WO2023236837A1 - 信息传输方法及其装置、存储介质 - Google Patents

信息传输方法及其装置、存储介质 Download PDF

Info

Publication number
WO2023236837A1
WO2023236837A1 PCT/CN2023/097510 CN2023097510W WO2023236837A1 WO 2023236837 A1 WO2023236837 A1 WO 2023236837A1 CN 2023097510 W CN2023097510 W CN 2023097510W WO 2023236837 A1 WO2023236837 A1 WO 2023236837A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
communication node
identification information
target
pilot
Prior art date
Application number
PCT/CN2023/097510
Other languages
English (en)
French (fr)
Inventor
袁志锋
马一华
胡留军
夏树强
郁光辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023236837A1 publication Critical patent/WO2023236837A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • Embodiments of the present application relate to, but are not limited to, the field of communication technology, and in particular, to an information transmission method, device, and storage medium thereof.
  • Integration of sensing and communication refers to the integration of communication and sensing functions, so that future communication systems have both communication and sensing functions.
  • ISAC sensing and communication
  • the ISAC scenario there is a scenario where it is hoped to use the wireless signals transmitted by the terminal to sense the environment.
  • IoT Internet of Things
  • mMTC massive machine type communication
  • Embodiments of the present application provide an information transmission method, device, and storage medium thereof, which can realize information transmission from a first communication node to a second communication node while reducing signaling overhead.
  • inventions of the present application provide an information transmission method applied to a first communication node.
  • the information transmission method includes:
  • the target sending time is determined according to a pre-stored timing advance
  • the target information includes the timing advance and the identification received by the first communication node Information
  • the identification information includes at least one of the following: cell identification information; base station identification information; beam identification information; and identification information of a wireless signal access point.
  • inventions of the present application provide an information transmission method applied to a second communication node.
  • the information transmission method includes: receiving target information sent by the first communication node at the target sending time; wherein the target sending The time is determined by the first communication node according to the pre-stored timing advance.
  • the target information includes the timing advance and the identification information received by the first communication node.
  • the identification information includes at least one of the following: Cell Identification information; base station identification information; beam identification information; identification information of wireless signal access points.
  • embodiments of the present application also provide an information transmission device, including: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • a computer program stored in the memory and executable on the processor.
  • embodiments of the present application also provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the information transmission method as described above.
  • embodiments of the present application further provide a computer program product, which includes a computer program or computer instructions.
  • the computer program or computer instructions are stored in a computer-readable storage medium.
  • the processor of the computer device obtains the information from the computer program or computer instructions.
  • the computer-readable storage medium reads the computer program or the computer instructions, and the processor executes the computer program or the computer instructions, so that the computer device performs the information transmission method as described above.
  • Embodiments of the present application include: sending target information to the second communication node at the target sending time, where the target sending time is determined according to the pre-stored timing advance, and the target information includes the timing advance and the identification information received by the first communication node,
  • the identification information includes at least one of the following: cell identification information; base station identification information; beam identification information; identification information of the wireless signal access point. That is to say, the first communication node can determine the target transmission time according to the prestored timing advance.
  • the target sending time sends the target information to the second communication node without obtaining the timing advance from the second communication node. Therefore, there is no need to go through a series of interactive response processes with the second communication node to avoid the signaling generated by the interactive response process.
  • the second communication node can determine the location of the first communication node based on the identification information in the target information. Therefore, the embodiments of the present application can realize information transmission from the first communication node to the second communication node while reducing signaling overhead.
  • Figure 1 is a schematic diagram of obtaining terminal location information provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of monitoring weather condition information provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of monitoring sand and dust information provided by an embodiment of the present application.
  • Figure 4 is a flow chart of an information transmission method provided by an embodiment of the present application.
  • FIG. 5 is a flow chart of a specific method in step S110 in Figure 4;
  • FIG. 6 is a flow chart of another specific method of step S110 in Figure 4.
  • Figure 7 is a schematic diagram of a pilot position relationship provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of another pilot position relationship provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of another pilot position relationship provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of a pilot sequence provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of another pilot sequence provided by an embodiment of the present application.
  • Figure 12 is a flow chart of another specific method of step S110 in Figure 4.
  • Figure 13 is a schematic diagram of two independent pilots provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of w independent pilots provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of a preset pilot set provided by a specific example of this application.
  • Figure 16 is a schematic diagram of a preset pilot set provided by another specific example of this application.
  • Figure 17 is a schematic diagram of another preset pilot set provided by another specific example of this application.
  • FIG 18 is a flow chart of another specific method of step S110 in Figure 4.
  • Figure 19 is a flow chart of an information transmission method provided by another embodiment of the present application.
  • Figure 20 is a flow chart of a specific method of step S610 in Figure 19;
  • Figure 21 is a flow chart of an information transmission method provided by another embodiment of the present application.
  • Figure 22 is a flow chart of an information transmission method provided by another embodiment of the present application.
  • Figure 23 is a schematic diagram of a preset pilot set provided by another specific example of this application.
  • Figure 24 is a schematic diagram of another preset pilot set provided by another specific example of this application.
  • Figure 25 is a schematic diagram of defining physical resource blocks provided by an embodiment of the present application.
  • Figure 26 is a schematic diagram of defining a demodulation reference signal provided by an embodiment of the present application.
  • Figure 27 is a schematic diagram of distinguishing different reference signal ports through OCC codes according to an embodiment of the present application.
  • Figure 28 is a schematic diagram of using an OCC code to define a demodulation reference signal according to an embodiment of the present application
  • Figure 29 is a schematic diagram of another method of using OCC codes to define demodulation reference signals according to an embodiment of the present application.
  • Figure 30 is a schematic diagram of another method of using OCC codes to define demodulation reference signals according to an embodiment of the present application.
  • Figure 31 is a schematic diagram of PRB-based transmission provided by an embodiment of the present application.
  • Figure 32 is a schematic diagram of another definition of a demodulation reference signal provided by an embodiment of the present application.
  • Figure 33 is a schematic diagram of another definition of a demodulation reference signal provided by an embodiment of the present application.
  • Figure 34 is a schematic diagram of another definition of a demodulation reference signal provided by an embodiment of the present application.
  • Figure 35 is a constellation diagram of a two-phase phase shift keying symbol provided by an embodiment of the present application.
  • Figure 36 is a constellation diagram of another two-phase phase shift keying symbol provided by an embodiment of the present application.
  • Figure 37 is a constellation diagram of another two-phase phase shift keying symbol provided by an embodiment of the present application.
  • Figure 38 is a schematic diagram of defining a reference signal provided by an embodiment of the present application.
  • Figure 39 is a schematic diagram of another definition of a reference signal provided by an embodiment of the present application.
  • Figure 40 is a schematic diagram of another definition of a reference signal provided by an embodiment of the present application.
  • Figure 41 is a schematic diagram of generating a DMRS port according to an embodiment of the present application.
  • Figure 42 is a schematic diagram of another definition of a reference signal provided by an embodiment of the present application.
  • Figure 43 is a schematic diagram of another definition of a reference signal provided by an embodiment of the present application.
  • Figure 44 is a schematic diagram of an extremely sparse reference signal provided by an embodiment of the present application.
  • Figure 45 is a schematic structural diagram of an information transmission device provided by an embodiment of the present application.
  • the present application provides an information transmission method, device, and storage medium.
  • the first communication node sends target information to the second communication node at the target sending time, where the target sending time is determined according to the prestored timing advance, and the target information includes Timing advance and identification information received by the first communication node.
  • the identification information includes at least one of the following: cell identification information; base station identification information; beam identification information; none
  • the identification information of the line signal access point that is to say, the first communication node can determine the target sending time based on the pre-stored timing advance, and send the target information to the second communication node at the target sending time without having to obtain the target information from the second communication node.
  • the timing advance eliminates the need to go through a series of interactive response processes with the second communication node to avoid the signaling overhead generated by the interactive response process.
  • it enables the second communication node to determine the second communication node based on the identification information in the target information.
  • the location of a communication node can then enable the second communication node to implement applications based on the location of the first communication node. Therefore, the embodiments of the present application can realize the transmission of location information from the first communication node to the second communication node while reducing signaling overhead.
  • future wireless communication systems may include the following three requirements:
  • the need for integration of communication and perception for example: to construct a high-precision three-dimensional environmental map by obtaining the channel information experienced during the transmission of communication signals; to detect rainfall, sand dust, chemical gas concentration, etc.; to detect road conditions; or through Communication signals realize security functions.
  • the system can more easily and accurately achieve multi-user pairing and scheduling, and it can more easily achieve beam forming, base station energy saving, etc.
  • future wireless communication systems have requirements for ISAC. If the system can obtain the location information of a large number of terminals (i.e. UE), and at the same time can obtain the channel information experienced by the wireless signals transmitted by these terminals (i.e., obtain the channel information experienced by the electromagnetic waves emitted at the terminal location when they reach the base station), then You can use this location information and this channel information to accomplish many things, such as building environmental maps; real-time monitoring of weather conditions such as rainfall and snowfall, especially heavy rain and snowstorms; you can also monitor sand, dust, and chemical gases in real time; monitor People flow, vehicle flow, etc. can be used to assist transportation, or can be used as information to assist public governance; sense the number of terminals in a certain place, and then achieve security through communication signals Function; realize base station energy saving, load balancing, etc.
  • future wireless communication systems also have needs to better support IoT/mMTC.
  • the system can obtain the location information of a large number of terminals, it can improve the quality of IoT services, such as asset tracking, logistics management, child/elderly/pet anti-lost services and other IoT services.
  • 1 represents a base station
  • 2 represents an object or person
  • the object includes a building or vehicle, etc.
  • 3 represents a terminal.
  • the base station 1 can obtain information at different locations (such as location 1, location 2,... , location K), and at the same time, the channel information experienced by the wireless signals transmitted by these terminals 3 (such as channel 1, channel 2, ..., channel K) can be obtained.
  • 1 represents a base station
  • 2 represents an object or person
  • the object includes a building or vehicle, etc.
  • 3 represents a terminal
  • 4 represents rain or snow.
  • the base station 1 can acquire a large number of objects at different locations (such as The location information of the terminal 3 at location 1, location 2, ..., location K) can be used to sense the corresponding rain and snow weather conditions through the location information of the terminal 3.
  • 1 represents a base station
  • 2 represents an object or person
  • the object includes a building or vehicle, etc.
  • 3 represents a terminal
  • 5 represents sand and dust.
  • the base station 1 can acquire a large number of objects at different locations (such as The position information of the terminal 3 at position 1, position 2, ..., position K), the corresponding sand and dust situation can be sensed through the position information of the terminal 3.
  • the terminal transmits its own location-related information, which will increase the terminal's power consumption. Therefore, most terminals may be resistant to "transmitting information related to one's own location". For example, assuming that the function "transmitting information related to one's own location" is optional, many users will turn off this function. This greatly reduces the number of terminals that can provide location information, and ultimately degrades the performance of related solutions that rely on "location information and its corresponding wireless channel information (wireless channel information is the channel information experienced by wireless signals transmitted by terminals)".
  • wireless channel information is the channel information experienced by wireless signals transmitted by terminals
  • terminals in some scenarios cannot send traditional location information. For example, indoor terminals cannot perform satellite positioning, resulting in the terminal being unable to send location information. This type of situation will also greatly reduce the number of terminals that can provide location information. Ultimately, This degrades the performance of related solutions that rely on "location and its corresponding wireless channel information".
  • the terminal can transmit the identification information it receives to the base station, and the base station uses the identification information to determine the location of the terminal.
  • the identification information includes cell identification information, base station identification information, At least one of beam identification information and identification information of a wireless signal access point.
  • the identification information of the wireless signal access point includes any one of the identification information of the cellular communication system access point, the identification information of the wireless LAN access point, the identification information of the wireless wide area network access point, and the identification information of the Bluetooth access point. .
  • the target information also includes the strength of the wireless signal of the first communication node receiving the cell identification information; or, when the identification information includes base station identification information, the target information also includes the strength of the first communication node receiving the base station identification.
  • the strength of the wireless signal of the information; or, when the identification information includes the beam identification information, the target information also includes the strength of the wireless signal of the first communication node receiving the beam identification information; or, when the identification information includes the identification information of the wireless signal access point,
  • the target information also includes the first communication node receiving no The wireless signal strength of the identification information of the line signal access point.
  • the identification information includes cell identification information
  • the cell identification information includes cell identifications of multiple cells
  • the identification information includes base station identification information includes base station identifications of multiple base stations
  • the identification information includes Beam identification information the beam identification information includes beam identification information of multiple beams
  • the identification information of the wireless signal access point includes identification information of multiple wireless signal access points.
  • first communication node such as a terminal
  • second communication node such as a base station
  • the terminal when the terminal is transmitting uplink information or uplink data, the terminal (i.e. UE) must be in the Connected state, where the connected state can also be called the Radio Resource Control (Radio Resource Control, RRC) connected state.
  • RRC Radio Resource Control
  • terminals in the connected state usually do not have dedicated uplink transmission resources. Therefore, the terminal in the connected state needs to apply for uplink transmission resources from the base station each time before transmitting information.
  • the uplink resource authorization (Grant) After obtaining the uplink resource authorization (Grant) from the base station, it can Information is transmitted on the time-frequency resources designated by the base station. It can be seen that in order for the terminal to complete an uplink information transmission, it needs to complete many operations in advance. Therefore, if the terminal is required to use the uplink information transmission mechanism in related technologies to transmit the identification information it receives, it will undoubtedly increase the power consumption of the terminal and increase the signaling overhead of the system.
  • the frequency of the terminal transmitting the identification information it receives is very low. For example, it usually only transmits once every few seconds, tens of seconds, or even minutes.
  • the terminal is usually in the idle state (Idle state) or inactive state (Inactive state) of deep sleep in order to save power. That is to say, in order to save power, the terminal usually does not enter Connected state (that is, not in the connected state). Because the terminal needs to perform some operations to access the connected state or maintain the connected state, which will increase the power consumption of the terminal, but the terminal in the non-connected state (that is, idle state, or inactive state) does not need these operations, so it can Save electricity.
  • the terminal when the terminal does not need to transmit the identification information it receives, the terminal is not connected to the system (i.e., disconnected), that is, the terminal is in a non-connected state (Non Connected state, or Non RRC Connected state, or Connectionless state). , or Connection-free state, or Disconnected state, etc. can represent no connection state).
  • a non-connected state Non Connected state, or Non RRC Connected state, or Connectionless state
  • , or Connection-free state, or Disconnected state, etc. can represent no connection state).
  • the idle state or the inactive state can be considered to be equivalent to the unconnected state, or the idle state or the inactive state can also be considered as a kind of No connection state.
