WO2021155649A1 - 一种穿刺针定位系统及方法 - Google Patents

一种穿刺针定位系统及方法 Download PDF

Info

Publication number
WO2021155649A1
WO2021155649A1 PCT/CN2020/091532 CN2020091532W WO2021155649A1 WO 2021155649 A1 WO2021155649 A1 WO 2021155649A1 CN 2020091532 W CN2020091532 W CN 2020091532W WO 2021155649 A1 WO2021155649 A1 WO 2021155649A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual
plane
probe
puncture needle
section
Prior art date
Application number
PCT/CN2020/091532
Other languages
English (en)
French (fr)
Inventor
赵天力
罗衡
肖锦涛
胡世军
柯建源
Original Assignee
赵天力
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020151840.9U external-priority patent/CN212281548U/zh
Priority claimed from CN202010079873.1A external-priority patent/CN111150461A/zh
Priority claimed from CN202010079870.8A external-priority patent/CN111134843B/zh
Application filed by 赵天力 filed Critical 赵天力
Priority to EP20917786.4A priority Critical patent/EP3973896A4/en
Priority to US17/334,951 priority patent/US11980496B2/en
Publication of WO2021155649A1 publication Critical patent/WO2021155649A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4254Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors mounted on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • A61B2017/3413Needle locating or guiding means guided by ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • A61B2090/3782Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument
    • A61B2090/3784Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument both receiver and transmitter being in the instrument or receiver being also transmitter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data

