WO2023237011A1 - 一种利用重水堆核电站生产放射性同位素的系统和方法 - Google Patents

一种利用重水堆核电站生产放射性同位素的系统和方法 Download PDF

Info

Publication number
WO2023237011A1
WO2023237011A1 PCT/CN2023/098916 CN2023098916W WO2023237011A1 WO 2023237011 A1 WO2023237011 A1 WO 2023237011A1 CN 2023098916 W CN2023098916 W CN 2023098916W WO 2023237011 A1 WO2023237011 A1 WO 2023237011A1
Authority
WO
WIPO (PCT)
Prior art keywords
target box
target
pipe section
box
production
Prior art date
Application number
PCT/CN2023/098916
Other languages
English (en)
French (fr)
Inventor
毛飞
邹正宇
叶青
尚宪和
冯颖慧
赵晓玲
黄尚青
李世生
卢俊强
孟智良
邵长磊
樊申
张艳婷
吴天垣
陈禹
王忠辉
郑征
Original Assignee
上海核工程研究设计院股份有限公司
中核核电运行管理有限公司
秦山第三核电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海核工程研究设计院股份有限公司, 中核核电运行管理有限公司, 秦山第三核电有限公司 filed Critical 上海核工程研究设计院股份有限公司
Publication of WO2023237011A1 publication Critical patent/WO2023237011A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/02Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes in nuclear reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to the technical field of isotope production, specifically a system and method for producing radioactive isotopes using a heavy water reactor nuclear power plant.
  • Radioactive isotopes are used in many fields.
  • the target box can be transported to a heavy water reactor and the heavy water reactor irradiates the target box for isotope production.
  • the target box is in a highly radioactive heavy water reactor and cannot be operated manually.
  • Patent CN107710333A introduces a system that allows a spherical target box to enter and exit a heavy water reactor through air pressure control.
  • the channels within the reactor adopt a sleeve-type closed structure to meet the needs of controlling gas ingress and egress. It is difficult to control the speed of the target boxes when entering and exiting the heavy water reactor.
  • Patent CN112789689A introduces a system that uses a winch to transport target boxes for irradiation production.
  • the target boxes are transported within the reactor by a winch and are transported pneumatically or hydraulically above the reactor.
  • the winch is arranged directly above the through hole, which exposes the irradiation dose to a large amount; the target transport component directly communicates with the reactor fluid, and the risk of coolant leakage is high.
  • the target box is transmitted pneumatically or hydraulically at the rear end.
  • the structural design of the transmission device is complex and the sealing performance of the transmission channel is high.
  • the present invention provides a system and method for producing radioactive isotopes using a heavy water reactor nuclear power plant, which avoids mutual collision of target boxes, reduces radiation exposure of target box traction equipment, and is conducive to the safe production of isotopes.
  • the invention provides a system for producing radioactive isotopes using a heavy water reactor nuclear power plant, including: a production channel, including a straight pipe section, a bent pipe section and an inclined pipe section connected together in sequence, the bottom of the straight pipe section is located at the bottom inside the heavy water reactor discharge pipe container, The inclined tube section is provided with a loading port and a discharge port, and the loading port is closer to the bent tube section than the discharge port; a target box carrier is provided inside the production channel for carrying the target box And can move with the target box in the production channel, the target box carrier moves with the target box to the bottom of the straight pipe section for irradiation; a target box traction mechanism is arranged on the inclined pipe section away from the The end of the bent pipe section is used to pull the target box carrier; an automatic transport mechanism is provided above the tube row container, used to transport the target box before irradiation production and receive the irradiation completed in the production channel. Target box, the target box that has completed irradiation falls into the automatic transport mechanism from
  • the bent pipe section or the inclined pipe section is provided with a charging and exhausting port and a sealing valve, the charging and exhausting port is closer to the straight pipe section than the sealing valve; the charging and exhausting port is closer to the straight pipe section than the sealing valve; The air port is connected to the charging and exhausting system.
  • target box carriers there are one or more target box carriers, and multiple target box carriers are connected by connectors.
  • the target box carrier has an upper opening and a lower opening, and the target box passes through the upper opening. Enter the target box carrier and leave the target box carrier through the lower opening.
  • the target box carrier is provided with a counterweight, and the counterweight is disposed at an end of the target box carrier away from the target box traction mechanism.
  • the automatic transportation mechanism includes an automatic transportation channel, an automatic traction device for the material box, and a material box.
  • the automatic transportation channel is provided with a position sensing device for sensing the position of the material box;
  • the material box and the automatic material box traction device are located at the upper part of the automatic transport channel, and the material box automatic traction device is used to move the material box along the automatic transport channel.
  • the material box is made of radiation shielding material, and has an opening for receiving the target box on the top; the transport mechanism transports the target box that has not been irradiated from the far end to the loading port, and puts it into the loading port.
  • the target box carrier body is made of radiation shielding material, and has an opening for receiving the target box on the top; the transport mechanism transports the target box that has not been irradiated from the far end to the loading port, and puts it into the loading port.
  • a protective sleeve is coaxially arranged outside the straight pipe section, and the bottom end of the protective sleeve is connected to the bottom of the pipe container through a positioning thimble.
  • a plurality of water holes are provided on the wall of the protective sleeve.
  • the present invention also provides a method for realizing radioactive isotope production using any of the above systems, including the following steps:
  • the automatic transport mechanism transports the target box to the vicinity of the charging port of the inclined tube section of the production channel;
  • the target box is transported into the target box carrier through the transport mechanism, and the target box carrier slides along the inclined pipe section into the straight pipe section through the traction of its own gravity and enters the reactor for irradiation;
  • the target box traction mechanism pulls the target box carrier and the target box to the discharge port of the production channel;
  • the target box falls into the automatic transport mechanism through the discharge port of the production channel due to gravity.
  • the method also includes the following steps: before the target box enters the reactor, the filling and exhausting system extracts the air in the production channel, and maintains negative pressure control in the production channel; and the filling and exhausting system operates after the target box enters the reactor. , inject inert gas into the production channel, and seal at least the straight pipe section, and maintain positive pressure control in the production channel.
  • the target box carrier carries the target box and relies on the counterweight block or its own gravity to enter the core area of the heavy water reactor along the production channel. After the material in the target box is irradiated in the core area to complete isotope production, it passes through the target box traction mechanism. The driven traction rope makes the target box carrier and target box leave the core area along the production channel.
  • the mechanical transmission structure is simple and the system design is highly reliable.
  • the target box carrier carries the target box inside, and is connected end to end through a hinge structure to avoid damage caused by the target boxes hitting each other.
  • the target box carrier cooperates with the action of the target box traction mechanism.
  • the traction rope can constrain the movement speed of the target box and the target box carrier in the production channel, causing little disturbance to the normal operation of the reactor core.
  • the production channel has a single-tube structure, and the target box and target box carrier are closer to the heavy water coolant in the reactor, with small thermal resistance and good heat dissipation conditions.
  • the traction mechanism is arranged outside the shielding component and at the end of the inclined pipe of the production channel, avoiding the direct arrangement directly above the penetration hole of the pipe discharge container, which greatly reduces the radiation dose received by the electromechanical equipment.