  • the terminal When the terminal is originally in a connectionless state (that is, it has not entered the connected state, or has not established a connection with the system), if the uplink data transmission scheme in the related technology is used, in order to transmit the identification information it receives, the terminal must communicate with the system before transmission.
  • the system establishes a connection.
  • the terminal After entering the connection state (also called the active state), the terminal can further apply for uplink transmission resources from the system (such as the base station or access point), and can only transmit its reception after obtaining the resource authorization or resource scheduling of the system. identification information.
  • the terminal needs a random access process to enter the connected state from the connectionless state.
  • This process requires the terminal and the base station to conduct multiple interaction processes, that is, the terminal sends a preamble (Preamble), and the base station makes a random access response (Radom Access Response, RAR).
  • the terminal sends Layer 2 (Layer 2, L2) or Layer 3 (Layer 3, L3) control information, and the base station sends Message 4 (Message 4).
  • This random access process will undoubtedly increase the power consumption generated when the terminal transmits location information.
  • the uplink data transmission scheme in the above-mentioned related technologies when there are a large number of terminals transmitting the received identification information, and a large number of terminals need to enter the connected state before transmission, a large number of terminals will randomly connect. entry process, and apply for uplink resource authorization, which will increase the probability of collision or blocking during the random access process, resulting in most terminals needing to perform multiple random accesses to enter the connected state. In the end, in order to transmit the identity received by the terminal information and consume more energy and signaling. It can be seen that the uplink data transmission scheme in the above related technologies is not suitable for the application scenario in which a large number of terminals transmit the identification information they received.
  • an uplink data transmission method in the related technology namely Semi-Persistent Scheduling (SPS). Its purpose is to reduce the physical control signaling overhead and delay of small data packet services, which is very suitable.
  • SPS Semi-Persistent Scheduling
  • VoIP Voice over Internet Protocol
  • VoIP Voice over Internet Protocol
  • Talk Spurt the data rate of VoIP during continuous calls (Talk Spurt) is basically constant. For example, the average time of each continuous call is between 1 and 2s, a voice packet is generated every 20ms, so each continuous call contains 50 to 100 voice packets.
  • the small-scale fading during the period is compensated through closed-loop power control to ensure the signal-to-noise ratio of the receiving side signal (Signal to Noise Ratio, SNR) is basically constant, therefore, the modulation and coding scheme (MCS) during this period can remain unchanged, and the allocated physical resources can remain unchanged, or can jump according to fixed rules, so , no dynamic signaling is required when uplink information transmission or uplink data transmission is performed.
  • SPS can be regarded as an enhanced form of semi-static configuration, mainly used for periodic small packet services with constant data packet size.
  • SPS usually works in the connected state (RRC Connected), that is, the terminal has completed the random access process.
  • the frequency of scheduling is much lower than the frequency of data packets
  • SPS is basically non-competitive, and resource collisions will not occur between different terminals, such as reference signal or pilot collisions.
  • 5G 5th Generation Mobile Communication Technology
  • the evolved SPS can be used in low-latency and high-reliability communication (Ultra ReliableandLowLatency Communication, URLLC) scenarios, which not only improves reliability but also reduces
  • Configured Grant which is a preconfigured resource grant.
  • Configured Grant can also be used as a special authorization-free or scheduling-free method, because it can eliminate the need for "dynamic authorization application” or “dynamic scheduling application” for each uplink data transmission, so the preconfigured resource authorization The essence is “dynamic authorization-free” or “dynamic scheduling-free”. Understandably, in In this SPS-style “dynamic scheduling-free” method, the transmission resources of different terminals are essentially pre-configured by the base station, and are not obtained by the terminals through "competition”. Therefore, the SPS-style "dynamic scheduling-free" is "non-competitive"". The most important thing is that for this type of non-contention-free scheduling, the reference signal can be pre-configured by the base station to avoid "collision". For example, the pre-configuration of the base station can be used to ensure the reference of terminals transmitting on the same time-frequency resource. Signals are orthogonal.
  • preconfigured scheduling-free methods such as SPS or Configured Grant can reduce the overhead of physical control signaling for uplink transmission
  • SPS method is used to transmit the identification information received by a large number of terminals
  • the spectrum efficiency of the system will still be very low.
  • the terminal applies for periodic transmission resources in a cell for a period of time, but a handover occurs during the process, the terminal needs to apply for a new preconfigured transmission resource from the entering cell and notify the leaving cell at the same time.
  • the cell releases the transmission resources preconfigured for the terminal. It is a complicated process for the terminal to re-apply for transmission resources from the newly entered cell.
  • the terminal does not transmit the identification information it receives too frequently, that is, the terminal only sends the location information once after a long interval. Therefore, in order to improve efficiency, the interval between preconfigured resources is usually relatively long, which means that the adverse impact caused by handover will significantly increase, which will significantly reduce the spectrum efficiency of the system and increase the complexity of the system. Even if the location of a terminal or node does not change, its surrounding environment can easily change over a long period of time, especially for terminals or nodes at the edge of the cell, which will also lead to handover.
  • the SPS preconfiguration mechanism can also achieve simpler uplink transmission, it is not suitable for the application scenario in which a large number of terminals transmit the identification information they receive.
  • an important feature of uplink transmission is that the time for signals transmitted by different terminals to arrive at the base station is basically Aligned, or synchronized, in other words, the base station will require that the signals from different UEs arrive at the base station at the cyclic prefix (CP) of the Orthogonal Frequency Division Multiplexing (OFDM) symbol In the range.
  • CP cyclic prefix
  • OFDM Orthogonal Frequency Division Multiplexing
  • the wireless communication system may adopt an Uplink Timing Advance (UTA) mechanism.
  • UTA Uplink Timing Advance
  • the relevant uplink timing advance mechanism is as follows:
  • the terminal first sends a signal
  • Timing Advance Timing Advance
  • the base station notifies the terminal of the TA amount through a signaling, which is usually called the Timing Advance Command (TAC);
  • TAC Timing Advance Command
  • the terminal When the terminal transmits target information to the base station, it will determine the sending time corresponding to the information based on the TA value. That is to say, the terminal will advance the sending time of the target information based on the TA value, which is equivalent to the base station instructing the TA. value, so that the target information reaches the base station without delay after transmission delay.
  • the terminal in order to obtain the timing advance for signal transmission, the terminal needs to go through a series of interactive processes with the base station. However, in the connectionless state, the terminal does not send any signal before transmitting the target information. The base station cannot determine the corresponding timing advance by measuring the signal sent by the terminal. Therefore, the base station cannot send a timing advance command to the terminal. It can be seen that, following the above-mentioned uplink timing advance mechanism, the terminal transmitting the target information in the non-connected state cannot obtain the timing advance. Therefore, the terminal will have a large transmission delay when transmitting the target information, thereby increasing the base station's ability to interpret the target information. This is because the base station needs to estimate the different transmission delays of different terminal signals before making correct compensation and then demodulating and decoding the signal.
  • this application proposes a method in which the terminal independently determines the timing advance of its signal transmission.
  • the timing advance sent by the first communication node is determined based on the broadcast signal of the second communication node.
  • the first communication node i.e., the terminal
  • the first communication node can determine the timing advance sent by the first communication node through the broadcast signal of the second communication node (i.e., the base station). How to determine the timing advance based on the broadcast signal is not discussed here. Specific limitations. For example, the base station can broadcast the location information corresponding to the base station, and then the terminal can calculate the distance between the base station and its own location information based on the location information of the base station, and then determine the transmission time of the terminal signal based on the distance between the two. delay (i.e., transmission delay), thereby determining the timing advance required by the terminal to transmit the signal.
  • delay i.e., transmission delay
  • the broadcast signal of the second communication node includes a downlink synchronization signal or a downlink reference signal.
  • the broadcast signal of the second communication node may include a downlink synchronization signal or a downlink reference signal.
  • the second communication node broadcasts a downlink synchronization signal or a downlink reference signal
  • the first communication node can calculate the strength of the downlink synchronization signal or the downlink reference signal, and estimate a TA amount based on the strength of the signal.
  • the first communication node independently determines the TA amount (that is, the TA amount estimated by the first communication node based on the strength of the downlink synchronization signal or downlink reference signal), it can transmit the transmission signal in advance according to the TA amount. That is to say, the first The TA amount transmitted by the communication node is equivalent to the TA amount determined independently.
  • the TA amount i.e., timing advance amount
  • the second communication node correctly demodulates and decodes the target information of the first communication node, it cannot know the timing sent by the first communication node. advance, it is also impossible to know the transmission of the first communication node
  • the transmission delay experienced by the target information makes it impossible to realize the perception of the transmission environment through the target information of the first communication node.
  • the first communication node i.e., the terminal
  • the second communication node i.e., the base station
  • the timing advance sent by the first communication node can be obtained, and the second communication node can estimate the multipath channel based on the wireless signal corresponding to the received target information of the first communication node.
  • the timing advance is combined with the multipath channel to obtain the transmission delay of all paths that the target information sent by the first communication node to the second communication node reaches the second communication node, and then calculated based on the transmission delay to determine the transmission distance of the target information, thereby realizing the perception of the transmission environment.
  • the sending time for transmitting the target information to the second communication node can be determined based on the timing advance.
  • the timing advance There is no specific limitation on how to determine the sending time based on the timing advance.
  • the timing advance sent by the first communication node may be a numerical value, and the timing advance may be represented by one or more bits.
  • the timing advance may be set from 0 to the maximum timing advance (such as TAmax). This period of time is divided into 2 D (that is, 2 to the D power) parts, in which any timing advance within the range of 0 to the maximum timing advance can be represented by D bits, that is to say, the first communication node determines independently Timing advance can be one of 2 D values.
  • the first communication node can send the target information in advance according to the timing advance, that is, determine the sending time of the target information according to the timing advance, and can put D bits corresponding to the timing advance into the target information for encoding.
  • the second communication node demodulates and decodes the target information of the first communication node correctly, it can obtain the data sent by the first communication node through the D bits corresponding to the timing advance. timing advance amount.
  • Figure 4 is a flow chart of an information transmission method provided by an embodiment of the present application.
  • the information transmission method is applied to the first communication node.
  • the information transmission method may include but is not limited to step S110.
  • Step S110 Send the target information to the second communication node at the target sending time, where the target sending time is determined according to the pre-stored timing advance.
  • the target information includes the timing advance and the identification information received by the first communication node.
  • the identification information includes At least one of cell identification information, base station identification information, beam identification information, and identification information of a wireless signal access point.
  • the cell identification information when the identification information includes cell identification information, the cell identification information may include cell identifications of multiple cells; or, when the identification information includes base station identification information, the base station identification information may include base station identifications of multiple base stations; or, When the identification information includes beam identification information, the beam identification information may include beam identification information of multiple beams; or, when the identification information includes identification information of a wireless signal access point, the identification information of the wireless signal access point may include multiple wireless signal access points.
  • the identification of the entry point is not specifically limited here.
  • the first communication node searches for the cell identifiers of multiple cells and sends the cell identifiers of the multiple cells to the second communication node.
  • the second communication node can determine the first communication node through the cell identifiers from the first communication node.
  • the second communication node can also use beams to Transmit a signal, and the first communication node can search for the beam identifier of the second communication node, and send the target information including the beam identifier to the second communication node.
  • the second communication node can more accurately obtain the first communication through the beam identifier.
  • the location of the node for another example, in some scenarios, the first communication node will also be in other wireless communication systems.
  • the first communication node can obtain the identification of the access point of the system (that is, multiple wireless signal access points identification of the entry point), and then the target information including the identification of the multiple wireless signal access points can be sent to the second communication node, and the second communication node passes the identification of the multiple wireless signal access points from the first communication node.
  • Determine the location of the first communication node which is not specifically limited in the embodiment of the present application.
  • the wireless signal access point can be a wireless LAN router, and the wireless LAN router can be a WIFI (wireless fidelity, wireless fidelity) router, which is not specifically limited here.
  • WIFI wireless fidelity, wireless fidelity
  • the identification information may be a MAC (Media Access Control) address, an IP (Internet Protocol) address, a port number, an SSID (Service Set Identifier, a service set identifier), and a device code. Or other information that can uniquely identify wireless communication equipment, etc.
  • the device code can be IMEI (International Mobile Equipment Identity, International Mobile Equipment Identity Code) or MEID (Mobile Equipment Identifier, Mobile Equipment Identification Code), etc., which will not be done here. Specific restrictions.
  • the identification information of the wireless signal access point may include identification information of the non-cellular communication system access point, identification information of the wireless LAN access point, wireless Any one of the identification information of the WAN access point and the identification information of the Bluetooth access point is not specifically limited here.
  • the first communication node can obtain the identification information of the wireless LAN router (such as a WIFI router).
  • the identification information can be the MAC address of the router, and then the first communication node The node sends the target information including the MAC address of the router to the second communication node, so that the second communication node determines the location of the first communication node based on the MAC address of the router; for another example, the first communication node is in a cell-free (Cell- free) communication system, the first communication node can obtain the identification information of the Access Point (AP) without cellular communication system, and then the first communication node can obtain the identification information of the Access Point without cellular communication system.
  • Cell- free Cell-free
  • the target information is sent to the second communication node, so that the second communication node determines the location of the first communication node based on the identification information of the non-cellular communication system access point; for another example, assuming that the first communication node is in the Bluetooth wireless communication system, then The first communication node can obtain the identification information of the Bluetooth access point, and then the first communication node can send the target information including the identification information of the Bluetooth access point to the second communication node, so that the second communication node can access according to the Bluetooth access point.
  • the identification information of the point determines the location of the first communication node, which is not specifically limited in the embodiment of the present application.
  • the timing advance may be determined based on a broadcast signal sent by the second communication node, and the broadcast signal may Including downlink synchronization signals or downlink reference signals, there are no specific restrictions here.
  • the second communication node may send a broadcast signal to notify the first communication node of the location of the second communication node, and then the first communication node may calculate the relationship between the first communication node and the second communication node based on the location of the second communication node and its own location.
  • the distance between communication nodes thereby determining the transmission delay of the target information, and then determining the timing advance required to send the target information; for another example, the second communication node sends a downlink synchronization signal or a downlink reference signal to the first communication node, and the second communication node
  • a communication node can calculate the strength of the downlink synchronization signal or the strength of the downlink reference signal, and estimate the timing advance based on the strength of the signal.
  • the first communication node independently determines the timing advance, it will make a decision to the second communication node based on the timing advance. Send target information. No specific restrictions are made here.