Definitions

  • the invention relates to the technical field of surgical positioning, in particular to a puncture needle positioning system and method.
  • interventional technology has become the third effective clinical treatment method after drug treatment and surgery.
  • the intervention path is the key to successful treatment.
  • the ideal intervention path should be close to the lesion, easy to manipulate the instrument, and less traumatic.
  • the femoral vein and the femoral artery are the main intervention routes for structural heart disease.
  • this kind of interventional path is far away from the heart, and the stroke is tortuous, so it is not conducive to the precise operation of cardiac intervention, and it also limits the indications of interventional therapy.
  • intracardiac interventional techniques via the transcardiac table approach have been widely used in clinical practice.
  • transthoracic ultrasound needs to be used to plan the puncture path before surgery.
  • the surgeon can only reconstruct the spatial position of the puncture needle in his mind based on his personal experience, and there is a high rate of wrong selection in the puncture point and angle. Therefore, this technology is difficult to promote and apply clinically. If you want to achieve transthoracic wall puncture interventional therapy, a highly accurate navigation system has become an urgent need.
  • Transthoracic puncture intracardiac interventional therapy is an emerging interventional technology. It has the advantages of short and straight interventional path, close to the heart disease, easy and precise manipulation of interventional instruments, etc. It is suitable for a variety of structural heart diseases, especially after surgical operations. Treatment of complications. The key point of this technology is to select the precise puncture site and path to ensure a one-time success. If the heart is punctured multiple times, serious complications such as pericardial tamponade due to bleeding from the puncture point will result. For this reason, transthoracic ultrasound needs to be used to plan the puncture path and determine the puncture site and the spatial posture of the puncture needle before surgery.
  • the best puncture path is to pass the central axis of the fan-shaped section through the lesion.
  • the surgeon can only reconstruct the spatial position of the puncture needle in his mind based on his personal experience. There is a high rate of wrong selection in the position of the puncture point and the puncture needle, and often deviates from the best.
  • the puncture path line can easily lead to serious complications.
  • it is necessary to record and visualize the preoperative puncture path planning line for intraoperative reference. Therefore, a method and device for obtaining the central axis of the ultrasonic probe on the ultrasonic section has become an urgent need.
  • the technical problem to be solved by the present invention is to provide a puncture needle positioning system and method, as well as a method and device for obtaining the central axis of the ultrasound probe on the ultrasound section, for providing accurate The puncture site and path ensure a successful one-time puncture.
  • a puncture needle positioning system which includes:
  • the ultrasound unit includes a first probe for providing an ultrasound section of a lesion, and a plurality of first positioning devices for providing coordinate information of the first probe are provided on the first probe;
  • the puncture needle unit includes a puncture needle, and the puncture needle is provided with a plurality of second positioning devices for providing coordinate information of the puncture needle;
  • the processing and display unit is respectively communicatively connected with the ultrasound unit, each of the first positioning devices and each of the second positioning devices, and is used to: obtain the ultrasound section of the lesion and display it in a virtual coordinate system; obtain the first probe Obtain the coordinate information of the ultrasound section of the lesion and display it in the virtual coordinate system; determine the planned path in the virtual coordinate system; obtain the coordinate information of the puncture needle provided by each second positioning device and display it in the virtual coordinate system The central axis of the virtual puncture needle and the apex of the virtual puncture needle; in the virtual coordinate system, compare whether the central axis of the virtual puncture needle coincides with the planned path;
  • Another aspect of the present invention provides a puncture needle positioning method, which includes the following steps:
  • S100 acquires the ultrasound section of the lesion and displays it in the virtual coordinate system; acquires the coordinate information of the first probe when acquiring the ultrasound section of the lesion and displays it in the virtual coordinate system;
  • S200 determines the planned path in the virtual coordinate system
  • S300 obtains the coordinate information of the second positioning device on the puncture needle in the virtual coordinate system and displays the central axis of the virtual puncture needle and the apex of the virtual puncture needle;
  • S400 compares whether the central axis of the virtual puncture needle coincides with the planned path in the virtual coordinate system.
  • Another aspect of the present invention provides a device that includes: a memory and a processor; the memory on which a computer program is stored; the processor is configured to execute the computer program stored in the memory, and the program is When executed, the puncture needle positioning method of the present invention is realized.
  • Another aspect of the present invention provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the puncture needle positioning method of the present invention is realized.
  • Another aspect of the present invention provides a method for obtaining the central axis of an ultrasound probe on an ultrasound section, including:
  • Another aspect of the present invention provides a device for obtaining the central axis of an ultrasonic probe on an ultrasonic section, including:
  • Sampling module used to obtain the coordinates of three non-collinear sampling points on the virtual ultrasonic section F 1 in the virtual coordinate system OXYZ And the coordinates of three non-collinear sampling points on the central axis F 2 of the virtual ultrasound probe
  • the first translation module used to obtain the transformation matrix T 1 between the plane F 2 ′ and the central axis plane F 2 of the virtual ultrasound probe, where the plane F 2 ′ is the translation of the virtual ultrasound probe central axis plane F 2 until the virtual ultrasound probe Obtained by coincidence of any sampling point on the axis F 2 of the ultrasonic probe with the origin of the coordinate system;
  • Rotation module used to obtain the transformation matrix T 2 between the plane F 2 ”and the plane F 2 ′, where the plane F 2 ” is to rotate the plane F 2 ′ around the origin of the coordinate system to its unit normal vector and the virtual Unit normal vector of ultrasonic section F 1 Coincident gain
  • the second translation module used to obtain the transformation matrix T 3 between the plane F 2 ”'and the plane F 2 ”, where the plane F 2 ”'is the translation of the plane F 2 ”until the coordinate system in step S202'
  • the sampling point with the coincident origin is obtained by returning to its initial position;
  • the third translation module used to obtain the transformation matrix T 4 between the plane F 2 "” and the plane F 2 "', where the plane F 2 "” is to obtain the plane F 2 "'and the virtual ultrasonic section
  • the distance between F 1 and the vector translation of the plane F 2 ”'along its unit normal vector To plane F 2 ′′' is obtained by coincident with the virtual ultrasonic section F 1 , and the coordinates of the ultrasonic probe center axis on the ultrasonic section are obtained by using the coordinate conversion formula and the coordinates of the virtual ultrasonic probe center axis F 2 corresponding to the center axis of the ultrasonic probe.
  • Another aspect of the present invention provides a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the method for obtaining the central axis of an ultrasound probe on an ultrasound section of the present invention is implemented.
  • the puncture needle positioning system provided by the present invention can greatly improve the accuracy of transthoracic puncture, not only can effectively avoid complications caused by repeated puncture, but also greatly shorten the puncture time during operation.
  • the introduction of the first positioning device and the second positioning device greatly enriches the previous single ultrasonic positioning and navigation, and digitally analyzes all position information, and all the position information in the magnetic field passes through the first positioning device and the second positioning device Can be transformed into a three-dimensional coordinate system.
  • the puncture positioning system provides accurate puncture path planning according to the different conditions of each person, which truly realizes the individualized and precise medical treatment of the patient, which will greatly reduce the complications related to the operation, and make the transthoracic puncture interventional treatment become a conventional treatment method. possible.
  • the method for obtaining the central axis of the ultrasound probe on the ultrasound section can display the ultrasound section at the lesion and the plane where the positioning device of the ultrasound probe is located in the same virtual coordinate system and obtain the result through the method of the present invention. Plan the path.
  • the invention provides a standardized technical scheme for transthoracic puncture intracardiac interventional therapy. Through the implementation of the solution of the present invention, the preoperative puncture path planning line can be accurately traced and visualized, which provides a reliable navigation guarantee for the operation of the surgeon, and effectively reduces the surgeon's artificial puncture position error selection rate. The invention can not only improve the success rate of puncture, but also effectively prevent the occurrence of complications and improve the safety of operation.
  • Figure 2 is a schematic diagram of the structure of the first probe of the present invention.
  • Figure 3 is a schematic diagram of the buckle structure of the ultrasound probe of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the puncture needle and the puncture needle fastener of the present invention.
  • Fig. 5 is a schematic flow chart of the puncture needle positioning method of the present invention.
  • Fig. 6 is a schematic flow chart of the coordinate conversion method for projecting the central axis of the first probe onto the ultrasonic section of the present invention.
  • Fig. 7 is a schematic diagram of the visual interface of the puncture needle positioning system of the present invention.
  • Fig. 8 is a schematic diagram of the judging flow of coincidence between the virtual puncture needle and the planned path of the present invention.
  • Figure 9 is a schematic flow chart of a method for obtaining the central axis of an ultrasound probe on an ultrasound section.
  • Figure 10 is a schematic diagram of the structure of an ultrasound probe.
  • an embodiment of the present invention provides a puncture needle positioning system.
  • the system includes: an ultrasound unit 1, a puncture needle unit 2, a processing and display unit 3.
  • the ultrasound unit 1 includes a first probe 11 for providing an ultrasound section of a lesion.
  • FIG. 1 shows a puncture needle positioning system.
  • the first probe 11 is provided with a plurality of first positioning devices for providing coordinate information of the first probe 11 4;
  • the puncture needle unit 2 includes a puncture needle, as shown in Figure 4, the puncture needle is provided with a plurality of second positioning devices 5 for providing coordinate information of the puncture needle; the processing and display unit 3 and The ultrasound unit 1, each of the first positioning devices 4, and each of the second positioning devices 5 are in communication connection, and are used to: obtain the ultrasound section of the lesion and display it in a virtual coordinate system; The coordinate information of the ultrasound section at the position is displayed in the virtual coordinate system, and the planned path L1 is further determined in the virtual coordinate system; the coordinate information of the second positioning device 5 on the puncture needle in the virtual coordinate system is obtained and the virtual puncture is displayed The needle central axis L2 and the virtual puncture needle vertex C2; in the virtual coordinate system, compare whether the virtual puncture needle central axis L2 and the planned path L1 coincide. When the virtual puncture needle and the central axis L2 coincide with the planned path L1,
  • the ultrasound unit 1 may be an ultrasound machine with multiple probes. As shown in FIG. 2, the ultrasound unit 1 includes a first probe 11 for providing an ultrasound section of the lesion, and the first probe 11 is a transthoracic cardiac ultrasound probe.
  • the first probe may be an existing conventional ultrasound probe, such as Philips EPIQ7C.
  • Philips EPIQ7C Philips EPIQ7C
  • the first probe 11 is scanned in the intercostal space of the human body, such as a ventricular septal defect, and then an ultrasound section of the lesion is obtained. Generally, when the lesion appears on the ultrasound section, it is the ultrasound of the lesion. section.
  • the first probe 11 is provided with a plurality of first positioning devices 4 for providing coordinate information of the first probe 11.
  • the coordinate information of the first probe 11 includes coordinate information of several position points on the first probe 11.
  • the position point should be selected to facilitate the determination of the position point of the central axis of the first probe 11.
  • the first probe 11 is provided with three first positioning devices 4, and the three first positioning devices 4 are located on the same horizontal plane and are located on the same horizontal plane as the first probe 11.
  • the central axis planes of the two first positioning devices 4 are located on the same cross section of the first probe 11.
  • the cross section is a section perpendicular to the central axis plane, and the three first positioning devices 4 form a right triangle distributed.
  • the first positioning device 4 is selected from sensors. Under normal circumstances, the sensor is used in conjunction with a magnetic source and a magnetic locator, the sensor is connected to the magnetic locator for communication, and the magnetic source is connected to the magnetic locator for communication. When in use, the magnetic source is located near the operating table.
  • the 3DGuidance trakSTAR instrument of Canadian NDI Company may be used, and the 3DGuidance trakSTAR instrument includes the sensor, magnetic source, and magnetic locator used in this application.
  • the first probe 11 is provided with a probe fastener 6 that is matched with the first probe 11, and the probe fastener 6 As shown in Figure 3, there are three first jacks for installing the first positioning device 4, and the positions of the three first jacks match the sensors Q 1 , Q 2 and Q 3 . From the three sensors Q 1 , Q 2 and Q 3 , the coordinate information of the sensors Q 1 , Q 2 and Q 3 at this time can be acquired and recorded as the coordinate information of the first probe 11. Since the three sensors are arranged at multiple positions of the first probe 11, the coordinate information of the first probe 11 can be known.
  • the puncture needle unit 2 includes a puncture needle, and a plurality of second positioning devices 5 for providing coordinate information of the puncture needle are provided on the puncture needle.
  • the coordinate information of the puncture needle includes coordinate information of several position points on the puncture needle. The location point should be selected to facilitate the determination of the location point of the central axis of the puncture needle.
  • two second positioning devices 5 are provided on the puncture needle, the second positioning devices 5 are respectively provided on the central axis of the puncture needle, and the two second positioning devices 5 are provided on the puncture needle.
  • the different positions of the central axis are set in order to further determine the central axis of the puncture needle through the second positioning device 5.
  • the second positioning device 5 is selected from sensors.
  • the senor is used in conjunction with a magnetic source and a magnetic locator.
  • the magnetic source and sensor are respectively connected to the magnetic locator.
  • the magnetic source is located near the operating table.
  • the 3DGuidance trakSTAR instrument of Canadian NDI Company may be used, and the 3DGuidance trakSTAR instrument includes the sensor, magnetic source, and magnetic locator used in this application.
  • the puncture needle is provided with a puncture needle buckle 7 that cooperates with the puncture needle, and the puncture needle buckle 7 is shown in FIG.
  • the two sensors B1 and B2 can acquire and record the coordinate information of B1 and B2 at this time as the coordinate information of the puncture needle. Since the two sensors B1 and B2 are located at multiple positions of the puncture needle, the coordinate information of the puncture needle can be known.
  • the processing and display unit 3 includes a processor and a display.
  • the processor may be a server or a general-purpose processor, including a central processing unit (CPU) and a network processor (Network Processor, NP for short). ), etc.; it can also be a digital signal processor (Digital Signal Processing, DSP), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the processor is in communication connection with the display.
  • the processor is respectively communicatively connected with the ultrasound unit 1, each of the first positioning devices 4, and each of the second positioning devices 5.
  • the processor is communicatively connected with the display for display. More specifically, the processor is in communication connection with the first probe and the second probe.
  • processing and display unit 3 includes the following modules:
  • the first data acquisition module used to acquire the ultrasound section of the lesion and display it in a virtual coordinate system; acquire the coordinate information of the first probe 11 when acquiring the ultrasound section of the lesion and display it in the virtual coordinate system;
  • Planning path determination module used to determine the planning path L1 in the virtual coordinate system
  • the second data acquisition module used to acquire the coordinate information of the second positioning device 5 on the puncture needle in the virtual coordinate system and display the central axis L2 of the virtual puncture needle and the vertex C2 of the virtual puncture needle;
  • Comparison module used to compare whether the central axis L2 of the virtual puncture needle coincides with the planned path L1 in the virtual coordinate system.
  • the ultrasound section of the lesion is obtained by scanning the lesion with the first probe 11, and it is generally considered that when the lesion appears on the ultrasound section, it is the ultrasound section of the lesion.
  • the display position of the ultrasound section of the lesion in the virtual coordinate system there is no special requirement for the display position of the ultrasound section of the lesion in the virtual coordinate system. There is no special requirement for the origin of the virtual coordinate system. In order to facilitate data processing, in a preferred embodiment, the fan-shaped section vertex C1 of the ultrasound section at the lesion is used as the origin of the virtual coordinate system.
  • the first probe 11 can provide its coordinate information through the first positioning device 4.
  • the coordinate information of each first positioning device 4 is the coordinate information that matches the virtual coordinate system.
  • the position of each first positioning device 4 in the virtual coordinate system can be used to represent the first probe 11.
  • the first positioning devices 4 of the first probe 11 are all arranged on the central axis surface of the first probe 11 so as to determine the position of the central axis of the first probe 11.
  • the positions of the three sensors Q 1 , Q 2 and Q 3 in the virtual coordinate system can represent the first probe 11, where Q 1 , Q 2 and Q 3 are located.
  • the vertical bisector of Q 1 and Q 2 is the central axis of the first probe 11.
  • the position of the central axis of the first probe 11 on the ultrasound section of the lesion can be obtained by plane matrix conversion, so as to determine the planned path L1.
  • the ultrasound section of the lesion is a fan-shaped section.
  • a straight line passing through the fan-shaped section of the ultrasound section of the lesion and a sampling point of the lesion can be used as the actual planning path.
  • the central axis of the ultrasound section of the lesion can be used as the actual planned path.
  • the central axis of the first probe 11 should be located on the ultrasonic section of the lesion, the apex of the first probe 11 coincides with the apex of the ultrasonic section of the lesion, and the central axis of the first probe 11 is aligned with the central axis of the ultrasonic section of the lesion. coincide. Therefore, the planned path can be determined by determining the position of the central axis of the first probe 11.
  • the relative position of the ultrasound section of the lesion and the central axis of the first probe 11 does not match the actual relative position of the two. Therefore, conversion is required to project the central axis of the first probe 11 to the lesion. Ultrasound section.
  • the following conversion formula 1 may be used to perform planar matrix conversion, and obtain the conversion coordinate information of the projection of the central axis of the first probe 11 onto the ultrasound section of the lesion.
  • T T 4 T 3 T 2 T 1
  • T is the transformation matrix from the central axis of the virtual first probe to its projection plane on the virtual ultrasonic section.
  • P 1 , P 2 , and P 3 are the three non-collinear sampling points on the virtual ultrasound section F 1 of the lesion
  • Q 1 , Q 2 , and Q 3 are the three non-collinear sampling points on the axial plane F 2 of the virtual first probe. Points that are not collinear, Represents the coordinates of each point;
  • the plane matrix conversion device for projecting the central axis of the first probe 11 onto the ultrasonic section includes:
  • Sampling module used to obtain the coordinates of three non-collinear sampling points on the virtual ultrasonic section F 1 in the virtual coordinate system OXYZ And the coordinates of three non-collinear sampling points on the central axis F 2 of the virtual first probe
  • the first translation module is used to obtain the transformation matrix T 1 between the plane F 2 ′ and the virtual first probe central axis plane F 2 , specifically, the plane F 2 ′ is the translation of the virtual first probe central axis plane F 2 Until any sampling point on the central axis F 2 of the virtual first probe coincides with the origin of the coordinate system;
  • the rotation module is used to obtain the transformation matrix T 2 between the plane F 2 ′′ and the plane F 2 ′. Specifically, the plane F 2 ′′ rotates the plane F 2 ′ around the origin of the coordinate to its unit normal vector and the The unit normal vector of the virtual ultrasonic section F 1 Coincident gain
  • the second translation module is used to obtain the transformation matrix T 3 between the plane F 2 ”'and the plane F 2 ”, where the plane F 2 ”'is the translation of the plane F 2 ”until the coordinate in the first translation module
  • the sampling point that coincides with the origin is obtained by returning to its initial position.
  • the third translation module is used to obtain the transformation matrix T 4 between the plane F 2 ”” and the plane F 2 ”', where the plane F 2 ”” is to obtain the plane F 2 ”'and the virtual ultrasonic section
  • the distance between F 1 and the plane F 2 ”'along its unit normal vector here the unit normal vector is equal to the unit normal vector of F 1
  • Translation vector To plane F 2 ′′' is obtained by coincident with the virtual ultrasonic section F 1 , and the coordinates of the ultrasonic probe center axis on the ultrasonic section are obtained by using the coordinate conversion formula and the coordinates of the center axis of the ultrasonic probe corresponding to the plane F 2.
  • the virtual coordinate system also displays the fan-shaped section apex C1 of the ultrasound section at the lesion to assist in determining the puncture point.
  • the virtual ultrasound fan section F 1 is cut, then the first probe 11 in contact with the top position in the chest wall lesions is the real situation display section of the ultrasonic sector apex cut C1 in the virtual coordinate system.
  • the central axis and central axis of the first probe 11 can be determined according to the position of the first positioning device 4 on the first probe 11.
  • the first positioning devices 4 are all located on the central axis of the first probe 11.
  • the first positioning device 4 may be a sensor, and three non-collinear sensors Q 1 , Q 2 and Q 3 as shown in FIG. 2 are provided on the central axis of the first probe 11 for determining the position of the first probe 11 The central axis and the central axis.
  • Q 1 Q 2 Q 3 is a right triangle, and the central axis of the ultrasound probe is the mid-perpendicular line of the line segment Q 1 Q 2 .
  • the virtual three-dimensional virtual coordinate system OXYZ to the ultrasound fan section F 1 is cut vertex as origin of the coordinate system C1.
  • the central axis F 2 of the virtual first probe is translated to a point Q 1 that coincides with the origin.
  • the virtual first probe central axis F 2 is translated to the point Q 1 that coincides with the origin of the coordinate system
  • Rotation module used to rotate the unit normal vector of the plane F 2 'around the origin of the coordinate system to its unit normal vector and the unit normal vector of the virtual ultrasonic section F 1 Coincidence, the plane F 2 ”is obtained; the corresponding transformation matrix T 2 is:
  • the plane F 2 ' can be rotated and transformed to obtain the plane F 2 ".
  • the second translation module it is used to translate the plane F 2 ′′ until the sampling point coincident with the origin of the coordinate system in the first translation module returns to its initial position to obtain the plane F 2 ′′'.
  • the corresponding transformation matrix T 3 is:
  • the transformation matrix T 4 is:
  • Plane F 2 " 'translation vector Then it coincides with the plane F 1 to obtain a plane F 2 "".
  • the virtual puncture needle center axis and the puncture needle apex projected onto the ultrasound section of the lesion are obtained by plane matrix conversion.
  • the converted coordinate information of the needle central axis L2 and the virtual puncture needle vertex C2, and the virtual puncture needle central axis and its vertices are displayed in the virtual coordinate system according to the converted coordinate information.
  • the plane matrix conversion is performed using the conversion formula I in the puncture needle positioning system to obtain the corresponding virtual puncture needle central axis L2 and Conversion coordinate information of the virtual puncture needle vertex C2.
  • the comparison module in the virtual coordinate system, it is used to compare whether the apex of the virtual puncture needle coincides with the apex of the ultrasonic section, and whether the direction of the virtual puncture needle central axis L2 and the planned path L1 coincide. When both are coincident, it is judged to be coincident .
  • the judgment flow of the coincidence of the central axis L2 of the virtual puncture needle with the planned path L1 is shown in Figure 8.
  • the virtual puncture needle vertex C2 is used as the axis to transform the spatial pose of the puncture needle.
  • the system indicator light first displays red, when the virtual puncture needle vertex C2 and the lesion When the position information of the apex C1 of the fan-shaped section of the ultrasonic section coincides, the system indicator light is blue.
  • the system indicator light is green
  • real-time monitoring shows the central axis L2 of the puncture needle
  • one coordinate information can only correspond to unique conversion coordinate information.
  • the ultrasonic section of the lesion is the fan-shaped area scanned by the first probe 11, and the apex C1 of the fan-shaped section of the ultrasonic section of the lesion corresponds to the contact point between the ultrasonic probe and the skin, and the contact point is regarded as the chest wall puncture point position.
  • the central axis surface of the first probe 11 is converted to coincide with the ultrasonic section of the lesion through the coordinate conversion formula, and the planned path L1 is obtained.
  • the apex of the puncture needle is placed at the chest wall puncture point position, the coordinate information of the puncture needle provided by each second positioning device 5 is recorded, and the central axis L2 of the puncture needle is displayed in the virtual coordinate system, and the position of the chest wall puncture point is used as the axis to transform
  • the spatial posture of the puncture needle until the system prompts that the virtual puncture needle central axis L2 coincides with the position information of the planned path L1, and the puncture needle is maintained in the current position and posture for puncture.
  • the system can prompt in real time whether the position of the puncture needle coincides with the planned path L1, and assist the puncture to proceed smoothly under the monitoring of the second probe 12.
  • the embodiment of the present invention also provides a method for positioning a puncture needle, including:
  • S100 acquires the ultrasound section of the lesion and displays it in the virtual coordinate system; acquires the coordinate information of the first probe 11 when acquiring the ultrasound section of the lesion and displays it in the virtual coordinate system;
  • S300 obtains the coordinate information of the second positioning device 5 on the puncture needle in the virtual coordinate system and displays the central axis L2 of the virtual puncture needle and the vertex C2 of the virtual puncture needle;
  • S400 compares whether the central axis L2 of the virtual puncture needle coincides with the planned path L1 in the virtual coordinate system.
  • the ultrasound section of the lesion is obtained by scanning the lesion by the first probe 11, and it is generally considered that when the lesion appears on the ultrasound section, it is the ultrasound section of the lesion.
  • the display position of the ultrasound section of the lesion in the virtual coordinate system there is no special requirement for the display position of the ultrasound section of the lesion in the virtual coordinate system. There is no special requirement for the origin of the virtual coordinate system. In order to facilitate data processing, in a preferred embodiment, the fan-shaped section vertex C1 of the ultrasound section at the lesion is used as the origin of the virtual coordinate system.
  • the first probe 11 can provide its coordinate information through the first positioning device 4.
  • the coordinate information of each first positioning device 4 is the coordinate information that matches the virtual coordinate system.
  • the position of each first positioning device 4 in the virtual coordinate system can be used to represent the first probe 11.
  • the first positioning devices 4 of the first probe 11 are all arranged on the central axis surface of the first probe 11 so as to determine the position of the central axis of the first probe 11.
  • the positions of the three sensors Q 1 , Q 2 and Q 3 in the virtual coordinate system can represent the first probe 11, where Q 1 , Q 2 and Q 3 are located.
  • the vertical bisector of Q 1 and Q 2 is the central axis of the first probe 11.
  • step S200 according to the spatial coordinate information of the first probe 11 in the virtual coordinate system, the position of the central axis of the first probe 11 on the ultrasound section of the lesion can be obtained by plane matrix conversion, so as to determine the planned path L1.
  • the ultrasound section of the lesion is a fan-shaped section.
  • a straight line passing through the fan-shaped section of the ultrasound section of the lesion and a sampling point of the lesion can be used as the actual planning path.
  • the central axis of the ultrasound section of the lesion can be used as the actual planned path.
  • the central axis of the first probe 11 should be located on the ultrasonic section of the lesion, the apex of the first probe 11 coincides with the apex of the ultrasonic section of the lesion, and the central axis of the first probe 11 is aligned with the central axis of the ultrasonic section of the lesion. coincide. Therefore, the planned path can be determined by determining the position of the central axis of the first probe 11.
  • the relative position of the ultrasound section of the lesion and the central axis of the first probe 11 does not match the actual relative position of the two. Therefore, conversion is required to project the central axis of the first probe 11 to the lesion. Ultrasound section.
  • the following conversion formula 1 may be used to perform planar matrix conversion, and obtain the conversion coordinate information of the projection of the central axis of the first probe 11 onto the ultrasound section of the lesion.
  • T T 4 T 3 T 2 T 1
  • T is the transformation matrix from the central axis of the virtual first probe to its projection plane on the virtual ultrasonic section.
  • P 1 , P 2 , and P 3 are the three non-collinear sampling points on the virtual ultrasound section F 1 of the lesion
  • Q 1 , Q 2 , and Q 3 are the three non-collinear sampling points on the axial plane F 2 of the virtual first probe. Points that are not collinear, Represents the coordinates of each point;
  • the process of obtaining the coordinate conversion formula for projecting the central axis of the first probe 11 onto the ultrasonic slice is as follows:
  • step S204 obtains the transformation matrix T 3 between the plane F 2 ′′′ and the plane F 2 ′′, specifically, the plane F 2 ′′′ translates the plane F 2 ′′ until the sampling point coincides with the origin of the coordinate system in step S202 Get back to its original position;
  • step S201 the virtual section F 1 by the ultrasonic probe 11 of the first dummy scanning section cut ultrasound lesions lesions obtained are shown in the virtual coordinate system.
  • the first virtual plane F 2 probe axis is a first probe 11 to obtain ultrasound scan focal lesions section, the virtual display of the virtual coordinate system a first axis of the probe surface.
  • the central axis of the virtual first probe can be obtained based on the sensor on the first probe 11.
  • the virtual coordinate system also displays the fan-shaped section apex C1 of the ultrasound section at the lesion to assist in determining the puncture point.
  • the virtual ultrasound fan section F 1 is cut, then the first probe 11 in contact with the top position in the chest wall lesions is the real situation display section of the ultrasonic sector apex cut C1 in the virtual coordinate system.
  • the central axis surface and central axis L of the first probe 11 can be determined according to the position of the first positioning device 4 on the first probe 11.
  • the first positioning devices 4 are all located on the central axis of the first probe 11.
  • the first positioning device 4 may be a sensor, and three non-collinear sensors Q 1 , Q 2 and Q 3 as shown in FIG. 2 are provided on the central axis of the first probe 11 for determining the position of the first probe 11 The central axis and the central axis.
  • Q 1 Q 2 Q 3 is a right-angled triangle, and the central axis of the first probe is the vertical line of the line segment Q 1 Q 2.
  • the virtual three-dimensional virtual coordinate system OXYZ to the ultrasound fan section F 1 is cut vertex as origin of the coordinate system C1.
  • step S202 the central axis F 2 of the virtual first probe is translated to a point Q 1 that coincides with the origin.
  • the virtual three-dimensional coordinate system OXYZ to a virtual ultrasound fan section F section 1 is C1 as vertex coordinate origin, in step S202, the virtual axis of the first probe surface F 2 is translated to the point Q 1 It coincides with the origin of the coordinate system.
  • step S203 the unit normal vector of the plane F 2 ′ is rotated around the origin of the coordinate system to its unit normal vector and the unit normal vector of the virtual ultrasonic section F 1 Coincidence, the plane F 2 "is obtained; the corresponding transformation is:
  • the plane F 2 ′ can be rotated and transformed to obtain the plane F 2 ”.
  • step S204 the plane F 2 "is translated until the sampling point coincident with the origin of the coordinate system in step S202 returns to its initial position to obtain the plane F 2 "'.
  • the sampling point as Q 1 as an example, the corresponding transformation is:
  • Plane F 2 " 'translation vector Then it coincides with the plane F 1 to obtain a plane F 2 "".
  • step S300 according to the coordinate information of the second positioning device 5 in the virtual coordinate system, the puncture needle center axis and the puncture needle apex are projected onto the virtual puncture needle center axis L2 on the ultrasonic section of the lesion through plane matrix conversion. And the converted coordinate information of the apex C2 of the virtual puncture needle, and according to the converted coordinate information, the central axis of the virtual puncture needle and its apex are displayed in the virtual coordinate system.
  • the conversion formula I in the puncture needle positioning method of the present invention is used to perform plane matrix conversion. Obtain the converted coordinate information of the corresponding virtual puncture needle central axis L2 and the virtual puncture needle vertex C2.
  • step S400 in the virtual coordinate system, compare whether the vertex of the virtual puncture needle coincides with the apex of the ultrasonic section, and whether the direction of the virtual puncture needle central axis L2 and the planned path L1 coincide. When both of them are coincident, it is judged to be coincident.
  • the judgment flow of the coincidence of the central axis L2 of the virtual puncture needle with the planned path L1 is shown in Figure 8.
  • the virtual puncture needle vertex C2 is used as the axis to transform the spatial pose of the puncture needle.
  • the system indicator light first displays red, when the virtual puncture needle vertex C2 and the lesion When the position information of the apex C1 of the fan-shaped section of the ultrasonic section coincides, the system indicator light is blue.
  • the system indicator light is green
  • real-time monitoring shows the central axis L2 of the puncture needle
  • one coordinate information can only correspond to unique conversion coordinate information.
  • An embodiment of the present invention also provides a device, the device includes: a memory, a processor; the memory, on which a computer program is stored; the processor is used to execute the computer program stored in the memory, the program is When executed, the puncture needle positioning method of the present invention is realized.
  • the memory may include random access memory (Random Access Memory, RAM for short), and may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
  • RAM Random Access Memory
  • non-volatile memory such as at least one disk memory.
  • the processor may be a general-purpose processor, including a central processing unit (Central Processing Unit, CPU for short), a network processor (Network Processor, NP), etc.; it may also be a digital signal processor (Digital Signal Processing, DSP for short) , Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • CPU Central Processing Unit
  • NP Network Processor
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the puncture needle positioning method of the present invention is realized.
  • the computer-readable storage medium For the computer-readable storage medium, those of ordinary skill in the art can understand that all or part of the steps of the foregoing method embodiments can be implemented by hardware related to a computer program.
  • the aforementioned computer program can be stored in a computer-readable storage medium. When the program is executed, it executes the steps including the foregoing method embodiments; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.
  • step S201 ' the section F 1 virtual ultrasound probe 8 by ultrasonic scanning section virtual ultrasound lesions section lesions obtained are shown in the virtual coordinate system.
  • the virtual ultrasound probe central axis F 2 is the virtual ultrasound probe central axis displayed in the virtual coordinate system when the ultrasound probe 8 scans the lesion to obtain the ultrasound section of the lesion.
  • the central axis of the virtual ultrasound probe can be obtained based on the sensor on the ultrasound probe 8.
  • the virtual coordinate system also displays the fan-shaped vertices of the ultrasonic slice at the lesion, so as to assist in determining the puncture point.
  • the virtual ultrasound fan section F 1 is cut, the position of the ultrasonic probe in the case where the real apex of the chest wall of the contact 8 is the display section of the ultrasonic lesions sector cut vertex in the virtual coordinate system.
  • the central axis surface and central axis L of the ultrasonic probe 8 can be determined according to the position of the positioning device 9 on the ultrasonic probe 8.
  • the positioning devices 9 are all located on the central axis surface of the ultrasonic probe 8.
  • the positioning device 9 may be a sensor, and three non-collinear sensors Q 1 , Q 2 and Q 3 as shown in FIG. 10 are provided on the central axis of the ultrasonic probe 8 for determining the position of the ultrasonic probe 8
  • the central axis and the central axis L may be a sensor, and three non-collinear sensors Q 1 , Q 2 and Q 3 as shown in FIG. 10 are provided on the central axis of the ultrasonic probe 8 for determining the position of the ultrasonic probe 8 The central axis and the central axis L.
  • Q 1 Q 2 Q 3 is a right-angled triangle, and the central axis L of the ultrasound probe is the mid-perpendicular line of the line segment Q 1 Q 2 .
  • the fan-shaped vertices of the virtual ultrasonic tangent plane F 1 are used as the origin of the coordinate system.
  • step S202' the central axis F 2 of the virtual ultrasound probe is translated to a point Q 1 that coincides with the origin of the coordinate system.
  • the fan-shaped tangent vertices of the virtual ultrasonic tangent plane F 1 are used as the origin of the coordinate system.
  • the virtual ultrasonic probe central axis F 2 is translated to the point Q 1 It coincides with the origin of the coordinate system.
  • the coordinate conversion formula is:
  • (x', y', z') T is the coordinate information after T conversion, and (x, y, z) T is the coordinate information before conversion;
  • T T 4 T 3 T 2 T 1 , where T is the transformation matrix from the central axis of the virtual ultrasound probe to its projection plane on the virtual ultrasound section.
  • step S202' the transformation matrix T 1 between the plane F 2 'and the axial plane F 2 of the virtual ultrasound probe is:
  • step S203' the transformation matrix T 2 between the plane F 2 ′′ and the plane F 2 ′ is:
  • step S204' the transformation matrix T 3 between the plane F 2 "'and the plane F 2 "is:
  • step S205' the transformation matrix T 4 between the plane F 2 "" and the plane F 2 "'is:
  • step S202' the central axis plane F 2 of the virtual ultrasound probe is translated until any sampling point on the central axis plane F 2 of the virtual ultrasound probe coincides with the origin of the coordinate system to obtain a plane F 2 '.
  • the axial plane F 2 of the virtual ultrasound probe is translated to a point Q 1 that coincides with the origin of the coordinate system, and the corresponding transformation matrix T 1 is:
  • step S203' the unit normal vector of the plane F 2 'is rotated around the origin of the coordinate system to its unit normal vector and the unit normal vector of the virtual ultrasonic section F 1 Coincidence, the plane F 2 ”is obtained; the corresponding transformation matrix T 2 is:
  • the plane F 2 ′ can be rotated and transformed to obtain the plane F 2 ”.
  • step S204' the plane F 2 "is translated until the sampling point coincident with the origin of the coordinate system in step S202' returns to its initial position to obtain the plane F 2 "'.
  • the corresponding transformation matrix T 3 is:
  • the transformation matrix T 3 is:
  • step S205' the distance between the plane F 2 ”'and the virtual ultrasonic section F 1 is obtained, and the unit normal vector of the plane F 2 ”'is set along its unit normal vector (here, the unit normal vector of the plane F 2 ”'is equal to the unit normal of F 1 vector )
  • Plane F 2 " 'translation vector Then it coincides with the plane F 1 to obtain a plane F 2 "".
  • (x', y', z', 1) T(x, y, z, 1) T , where (x', y', z') T is the coordinate transformed by the axis plane F 2 of the virtual ultrasonic probe Information, (x, y, z) T is the coordinate information of the virtual ultrasonic probe before the axis plane F 2 is transformed. Therefore, it is possible to know the corresponding points after the transformation and overlap between the axial plane F 2 and the plane F 1 of the virtual ultrasound probe.
  • the position of the center axis of the ultrasound probe 8 on the ultrasound section of the lesion can be obtained through the method of the present invention.
  • the central axis obtained by the method of the present invention it can be used as a planned path for transthoracic wall puncture.
  • the central axis L of the ultrasound probe 8 should be located on the ultrasound section of the lesion, the apex of the ultrasound probe coincides with the apex of the ultrasound section of the lesion, and the central axis L of the ultrasound probe 8 coincides with the central axis of the ultrasound section of the lesion. Therefore, the planned path can be determined by determining the position of the central axis of the ultrasound probe.
  • the relative position of the ultrasonic section of the lesion and the central axis L of the ultrasonic probe 8 does not match the actual relative position of the two. Therefore, the coordinate conversion formula in the method of the present invention is used for conversion, and the ultrasonic The central axis L of the probe 8 is projected onto the ultrasound section of the lesion.
  • the embodiment of the present invention also provides a device for obtaining the central axis of the ultrasonic probe on the ultrasonic section, including:
  • Sampling module used to obtain the coordinates of three non-collinear sampling points on the virtual ultrasonic section F 1 in the virtual coordinate system OXYZ And the coordinates of three non-collinear sampling points on the central axis F 2 of the virtual ultrasound probe
  • the first translation module is used to obtain the transformation matrix T 1 between the plane F 2 ′ and the central axis plane F 2 of the virtual ultrasound probe, where the plane F 2 ′ is the translation of the virtual ultrasound probe central axis plane F 2 until the virtual ultrasound probe Obtained by coincidence of any sampling point on the axis F 2 of the ultrasonic probe with the origin of the coordinate system;
  • the rotation module is used to obtain the transformation matrix T 2 between the plane F 2 ′′ and the plane F 2 ′, where the plane F 2 ′′ is to rotate the plane F 2 ′ around the origin of the coordinate system to its unit normal vector and the virtual Unit normal vector of ultrasonic section F 1 Coincident gain
  • the second translation module is used to obtain the transformation matrix T 3 between the plane F 2 ”'and the plane F 2 ”, where the plane F 2 ”'is the translation of the plane F 2 ”until the coordinate in the first translation module
  • the sampling point that coincides with the origin is obtained by returning to its initial position.
  • the third translation module is used to obtain the transformation matrix T 4 between the plane F 2 ”” and the plane F 2 ”', where the plane F 2 ”” is to obtain the plane F 2 ”'and the virtual ultrasonic section
  • the distance between F 1 and the vector translation of the plane F 2 ”'along its unit normal vector To plane F 2 ′′' is obtained by coincident with the virtual ultrasonic section F 1 , and the coordinates of the ultrasonic probe center axis on the ultrasonic section are obtained by using the coordinate conversion formula and the coordinates of the virtual ultrasonic probe center axis F 2 corresponding to the center axis of the ultrasonic probe.
  • a virtual ultrasound section F 1 through 8 scanning ultrasonic probe virtual slice ultrasound lesions section lesions obtained are shown in the virtual coordinate system.
  • the virtual ultrasound probe central axis F 2 is the virtual ultrasound probe central axis displayed in the virtual coordinate system when the ultrasound probe 8 scans the lesion to obtain the ultrasound section of the lesion.
  • the central axis of the virtual ultrasound probe can be obtained based on the sensor on the ultrasound probe 8.
  • the virtual coordinate system also displays the fan-shaped vertices of the ultrasonic slice at the lesion, so as to assist in determining the puncture point.
  • the virtual ultrasound fan section F 1 is cut, the position of the ultrasonic probe in the case where the real apex of the chest wall of the contact 8 is the display section of the ultrasonic lesions sector cut vertex in the virtual coordinate system.
  • the central axis surface and central axis L of the ultrasonic probe 8 can be determined according to the position of the positioning device 9 on the ultrasonic probe 8.
  • the positioning devices 9 are all located on the central axis surface of the ultrasonic probe 8.
  • the positioning device 9 may be a sensor, and three non-collinear sensors Q 1 , Q 2 and Q 3 as shown in FIG. 2 are provided on the central axis of the ultrasonic probe 8 for determining the position of the ultrasonic probe 8
  • the central axis and the central axis L may be a sensor, and three non-collinear sensors Q 1 , Q 2 and Q 3 as shown in FIG. 2 are provided on the central axis of the ultrasonic probe 8 for determining the position of the ultrasonic probe 8 The central axis and the central axis L.
  • Q 1 Q 2 Q 3 is a right-angled triangle, and the central axis of the ultrasound probe is the vertical line of the line segment Q 1 Q 2.
  • the virtual three-dimensional coordinate system OXYZ takes the fan-shaped vertices of the virtual ultrasonic tangent plane F 1 as the origin of the coordinate system.
  • the central axis F 2 of the virtual ultrasound probe is translated to a point Q 1 that coincides with the origin of the coordinate system.
  • the coordinate conversion formula is:
  • (x', y', z') T is the coordinate information after T conversion, and (x, y, z) T is the coordinate information before conversion;
  • the transformation matrix T 1 between the plane F 2 ′ and the axial plane F 2 of the virtual ultrasound probe is:
  • the transformation matrix T 2 between the plane F 2 ′′ and the plane F 2 ′ is:
  • the transformation matrix T 3 between the plane F 2 ′′′ and the plane F 2 ′′ is:
  • the central axis plane F 2 of the virtual ultrasound probe is translated until any sampling point of the central axis plane F 2 of the virtual ultrasound probe coincides with the origin of the coordinate system to obtain a plane F 2 ′.
  • the axial plane F 2 of the virtual ultrasound probe is translated to a point Q 1 that coincides with the origin of the coordinate system, and the corresponding transformation matrix T 1 is:
  • the plane F 2 ′ can be rotated and transformed to obtain the plane F 2 ”.
  • the plane F 2 ′′ is translated until the sampling point coincident with the origin of the coordinate system in the first translation module returns to its initial position to obtain the plane F 2 ′′'.
  • the corresponding transformation matrix T 3 is:
  • the transformation matrix T 3 is:
  • the distance between the plane F 2 ”'and the virtual ultrasonic section F 1 is obtained, and the unit normal vector of the plane F 2 ”'is set along its unit normal vector (here the unit normal vector of the plane F 2 ”'is equal to the unit of F 1 Normal vector )
  • Plane F 2 " 'translation vector Then it coincides with the plane F 1 to obtain a plane F 2 "".
  • (x', y', z', 1) T(x, y, z, 1) T , where (x', y', z') T is the coordinate information after transformation of the axis plane F 2 of the virtual ultrasonic probe , (X, y, z) T is the coordinate information of the virtual ultrasonic probe's central axis before F 2 transformation. Therefore, it is possible to know the corresponding points after the transformation and overlap between the axial plane F 2 and the plane F 1 of the virtual ultrasound probe.
  • the position of the central axis of the ultrasound probe 8 on the ultrasound section of the lesion can be obtained through the device of the present invention according to the spatial coordinate information of the ultrasound probe 8 in the virtual coordinate system.
  • the central axis obtained by using the device of the present invention it can be used as a planned path for transthoracic wall puncture according to this.
  • the ultrasound section of the lesion is a fan-shaped section.
  • a straight line passing through the apex of the fan-shaped section of the ultrasound section of the lesion and a sampling point of the lesion puncture can be used as the actual planning path.
  • the central axis of the ultrasound section of the lesion can be used as the actual planned path.
  • the central axis L of the ultrasound probe 8 should be located on the ultrasound section of the lesion, the apex of the ultrasound probe coincides with the apex of the ultrasound section of the lesion, and the central axis L of the ultrasound probe 8 coincides with the central axis of the ultrasound section of the lesion. Therefore, the planned path can be determined by determining the position of the central axis of the ultrasound probe.
  • the relative position of the ultrasonic section of the lesion and the central axis L of the ultrasonic probe 8 does not match the actual relative position of the two. Therefore, the coordinate conversion formula in the device of the present invention is used for conversion, and the ultrasonic The central axis L of the probe 8 is projected onto the ultrasound section of the lesion.
  • the embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the method for obtaining the central axis of the ultrasound probe on the ultrasound section of the present invention is implemented.
  • the computer-readable storage medium For the computer-readable storage medium, those of ordinary skill in the art can understand that all or part of the steps of the foregoing method embodiments can be implemented by hardware related to a computer program.
  • the aforementioned computer program can be stored in a computer-readable storage medium. When the program is executed, it executes the steps including the foregoing method embodiments; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.
  • An embodiment of the present invention also provides a device, the device includes: a memory, a processor; the memory, on which a computer program is stored; the processor is used to execute the computer program stored in the memory, the program is The method of obtaining the central axis of the ultrasonic probe on the ultrasonic section according to the present invention is realized during execution.
  • the memory may include random access memory (Random Access Memory, RAM for short), or may also include non-volatile memory, such as at least one disk memory.
  • RAM Random Access Memory
  • non-volatile memory such as at least one disk memory.
  • the processor may be a general-purpose processor, including a central processing unit (Centra Processing Unit, CPU for short), a network processor (Network Processor, NP for short), etc.; it may also be a digital signal processor (Digita Signa Processing, DSP for short), a dedicated Integrated Circuit (Appication Specific Integrated Circuit, ASIC for short), Field Programmable Gate Array (Fied-Programmable Gate Array, FPGA for short) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • CPU Central Processing Unit
  • NP Network Processor
  • DSP Digital Signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the puncture needle positioning system and method provided by the present invention can greatly improve the accuracy of transthoracic puncture, not only can effectively avoid complications caused by repeated puncture, but also greatly shorten the puncture time during surgery.
  • the introduction of the first positioning device and the second positioning device greatly enriches the previous single ultrasonic positioning and navigation, and digitally analyzes all position information, and all the position information in the magnetic field passes through the first positioning device and the second positioning device Can be transformed into a three-dimensional coordinate system.
  • the puncture positioning system provides accurate puncture path planning according to the different conditions of each person, which truly realizes the individualized and precise medical treatment of the patient, which will greatly reduce the complications related to the operation, and make the transthoracic puncture interventional treatment become a conventional treatment method. possible.
  • the method for obtaining the central axis of the ultrasound probe on the ultrasound section can display the ultrasound section at the lesion and the plane where the positioning device of the ultrasound probe is located in the same virtual coordinate system and obtain the result through the method of the present invention. Plan the path.
  • the invention provides a standardized technical scheme for transthoracic puncture intracardiac interventional therapy. Through the implementation of the solution of the present invention, the preoperative puncture path planning line can be accurately traced and visualized, which provides a reliable navigation guarantee for the operation of the surgeon, and effectively reduces the surgeon's artificial puncture position error selection rate. The invention can not only improve the success rate of puncture, but also effectively prevent the occurrence of complications and improve the safety of operation.
  • the present invention effectively overcomes various shortcomings in the prior art and has a high industrial value.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Vascular Medicine (AREA)
  • Robotics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Computer Vision & Pattern Recognition (AREA)

