make the triangular area as close to a plane as possible).
  • Step S304 Determine the target triangulation positioning area and three target anatomical mark points corresponding to the target triangulation positioning area; construct a plane based on the three target anatomical mark points; determine the projection point of the nodule that projects the actual position of the nodule onto the plane.
  • Step S306 Determine the distance between the actual position of the nodule and the three target anatomical mark points based on the projection point of the nodule and the three target anatomical mark points.
  • this embodiment can determine the first distance between the projection point and three target anatomical mark points; determine the second distance between the projection point and the actual position of the nodule; determine the location of the nodule based on the second distance and the three first distances. The distance between the actual position and the three target anatomical landmarks.
  • this embodiment can use the triangulation positioning method to define the position of point N on the reconstructed three-dimensional lung model.
  • point B as the origin
  • BC as the X-axis
  • position AN The plane coordinate set ⁇ (xA, yA), (0,0), (xC, 0) ⁇
  • the coordinates of N point are (x, y).
  • the lung surface appears as a curved surface for a triangular plane, you can refer to the schematic diagram of another nodule position shown in Figure 11, and measure the distance d4 of the MN (that is, the second distance between the projection point and the actual position of the nodule) through the three-dimensional reconstruction software , the distances AM, BM, and CM between the actual location of the nodule and the three target anatomical landmark points are d1', d2', and d3' respectively.
  • d1’2 d12+d42
  • d2’2 d22+d42
  • d3’2 d32+d42.
  • Step S308 determine the actual location of the nodule based on three actual mark points and three distances corresponding to the three target anatomical mark points.
  • three actual mark points corresponding to the three target anatomical mark points can be determined; the line segment shortening coefficient is determined based on the distance between the three actual mark points and the distance between the three target anatomical mark points; the actual position of the nodule The distance from the three target anatomical mark points and the line segment shortening coefficient determine the actual position of the nodule and the target distance of the three actual mark points; the actual position of the nodule is determined based on the three actual mark points and the three target distances.
  • measurement can be performed with an auxiliary device during the operation.
  • Figure 12 for a schematic diagram of the intraoperative nodule position.
  • A', B', and C' in Figure 12 are actual marking points.
  • the lungs have been slightly collapsed in equal proportions, and a certain length correction is required.
  • laser or ultrasound methods can be used inside the patient's body, and infrared or ultrasound methods can be used outside the body.
  • Ranging methods such as infrared, Bluetooth, ultrasound, laser, and ultra-wideband can be introduced, and a sensor can be placed at points A', B', and C'.
  • Pulse laser rangefinder combined with mirror device, ultrasonic ranging or infrared ranging.
  • A'B', B'C', and A'C' can be measured through the laser ranging method.
  • the line segment shortening coefficient alpha after collapse (A'B'/AB+B'C'/BC +A'C'/AC)/3.
  • this embodiment can divide three actual marker points into three groups; where each group includes two actual marker points; the actual marker points included in different groups are not exactly the same; for the two actual marker points in each group actual mark points, make a circle with the two actual mark points as the center, and determine the intersection point of the two circles; among them, the radius of the circle corresponding to the actual mark point is the target distance corresponding to the actual mark point; based on the three groups corresponding to The intersection points determine the actual location of the nodule.
  • M1, M2, and M3 are the three intersection points corresponding to the three groups.
  • Point M’ in Figure 12 is the midpoint of the triangle between M1, M2, and M3, which can be marked by electrocautery.
  • the positions (x2, y2) and (x3, y3) of points M2 and M3 are obtained.
  • this embodiment can mark the actual location of the nodule at the target site of the patient through electrocautery.
  • a technical path for pulmonary nodule resection shown in Figure 13, in the coordinate system defined by points A', B', and C', through ranging methods such as infrared, Bluetooth, ultrasound, laser, and ultra-wideband, The M' point is found on the lung surface according to the coordinates and marked with electrocautery.
  • the embodiment of this application proposes a new measurement and positioning method based on anatomical points in the lungs.
  • This method uses specific anatomical landmark points in the lungs as a reference to complete the positioning of the projection of nodules on the lung surface through precise measurement, achieving the goal of It has the same effect as CT-guided puncture positioning, but can completely avoid the shortcomings of traditional CT-guided pulmonary nodule puncture positioning methods. point, allowing patients to complete nodule positioning under general anesthesia, which is safe, non-invasive and accurate. Specifically include:
  • the traditional CT-guided puncture positioning method may cause damage to the lungs, blood vessels, etc. during the puncture process, causing the patient risks such as pneumothorax and bleeding. While the patient completes the puncture and waits for the operation, if the related complications cannot be treated in time , which may cause shock and other risks.
  • This embodiment can complete positioning during the operation, does not involve the puncture process, and avoids the risk of hemothorax and pneumothorax.
  • the traditional CT positioning method takes about 30 minutes.
  • the positioning time can be controlled to 5-10 minutes, which greatly reduces the time required for positioning.
  • the embodiment of the present application provides a nodule positioning device based on triangulation positioning.
  • a nodule positioning device based on triangulation positioning Refer to Figure 14 for a schematic structural diagram of a nodule positioning device based on triangulation positioning.
  • the nodule positioning device based on triangulation positioning is shown in Fig. 14 .
  • Can include:
  • Model building module 1401 the model building module 1401 is configured to acquire a thin-section CT image of the patient, and construct a three-dimensional digital model of the patient's target part based on the thin-section CT image; wherein the surface of the three-dimensional digital model includes multiple anatomy Marking points and multiple triangulated positioning areas determined based on determined anatomical marking points, and the three-dimensional digital model is marked with nodules;
  • Projection point determination module 1402 the projection point determination module 1402 is configured to determine the projection point of the nodule in the target triangulation area and three target anatomical mark points corresponding to the target triangulation area;
  • a distance determination module 1403 configured for nodule-based projection points and three objects Mark anatomical landmarks to determine the distance between the actual location of the nodule and the three target anatomical landmarks;
  • the actual position determination module 1404 is configured to determine the actual position of the nodule based on three actual mark points and three distances corresponding to the three target anatomical mark points; wherein, the three actual mark points The positioning is determined inside the patient's chest through triangulation.
  • the embodiment of the present application provides a nodule positioning device based on triangulation positioning, which can use the anatomical landmark points as reference points by measuring the relative relationship between the projection point of the nodule and the anatomical point on the three-dimensional digital model of the patient's target part. To guide nodule location and resection. This avoids preoperative puncture and positioning operations, reduces surgical trauma and operation time, and is conducive to rapid postoperative recovery.