  • the production channel provides a closed space for isotope production and is protected by inert gas, which improves the safety of isotope production.
  • Figure 1 is a schematic diagram of the overall structure of a system for producing radioactive isotopes using a heavy water reactor nuclear power plant according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of the target box carrier in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of the target box in Embodiment 1 of the present invention.
  • Figure 4 is a schematic structural diagram of the production channel in Embodiment 1 of the present invention.
  • Figure 5 is a schematic structural diagram of the production channel in the top area of the pile in Embodiment 1 of the present invention.
  • Figure 6 is a schematic structural diagram of the production channel at the bottom of the tube row container in Embodiment 1 of the present invention.
  • a heavy water reactor is the heat source of a nuclear power plant. It is a reactor that uses heavy water as a moderator and can directly use natural uranium as nuclear fuel.
  • the calandria vessel is an important part of the heavy water reactor moderator cooling system. It contains the heavy water moderator and has a number of internal pipes or channels to provide space for the irradiation device or to accommodate the reactor vessel of the pressure tube.
  • the reactivity control platform located on the upper part of the calandria vessel, is a key safety equipment for the heavy water reactor. It is equipped with equipment that performs important functions such as starting, power regulation, and safe shutdown of the heavy water reactor.
  • the target box is sealed with a metal cladding and filled with filler used for radioisotope production.
  • the target box when a heavy water reactor radiation target box is used for isotope production, the target box is in a highly radioactive heavy water reactor and cannot be operated manually by personnel.
  • the device that relies on pneumatic or hydraulic means to realize the target box entering and exiting the heavy water reactor has complex transmission structure design, high sealing performance requirements of the transmission channel, and high control difficulty.
  • the target box When the target box is driven by air pressure or hydraulic pressure, its speed cannot be controlled when entering and exiting the heavy water reactor. It is easy for the target boxes to break after hitting each other, the target box to get stuck in the production channel, and causing disturbance to the normal operation of the reactor core. This is not conducive to a series of accidents. Safe production of isotopes.
  • the channel since the existing transmission channel needs to realize the entry and exit of gas/liquid, the channel is usually designed as a casing structure, which is not conducive to sufficient heat dissipation of the target box during the irradiation process, and also increases the difficulty of maintenance.
  • this application proposes a system and method for producing radioactive isotopes in a heavy water reactor nuclear power plant.
  • the mechanical transmission structure is simple, which avoids the accident of damage of target boxes after collision with each other, and causes little disturbance to the normal operation of the reactor core.
  • the system The design is highly reliable, the transportation mechanism is easy to dissipate heat, and is easy to maintain.
  • This embodiment takes the CANDU heavy water reactor (Candu type heavy water reactor) as an example.
  • a system for producing radioactive isotopes using a heavy water reactor nuclear power plant includes a production channel 2, a target box carrier 3, a target box traction mechanism 1, an automatic transportation mechanism and a handling mechanism 10.
  • the production channel includes sequential connections The straight pipe section 211, the bent pipe section 212 and the inclined pipe section 213 are together.
  • the bottom of the straight pipe section 211 is located at the bottom of the inside of the heavy water reactor discharge pipe container 8.
  • the inclined pipe section 213 is provided with a loading port 21 and a discharge port 22.
  • the loading port 21 is larger than the The discharge port 22 is closer to the bent pipe section; the target box carrier 3 is provided inside the production channel 2 to carry the target box 4 and can move with the target box 4 in the production channel 2.
  • the target box carrier 3 carries the target box. 4. Move to the bottom of the straight pipe section for irradiation; the target box pulling mechanism 1 is set at the end of the inclined pipe section away from the bent pipe section, and is used to pull the target box carrier 3;
  • the dynamic transport mechanism is arranged above the tube discharge container 8 and is used to transport the target box 4 before irradiation production and to receive the target box 4 that has completed irradiation in the production channel 2.
  • the target box 4 that has completed irradiation falls from the discharge port 22 Automatic transport mechanism; the transport mechanism 10 is used to transport the target box 4 before irradiation production to the loading port 21 and place it into the target box carrier 3.
  • the number of production channels 2 is not limited. As shown in FIG. 1 , taking two groups of production channels 2 as an example, the corresponding matched target box traction mechanisms 1 also correspond to two groups.
  • the angle of the inclined pipe section 213 of the production channel 2 relative to the straight pipe section 211 is not less than 90° to avoid the curvature of the curved pipe section 212 being too small after bending and making it difficult for the target box carrier 3 to move under its own weight.
  • the part of the production channel 2 in the reactor is a straight pipe section 211, which is preferably made of zirconium material.
  • the straight pipe section 211 is inserted into the core area through the through hole above the row pipe container 8.
  • the straight pipe section 211 has a closed shell design and serves as a row pipe.
  • the pressure boundary of heavy water in the container 8, and the production channel 2 above the reactivity control platform 5 is a bent pipe section 212 and an inclined pipe section 213, which facilitates the use of gravity to send the target box carrier 3 and the target box 4 into the core area.
  • the shielding plug 6 and the shielding assembly 7 are used for radiation shielding of the through-hole channels.
  • the shielding plug 6 faces the lower area of the reactivity control platform 5 and is located between the through hole of the pipe discharge container 8 and the production channel 2; the shielding assembly 7 faces the upper area of the reactivity control platform 5, sealing and wrapping part of the straight pipe section of the production channel 2 and Bend pipe section.
  • the loading port 21 of the production channel 2 is closer to the bent pipe section 212 than the discharge port 22, so that the target box 4 will fall into the straight pipe section 211 by relying on the gravity of the target box carrier 3 after being loaded at the loading port. , after the irradiation is completed, it is pulled back by the target box traction mechanism 1 and moves in the direction away from the tube container 8.
  • the target box 4 can use its own gravity to fall from the discharge port 22 to the automatic transportation mechanism.
  • the discharge port 22 is also provided with a guide channel (not shown in the figure) to guide the target box 4 to the automatic transport mechanism.
  • the production channel 2 is also provided with a charging and exhausting port 24 and a sealing valve 23.
  • the system is provided with a charging and exhausting system (not shown in the figure), which is connected to the charging and exhausting port 24 of the production channel 2 and the sealing valve. 23 are combined to control the gas and pressure in the production channel 2.
  • target box 4 During isotope production, inert gas is filled through the charging and exhaust port 24, and the ambient pressure in the production channel 2 is controlled to be slightly positive pressure.
  • the sealing valve 5 is used to seal the inert gas in the production channel 2.
  • gas is extracted through the charging and exhausting port 24 and negative pressure is controlled to prevent radioactive aerogel from spreading into the environment.
  • a protective sleeve 9 is coaxially arranged outside the straight pipe section 211.
  • the bottom end of the protective sleeve 9 is provided with a positioning thimble 91.
  • the bottom end of the protective sleeve 9 is connected to the bottom of the pipe container 8 through the positioning thimble 91.
  • the middle part Radially supported on the top of the row tube container 8, a number of water holes 92 are provided on the wall of the protective sleeve 9.
  • the part of the protective sleeve 9 inside the reactor is made of zirconium material and is used to support the production channel 2.
  • the protective sleeve 9 is also provided with many water holes 92 in the reactor.
  • the heavy water moderator can flow into the protective sleeve 9 through the water holes 92 and can take away the heat generated by the target box 4 during the irradiation production.