Abstract

一种用于手术定位的穿刺针定位系统及方法,以及一种用于手术定位的在超声切面上获得超声探头中轴线的方法及装置。该穿刺针定位系统包括:超声单元(1),包括用于提供病灶处的超声切面的第一探头(11),第一探头(11)上设有用于提供第一探头(11)的坐标信息的多个第一定位装置(4);穿刺针单元(2),包括穿刺针,穿刺针上设有用于提供穿刺针的坐标信息的多个第二定位装置(5);处理及显示单元(3),分别与超声单元(1)、各第一定位装置(4)及各第二定位装置(5)通信连接。该穿刺针定位系统可大大提高经胸壁穿刺的精准度,不仅能有效避免反复穿刺带来的并发症,也大大缩短了手术时穿刺的时间。在超声切面上获得超声探头中轴线的方法包括:获取虚拟坐标系统中虚拟超声切面F1上三个不共线取样点坐标P1、P2、P3,和虚拟超声探头中轴面F2上三个不共线取样点坐标Q1、Q2、Q3(S201,S201');获得平面F2'与虚拟超声探头中轴面F2之间的变换矩阵T1(S202,S202');获得平面F2''与平面F2'之间的变换矩阵T2(S203,S203');获得平面F2'''与平面F2''之间的变换矩阵T3(S204,S204');获得平面F2''''与平面F2'''之间的变换矩阵T4(S205,S205')。