  • the above-mentioned target part may be the lungs, and the anatomical marking points may include the anatomical marking points of the right lung and the left lung; the anatomical marking points of the right lung may include at least one of the following: the apex of the upper lung, the posterior segment of the right upper lung, and the back of the lower lung.
  • the left lung anatomical landmarks can include at least one of the following: the apex of the left upper lung left The first lateral rib indentation point, the apex of the intersection of the posterior segment of the left upper lung and the dorsal segment of the left lower lung, the lowest point of the left upper lung, the intersection of the superior and inferior oblique fissures of the left
  • the above-mentioned projection point determination module can also be configured to determine the target triangulation positioning area and three target anatomical mark points corresponding to the target triangulation positioning area; construct a plane based on the three target anatomical mark points; and determine the actual position of the nodule to be projected onto the plane.
  • the projection point of the nodule can also be configured to determine the target triangulation positioning area and three target anatomical mark points corresponding to the target triangulation positioning area; construct a plane based on the three target anatomical mark points; and determine the actual position of the nodule to be projected onto the plane. The projection point of the nodule.
  • the above distance determination module may also be configured to determine a first distance between the projection point and three target anatomical landmark points; determine a second distance between the projection point and the actual location of the nodule; based on the second distance and the three first distances The distance between the actual location of the nodule and three target anatomical landmarks was determined.
  • the above-mentioned actual position determination module can also be configured to determine three actual mark points corresponding to the three target anatomical mark points; determine the line segment based on the distance between the three actual mark points and the distance between the three target anatomical mark points.
  • the shortening coefficient; the distance between the actual position of the nodule and the three target anatomical mark points, and the line segment shortening coefficient determine the target distance between the actual position of the nodule and the three actual mark points; the node is determined based on the three actual mark points and the three target distances.
  • the actual location of the section can also be configured to determine three actual mark points corresponding to the three target anatomical mark points; determine the line segment based on the distance between the three actual mark points and the distance between the three target anatomical mark points.
  • the above-mentioned actual position determination module can also be configured to be used if the three intersection points corresponding to the three groups are different; The center position of the three intersection points corresponding to the three groups is used as the actual position of the nodule.
  • the above device may further include: an electrocautery marking module configured to mark the actual location of the nodule at a target site of the patient through electrocautery.
  • Embodiments of the present application also provide an electronic device, which is used to run the above-mentioned nodule positioning method based on triangulation.
  • the electronic device may include a memory 100 and a processor 101, wherein the memory 100 is configured to store one or more computer instructions, and the one or more computer instructions are executed by the processor 101 to implement the above-mentioned nodule localization method based on triangulation.
  • the electronic device shown in FIG. 15 may also include a bus 102 and a communication interface 103.
  • the processor 101, the communication interface 103 and the memory 100 are connected through the bus 102.
  • the memory 100 may include high-speed random access memory (RAM, Random Access Memory), and may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
  • RAM random access memory
  • non-volatile memory non-volatile memory
  • the communication connection between the system network element and at least one other network element is realized through at least one communication interface 103 (which can be wired or wireless), and the Internet, wide area network, local network, metropolitan area network, etc. can be used.
  • the bus 102 may be an ISA bus, a PCI bus, an EISA bus, etc.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one bidirectional arrow is used in Figure 15, but it does not mean that there is only one bus or one type of bus.
  • the processor 101 may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 101 .
  • the above-mentioned processor 101 can be a general-purpose processor, including a Central Processing Unit (CPU for short), a Network Processor (NP for short), etc.; it can also be a Digital Signal Processor (DSP for short). ), Application Specific Integrated Circuit (ASIC for short), Field-Programmable Gate Array (FPGA for short) or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components.
  • CPU Central Processing Unit
  • NP Network Processor
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 100.
  • the processor 101 reads the information in the memory 100 and completes it based on its hardware. into the steps of the method of the aforementioned embodiment.
  • Embodiments of the present application also provide a computer-readable storage medium that stores computer-executable instructions.
  • the computer-executable instructions When the computer-executable instructions are called and executed by the processor, the computer-executable instructions prompt the processor to implement
  • the specific implementation of the above nodule positioning method based on triangulation can be found in the method embodiments, and will not be described again here.
  • the computer program products of the nodule localization method, device and electronic equipment based on triangulation positioning provided by the embodiments of the present application include a computer-readable storage medium storing program code.
  • the instructions included in the program code can be used to execute the previous method embodiments.
  • the specific implementation of the method can be found in the method embodiments and will not be described again here.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the relevant technology or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several The instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
  • the present application provides a nodule positioning method, device and electronic equipment based on triangulation positioning.
  • the method includes: acquiring a thin-section CT image of a patient, constructing a three-dimensional digital model of the patient's target part based on the thin-section CT image; determining the nodule location.
  • the projection point of the nodule in the target triangulation positioning area and the three target anatomical mark points corresponding to the target triangulation positioning area determine the actual position of the nodule and the relationship between the three target anatomical mark points based on the projection point of the nodule and the three target anatomical mark points.
  • Anatomical landmarks can be used as reference points to guide nodule positioning and resection through the relative relationship between the projection point of the nodule and the anatomical point. This avoids preoperative puncture and positioning operations, reduces surgical trauma and operation time, and is conducive to rapid postoperative recovery.
  • the triangulation-based nodule localization method and the triangulation-based nodule localization device of the present application are reproducible and can be used in a variety of applications.
  • the triangulation-based nodule positioning method and the triangulation-based nodule positioning device of the present application can be used in any application that requires reducing surgical trauma and operation time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本申请提供了一种基于三角定位的结节定位方法、装置和电子设备,所述方法包括:获取患者的薄层CT图像,基于薄层CT图像构建患者的目标部位的三维数字模型;确定结节在目标三角定位区域的投影点和目标三角定位区域对应的三个目标解剖标记点;基于结节的投影点和三个目标解剖标记点确定结节的实际位置与三个目标解剖标记点的距离;基于三个目标解剖标记点对应的三个实际标记点、三个距离确定结节的实际位置;三个实际标记点通过三角定位的方式在患者的胸腔内部进行定位确定。可以利用解剖标记点作为参考点,通过结节的投影点和解剖标记点的相对关系指导结节定位及切除。从而避免术前穿刺定位的操作,减少手术创伤和手术时间,有利于术后快速康复。