  • the positioning ejector pin 91 is used for guiding, positioning and radial support when the protective sleeve 9 is installed, and can be inserted into the bracket reserved for installation, inspection and maintenance equipment in the pipe discharge container 8 for positioning.
  • the target box carrier 3 has an upper opening and a lower opening.
  • the target box 4 enters the target box carrier 3 through the upper opening and leaves the target box carrier 3 through the lower opening.
  • connectors are used to connect the multiple target box carriers 3.
  • pins or hinges are used to connect adjacent targets.
  • the box carriers 3 can rotate freely, so that they can pass through the bend section of the production channel 2 smoothly.
  • a counterweight (not shown in the figure) can be provided on the target box carrier 3.
  • the counterweight is provided at an end of the target box carrier away from the target box traction mechanism 1, which is beneficial to
  • the target box carrier 3 uses gravity to move toward the core area.
  • the target box carrier 3 and the counterweight are made of zirconium material, and the counterweight is a solid structure.
  • One end of the target box carrier 3 is connected to the counterweight, and the other end is connected to the target box traction mechanism 1 through a metal rope.
  • the target box 4 moves to the core area for radioisotope irradiation production, it relies on the gravity of the counterweight and the target box carrier 3 itself as power.
  • the target box 4 moves to the top area of the reactor, it relies on the target box traction mechanism 1 as the power.
  • the target box 4 usually has a cylindrical shell.
  • the target box 4 When moving in the production channel 2, the target box 4 is placed between the upper and lower openings of the target box carrier 3.
  • the outer diameter of the target box carrier 3 is consistent with the production line.
  • the inner diameter of the channel 2 matches, so that the target box carrier 3 can drive the target box 4 to move inside the production channel 2 without causing the target box 4 to fall out of the target box carrier 3 or be left in the production channel 2 .
  • the specific structure of the target box traction mechanism 1 is not limited, and can be a motor-driven reel with a traction rope wrapped around the reel.
  • the motor rotates forward to drive the reel to rotate and retract the traction rope, which pulls the target box carrier 3 to provide power; when the target box carrier 3 moves toward the inside of the tube discharge container by its own weight During movement, the motor cuts off power and releases the traction rope, or the motor reverses to drive the reel to reverse and release the traction rope.
  • the existence of the traction rope can ensure that the speed of the target box carrier 3 when moving toward the reactor core area is controllable, constrain the movement speed of the target box 4 and the target box carrier 3, and avoid accidents in which multiple target boxes 4 collide with each other, thereby affecting the reactor.
  • the impact caused by the normal operation of the core is small.
  • the automatic transportation mechanism specifically includes an automatic transportation channel 12, an automatic traction device 13 for the material box, and a material box 11.
  • the automatic transportation channel 12 can be a transportation guide rail, and the material box 11 is slidingly connected to the transportation guide rail, and can perform reciprocating motion on the transportation guide rail.
  • the automatic transportation channel 12 is provided with a position sensing device for sensing the position of the material box 11 to facilitate confirmation that the material box 11 is aligned with the discharge port of the production channel 2; the material box 11 and the automatic material box traction equipment 13 are located in the automatic transportation channel 12 In the upper part, the automatic traction device 13 for the material box is used to reciprocally move the material box 11 along the automatic transport channel 12 .
  • the material box 11 is made of stainless steel, lead, tungsten and other radiation-shielding materials to shield the radiation generated by the target box 4 after irradiation production.
  • the top of the material box 11 is provided with an opening for receiving the target box 4; the transport mechanism 10 transports the far end over.
  • the irradiated target box 4 is placed into the loading port 21 and put into the target box carrier 3 located in the production channel 2.
  • the target box traction mechanism 1 moves and the target box carrier 3 enters under the action of the counterweight. Irradiation of the reactor core area.
  • the specific structure of the transport mechanism 10 is not limited, and can be any equipment such as a robotic arm, a manipulator, or an automatic clamp, and can transport the target box 4 that has not been irradiated from the far end and place it into the target box carrier 3 through the loading port 21 equipment.
  • the system of this embodiment is also equipped with an automatic control unit (not shown in the figure), including the control of automatic detection devices such as radiation dose measurement, position measurement, and counting measurement, as well as the interlocking control target box traction mechanism 1, automatic Transport unit, charging and exhausting unit, and other electronically controlled valves.
  • the automatic control unit can realize fully automated operations such as target box transportation, loading, radioisotope production, unloading, and recycling, which greatly reduces the possibility of operators being irradiated and improves production efficiency.
  • this embodiment provides a method for realizing radioisotope production using the system of Embodiment 1. The steps are as follows:
  • the automatic transport mechanism transports the target box 4 to the vicinity of the charging port 21 of the inclined tube section 213 of the production channel 2.
  • the automatic traction device 13 of the material box drives the material box 11 to move along the automatic transport channel 12 to the vicinity of the charging port 21;
  • the target box 4 is transported into the target box carrier 3 through the transport mechanism 10.
  • the target box carrier 3 slides along the inclined pipe section 213 into the straight pipe section 211 through the traction of its own gravity or the traction of the counterweight and enters the reactor for irradiation;
  • the target box traction mechanism 1 pulls the target box carrier 3 and the target box 4 along the automatic transportation channel 12 to the discharge port 22 of the production channel 2;
  • the target box 4 falls into the automatic transportation mechanism through the discharge port 22 of the production channel due to gravity, specifically, into the material box 11 of the automatic transportation mechanism.
  • the filling and exhausting system extracts the air in the production channel 2 before the target box enters the reactor, and maintains negative pressure control in the production channel 2 to avoid the spread of radioactive aerogel into the environment; filling and exhausting After the target box 4 enters the reactor, the gas system injects inert gas into the production channel 2, and seals at least the straight pipe section 211 through the sealing valve 23 to maintain positive pressure control in the production channel 2, thereby preventing ambient air from entering the production channel. Unnecessary irradiation also improves the safety of isotope production.
  • the mechanical transmission structure of the target box carrier 3, the target box traction mechanism 1 and the production channel 2 is simple, and the system design is highly reliable.
  • the target box carrier 3 is connected end to end through a hinge structure to avoid damage caused by the target boxes 4 colliding with each other.
  • the target box traction mechanism 1 can constrain the movement speed of the target box 4 and the target box carrier 3 in the production channel 2, causing little disturbance to the normal operation of the reactor core.
  • the target box traction mechanism 1 is arranged outside the shielding assembly and behind the inclined pipe of the production channel, which greatly reduces the radiation dose received by the electromechanical equipment.
  • the charging and exhausting system improves the safety of isotope production and prevents the spread of radioactive aerogels into the environment.
  • the system and method for producing radioactive isotopes in a heavy water reactor nuclear power plant of the present invention avoids mutual collision or jamming of target boxes through the target box carrier, and greatly reduces the target box traction mechanism by arranging the target box traction mechanism at the far end of the production channel.
  • the traction mechanism can also reduce the disturbance caused by the target box carrier to the normal operation of the reactor core, and can realize the production of isotopes such as 99 Mo, 177 Lu, 89 Sr, and 131 I.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)
  • Nuclear Medicine (AREA)