Description

一种穿刺针定位系统及方法 技术领域
本发明涉及手术定位技术领域,特别是涉及一种穿刺针定位系统及方法。
背景技术
随着医疗科技的高度发展,介入技术已经成为继药物治疗和外科手术之后的第三种有效临床治疗手段。介入路径是成功实施治疗的关键。理想的介入路径应该距离病变近,便于操控器械,同时创伤小。为了便于控制出血,经股静脉和股动脉是结构性心脏病的主要介入路径。但这种介入路径远离心脏,而且行程曲折,因此不利于心内介入的精确操作,同时也限制了介入治疗的适应症。近十年来,经心表路径心内介入技术已广泛应用于临床。由于介入距离心脏更近和超声引导下精准的可视化操作,此项技术不仅拓宽了手术的适应症,而且在某些疾病例如室间隔缺损治疗上取得了比传统介入方法更好的效果。因此,经心表路径应该是结构性心脏病最理想的介入通道。经心表路径实施介入治疗的方法有切开胸壁和经胸壁穿刺两种。无疑,经胸壁穿刺更具优势,不仅创伤更小,而且没有手术切口疤痕。但此项技术关键之处在于选择精准的穿刺位点和路径,确保一次性成功。若反复多次穿刺心脏,会导致因穿刺点出血而产生的心包填塞等严重并发症。为此,术前需要采用经胸超声规划穿刺路径。但在临床实际操作过程中,术者只能凭借个人经验在脑海里重构穿刺针的空间位置,在穿刺点及角度上,存在很大的错选率。因此,此项技术难以在临床上推广应用。如果想要实现经胸壁穿刺介入治疗,一种高度精确的导航系统成为了迫切的需求。
经胸壁穿刺心内介入治疗是一种新兴的介入技术,具有介入路径短而直、距离心内病灶近、易于精准操控介入器械等优势,适用于多种结构性心脏病,尤其是外科手术后并发症的治疗。此项技术关键之处在于选择精准的穿刺位点和路径,确保一次性成功。若反复多次穿刺心脏,会导致因穿刺点出血而产生的心包填塞等严重并发症。为此,术前需要采用经胸超声规划穿刺路径,确定穿刺位点和穿刺针的空间位姿。一般来说,超声扫查确定病灶后,以扇形切面的中轴线穿过病灶为最佳穿刺路径。但在临床实际操作过程中,术者只能凭借个人经验在脑海里重构穿刺针的空间位置,在穿刺点及穿刺针的位姿上,存在很大的错选率,经常会偏离最佳穿刺路径线,容易导致严重并发症发生。为了提高穿刺成功率,需要将术前穿刺路径规划线描记下来并可视化,以供术中参照。因此,一种在超声切面上获得超声探头中轴线的方法及装置成为了迫切的需求。
发明内容
鉴于以上所述现有技术的缺点,本发明要解决的技术问题在于提供一种穿刺针定位系统及方法,以及一种在超声切面上获得超声探头中轴线的方法及装置,用于提供精准的穿刺位点和路径,确保一次性穿刺成功。
为实现上述目的及其他相关目的,本发明一方面提供一种穿刺针定位系统,所述系统包括:
超声单元,包括用于提供病灶处的超声切面的第一探头,所述第一探头上设有用于提供第一探头的坐标信息的多个第一定位装置;
穿刺针单元,包括穿刺针,所述穿刺针上设有用于提供穿刺针的坐标信息的多个第二定位装置;
处理及显示单元,分别与超声单元、各所述第一定位装置及各所述第二定位装置通信连接,用于:获取病灶处的超声切面并在虚拟的坐标系统中显示;获取第一探头在获取病灶处的超声切面时的坐标信息并在虚拟的坐标系统中显示;在虚拟坐标系统中确定规划路径;获取各第二定位装置提供的穿刺针的坐标信息并在虚拟的坐标系统中显示虚拟穿刺针中轴线和虚拟穿刺针顶点;在虚拟的坐标系统中,比较虚拟穿刺针中轴线与规划路径是否重合;
本发明另一方面提供一种穿刺针定位方法,包括如下步骤:
S100获取病灶处的超声切面并在虚拟的坐标系统中显示;获取第一探头在获取病灶处的超声切面时的坐标信息并在虚拟的坐标系统中显示;
S200在虚拟的坐标系统中确定规划路径;
S300获取穿刺针上的第二定位装置在虚拟坐标系统中的坐标信息并显示虚拟穿刺针中轴线和虚拟穿刺针顶点;
S400在虚拟的坐标系统中,比较虚拟穿刺针中轴线和所规划路径是否重合。
本发明另一方面提供一种设备,所述设备包括:存储器及处理器;所述存储器,其上存储有计算机程序;所述处理器,用于执行所述存储器存储的计算机程序,该程序被执行时实现本发明所述的穿刺针定位方法。
本发明另一方面提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本发明所述的穿刺针定位方法。
本发明另一方面提供一种在超声切面上获得超声探头中轴线的方法,包括:
S201’获取虚拟坐标系统OXYZ中虚拟超声切面F 1上三个不共线取样点坐标
Figure PCTCN2020091532-appb-000001
以及虚拟超声探头中轴面F 2上三个不共线取样点坐标
Figure PCTCN2020091532-appb-000002
S202’获得平面F 2'与虚拟超声探头中轴面F 2之间的变换矩阵T 1,其中平面F 2'为平移所述虚拟超声探头中轴面F 2直至所述虚拟超声探头中轴面F 2上任一取样点与坐标系原点重合获得;
S203’获得平面F 2”与平面F 2'之间的变换矩阵T 2,其中平面F 2”为将所述平面F 2'绕坐标系原点旋转至其单位法向量与所述虚拟超声切面F 1的单位法向量
Figure PCTCN2020091532-appb-000003
重合获得;
S204’获得平面F 2”'与所述平面F 2”之间的变换矩阵T 3,其中平面F 2”'为平移所述平面F 2”直至步骤S202’中与坐标系原点重合的取样点回到其初始位置获得;
S205’获得平面F 2””与所述平面F 2”'之间的变换矩阵T 4,其中平面F 2””为获取所述平面F 2”'与所述虚拟超声切面F 1之间的距离,将所述平面F 2”'沿其单位法向量平移向量
Figure PCTCN2020091532-appb-000004
至平面F 2”'与虚拟超声切面F 1重合获得,利用坐标转换公式及虚拟超声探头中轴面F 2中对应超声探头中轴线的坐标获取超声切面上超声探头中轴线的坐标。
本发明另一方面提供一种在超声切面上获得超声探头中轴线的装置,包括:
取样模块:用于获取虚拟坐标系统OXYZ中虚拟超声切面F 1上三个不共线取样点坐标
Figure PCTCN2020091532-appb-000005
以及虚拟超声探头中轴面F 2上三个不共线取样点坐标
Figure PCTCN2020091532-appb-000006
第一平移模块:用于获得平面F 2'与虚拟超声探头中轴面F 2之间的变换矩阵T 1,其中平面F 2'为平移所述虚拟超声探头中轴面F 2直至所述虚拟超声探头中轴面F 2上任一取样点与坐标系原点重合获得;
旋转模块:用于获得平面F 2”与平面F 2'之间的变换矩阵T 2,其中平面F 2”为将所述平面F 2'绕坐标系原点旋转至其单位法向量与所述虚拟超声切面F 1的单位法向量
Figure PCTCN2020091532-appb-000007
重合获得;
第二平移模块:用于获得平面F 2”'与所述平面F 2”之间的变换矩阵T 3,其中平面F 2”'为平移所述平面F 2”直至步骤S202’中与坐标系原点重合的取样点回到其初始位置获得;
第三平移模块:用于获得平面F 2””与所述平面F 2”'之间的变换矩阵T 4,其中平面F 2””为获取所述平面F 2”'与所述虚拟超声切面F 1之间的距离,将所述平面F 2”'沿其单位法向量平移向量
Figure PCTCN2020091532-appb-000008
至平面F 2”'与虚拟超声切面F 1重合获得,利用坐标转换公式及虚拟超声探头中 轴面F 2中对应超声探头中轴线的坐标获取超声切面上超声探头中轴线的坐标。
本发明另一方面提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现本发明所述的在超声切面上获得超声探头中轴线的方法。
本发明另一方面提供一种设备,所述设备包括:存储器、处理器;所述存储器,其上存储有计算机程序;所述处理器,用于执行所述存储器存储的计算机程序,该程序被执行时实现本发明所述的在超声切面上获得超声探头中轴线的方法。
本发明达到了以下有益效果:
本发明提供的穿刺针定位系统可大大提高了经胸壁穿刺的精准度,不仅能有效避免反复穿刺带来的并发症,也大大缩短了手术时穿刺的时间。引入第一定位装置和第二定位装置,将以往单一的超声定位导航予以了极大的丰富,并将所有位置信息予以数字化解析,所有磁场中的位置信息通过第一定位装置和第二定位装置均可转化为三维坐标系。穿刺定位系统依据每个人不同的病情提供了精确的穿刺路径规划,真正实现了对病人的个体化精准医疗,将使手术相关并发症大幅度减少,使经胸穿刺介入治疗变成常规治疗手段成为可能。
本发明提供的在超声切面上获得超声探头中轴线的方法,可以将病灶处的超声切面与超声探头设有的定位装置所在的平面在同一虚拟的坐标系统中显示并通过本发明的方法转换获得规划路径。本发明为经胸穿刺心内介入治疗提供了一种标准化的技术方案。通过本发明方案的实施,可以将术前穿刺路径规划线精准描记下来并可视化,为术者操作提供了可靠的导航保障,有效地降低了术者人为的穿刺位姿错选率。本发明不仅可以提高穿刺成功率,而且有效防治并发症发生,提高了手术安全性。
附图说明
图1为本发明的穿刺针定位系统应用场景;
图2为本发明第一探头的结构示意图。
图3为本发明超声探头卡扣结构示意图。
图4为本发明穿刺针及穿刺针卡扣件结构示意图。
图5为本发明穿刺针定位方法的流程示意图。
图6为本发明第一探头中轴线投射至超声切面上的坐标转换方法的流程示意图。
图7为本发明穿刺针定位系统可视化界面示意图。
图8为本发明虚拟穿刺针和规划路径重合判定流程示意图。
图9为在超声切面上获得超声探头中轴线的方法的流程示意图。
图10为超声探头的结构示意图。
图中元件标号
1              超声单元
11             第一探头
12             第二探头
2              穿刺针单元
3              处理及显示单元
4              第一定位装置
5              第二定位装置
6              探头卡扣件
7              穿刺针卡扣件
8              超声探头
9              定位装置
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
如图1所示,本发明实施例提供一种穿刺针定位系统。如图1所示场景中,所述系统包括:超声单元1、穿刺针单元2、处理及显示单元3。所述超声单元1包括用于提供病灶处超声切面的第一探头11,所述第一探头11上如图2所示,设有用于提供第一探头11的坐标信息的多个第一定位装置4;所述穿刺针单元2包括穿刺针,所述穿刺针上如图4所示,设有用于提供穿刺针的坐标信息的多个第二定位装置5;所述处理及显示单元3分别与超声单元1、各所述第一定位装置4及各所述第二定位装置5通信连接,用于:获取病灶处的超声切面并在虚拟的坐标系统中显示;获取第一探头11在获取病灶处的超声切面时的坐标信息并在虚拟的坐标系统中显示,进一步在虚拟坐标系统中确定规划路径L1;获取穿刺针上的第二定位装置5在虚拟坐标系统中的坐标信息并显示虚拟穿刺针中轴线L2和虚拟穿刺针顶点C2;在虚拟的坐标系统中,比较虚拟穿刺针中轴线L2与规划路径L1是否重合。当所述虚拟穿刺针和中轴线L2与规划路径L1重合时采用穿刺针进行穿刺。
在所述超声单元1中,超声单元1可以是带多个探头的超声机。如图2所示,超声单元1包括用于提供病灶处的超声切面的第一探头11,所述第一探头11为经胸心脏超声探头。所述第一探头可采用现有常规的超声探头,例如飞利浦的EPIQ7C。使用时,将第一探头11在人体的肋间隙扫查病灶处,例如室间隔缺损,进而获得病灶处的超声切面,通常情况下,当病灶处出现在超声切面上时则为病灶处的超声切面。
所述第一探头11上设有用于提供第一探头11坐标信息的多个第一定位装置4。所述第一探头11的坐标信息包括第一探头11上位若干位置点的坐标信息。所述位置点应选择便于确定第一探头11中轴线的位置点。在一具体实施例中,如图2所示,所述第一探头11上设有3个第一定位装置4,3个所述第一定位装置4位于同一水平面且与所述第一探头11的中轴面重合,其中两个第一定位装置4位于第一探头11的同一横截面上,所述横截面是垂直中轴面的截面,且3个所述第一定位装置4呈直角三角形分布。该设置是为了通过各第一定位装置4进一步确定第一探头11的中轴线。所述第一定位装置4选自传感器。通常情况下,传感器与磁源和磁定位仪配套使用,传感器与磁定位仪通信连接,磁源与磁定位仪通信连接。使用时,磁源设于手术台附近。在一具体实施例中,可以采用加拿大NDI公司的3DGuidance trakSTAR仪器,所述3DGuidance trakSTAR仪器包括本申请使用的传感器、磁源和磁定位仪。进一步地,为了第一探头11和第一定位装置4的安装稳定性,在所述第一探头11上设有与第一探头11相配合的探头卡扣件6,所述探头卡扣件6如图3所示,其上设有用于安装第一定位装置4的3个第一插孔,3个第一插孔位置与传感器Q 1、Q 2和Q 3匹配。由3个传感器Q 1、Q 2和Q 3,可以获取并记录下此时传感器Q 1、Q 2和Q 3的坐标信息,作为第一探头11的坐标信息。由于三个传感器是设在第一探头11的多个位置点上,即可以知道第一探头11的坐标信息。
所述超声单元1还包括用于监测整个穿刺过程的第二探头12。第二探头12与处理及显示单元3通信连接,可将第二探头扫描到的图像信息在处理及显示单元3中显示。所述第二探头12为经食道超声,所述第二探头12可采用现有常规的超声探头,例如,所述超声探头可以是飞利浦的X7-2T。第二探头12可以为穿刺过程提供实时监测和评估,进一步确保了心内介入操作的安全性。
在所述穿刺针单元2中包括穿刺针,所述穿刺针上设有用于提供穿刺针的坐标信息的多个第二定位装置5。所述穿刺针的坐标信息包括穿刺针上若干个位置点的坐标信息。所述位置点应选择便于确定穿刺针中轴线的位置点。在一具体实施例中,所述穿刺针上设有2个第二定位装置5,所述第二定位装置5分别设于穿刺针的中轴线上,2个第二定位装置5设于穿刺针中轴线的不同位置,该设置是为了通过第二定位装置5进一步确定穿刺针的中轴线。所述第二定位装置5选自传感器。通常情况下,传感器与磁源和磁定位仪配套使用,磁源和传感器分别与磁定位仪通信连接,使用时,磁源设于手术台附近。在一具体实施例中,可以采用加拿大NDI公司的3DGuidance trakSTAR仪器,所述3DGuidance trakSTAR仪器包括本申请使用的传感器、磁源和磁定位仪。进一步地,为了穿刺针和第二定位装置5的安装稳定性,所述穿刺针上设有与穿刺针配合的穿刺针卡扣件7,所述穿刺针卡扣件7如图4所示,其上设有用于安装第二定位装置5的2个第二插孔,2个第二插孔位置与传感器B1和B2匹配。上述可知,由2个传感器B1和B2,可以获取并记录下此时B1和B2的坐标信息,作为穿刺针的坐标信息。由于2个传感器B1和B2是设在穿刺针的多个位置点上,即可以知道穿刺针的坐标信息。
所述处理及显示单元3包括处理器及显示器,所述处理器可以是服务器,还可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。所述处理器与显示器通信连接。所述处理器分别与超声单元1、各所述第一定位装置4及各所述第二定位装置5通信连接。所述处理器与显示器通信连接,用于显示。更具体的,所述处理器与第一探头和第二探头通信连接。
进一步的,处理及显示单元3包括下列模块:
第一数据获取模块:用于获取病灶处的超声切面并在虚拟的坐标系统中显示;获取第一探头11在获取病灶处的超声切面时的坐标信息并在虚拟的坐标系统中显示;
规划路径确定模块:用于在虚拟的坐标系统中确定规划路径L1;
第二数据获取模块:用于获取穿刺针上的第二定位装置5在虚拟坐标系统中的坐标信息并显示虚拟穿刺针中轴线L2和虚拟穿刺针顶点C2;
比较模块:用于在虚拟的坐标系统中,比较虚拟穿刺针中轴线L2与规划路径L1是否重合。
具体的,第一数据获取模块中,病灶处的超声切面通过第一探头11扫查病灶处获得,一般认为,当病灶处出现在超声切面上时则为病灶处的超声切面。
病灶处的超声切面在虚拟坐标系统中的显示位置并无特殊要求。虚拟的坐标系统的原点并无特殊要求,为了便于数据处理,在一较佳的实施方式中,以病灶处超声切面的扇形切面顶点C1作为虚拟坐标系统的原点。
第一探头11可通过第一定位装置4提供其坐标信息。各第一定位装置4的坐标信息即为匹配虚拟坐标系统的坐标信息。可以用各第一定位装置4在虚拟的坐标系统的位置表示第一探头11。为了更方便获得规划路径,需要确定第一探头11中轴线的位置。在一优选的实施方式中,将第一探头11的第一定位装置4均设于第一探头11中轴面上以便于确定第一探头11中轴线的位置。在如图2所示的第一探头11中,可以将3个传感器Q 1、Q 2和Q 3在虚拟的坐标系统的位置表示第一探头11,Q 1、Q 2和Q 3所在的中轴面中,Q 1和Q 2的垂直平分线即为第一探头11的中轴线。
为了便于后续步骤确定规划路径,在优选的实施方式中,可将预进行穿刺取样的病灶点置于病灶处超声切面的中轴线上。
规划路径确定模块中,可根据虚拟的坐标系统中,第一探头11的空间坐标信息,经平面矩阵转换,得出第一探头11中轴线在病灶处的超声切面上的位置,从而确定规划路径 L1。
病灶处超声切面为扇形切面。一般情况下,可将过病灶处超声切面的扇形切面顶点及一病灶穿刺取样点的直线作为实际规划路径。当预进行穿刺取样的病灶点置于病灶处超声切面的中轴线上时,病灶处超声切面的中轴线即可作为实际规划路径。在真实情况下,第一探头11的中轴线应位于病灶处的超声切面上,第一探头11的顶点与病灶处的超声切面顶点重合,第一探头11中轴线与病灶处超声切面的中轴线重合。因此,确定了第一探头11中轴线的位置即可确定规划路径。
但在虚拟坐标系统中,病灶处的超声切面与第一探头11中轴线的相对位置与两者的实际相对位置并不匹配,因此需要进行转换,将第一探头11的中轴线投影至病灶处的超声切面上。
具体的,可采用下列转换公式Ι进行平面矩阵转换,获得第一探头11的中轴线投影至病灶处的超声切面上的转换坐标信息。
(x′,y′,z′,1)=T(x,y,z,1) T(转换公式Ι),其中(x′,y′,z′) T转换后的坐标信息,(x,y,z) T为转换前的坐标信息。
其中,T=T 4T 3T 2T 1,T为虚拟第一探头中轴面到其在虚拟超声切面的投影平面的变换矩阵。
Figure PCTCN2020091532-appb-000009
Figure PCTCN2020091532-appb-000010
Figure PCTCN2020091532-appb-000011
Q′ 1=T 3T 2T 1Q 1
Figure PCTCN2020091532-appb-000012
Figure PCTCN2020091532-appb-000013
Figure PCTCN2020091532-appb-000014
Figure PCTCN2020091532-appb-000015
Figure PCTCN2020091532-appb-000016
Figure PCTCN2020091532-appb-000017
Figure PCTCN2020091532-appb-000018
Figure PCTCN2020091532-appb-000019
Figure PCTCN2020091532-appb-000020
其中,P 1、P 2、P 3为病灶处的虚拟超声切面F 1上的三个不共线取样点,Q 1、Q 2、Q 3为虚拟第一探头中轴面F 2上的三个不共线的点,
Figure PCTCN2020091532-appb-000021
Figure PCTCN2020091532-appb-000022
代表各点的坐标;
Figure PCTCN2020091532-appb-000023
为虚拟超声切面F 1的单位法向量,
Figure PCTCN2020091532-appb-000024
为虚拟第一探头中轴面F 2的单位法向量;
Figure PCTCN2020091532-appb-000025
Figure PCTCN2020091532-appb-000026
均为将虚拟第一探头中轴面F 2平移至Q 1与虚拟坐标系统原点重合,获得平面F 2'后,再将平面F 2'的单位法向量围绕原点旋转至与单位法向量
Figure PCTCN2020091532-appb-000027
重合时,平面F 2'的单位法向量绕X轴逆时针旋转的角度。
Figure PCTCN2020091532-appb-000028
Figure PCTCN2020091532-appb-000029
均为将虚拟第一探头中轴面F 2平移至Q 1与虚拟坐标系统原点重合,获得平面F 2'后,再将平面F 2'的单位法向量围绕原点旋转至与单位法向量
Figure PCTCN2020091532-appb-000030
重合时,平面F 2'的单位法向量绕Y轴逆时针旋转的角度。
将上述第一探头11中轴线投射至超声切面上的平面矩阵转换装置包括:
取样模块,用于获取虚拟坐标系统OXYZ中虚拟超声切面F 1上三个不共线取样点坐标
Figure PCTCN2020091532-appb-000031
以及虚拟第一探头中轴面F 2上三个不共线取样点坐标
Figure PCTCN2020091532-appb-000032
第一平移模块,用于获得平面F 2'与虚拟第一探头中轴面F 2之间的变换矩阵T 1,具体地,平面F 2'为平移所述虚拟第一探头中轴面F 2直至所述虚拟第一探头中轴面F 2上任一取样点与坐标系原点重合获得;
旋转模块,用于获得平面F 2”与平面F 2'之间的变换矩阵T 2,具体地,平面F 2”为将所述平面F 2'绕坐标原点旋转至其单位法向量与所述虚拟超声切面F 1的单位法向量
Figure PCTCN2020091532-appb-000033
重合获得;
第二平移模块,用于获得平面F 2”'与所述平面F 2”之间的变换矩阵T 3,其中平面F 2”'为平移所述平面F 2”直至第一平移模块中与坐标系原点重合的取样点回到其初始位置获得。
第三平移模块,用于获得平面F 2””与所述平面F 2”'之间的变换矩阵T 4,其中平面F 2””为获取所述平面F 2”'与所述虚拟超声切面F 1之间的距离,将所述平面F 2”'沿其单位法向量(此处所述单位法向量等于F 1的单位法向量
Figure PCTCN2020091532-appb-000034
)平移向量
Figure PCTCN2020091532-appb-000035
至平面F 2”'与虚拟超声切面F 1重合获得,利用坐标转换公式及平面F 2中对应超声探头中轴线的坐标获取超声切面上超声探头中轴线的坐标。
具体的:
在取样模块中,虚拟超声切面F 1是通过第一探头11扫查病灶处获得的病灶处超声切面在虚拟的坐标系统中显示的虚拟切面。虚拟第一探头中轴面F 2是第一探头11扫查病灶获得病灶处超声切面时,在虚拟坐标系统中显示的虚拟第一探头中轴面。虚拟第一探头中轴面可依据第一探头11上的传感器获得。
在一优选的实施方式中,虚拟坐标系统还显示病灶处超声切面的扇形切面顶点C1,以便于辅助确定穿刺点。具体的,虚拟超声切面F 1为扇形切面,此时真实情况下的第一探头11顶点与胸壁接触的位置在虚拟坐标系统中显示即为病灶处超声切面的扇形切面顶点C1。
在一种实施方式中,可根据第一定位装置4在第一探头11上所设的位置,确定第一探头11的中轴面及中轴线。在一较佳实施方式中,为了便于确定第一探头11的中轴线,第一定位装置4均位于第一探头11的中轴面上。
第一定位装置4可以是传感器,在第一探头11的中轴面上设有如图2所示的三个不共线的传感器Q 1、Q 2和Q 3,用于确定第一探头11的中轴面及中轴线。
为了便于获得中轴线的坐标位置,Q 1Q 2Q 3呈直角三角形,且超声探头的中轴线为线段Q 1Q 2的中垂线。
在一优选的实施例中,虚拟三维坐标系OXYZ以虚拟超声切面F 1的扇形切面顶点C1作为坐标系的原点。