Description

基于三角定位的结节定位方法、装置和电子设备
相关申请的交叉引用
本申请要求于2022年06月09日提交于中国国家知识产权局的申请号为202210651148.6、名称为“基于三角定位的结节定位方法、装置和电子设备”的中国专利申请和于2022年06月09日提交于中国国家知识产权局的申请号为202210651124.0、名称为“基于超声定位的结节定位方法、装置和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗技术领域,尤其是涉及一种基于三角定位的结节定位方法、装置和电子设备。
背景技术
目前,随着胸腔CT(Computed Tomography,电子计算机断层扫描)的普及,肺小结节及早期肺癌的发现率不断提高,需要进行微创手术的病例也不断增多。精准切除肺结节需要依赖现代影像技术如胸部薄层CT和数字重建导航技术辅助。特别是对早期肺癌的亚肺叶切除,目前主要包括肺楔形切除和肺段切除两种手术方式。对于大多数以磨玻璃结节为表现的早期肺癌或良性结节,行楔形切除即可达到根治目的。相较肺段手术,楔形切除速度更快、创伤更小、恢复时间更短、手术费用也更经济。
然而,目前的肺数字重建导航技术主要针对肺段手术设计,根据肺血管及气管重建明确结节所在肺段进而指导手术。但是,肺楔形切除需要明确肺结节在肺表面的投影位置并能帮助医生在手术中实现定位,因此相关的肺数字重建导航方法无法指导肺楔形切除。
目前肺楔形切除主要依赖术前在CT导航下进行穿刺,在结节的肺表面投影位置放置标记物,实现定位。术中,医生根据标记物的位置推测结节的相应位置,从而实现精准楔形切除。但是相较数字重建导航,术前穿刺定位也有诸多缺点,如:(1)患者穿刺中(约15-30分钟)及穿刺后等待手术期间(数十分钟至数小时)均承受巨大痛苦及恐惧;(2)反复CT照射,增加放射线暴露;(3)穿刺定位后需麻醉医生及护士进行看护管理;(4)出现气胸、出血等并发症无法及时处理,风险高;(5)受限于场地、设备和人员,很多医院无法开展该技术,故限制了肺结节精准切除手术的推广。
发明内容
有鉴于此,本申请提供了一种基于三角定位的结节定位方法、基于三角定位的结节定位装置和电子设备,以避免术前穿刺定位的操作,减少手术创伤和手术时间,有利于术后快速康复。
本申请实施例提供了一种基于三角定位的结节定位方法,所述基于三角定位的结节定位方法可以包括:获取患者的薄层CT图像,基于薄层CT图像构建患者的目标部位的三维数字模型;其中,三维数字模型的表面包括多个解剖标记点和基于确定解剖标记点确定的多个三角定位区域,三维数字模型标记有结节;确定结节在目标三角定位区域的投影点和目标三角定位区域对应的三个目标解剖标记点;基于结节的投影点和三个目标解剖标记点确定结节的实际位置与三个目标解剖标记点的距离;基于三个目标解剖标记点对应的三个实际标记点、三个距离确定结节的实际位置;其中,三个实际标记点通过三角定位的方式在患者的胸腔内部进行定位确定。
在本申请的可选的实施例中,上述目标部位可以为肺部,解剖标记点可以包括右肺解剖标记点和左肺解剖标记点;右肺解剖标记点可以至少包括以下之一:上肺尖顶点、右上肺后段与下肺背段交汇处顶点、右肺水平裂与斜裂交汇点、水平裂与右上肺内侧缘交汇点、右上肺第一肋压迹点、右下肺下缘与胸椎压迹交点、右下肺下缘内侧终点、右中肺最低点、右上肺气管压迹最低点、右下肺静脉压迹点和右下肺下缘外侧终点;左肺解剖标记点可以至少包括以下之一:左上肺尖段顶点左侧第一肋骨压迹点、左上肺后段与左下肺背段交汇处顶点、左上肺最低点、左肺上斜裂与下斜裂交点、左肺下斜裂最低点、左下肺下缘与主动脉弓压迹交点、左下肺纵隔面下缘与主动脉弓压迹交点、左下肺静脉压迹点和左下肺上缘与主动脉弓压迹交点。
在本申请的可选的实施例中,上述确定结节在目标三角定位区域的投影点和目标三角定位区域对应的三个目标解剖标记点的步骤,可以包括:确定目标三角定位区域和目标三角定位区域对应的三个目标解剖标记点;基于三个目标解剖标记点构建平面;确定结节的实际位置投影到平面的结节的投影点。
在本申请的可选的实施例中,上述基于结节的投影点和三个目标解剖标记点确定结节的实际位置与三个目标解剖标记点的距离的步骤,可以包括:确定投影点与三个目标解剖标记点的第一距离;确定投影点与结节的实际位置的第二距离;基于第二距离和三个第一距离确定结节的实际位置与三个目标解剖标记点的距离。
在本申请的可选的实施例中,上述基于三个目标解剖标记点对应的三个实际标记点、三个距离确定结节的实际位置的步骤,可以包括:确定三个目标解剖标记点对应的三个实际标记点;基于三个实际标记点之间的距离、三个目标解剖标记点之间的距离确定线段缩短系数;结节的实际位置与三个目标解剖标记点的距离、线段缩短系数确定结节的实际位置与三个实际标记点的目标距离;基于三个实际标记点和三个目标距离确定结节的实际位置。
在本申请的可选的实施例中,上述基于三个实际标记点和三个目标距离确定结节的实 际位置的步骤,可以包括:将三个实际标记点划分为三个组;其中,每个组包括两个实际标记点;不同组中包括的实际标记点不完全相同;对于每个组中的两个实际标记点,以两个实际标记点为圆心做圆,确定两个圆的交点;其中,实际标记点对应的圆的半径为该实际标记点对应的目标距离;基于三个组对应的三个交点确定结节的实际位置。
在本申请的可选的实施例中,上述基于三个组对应的三个交点确定结节的实际位置的步骤,可以包括:如果三个组对应的三个交点均不相同;将三个组对应的三个交点的中心位置作为结节的实际位置。
在本申请的可选的实施例中,上述基于三角定位的结节定位方法还可以包括:通过电灼在患者的目标部位标记结节的实际位置。
本申请实施例还提供一种基于三角定位的结节定位装置,所述基于三角定位的结节定位装置可以包括:模型构建模块,所述模型构建模块被配置成用于获取患者的薄层CT图像,基于薄层CT图像构建患者的目标部位的三维数字模型;其中,三维数字模型的表面包括多个解剖标记点和基于确定解剖标记点确定的多个三角定位区域,三维数字模型标记有结节;投影点确定模块,所述投影点确定模块被配置成用于确定结节在目标三角定位区域的投影点和目标三角定位区域对应的三个目标解剖标记点;距离确定模块,所述距离确定模块被配置成用于基于结节的投影点和三个目标解剖标记点确定结节的实际位置与三个目标解剖标记点的距离;实际位置确定模块,所述实际位置确定模块被配置成用于基于三个目标解剖标记点对应的三个实际标记点、三个距离确定结节的实际位置;其中,三个实际标记点通过三角定位的方式在患者的胸腔内部进行定位确定。
在本申请的可选的实施例中,上述目标部位可以为肺部,解剖标记点可以包括右肺解剖标记点和左肺解剖标记点;右肺解剖标记点可以至少包括以下之一:上肺尖顶点、右上肺后段与下肺背段交汇处顶点、右肺水平裂与斜裂交汇点、水平裂与右上肺内侧缘交汇点、右上肺第一肋压迹点、右下肺下缘与胸椎压迹交点、右下肺下缘内侧终点、右中肺最低点、右上肺气管压迹最低点、右下肺静脉压迹点和右下肺下缘外侧终点;左肺解剖标记点可以至少包括以下之一:左上肺尖段顶点左侧第一肋骨压迹点、左上肺后段与左下肺背段交汇处顶点、左上肺最低点、左肺上斜裂与下斜裂交点、左肺下斜裂最低点、左下肺下缘与主动脉弓压迹交点、左下肺纵隔面下缘与主动脉弓压迹交点、左下肺静脉压迹点和左下肺上缘与主动脉弓压迹交点。
在本申请的可选的实施例中,上述投影点确定模块还可以被配置成用于:确定目标三角定位区域和目标三角定位区域对应的三个目标解剖标记点;基于三个目标解剖标记点构建平面;确定结节的实际位置投影到平面的结节的投影点。
在本申请的可选的实施例中,上述距离确定模块还可以被配置成用于:确定投影点与 三个目标解剖标记点的第一距离;确定投影点与结节的实际位置的第二距离;基于第二距离和三个第一距离确定结节的实际位置与三个目标解剖标记点的距离。