Abstract

一种利用重水堆核电站生产放射性同位素的系统,包括:生产通道(2),包括依次连接在一起的直管段(211)、弯管段(212)和斜管段(213),直管段(211)底部位于重水堆排管容器(8)内侧底部,斜管段(213)设有装料口(21)和卸料口(22),装料口(21)比卸料口(22)更靠近弯管段(212);靶盒承载体(3),设置于生产通道(2)内部用于承载靶盒(4)并且能够带着靶盒(4)在生产通道(2)内移动;靶盒牵引机构(1),设置于斜管段(213)远离弯管段(212)的末端,用于牵引靶盒承载体(3);自动运输机构,设置于排管容器(8)上方,用于运送辐照生产前的靶盒(4)以及接收生产通道(2)中完成辐照的靶盒(4);搬运机构(10),用于将辐照生产前的靶盒(4)搬运至装料口(21),并放到靶盒承载体(3)内。避免了靶盒(4)相互撞击,减少靶盒牵引机构(1)受到的辐射,降低了对堆芯造成的扰动。

Description

一种利用重水堆核电站生产放射性同位素的系统和方法 技术领域
本发明涉及同位素生产技术领域,具体地说是一种利用重水堆核电站生产放射性同位素的系统和方法。
背景技术
放射性同位素应用在多个领域,可以通过将靶盒输送至重水堆内,利用重水堆辐射靶盒进行同位素生产,而此种生产方法中靶盒处于高放射性的重水堆中,人员无法手动操作。专利CN107710333A介绍了一种通过气压控制实现球形靶盒进出重水堆的系统。在反应堆内的通道采用套管式的封闭结构,以满足控制气体进出的需求。靶盒进出重水堆时速度难以控制,容易出现多个靶盒之间相互撞击后破裂、靶盒在生产通道内卡住、靶盒快速运动对堆芯的正常运行造成扰动等系列事故,不利于同位素的安全生产。专利CN112789689A介绍了一种通过绞盘运送靶盒进行辐照生产的系统,靶盒在反应堆内通过绞盘运输,在反应堆上方通过气动或者液压的方式传送。绞盘布置在贯穿孔洞的正上方,受辐照的剂量大;靶输送组件直接同反应堆流体流通,冷却剂的泄漏风险大。靶盒在后端通过气动或者液压的方式传送,其传动装置结构设计复杂、传送通道的密封性能要求高。
发明内容
本发明为了克服以上技术问题,提供利用重水堆核电站生产放射性同位素的系统和方法,避免靶盒相互撞击,减少靶盒牵引设备受到辐射,有利于同位素的安全生产。
本发明提供一种利用重水堆核电站生产放射性同位素的系统,包括:生产通道,包括依次连接在一起的直管段、弯管段和斜管段,所述直管段底部位于重水堆排管容器内侧底部,所述斜管段设有装料口和卸料口,所述装料口比所述卸料口更靠近所述弯管段;靶盒承载体,设置于所述生产通道内部用于承载靶盒并且能够带着靶盒在所述生产通道内移动,所述靶盒承载体带着靶盒移动至所述直管段底部进行辐照;靶盒牵引机构,其设置于所述斜管段远离所述弯管段的末端,用于牵引所述靶盒承载体;自动运输机构,设置于所述排管容器上方,用于运送辐照生产前的靶盒以及接收所述生产通道中完成辐照的靶盒,完成辐照的靶盒从所述卸料口落入所述自动运输机构;搬运机构,用于将辐照生产前的靶盒搬运至所述装料口,并放到所述靶盒承载体内。
优选地,还包括充排气系统,所述弯管段或斜管段设有充排气口和密封阀,所述充排气口比所述密封阀更靠近所述直管段;所述充排气口连接所述充排气系统。
优选地,所述靶盒承载体为一个或多个,多个靶盒承载体之间采用连接件连接,所述靶盒承载体具有上部开口和下部开口,所述靶盒通过所述上部开口进入所述靶盒承载体,通过所述下部开口离开所述靶盒承载体。
优选地,所述靶盒承载体上设有配重件,所述配重件设置于靶盒承载体远离所述靶盒牵引机构的一端。
优选地,所述自动运输机构包括自动运输通道、料盒自动牵引设备和料盒,所述自动运输通道设有位置传感装置,用于感应所述料盒的位置; 所述料盒和所述料盒自动牵引设备位于所述自动运输通道上部,所述料盒自动牵引设备用于沿所述自动运输通道移动所述料盒。
优选地,所述料盒采用辐射屏蔽材料制造,顶部设有接收靶盒的开口;所述搬运机构将远端输送过来未经过辐照的靶盒搬运至所述装料口,并放入所述靶盒承载体。
优选地,所述直管段外侧同轴布置保护套管,所述保护套管底端通过定位顶针连接在排管容器底部。
优选地,所述保护套管的管壁上设有若干流水孔。
本发明还提供利用以上任一项所述系统实现放射性同位素生产的方法,包括以下步骤:
将靶盒装入所述自动运输机构;
所述自动运输机构将靶盒运送至生产通道的斜管段的所述装料口附近;
靶盒通过所述搬运机构运入所述靶盒承载体,所述靶盒承载体通过自身重力的牵引沿所述斜管段滑入所述直管段并进入反应堆内进行辐照;
完成辐照生产后靶盒牵引机构牵引靶盒承载体及靶盒送至生产通道的卸料口;
靶盒通过重力作用经所述生产通道的卸料口落入所述自动运输机构。
优选地,还包括如下步骤:充排气系统在靶盒进入反应堆内前,抽取所述生产通道内的空气,所述生产通道内保持负压控制;充排气系统在靶盒进入反应堆内后,将惰性气体注入所述生产通道内,并至少密封所述直管段,所述生产通道内保持正压控制。
本发明的与现有技术相比,以上一个或多个技术方案存在以下有益效果:
1、靶盒承载体携带靶盒依靠配重块或自身重力,沿生产通道进入重水堆的堆芯区域内,靶盒内的材料接受堆芯区域辐照完成同位素生产后,通过靶盒牵引机构带动的牵引绳使靶盒承载体和靶盒沿生产通道离开堆芯区域,机械传动结构简单,系统设计可靠性高。