  • the target information when the identification information includes cell identification information, may also include the strength of the wireless signal of the first communication node receiving the cell identification information; or, when the identification information includes base station identification information, the target information may also include the first The strength of the wireless signal when the communication node receives the base station identification information; or, when the identification information includes beam identification information, the target information may also include the strength of the wireless signal when the first communication node receives the beam identification information; or when the identification information includes the wireless signal connection
  • the identification information of the access point and the target information may also include the strength of the wireless signal from which the first communication node receives the identification information of the wireless signal access point.
  • the target information may also include landform information, climate information, gas concentration information (such as chemical gas concentration information), road condition information, security information, etc., where the climate information may include lighting information, temperature information, precipitation information, Wind information, sand and dust information, etc. are not listed here.
  • the first communication node sends the target information to the second communication node at the target sending time, where the target sending time is determined according to the pre-stored timing advance, and the target information Including timing advance and identification information received by the first communication node, the identification information includes at least one of the following: cell identification information; base station identification information; beam identification information; identification information of the wireless signal access point, that is to say, the first The communication node can determine the target sending time based on the pre-stored timing advance, and send the target information to the second communication node at the target sending time. There is no need to obtain the timing advance from the second communication node, and thus there is no need to go through a series of interactions with the second communication node.
  • the response process avoids the signaling overhead generated by the interactive response process.
  • the second communication node enables the second communication node to estimate the multipath channel based on the target information and combine the timing advance in the target information and the multipath experienced by the target information.
  • the channels are combined to determine the transmission delays of all paths that the target information sent by the first communication node takes to reach the second communication node, and the transmission distance is calculated based on the transmission delays of all paths.
  • the first communication node can determine the target sending time according to the pre-stored timing advance, and send the target information to the second communication node at the target sending time, which can reduce the delay for the target information to reach the second communication node, thereby reducing the burden on the second communication node. Difficulty of demodulating target information. Therefore, the embodiments of the present application can realize information transmission from the first communication node to the second communication node while reducing signaling overhead.
  • step S110 is further described.
  • This step S110 may include but is not limited to step S210, step S220 and step S230.
  • Step S210 Determine an extension sequence.
  • Step S220 Multiply the modulation symbol formed by coding and modulating the target information and the spreading sequence to obtain the spread target information.
  • Step S230 Send the expanded target information to the second communication node at the target sending time.
  • the second communication node may receive a large number of targets sent by different first communication nodes (such as terminals) on the same time-frequency resource, including at least the received identification information and timing advance. Information, the transmission of these large amounts of target information is competitive, which may cause resource collision problems.
  • the modulation performance of the target information can be optimized.
  • the target information that at least contains the received identification information and timing advance can be coded and modulated to form a corresponding modulation symbol; and then each modulation symbol can be extended through Sequence expansion obtains the expanded target information.
  • each modulation symbol can be expanded into a symbol of length L through a spreading sequence of length L. There is no specific limit on how to expand.
  • the nth modulation before expansion The symbol is s n
  • the L-long extension sequence is [c 1 , c 2 ,...c L ].
  • the expanded target information can be transmitted to the corresponding second communication node.
  • the spreading sequence may be determined according to the target information; or, the spreading sequence may be determined in a preset sequence set according to the first number of bit information in the target information, wherein the preset sequence set includes a second An expanded sequence of quantities.
  • the first quantity and the second quantity have a logarithmic functional relationship.
  • the logarithmic function is a logarithmic function with 2 as the base. For example, assuming that the second quantity is V, the first quantity is log 2 V. There are no specific restrictions here.
  • the expanded target information is transmitted in the frequency domain, the diversity effect of the modulation symbols can be improved; if the transmission power of the expanded target information is limited and the expanded target information is transmitted in the time domain, then the Improve the energy accumulation of each spread modulation symbol and improve the signal-to-noise ratio.
  • the first communication node can determine a spreading sequence, and then multiply the modulation symbol formed by encoding and modulating the target information and the spreading sequence.
  • the expanded target information is obtained, and finally the expanded target information is sent to the second communication node at the target sending time. Therefore, embodiments of the present application can improve the demodulation performance of the target information by expanding the target information.
  • the target information may include information related to the identity of the first communication node. Therefore, the embodiment of the present application may be applied For IoT applications based on location information, such as asset tracking, logistics management, loss prevention for the elderly, children or pets, etc. In addition, in this application scenario, the acquisition and utilization of location information usually requires the user's permission in advance.
  • the target information may not include information related to the identity of the first communication node, which is not specifically limited here.
  • the first communication node when the first communication node is in the target state of not establishing a data connection with the second communication node, the first communication node may send identification information that does not include the first communication node to the second communication node at the target sending time.
  • the target information that is to say, the first communication node is in the target state of not establishing a data connection with the second communication node, and sends the target information that does not include the identification information of the first communication node to the second communication node at the target sending time.
  • the target information of the identification information determines the location of the first communication node to avoid privacy issues. Therefore, the embodiment of the present application can implement the first communication node to the second communication node with low power consumption and avoiding privacy issues. information transmission.
  • embodiments of the present application can be applied to environment sensing applications based on location information. This application only needs to know the channel through which electromagnetic wave signals emitted from certain locations reach the base station, and does not need to know which transmitter the electromagnetic wave signal is emitted from. Therefore, the embodiments of the present application can avoid privacy or ethical issues and reduce users' concerns, thereby greatly increasing the number of terminals that can provide location information, thus improving the performance of various solutions based on "location and its corresponding wireless channel information".
  • Step S110 is further described.
  • Step S110 may include but is not limited to step S310 and step S320.
  • Step S310 Receive broadcast signaling from the second communication node.
  • the broadcast signaling is used to indicate the public channel used by the first communication node to send the target information.
  • the public channel may be pre-configured by the second communication node, which is not specifically limited here.
  • Step S320 Send the target information to the second communication node through the public channel at the target sending time.
  • the first communication node by adopting the information transmission method including the above-mentioned steps S310 to S320, first the first communication node receives a broadcast signal from the second communication node for instructing the first communication node to use the public channel to send the target information. Order, and then send the target information to the second communication node through the public channel at the target sending time, providing a good sending environment for the first communication node to send the target information to the second communication node.
  • This embodiment does not specifically limit this.
  • the first communication node that is in the state of establishing a data connection with the second communication node usually does not have dedicated uplink transmission resources, so the first communication node needs to first communicate with the second communication node before transmitting information.
  • the node applies for uplink transmission resources, and only after obtaining authorization for the uplink transmission resources of the second communication node can it transmit information on the time-frequency resources designated by the second communication node.
  • the number of first communication nodes transmitting target information is relatively large, and a large number of first communication nodes need to enter the data connection state before transmitting location information, then a large number of first communication nodes will perform random access and then apply for uplink transmission. Resources, and a large number of first communication nodes applying for uplink transmission resources will increase the probability of collision or blocking.
  • the first communication node consumes more energy in order to complete uplink information transmission or uplink data transmission.
  • a traditional uplink data transmission method is Semi-Persistent Scheduling (SPS), which aims to reduce the number of small data packet services
  • SPS Semi-Persistent Scheduling
  • the physical control signaling overhead and delay are very suitable for periodic services, such as voice transmission based on Internet Protocol (Voice over Internet Protocol, VoIP).
  • VoIP Voice over Internet Protocol
  • the data rate of VoIP is basically constant during continuous calls (Talk Spurt). , for example, the average time of each continuous call is 1 to 2s, and a voice packet is generated every 20ms. Therefore, each continuous call contains 50 to 100 voice packets.
  • the small-scale fading during the period is compensated by closed-loop power control to ensure reception.
  • the signal-to-noise ratio (SNR) of the side signal is basically constant. Therefore, the modulation and coding strategy (Modulation and Coding Scheme, MCS) during this period can remain unchanged, and the allocated physical resources can remain unchanged. It can also jump according to fixed rules. Therefore, no dynamic signaling is required when uplink information transmission or uplink data transmission is performed. Moreover, the SPS usually works in a data connection state, that is, the first communication node has completed the random access process. Although the scheduling frequency is much lower than the frequency of data packets, when applying for uplink transmission resources, resource collisions between different first communication nodes will not occur, for example, reference signal or pilot collisions will not occur.
  • MCS Modulation and Coding Scheme
  • the evolved SPS can be used in low-latency and high-reliability communication scenarios.
  • the SPS at this time is called Configured Grant, which is a preconfigured resource authorization.
  • Configured Grant can also be used as an authorization-free or scheduling-free method, because it can eliminate the need for "dynamic authorization application” or “dynamic scheduling application” for each uplink information transmission or uplink data transmission, so preconfigured resources
  • the essence of authorization is “dynamic authorization-free” or “dynamic scheduling-free”.
  • the uplink transmission resources of the first communication node are also preconfigured by the second communication node to avoid resource (such as reference signal or pilot) collision.
  • preconfigured scheduling-free methods such as SPS or Configured Grant can reduce the physical control signaling overhead of uplink information transmission or uplink data transmission
  • SPS method is used to achieve the target information transmission of a large number of first communication nodes
  • the first communication The spectral efficiency of the node remains low. For example, when a handover occurs at the first communication node, if the SPS method is used to realize the target information transmission of the first communication node, the spectrum efficiency of the first communication node will be very low.
  • the first communication node applies for an uplink transmission resource to the second communication node in cell A, but the first communication node undergoes handover during the process, then the first communication node needs to The newly entered second communication node of cell B applies for a new preconfigured uplink transmission resource, and at the same time notifies the second communication node of cell A to release the Put the uplink transmission resources preconfigured for the first communication node.
  • it is a relatively complicated process for the first communication node to re-apply for an uplink transmission resource from cell area B, which will significantly increase the power consumption of the first communication node.
  • the frequency of the first communication node transmitting target information will not be too frequent.
  • the interval for preconfiguring uplink transmission resources is usually relatively long, which means that the adverse impact caused by handover will significantly increase, which will significantly reduce the spectrum efficiency of the second communication node.
  • the location of the second communication node does not change, its surrounding environment is easy to change over a long period of time, especially the second communication node at the edge of the cell. This will also lead to handover, making the second communication node The spectral efficiency of the node is reduced. Therefore, preconfigured scheduling-free methods such as SPS or Configured Grant are not suitable for the scenario where a large number of first communication nodes transmit target information.
  • the first communication node when the first communication node is in the target state of not establishing a data connection with the second communication node, the first communication node receives a message from the second communication node to instruct the first communication node to send the target. Broadcast signaling of the public time-frequency resources used by the information, and then select the target time-frequency resource from the public time-frequency resources based on the broadcast signaling, and then use the time-frequency resource to send the target information to the second communication node at the target transmission time, Therefore, the embodiments of the present application enable the second communication node to avoid arranging dedicated time-frequency resources for the transmission of target information of each first communication node (or do not need to arrange different time-frequency resources for the transmission of target information of each first communication node). time-frequency resources), thereby also saving signaling overhead.
  • the first communication node when the first communication node is in a target state without establishing a data connection with the second communication node, the first communication node receives a message from the second communication node used to instruct the first communication node to send the target information.
  • Public time-frequency resources and broadcast signaling used to instruct the first communication node to use a public channel to send target information then select the target time-frequency resource from the public time-frequency resources according to the broadcast signaling, and finally use the target time-frequency resource Send target information to the second communication node through the public channel. That is to say, when the target information needs to be sent, when the first communication node is in the target state of not establishing a data connection with the second communication node, the first communication node can do so without prior communication.
  • the target information is directly sent at the target sending time autonomously. Since the first communication node The node completes the transmission of the target information without establishing a data connection with the second communication node. Therefore, after completing the transmission of the target information, neither the first communication node nor the second communication node needs to perform the operation of releasing the connection and can enter immediately. There is no target state for establishing a data connection with the second communication node. Therefore, the embodiments of the present application can realize information transmission from the first communication node to the second communication node under the condition of low power consumption, while also saving signaling overhead.
  • the pilot included in the first communication node transmitting information to the second communication node can
  • the first communication node autonomously selects or generates pilots, where autonomous selection of pilots refers to determining pilots from a preset pilot set; autonomous generation of pilots refers to the first communication node generating pilots according to preset rules or formulas. frequency.
  • the first communication node needs to obtain the signaling indicating the pilot issued by the second communication node before sending the pilot. Then the first communication node must first establish a data connection with the second communication node, so a series of processes for establishing a data connection are required, and therefore there will be all the problems in the process of establishing a data connection. These problems can be avoided by the first communication node autonomously selecting or generating pilots. However, if the first communication node autonomously selects or generates pilots, it will cause a problem, that is, because there is no central node to send signals sent by different first communication nodes.
  • Pilots are arranged in an overall manner, so different first communication nodes independently select pilots from a preset pilot set with a limited number of pilots. The same pilot may be selected, which may cause pilot collision problems.
  • the pilot can be located in front of the data/message, or in the middle of the data/message, where "/" means either.
  • a characteristic of the traditional pilot scheme is that each transmission can have only one or one type of pilot.
  • a pilot refers to a pilot composed of a sequence
  • a pilot refers to a pilot composed of multiple related sequences.
  • the sequence consists of pilots, which is the reason for the high collision probability of pilots.
  • OCC orthogonal cover
  • Demodulation Reference Signal also has the above characteristics.
  • DMRS Demodulation Reference Signal
  • pilot schemes there will be preamble and DMRS at the same time, and the preamble and DMRS can have the above characteristics respectively, and the preamble and DMRS are related, so usually the preamble is determined, and the corresponding DMRS is also determined. Therefore, the pilot overhead is limited. Therefore, when the first communication node is in the target state of not establishing a data connection with the second communication node, the signal is transmitted when the signal is sent at the same time. When there are more first communication nodes with information, the probability of pilot collision is higher.
  • Step S110 is further described.
  • Step S110 may include but is not limited to step S410 and step S420.
  • Step S410 Determine multiple pilots.
  • the pilot can be called a pilot signal, or a reference signal (RS), or a demodulation reference signal, or a preamble, and from a formal point of view, the pilot is usually a sequence or a series of symbols. So the pilot is also called a pilot sequence. Therefore, the multiple pilots may be two or more pilot sequences, which are not specifically limited here.
  • RS reference signal
  • the pilot may be two or more pilot sequences, which are not specifically limited here.
  • Figure 13 is a schematic diagram of two mutually independent pilots (ie, pilot P1 and pilot P2).
  • Figure 14 is a schematic diagram of w mutually independent pilots, of which w are independent of each other.
  • the pilots are respectively represented as P1, P2,..., Pw, where w can be a positive integer greater than 2, and there is no specific restriction here.
  • multiple pilots are determined based on target information; or multiple pilots are determined based on several bits of information in the target information; or multiple pilots are determined based on target information.
  • a plurality of third-numbered sets of bit information determine multiple pilots from the preset pilot set, that is, a set of third-numbered bit information determines one of the multiple pilots from the preset pilot set.