在另一优选的实施例中,第一平移模块中,将虚拟第一探头中轴面F 2平移至点Q 1与原点重合。
以虚拟三维坐标系OXYZ以虚拟超声切面F1的扇形切面顶点C1作为坐标系的原点,第一平移模块中,将虚拟第一探头中轴面F 2平移至点Q 1与坐标系原点重合,
Figure PCTCN2020091532-appb-000036
其中:
Figure PCTCN2020091532-appb-000037
旋转模块:用于将平面F 2'的单位法向量绕坐标系原点旋转至其单位法向量与虚拟超声切面F 1的单位法向量
Figure PCTCN2020091532-appb-000038
重合,获得平面F 2”;对应变换矩阵T 2为:
Figure PCTCN2020091532-appb-000039
其中,
Figure PCTCN2020091532-appb-000040
满足:
Figure PCTCN2020091532-appb-000041
Figure PCTCN2020091532-appb-000042
满足:
Figure PCTCN2020091532-appb-000043
Figure PCTCN2020091532-appb-000044
满足:
Figure PCTCN2020091532-appb-000045
Figure PCTCN2020091532-appb-000046
满足:
Figure PCTCN2020091532-appb-000047
上述公式解释为:
Figure PCTCN2020091532-appb-000048
Figure PCTCN2020091532-appb-000049
均为将虚拟第一探头中轴面F 2平移至Q 1与虚拟坐标系统原点重合,获得平面F 2'后,再将平面F 2'的单位法向量围绕坐标系原点旋转至与单位法向量
Figure PCTCN2020091532-appb-000050
重合时,平面F 2'的单位法向量绕X轴逆时针旋转的角度。
Figure PCTCN2020091532-appb-000051
Figure PCTCN2020091532-appb-000052
均为将虚拟第一探头中轴面F 2平移至Q 1与虚拟坐标系统原点重合,获得平面F 2'后,再将平面F 2'的单位法向量围绕坐标系原点旋转至与单位法向量
Figure PCTCN2020091532-appb-000053
重合时,平面F 2'的单位法向量绕Y轴逆时针旋转的角度。
通过旋转模块可将平面F 2'旋转变换后得到平面F 2”。
第二平移模块中,用于平移平面F 2”直至第一平移模块中与坐标系原点重合的取样点回到其初始位置获得平面F 2”'。以取样点为Q 1为例,对应变换矩阵T 3为:
Figure PCTCN2020091532-appb-000054
其中变换矩阵T 3:
Figure PCTCN2020091532-appb-000055
第三平移模块中,用于获取平面F 2”'与虚拟超声切面F 1之间的距离,设平面F 2”'需要平移的向量为
Figure PCTCN2020091532-appb-000056
其中Q′ 1=T 3T 2T 1Q 1。变换矩阵T 4为:
Figure PCTCN2020091532-appb-000057
平面F 2”'平移向量
Figure PCTCN2020091532-appb-000058
后与平面F 1重合,获得平面F 2””。
综上,得到总变换矩阵为:T=T 4T 3T 2T 1,得到如下结论:对于虚拟第一探头中轴面F 2上任一点(x,y,z) T其对应齐次坐标满足:
(x′,y′,z′,1)=T(x,y,z,1) T,其中(x′,y′,z′) T转换后的坐标信息,(x,y,z) T为转换前的坐标信息。因此可以知道虚拟第一探头中轴面F 2与虚拟超声切面F 1变换重合后的对应点。
根据上述公式,可知虚拟第一探头中轴面F 2上Q 1、Q 2、Q 3与虚拟超声切面F 1变换重合后的对应点,进一步可将虚拟第一探头中轴面F 2中Q 1和Q 2的底边垂线,虚拟第一探头中轴面F 2上与Q 1和Q 2的底边中垂线重合的路径即为虚拟超声切面F 1中的规划路径L1。
所述第二数据获取模块中,根据虚拟的坐标系统中,第二定位装置5的坐标信息,经平面矩阵转换,获得穿刺针中轴线及穿刺针顶点投射至病灶处的超声切面上的虚拟穿刺针中轴线L2及虚拟穿刺针顶点C2的转换坐标信息,并根据转换坐标信息,在虚拟坐标系统中显示虚拟穿刺针中轴线及其顶点。
具体的,所述虚拟的坐标系统中,以病灶处超声切面的扇形切面顶点C1作为原点时,采用穿刺针定位系统中的转换公式I进行平面矩阵转换,获得对应的虚拟穿刺针中轴线L2及虚拟穿刺针顶点C2的转换坐标信息。
比较模块中,用于在虚拟的坐标系统中,比较虚拟穿刺针顶点与超声切面顶点是否重合,以及虚拟穿刺针中轴线L2与规划路径L1的走向是否重合,当两者均重合时判断为重 合。
更具体的,虚拟穿刺针中轴线L2与规划路径L1的重合判断流程如图8所示,在虚拟的坐标系统中,比较虚拟穿刺针顶点C2与病灶处超声切面的扇形切面顶点C1是否重合,若不重合,则判断为与规划路径L1不重合,若重合,则进一步判断虚拟穿刺针中轴线L2与规划路径L1是否重合,若不重合,则判断为与规划路径L1不重合,若重合,则判断为与规划路径L1重合。一般情况下,重合时给出重合提示信号,不重合时给出不重合提示信号。在一具体实施例中,以虚拟穿刺针顶点C2为轴心变换穿刺针的空间位姿,如图7所示,初始状态下,系统指示灯首先显示为红色,当虚拟穿刺针顶点C2和病灶处超声切面的扇形切面顶点C1位置信息重合时系统指示灯为蓝色,当穿刺针的中轴线L2和规划路径L1重合时,系统指示灯显示为绿色,并实时监测显示穿刺针的中轴线L2和规划路径L1的重合信息,在穿刺针行进中根据虚拟界面的标示颜色调整穿刺针,以辅助穿刺顺利进行。以系统指示灯为绿色时的穿刺路径进行穿刺。
基于转换公式,一坐标信息仅能对应唯一的转换坐标信息。
同理,空间中只存在唯一的直线,其坐标经转换后能对应超声切面的中轴线,只有当穿刺针的中轴线与该直线在空间上重合时,其对应的虚拟穿刺针中轴线才能与超声切面的中轴线(即规划路径L1)重合,当穿刺针的中轴线与该直线在空间上不重合时,其对应的虚拟穿刺针中轴线不会与规划路径L1重合。
本发明的穿刺针定位系统的工作过程:
将设有第一定位装置4的第一探头11在患者病灶处扫查,获得包括病灶处的超声切面,并在处理及显示单元3的虚拟坐标系统中显示病灶处的超声切面及第一探头11。病灶处的超声切面为第一探头11扫查到的扇形区域,病灶处超声切面的扇形切面顶点C1对应超声探头与肌肤的接触点,将该接触点作为胸壁穿刺点位置。通过坐标转换公式将第一探头11的中轴面转换成与病灶处的超声切面重合,获得规划路径L1。将穿刺针顶点置于胸壁穿刺点位置,记录各第二定位装置5提供的穿刺针的坐标信息并在虚拟的坐标系统中显示穿刺针的中轴线L2,以胸壁穿刺点位置为轴心来变换穿刺针的空间位姿直至系统提示虚拟穿刺针中轴线L2与规划路径L1位置信息重合,保持穿刺针此时的位姿进行穿刺。在优选的实施方式中,在穿刺针穿刺行进过程中,系统可实时提示穿刺针的位姿是否与规划路径L1重合,并在第二探头12的监测下辅助穿刺顺利进行。
本发明实施例还提供一种穿刺针的定位方法,包括:
S100获取病灶处的超声切面并在虚拟的坐标系统中显示;获取第一探头11在获取病灶处的超声切面时的坐标信息并在虚拟的坐标系统中显示;
S200在虚拟的坐标系统中确定规划路径L1;
S300获取穿刺针上的第二定位装置5在虚拟坐标系统中的坐标信息并显示虚拟穿刺针中轴线L2和虚拟穿刺针顶点C2;
S400在虚拟的坐标系统中,比较虚拟穿刺针中轴线L2和所规划路径L1是否重合。
具体的,步骤S100中,病灶处的超声切面通过第一探头11扫查病灶处获得,一般认为,当病灶处出现在超声切面上时则为病灶处的超声切面。
病灶处的超声切面在虚拟坐标系统中的显示位置并无特殊要求。虚拟的坐标系统的原点并无特殊要求,为了便于数据处理,在一较佳的实施方式中,以病灶处超声切面的扇形切面顶点C1作为虚拟坐标系统的原点。
第一探头11可通过第一定位装置4提供其坐标信息。各第一定位装置4的坐标信息即为匹配虚拟坐标系统的坐标信息。可以用各第一定位装置4在虚拟的坐标系统的位置表示第一探头11。为了更方便获得规划路径,需要确定第一探头11中轴线的位置。在一优选的实施方式中,将第一探头11的第一定位装置4均设于第一探头11中轴面上以便于确定第一探头11中轴线的位置。在如图2所示的第一探头11中,可以将3个传感器Q 1、Q 2和Q 3在虚拟的坐标系统的位置表示第一探头11,Q 1、Q 2和Q 3所在的中轴面中,Q 1和Q 2 的垂直平分线即为第一探头11的中轴线。
为了便于后续步骤确定规划路径,在优选的实施方式中,可将预进行穿刺取样的病灶点置于病灶处超声切面的中轴线上。
步骤S200中,可根据虚拟的坐标系统中,第一探头11的空间坐标信息,经平面矩阵转换,得出第一探头11中轴线在病灶处的超声切面上的位置,从而确定规划路径L1。
病灶处超声切面为扇形切面。一般情况下,可将过病灶处超声切面的扇形切面顶点及一病灶穿刺取样点的直线作为实际规划路径。当预进行穿刺取样的病灶点置于病灶处超声切面的中轴线上时,病灶处超声切面的中轴线即可作为实际规划路径。在真实情况下,第一探头11的中轴线应位于病灶处的超声切面上,第一探头11的顶点与病灶处的超声切面顶点重合,第一探头11中轴线与病灶处超声切面的中轴线重合。因此,确定了第一探头11中轴线的位置即可确定规划路径。
但在虚拟坐标系统中,病灶处的超声切面与第一探头11中轴线的相对位置与两者的实际相对位置并不匹配,因此需要进行转换,将第一探头11的中轴线投影至病灶处的超声切面上。
具体的,可采用下列转换公式Ι进行平面矩阵转换,获得第一探头11的中轴线投影至病灶处的超声切面上的转换坐标信息。
(x′,y′,z′,1)=T(x,y,z,1) T(转换公式Ι),其中(x′,y′,z′) T转换后的坐标信息,(x,y,z) T为转换前的坐标信息。
其中,T=T 4T 3T 2T 1,T为虚拟第一探头中轴面到其在虚拟超声切面的投影平面的变换矩阵。
Figure PCTCN2020091532-appb-000059
Figure PCTCN2020091532-appb-000060
Figure PCTCN2020091532-appb-000061
Q′ 1=T 3T 2T 1Q 1
Figure PCTCN2020091532-appb-000062
Figure PCTCN2020091532-appb-000063
其中,
Figure PCTCN2020091532-appb-000064
满足:
Figure PCTCN2020091532-appb-000065
Figure PCTCN2020091532-appb-000066
满足:
Figure PCTCN2020091532-appb-000067
Figure PCTCN2020091532-appb-000068
满足:
Figure PCTCN2020091532-appb-000069
Figure PCTCN2020091532-appb-000070
满足:
Figure PCTCN2020091532-appb-000071
Figure PCTCN2020091532-appb-000072
Figure PCTCN2020091532-appb-000073
Figure PCTCN2020091532-appb-000074
其中,P 1、P 2、P 3为病灶处的虚拟超声切面F 1上的三个不共线取样点,Q 1、Q 2、Q 3为虚拟第一探头中轴面F 2上的三个不共线的点,
Figure PCTCN2020091532-appb-000075
Figure PCTCN2020091532-appb-000076
代表各点的坐标;
Figure PCTCN2020091532-appb-000077
为虚拟超声切面F 1的单位法向量,
Figure PCTCN2020091532-appb-000078
为虚拟第一探头中轴面F 2的单位法向量;
Figure PCTCN2020091532-appb-000079
Figure PCTCN2020091532-appb-000080
均为将虚拟第一探头中轴面F 2平移至Q 1与虚拟坐标系统原点重合,获得平面F 2'后,再将平面F 2'的单位法向量围绕坐标系原点旋转至与单位法向量
Figure PCTCN2020091532-appb-000081
重合时,平面F 2'的单位法向量绕X轴逆时针旋转的角度。
Figure PCTCN2020091532-appb-000082
Figure PCTCN2020091532-appb-000083
均为将虚拟第一探头中轴面F 2平移至Q 1与虚拟坐标系统原点重合,获得平面F 2'后,再将平面F 2'的单位法向量围绕坐标系原点旋转至与单位法向量
Figure PCTCN2020091532-appb-000084
重合时,平 面F 2'的单位法向量绕Y轴逆时针旋转的角度。
如图6所示,将上述第一探头11中轴线投射至超声切面上的坐标转换公式获得过程如下:
S201获取虚拟坐标系统OXYZ中虚拟超声切面F 1上三个不共线取样点坐标
Figure PCTCN2020091532-appb-000085
以及虚拟第一探头中轴面F 2上三个不共线取样点坐标
Figure PCTCN2020091532-appb-000086
S202获得平面F 2'与虚拟第一探头中轴面F 2之间的变换矩阵T 1,具体地,平面F 2'为平移所述虚拟第一探头中轴面F 2直至所述虚拟第一探头中轴面F 2上任一取样点与坐标系原点重合获得;
S203获得平面F 2”与平面F 2'之间的变换矩阵T 2,具体地,平面F 2”为将所述平面F 2'的绕坐标系原点旋转至其单位法向量与所述虚拟超声切面F 1的单位法向量
Figure PCTCN2020091532-appb-000087
重合获得;
S204获得平面F 2”'与所述平面F 2”之间的变换矩阵T 3,具体地,平面F 2”'为平移所述平面F 2”直至步骤S202中与坐标系原点重合的取样点回到其初始位置获得;
S205获得平面F 2””与所述平面F 2”'之间的变换矩阵T 4,其中平面F 2””为获取所述平面F 2”'与所述虚拟超声切面F 1之间的距离,将所述平面F 2”'沿其单位法向量(此处所述平面F 2”'单位法向量等于F 1的单位法向量
Figure PCTCN2020091532-appb-000088
)平移向量
Figure PCTCN2020091532-appb-000089
至平面F 2”'与虚拟超声切面F 1重合获得,利用坐标转换公式及虚拟第一探头中轴面F 2中对应第一探头中轴线的坐标获取超声切面上第一探头中轴线的坐标。
具体的,步骤S201中,虚拟超声切面F 1是通过第一探头11扫查病灶处获得的病灶处超声切面在虚拟的坐标系统中显示的虚拟切面。虚拟第一探头中轴面F 2是第一探头11扫查病灶获得病灶处超声切面时,在虚拟坐标系统中显示的虚拟第一探头中轴面。虚拟第一探头中轴面可依据第一探头11上的传感器获得。
在一优选的实施方式中,虚拟坐标系统还显示病灶处超声切面的扇形切面顶点C1,以便于辅助确定穿刺点。具体的,虚拟超声切面F 1为扇形切面,此时真实情况下的第一探头11顶点与胸壁接触的位置在虚拟坐标系统中显示即为病灶处超声切面的扇形切面顶点C1。
在一种实施方式中,可根据第一定位装置4在第一探头11上所设的位置,确定第一探头11的中轴面及中轴线L。在一较佳实施方式中,为了便于确定第一探头11的中轴线,第一定位装置4均位于第一探头11的中轴面上。
第一定位装置4可以是传感器,在第一探头11的中轴面上设有如图2所示的三个不共线的传感器Q 1、Q 2和Q 3,用于确定第一探头11的中轴面及中轴线。
为了便于获得中轴线的坐标位置,Q 1Q 2Q 3呈直角三角形,且第一探头的中轴线为线段Q 1Q 2的中垂线。
在一优选的实施例中,虚拟三维坐标系OXYZ以虚拟超声切面F 1的扇形切面顶点C1作为坐标系的原点。
在另一优选的实施例中,步骤S202中,将虚拟第一探头中轴面F 2平移至点Q 1与原点重合。
在一具体的实施方式中,以虚拟三维坐标系OXYZ以虚拟超声切面F 1的扇形切面顶点C1作为坐标系的原点,步骤S202中,将虚拟第一探头中轴面F 2平移至点Q 1与坐标系原点重合。
对应坐标变换为:
Figure PCTCN2020091532-appb-000090
其中变换矩阵T 1:
Figure PCTCN2020091532-appb-000091
步骤S203中,将平面F 2'的单位法向量绕坐标系原点旋转至其单位法向量与虚拟超声切面F 1的单位法向量
Figure PCTCN2020091532-appb-000092
重合,获得平面F 2”;对应变换为:
Figure PCTCN2020091532-appb-000093
其中,
Figure PCTCN2020091532-appb-000094
满足:
Figure PCTCN2020091532-appb-000095
Figure PCTCN2020091532-appb-000096
满足:
Figure PCTCN2020091532-appb-000097
Figure PCTCN2020091532-appb-000098
满足:
Figure PCTCN2020091532-appb-000099
Figure PCTCN2020091532-appb-000100
满足:
Figure PCTCN2020091532-appb-000101
上述公式解释为:
Figure PCTCN2020091532-appb-000102
Figure PCTCN2020091532-appb-000103
均为将虚拟第一探头中轴面F 2平移至Q 1与虚拟坐标系统原点重合,获得平面F 2'后,再将平面F 2'的单位法向量围绕坐标系原点旋转至与单位法向量
Figure PCTCN2020091532-appb-000104
重合时,平面F 2'的单位法向量绕X轴逆时针旋转的角度。
Figure PCTCN2020091532-appb-000105
Figure PCTCN2020091532-appb-000106
均为将虚拟第一探头中轴面F 2平移至Q 1与虚拟坐标系统原点重合,获得平面F 2'后,再将平面F 2'的单位法向量围绕坐标系原点旋转至与单位法向量
Figure PCTCN2020091532-appb-000107
重合时,平 面F 2'的单位法向量绕Y轴逆时针旋转的角度。
通过上述步骤可将平面F 2'旋转变换后得到平面F 2”。
步骤S204中,平移平面F 2”直至步骤S202中与坐标系原点重合的取样点回到其初始位置获得平面F 2”'。以取样点为Q 1为例,对应变换为:
Figure PCTCN2020091532-appb-000108
其中变换矩阵T 3
Figure PCTCN2020091532-appb-000109
步骤S205中,获取平面F 2”'与虚拟超声切面F 1之间的距离,设平面F 2”'需要平移的向量为
Figure PCTCN2020091532-appb-000110
其中Q′ 1=T 3T 2T 1Q 1。变换矩阵
Figure PCTCN2020091532-appb-000111
平面F 2”'平移向量
Figure PCTCN2020091532-appb-000112
后与平面F 1重合,获得平面F 2””。
综上,得到总变换矩阵为:T=T 4T 3T 2T 1,得到如下结论:对于虚拟第一探头中轴面F 2上任一点(x,y,z) T其对应齐次坐标满足:
(x′,y′,z′,1)=T(x,y,z,1) T,其中(x′,y′,z′) T转换后的坐标信息,(x,y,z) T为转换前的坐标信息。因此可以知道虚拟第一探头中轴面F 2与虚拟超声切面F 1变换重合后的对应点。
根据上述公式,可知虚拟第一探头中轴面F 2上Q 1、Q 2、Q 3与虚拟超声切面F 1变换重合后的对应点,进一步可将虚拟第一探头中轴面F 2中Q 1和Q 2的底边垂线,虚拟第一探头中轴面F 2上与Q 1和Q 2的底边中垂线重合的路径即为虚拟超声切面F 1中的规划路径L1。
步骤S300中,根据根据虚拟的坐标系统中,第二定位装置5的坐标信息,经平面矩阵转换,获得穿刺针中轴线及穿刺针顶点投射至病灶处的超声切面上的虚拟穿刺针中轴线L2及虚拟穿刺针顶点C2的转换坐标信息,并根据转换坐标信息,在虚拟坐标系统中显示虚拟穿刺针中轴线及其顶点。
具体的,所述虚拟的坐标系统中,以病灶处超声切面的扇形切面顶点C1作为原点时,采用本发明穿刺针定位方法中的转换公式I进行平面矩阵转换。获得对应的虚拟穿刺针中轴线L2及虚拟穿刺针顶点C2的转换坐标信息。
步骤S400中,在虚拟的坐标系统中,比较虚拟穿刺针顶点与超声切面顶点是否重合,以及虚拟穿刺针中轴线L2与规划路径L1的走向是否重合,当两者均重合时判断为重合。
更具体的,虚拟穿刺针中轴线L2与规划路径L1的重合判断流程如图8所示,在虚拟 的坐标系统中,比较虚拟穿刺针顶点C2与病灶处超声切面的扇形切面顶点C1是否重合,若不重合,则判断为与规划路径L1不重合,若重合,则进一步判断虚拟穿刺针中轴线L2与规划路径L1是否重合,若不重合,则判断为与规划路径L1不重合,若重合,则判断为与规划路径L1重合。一般情况下,重合时给出重合提示信号,不重合时给出不重合提示信号。在一具体实施例中,以虚拟穿刺针顶点C2为轴心变换穿刺针的空间位姿,如图7所示,初始状态下,系统指示灯首先显示为红色,当虚拟穿刺针顶点C2和病灶处超声切面的扇形切面顶点C1位置信息重合时系统指示灯为蓝色,当穿刺针的中轴线L2和规划路径L1重合时,系统指示灯显示为绿色,并实时监测显示穿刺针的中轴线L2和规划路径L1的重合信息,在穿刺针行进中根据虚拟界面的标示颜色调整穿刺针,以辅助穿刺顺利进行。以系统指示灯为绿色时的穿刺路径进行穿刺。
基于转换公式,一坐标信息仅能对应唯一的转换坐标信息。
同理,空间中只存在唯一的直线,其坐标经转换后能对应超声切面的中轴线,只有当穿刺针的中轴线与该直线在空间上重合时,其对应的虚拟穿刺针中轴线才能与超声切面的中轴线(即规划路径L1)重合,当穿刺针的中轴线与该直线在空间上不重合时,其对应的虚拟穿刺针中轴线不会与规划路径L1重合。
本发明实施例还提供一种设备,所述设备包括:存储器、处理器;所述存储器,其上存储有计算机程序;所述处理器,用于执行所述存储器存储的计算机程序,该程序被执行时实现本发明所述的穿刺针定位方法。
所述存储器可能包含随机存取存储器(Random Access Memory,简称RAM),也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
所述处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
本发明实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本发明所述的穿刺针定位方法。
所述计算机可读存储介质,本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过计算机程序相关的硬件来完成。前述的计算机程序可以存储于一计算机可读存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
如图9所示,本发明实施例还提供一种在超声切面上获得超声探头中轴线的方法,包括如下步骤:
S201’获取虚拟坐标系统OXYZ中虚拟超声切面F 1上三个不共线取样点坐标
Figure PCTCN2020091532-appb-000113
以及虚拟超声探头中轴面F 2上三个不共线取样点坐标
Figure PCTCN2020091532-appb-000114