2、靶盒承载体内部承载靶盒,通过铰链结构首尾相连,避免出现靶盒相互撞击后破损的事故。
3、靶盒承载体配合靶盒牵引机构的动作,牵引绳能够约束靶盒和靶盒承载体在生产通道内的运动速度,对堆芯正常运行造成的扰动小。
4、生产通道为单管结构,靶盒及靶盒承载体更靠近反应堆中的重水冷却剂,热阻小,散热条件好。
5、牵引机构布置在屏蔽组件外部、生产通道斜管道的末端,避免了直接布置在排管容器贯穿孔洞的正上方,大大降低了机电设备所受的辐照剂量。
6、生产通道提供了同位素生产的封闭空间,并且采用惰性气体保护,提升了同位素生产的安全性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本发明实施例一提供的利用重水堆核电站生产放射性同位素的系统整体结构示意图;
图2是本发明实施例一中靶盒承载体的结构示意图;
图3是本发明实施例一中靶盒的结构示意图;
图4是本发明实施例一中生产通道的结构示意图;
图5是本发明实施例一中生产通道在堆顶区域的结构示意图;
图6是本发明实施例一中生产通道在排管容器底部的结构示意图;
在附图中,附图并未按照实际的比例绘制。
标记说明:
1-靶盒牵引机构
2-生产通道
21-装料口;22-卸料口;23-密封阀;24-充排气口
211-直管段;212-弯管段;213-斜管段
3-靶盒承载体
4-靶盒
5-反应性控制平台
6-屏蔽塞
7-屏蔽组件
8-排管容器
9-保护套管
91-定位顶针;92-流水孔
10-搬运机构
11-料盒
12-自动运输通道
13-料盒自动牵引设备
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“连通”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请的实施例所提到的重水堆、排管容器、反应性控制平台和靶盒的定义如下。
重水堆,是核电站的热源,是以重水作慢化剂的反应堆,可以直接利用天然铀作为核燃料。
排管容器,是重水堆慢化剂冷却系统的重要组成部分,容纳重水慢化剂,具有若干内部管道或通道,为辐照装置提供空间或容纳压力管的反应堆容器。
反应性控制平台,位于排管容器上部,是重水堆关键的安全设备,布置有重水堆的启动、功率调节以及安全停堆等执行重要功能的设备。
靶盒,采用金属包壳密封,内部填充用于放射性同位素生产的填充料。
目前利用重水堆辐射靶盒进行同位素生产时,靶盒处于高放射性的重水堆中,人员无法手动操作。依靠气动或者液压的方式实现靶盒进出重水堆的装置,其传动装置结构设计复杂、传送通道密封性能要求高、控制难度高。靶盒依靠气压或液压驱动时,其进出重水堆时速度不可控,容易出现靶盒相互撞击后破裂、靶盒在生产通道内卡住、对堆芯的正常运行造成扰动等系列事故,不利于同位素的安全生产。同时,由于现有的传送通道需要实现气/液的进出,通道通常设计成套管结构,不利于靶盒在辐照过程中的充分散热,也增加了维修难度。
为了解决上述问题,本申请给出一种利用重水堆核电站生产放射性同位素的系统和方法,机械传动结构简单,避免出现靶盒相互撞击后破损的事故,对堆芯正常运行造成的扰动小,系统设计可靠性高,运输机构易散热,维修方便。
实施例一
本实施例以CANDU重水反应堆(坎杜型重水反应堆)为例说明。
如图1-5所示,一种利用重水堆核电站生产放射性同位素的系统,包括生产通道2、靶盒承载体3、靶盒牵引机构1、自动运输机构和搬运机构10,生产通道包括依次连接在一起的直管段211、弯管段212和斜管段213,直管段211底部位于重水堆排管容器8内侧底部,斜管段213设有装料口21和卸料口22,装料口21比卸料口22更靠近弯管段;靶盒承载体3设置于生产通道2内部用于承载靶盒4并且能够带着靶盒4在生产通道2内移动,靶盒承载体3带着靶盒4移动至直管段底部进行辐照;靶盒牵引机构1设置于斜管段远离弯管段的末端,用于牵引靶盒承载体3;自 动运输机构设置于排管容器8上方,用于运送辐照生产前的靶盒4以及接收生产通道2中完成辐照的靶盒4,完成辐照的靶盒4从卸料口22落入自动运输机构;搬运机构10,用于将辐照生产前的靶盒4搬运至装料口21,并放到靶盒承载体3内。
具体地,生产通道2的数量不受限制,如图1所示,以两组生产通道2为例,相应的所匹配的靶盒牵引机构1也对应为两组。生产通道2的斜管段213相对于直管段211的角度不小于90°,避免弯管段212弯曲后的曲率过小导致靶盒承载体3难以利用自重运动。生产通道2在反应堆内的部分为直管段211,优选地,采用锆质材料,直管段211通过排管容器8上方的贯穿孔洞插入至堆芯区域,直管段211壳体封闭设计,作为排管容器8内重水的压力边界,而在反应性控制平台5上方生产通道2为弯管段212和斜管段213,便于利用重力将靶盒承载体3和靶盒4送入堆芯区域。屏蔽塞6和屏蔽组件7用于贯穿孔的孔道的辐射屏蔽。屏蔽塞6朝向反应性控制平台5的下方区域,位于排管容器8贯穿孔和生产通道2之间;屏蔽组件7朝向反应性控制平台5的上方区域,封闭包裹生产通道2的部分直管段和弯管段。