  • the preset pilot set includes a fourth number of pilots, and the third number is in a logarithmic functional relationship with the fourth number.
  • the logarithmic function is a logarithmic function with 2 as the base. For example, assuming that the third number is log 2 M pieces, then the fourth quantity is M pieces, and there is no specific limit here.
  • the number of pilots is two, and the two pilots are P1 and P2 respectively, where P1 and P2 are both from a preset including a fourth number N of pilots.
  • the first communication node determines P1 from Z, which requires m bits of information.
  • the first communication node determines P2 from Z, which also requires another m bits of information.
  • the m bits of information required to determine P1 are independent of the m bits of information required to determine P2. Therefore, the first communication node can determine P1 and P2 through 2 sets of bit information, each set of m bit information.
  • the second communication node can obtain the two pilots of the first communication node (ie, P1 and P2), and then reconstruct the two pilots, thus Pilot interference cancellation can be performed.
  • P1 and P2 can also be determined based on 12 bits of information in addition to the above 12 bits, but the additional 12 bits of information need to be sent to the second communication node, which will reduce the transmission efficiency.
  • the first communication node can also select a pilot from the preset pilot set Z including 64 pilots according to a certain rule, that is, number the 64 pilots and select one from No. 1 to No. 64. number, the pilot with this number is P1.
  • the pilot with this number is P1.
  • At least two pilots among the plurality of pilots belong to different pilot sets; or, at least two pilots among the plurality of pilots have different pilot lengths.
  • the two pilots P1 and P2 respectively belong to two different pilot sets, which are the first pilot set and the second pilot set respectively. Then the index value and the index value of P1 are determined from the first pilot set. Determining the index value of P2 from the second pilot set is independent.
  • the pilot length of the pilots in the first pilot set including N1 pilot sequences may be the same as the pilot length of the pilots in the second pilot set including N2 pilot sequences.
  • N1 and N2 both represent the number of pilot sequences
  • N1 and N2 are both positive integers
  • N1 and N2 can be any values, and there are no specific restrictions here.
  • the first communication node can generate pilots according to preset rules or formulas, and all pilots generated by the preset rules or formulas can constitute a preset pilot set or pilot set.
  • the application examples do not specifically limit this.
  • the formula for generating the pilot may be a ZC sequence (i.e., Zadoff Chu sequence) formula, for example, by setting different "root” values and/or different "cyclic shifts” in the ZC sequence formula.
  • “ value to generate different pilots that is, the "cyclic shift” that generates P1 is independent of the "cyclic shift” that generates P2; or, the "root” that generates P1 is independent from the "root” that generates P2.
  • the "cyclic shift” that generates P1 is independent of the "cyclic shift” that generates P2.
  • the pilot may be generated by a shift register sequencer, such as a maximum length shift register sequencer, such as by setting different "initial states” in the shift register sequencer. pilot, therefore, the "initial state” that generates P1 is independent of the "initial state” that generates P2.
  • one pilot P1 can be generated by a sequence generation method that generates N pilot sequences
  • another pilot P2 can be generated by another sequence generation method that generates M pilot sequences
  • the sequence generation method for generating M pilot sequences is different from the sequence generation method for generating N pilot sequences, that is, N ⁇ M, so P1 and P2 are independent and irrelevant.
  • N pilot sequences For example, through a ZC sequence Column formula 1 generates N pilot sequences, and another ZC sequence formula 2 generates M pilot sequences.
  • the "root” in ZC sequence formula 1 is different from the "root” in ZC sequence formula 2, and/or the ZC sequence
  • the "cyclic shift” in formula 1 is different from the "cyclic shift" in ZC sequence formula 2.
  • the pilot sequences generated by ZC sequence formula 1 and ZC sequence formula 2 are different, so the "root” of P1 is different from the one generated by ZC sequence formula 1.
  • the "root” of P2 is independent and/or the "cyclic shift” that produces P1 is independent of the "cyclic shift” that produces P2.
  • N and M both represent the number of pilot sequences, and N and M are positive integers
  • the preset pilot set V including N pilot sequences is shown in Figure 16, where the N pilot sequences represent V1, V2, V3,..., VN
  • the preset pilot set W including M pilot sequences is shown in Figure 17, where the M pilot sequences respectively represent W1, W2, W3, ..., WM, no specific restrictions are made here.
  • one pilot P1 can be generated by a sequence generation method that generates N pilot sequences
  • another pilot P2 can be generated by another sequence generation method that generates M pilot sequences
  • the sequence generation method for generating N pilot sequences is generated by a shift register sequence generator 1
  • the sequence generation method for generating M pilot sequences is generated by a shift register sequence generator 2. Since the "initial state" set in shift register sequence generator 1 is different from the "initial state” set in shift register sequence generator 2, the pilot sequence generated by shift register sequence generator 1 is different from the shift register sequence.
  • the pilot sequences generated by device 2 are also different, that is, N ⁇ M, so the "initial state” that generates P1 and the "initial state” that generates P2 are independent.
  • N and M both represent the number of pilot sequences, and N and M are positive integers
  • the preset pilot set V including N pilot sequences is shown in Figure 16, where the N pilot sequences represent V1, V2, V3,..., VN
  • the preset pilot set W including M pilot sequences is shown in Figure 17, where the M pilot sequences respectively represent W1, W2, W3, ..., WM, no specific restrictions are made here.
  • the pilot can be a PRACH (physical random access channel) preamble sequence defined by the LTE standard; or a PRACH preamble sequence defined by the NR standard; or a DMRS defined by the LTE standard. sequence; or the DMRS sequence defined by the NR standard; or the MLSR (Maximum Length Shift Register, maximum length shift register) sequence; or the DFT (Discrete Fourier Transform, discrete Fourier transform) sequence; or the Walsh-Hadamard (Walsh-Hadama) sequence, no specific restrictions are made here.
  • PRACH physical random access channel
  • Step S420 Send the target information and all pilots to the second communication node at the target sending time.
  • the target information may include pilot-related information, such as the index value of the pilot in the preset pilot set, or the initial state of the generated pilot, etc.
  • pilot-related information such as the index value of the pilot in the preset pilot set, or the initial state of the generated pilot, etc.
  • the first communication node determines multiple pilots, and then sends the target information and all pilots to the second communication node at the target transmission time, so that The second communication node makes full use of the channel information and time-frequency offset information experienced by the pilot to estimate the target information, thereby achieving demodulation of the target information.
  • step S110 is further described.
  • This step S110 may include but is not limited to step S510 and step S520.
  • Step S510 Determine one pilot.
  • the pilot includes a sixth number of non-zero symbols, and the sixth number is greater than zero and less than five.
  • the pilot can be called a pilot signal, or a reference signal, or a demodulation reference signal, or a preamble, and from a formal point of view, the pilot is usually a sequence or a series of symbols, so the pilot is also called pilot sequence.
  • the number of pilots can be one, and there is no specific limit here.
  • determining the pilot for example, determining the pilot based on the target information; or determining the pilot based on several bits of information in the target information; or determining the pilot based on a third number of bits in the target information.
  • the information determines pilots from a preset pilot set, where the preset pilot set includes a fourth number of pilots, and the third number is in a logarithmic functional relationship with the fourth number, and the logarithmic function is a base-2 Logarithmic function, for example, assuming that the third quantity is log 2 M, then the fourth quantity is M, and there is no specific limit here.
  • the third number may be 64, 128 or more, and there is no specific limitation here.
  • the first communication node can generate pilots according to preset rules or formulas, and all pilots generated by the preset rules or formulas can constitute a preset pilot set or pilot set.
  • the formula for generating the pilot can be a ZC sequence formula, such as by setting the "root" value and/or the "cyclic shift" value in the ZC sequence formula to generate the pilot; another example, it can be through a shift register sequence
  • the generator generates a pilot, which is not specifically limited in the embodiments of this application.
  • the pilot may be a PRACH preamble sequence defined by the LTE standard; or a PRACH preamble sequence defined by the NR standard; or a DMRS sequence defined by the LTE standard; or a DMRS sequence defined by the NR standard; or an MLSR sequence. ; Or it is a DFT sequence; or it is a Walsh-Hadamard sequence, and there are no specific restrictions here.
  • Step S520 Send the target information and pilot to the second communication node at the target sending time.
  • the first communication node determines the pilot, and then sends the target information and the pilot to the second communication node at the target transmission time, so that the second communication node
  • the node determines the channel information and time-frequency offset information of the entire transmission bandwidth based on the non-zero value signal in the pilot.
  • FIG. 19 is an information transmission method provided by another embodiment of the present application.
  • the information transmission method is applied to the second communication node.
  • the information transmission method may include but is not limited to step S610.
  • Step S610 Receive the target information sent by the first communication node at the target sending time, where the target sending time is determined by the first communication node according to the pre-stored timing advance, and the target information includes the timing advance and the identification received by the first communication node.
  • Information, the identification information includes at least one of cell identification information, base station identification information, beam identification information, and identification information of a wireless signal access point.
  • the timing advance amount may be a numerical value, which may be represented by several bits.
  • the timing advance from 0 to the maximum timing advance is divided into 2 D (2 to the D power) parts.
  • Any timing advance in the range from 0 to the maximum timing advance can be represented by D bits, where D can be any positive integer. , thereby determining the timing advance amount.
  • the first communication node will determine the target transmission time based on the timing advance, and put the D bits corresponding to the timing advance into the target information for encoding and modulation, and then transmit it to the second communication node.
  • the timing advance of the first communication node can be determined through the D bits corresponding to the timing advance.
  • the identification information of the wireless signal access point may include identification information of the cellular communication system access point and the identification information of the wireless LAN access point.
  • the identification information of the wireless wide area network access point and the identification information of the Bluetooth access point there is no specific restriction here.
  • the first communication node can obtain the identification information of the wireless LAN router (such as a WIFI router).
  • the identification information can be the MAC address of the router, and then the first communication node The node sends the target information including the MAC address of the router to the second communication node, so that the second communication node determines the location of the first communication node based on the MAC address of the router; in another example, the first communication node is in a non-cellular communication system , then the first communication node can obtain the identification information of the access point without cellular communication system, and then the first communication node can send the target information including the identification information of the access point without cellular communication system to the second communication node, so that the first communication node The second communication node determines the location of the first communication node based on the identification information of the non-cellular communication system access point; for another example, assuming that the first communication node is in the Bluetooth wireless communication system, the first communication node can obtain the location of the Bluetooth access point.
  • the first communication node can send the target information including the identification information of the Bluetooth access point to the second communication node, so that the second communication node determines the location of the first communication node based on the identification information of the Bluetooth access point.
  • the embodiments of this application do not specifically limit this.
  • the target information when the identification information includes cell identification information, may also include the strength of the wireless signal of the first communication node receiving the cell identification information; or, when the identification information includes base station identification information, the target information may also include The strength of the wireless signal when the first communication node receives the base station identification information; or, when the identification information includes beam identification information, the target information may also include the strength of the wireless signal when the first communication node receives the beam identification information; or when the identification information includes wireless The identification information of the signal access point, and the target information may also include the strength of the wireless signal from which the first communication node receives the identification information of the wireless signal access point.
  • the second communication node can more accurately determine the location of the first communication node.
  • the strengths of all the above wireless signals may be received signal strength indicators, which are not specifically limited here.
  • the wireless signal access point may be a wireless LAN router, and the wireless LAN router may be a WIFI router, which is not specifically limited here.
  • the identification information may be a MAC address, IP address, port number, SSID, device code or other information that can uniquely identify the wireless communication device, where the device code may be IMEI or MEID, etc., which is not used here. Make specific restrictions.
  • the cell identification information when the identification information includes cell identification information, the cell identification information may include cell identifications of multiple cells; or, when the identification information includes base station identification information, the base station identification information may include base station identifications of multiple base stations; Or, when the identification information includes beam identification information, the beam identification information may include beam identification information of multiple beams; or when the identification information includes identification information of a wireless signal access point, the identification information of the wireless signal access point may include multiple wireless signal access points.
  • the identification of the signal access point is not specifically limited here.
  • the timing advance may be determined based on the broadcast signal sent by the second communication node, and the broadcast signal may include a downlink synchronization signal or a downlink reference signal, which is not specifically limited here.
  • the second communication node may send a broadcast signal to notify the first communication node of the location of the second communication node, and then the first communication node may calculate the relationship between the first communication node and the second communication node based on the location of the second communication node and its own location.
  • the distance between communication nodes thereby determining the transmission delay of the target information, and then determining the timing advance required to send the target information; for another example, the second communication node sends a downlink synchronization signal or a downlink reference signal to the first communication node, and the second communication node
  • a communication node can calculate the strength of the downlink synchronization signal or the strength of the downlink reference signal, and estimate the timing advance based on the strength of the signal.
  • the first communication node independently determines the timing advance, it will make a decision to the second communication node based on the timing advance. Send target information. No specific restrictions are made here.
  • the second communication node receives the target information sent by the first communication node at the target sending time, wherein the target sending time is determined according to the prestored timing advance, and the target The information includes timing advance and identification information received by the first communication node.
  • the identification information includes at least one of cell identification information, base station identification information, beam identification information, and identification information of the wireless signal access point, that is to say, the first A communication node can determine the target sending time based on the pre-stored timing advance, and send the target information to the second communication node at the target sending time without obtaining the timing advance from the second communication node, thereby eliminating the need to go through a process with the second communication node.
  • a series of interactive response processes are performed to avoid signaling overhead generated by the interactive response process, and at the same time, enable the second communication node to determine the location of the first communication node based on the identification information in the target information. Therefore, the embodiments of the present application can realize information transmission from the first communication node to the second communication node while reducing signaling overhead.
  • the target information may also include landform information, climate information, gas concentration information (such as chemical gas concentration information), road condition information, security information, etc., where the climate information may include lighting information, temperature information, precipitation information, wind information and sand Dust information, etc. will not be listed one by one here.
  • climate information may include lighting information, temperature information, precipitation information, wind information and sand Dust information, etc. will not be listed one by one here.
  • the second communication node can demodulate and decode the target information including the timing advance from the first communication node. After the demodulation and decoding is correct, the timing advance sent by the first communication node can be obtained. quantity. Further, the second communication node can estimate the multipath channel based on the target information, and combine the timing advance in the target information with the multipath channel experienced by the target information, thereby determining that the target information sent by the first communication node reaches the third The transmission distance of all paths experienced by the second communication node is calculated based on the transmission delays of all paths, so that the transmission environment can be perceived. This embodiment of the present application does not specifically limit this.
  • step S610 is further described. This step S610 may include but is not limited to step S710 and step S720.
  • Step S710 Send broadcast signaling to the first communication node.