S202’获得平面F 2'与虚拟超声探头中轴面F 2之间的变换矩阵T 1,具体地,平面F 2'为平移所述虚拟超声探头中轴面F 2直至所述虚拟超声探头中轴面F 2上任一取样点与坐标系原点重合获得;
S203’获得平面F 2”与平面F 2'之间的变换矩阵T 2,具体地,平面F 2”为将所述平面F 2'绕坐标系原点旋转至其单位法向量与所述虚拟超声切面F 1的单位法向量
Figure PCTCN2020091532-appb-000115
重合获得;
S204’获得平面F 2”'与所述平面F 2”之间的变换矩阵T 3,具体地,平面F 2”'为平移所述平面F 2”直至步骤S202’中与坐标系原点重合的取样点回到其初始位置获得;
S205’获得平面F 2””与所述平面F 2”'之间的变换矩阵T 4,具体地,平面F 2””为获取所述 平面F 2”'与所述虚拟超声切面F 1之间的距离,将所述平面F 2”'沿其单位法向量平移向量
Figure PCTCN2020091532-appb-000116
至平面F 2”'与虚拟超声切面F 1重合获得,利用坐标转换公式及虚拟超声探头中轴面F 2中对应超声探头中轴线的坐标获取超声切面上超声探头中轴线的坐标。
具体地,步骤S201’中,虚拟超声切面F 1是通过超声探头8扫查病灶处获得的病灶处超声切面在虚拟的坐标系统中显示的虚拟切面。虚拟超声探头中轴面F 2是超声探头8扫查病灶获得病灶处超声切面时,在虚拟坐标系统中显示的虚拟超声探头中轴面。虚拟超声探头中轴面可依据超声探头8上的传感器获得。
在一优选的实施方式中,虚拟坐标系统还显示病灶处超声切面的扇形切面顶点,以便于辅助确定穿刺点。具体地,虚拟超声切面F 1为扇形切面,此时真实情况下的超声探头8顶点与胸壁接触的位置在虚拟坐标系统中显示即为病灶处超声切面的扇形切面顶点。
在一种实施方式中,可根据定位装置9在超声探头8上所设的位置,确定超声探头8的中轴面及中轴线L。在一较佳实施方式中,为了便于确定超声探头8的中轴线L,定位装置9均位于超声探头8的中轴面上。
更具体地,定位装置9可以是传感器,在超声探头8的中轴面上设有如图10所示的三个不共线的传感器Q 1、Q 2和Q 3,用于确定超声探头8的中轴面及中轴线L。
更具体的,为了便于获得中轴线的坐标位置,Q 1Q 2Q 3呈直角三角形,且超声探头的中轴线L为线段Q 1Q 2的中垂线。
在一优选的实施例中,虚拟三维坐标系OXYZ中,以虚拟超声切面F 1的扇形切面顶点作为坐标系的原点。
在另一优选的实施例中,步骤S202’中,将虚拟超声探头中轴面F 2平移至点Q 1与坐标系原点重合。
在一具体的实施方式中,在虚拟三维坐标系OXYZ中以虚拟超声切面F 1的扇形切面顶点作为坐标系的原点,步骤S202’中,将虚拟超声探头中轴面F 2平移至点Q 1与坐标系原点重合。此时,所述步骤S205’中,所述坐标转换公式为:
(x′,y′,z′,1)=T(x,y,z,1) T
其中,(x′,y′,z′) T转换后的坐标信息,(x,y,z) T为转换前的坐标信息;
T=T 4T 3T 2T 1,T为虚拟超声探头中轴面到其在虚拟超声切面的投影平面的变换矩阵。
具体的:
步骤S202’中,平面F 2'与虚拟超声探头中轴面F 2之间的变换矩阵T 1为:
Figure PCTCN2020091532-appb-000117
步骤S203’中,平面F 2”与平面F 2'之间的变换矩阵T 2为:
Figure PCTCN2020091532-appb-000118
步骤S204’中,平面F 2”'与平面F 2”之间的变换矩阵T 3为:
Figure PCTCN2020091532-appb-000119
步骤S205’中,平面F 2””与平面F 2”'之间的变换矩阵T 4为:
Figure PCTCN2020091532-appb-000120
其中,
Figure PCTCN2020091532-appb-000121
Figure PCTCN2020091532-appb-000122
Figure PCTCN2020091532-appb-000123
Figure PCTCN2020091532-appb-000124
Figure PCTCN2020091532-appb-000125
为虚拟超声切面F 1的单位法向量,
Figure PCTCN2020091532-appb-000126
为虚拟超声探头中轴面F 2的单位法向量,
Figure PCTCN2020091532-appb-000127
Figure PCTCN2020091532-appb-000128
Figure PCTCN2020091532-appb-000129
为平面F 2”'平移获得平面F 2””的平移向量,
Figure PCTCN2020091532-appb-000130
Figure PCTCN2020091532-appb-000131
Q′ 1=T 3T 2T 1Q 1
以上公式的解释如下:
步骤S202’中,平移虚拟超声探头中轴面F 2直至虚拟超声探头中轴面F 2任一取样点与坐标系原点重合获得平面F 2'。在一具体实施例中,将虚拟超声探头中轴面F 2平移至点Q 1与坐标系原点重合,对应变换矩阵T 1为:
Figure PCTCN2020091532-appb-000132
平面F 2'变换后的坐标如下:
Figure PCTCN2020091532-appb-000133
步骤S203’中,将平面F 2'的单位法向量绕坐标系原点旋转至其单位法向量与虚拟超声切面F 1的单位法向量
Figure PCTCN2020091532-appb-000134
重合,获得平面F 2”;对应变换矩阵T 2为:
Figure PCTCN2020091532-appb-000135
其中,
Figure PCTCN2020091532-appb-000136
满足:
Figure PCTCN2020091532-appb-000137
Figure PCTCN2020091532-appb-000138
满足:
Figure PCTCN2020091532-appb-000139
Figure PCTCN2020091532-appb-000140
满足:
Figure PCTCN2020091532-appb-000141
Figure PCTCN2020091532-appb-000142
满足:
Figure PCTCN2020091532-appb-000143
上述公式解释为:
Figure PCTCN2020091532-appb-000144
Figure PCTCN2020091532-appb-000145
均为将虚拟超声探头中轴面F 2平移至Q 1与虚拟坐标系统原点重合,获得平面F 2'后,再将平面F 2'的单位法向量围绕坐标系原点旋转至与单位法向量
Figure PCTCN2020091532-appb-000146
重合时,平面F 2'的单位法向量绕X轴逆时针旋转的角度。
Figure PCTCN2020091532-appb-000147
Figure PCTCN2020091532-appb-000148
均为将虚拟超声探头中轴面F 2平移至Q 1与虚拟坐标系统原点重合,获得平面F 2'后,再将平面F 2'的单位法向量围绕坐标系原点旋转至与单位法向量
Figure PCTCN2020091532-appb-000149
重合时,平面F 2'的单位法向量绕Y轴逆时针旋转的角度。
通过上述步骤可将平面F 2'旋转变换后得到平面F 2”。
步骤S204’中,平移平面F 2”直至步骤S202’中与坐标系原点重合的取样点回到其初始位置获得平面F 2”'。以取样点为Q 1为例,对应变换矩阵T 3为:
Figure PCTCN2020091532-appb-000150
其中变换矩阵T 3为:
Figure PCTCN2020091532-appb-000151
步骤S205’中,获取平面F 2”'与虚拟超声切面F 1之间的距离,设平面F 2”'沿其单位法向量(此处平面F 2”'单位法向量等于F 1的单位法向量
Figure PCTCN2020091532-appb-000152
)需要平移的向量为
Figure PCTCN2020091532-appb-000153
其中Q′ 1=T 3T 2T 1Q 1
Figure PCTCN2020091532-appb-000154
平面F 2”'平移向量
Figure PCTCN2020091532-appb-000155
后与平面F 1重合,获得平面F 2””。
综上,得到总变换矩阵为:T=T 4T 3T 2T 1,得到如下结论:对于虚拟超声探头中轴面F 2上任一点(x,y,z) T其对应齐次坐标满足:
(x′,y′,z′,1)=T(x,y,z,1) T,其中(x′,y′,z′) T为虚拟超声探头中轴面F 2转换后的坐标信息,(x,y,z) T为虚拟超声探头中轴面F 2转换前的坐标信息。因此可以知道虚拟超声探头中轴面F 2与平面F 1变换重合后的对应点。
根据上述公式,可知虚拟超声探头中轴面F 2上Q 1、Q 2、Q 3与虚拟超声切面F 1变换重合后的对应点,进一步可将虚拟超声探头中轴面F 2中Q 1和Q 2的底边中垂线,虚拟超声探头中轴面F 2上与Q 1和Q 2的底边中垂线重合的路径即为虚拟超声切面F 1中的规划路径。
因此,可根据虚拟的坐标系统中,超声探头8的空间坐标信息,经本发明的方法,得出超声探头8中轴线在病灶处的超声切面上的位置。作为采用本发明的方法获得的中轴线的进一步的应用,可依据此作为经胸壁穿刺的规划路径。
关于采用本发明的方法获得的中轴线可以确定规划路径的进一步说明如下:
病灶处超声切面为扇形切面。一般情况下,可将过病灶处超声切面扇形切面顶点及一病灶穿刺取样点的直线作为实际规划路径。当预进行穿刺取样的病灶点置于病灶处超声切面的中轴线上时,病灶处超声切面的中轴线即可作为实际规划路径。在真实情况下,超声探头8的中轴线L应位于病灶处的超声切面上,超声探头的顶点与病灶处的超声切面顶点重合,超声探头8中轴线L与病灶处超声切面的中轴线重合。因此,确定了超声探头中轴线的位置即可确定规划路径。但在虚拟坐标系统中,病灶处的超声切面与超声探头8中轴线L的相对位置与两者的实际相对位置并不匹配,因此采用本发明的方法中的坐标转换公式进行转换,可将超声探头8的中轴线L投影至病灶处的超声切面上。
本发明实施例还提供一种在超声切面上获得超声探头中轴线的装置包括:
取样模块,用于获取虚拟坐标系统OXYZ中虚拟超声切面F 1上三个不共线取样点坐标
Figure PCTCN2020091532-appb-000156
以及虚拟超声探头中轴面F 2上三个不共线取样点坐标
Figure PCTCN2020091532-appb-000157
第一平移模块,用于获得平面F 2'与虚拟超声探头中轴面F 2之间的变换矩阵T 1,其中平面F 2'为平移所述虚拟超声探头中轴面F 2直至所述虚拟超声探头中轴面F 2上任一取样点与坐标系原点重合获得;
旋转模块,用于获得平面F 2”与平面F 2'之间的变换矩阵T 2,其中平面F 2”为将所述平面F 2'绕坐标系原点旋转至其单位法向量与所述虚拟超声切面F 1的单位法向量
Figure PCTCN2020091532-appb-000158
重合获得;
第二平移模块,用于获得平面F 2”'与所述平面F 2”之间的变换矩阵T 3,其中平面F 2”'为平移所述平面F 2”直至第一平移模块中与坐标系原点重合的取样点回到其初始位置获得。
第三平移模块,用于获得平面F 2””与所述平面F 2”'之间的变换矩阵T 4,其中平面F 2””为获取所述平面F 2”'与所述虚拟超声切面F 1之间的距离,将所述平面F 2”'沿其单位法向量平移向量
Figure PCTCN2020091532-appb-000159
至平面F 2”'与虚拟超声切面F 1重合获得,利用坐标转换公式及虚拟超声探头中轴面F 2中对应超声探头中轴线的坐标获取超声切面上超声探头中轴线的坐标。
具体地,取样模块中,虚拟超声切面F 1是通过超声探头8扫查病灶处获得的病灶处超声切面在虚拟的坐标系统中显示的虚拟切面。虚拟超声探头中轴面F 2是超声探头8扫查病灶获得病灶处超声切面时,在虚拟坐标系统中显示的虚拟超声探头中轴面。虚拟超声探头中轴面可依据超声探头8上的传感器获得。
在一优选的实施方式中,虚拟坐标系统还显示病灶处超声切面的扇形切面顶点,以便于辅助确定穿刺点。具体地,虚拟超声切面F 1为扇形切面,此时真实情况下的超声探头8顶点与胸壁接触的位置在虚拟坐标系统中显示即为病灶处超声切面的扇形切面顶点。
在一种实施方式中,可根据定位装置9在超声探头8上所设的位置,确定超声探头8的中轴面及中轴线L。在一较佳实施方式中,为了便于确定超声探头8的中轴线L,定位装置9均位于超声探头8的中轴面上。
更具体地,定位装置9可以是传感器,在超声探头8的中轴面上设有如图2所示的三个不共线的传感器Q 1、Q 2和Q 3,用于确定超声探头8的中轴面及中轴线L。
更具体的,为了便于获得中轴线的坐标位置,Q 1Q 2Q 3呈直角三角形,且超声探头的中轴线为线段Q 1Q 2的中垂线。
在一优选的实施例中,虚拟三维坐标系OXYZ以虚拟超声切面F 1的扇形切面顶点作为坐标系的原点。
在另一优选的实施例中,第一平移模块中,将虚拟超声探头中轴面F 2平移至点Q 1与坐标系原点重合。
以虚拟三维坐标系OXYZ以虚拟超声切面F 1的扇形切面顶点作为坐标系的原点,第一平移模块中,将虚拟超声探头中轴面F 2平移至点Q 1与坐标系原点重合,此时,第三平移模 块中,所述坐标转换公式为:
(x′,y′,z′,1)=T(x,y,z,1) T
其中,(x′,y′,z′) T转换后的坐标信息,(x,y,z) T为转换前的坐标信息;
T=T 4T 3T 2T 1,T为虚拟超声探头中轴面到其在虚拟超声切面的投影平面的变换矩阵。
第一平移模块中,所述平面F 2'与所述虚拟超声探头中轴面F 2之间的变换矩阵T 1为:
Figure PCTCN2020091532-appb-000160
旋转模块中,所述平面F 2”与所述平面F 2'之间的变换矩阵T 2为:
Figure PCTCN2020091532-appb-000161
第二平移模块中,所述平面F 2”'与所述平面F 2”之间的变换矩阵T 3为:
Figure PCTCN2020091532-appb-000162
第三平移模块中,所述平面F 2””与所述平面F 2”'之间的变换矩阵T 4为:
Figure PCTCN2020091532-appb-000163
其中,
Figure PCTCN2020091532-appb-000164
Figure PCTCN2020091532-appb-000165
Figure PCTCN2020091532-appb-000166
Figure PCTCN2020091532-appb-000167
Figure PCTCN2020091532-appb-000168
为虚拟超声切面F 1的单位法向量,
Figure PCTCN2020091532-appb-000169
为虚拟超声探头中轴面F 2的单位法向量,
Figure PCTCN2020091532-appb-000170
Figure PCTCN2020091532-appb-000171
Figure PCTCN2020091532-appb-000172
为平面F 2”'平移获得平面F 2””的平移向量,
Figure PCTCN2020091532-appb-000173
Figure PCTCN2020091532-appb-000174
Q′ 1=T 3T 2T 1Q 1
以上公式的解释如下:
第一平移模块中,平移虚拟超声探头中轴面F 2直至虚拟超声探头中轴面F 2任一取样点与坐标系原点重合获得平面F 2'。在一具体实施例中,将虚拟超声探头中轴面F 2平移至点Q 1与坐标系原点重合,对应变换矩阵T 1为:
Figure PCTCN2020091532-appb-000175
平面F 2'变换后的坐标如下:
Figure PCTCN2020091532-appb-000176
旋转模块中,将平面F 2'的单位法向量绕坐标系原点旋转至其单位法向量与虚拟超声切面F 1的单位法向量
Figure PCTCN2020091532-appb-000177
重合,获得平面F 2”;对应变换矩阵T 2为:
Figure PCTCN2020091532-appb-000178
其中,
Figure PCTCN2020091532-appb-000179
满足:
Figure PCTCN2020091532-appb-000180
Figure PCTCN2020091532-appb-000181
满足:
Figure PCTCN2020091532-appb-000182
Figure PCTCN2020091532-appb-000183
满足:
Figure PCTCN2020091532-appb-000184
Figure PCTCN2020091532-appb-000185
满足:
Figure PCTCN2020091532-appb-000186
上述公式解释为:
Figure PCTCN2020091532-appb-000187
Figure PCTCN2020091532-appb-000188
均为将虚拟超声探头中轴面F 2平移至Q 1与虚拟坐标系统原点重合,获得平面F 2'后,再将平面F 2'的单位法向量围绕坐标系原点旋转至与单位法向量
Figure PCTCN2020091532-appb-000189
重合时,平面F 2'的单位法向量绕X轴逆时针旋转的角度。
Figure PCTCN2020091532-appb-000190
Figure PCTCN2020091532-appb-000191
均为将虚拟超声探头中轴面F 2平移至Q 1与虚拟坐标系统原点重合,获得平面F 2'后,再将平面F 2'的单位法向量围绕坐标系原点旋转至与单位法向量
Figure PCTCN2020091532-appb-000192
重合时,平面F 2'的单位法向量绕Y轴逆时针旋转的角度。
通过上述步骤可将平面F 2'旋转变换后得到平面F 2”。
第二平移模块中,平移平面F 2”直至第一平移模块中与坐标系原点重合的取样点回到其初始位置获得平面F 2”'。以取样点为Q 1为例,对应变换矩阵T 3为:
Figure PCTCN2020091532-appb-000193
其中变换矩阵T 3为:
Figure PCTCN2020091532-appb-000194
第三平移模块中,获取平面F 2”'与虚拟超声切面F 1之间的距离,设平面F 2”'沿其单位法向量(此处平面F 2”'单位法向量等于F 1的单位法向量
Figure PCTCN2020091532-appb-000195
)需要平移的向量为
Figure PCTCN2020091532-appb-000196
其中Q′ 1=T 3T 2T 1Q 1
Figure PCTCN2020091532-appb-000197
平面F 2”'平移向量
Figure PCTCN2020091532-appb-000198
后与平面F 1重合,获得平面F 2””。
综上,得到总变换矩阵为:T=T 4T 3T 2T 1,得到如下结论:对于虚拟超声探头中轴面F 2上任一点(x,y,z) T其对应齐次坐标满足:
(x′,y′,z′,1)=T(x,y,z,1) T,其中(x′,y′,z′) T虚拟超声探头中轴面F 2转换后的坐标信息,(x,y,z) T为虚拟超声探头中轴面F 2转换前的坐标信息。因此可以知道虚拟超声探头中轴面F 2与平面F 1变换重合后的对应点。
根据上述公式,可知虚拟超声探头中轴面F 2上Q 1、Q 2、Q 3与虚拟超声切面F 1变换重合后的对应点,进一步可将虚拟超声探头中轴面F 2中Q 1和Q 2的底边中垂线,虚拟超声探头中轴面F 2上与Q 1和Q 2的底边中垂线重合的路径即为虚拟超声切面F 1中的规划路径。
因此,可根据虚拟的坐标系统中,超声探头8的空间坐标信息,经本发明的装置,获取超声探头8中轴线在病灶处的超声切面上的位置。作为采用本发明的装置获得的中轴线的进一步的应用,可依据此作为经胸壁穿刺的规划路径。
关于采用本发明的装置获得的中轴线可以确定规划路径的进一步说明如下:
病灶处超声切面为扇形切面。一般情况下,可将过病灶处超声切面扇形切面顶点及一病灶穿刺取样点的直线作为实际规划路径。当预进行穿刺取样的病灶点置于病灶处超声切面的中轴线上时,病灶处超声切面的中轴线即可作为实际规划路径。在真实情况下,超声探头8的中轴线L应位于病灶处的超声切面上,超声探头的顶点与病灶处的超声切面顶点重合,超声探头8中轴线L与病灶处超声切面的中轴线重合。因此,确定了超声探头中轴线的位置即可确定规划路径。但在虚拟坐标系统中,病灶处的超声切面与超声探头8中轴线L的相对位置与两者的实际相对位置并不匹配,因此采用本发明的装置中的坐标转换公式进行转换,可将超声探头8的中轴线L投影至病灶处的超声切面上。
本发明实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现本发明所述的在超声切面上获得超声探头中轴线的方法。
所述计算机可读存储介质,本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过计算机程序相关的硬件来完成。前述的计算机程序可以存储于一计算机可读存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本发明实施例还提供一种设备,所述设备包括:存储器、处理器;所述存储器,其上存储有计算机程序;所述处理器,用于执行所述存储器存储的计算机程序,该程序被执行时实现本发明所述的在超声切面上获得超声探头中轴线的方法。
所述存储器可能包含随机存取存储器(Random AccessMemory,简称RAM),也可能还包括非易失性存储器(non-voatie memory),例如至少一个磁盘存储器。
所述处理器可以是通用处理器,包括中央处理器(Centra ProcessingUnit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digita SignaProcessing,简称DSP)、专用集成电路(Appication SpecificIntegratedCircuit,简称ASIC)、现场可编程门阵列(Fied-Programmabe GateArray,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
综上所述,本发明提供的穿刺针定位系统及方法可大大提高了经胸壁穿刺的精准度, 不仅能有效避免反复穿刺带来的并发症,也大大缩短了手术时穿刺的时间。引入第一定位装置和第二定位装置,将以往单一的超声定位导航予以了极大的丰富,并将所有位置信息予以数字化解析,所有磁场中的位置信息通过第一定位装置和第二定位装置均可转化为三维坐标系。穿刺定位系统依据每个人不同的病情提供了精确的穿刺路径规划,真正实现了对病人的个体化精准医疗,将使手术相关并发症大幅度减少,使经胸穿刺介入治疗变成常规治疗手段成为可能。本发明提供的在超声切面上获得超声探头中轴线的方法,可以将病灶处的超声切面与超声探头设有的定位装置所在的平面在同一虚拟的坐标系统中显示并通过本发明的方法转换获得规划路径。本发明为经胸穿刺心内介入治疗提供了一种标准化的技术方案。通过本发明方案的实施,可以将术前穿刺路径规划线精准描记下来并可视化,为术者操作提供了可靠的导航保障,有效地降低了术者人为的穿刺位姿错选率。本发明不仅可以提高穿刺成功率,而且有效防治并发症发生,提高了手术安全性。
综上所述,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (35)