如图4所示,生产通道2的装料口21比卸料口22更靠近弯管段212,以使靶盒4在装料口装载后依靠靶盒承载体3自身重力落入直管段211,在辐照完毕后被靶盒牵引机构1拉回朝向离开排管容器8的方向运动,经过卸料口22时,靶盒4可以利用自身重力从卸料口22掉落至自动运输机构。优选地,卸料口22还设有导向通道(图中未示出),使靶盒4导向自动运输机构。生产通道2还设有充排气口24和密封阀23,与之相对应地本系统设有充排气系统(图中未示出),连通生产通道2充排气口24,与密封阀23相结合对生产通道2内进行气体和压力控制。靶盒4 在进行同位素生产时通过充排气口24充装惰性气体,控制生产通道2内的环境压力为微正压,密封阀5用于密封生产通道2中的惰性气体。靶盒4在生产通道2内进行运输时通过充排气口24抽取气体,进行负压控制,从而避免放射性气凝胶扩散至环境中。
如图6所示,直管段211外侧同轴布置保护套管9,保护套管9的底端设置有定位顶针91,保护套管9底端通过定位顶针91连接在排管容器8底部,中部径向支撑在排管容器8顶部,保护套管9的管壁上设有若干流水孔92。保护套管9在反应堆内的部分是锆质材料,用于支撑生产通道2。保护套管9在反应堆内的部分还设置很多流水孔92,重水慢化剂能通过流水孔92流入保护套管9中,可以带走靶盒4在辐照生产中产生的热量。定位顶针91,用于保护套管9安装时的导向、定位与径向支撑,可插入排管容器8内为安装检测、检修设备预留的支架内进行定位。
如图2所示,靶盒承载体3具有上部开口和下部开口,靶盒4通过上部开口进入靶盒承载体3,通过下部开口离开靶盒承载体3。靶盒承载体3为一个或多个,采用多个靶盒承载体3时,多个靶盒承载体3之间采用连接件连接,优选地,采用销轴连接或铰链连接,使相邻靶盒承载体3之间可以自由转动,从而可以顺利通过生产通道2的弯管段。为增加靶盒承载体3的重量,可以在靶盒承载体3上设置配重件(图中未示出),配重件设置于靶盒承载体远离靶盒牵引机构1的一端,有利于靶盒承载体3利用重力向堆芯区域运动。优选地,靶盒承载体3和配重件均采用锆质材料,配重件为实心结构。靶盒承载体3一端连接配重件,另一端通过金属绳同靶盒牵引机构1连接。靶盒4向堆芯区域运动进行放射性同位素辐照生产时依靠配重件和靶盒承载体3自身的重力作为动力,靶盒4向堆顶区域运动时依靠靶盒牵引机构1作为动力。
如图3所示,靶盒4通常具有圆柱状壳体,在生产通道2内运动时,靶盒4放置于靶盒承载体3的上下开口之间,靶盒承载体3的外径与生产通道2的内径相匹配,使靶盒承载体3能够带动靶盒4在生产通道2的内部移动而不会使靶盒4掉出靶盒承载体3或遗落在生产通道2内。
靶盒牵引机构1的具体结构不做限制,可以为电机驱动的卷盘,卷盘上缠绕牵引绳。靶盒承载体3由排管容器8内部离开时,电机正转带动卷盘转动收起牵引绳是其拉动靶盒承载体3从而提供动力;当靶盒承载体3通过自重向排管容器内部运动时,电机断电放出牵引绳,或电机反转带动卷盘反转放出牵引绳。牵引绳的存在能够确保靶盒承载体3朝向堆芯区域运动时的速度可控,约束靶盒4和靶盒承载体3运动的速度,避免出现多个靶盒4相互撞击的事故,对堆芯正常运行造成的影响小。
自动运输机构具体包括自动运输通道12、料盒自动牵引设备13和料盒11,自动运输通道12可以为运输导轨,料盒11与运输导轨滑动连接,可在运输导轨上做往复运动。自动运输通道12设有位置传感装置,用于感应料盒11的位置,便于确认料盒11对准生产通道2的卸料口;料盒11和料盒自动牵引设备13位于自动运输通道12上部,料盒自动牵引设备13用于沿自动运输通道12往复移动料盒11。料盒11采用不锈钢、铅、钨等可屏蔽辐射的材料,屏蔽辐照生产后靶盒4产生的辐射,料盒11顶部设有接收靶盒4的开口;搬运机构10将远端输送过来未经过辐照的靶盒4放至装料口21,并放入位于生产通道2内的靶盒承载体3中,靶盒牵引机构1运动,靶盒承载体3在配重件的作用下进入堆芯区域辐照。
搬运机构10不限制具体的结构,可以为机械臂、机械手或自动夹爪等任意设备,能够将远端输送过来未经过辐照的靶盒4通过装料口21放入靶盒承载体3内的设备即可。
优选地,本实施例的系统还设有自动控制单元(图中未示出),包括辐照剂量测量、位置测量、计数测量等自动检测装置的控制,以及连锁控制靶盒牵引机构1、自动运输单元、充排气单元,以及其他的电控阀门。通过自动控制单元能够实现靶盒运输、上料、放射性同位素生产、卸料、回收等全自动化操作,极大的降低了操作人员受辐照的可能性,提高生产效率。
实施例二
参照图1-5所示,本实施例给出利用实施例一的系统实现放射性同位素生产的方法,步骤如下:
将靶盒4装入自动运输机构,具体地,装入自动运输机构的料盒11内;
自动运输机构将靶盒4运送至生产通道2的斜管段213的装料口21附近,具体地,料盒自动牵引设备13驱动料盒11沿着自动运输通道12移动至装料口21附近;
靶盒4通过搬运机构10运入靶盒承载体3,靶盒承载体3通过自身重力的牵引或配重件的牵引沿斜管段213滑入直管段211并进入反应堆内进行辐照;
完成辐照生产后靶盒牵引机构1牵引靶盒承载体3及靶盒4沿着自动运输通道12送至生产通道2的卸料口22;
靶盒4通过重力作用经生产通道的卸料口22落入自动运输机构,具体地,落入自动运输机构的料盒11中。
优选地,还包括如下步骤:充排气系统在靶盒进入反应堆内前,抽取生产通道2内的空气,生产通道2内保持负压控制,从而避免放射性气凝胶扩散至环境中;充排气系统在靶盒4进入反应堆内后,将惰性气体注入生产通道2内,并通过密封阀23至少密封直管段211,使生产通道2内保持正压控制,从而避免环境空气进入生产通道内进行不必要的辐照,也提升了同位素生产的安全性。