  • the broadcast signaling is used to indicate the public channel used by the first communication node to send the target information.
  • the public channel may be pre-configured by the second communication node, which is not specifically limited here.
  • Step S720 Receive the target information sent by the first communication node through the public channel at the target sending time.
  • first the second communication node sends broadcast signaling to the first communication node to instruct the first communication node on the public channel used to send the target information. , and then receives the target information sent by the first communication node through the public channel at the target sending time, providing a good sending environment for the first communication node to send the target information to the second communication node.
  • This embodiment does not specifically limit this.
  • the information transmission method may also include but is not limited to step S810, step S820, step S830, step S840 and step S850.
  • Step S810 Receive multiple pilots from the first communication node.
  • the pilot can be called a pilot signal, or a reference signal (RS), or a demodulation reference signal, or a preamble, and from a formal point of view, the pilot is usually a sequence or a series of symbols. So the pilot is also called a pilot sequence. Therefore, the multiple pilots may be two or more pilot sequences, which are not specifically limited here.
  • RS reference signal
  • the pilot may be two or more pilot sequences, which are not specifically limited here.
  • pilots are independent of each other, that is, multiple pilots are not associated or correlated with each other.
  • Figure 13 is a schematic diagram of two mutually independent pilots (ie, pilot P1 and pilot P2).
  • Figure 14 is a schematic diagram of W mutually independent pilots, of which w are independent of each other.
  • the pilots are respectively represented as P1, P2,..., Pw, where w can be a positive integer greater than 2, and there is no specific restriction here.
  • multiple pilots are determined based on target information; or multiple pilots are determined based on several bits of information in the target information; or, multiple pilots are determined based on The plurality of groups of a third number of bit information in the target information determine a plurality of pilots from a preset pilot set, wherein the preset pilot set includes a fourth number of pilots, and the third number is logarithmic to the fourth number.
  • the logarithmic function is a logarithmic function with base 2. For example, assuming that the third quantity is log 2 M, then the fourth quantity is M, and there is no specific restriction here.
  • the number of pilots is two, and the two pilots are P1 and P2 respectively, where P1 and P2 are both from a preset including a fourth number N of pilots.
  • the first communication node determines P1 from Z, which requires m bits of information.
  • the first communication node determines P2 from Z, which also requires another m bits of information.
  • the m bits of information required to determine P1 are independent of the m bits of information required to determine P2. Therefore, the first communication node can determine P1 and P2 through 2 sets of bit information, each set of m bit information.
  • the second communication node can obtain the two pilots (ie, P1 and P2) of the first communication node, so that the interference of the pilots can be eliminated.
  • P1 and P2 can also be determined based on 12 bits of information in addition to the above 12 bits, but the additional 12 bits of information need to be sent to the second communication node, which will reduce the transmission efficiency.
  • the first communication node can also select a pilot from the preset pilot set Z including 64 pilots according to a certain rule, that is, number the 64 pilots and select one from No. 1 to No. 64. number, the pilot with this number is P1.
  • the pilot with this number is P1.
  • At least two pilots among the plurality of pilots belong to different pilot sets; or, at least two pilots among the plurality of pilots have different pilot lengths; or, each The pilots each include a fifth number of non-zero value symbols, and the fifth number is greater than zero and less than five, and is not specifically limited here.
  • two pilots P1 and P2 respectively belong to two different pilot sets, namely pilot set and pilot set, then from The index value for determining P1 in the pilot set and the index value for P2 from the pilot set are independent.
  • the pilot length of the pilots in the pilot set including N1 pilot sequences may be the same as the pilot length of the pilots in the pilot set including N2 pilot sequences, or may be different. .
  • N1 and N2 both represent the number of pilot sequences
  • N1 and N2 are both positive integers
  • N1 and N2 can be any values, and there are no specific restrictions here.
  • the first communication node can generate pilots according to preset rules or formulas, and all pilots generated by the preset rules or formulas can constitute a preset pilot set or pilot set.
  • the application examples do not specifically limit this.
  • the formula for generating the pilot may be a ZC sequence (i.e., Zadoff Chu sequence) formula, for example, by setting different "root” values and/or different "cyclic shift” values in the ZC sequence formula.
  • Generate different pilots that is, the "cyclic shift” that generates P1 is independent of the "cyclic shift” that generates P2; or, the "root” that generates P1 and the “root” that generates P2 are independent and irrelevant, generating The "cyclic shift" of P1 is independent of the "cyclic shift” that generates P2.
  • the pilot can be generated by a shift register sequencer, such as by setting different "initial states” in the shift register sequencer to generate different pilots. Therefore, the "initial state” of P1 is generated. “State” is independent of the “initial state” that produced P2.
  • one pilot P1 can be generated by a sequence generation method that generates N pilot sequences
  • another pilot P2 can be generated by another sequence generation method that generates M pilot sequences
  • the sequence generation method for generating M pilot sequences is different from the sequence generation method for generating N pilot sequences, that is, N ⁇ M, so P1 and P2 are independent and irrelevant.
  • N pilot sequences are generated through one ZC sequence formula 1
  • M pilot sequences are generated through another ZC sequence formula 2.
  • the "root” in ZC sequence formula 1 is different from the "root” in ZC sequence formula 2, and /Or the "cyclic shift” in ZC sequence formula 1 and the "cyclic shift” in ZC sequence formula 2 are different.
  • the pilot sequences generated by ZC sequence formula 1 and ZC sequence formula 2 are different, resulting in "P1"
  • the "root” that produces P2 is independent of the "root” that produces P2, and/or the "cyclic shift” that produces P1 is independent of the "circular shift” that produces P2.
  • N and M both represent the number of pilot sequences
  • N and M are positive integers
  • the preset pilot set V including N pilot sequences is shown in Figure 16, where the N pilot sequences represent V1, V2, V3,..., VN
  • the preset pilot set W including M pilot sequences is shown in Figure 17, where the M pilot sequences respectively represent W1, W2, W3, ..., WM, no specific restrictions are made here.
  • one pilot P1 can be generated by a sequence generation method that generates N pilot sequences
  • another pilot P2 can be generated by another sequence generation method that generates M pilot sequences
  • the sequence generation method for generating N pilot sequences is generated by a shift register sequence generator 1
  • the sequence generation method for generating M pilot sequences is generated by a shift register sequence generator 2. Since the "initial state" set in shift register sequence generator 1 is different from the "initial state” set in shift register sequence generator 2, the pilot sequence generated by shift register sequence generator 1 is different from the shift register sequence.
  • the pilot sequences generated by device 2 are also different, that is, N ⁇ M, so the "initial state” that generates P1 and the "initial state” that generates P2 are independent.
  • N and M both represent the number of pilot sequences, and N and M are positive integers
  • the preset pilot set V including N pilot sequences is shown in Figure 16, where the N pilot sequences represent V1, V2, V3,..., VN
  • the preset pilot set W including M pilot sequences is shown in Figure 17, where the M pilot sequences respectively represent W1, W2, W3, ..., WM, no specific restrictions are made here.
  • the pilot may be a PRACH preamble sequence defined by the LTE standard; or a PRACH preamble sequence defined by the NR standard; or a DMRS sequence defined by the LTE standard; or a DMRS sequence defined by the NR standard; or an MLSR sequence. ; Or it is a DFT sequence; or it is a Walsh-Hadamard sequence, and there are no specific restrictions here.
  • pilots with few non-zero symbols in the preset pilot set may be called sparse pilots, such as pilots, which are not specifically limited here.
  • Step S820 Determine the channel information of the wireless channel through which the target information passes based on the pilot.
  • Step S830 Demodulate and decode the target information according to the channel information.
  • Step S840 Reconstruct the pilot according to the pilot information contained in the demodulated and decoded target information.
  • Step S850 Eliminate the reconstructed pilot from the received signal.
  • the embodiment of the present application can increase the number of pilots without increasing pilot resource overhead, thereby reducing the probability of pilot collision and further supporting the access of more first communication nodes.
  • the target information may include pilot information, such as the index value of the pilot in the preset pilot set, or the initial state of the generated pilot, etc.
  • pilot information such as the index value of the pilot in the preset pilot set, or the initial state of the generated pilot, etc.
  • only part of the information of the wireless channel experienced by the target information can be estimated based on the pilot, and it is not necessary to estimate all the information of the wireless channel experienced by the target information based on the pilot.
  • the information transmission method may also include but is not limited to step S910 and step S920.
  • Step S910 Determine target information corresponding to the first communication node based on multiple pilots that do not collide.
  • the first terminal and the second terminal both send two messages to the same second communication node. Pilots, where the two pilots of the first terminal are V1 and V2 respectively, and the two pilots of the second terminal are W1 and W2 respectively. If V1 and V2 belong to two different pilot sets respectively, that is, V1 belongs to Pilot set Z3 and V2 belong to pilot set Z7, and W1 and W2 belong to two different pilot sets respectively, that is, W1 belongs to pilot set Z3 and W2 belongs to pilot set Z5, because W1 and V1 both belong to the same pilot set.
  • the second communication node can use the second pilot sequence that does not collide (i.e., V2 and W2) Perform channel estimation, determine the channel information of the wireless channel, and then demodulate the target information of the first terminal and the second terminal.
  • Step S920 Determine the location of the first communication node according to the target information.
  • first the second communication node determines the target information corresponding to the first communication node based on multiple pilots that do not collide, and then determines the second communication node based on the target information.
  • the location of a communication node Therefore, the embodiment of the present application can not only reduce the probability of pilot collision, but also determine the location of the first communication node.
  • the second communication node determines the target information corresponding to the first communication node based on the multiple pilots that do not collide, and then the second communication node determines the location of the first communication node based on the target information to reduce pilot collisions, and further Increase the load of the second communication node. That is to say, under the same pilot overhead, the probability of independent multi-pilot collisions of different first communication nodes at the same time is smaller than the probability of traditional single-pilot collision. Therefore, the embodiment of the present application can be used in the first communication node.
  • the node supports more accessed first communication nodes without establishing a data connection with the second communication node in a target state.
  • the base station can determine the target information corresponding to the first communication node through multiple pilots without collision in each round, and then use the target information to and pilots are reconstructed, and so on until the target information corresponding to all first communication nodes is determined.
  • the uplink transmission resources (such as reference signals or pilot information) are also independently selected by the first communication node, so It is possible for different first communication nodes to select the same uplink transmission resource, that is, resource collision.
  • resource collision When there are a large number of first communication nodes (that is, high overload), the probability of resource collision is very high. Once a resource collision occurs, it is difficult for the second communication node to separate the first communication node with the same uplink transmission resource through uplink transmission resources.
  • the target information can be determined through multiple pilots that do not collide, so as to reduce the probability of pilot collision and further increase the number of accessed first communication nodes.
  • each of the plurality of pilots includes a fifth number of non-zero symbols, and the fifth number is greater than zero and less than five, and is not specifically limited here.
  • the second communication node may receive a pilot from the first communication node, wherein the pilot includes a sixth number of non-zero valued symbols, and the sixth number is greater than zero and less than five, and then determines based on the pilot
  • the channel information of the wireless channel through which the information of the first communication node is transmitted is finally demodulated and decoded according to the channel information, which is not specifically limited here.
  • the second communication node may receive a pilot including a sixth number of non-zero value symbols from the first communication node, determine the airspace channel according to the pilot, and then determine the airspace combining weight through the determined airspace channel, Then, the received symbols of multiple receiving antennas are combined, and finally the channel information and time-frequency offset information of the entire transmission bandwidth are determined through the combined received symbols. That is to say, the channel information and time-frequency offset information of the entire transmission bandwidth can be determined without using pilots.
  • Time-frequency offset information therefore, the embodiments of the present application greatly reduce the task of pilots, so that the time-frequency resources occupied by each pilot signal can be minimized, thereby maximizing the number of pilots, and ultimately supporting more
  • the first communication node that transmits information through preconfigured scheduling-free and competitive scheduling-free methods.
  • each reference signal needs to occupy sufficient resources, that is, each reference signal It cannot be distributed too sparsely in the entire transmission bandwidth and all time, so that the channel information of the entire transmission bandwidth (such as wireless multipath channel, that is, frequency selective channel) and the time-frequency offset information within the transmission time can be estimated.
  • DMRS demodulation reference signal
  • the demodulation reference signal can also be called demodulation reference signal ports (DMRS ports). That is to say, the defined one contains 12 solutions.
  • DMRS ports demodulation reference signal ports
  • Figure 25 is a schematic diagram of defining a physical resource block provided by an embodiment, defining a physical resource block (Physical Resource Block, PRB), the physical resource block includes time domain 14 Orthogonal Frequency Division Multiplexing (OFDM) (or Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing (DFT-S-OFDM)) or single carrier frequency Single-carrier Frequency-Division Multiple Access (SC-FDMA) symbols, and 12 subcarriers in the frequency domain. That Each small grid in is a subcarrier of an OFDM symbol, usually also called a resource element (Resource Element, RE).
  • OFDM Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single carrier frequency Single-carrier Frequency-Division Multiple Access
  • Figure 26 is a schematic diagram of defining a demodulation reference signal provided in an embodiment.
  • the demodulation reference signal can be divided into three types in terms of occupied resource unit (RE) positions. group, the first group of non-zero symbols (also known as non-zero signals, useful signals, etc.) of the demodulation reference signal (DMRS) (that is, the symbols are non-zero values) are carried on the first resource unit (RE).
  • the four DMRS The ports can be distinguished by OCC codes; the non-zero symbols of the second group of demodulation reference signals (DMRS) are carried on the second resource unit (RE), and the four DMRS ports can be distinguished by OCC codes; the third group of demodulation reference signals (DMRS) non-zero symbols are carried on the third resource unit (RE), and the four DMRS ports can be distinguished by OCC codes.
  • the small square where the first resource unit is located is filled with vertical lines
  • the small square where the second resource unit is located is filled with horizontal lines
  • the small square where the third resource unit is located is filled with wavy lines.
  • Each set of demodulation reference signals has a value of 0 (ie, no signal) on the resource elements (REs) of the blank unfilled pattern. It can be seen that for each group of demodulation reference signals, there are not signals on all resource units (REs) in the reference signal area. However, for a certain first communication node (such as a terminal), even if the reference signal port it uses only has no signal on some REs in the reference signal area, it still cannot transmit data using the REs without signals. Therefore, the resource overhead occupied by the reference signal (or reference signal port) in each group of demodulation reference signals is also 1/7.
  • FIG. 27 is a schematic diagram of different reference signal ports using OCC codes according to an embodiment. Taking the first group of four demodulation reference signals in Figure 26 as an example, two long OCC codes [1,1], [1,-1] in the time domain and two long OCC codes in the frequency domain can be jointly used. The OCC codes [1,1], [1,-1] are used to separate the four demodulation reference signal ports, that is, the group of DMRS ports.