在本申请的可选的实施例中,上述实际位置确定模块还可以被配置成用于:确定三个目标解剖标记点对应的三个实际标记点;基于三个实际标记点之间的距离、三个目标解剖标记点之间的距离确定线段缩短系数;结节的实际位置与三个目标解剖标记点的距离、线段缩短系数确定结节的实际位置与三个实际标记点的目标距离;基于三个实际标记点和三个目标距离确定结节的实际位置。
在本申请的可选的实施例中,上述实际位置确定模块还可以被配置成用于:将三个实际标记点划分为三个组;其中,每个组包括两个实际标记点;不同组中包括的实际标记点不完全相同;对于每个组中的两个实际标记点,以两个实际标记点为圆心做圆,确定两个圆的交点;其中,实际标记点对应的圆的半径为该实际标记点对应的目标距离;基于三个组对应的三个交点确定结节的实际位置。
在本申请的可选的实施例中,上述实际位置确定模块还可以被配置成用于:如果三个组对应的三个交点均不相同;将三个组对应的三个交点的中心位置作为结节的实际位置。
在本申请的可选的实施例中,上述基于三角定位的结节定位装置还可以包括:电灼标记模块,所述电灼标记模块被配置成用于通过电灼在所述患者的目标部位标记所述结节的实际位置。
本申请实施例还提供一种电子设备,所述电子设备可以包括:处理设备和存储装置;存储装置上存储有计算机程序,计算机程序在被处理设备运行时执行上述的基于三角定位的结节定位方法。
本申请实施例至少带来了以下有益效果:
本申请实施例提供的一种基于三角定位的结节定位方法、基于三角定位的结节定位装置和电子设备,可以利用的解剖标记点作为参考点,通过在患者的目标部位的三维数字模型上测量结节的投影点和解剖点的相对关系以指导结节定位及切除。从而避免术前穿刺定位的操作,减少手术创伤和手术时间,有利于术后快速康复。
本公开的其他特征和优点将在随后的说明书中阐述,或者,部分特征和优点可以从说明书推知或毫无疑义地确定,或者通过实施本公开的上述技术即可得知。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举可选的实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请具体实施方式或相关技术中的技术方案,下面将对具体实施方式或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图 是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种肺部基于三角定位的结节定位方法的示意图;
图2为本申请实施例提供的一种基于三角定位的结节定位方法的流程图;
图3为本申请实施例提供的另一种基于三角定位的结节定位方法的流程图;
图4为本申请实施例提供的一种右肺解剖标记点的示意图;
图5为本申请实施例提供的一种左肺解剖标记点的示意图;
图6为本申请实施例提供的一种右肺的三角定位区域的示意图;
图7为本申请实施例提供的一种左肺的三角定位区域的示意图;
图8为本申请实施例提供的一种三维数字模型的示意图;
图9为本申请实施例提供的一种右上肺的三角定位区域的示意图;
图10为本申请实施例提供的一种结节位置的示意图;
图11为本申请实施例提供的另一种结节位置的示意图;
图12为本申请实施例提供的一种术中结节位置的示意图;
图13为本申请实施例提供的一种肺结节切除的技术路径的示意图;
图14为本申请实施例提供的一种基于三角定位的结节定位装置的结构示意图;
图15为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
目前,参见图1所示的一种肺部基于三角定位的结节定位方法的示意图,可以通过肺CT三维重建或术前重复CT扫描定位两种方式进行肺部结节的定位。然而,肺CT三维重建的方式对患者创伤大、费时费力且患者恢复慢、经济成本高;术前重复CT扫描定位的方式定位过程中患者较为痛苦,会带来额外的创伤,增加了辐射,需要定位设备和人员,成本较高。
因此,目前临床上缺少能实现肺结节到肺表面投影的无创定位方法。基于此,本申请实施例提供了一种基于三角定位的结节定位方法、装置和电子设备,主要提供了一种通过肺表面解剖标记点和三维重建模型实现肺表面结节定位的方法。通过该方法可以实现利用相关的肺三维重建软件指导肺局部切除手术,从而避免术前穿刺定位的操作,减少手术创伤,同时减少手术时间,有利于术后快速康复。本实施例可以利用肺内特有的解剖标记点 作为参考点,通过在肺数字重建模型上测量肺结节在肺表面的投影点和解剖点的相对关系以指导结节定位及切除。
为便于对本实施例进行理解,首先对本申请实施例所公开的一种基于三角定位的结节定位方法进行详细介绍。
实施例一:
本申请实施例提供了一种基于三角定位的结节定位方法,参见图2所示的一种基于三角定位的结节定位方法的流程图,该基于三角定位的结节定位方法可以包括如下步骤:
步骤S202,获取患者的薄层CT图像,基于薄层CT图像构建患者的目标部位的三维数字模型。
其中,三维数字模型的表面包括多个解剖标记点和基于确定解剖标记点确定的多个三角定位区域,三维数字模型标记有结节。CT是利用精确准直的X线束、γ射线、超声波等,与灵敏度极高的探测器一同围绕人体的某一部位作一个接一个的断面扫描的一种技术。其中,薄层指的是单次扫描层面≤5mm的情况,薄层CT扫描每次扫描的间隔较小。
通过薄层CT扫描的薄层CT图像,可以构建患者的目标部位的三维数字模型。其中,本实施例的患者的目标部位可以为患者的肺部,本实施例此后不再赘述。
解剖标记点均为在目标部位表面的点,可以理解为患者的实际标记点与实际结节位置通过欧拉空间最短模值投影算法投射在目标部位表面的点。预先可以在患者的肺部标识多个实际标记点,实际标记点与三维数字模型中的解剖标记点一一对应。
三个解剖标记点可以构成一个三角定位区域,本实施例中可以在三维数字模型的表面布设多个的三角定位区域,也可以在三维数字模型的内部标记结节的位置。
步骤S204,确定结节在目标三角定位区域的投影点和目标三角定位区域对应的三个目标解剖标记点。
本实施例中,可以在三维数字模型的表面选择一个三维定位区域作为目标三角定位区域,确定构成目标三角定位区域的三个解剖标记点作为目标解剖标记点。并且,将三维数字模型内部的结节投影到目标三角定位区域,从而确定结节在目标三角定位区域的投影点。
步骤S206,基于结节的投影点和三个目标解剖标记点确定结节的实际位置与三个目标解剖标记点的距离。
在确定结节的实际位置、结节的投影点和三个目标解剖标记点之后,可以计算结节的实际位置与三个目标解剖标记点的距离,以便根据该距离确定结节的实际位置。
步骤S208,基于三个目标解剖标记点对应的三个实际标记点、三个距离确定结节的实际位置;其中,三个实际标记点通过三角定位的方式在患者的胸腔内进行定位部确定。
实际标记点可以理解为患者目标部位实际点,由于目标部位很可能存在塌陷,因此实际标记点与解剖标记点可能并不相同。在实际手术的过程中,可以先确定三个目标解剖标记点对应的三个实际标记点,再根据上述步骤计算得到的结节的实际位置与三个目标解剖标记点的距离确定结节的实际位置。
本实施例中的三个实际标记点通过三角定位的方式在患者的胸腔内部进行定位确定,即通过激光法在患者的胸腔内部进行定位。
本申请实施例提供的一种基于三角定位的结节定位方法,可以利用的解剖标记点作为参考点,通过在患者的目标部位的三维数字模型上测量结节的投影点和解剖点的相对关系以指导结节定位及切除。从而避免术前穿刺定位的操作,减少手术创伤和手术时间,有利于术后快速康复。
实施例二:
本实施例提供了另一种基于三角定位的结节定位方法,该方法在上述实施例的基础上实现,参加图3所示的另一种基于三角定位的结节定位方法的流程图,该基于三角定位的结节定位方法可以包括如下步骤:
步骤S302,获取患者的薄层CT图像,基于薄层CT图像构建患者的目标部位的三维数字模型。
具体地,本实施例中的目标部位可以为肺部,解剖标记点可以包括右肺解剖标记点和左肺解剖标记点。解剖标记点的选定标注包括:(1)为所有病例均有的解剖点;(2)胸腔镜手术中易于寻找;(3)其位置受呼吸或心脏搏动影响较小。