本申请的核心优势在于:
靶盒承载体3、靶盒牵引机构1以及生产通道2的机械传动结构简单,系统设计可靠性高。
靶盒承载体3通过铰链结构首尾相连,避免出现靶盒4相互撞击后破损的事故。靶盒牵引机构1能够约束靶盒4和靶盒承载体3在生产通道2内的运动速度,对堆芯正常运行造成的扰动小。
靶盒牵引机构1布置在屏蔽组件外部、生产通道斜管道的后方,大大降低了机电设备所受的辐照剂量。
充排气系统提升了同位素生产的安全性也避免了放射性气凝胶扩散至环境中。
本发明的重水堆核电站生产放射性同位素的系统和方法,通过靶盒承载体避免了靶盒之间相互撞击或卡住,通过将靶盒牵引机构设置在生产通道远端大大减少了靶盒牵引机构受到的辐射,同时牵引机构还可以降低靶盒承载体对堆芯正常运行造成的扰动,可以实现99Mo、177Lu、89Sr、131I等同位素的生产。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征 均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种利用重水堆核电站生产放射性同位素的系统,其特征在于:
    生产通道,包括依次连接在一起的直管段、弯管段和斜管段,所述直管段底部位于重水堆排管容器内侧底部,所述斜管段设有装料口和卸料口,所述装料口比所述卸料口更靠近所述弯管段;
    靶盒承载体,设置于所述生产通道内部用于承载靶盒并且能够带着靶盒在所述生产通道内移动,所述靶盒承载体带着靶盒移动至所述直管段底部进行辐照;
    靶盒牵引机构,其设置于所述斜管段远离所述弯管段的末端,用于牵引所述靶盒承载体;
    自动运输机构,设置于所述排管容器上方,用于运送辐照生产前的靶盒以及接收所述生产通道中完成辐照的靶盒,完成辐照的靶盒从所述卸料口落入所述自动运输机构;
    搬运机构,用于将辐照生产前的靶盒搬运至所述装料口,并放到所述靶盒承载体内。
  2. 如权利要求1所述的一种利用重水堆核电站生产放射性同位素的系统,其特征在于:还包括充排气系统,所述弯管段或斜管段设有充排气口和密封阀,所述充排气口比所述密封阀更靠近所述直管段;所述充排气口连接所述充排气系统。
  3. 如权利要求1所述的一种利用重水堆核电站生产放射性同位素的系统,其特征在于:所述靶盒承载体为一个或多个,多个靶盒承载体之间采用连接件连接,所述靶盒承载体具有上部开口和下部开口,所述靶盒通 过所述上部开口进入所述靶盒承载体,通过所述下部开口离开所述靶盒承载体。
  4. 如权利要求3所述的一种利用重水堆核电站生产放射性同位素的系统,其特征在于:所述靶盒承载体上设有配重件,所述配重件设置于靶盒承载体远离所述靶盒牵引机构的一端。
  5. 如权利要求1所述的一种利用重水堆核电站生产放射性同位素的系统,其特征在于:所述自动运输机构包括自动运输通道、料盒自动牵引设备和料盒,所述自动运输通道设有位置传感装置,用于感应所述料盒的位置;所述料盒和所述料盒自动牵引设备位于所述自动运输通道上部,所述料盒自动牵引设备用于沿所述自动运输通道移动所述料盒。
  6. 如权利要求5所述的一种利用重水堆核电站生产放射性同位素的系统,其特征在于:所述料盒采用辐射屏蔽材料制造,顶部设有接收靶盒的开口,用于接收从所述卸料口掉落的靶盒。
  7. 如权利要求1所述的一种利用重水堆核电站生产放射性同位素的系统,其特征在于:所述直管段外侧同轴布置保护套管,保护套管的底端设置有定位顶针,所述保护套管底端通过定位顶针连接在排管容器底部。
  8. 如权利要求7所述的一种利用重水堆核电站生产放射性同位素的系统,其特征在于:所述保护套管的管壁上设有若干流水孔。
  9. 基于权利要求1-8中任一项所述系统实现放射性同位素生产的方 法,其特征在于,包括以下步骤:
    将靶盒装入所述自动运输机构;
    所述自动运输机构将靶盒运送至生产通道的斜管段的所述装料口附近;
    靶盒通过所述搬运机构运入所述靶盒承载体,所述靶盒承载体通过自身重力的牵引沿所述斜管段滑入所述直管段并进入反应堆内进行辐照;
    完成辐照生产后靶盒牵引机构牵引靶盒承载体及靶盒送至生产通道的卸料口;
    靶盒通过重力作用经所述生产通道的卸料口落入所述自动运输机构。
  10. 如权利要求9所述的方法,其特征在于,还包括如下步骤:
    充排气系统在靶盒进入反应堆内前,抽取所述生产通道内的空气,所述生产通道内保持负压控制;
    充排气系统在靶盒进入反应堆内后,将惰性气体注入所述生产通道内,并至少密封所述直管段,所述生产通道内保持正压控制。
PCT/CN2023/098916 2022-06-07 2023-06-07 一种利用重水堆核电站生产放射性同位素的系统和方法 WO2023237011A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210636177.5A CN115064295B (zh) 2022-06-07 2022-06-07 一种利用重水堆核电站生产放射性同位素的系统和方法
CN202210636177.5 2022-06-07