  • Different DMRS are generated by carrying different OCC codes on the first resource unit. port.
  • the situation of the four reference signals in the second group and the four reference signals in the third group in the above-mentioned FIG. 26 is also similar. Therefore, a total of 12 demodulation reference signals (DMRS) of the defined set of demodulation reference signals (DMRS) can be obtained, that is, 12 demodulation reference signal ports.
  • DMRS demodulation reference signals
  • Figure 28 is a schematic diagram of using OCC codes to define demodulation reference signals according to an embodiment.
  • the demodulation reference signals in the first group in Figure 26 This can be distinguished by jointly using two long OCC codes [1,1], [1,-1] in the time domain and two long OCC codes [1,1], [1,-1] in the frequency domain. 4 demodulation reference signal ports.
  • the numbers in the shaded parts of the first to third columns are all 1 from top to bottom, and the numbers in the shaded parts of the fourth column are - from top to bottom. 1.
  • the numbers in the shaded part of the fifth to seventh columns are 1, -1, 1, -1 from top to bottom respectively.
  • the numbers in the shaded part of the eighth column are -1, 1, - from top to bottom respectively. 1.1.
  • Figure 29 is a schematic diagram of another method of using OCC codes to define a demodulation reference signal according to an embodiment.
  • two long OCC codes [1,1], [1,-1] in the time domain and two long OCC codes in the frequency domain can be jointly used. codes [1,1], [1,-1] to separate the four demodulation reference signal ports.
  • the numbers in the shaded parts of the first column to the third column from top to bottom are 1.
  • the numbers in the shaded part of the fourth column are -1 from top to bottom.
  • the numbers in the shaded part of the fifth to seventh columns are 1, -1, 1, -1 from top to bottom.
  • the numbers in the eighth column are The numbers in the shaded part from top to bottom are -1, 1, -1, 1 respectively.
  • FIG. 30 is a schematic diagram of another demodulation reference signal using an OCC code provided in an embodiment.
  • 8 represents the first reference signal unit
  • 9 represents the second reference signal unit;
  • two long OCC codes in the time domain can be jointly used [1, 1], [1,-1], and two long OCC codes [1,1], [1,-1] in the frequency domain to separate the four demodulation reference signal ports, where, in Figure 30,
  • the shaded numbers in the first to third columns are all 1 from top to bottom, the shaded numbers in the fourth column are -1 from top to bottom, and the shaded numbers in the fifth to seventh columns are from From top to bottom, they are 1, -1, 1, and -1.
  • the numbers in the shaded part of the eighth column are -1, 1, -1, and 1 from top to bottom.
  • the reference signal carried on several adjacent resource units (RE) in the time domain and frequency domain may be called a reference signal unit (Resource Signal Element, RSE).
  • RSE Resource Signal Element
  • the time-frequency The reference signal carried on four consecutive resource units (RE) in the domain is called a reference signal unit (RSE).
  • RSE reference signal unit
  • the reference signal on the "field grid" with pattern filling is a reference signal unit ( RSE).
  • RSE The Reference Signal Element
  • each reference signal has 2 reference signal elements (RSE) within 1 PRB bandwidth, so it can be estimated Get a channel value at 2 locations within 1 PRB bandwidth (that is, within 12 subcarrier bandwidth).
  • RSE reference signal elements
  • the channel values of 12 subcarriers within 1 PRB bandwidth can be interpolated through the estimated values of these reference signal units.
  • Figure 31 is a schematic diagram of PRB-based transmission provided in an embodiment. If a transmission contains X PRBs, the 12 demodulation reference signals (or 12 demodulation reference signal ports) in the reference signal set are as shown in the figure. Each reference signal has 2 ⁇ ), so the channel values at equally spaced 2 ⁇ X locations within the entire transmission bandwidth can be estimated, and then the channel values for all 12 ⁇ X subcarriers within the transmission bandwidth can be obtained through interpolation.
  • FIG. 32 is a schematic diagram of another definition of demodulation reference signals provided by an embodiment.
  • Figure 32 the first group of four demodulation reference signals that can be distinguished by OCC codes
  • Figure 33 is provided by an embodiment.
  • a second group of four demodulation reference signals can be distinguished by OCC codes
  • Figure 34 is another definition of a demodulation reference signal provided by an embodiment.
  • the implementation diagram, in Figure 34 shows the third group of 4 demodulation reference signals that can be distinguished by OCC codes.
  • the relevant demodulation reference signal occupies a large amount of resources.
  • the demodulation reference signal exists within the entire transmission bandwidth.
  • the density of demodulation reference signals within the entire transmission bandwidth is 2 reference signals per PRB, or 2 reference signal elements (RSE) per PRB.
  • the overhead of the reference signal is 1/7. That is to say, the system spends 1/7 of the resources and can only design 12 demodulation reference signals.
  • the collision probability of reference signals independently selected by any two terminals is 1/12. It can be seen that the collision probability is very high. Therefore, the related demodulation reference signal will seriously limit the number of terminals for data transmission in the connectionless transmission state.
  • the reference signal also needs to estimate a certain frequency offset (Frequency Offset)
  • the resources occupied by each reference signal will continue to increase.
  • the density of each reference signal in the transmission signal will continue to increase.
  • the resource overhead is 2/7. That is to say, in order to estimate the frequency selective channel and frequency offset, the system spends 2/7 of its resources and can only design 12 demodulation reference signals.
  • the system still needs to cope with a certain timing offset, the resources occupied by the reference signals will continue to increase. For example, the system has to pay 3/7 or even 4/7 of the overhead to design 12 demodulation reference signals. With such a large overhead, only a small amount of reference signals (ie, reference signal ports) can be obtained. It can be seen that when data is transmitted in a connectionless state, the probability of reference signal collision is very high.
  • the density of the demodulation reference signal in the frequency domain will continue to increase, and each group of demodulation reference signals will There are 3 reference signal units within a PRB bandwidth (for example, there are 3 fields in the visual representation). Therefore, there can be 3 estimated values on each PRB, and there can be 3 ⁇ X estimated values on X PRBs. Then the channels of all subcarriers of X PRBs can be obtained through linear interpolation.
  • This reference signal also accounts for 1/7 of the transmission resource overhead, but can only separate 8 demodulation reference signals (8 demodulation reference signal ports), which is less than the number of demodulation reference signals defined above. It can be seen that the channel estimation capability is usually inversely proportional to the number of reference signals.
  • the problem faced when applying reference signals to connectionless transmission scenarios is that the reference signal must not only estimate the frequency selection channel and time-frequency offset of the entire transmission channel, but also identify the terminal equipment, so the time-frequency resources occupied by the reference signal increase exponentially. , which leads to a serious shortage of reference signals under certain resources, which in turn affects the number of terminals that can transmit information.
  • the main starting point of this application is to greatly reduce the task of reference signals, so that the resources occupied by each reference signal can be minimized, that is, the density of each reference signal in the transmission signal is made the sparsest, and then the number of reference signals can be maximized ization, which can ultimately increase the number of terminals that transmit information in the preconfigured scheduling-free and contention-based scheduling-free modes.
  • this application uses data-based channel estimation technology (rather than based on reference signals) to estimate the channel of the entire transmission bandwidth and estimate the time-frequency offset through the characteristics of the data itself, such as through the geometric characteristics of the constellation diagram of data symbols. , that is to say, there is no need to estimate the channel and time-frequency offset of the entire transmission bandwidth through a reference signal.
  • channel estimation as an example.
  • the constellation diagram can be a constellation diagram of BPSK symbols.
  • the constellation diagram of a Binary Phase Shift Keying (BPSK) symbol transmitted by the terminal as shown in Figure 35 can be considered as a standard constellation diagram.
  • BPSK Binary Phase Shift Keying
  • Figure 36 shows the scatter points corresponding to the symbols after channel weighting.
  • a weighting coefficient i.e. a rotation
  • AWGN additive white Gaussian Noise
  • the constellation diagram after rotation and scaling (that is, after channel weighting) still has strong geometric characteristics, so channel estimation and equalization can use the geometric characteristics of this constellation diagram.
  • the constellation diagram can be reversely rotated back to complete the equalization, that is, the symbol scatter after equalization of the signal is obtained, as shown in Figure 37.
  • the scatter points corresponding to the symbols received by the base station can also be observed to be two separate groups of scatter points. The base station only needs to add up the circular scatter points and the triangular scatter points respectively.
  • the BPSK symbol is in the form of a complex number represents the channel weight, and the rotation amount and the scaling amount can also be obtained according to the channel weighting, where the angle of the complex number is the rotation amount, and the modulus of the complex number is the scaling amount.
  • the task of the reference signal is much smaller than that of the related scheme. Therefore, the resources occupied by each reference signal in the scheme of this application are less than that of each reference signal in the related scheme. Therefore, under a certain overhead, , the number of reference signals in this application is larger than that in related schemes.
  • the base station has multiple receiving antennas, for example, R receiving antennas
  • the R receiving antennas can theoretically provide very powerful airspace capabilities, thereby improving the performance of multi-terminal access.
  • this application proposes to use "extremely sparse"
  • the signal, h k ' is the conjugate transpose of h k
  • the receiver uses the spatially combined data symbol sk to estimate the channel of the entire transmission bandwidth experienced by the signal of terminal k and estimates the time-frequency offset, and then calculates the spatially combined
  • the data symbol sk compensates for the channel and time-frequency offset, and finally the data symbols that compensate for the channel and time-frequency offset are demodulated and decoded.
  • this application does not use the reference signal to estimate the channel within the entire transmission bandwidth, nor does it use it to estimate the time-frequency offset.
  • FIG. 38 is a schematic diagram for defining a reference signal. It is assumed that the reference signal occupies 1 OFDM symbol, one transmission includes time-frequency resources of X PRBs, and one physical resource block (PRB) includes 14 OFDM (or DFT-S-OFDM or SC-FDMA) symbols, and 12 subcarriers in the frequency domain.
  • PRB physical resource block
  • the first 1 OFDM symbol is used to carry the demodulation reference signal, that is, the first 1 OFDM symbol is used as an extremely sparse pilot area, then 1/14 of the resources are used to transmit the reference signal, that is, 12 ⁇ X resource units (RE) Used to transmit reference signals.
  • the area except the extremely sparse pilot area is the data symbol area.
  • Figure 39 is a schematic diagram of another system-defined reference signal (ie, extremely sparse pilot).
  • Each reference signal only has non-zero symbols on one RE resource unit. (non-zero signal, or useful signal), and there is no signal on the remaining resource units (that is, the value is 0). Therefore, it can occupy 1/14 of the overhead reference signal area, and a total of 12 ⁇ X references can be divided Signal.
  • the number of reference signals (the number of reference signals in this NR system is 8 or 12).
  • Figure 40 is a schematic diagram of another way of defining reference signals (i.e., extremely sparse pilot ports).
  • Each reference signal defined by the system only has non-standard reference signals on two RE resource units.
  • Zero symbol (or non-zero signal, or useful signal) every 2 REs can separate 2 reference signals through 2-length OCC, and there are no signals on the remaining resource units (that is, the value is 0), therefore, it can account for 1 /14 overhead reference signal area, and a total of 12 ⁇ X reference signals can be separated.
  • the resource overhead of each PRB is 1/14
  • the number of reference signals (the number of reference signals in this NR system is 8 or 12). Therefore, the number of non-zero symbols of extremely sparse pilots is proportional to the number of PRBs.
  • Figure 41 is a schematic diagram of generating a DMRS port provided by an embodiment.
  • OCC codes such as OCC code 1, OCC code 2
  • the number of reference signals (the number of reference signals in this NR system is 8 or 12).
  • Figure 42 is a schematic diagram of another definition of a reference signal provided by an embodiment, wherein the reference signal defined by the system occupies 2 OFDM symbols.
  • Figure 43 is a schematic diagram of another definition of reference signals provided by an embodiment.
  • Each reference signal defined by the system is only in a group of four adjacent RE resource units. There are non-zero symbols (or non-zero signals, or useful signals), but there will be 4 reference signals multiplexed into a group of 4 adjacent REs, in which 4 reference signals from the same group of 4 adjacent REs are multiplexed. It can be distinguished by the OCC code. Therefore, when a transmission includes X PRBs, and each PRB occupies 1/7 of the overhead reference signal area, a total of 24 ⁇ X reference signals can be separated.
  • the number of reference signals in the NR system (the number of reference signals in the NR system is 8 or 12) also shows that the number of extremely sparse pilots is proportional to the number of PRBs.
  • extremely sparse pilots are pilots with few non-zero elements in the preset pilot set. For example, there are only 1-4 non-zero elements. Therefore, the scheme for extremely sparse pilots can be implemented without adding pilots. In the case of resource overhead, the number of pilots is significantly increased, thereby significantly reducing the probability of pilot collisions.
  • the base station can estimate part of the information of the wireless channel from the extremely sparse pilots without estimating all the information of the wireless channel from the extremely sparse pilots, and the base station can further extract the channel information from the data symbols and then use the channel The information completes the equalization of the data symbols.
  • the extremely sparse pilot is only used for spatial combining, but cannot be used for channel equalization. Therefore, the extremely sparse pilot can be considered as a spatial combining reference signal and is not specifically limited here.
  • the extremely sparse reference signals i.e. extremely sparse pilots
  • Figures 38, 39, 40 and 41 are all located in the first symbol of the transmission resource, or between the first symbol and the second symbols, but this application does not limit the location of the extremely sparse reference signal.
  • the location of the extremely sparse reference signal can also be located in the middle of the transmission resource.
  • the above-mentioned independent multi-pilots and extremely sparse pilots can also be combined to further reduce the probability of pilot collision and further increase the terminal load.
  • FIG. 44 is a schematic diagram of an extremely sparse reference signal provided by an embodiment. The diagram is illustrated using target information.
  • the data packet includes received identification information and timing.
  • the information of all the extremely sparse pilots used by the terminal in this transmission can be known, so that the interference of the pilot signal can be eliminated.
  • the first communication node in all the above embodiments can be a terminal, such as a mobile phone, a smart phone, a notebook computer, a PDA (Personal Digital Assistant), a PAD (tablet computer), a navigation device, etc.
  • Mobile terminals can also be Internet of Things device terminals, etc. There are no specific restrictions here.
  • the information transmission device 200 includes a memory 202, a processor 201, and a computer program stored in the memory 202 and executable on the processor 201. .
  • the processor 201 and the memory 202 may be connected through a bus or other means.
  • the memory 202 can be used to store non-transitory software programs and non-transitory computer executable programs.