  1. 一种穿刺针定位系统,其特征在于,所述系统包括:
    超声单元(1),包括用于提供病灶处的超声切面的第一探头(11),所述第一探头(11)上设有用于提供第一探头(11)的坐标信息的多个第一定位装置(4);
    穿刺针单元(2),包括穿刺针,所述穿刺针上设有用于提供穿刺针的坐标信息的多个第二定位装置(5);
    处理及显示单元(3),分别与所述超声单元(1)、各所述第一定位装置(4)及各所述第二定位装置(5)通信连接,用于:获取病灶处的超声切面并在虚拟的坐标系统中显示;获取第一探头(11)在获取病灶处的超声切面时的坐标信息并在虚拟的坐标系统中显示;在虚拟坐标系统中确定规划路径L1;获取各第二定位装置(5)提供的穿刺针的坐标信息并在虚拟的坐标系统中显示虚拟穿刺针中轴线L2和虚拟穿刺针顶点C2;在虚拟的坐标系统中,比较虚拟穿刺针中轴线L2与规划路径L1是否重合;
  2. 如权利要求1所述的穿刺针定位系统,其特征在于,所述第一探头(11)上设有3个第一定位装置(4),3个所述第一定位装置(4)位于同一水平面且与所述第一探头(11)的中轴面重合,其中两个第一定位装置(4)位于第一探头(11)的同一横截面上,且3个所述第一定位装置(4)呈直角三角形分布。
  3. 如权利要求2所述的穿刺针定位系统,其特征在于,所述第一探头(11)上设有与第一探头(11)相配合的探头卡扣件(6),所述探头卡扣件(6)上设有用于安装第一定位装置(4)的3个第一插孔,所述3个第一插孔位置与3个第一定位装置(4)匹配。
  4. 如权利要求1所述的穿刺针定位系统,其特征在于,所述穿刺针上设有2个第二定位装置(5),所述第二定位装置(5)分别设于穿刺针的中轴线上。
  5. 如权利要求4所述的穿刺针定位系统,其特征在于,所述穿刺针上设有与穿刺针配合的穿刺针卡扣件(7),所述穿刺针卡扣件(7)上设有用于安装第二定位装置(5)的2个第二插孔,所述2个第二插孔位置与2个第二定位装置(5)匹配。
  6. 如权利要求1所述的穿刺针定位系统,其特征在于,所述第一定位装置(4)和所述第二定位装置(5)均选自传感器。
  7. 如权利要求1所述的穿刺针定位系统,其特征在于,所述超声单元(1)还包括用于监测整个穿刺过程的第二探头(12)。
  8. 如权利要求1所述的穿刺针定位系统,其特征在于,所述处理及显示单元(3)包括下列模块:
    第一数据获取模块:用于获取病灶处的超声切面并在虚拟的坐标系统中显示;获取第一探头(11)在获取病灶处的超声切面时的坐标信息并在虚拟的坐标系统中显示;
    规划路径确定模块:用于在虚拟的坐标系统中确定规划路径L1;
    第二数据获取模块:用于获取穿刺针上的第二定位装置(5)在虚拟坐标系统中的坐标信息并显示虚拟穿刺针中轴线L2和虚拟穿刺针顶点C2;
    比较模块:用于在虚拟的坐标系统中,比较所述虚拟穿刺针中轴线L2与所述规划路径L1是否重合。
  9. 如权利要求8所述的穿刺针定位系统,其特征在于,所述规划路径确定模块中,根据虚拟的坐标系统中,第一探头(11)的空间坐标信息,经平面矩阵转换,得出第一探头(11)中轴线在病灶处的超声切面上的位置,从而确定规划路径L1。
  10. 如权利要求9所述的穿刺针定位系统,其特征在于,所述虚拟的坐标系统中,以病灶处超声切面的扇形切面顶点C1作为原点,采用下列转换公式Ι进行平面矩阵转换,获得第一探头(11)的中轴线投影至病灶处的超声切面上的转换坐标信息;
    所述转换公式Ι为:
    (x′,y′,z′,1)=T(x,y,z,1) T 其中,(x′,y′,z′) T转换后的坐标信息,(x,y,z) T为转换前的坐标信息;
    T=T 4T 3T 2T 1
    Figure PCTCN2020091532-appb-100001
    Figure PCTCN2020091532-appb-100002
    Figure PCTCN2020091532-appb-100003
    Q′ 1=T 3T 2T 1Q 1
    Figure PCTCN2020091532-appb-100004
    Figure PCTCN2020091532-appb-100005
    Figure PCTCN2020091532-appb-100006
    Figure PCTCN2020091532-appb-100007
    Figure PCTCN2020091532-appb-100008
    Figure PCTCN2020091532-appb-100009
    Figure PCTCN2020091532-appb-100010
    Figure PCTCN2020091532-appb-100011
    Figure PCTCN2020091532-appb-100012
    其中,P 1、P 2、P 3为病灶处的虚拟超声切面F 1上的三个不共线取样点,Q 1、Q 2、Q 3为虚拟第一探头中轴面F 2上的三个不共线的点,
    Figure PCTCN2020091532-appb-100013
    Figure PCTCN2020091532-appb-100014
    代表各点的坐标;
    Figure PCTCN2020091532-appb-100015
    为虚拟超声切面F 1的单位法向量,
    Figure PCTCN2020091532-appb-100016
    为虚拟第一探头中轴面F 2的单位法向量。
  11. 如权利要求8所述的穿刺针定位系统,其特征在于,所述第二数据获取模块中,根据虚拟的坐标系统中,第二定位装置(5)的坐标信息,经平面矩阵转换,获得穿刺针中轴线及穿刺针顶点投射至病灶处的超声切面上的虚拟穿刺针中轴线L2及虚拟穿刺针顶点C2的转换坐标信息,并根据所述转换坐标信息,在虚拟坐标系统中显示虚拟穿刺针中轴线及其顶点。
  12. 如权利要求11所述的穿刺针定位系统,其特征在于,所述虚拟的坐标系统中,以病灶处超声切面的扇形切面顶点C1作为原点时,采用权利要求10所述的穿刺针定位系统中的转换公式I进行平面矩阵转换。
  13. 如权利要求8所述的穿刺针定位系统,其特征在于,所述比较模块中,在虚拟的坐标系统中,比较所述虚拟穿刺针顶点C2与所述超声切面顶点C1是否重合,以及所述虚拟穿刺针中轴线L2与所述规划路径L1的走向是否重合,当两者均重合时判断为重合。
  14. 一种穿刺针定位方法,包括如下步骤:
    S100获取病灶处的超声切面并在虚拟的坐标系统中显示;获取第一探头(11)在获取病灶处的超声切面时的坐标信息并在虚拟的坐标系统中显示;
    S200在虚拟的坐标系统中确定规划路径L1;
    S300获取穿刺针上的第二定位装置(5)在虚拟坐标系统中的坐标信息并显示虚拟穿刺针中轴线L2和虚拟穿刺针顶点C2;
    S400在虚拟的坐标系统中,比较所述虚拟穿刺针中轴线L2与所述规划路径L1是否重合。
  15. 如权利要求14所述的穿刺针定位方法,其特征在于,所述步骤S200中,根据虚拟的坐标系统中,第一探头(11)的空间坐标信息,经平面矩阵转换,得出第一探头(11)中轴线在病灶处的超声切面上的位置,从而确定规划路径L1。
  16. 如权利要求15所述的穿刺针定位方法,其特征在于,所述虚拟的坐标系统中,以病灶处超声切面的扇形切面顶点C1作为原点,采用下列转换公式Ι进行平面矩阵转换,获得第一探头(11)的中轴线投影至病灶处的超声切面上的转换坐标信息; 所述转换公式Ι为:
    (x′,y′,z′,1)=T(x,y,z,1) T
    其中,(x′,y′,z′) T转换后的坐标信息,(x,y,z) T为转换前的坐标信息;
    T=T 4T 3T 2T 1
    Figure PCTCN2020091532-appb-100017
    Figure PCTCN2020091532-appb-100018
    Figure PCTCN2020091532-appb-100019
    Q′ 1=T 3T 2T 1Q 1
    Figure PCTCN2020091532-appb-100020
    Figure PCTCN2020091532-appb-100021
    Figure PCTCN2020091532-appb-100022
    Figure PCTCN2020091532-appb-100023
    Figure PCTCN2020091532-appb-100024
    Figure PCTCN2020091532-appb-100025
    Figure PCTCN2020091532-appb-100026
    Figure PCTCN2020091532-appb-100027
    Figure PCTCN2020091532-appb-100028
    其中,P 1、P 2、P 3为病灶处的虚拟超声切面F 1上的三个不共线取样点,Q 1、Q 2、Q 3为虚拟第一探头中轴面F 2上的三个不共线的点,
    Figure PCTCN2020091532-appb-100029
    Figure PCTCN2020091532-appb-100030
    代表各点的坐标;
    Figure PCTCN2020091532-appb-100031
    为虚拟超声切面F 1的单位法向量,
    Figure PCTCN2020091532-appb-100032
    为虚拟第一探头中轴面F 2的单位法向量。
  17. 如权利要求14所述的穿刺针定位方法,其特征在于,所述步骤S300中,根据根据虚拟的坐标系统中,第二定位装置(5)的坐标信息,经平面矩阵转换,获得穿刺针中轴线及穿刺针顶点投射至病灶处的超声切面上的虚拟穿刺针中轴线L2及虚拟穿刺针顶点C2的转换坐标信息,并根据转换坐标信息,在虚拟坐标系统中显示虚拟穿刺针中轴线及其顶点。
  18. 如权利要求17所述的穿刺针定位方法,其特征在于,所述虚拟的坐标系统中,以病灶处超声切面的扇形切面顶点C1作为原点时,采用权利要求16所述的穿刺针定位系统中的转换公式I进行平面矩阵转换。
  19. 如权利要求14所述的穿刺针定位方法,其特征在于,所述步骤S400中,在虚拟的坐标系统中,比较所述虚拟穿刺针顶点C2与所述超声切面顶点C1是否重合,以及所述虚拟穿刺针中轴线L2与所述规划路径L1的走向是否重合,当两者均重合时判断为重合。
  20. 一种设备,其特征在于,所述设备包括:存储器及处理器;所述存储器,其上存储有计算机程序;所述处理器,用于执行所述存储器存储的计算机程序,所述程序被执行时实现如权利要求14~19任一项权利要求所述的方法。
  21. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求14~19任一项权利要求所述的方法。
  22. 一种在超声切面上获得超声探头中轴线的方法,包括:
    S201’获取虚拟坐标系统OXYZ中虚拟超声切面F 1上三个不共线取样点坐标,
    Figure PCTCN2020091532-appb-100033
    以及虚拟超声探头中轴面F 2上三个不共线取样点坐标
    Figure PCTCN2020091532-appb-100034
    S202’获得平面F 2'与虚拟超声探头中轴面F 2之间的变换矩阵T 1,其中平面F 2'为平移所述虚拟超声探头中轴面F 2直至所述虚拟超声探头中轴面F 2上任一取样点与坐标系原点重合获得;
    S203’获得平面F 2”与平面F 2'之间的变换矩阵T 2,其中平面F 2”为将所述平面F 2'绕所述坐标系原点旋转至其单位法向量与所述虚拟超声切面F 1的单位法向量
    Figure PCTCN2020091532-appb-100035
    重合获得;
    S204’获得平面F 2”'与所述平面F 2”之间的变换矩阵T 3,其中平面F 2”'为平移所述平面F 2”直至步骤S202’中与坐标系原点重合的取样点回到其初始位置获得;
    S205’获得平面F 2””与所述平面F 2”'之间的变换矩阵T 4,其中平面F 2””为获取所述平面F 2”'与所述虚拟超声切面F 1之间的距离,将所述平面F 2”'沿其单位法向量平移向量
    Figure PCTCN2020091532-appb-100036
    至平面F 2”'与虚拟超声切面F 1重合获得,利用坐标转换公式及虚拟超声探头中轴面F 2中对应超声探头中轴线的坐标获取超声切面上超声探头中轴线的坐标。
  23. 如权利要求22所述的方法,其特征在于,所述步骤S205’中,所述坐标转换公式为:
    (x′,y′,z′,1)=T(x,y,z,1) T
    其中,(x′,y′,z′) T转换后的坐标信息,(x,y,z) T为转换前的坐标信息;
    T=T 4T 3T 2T 1
  24. 如权利要求23所述的方法,其特征在于,所述步骤S202’中,所述平面F 2'与所述虚拟超声探头中轴面F 2之间的变换矩阵T 1为:
    Figure PCTCN2020091532-appb-100037
  25. 如权利要求23所述的方法,其特征在于,所述步骤S203’中,所述平面F 2”与所述平面F 2'之间的变换矩阵T 2为:
    Figure PCTCN2020091532-appb-100038
    其中,
    Figure PCTCN2020091532-appb-100039
    Figure PCTCN2020091532-appb-100040
    Figure PCTCN2020091532-appb-100041
    Figure PCTCN2020091532-appb-100042
    Figure PCTCN2020091532-appb-100043
    为虚拟超声切面F 1的单位法向量,
    Figure PCTCN2020091532-appb-100044
    为虚拟超声探头中轴面F 2的单位法向量,
    Figure PCTCN2020091532-appb-100045
    Figure PCTCN2020091532-appb-100046
  26. 如权利要求23所述的方法,其特征在于,所述步骤S204’中,所述平面F 2”'与所述平面F 2”之间的变换矩阵T 3为:
    Figure PCTCN2020091532-appb-100047
  27. 如权利要求23所述的方法,其特征在于,所述步骤S205’中,所述平面F 2””与所述平面F 2”'之间的变换矩阵T 4为:
    Figure PCTCN2020091532-appb-100048
    其中:
    Figure PCTCN2020091532-appb-100049
    为平面F 2”'平移获得平面F 2””的平移向量,
    Figure PCTCN2020091532-appb-100050
    Figure PCTCN2020091532-appb-100051
    为虚拟超声切面F 1的单位法向量。
  28. 一种在超声切面上获得超声探头中轴线的装置,其特征在于,包括:
    取样模块:用于获取虚拟坐标系统OXYZ中虚拟超声切面F 1上三个不共线取样点坐标
    Figure PCTCN2020091532-appb-100052
    以及虚拟超声探头中轴面F 2上三个不共线取样点坐标
    Figure PCTCN2020091532-appb-100053
    第一平移模块:用于获得平面F 2'与虚拟超声探头中轴面F 2之间的变换矩阵T 1,其中平面F 2'为平移所述虚拟超声探头中轴面F 2直至所述虚拟超声探头中轴面F 2上任一取样点 与坐标系原点重合获得;
    旋转模块:用于获得平面F 2”与平面F 2'之间的变换矩阵T 2,其中平面F 2”为将所述平面F 2'绕坐标系原点旋转至其单位法向量与所述虚拟超声切面F 1的单位法向量重合获得;
    第二平移模块:用于获得平面F 2”'与所述平面F 2”之间的变换矩阵T 3,其中平面F 2”'为平移所述平面F 2”直至第一平移模块中与坐标系原点重合的取样点回到其初始位置获得;
    第三平移模块:用于获得平面F 2””与所述平面F 2”'之间的变换矩阵T 4,其中平面F 2””为获取所述平面F 2”'与所述虚拟超声切面F 1之间的距离,将所述平面F 2”'沿其单位法向量平移向量
    Figure PCTCN2020091532-appb-100054
    至平面F 2”'与虚拟超声切面F 1重合获得,利用坐标转换公式及虚拟超声探头中轴面F 2中对应超声探头中轴线的坐标获取超声切面上超声探头中轴线的坐标。
  29. 如权利要求28所述的方法,其特征在于,所述第三平移模块中,所述坐标转换公式为:
    (x′,y′,z′,1)=T(x,y,z,1) T
    其中,(x′,y′,z′) T转换后的坐标信息,(x,y,z) T为转换前的坐标信息;
    T=T 4T 3T 2T 1
  30. 如权利要求29所述的装置,其特征在于,所述第一平移模块中,所述平面F 2'与所
    述虚拟超声探头中轴面F 2之间的变换矩阵T 1为:
    Figure PCTCN2020091532-appb-100055
  31. 如权利要求29所述的装置,其特征在于,所述旋转模块中,所述平面F 2”与所述
    平面F 2'之间的变换矩阵T 2为:
    Figure PCTCN2020091532-appb-100056
    其中,
    Figure PCTCN2020091532-appb-100057
    Figure PCTCN2020091532-appb-100058
    Figure PCTCN2020091532-appb-100059
    Figure PCTCN2020091532-appb-100060
    Figure PCTCN2020091532-appb-100061
    为虚拟超声切面F 1的单位法向量,
    Figure PCTCN2020091532-appb-100062
    为虚拟超声探头中轴面F 2的单位法向量,
    Figure PCTCN2020091532-appb-100063
    Figure PCTCN2020091532-appb-100064
  32. 如权利要求29所述的装置,其特征在于,所述第二平移模块中,所述平面F 2”'与所述平面F 2”之间的变换矩阵T 3为:
    Figure PCTCN2020091532-appb-100065
  33. 如权利要求29所述的装置,其特征在于,所述第三平移模块中,所述平面F 2””与所述平面F 2”'之间的变换矩阵T 4为:
    Figure PCTCN2020091532-appb-100066
    其中,
    Figure PCTCN2020091532-appb-100067
    为平面F 2”'平移获得平面F 2””的平移向量,
    Figure PCTCN2020091532-appb-100068
    Figure PCTCN2020091532-appb-100069
    为虚拟超声切面F 1的单位法向量。
  34. 一种设备,其特征在于,所述设备包括:存储器、处理器;所述存储器,其上存储有计算机程序;所述处理器,用于执行所述存储器存储的计算机程序,所述程序被执行时实现如权利要求22~27中任一项所述的方法。
  35. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求22~27中任一项所述的方法。
PCT/CN2020/091532 2020-02-04 2020-05-21 一种穿刺针定位系统及方法 WO2021155649A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20917786.4A EP3973896A4 (en) 2020-02-04 2020-05-21 PUNCTION NEEDLE POSITIONING SYSTEM AND METHOD
US17/334,951 US11980496B2 (en) 2020-02-04 2021-05-31 Puncture needle positioning system and method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010079873.1 2020-02-04
CN202020151840.9U CN212281548U (zh) 2020-02-04 2020-02-04 一种定位设备
CN202010079870.8 2020-02-04
CN202020151840.9 2020-02-04
CN202010079873.1A CN111150461A (zh) 2020-02-04 2020-02-04 一种穿刺针定位系统及方法
CN202010079870.8A CN111134843B (zh) 2020-02-04 2020-02-04 一种在超声切面上获得超声探头中轴线的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/334,951 Continuation US11980496B2 (en) 2020-02-04 2021-05-31 Puncture needle positioning system and method