参见图4所示的一种右肺解剖标记点的示意图,右肺解剖标记点可以至少包括以下之一:右上肺尖顶点A、上肺后段与下肺背段交汇处顶点B、右肺水平裂与斜裂交汇点C、水平裂与右上肺内侧缘交汇点D、右上肺第一肋压迹E、右下肺下缘与胸椎压迹交点F、右下肺下缘内侧终点G、右中肺最低点H、右上肺气管压迹最低点I、右下肺静脉压迹点J、右下肺下缘外侧终点K。
参见图5所示的一种左肺解剖标记点的示意图,左肺解剖标记点可以至少包括以下之一:左上肺尖段顶点A、左侧第一肋骨压迹点B、左上肺后段与左下肺背段交汇处顶点C、左上肺最低点D、左肺上斜裂与下斜裂交点E、左肺下斜裂最低点F、左下肺下缘与主动脉弓压迹交点G、左下肺纵隔面下缘与主动脉弓压迹交点H、左下肺静脉压迹点I、左下肺上缘与主动脉弓压迹交点J。
参见图6所示的一种右肺的三角定位区域的示意图和图7所示的一种左肺的三角定位区域的示意图,本实施例可以根据个体化重建肺三维模型选择三角定位区域,三角区域选 择原则为尽量减少肺表面曲面的影响(使三角区域尽量接近平面)。
参见图8所示的一种三维数字模型的示意图,本实施例可以根据患者体检薄层CT图像进行建模,生成三维数字模型。首先可以计算结节在肺表面投影的位置,标记结节在肺表面投射点的位置M,同时明确该点所在的三角平面区域,并标记M点在三角平面上垂直投射点N。
步骤S304,确定目标三角定位区域和目标三角定位区域对应的三个目标解剖标记点;基于三个目标解剖标记点构建平面;确定结节的实际位置投影到平面的结节的投影点。
参见图9所示的一种右上肺的三角定位区域的示意图,以右上肺为例,可以根据三维数字模型确定肺结节在选定的目标三角区域平面上投射点位置N和目标三角定位区域对应的三个目标解剖标记点A、B、C。
步骤S306,基于结节的投影点和三个目标解剖标记点确定结节的实际位置与三个目标解剖标记点的距离。
具体地,本实施例可以确定投影点与三个目标解剖标记点的第一距离;确定投影点与结节的实际位置的第二距离;基于第二距离和三个第一距离确定结节的实际位置与三个目标解剖标记点的距离。
参见图10所示的一种结节位置的示意图,本实施例可以用三角定位法,在重建的肺三维模型上对N点位置进行定义,以B点为原点,BC为X轴,定位AN的平面坐标集合{(xA,yA),(0,0),(xC,0)},N点坐标为(x,y)。其中,投影点与三个目标解剖标记点的三个第一距离分别为:d12=(x-xA)2+(y-yA)2,d22=x2+y2,d32=(x–xc)2+y2。
由于肺表面现对于三角平面为曲面,可以参见图11所示的另一种结节位置的示意图,通过三维重建软件测量MN的距离d4(即投影点与结节的实际位置的第二距离),结节的实际位置与三个目标解剖标记点的距离AM、BM、CM距离分别为d1’、d2’、d3’。d1’2=d12+d42,d2’2=d22+d42,d3’2=d32+d42。
步骤S308,基于三个目标解剖标记点对应的三个实际标记点、三个距离确定结节的实际位置。
具体地,可以确定三个目标解剖标记点对应的三个实际标记点;基于三个实际标记点之间的距离、三个目标解剖标记点之间的距离确定线段缩短系数;结节的实际位置与三个目标解剖标记点的距离、线段缩短系数确定结节的实际位置与三个实际标记点的目标距离;基于三个实际标记点和三个目标距离确定结节的实际位置。
本实施例中可以在术中通过辅助装置进行测量,参见图12所示的一种术中结节位置的示意图,图12中的A’、B’、C’为实际标记点,术中由于人工气胸的作用,肺已等比例轻度塌陷,需进行一定的长度校正。
首先,可以在患者体内用激光法或超声法,体外用红外或超声法,引入红外、蓝牙、超声、激光、超宽带等测距方法,在A’、B’、C’点分别置入一个脉冲激光测距仪联合反射镜装置、超声测距或红外测距。
以激光法为例,可以通过激光测距法测量A’B’、B’C’、A’C’,塌陷后的线段缩短系数alpha=(A’B’/AB+B’C’/BC+A’C’/AC)/3。
如图12所示,结节在肺表面的投影点M’距A’、B’、C’点的距离分别为r1、r2、r3。具体地,本实施例可以将三个实际标记点划分为三个组;其中,每个组包括两个实际标记点;不同组中包括的实际标记点不完全相同;对于每个组中的两个实际标记点,以两个实际标记点为圆心做圆,确定两个圆的交点;其中,实际标记点对应的圆的半径为该实际标记点对应的目标距离;基于三个组对应的三个交点确定结节的实际位置。
理论上r1,r2,r3为半径的三个圆应交与一点即M’,但是由于肺塌陷的比例可能有细微差别,故三个圆可能是两两相交,交点分别为M1,M2,M3。
可以在肺表面置入激光反射屏,在M’点大致位置移动反射屏寻找M1点,使B’M1=r2、C’M1=r3,电灼标记M1点;再次移动反射屏寻找M2点,使A’M2=r1、C‘M2=r3,标记M2;重复移动反射屏寻找M3点,使A’M3=r1、B’M3=r2,标记M3点。其中,M1、M2、M3即三个组对应的三个交点。
如果三个组对应的三个交点均不相同;可以将三个组对应的三个交点的中心位置作为结节的实际位置。图12中的M’点为M1,M2,M3三角形中点位置,可以进行电灼标记。
其中,圆B’和圆C’的交点M1的位置F(x1,y1)可以通过以下公式求解:(x1-xB’)2+(y1-yB)2=r22,(x1-xC’)2+(y1-yC)2=r32,(x1-xA’)2+(y1-yA)2≤r32。同理求得M2、M3点的位置(x2,y2)、(x3,y3)。结节在肺表面定位点位置(X,Y)为X=(x1+x2+x3)/3,Y=(y1+y2+y3)/3。
此外,本实施例可以通过电灼在患者的目标部位标记结节的实际位置。参见图13所示的一种肺结节切除的技术路径的示意图,在A’、B’、C’点定义的坐标系里,通过红外、蓝牙、超声、激光、超宽带等测距方法在肺表面根据坐标寻找M’点并以电灼进行标记。
传统的肺三维重建导航主要用作肺段切除手术,对于肺结节活检或早期肺癌等需要精准楔形切除的病例并不适用。目前,为实现肺结节定位主要依靠CT引导下穿刺法,该方法需要术前额外借助CT设备,需要专业人员操作,患者反复接受额外射线照射且常有难以忍受的疼痛感,在穿刺过程中还伴随着气胸、出血等风险,降低了微创手术的安全性。
因此,本申请实施例提出了一种新的根据肺内解剖点的测量定位法,该方法利用肺内特定的解剖标识点作为参考,通过精准测量,完成结节在肺表面投影的定位,达到与CT引导下穿刺定位相同的效果,但是可以完全避免传统CT引导下肺结节穿刺定位方法的缺 点,让病人在全麻状态下完成结节定位,具有安全、无创、准确的特点。具体包括:
(1)减少放射线暴露:传统CT引导法,需要在患者完成初始诊断CT后,在术前进行额外的CT扫描,在穿刺过程中需要反复进行CT照射确定定位标记物的位置。本实施例提供的方法仅需一次初始诊断CT进行三维建模,大大减少放射性损伤。
(2)减轻疼痛:传统CT辅助定位法过程中患者局部麻醉,常会造成难以忍受的疼痛,穿刺结束后金属标记留在体内,而患者需要再清醒状态下等待手术开始,进一步增加疼痛。本实施例提供的方法定位过程中患者全程全身麻醉状态,不增加额外创伤,无疼痛。
(3)降低风险:传统CT引导穿刺定位法在穿刺过程中可能造成肺、血管等损伤,造成患者气胸、出血等风险,而患者完成穿刺等待手术的时间里,若相关并发症不能得到及时治疗,可能造成休克等风险。本实施例可以在术中完成定位,不涉及穿刺过程,避免了血胸、气胸风险。
(4)防止交叉感染:传统CT法引导法,常出现多个患者在术前定位时共用一台CT完成操作的情况,大大增加了医护及患者在操作过程中出现交叉感染的风险。本申请专利实现个体化定位,不需要共用穿刺设备,避免了定位过程中交叉感染的风险。
(5)减少时间:传统CT定位方法约耗费30分钟作用,本实施例定位耗时可控制在5-10分钟,大大减少了定位所需要时间。
(6)人力成本:传统CT定位法需要增加额外的放射科医护辅助完成操作,浪费了人力成本,而本实施例提供的方法仅需要外科医生术中完成操作,降低了人力成本。
(7)设备依赖:本操作无需CT等高额固定设备,降低了定位技术对设备的依赖,有利于该项技术推广。
实施例三:
上述方法实施例,本申请实施例提供了一种基于三角定位的结节定位装置,参见图14示的一种基于三角定位的结节定位装置的结构示意图,该基于三角定位的结节定位装置可以包括:
模型构建模块1401,所述模型构建模块1401被配置成用于获取患者的薄层CT图像,基于薄层CT图像构建患者的目标部位的三维数字模型;其中,三维数字模型的表面包括多个解剖标记点和基于确定解剖标记点确定的多个三角定位区域,三维数字模型标记有结节;
投影点确定模块1402,所述投影点确定模块1402被配置成用于确定结节在目标三角定位区域的投影点和目标三角定位区域对应的三个目标解剖标记点;
距离确定模块1403,所述距离确定模块1403被配置成用于基于结节的投影点和三个目 标解剖标记点确定结节的实际位置与三个目标解剖标记点的距离;
实际位置确定模块1404,所述实际位置确定模块1404被配置成用于基于三个目标解剖标记点对应的三个实际标记点、三个距离确定结节的实际位置;其中,三个实际标记点通过三角定位的方式在患者的胸腔内部进行定位确定。
本申请实施例提供的一种基于三角定位的结节定位装置,可以利用的解剖标记点作为参考点,通过在患者的目标部位的三维数字模型上测量结节的投影点和解剖点的相对关系以指导结节定位及切除。从而避免术前穿刺定位的操作,减少手术创伤和手术时间,有利于术后快速康复。
上述目标部位可以为肺部,解剖标记点可以包括右肺解剖标记点和左肺解剖标记点;右肺解剖标记点可以至少包括以下之一:上肺尖顶点、右上肺后段与下肺背段交汇处顶点、右肺水平裂与斜裂交汇点、水平裂与右上肺内侧缘交汇点、右上肺第一肋压迹点、右下肺下缘与胸椎压迹交点、右下肺下缘内侧终点、右中肺最低点、右上肺气管压迹最低点、右下肺静脉压迹点和右下肺下缘外侧终点;左肺解剖标记点可以至少包括以下之一:左上肺尖段顶点左侧第一肋骨压迹点、左上肺后段与左下肺背段交汇处顶点、左上肺最低点、左肺上斜裂与下斜裂交点、左肺下斜裂最低点、左下肺下缘与主动脉弓压迹交点、左下肺纵隔面下缘与主动脉弓压迹交点、左下肺静脉压迹点和左下肺上缘与主动脉弓压迹交点。
上述投影点确定模块还可以被配置成用于确定目标三角定位区域和目标三角定位区域对应的三个目标解剖标记点;基于三个目标解剖标记点构建平面;确定结节的实际位置投影到平面的结节的投影点。
上述距离确定模块还可以被配置成用于确定投影点与三个目标解剖标记点的第一距离;确定投影点与结节的实际位置的第二距离;基于第二距离和三个第一距离确定结节的实际位置与三个目标解剖标记点的距离。
上述实际位置确定模块还可以被配置成用于确定三个目标解剖标记点对应的三个实际标记点;基于三个实际标记点之间的距离、三个目标解剖标记点之间的距离确定线段缩短系数;结节的实际位置与三个目标解剖标记点的距离、线段缩短系数确定结节的实际位置与三个实际标记点的目标距离;基于三个实际标记点和三个目标距离确定结节的实际位置。
上述实际位置确定模块还可以被配置成用于将三个实际标记点划分为三个组;其中,每个组包括两个实际标记点;不同组中包括的实际标记点不完全相同;对于每个组中的两个实际标记点,以两个实际标记点为圆心做圆,确定两个圆的交点;其中,实际标记点对应的圆的半径为该实际标记点对应的目标距离;基于三个组对应的三个交点确定结节的实际位置。
上述实际位置确定模块还可以被配置成用于如果三个组对应的三个交点均不相同;将 三个组对应的三个交点的中心位置作为结节的实际位置。
上述装置还可以包括:电灼标记模块,所述电灼标记模块被配置成用于通过电灼在患者的目标部位标记结节的实际位置。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的基于三角定位的结节定位装置的具体工作过程,可以参考前述的基于三角定位的结节定位方法的实施例中的对应过程,在此不再赘述。
实施例四:
本申请实施例还提供了一种电子设备,所述电子设备用于运行上述基于三角定位的结节定位方法;参见图15所示的一种电子设备的结构示意图,该电子设备可以包括存储器100和处理器101,其中,存储器100被配置成用于存储一条或多条计算机指令,一条或多条计算机指令被处理器101执行,以实现上述基于三角定位的结节定位方法。
进一步地,图15所示的电子设备还可以包括总线102和通信接口103,处理器101、通信接口103和存储器100通过总线102连接。
其中,存储器100可能包含高速随机存取存储器(RAM,Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个通信接口103(可以是有线或者无线)实现该系统网元与至少一个其他网元之间的通信连接,可以使用互联网,广域网,本地网,城域网等。总线102可以是ISA总线、PCI总线或EISA总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一个双向箭头表示,但并不表示仅有一根总线或一种类型的总线。
处理器101可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器101中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器101可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processor,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器100,处理器101读取存储器100中的信息,结合其硬件完 成前述实施例的方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令在被处理器调用和执行时,计算机可执行指令促使处理器实现上述基于三角定位的结节定位方法,具体实现可参见方法实施例,在此不再赘述。
本申请实施例所提供的基于三角定位的结节定位方法、装置和电子设备的计算机程序产品,包括存储了程序代码的计算机可读存储介质,程序代码包括的指令可用于执行前面方法实施例中的方法,具体实现可参见方法实施例,在此不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统和/或装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
另外,在本申请实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
最后应说明的是:以上所述实施例,仅为本申请的具体实施方式,用以说明本申请的技术方案,而非对其限制,本申请的保护范围并不局限于此,尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不 使相应技术方案的本质脱离本申请实施例技术方案的精神和范围,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
工业实用性
本申请提供了一种基于三角定位的结节定位方法、装置和电子设备,所述方法包括:获取患者的薄层CT图像,基于薄层CT图像构建患者的目标部位的三维数字模型;确定结节在目标三角定位区域的投影点和目标三角定位区域对应的三个目标解剖标记点;基于结节的投影点和三个目标解剖标记点确定结节的实际位置与三个目标解剖标记点的距离;基于三个目标解剖标记点对应的三个实际标记点、三个距离确定结节的实际位置;三个实际标记点通过三角定位的方式在患者的胸腔内部进行定位确定。可以利用的解剖标记点作为参考点,通过结节的投影点和解剖点的相对关系以指导结节定位及切除。从而避免术前穿刺定位的操作,减少手术创伤和手术时间,有利于术后快速康复。
此外,可以理解的是,本申请的基于三角定位的结节定位方法和基于三角定位的结节定位装置是可以重现的,并且可以用在多种应用中。例如,本申请的基于三角定位的结节定位方法和基于三角定位的结节定位装置可以用于需要减少手术创伤和手术时间的任何应用。