  • the memory 202 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory 202 optionally includes memory located remotely relative to the processor 201, and these remote memories may be connected to the processor 201 through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the non-transitory software programs and instructions required to implement the information transmission method of the above embodiment are stored in the memory 202.
  • the information transmission method in the above embodiment is executed, for example, the above-described FIG. 4 is executed.
  • Method steps S110 in Figure 5 method steps S210 to S230 in Figure 5 , method steps S310 to S320 in Figure 6 , method steps S410 to S420 in Figure 12 , method steps S510 to S520 in Figure 18 , method steps S510 to S520 in Figure 19
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • an embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are executed by a processor or controller, for example, by the above-mentioned Execution by a processor in the device embodiment can cause the above processor to execute the information transmission method in the above embodiment, and execute the above-described method steps S110 in Figure 4, method steps S210 to S230 in Figure 5, and method steps S210 to S230 in Figure 6.
  • an embodiment of the present application also provides a computer program product, including a computer program or computer instructions.
  • the computer program or computer instructions are stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer program from the computer-readable storage medium.
  • the computer program or computer instructions are obtained, and the processor executes the computer program or computer instructions, so that the computer device performs the information transmission method in the above embodiment, for example, performs the above-described method step S110 in Figure 4 and method step S210 in Figure 5 to S230, method steps S310 to S320 in Figure 6, method steps S410 to S420 in Figure 12, method steps S510 to S520 in Figure 18, method step S610 in Figure 19, method steps S710 to S720 in Figure 20 , method steps S810 to S850 in Figure 21, method steps S910 to S920 in Figure 22.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信息传输方法及其装置、存储介质,该方法包括:在目标发送时间向第二通信节点发送目标信息,其中,目标发送时间根据预存的定时提前量而确定,目标信息包括定时提前量和第一通信节点接收到的标识信息,标识信息包括如下至少之一:小区标识信息;基站标识信息;波束标识信息;无线信号接入点的标识信息。

Description

信息传输方法及其装置、存储介质
相关申请的交叉引用
本申请基于申请号为202210642395.X、申请日为2022年06月08日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于通信技术领域,尤其涉及一种信息传输方法及其装置、存储介质。
背景技术
通信感知一体化(Integration of sensing and communication,ISAC)是指通信和感知两个功能融合在一起,使得未来的通信系统同时具有通信和感知两个功能。在ISAC场景中,有一种场景是希望通过终端发射的无线信号来做环境的感知。
另一方面,未来的无线通信系统中一个重要场景是物联网(Internet of Thing,IoT)或海量机器通信(massive Machine Type Communication,mMTC)。而IoT或者mMTC通信场景中,有一类重要的业务是需要知道终端设备(User Equipment,UE)所处的位置的。
但相关技术中,由于终端发射无线信号会涉及一系列交互应答过程,这会增加终端的功耗和系统的信令开销。因此,如何在降低信令开销的情况下实现终端的无线信号传输,是亟待解决的一个问题。
发明内容
本申请实施例提供了一种信息传输方法及其装置、存储介质,能够在降低信令开销的情况下,实现第一通信节点对第二通信节点的信息传输。
第一方面,本申请实施例提供了一种信息传输方法,应用于第一通信节点,所述信息传输方法包括:
在目标发送时间向第二通信节点发送目标信息,其中,所述目标发送时间根据预存的定时提前量而确定,所述目标信息包括所述定时提前量和所述第一通信节点接收到的标识信息,所述标识信息包括如下至少之一:小区标识信息;基站标识信息;波束标识信息;无线信号接入点的标识信息。
第二方面,本申请实施例提供了一种信息传输方法,应用于第二通信节点,所述信息传输方法包括:接收第一通信节点在目标发送时间发送的目标信息;其中,所述目标发送时间由所述第一通信节点根据预存的定时提前量确定,所述目标信息包括所述定时提前量和所述第一通信节点接收到的标识信息,所述标识信息包括如下至少之一:小区标识信息;基站标识信息;波束标识信息;无线信号接入点的标识信息。
第三方面,本申请实施例还提供了一种信息传输装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的信息传输方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上所述的信息传输方法。
第五方面,本申请实施例还提供了一种计算机程序产品,包括计算机程序或计算机指令,所述计算机程序或所述计算机指令存储在计算机可读存储介质中,计算机设备的处理器从所述计算机可读存储介质读取所述计算机程序或所述计算机指令,所述处理器执行所述计算机程序或所述计算机指令,使得所述计算机设备执行如上所述的信息传输方法。
本申请实施例包括:在目标发送时间向第二通信节点发送目标信息,其中,目标发送时间根据预存的定时提前量而确定,目标信息包括定时提前量和第一通信节点接收到的标识信息,标识信息包括如下至少之一:小区标识信息;基站标识信息;波束标识信息;无线信号接入点的标识信息,即是说,第一通信节点可以根据预存的定时提前量确定目标发送时间,在目标发送时间向第二通信节点发送目标信息,而无需从第二通信节点处获取定时提前量,从而无需与第二通信节点经过一系列交互应答过程,以避免该交互应答过程所产生的信令开销,同时,又能够使得第二通信节点根据目标信息中的标识信息确定第一通信节点的位置。因此,本申请实施例可以在降低信令开销的情况下,实现第一通信节点对第二通信节点的信息传输。
附图说明
图1是本申请一个实施例提供的获取终端位置信息的示意图;
图2是本申请一个实施例提供的监测天气状况信息的示意图;
图3是本申请一个实施例提供的监测沙尘信息的示意图;
图4是本申请一个实施例提供的信息传输方法的流程图;
图5是图4中步骤S110的一种具体方法的流程图;
图6是图4中步骤S110的另一种具体方法的流程图;
图7是本申请一个实施例提供的一种导频位置关系的示意图;
图8是本申请一个实施例提供的另一种导频位置关系的示意图;
图9是本申请一个实施例提供的另一种导频位置关系的示意图;
图10是本申请一个实施例提供的一种导频序列的示意图;
图11是本申请一个实施例提供的另一种导频序列的示意图;
图12是图4中步骤S110的另一种具体方法的流程图;
图13是本申请一个实施例提供的两个独立导频的示意图;
图14是本申请一个实施例提供的w个独立导频的示意图;
图15是本申请一个具体示例提供的一种预设导频集合的示意图;
图16是本申请另一个具体示例提供的一种预设导频集合的示意图;
图17是本申请另一个具体示例提供的另一种预设导频集合的示意图;
图18是图4中步骤S110的另一种具体方法的流程图;
图19是本申请另一个实施例提供的信息传输方法的流程图;
图20是图19中步骤S610的一种具体方法的流程图;
图21是本申请另一个实施例提供的信息传输方法的流程图;
图22是本申请另一个实施例提供的信息传输方法的流程图;
图23是本申请另一个具体示例提供的一种预设导频集合的示意图;
图24是本申请另一个具体示例提供的另一种预设导频集合的示意图;
图25是本申请一个实施例提供的定义物理资源块的示意图;
图26是本申请一个实施例提供的一种定义解调参考信号的示意图;
图27是本申请一个实施例提供的通过OCC码来区分出不同的参考信号端口的示意图;
图28是本申请一个实施例提供的一种采用OCC码定义解调参考信号的示意图;
图29是本申请一个实施例提供的另一种采用OCC码定义解调参考信号的示意图;
图30是本申请一个实施例提供的另一种采用OCC码定义解调参考信号的示意图;
图31是本申请一个实施例提供的一种基于PRB传输的示意图;
图32是本申请一个实施例提供的另一种定义解调参考信号的示意图;
图33是本申请一个实施例提供的另一种定义解调参考信号的示意图;
图34是本申请一个实施例提供的另一种定义解调参考信号的示意图;
图35是本申请一个实施例提供的一种二相相移键控符号的星座图;
图36是本申请一个实施例提供的另一种二相相移键控符号的星座图;
图37是本申请一个实施例提供的另一种二相相移键控符号的星座图;
图38是本申请一个实施例提供的一种定义参考信号的示意图;
图39是本申请一个实施例提供的另一种定义参考信号的示意图;
图40是本申请一个实施例提供的另一种定义参考信号的示意图;
图41是本申请一实施例提供的一种生成DMRS端口的示意图;
图42是本申请一个实施例提供的另一种定义参考信号的示意图;
图43是本申请一个实施例提供的另一种定义参考信号的示意图;
图44是本申请一个实施例提供的一种极稀疏参考信号的示意图;
图45是本申请一个实施例提供的信息传输装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图的描述中,多个(或多项)的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请提供了一种信息传输方法及其装置、存储介质,第一通信节点在目标发送时间向第二通信节点发送目标信息,其中,目标发送时间根据预存的定时提前量而确定,目标信息包括定时提前量和第一通信节点接收到的标识信息,标识信息包括如下至少之一:小区标识信息;基站标识信息;波束标识信息;无 线信号接入点的标识信息,即是说,第一通信节点可以根据预存的定时提前量确定目标发送时间,在目标发送时间向第二通信节点发送目标信息,而无需从第二通信节点处获取定时提前量,从而无需与第二通信节点经过一系列交互应答过程,以避免该交互应答过程所产生的信令开销,同时,又能够使得第二通信节点根据目标信息中的标识信息确定第一通信节点的位置,进而可以使得第二通信节点实现基于第一通信节点的位置的应用。因此,本申请实施例可以在降低信令开销的情况下,实现第一通信节点对第二通信节点的位置信息传输。
下面结合附图,对本申请实施例作进一步阐述。
在一实施例中,未来的无线通信系统可包括如下三个需求:
一、通信感知一体化的需求,例如:通过获取通信信号传输过程中所经历的信道信息去构建高精度的三维环境地图;去探测降雨、沙尘、化学气体浓度等;去检测路况;或者通过通信信号实现安防功能。
二、通信系统自身性能提升的需求,例如,系统更容易且更准确地实现多用户配对和调度,以及更容易地实现波束赋形、基站节能等。
三、更好地支持IoT/mMTC的需求。
一方面,未来的无线通信系统有关于ISAC的需求。如果系统能够获得大量终端(即UE)的位置信息,且同时又能够获得这些终端发射的无线信号所经历的信道信息(即获得在该终端位置发射的电磁波到达基站所经历的信道信息),则就可以利用该位置信息和该信道信息完成很多事情,例如,构建环境地图;实时监测降雨、降雪等天气状况,尤其是暴雨暴雪天气;还可以实时监测沙尘、粉尘、和化学气体等;监测人流量、车流量等,可以利用人流量或者车流量等信息辅助交通,也可以将人流量或者车流量等信息作为辅助公共治理的信息;感知某个地方的终端数量,进而通过通信信号实现安防功能;实现基站节能、负载均衡等。
另一方面,未来的无线通信系统也有更好地支持IoT/mMTC的需求。当系统能够获得大量终端的位置信息,就可以提高物联网服务的质量,例如,资产跟踪、物流管理、小孩/老人/宠物防走失服务等物联网服务。
需要说明的是,在使用本申请各实施例公开的技术方案之前,均应当依据相关法律法规通过恰当的方式对本申请所涉及个人信息的类型、使用范围以及使用场景等告知用户,不能够在获得用户的授权之前使用这些数据,即本申请技术方案中对数据的获取、存储、使用、处理等均符合国家法律法规的相关规定,如本申请中对终端位置信息的获取、存储、使用、处理等均符合国家法律法规的相关规定。
在一实施例中,如图1所示,1表示基站,2表示物体或人物,物体包括建筑物或车辆等,3表示终端,基站1能够获取处于不同位置(如位置1、位置2、…、位置K)的终端3的位置信息,同时又能够获取到这些终端3发射的无线信号所经历的信道信息(如信道1、信道2、…、信道K)。
在一实施例中,如图2所示,1表示基站,2表示物体或人物,物体包括建筑物或车辆等,,3表示终端,4表示雨雪,基站1能够获取大量处于不同位置(如位置1、位置2、…、位置K)的终端3的位置信息,通过终端3的位置信息可以感知到对应的雨雪天气情况。
在一实施例中,如图3所示,1表示基站,2表示物体或人物,物体包括建筑物或车辆等,,3表示终端,5表示沙尘,基站1能够获取大量处于不同位置(如位置1、位置2、…、位置K)的终端3的位置信息,通过终端3的位置信息可以感知对应的沙尘情况。
但是,终端传输自己的位置相关的信息,会增加终端的功耗。因此,大部分终端可能会抵触“发射自己的位置相关的信息”,例如,假设“发射自己的位置相关的信息”这个功能可选,很多用户会关闭该功能。这使得可以提供位置信息的终端的数量大大减少,最终使得依赖于“位置信息及其对应无线信道信息(无线信道信息即终端发射的无线信号所经历的信道信息)”的相关方案的性能下降。