Publications (1)

Publication Number Publication Date
WO2023237011A1 true WO2023237011A1 (zh) 2023-12-14

Family

ID=83201285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098916 WO2023237011A1 (zh) 2022-06-07 2023-06-07 一种利用重水堆核电站生产放射性同位素的系统和方法

Country Status (2)

Country Link
CN (1) CN115064295B (zh)
WO (1) WO2023237011A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115064295B (zh) * 2022-06-07 2024-05-10 上海核工程研究设计院股份有限公司 一种利用重水堆核电站生产放射性同位素的系统和方法
CN117912742B (zh) * 2024-03-18 2024-06-18 苏州江锦自动化科技有限公司 靶件的全自动辐照生产装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016207054A1 (en) * 2015-06-22 2016-12-29 Areva Gmbh Method of producing radioisotopes using a heavy water type nuclear power plant
US20190108921A1 (en) * 2017-10-11 2019-04-11 Westinghouse Electric Company Llc Method and Apparatus for Planting and Harvesting Radioisotopes on a Mass Production Basis
CN112789689A (zh) * 2018-08-27 2021-05-11 Bwxt同位素技术集团有限公司 产生放射性同位素的靶辐照系统
CN113892152A (zh) * 2019-05-23 2022-01-04 法玛通股份有限公司 从核反应堆和放射性核素生成系统中移除辐照靶的系统和方法
CN114093548A (zh) * 2021-10-14 2022-02-25 中核核电运行管理有限公司 一种重水堆生产无载体99Mo的方法
CN115064295A (zh) * 2022-06-07 2022-09-16 上海核工程研究设计院有限公司 一种利用重水堆核电站生产放射性同位素的系统和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3699686B2 (ja) * 2002-02-28 2005-09-28 Necトーキン株式会社 ターゲット搬送装置
KR101160772B1 (ko) * 2011-01-03 2012-06-28 한국수력원자력 주식회사 가압경수로의 개량 피동형 보조급수계통 역류방지 방법
KR101502414B1 (ko) * 2014-06-24 2015-03-13 박윤원 중수로 원자로를 이용한 동위원소 제조방법
US20160012928A1 (en) * 2014-07-08 2016-01-14 Westinghouse Electric Company Llc Targeted Isotope Production System
CN113140346A (zh) * 2021-04-16 2021-07-20 上海核工程研究设计院有限公司 一种用于重水堆生产c-14同位素的靶件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016207054A1 (en) * 2015-06-22 2016-12-29 Areva Gmbh Method of producing radioisotopes using a heavy water type nuclear power plant
CN107710333A (zh) * 2015-06-22 2018-02-16 新核能有限公司 使用重水型核电站生产放射性同位素的方法
US20190108921A1 (en) * 2017-10-11 2019-04-11 Westinghouse Electric Company Llc Method and Apparatus for Planting and Harvesting Radioisotopes on a Mass Production Basis
CN112789689A (zh) * 2018-08-27 2021-05-11 Bwxt同位素技术集团有限公司 产生放射性同位素的靶辐照系统
CN112789688A (zh) * 2018-08-27 2021-05-11 Bwxt同位素技术集团有限公司 产生放射性同位素的气动靶辐照系统
CN113892152A (zh) * 2019-05-23 2022-01-04 法玛通股份有限公司 从核反应堆和放射性核素生成系统中移除辐照靶的系统和方法
CN114093548A (zh) * 2021-10-14 2022-02-25 中核核电运行管理有限公司 一种重水堆生产无载体99Mo的方法
CN115064295A (zh) * 2022-06-07 2022-09-16 上海核工程研究设计院有限公司 一种利用重水堆核电站生产放射性同位素的系统和方法

Also Published As

Publication number Publication date
CN115064295A (zh) 2022-09-16
CN115064295B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
WO2023237011A1 (zh) 一种利用重水堆核电站生产放射性同位素的系统和方法
EP3886118B1 (en) Unloading and temporary storage device
CN106531257B (zh) 一种反应堆堆内换料系统
EP3399526B1 (en) Nuclear power plant spent fuel negative pressure unloading system
US20230298775A1 (en) Nuclear refuelling device
CN102201269B (zh) 球床高温气冷堆乏燃料装料装置
CN105427909A (zh) 一种核电站乏燃料负压卸料系统
JP6349059B2 (ja) 放射性物質の処理設備
CN115295192B (zh) 一种使用流体驱动在重水堆中装卸靶件的装置和方法
US20130315363A1 (en) Device and method for replacing an irradiated fuel assembly with a new fuel assembly in the vessel of a nuclear reactor, and nuclear reactor including such a device
CN106663480B (zh) 在对核反应堆换料时取出阻力塞和可移除单元的方法
RU2224307C2 (ru) Способ перегрузки быстрого ядерного реактора и система перегрузки
JPS627997B2 (zh)
CN115867988A (zh) 用于核反应堆的燃料处理系统、布局和工艺
SU397094A1 (ru) Перегрузочна машина
CN117208574A (zh) 一种用于传输辐照后靶盒的装置和方法
CN213988319U (zh) 燃料组件啜吸密封室开关系统
CN115346707B (zh) 一种利用重水堆观察孔生产同位素的装置和方法
US20230420148A1 (en) Nuclear power generation system
JPS6151755B2 (zh)
CN117228334A (zh) 一种重水堆辐照后靶盒传输装置及方法
JP2004361113A (ja) 新型転換炉の圧力管解体方法
TW202147341A (zh) 核組件處理配置
WO2022117316A1 (en) Internals lifting device
CN115060546A (zh) 反应堆容器内熔融金属介质取样系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819176

Country of ref document: EP

Kind code of ref document: A1