Claims (17)

  1. 一种基于三角定位的结节定位方法,其中,所述基于三角定位的结节定位方法包括:
    获取患者的薄层CT图像,基于所述薄层CT图像构建所述患者的目标部位的三维数字模型;其中,所述三维数字模型的表面包括多个解剖标记点和基于确定所述解剖标记点确定的多个三角定位区域,所述三维数字模型标记有结节;
    确定所述结节在目标三角定位区域的投影点和所述目标三角定位区域对应的三个目标解剖标记点;
    基于所述结节的投影点和三个所述目标解剖标记点确定所述结节的实际位置与三个所述目标解剖标记点的距离;
    基于三个所述目标解剖标记点对应的三个实际标记点、三个所述距离确定所述结节的实际位置;其中,三个所述实际标记点通过三角定位的方式在所述患者的胸腔内部进行定位确定。
  2. 根据权利要求1所述的方法,其中,所述目标部位为肺部,所述解剖标记点包括右肺解剖标记点和左肺解剖标记点;
    所述右肺解剖标记点至少包括以下之一:上肺尖顶点、右上肺后段与下肺背段交汇处顶点、右肺水平裂与斜裂交汇点、水平裂与右上肺内侧缘交汇点、右上肺第一肋压迹点、右下肺下缘与胸椎压迹交点、右下肺下缘内侧终点、右中肺最低点、右上肺气管压迹最低点、右下肺静脉压迹点和右下肺下缘外侧终点;
    所述左肺解剖标记点至少包括以下之一:左上肺尖段顶点左侧第一肋骨压迹点、左上肺后段与左下肺背段交汇处顶点、左上肺最低点、左肺上斜裂与下斜裂交点、左肺下斜裂最低点、左下肺下缘与主动脉弓压迹交点、左下肺纵隔面下缘与主动脉弓压迹交点、左下肺静脉压迹点和左下肺上缘与主动脉弓压迹交点。
  3. 根据权利要求1或2所述的方法,其中,确定所述结节在目标三角定位区域的投影点和所述目标三角定位区域对应的三个目标解剖标记点的步骤,包括:
    确定目标三角定位区域和所述目标三角定位区域对应的三个目标解剖标记点;
    基于三个所述目标解剖标记点构建平面;
    确定所述结节的实际位置投影到所述平面的所述结节的投影点。
  4. 根据权利要求1至3中任一项所述的方法,其中,基于所述结节的投影点和三个所述目标解剖标记点确定所述结节的实际位置与三个所述目标解剖标记点的距离的步骤,包括:
    确定所述投影点与三个所述目标解剖标记点的第一距离;
    确定所述投影点与所述结节的实际位置的第二距离;
    基于所述第二距离和三个所述第一距离确定所述结节的实际位置与三个所述目标解剖标记点的距离。
  5. 根据权利要求1至4中任一项所述的方法,其中,基于三个所述目标解剖标记点对应的三个实际标记点、三个所述距离确定所述结节的实际位置的步骤,包括:
    确定三个所述目标解剖标记点对应的三个实际标记点;
    基于三个所述实际标记点之间的距离、三个所述目标解剖标记点之间的距离确定线段缩短系数;
    所述结节的实际位置与三个所述目标解剖标记点的距离、所述线段缩短系数确定所述结节的实际位置与三个实际标记点的目标距离;
    基于三个所述实际标记点和三个所述目标距离确定所述结节的实际位置。
  6. 根据权利要求5所述的方法,其中,基于三个所述实际标记点和三个所述目标距离确定所述结节的实际位置的步骤,包括:
    将三个所述实际标记点划分为三个组;其中,每个组包括两个所述实际标记点;不同组中包括的实际标记点不完全相同;
    对于每个组中的两个所述实际标记点,以两个实际标记点为圆心做圆,确定两个圆的交点;其中,实际标记点对应的圆的半径为该实际标记点对应的目标距离;
    基于三个组对应的三个交点确定所述结节的实际位置。
  7. 根据权利要求6所述的方法,其中,基于三个组对应的三个交点确定所述结节的实际位置的步骤,包括:
    如果三个组对应的三个交点均不相同;
    将三个组对应的三个交点的中心位置作为所述结节的实际位置。
  8. 根据权利要求1至7中任一项所述的方法,其中,所述方法还包括:
    通过电灼在所述患者的目标部位标记所述结节的实际位置。
  9. 一种基于三角定位的结节定位装置,其中,所述基于三角定位的结节定位装置包括:
    模型构建模块,所述模型构建模块被配置成用于获取患者的薄层CT图像,基于所述薄层CT图像构建所述患者的目标部位的三维数字模型;其中,所述三维数字模型的表面包括多个解剖标记点和基于确定所述解剖标记点确定的多个三角定位区域,所述三维数字模型标记有结节;
    投影点确定模块,所述投影点确定模块被配置成用于确定所述结节在目标三角定位区域的投影点和所述目标三角定位区域对应的三个目标解剖标记点;
    距离确定模块,所述距离确定模块被配置成用于基于所述结节的投影点和三个所述目 标解剖标记点确定所述结节的实际位置与三个所述目标解剖标记点的距离;
    实际位置确定模块,所述实际位置确定模块被配置成用于基于三个所述目标解剖标记点对应的三个实际标记点、三个所述距离确定所述结节的实际位置;其中,三个所述实际标记点通过三角定位的方式在所述患者的胸腔内部进行定位确定。
  10. 根据权利要求9所述的基于三角定位的结节定位装置,其中,所述目标部位为肺部,所述解剖标记点包括右肺解剖标记点和左肺解剖标记点;
    所述右肺解剖标记点至少包括以下之一:上肺尖顶点、右上肺后段与下肺背段交汇处顶点、右肺水平裂与斜裂交汇点、水平裂与右上肺内侧缘交汇点、右上肺第一肋压迹点、右下肺下缘与胸椎压迹交点、右下肺下缘内侧终点、右中肺最低点、右上肺气管压迹最低点、右下肺静脉压迹点和右下肺下缘外侧终点;
    所述左肺解剖标记点至少包括以下之一:左上肺尖段顶点左侧第一肋骨压迹点、左上肺后段与左下肺背段交汇处顶点、左上肺最低点、左肺上斜裂与下斜裂交点、左肺下斜裂最低点、左下肺下缘与主动脉弓压迹交点、左下肺纵隔面下缘与主动脉弓压迹交点、左下肺静脉压迹点和左下肺上缘与主动脉弓压迹交点。
  11. 根据权利要求9或10所述的基于三角定位的结节定位装置,其中,所述投影点确定模块还被配置成用于:确定目标三角定位区域和所述目标三角定位区域对应的三个目标解剖标记点;基于三个所述目标解剖标记点构建平面;确定所述结节的实际位置投影到所述平面的所述结节的投影点。
  12. 根据权利要求9至11中任一项所述的基于三角定位的结节定位装置,其中,所述距离确定模块还被配置成用于:确定所述投影点与三个所述目标解剖标记点的第一距离;确定所述投影点与所述结节的实际位置的第二距离;基于所述第二距离和三个所述第一距离确定所述结节的实际位置与三个所述目标解剖标记点的距离。
  13. 根据权利要求9至12中任一项所述的基于三角定位的结节定位装置,其中,所述实际位置确定模块还被配置成用于:确定三个所述目标解剖标记点对应的三个实际标记点;基于三个所述实际标记点之间的距离、三个所述目标解剖标记点之间的距离确定线段缩短系数;所述结节的实际位置与三个所述目标解剖标记点的距离、所述线段缩短系数确定所述结节的实际位置与三个实际标记点的目标距离;基于三个所述实际标记点和三个所述目标距离确定所述结节的实际位置。
  14. 根据权利要求13所述的基于三角定位的结节定位装置,其中,所述实际位置确定模块还被配置成用于:将三个所述实际标记点划分为三个组;其中,每个组包括两个所述实际标记点;不同组中包括的实际标记点不完全相同;对于每个组中的两个所述实际标记点,以两个实际标记点为圆心做圆,确定两个圆的交点;其中,实际标记点对应的圆的半 径为该实际标记点对应的目标距离;基于三个组对应的三个交点确定所述结节的实际位置。
  15. 根据权利要求14所述的基于三角定位的结节定位装置,其中,所述实际位置确定模块还被配置成用于:如果三个组对应的三个交点均不相同;将三个组对应的三个交点的中心位置作为所述结节的实际位置。
  16. 根据权利要求9至15中任一项所述的基于三角定位的结节定位装置,其中,所述基于三角定位的结节定位装置还包括:电灼标记模块,所述电灼标记模块被配置成用于通过电灼在所述患者的目标部位标记所述结节的实际位置。
  17. 一种电子设备,其中,所述电子设备包括:处理设备和存储装置;
    所述存储装置上存储有计算机程序,所述计算机程序在被所述处理设备运行时执行如权利要求1至8中任一项所述的基于三角定位的结节定位方法。
PCT/CN2023/099278 2022-06-09 2023-06-09 基于三角定位的结节定位方法、装置和电子设备 WO2023237075A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210651124.0A CN115024752A (zh) 2022-06-09 2022-06-09 基于超声定位的结节定位方法、装置和电子设备
CN202210651124.0 2022-06-09
CN202210651148.6 2022-06-09
CN202210651148.6A CN115005851A (zh) 2022-06-09 2022-06-09 基于三角定位的结节定位方法、装置和电子设备