Publications (1)

Publication Number Publication Date
WO2021155649A1 true WO2021155649A1 (zh) 2021-08-12

Family

ID=77200737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091532 WO2021155649A1 (zh) 2020-02-04 2020-05-21 一种穿刺针定位系统及方法

Country Status (3)

Country Link
US (1) US11980496B2 (zh)
EP (1) EP3973896A4 (zh)
WO (1) WO2021155649A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114224448B (zh) * 2021-12-21 2023-11-10 武汉大学 穿刺路径规划装置、设备和计算机可读存储介质
CN115381484A (zh) * 2022-07-21 2022-11-25 北京京声普探科技有限公司 一种双平面超声换能器探头及其换能器位置的设置方法
CN115363717A (zh) * 2022-09-05 2022-11-22 汕头大学医学院 一种脑部穿刺路径精确规划方法及3d打印的穿刺定位装置
CN115998389B (zh) * 2023-03-24 2023-07-28 浙江伽奈维医疗科技有限公司 一种手术机器人的复合引导前端装置及定位方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090137907A1 (en) * 2007-11-22 2009-05-28 Kabushiki Kaisha Toshiba Imaging diagnosis apparatus having needling navigation control system and a needling navigation controlling method
JP2012035010A (ja) * 2010-08-11 2012-02-23 Waseda Univ 穿刺支援システム
CN106175836A (zh) * 2016-07-29 2016-12-07 上海爱申科技发展股份有限公司 超声病灶定位方法
CN107789056A (zh) * 2017-10-19 2018-03-13 青岛大学附属医院 一种医学影像匹配融合方法
CN108210024A (zh) * 2017-12-29 2018-06-29 威朋(苏州)医疗器械有限公司 手术导航方法及系统
CN108294825A (zh) * 2017-12-26 2018-07-20 刘洋 用于手术导航的配准系统及方法
CN109394317A (zh) * 2018-12-14 2019-03-01 清华大学 穿刺路径规划装置及方法
CN109549689A (zh) * 2018-08-21 2019-04-02 池嘉昌 一种穿刺辅助引导装置、系统及方法
CN109620303A (zh) * 2018-11-26 2019-04-16 苏州朗开医疗技术有限公司 一种肺部辅助诊断方法及装置
CN109805991A (zh) * 2019-03-14 2019-05-28 北京理工大学 血管穿刺辅助控制方法及装置
CN109907801A (zh) * 2019-03-08 2019-06-21 哈尔滨工程大学 一种可定位超声引导穿刺方法
CN111134843A (zh) * 2020-02-04 2020-05-12 赵天力 一种在超声切面上获得超声探头中轴线的方法及装置
CN111150461A (zh) * 2020-02-04 2020-05-15 赵天力 一种穿刺针定位系统及方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9609484A (pt) * 1995-07-16 1999-12-14 Yoav Paltieli Processo e aparelho para direcionamento à mão livre de uma agulha so sentido de um alvo localizado em um volume corpóreo e aparelho de agulha
US6381485B1 (en) * 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
US6584339B2 (en) * 2001-06-27 2003-06-24 Vanderbilt University Method and apparatus for collecting and processing physical space data for use while performing image-guided surgery
US20070055142A1 (en) * 2003-03-14 2007-03-08 Webler William E Method and apparatus for image guided position tracking during percutaneous procedures
US8123691B2 (en) * 2003-08-19 2012-02-28 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus for fixedly displaying a puncture probe during 2D imaging
JP4167162B2 (ja) * 2003-10-14 2008-10-15 アロカ株式会社 超音波診断装置
JP5438985B2 (ja) * 2009-02-10 2014-03-12 株式会社東芝 超音波診断装置及び超音波診断装置の制御プログラム
US8556815B2 (en) * 2009-05-20 2013-10-15 Laurent Pelissier Freehand ultrasound imaging systems and methods for guiding fine elongate instruments
WO2013108198A1 (en) * 2012-01-18 2013-07-25 Koninklijke Philips N.V. Ultrasonic guidance of a needle path during biopsy
JP2016517746A (ja) * 2013-04-30 2016-06-20 トラクトゥス・コーポレーション 位置及び/または配向センサを有するハンドヘルド画像化デバイスを用いた、組織の完全な検査のための方法、装置及びシステム
CN105518482B (zh) * 2013-08-19 2019-07-30 Bk医疗控股股份有限公司 超声成像仪器可视化
WO2016112383A1 (en) * 2015-01-10 2016-07-14 University Of Florida Research Foundation, Inc. Simulation features combining mixed reality and modular tracking
EP3435918A1 (en) * 2016-03-31 2019-02-06 Koninklijke Philips N.V. Image guidance of a steerable introducer for minimially invasive procedures
US10376235B2 (en) * 2016-12-21 2019-08-13 Industrial Technology Research Institute Needle guide system and medical intervention system
EP3669324A1 (en) * 2017-08-16 2020-06-24 Koninklijke Philips N.V. Systems, methods, and apparatuses for image artifact cancellation
EP3880103A4 (en) * 2018-11-18 2022-12-21 Trig Medical Ltd. SPATIAL REGISTRATION METHOD FOR IMAGING DEVICES
JP2022169815A (ja) * 2019-09-30 2022-11-10 テルモ株式会社 撮像システム及び撮像カテーテル

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090137907A1 (en) * 2007-11-22 2009-05-28 Kabushiki Kaisha Toshiba Imaging diagnosis apparatus having needling navigation control system and a needling navigation controlling method
JP2012035010A (ja) * 2010-08-11 2012-02-23 Waseda Univ 穿刺支援システム
CN106175836A (zh) * 2016-07-29 2016-12-07 上海爱申科技发展股份有限公司 超声病灶定位方法
CN107789056A (zh) * 2017-10-19 2018-03-13 青岛大学附属医院 一种医学影像匹配融合方法
CN108294825A (zh) * 2017-12-26 2018-07-20 刘洋 用于手术导航的配准系统及方法
CN108210024A (zh) * 2017-12-29 2018-06-29 威朋(苏州)医疗器械有限公司 手术导航方法及系统
CN109549689A (zh) * 2018-08-21 2019-04-02 池嘉昌 一种穿刺辅助引导装置、系统及方法
CN109620303A (zh) * 2018-11-26 2019-04-16 苏州朗开医疗技术有限公司 一种肺部辅助诊断方法及装置
CN109394317A (zh) * 2018-12-14 2019-03-01 清华大学 穿刺路径规划装置及方法
CN109907801A (zh) * 2019-03-08 2019-06-21 哈尔滨工程大学 一种可定位超声引导穿刺方法
CN109805991A (zh) * 2019-03-14 2019-05-28 北京理工大学 血管穿刺辅助控制方法及装置
CN111134843A (zh) * 2020-02-04 2020-05-12 赵天力 一种在超声切面上获得超声探头中轴线的方法及装置
CN111150461A (zh) * 2020-02-04 2020-05-15 赵天力 一种穿刺针定位系统及方法

Also Published As

Publication number Publication date
EP3973896A1 (en) 2022-03-30
EP3973896A4 (en) 2023-07-12
US20210282743A1 (en) 2021-09-16
US11980496B2 (en) 2024-05-14

Similar Documents

Publication Publication Date Title
WO2021155649A1 (zh) 一种穿刺针定位系统及方法
JP5543444B2 (ja) 生検実施のための方法及びシステム
JP2950340B2 (ja) 三次元データ組の登録システムおよび登録方法
US8116549B2 (en) Method and apparatus for standardizing ultrasonography training using image to physical space registration of tomographic volumes from tracked ultrasound
RU2472442C2 (ru) Система для комплексного слияния данных формирования изображения на основании статистических моделей анатомии
US20080234570A1 (en) System For Guiding a Medical Instrument in a Patient Body
US20200367972A1 (en) Display method and system for ultrasound-guided intervention
CN111150461A (zh) 一种穿刺针定位系统及方法
ES2901703T3 (es) Integración de múltiples fuentes de datos para localización y navegación
JP2019517291A (ja) 内視鏡画像及び超音波画像の画像ベースの融合
WO2015188393A1 (zh) 人体器官运动监测方法、手术导航系统和计算机可读介质
US20070244369A1 (en) Medical Imaging System for Mapping a Structure in a Patient's Body
CN106163408A (zh) 使用同时的x平面成像的图像配准和引导
WO2023246521A1 (zh) 基于混合现实的病灶定位方法、装置和电子设备
JP2020096795A (ja) デバイス対画像レジストレーションアルゴリズムからの結果の可視化及び操作
CA2963865C (en) Phantom to determine positional and angular navigation system error
CN110123273A (zh) 一种结合ct图像的结节体表定位装置及结节体表定位方法
CN109907801A (zh) 一种可定位超声引导穿刺方法
US20140316234A1 (en) Apparatus and methods for accurate surface matching of anatomy using a predefined registration path
CN112566581A (zh) 用于消融可视化的系统
WO2023237083A1 (zh) 结节定位方法、装置和辅助测量工具
CN111134843B (zh) 一种在超声切面上获得超声探头中轴线的方法及装置
CN212281548U (zh) 一种定位设备
CN209996471U (zh) 一种基于ct三维模型映射混合定位导航系统
Kail et al. Three-dimensional display in the evaluation and performance of neurosurgery without a stereotactic frame: More than a pretty picture?

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020917786

Country of ref document: EP

Effective date: 20211221

NENP Non-entry into the national phase

Ref country code: DE