Publications (1)

Publication Number Publication Date
WO2023237075A1 true WO2023237075A1 (zh) 2023-12-14

Family

ID=89117540

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/099274 WO2023237074A1 (zh) 2022-06-09 2023-06-09 基于超声定位的结节定位方法、装置和电子设备
PCT/CN2023/099278 WO2023237075A1 (zh) 2022-06-09 2023-06-09 基于三角定位的结节定位方法、装置和电子设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099274 WO2023237074A1 (zh) 2022-06-09 2023-06-09 基于超声定位的结节定位方法、装置和电子设备

Country Status (1)

Country Link
WO (2) WO2023237074A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107392916A (zh) * 2017-05-31 2017-11-24 郭明 一种3d肺表面投影肺结节定位系统及方法
CN108742838A (zh) * 2018-03-29 2018-11-06 四川大学华西医院 一种段间标志点量化的肺段模型的制备方法
CN111179339A (zh) * 2019-12-13 2020-05-19 深圳市瑞立视多媒体科技有限公司 基于三角测量的坐标定位方法、装置、设备及存储介质
US20210282858A1 (en) * 2020-03-16 2021-09-16 Stryker Australia Pty Ltd Automated Cut Planning For Removal of Diseased Regions
CN114343845A (zh) * 2022-01-11 2022-04-15 上海睿触科技有限公司 一种用于辅助穿刺系统的病灶位置动态跟踪方法
CN115005851A (zh) * 2022-06-09 2022-09-06 上海市胸科医院 基于三角定位的结节定位方法、装置和电子设备
CN115024752A (zh) * 2022-06-09 2022-09-09 上海市胸科医院 基于超声定位的结节定位方法、装置和电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10346728B2 (en) * 2017-10-26 2019-07-09 Hitachi, Ltd. Nodule detection with false positive reduction
CN111369675B (zh) * 2020-04-14 2023-07-21 中国医学科学院肿瘤医院 基于肺结节脏层胸膜投影的三维可视模型重建方法及装置
CN113768527B (zh) * 2021-08-25 2023-10-13 中山大学 基于ct与超声影像融合的实时三维重建装置及存储介质
CN114557769A (zh) * 2022-01-19 2022-05-31 闾夏轶 一种肺小结节的定位方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107392916A (zh) * 2017-05-31 2017-11-24 郭明 一种3d肺表面投影肺结节定位系统及方法
CN108742838A (zh) * 2018-03-29 2018-11-06 四川大学华西医院 一种段间标志点量化的肺段模型的制备方法
CN111179339A (zh) * 2019-12-13 2020-05-19 深圳市瑞立视多媒体科技有限公司 基于三角测量的坐标定位方法、装置、设备及存储介质
US20210282858A1 (en) * 2020-03-16 2021-09-16 Stryker Australia Pty Ltd Automated Cut Planning For Removal of Diseased Regions
CN114343845A (zh) * 2022-01-11 2022-04-15 上海睿触科技有限公司 一种用于辅助穿刺系统的病灶位置动态跟踪方法
CN115005851A (zh) * 2022-06-09 2022-09-06 上海市胸科医院 基于三角定位的结节定位方法、装置和电子设备
CN115024752A (zh) * 2022-06-09 2022-09-09 上海市胸科医院 基于超声定位的结节定位方法、装置和电子设备

Also Published As

Publication number Publication date
WO2023237074A1 (zh) 2023-12-14

Similar Documents

Publication Publication Date Title
US11925452B2 (en) System and method for lung visualization using ultrasound
RU2472442C2 (ru) Система для комплексного слияния данных формирования изображения на основании статистических моделей анатомии
RU2707369C1 (ru) Способ подготовки и выполнения хирургической операции с использованием дополненной реальности и комплекс оборудования для её осуществления
WO2023246521A1 (zh) 基于混合现实的病灶定位方法、装置和电子设备
US11737827B2 (en) Pathway planning for use with a navigation planning and procedure system
ES2901703T3 (es) Integración de múltiples fuentes de datos para localización y navegación
AU2015284213B2 (en) Trachea marking
WO2019128961A1 (zh) 用于手术导航的配准系统及方法
CN108969099B (zh) 一种校正方法、手术导航系统、电子设备及存储介质
US11779192B2 (en) Medical image viewer control from surgeon's camera
US20230172574A1 (en) System and method for identifying and marking a target in a fluoroscopic three-dimensional reconstruction
CN110123273A (zh) 一种结合ct图像的结节体表定位装置及结节体表定位方法
WO2023237083A1 (zh) 结节定位方法、装置和辅助测量工具
WO2021155649A1 (zh) 一种穿刺针定位系统及方法
CN115005851A (zh) 基于三角定位的结节定位方法、装置和电子设备
WO2023237075A1 (zh) 基于三角定位的结节定位方法、装置和电子设备
CN115024752A (zh) 基于超声定位的结节定位方法、装置和电子设备
Aly Assisting vascular surgery with smartphone augmented reality
RU2551191C2 (ru) Способ предоперационного планирования реконструкции трубчатых костей
US20240090866A1 (en) System and method for displaying ablation zone progression
CN112386332B (zh) 肺部氩氦刀手术路径数据的ar/mr显示方法及系统
EP4299029A2 (en) Cone beam computed tomography integration for creating a navigation pathway to a target in the lung and method of navigating to the target
CN116616807A (zh) 肺结节术中定位系统、方法、电子设备及存储介质
CN116262072A (zh) 电磁跟踪辅助三角定位的实时手术导航方法及系统
Huang et al. Ultrasound-based technique for intrathoracic surgical guidance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819238

Country of ref document: EP

Kind code of ref document: A1