另外,有些场景终端并不能发送传统的位置信息,例如,室内的终端就不能进行卫星定位,从而导致该终端不能发送位置信息,这类情况也会使得可以提供位置信息的终端数量大大减少,最终使得依赖于“位置及其对应无线信道信息”的相关方案的性能下降。
因此,为了极大地缓解终端发射位置相关信息所面临的问题,可以采取一些措施。首先,对于终端并不能直接发送位置信息的场景,终端可以将其接收到的标识信息传输给基站,基站通过该标识信息来确定终端的位置,其中,标识信息包括小区标识信息、基站标识信息、波束标识信息、无线信号接入点的标识信息中的至少之一。而无线信号接入点的标识信息包括无蜂窝通信系统接入点的标识信息、无线局域网接入点的标识信息、无线广域网接入点的标识信息、蓝牙接入点的标识信息中的任意一个。
进一步地,当标识信息包括小区标识信息,目标信息还包括第一通信节点接收小区标识信息的无线信号的强度;或者,当标识信息包括基站标识信息,目标信息还包括第一通信节点接收基站标识信息的无线信号的强度;或者,当标识信息包括波束标识信息,目标信息还包括第一通信节点接收波束标识信息的无线信号的强度;或者,当标识信息包括无线信号接入点的标识信息,目标信息还包括第一通信节点接收无 线信号接入点的标识信息的无线信号的强度。
再进一步地,当标识信息包括小区标识信息,小区标识信息包括多个小区的小区标识;或者,当标识信息包括基站标识信息,基站标识信息包括多个基站的基站标识;或者,当标识信息包括波束标识信息,波束标识信息包括多个波束的波束标识;或者,当标识信息包括无线信号接入点的标识信息,无线信号接入点的标识信息包括多个无线信号接入点的标识。
其次,下面关于在降低信令开销的情况下,实现第一通信节点(比如终端)对第二通信节点(比如基站)的信息传输作进一步阐述。
相关技术中,终端在进行上行信息传输或上行数据传输时,终端(即UE)必须处于连接态(Connected state),其中,连接态也可称为无线资源控制(Radio Resource Control,RRC)连接态。但处于连接态的终端通常还没有专用的上行传输资源,所以处于连接态的终端每次传输信息前还需要先向基站申请上行传输资源,在获得基站的上行资源授权(Grant)后,才能在基站指定的时频资源上传输信息。可见,终端要完成一次上行信息传输,需要事先完成很多操作。因此,如果要求终端沿用相关技术中的上行信息传输机制来传输其接收到的标识信息信息,无疑会增加终端的功耗,也会增加系统的信令开销。
针对上述情况,下面作进一步地分析。
首先,为了省电,终端传输其接收到的标识信息的频率很低,比如通常是数秒、数十秒、甚至数分钟才会传输一次。而在无需传输其接收到的标识信息时,终端为了省电通常都会处于深度睡眠的空闲态(Idle state)或非激活态(Inactive state),即是说,为了省电,终端通常不会进入连接态(也即不会处于连接态)。因为终端接入连接态或者维持连接态,都需要有一些操作,这会增加终端的功耗,而处于无连接态(也即空闲态,或者非激活态)的终端则无需这些操作,因此可以省电。
即是说,终端在无需传输其接收到的标识信息时,终端与系统没有连接(即断开连接),即终端处于无连接态(其中,Non Connected state,或Non RRC Connected state,或Connectionless state,或Connection-free state,或Disconnected state等均可表示无连接态)。可以理解的是,空闲态(Idle state)或非激活态(Inactive state)可认为与无连接态等价,或者,空闲态(Idle state)或非激活态(Inactive state)也可认为是一种无连接态。
当终端原来处于无连接态(即还没有进入连接态,或者还没有与系统建立连接),如果沿用相关技术中的上行数据传输方案,为了传输其接收到的标识信息,终端必须在传输前与系统建立连接。在进入连接态(也可称激活态(Active state))后,终端才能进一步去向系统(如基站或接入点)申请上行传输资源,且在获得系统的资源授权或资源调度后才能传输其接收到的标识信息。而终端从无连接态进入连接态需要一个随机接入过程,该过程需要终端与基站进行多次交互流程,即终端发送前导(Preamble),基站作出随机接入响应(Radom Access Response,RAR),终端发送第二层(Layer2,L2)或第三层(Layer3,L3)控制信息,以及基站发送消息4(Message4),该随机接入过程无疑会增加终端传输位置信息时所产生的功耗。
进一步地,若是沿用上述相关技术中的上行数据传输方案,当传输其接收到的标识信息的终端的数量较多,且大量的终端传输前都需要进入连接态,则会有大量终端进行随机接入过程,并申请上行资源授权,这会增加随机接入过程中发生碰撞或阻塞的概率,从而导致大部分终端需要进行多次随机接入才能进入连接态,最终终端为了传输其接收到的标识信息而消耗更多的能量和信令。由此可见,上述相关技术中的上行数据传输方案并不适合大量终端传输其接收到的标识信息这一应用场景。
本实施例中,相关技术中有一种上行数据传输的方式,即半持续式调度(Semi-Persistent Scheduling,SPS),其目的是降低小数据分组业务的物理控制信令开销和时延,十分适用于周期性的业务,比如基于网际互连协议的语音传输(Voice over Internet Protocol,VoIP),VoIP在连续通话(Talk Spurt)时的数据速率基本恒定,比如每个连续通话的时间平均在1~2s,每20ms产生一个语音包,因此每个连续通话包含50~100个语音包,其间的小尺度衰落通过闭环的功率控制进行补偿,以保证接收侧信号的信噪比(Signal to Noise Ratio,SNR)基本恒定,因此,在此段时间内的调制编码方式(Modulation and Coding Scheme,MCS)可以保持不变,而所分配的物理资源可以保持不变,也可以根据固定的规则跳变,因此,在进行上行信息传输或上行数据传输时,无须动态信令。另外,SPS可以看作是半静态配置的一种增强形式,主要用于周期性的、数据包大小恒定的小包业务。而且,SPS通常工作在连接态(RRC Connected),即终端已经完成随机接入过程。尽管调度的频次远远低于数据分组的频率,但SPS基本为非竞争式,不同终端不会发生资源碰撞,例如不会发生参考信号或者导频的碰撞。在第五代移动通信技术(5th Generation Mobile Communication Technology,5G)系统中,演进的SPS可以用于低时延高可靠通信(Ultra ReliableandLowLatency Communication,URLLC)的场景,既提高了可靠性,又可以降低了终端面的时延,此时的SPS被称为配置授权(Configured Grant),即预配置的资源授权。Configured Grant也可以作为一种特殊的免授权方式或免调度方式,因为其可以免去每次进行上行数据传输的“动态的授权申请”或“动态的调度申请”,所以预配置的资源授权的实质是“免动态授权”或“免动态调度”。可以理解的是,在 该SPS式“免动态调度”的方式下,不同终端的传输资源实质上还是由基站预配置,并不是终端通过“竞争式”而获取,因此,SPS式“免动态调度”是“非竞争的”。最重要的是,对于此类非竞争式的免调度,参考信号可以通过基站的预配置来避免“碰撞”,例如,可以通过基站的预配置来保证在相同时频资源上传输的终端的参考信号正交。
虽然SPS或者Configured Grant这样的预配置的免调度可以降低上行传输的物理控制信令的开销,但是如果沿用SPS方式来实现大量终端对其接收到的标识信息的传输,系统的频谱效率依然很低。比如,如果终端在一个小区申请了一段时间的周期性传输资源,但终端在此过程中发生了越区切换,则就需要向进入的小区申请一份新的预配置的传输资源,同时告知离开的小区释放为该终端所预配置的传输资源。终端向新进入的小区重新申请一份传输资源是一个较复杂的过程,通常也需要在新进入的小区进行一个随机接入过程,这会增加终端的功耗和系统的信令开销。而在传输其接收到的标识信息这个场景中,终端为了省电,传输其接收到的标识信息的频率不会过于频繁,即间隔较长时间才发一次位置信息。所以,为了提高效率,预配置资源的间隔通常会比较长,这意味着越区切换所造成的不利影响会显著增加,这会显著降低系统的频谱效率,增加系统的复杂度。即便是位置没有发生变化的终端或节点,在长时间内其周围环境也很容易发生变化,尤其是处于小区较边缘的终端或节点,这也会导致越区切换。
基于上述分析,可知,虽然SPS预配置机制也能实现较简化的上行传输,但是,其并不适合大量终端传输其接收到的标识信息这一应用场景。
另一方面,在无线通信系统中,例如长期演进(Long Term Evolution,LTE)或者新空口(New Radio,NR)系统,上行传输的一个重要特征是不同终端发射的信号到达基站的时间基本上是对齐的,或者说同步的,换而言之,基站会要求不同UE的信号到达基站的时间都在正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号的循环前缀(Cyclic Prefix,CP)的范围内。但由于不同终端在地理位置上分布是不同的,比如有些终端距离基站比较近,有些终端距离基站比较远,因此不同终端发射的信号到达基站的传输延迟是不同的。对于距离基站较远的终端,其发射的无线信号到达基站的传输延迟会比较大。在无线通信系统中,基站可以要求不同UE的信号到达基站的延迟都在OFDM符号的CP范围内,因此,不同的终端在发射信号时,需要有一个不同的提前量。因此,在本申请中,无线通信系统可以采用上行定时提前(Uplink Timing Advance,UTA)的机制。其中,相关的上行定时提前机制如下:
(1)终端先发送一个信号;
(2)基站通过该信号估计出其传输时延,进而估计得到一个定时提前(Timing Advance,TA)量;
(3)基站通过一个信令向终端告知该TA量,该信令通常称为定时提前命令(Timing Advance Command,TAC);
(4)终端给基站传输目标信息时,会根据该TA量来确定该信息对应的发送时间,即是说,终端会根据该TA值将目标信息的发送时间提前一些,相当于基站指示该TA值,使得目标信息经过传输延迟到达基站是没有延迟的。
在上述上行定时提前机制中,终端为了获得信号发送的定时提前量,需要与基站经过一系列交互过程。但是,在无连接状态下,终端在传输目标信息前没有发送任何信号,基站不能通过测量终端的发送信号来确定其对应的定时提前量,因而基站也无法向终端发送定时提前命令。由此可见,沿用上述的上行定时提前机制,无连接状态下传输目标信息的终端无法获得定时提前量,因此终端在传输目标信息时会存在较大的传输延迟,从而增加基站对目标信息的解调难度,这是因为基站需要估计出不同终端信号的不同传输延迟,然后才能做出正确的补偿,进而才能对信号进行解调译码。
针对上述情况,本申请提出由终端自主决定其信号传输的定时提前量的方法。
在一实施例中,第一通信节点发送的定时提前量,是基于第二通信节点的广播信号而确定。
本实施例中,第一通信节点(即终端)可以通过第二通信节点(即基站)的广播信号来确定第一通信节点发送的定时提前量,此处对如何基于广播信号确定定时提前量不作具体限定。例如,基站可以广播基站对应的位置信息,然后终端可以根据基站的位置信息以及自身的位置信息,计算出两者之间的距离,进而根据该两者之间的距离来确定终端信号的传输时延(即传输延迟),从而确定终端传输信号所需的定时提前量。
在一实施例中,第二通信节点的广播信号包括下行同步信号或者下行参考信号。
本实施例中,第二通信节点的广播信号可以包括下行同步信号或者下行参考信号。例如,第二通信节点广播下行同步信号或者下行参考信号,第一通信节点可以计算出下行同步信号或者下行参考信号的强度,通过信号的强弱来估算一个TA量。第一通信节点自主确定TA量(即第一通信节点根据下行同步信号或者下行参考信号的强弱所估算的TA量)后,就可以根据TA量对传输信号提前发射,即是说,第一通信节点发射的TA量相当于其自主确定的TA量。
但是,由于TA量(即定时提前量)是第一通信节点自主确定的,第二通信节点即使对第一通信节点的目标信息解调译码正确,也无法得知第一通信节点发送的定时提前量,也无法得知第一通信节点传输的 目标信息所经历的传输时延,继而也不能通过第一通信节点的目标信息来实现对传输环境的感知。因此,第一通信节点(即终端)可以将包含其接收到的标识信息和定时提前量的目标信息传输至第二通信节点(即基站),而第二通信节点将该第一通信节点的目标信息解调译码正确后,就可以得到该第一通信节点发送的定时提前量,而且第二通信节点可以根据接收到的该第一通信节点目标信息对应的无线信号进行多径信道的估计,然后将该定时提前量和该多径信道结合,得到第一通信节点向第二通信节点发送的目标信息到达第二通信节点所经历的所有路径的传输时延,继而可以根据该传输时延计算出目标信息的传输距离,从而实现对传输环境的感知。
另外,将目标信息传输至第二通信节点的发送时间可以根据定时提前量确定,此处对如何根据定时提前量确定发送时间不作具体限定。
在一实施例中,第一通信节点发送的定时提前量可以是一个数值,定时提前量可以用一个或多个比特来表示,例如,可以将0至最大的定时提前量(如设为TAmax)这段时间分成2D(即2的D次方)份,其中,0至最大定时提前量范围内的任意一个定时提前量均可以用D比特表示,即是说,第一通信节点自主确定的定时提前量可以是2D个值中的一个。第一通信节点可以根据该定时提前量将目标信息提前发送出去,也即根据该定时提前量确定目标信息的发送时间,并且可将该定时提前量对应的D个比特放到目标信息中进行编码调制,然后传输给第二通信节点,当第二通信节点将该第一通信节点的目标信息解调译码正确后,可以通过该定时提前量对应的D个比特,得到该第一通信节点发送的定时提前量。
参照图4,图4是本申请一个实施例提供的信息传输方法的流程图,该信息传输方法应用于第一通信节点,该信息传输方法可以包括但不限于步骤S110。
步骤S110:在目标发送时间向第二通信节点发送目标信息,其中,目标发送时间根据预存的定时提前量而确定,目标信息包括定时提前量和第一通信节点接收到的标识信息,标识信息包括小区标识信息、基站标识信息、波束标识信息、无线信号接入点的标识信息中的至少之一。
一可行的实施方式,当标识信息包括小区标识信息,小区标识信息可以包括多个小区的小区标识;或者,当标识信息包括基站标识信息,基站标识信息可以包括多个基站的基站标识;或者,当标识信息包括波束标识信息,波束标识信息可以包括多个波束的波束标识;或者,当标识信息包括无线信号接入点的标识信息,无线信号接入点的标识信息可以包括多个无线信号接入点的标识,在此不做具体限制。例如,第一通信节点搜索到多个小区的小区标识,并将该多个小区的小区标识发送给第二通信节点,第二通信节点可以通过来自第一通信节点的小区标识确定第一通信节点的位置,而且小区标识的数量越多,第二通信节点获取到的第一通信节点的位置越精确;又如,假设第二通信节点配置了多根天线,那么第二通信节点还可以通过波束发射信号,而第一通信节点可以搜索第二通信节点的波束标识,将该包括波束标识的目标信息发送给第二通信节点,第二通信节点可以通过该波束标识更加准确的获取该第一通信节点的位置;再如,在某些场景中,第一通信节点还会处于其他无线通信系统中,这时,第一通信节点可以获得该系统的接入点的标识(即多个无线信号接入点的标识),然后可以将包含多个无线信号接入点的标识的目标信息发送给第二通信节点,第二通信节点通过来自第一通信节点的该多个无线信号接入点的标识确定第一通信节点的位置,本申请实施例对此不作具体限制。
一可行的实施方式,无线信号接入点可以是无线局域网路由器,而无线局域网路由器可以是WIFI(wireless fidelity,无线保真)路由器,在此不做具体限制。
一可行的实施方式,标识信息可以是MAC(Media Access Control,媒体访问控制)地址、IP(Internet Protocol,网际互连协议)地址、端口号、SSID(Service Set Identifier,服务集标识)、设备码或者是其他可以唯一识别无线通信设备的信息等,其中,设备码可以是IMEI(International Mobile Equipment Identity,国际移动设备识别码)或者MEID(Mobile Equipment Identifier,移动设备识别码)等,在此不做具体限制。
一可行的实施方式,当标识信息包括无线信号接入点的标识信息,无线信号接入点的标识信息可以包括无蜂窝通信系统接入点的标识信息、无线局域网接入点的标识信息、无线广域网接入点的标识信息、蓝牙接入点的标识信息中的任意一个,在此不做具体限制。例如,假设第一通信节点处于无线局域网中(比如WIFI系统中),第一通信节点可以获取无线局域网路由器(比如WIFI路由器)的标识信息,该标识信息可以是路由器的MAC地址,然后第一通信节点将包括该路由器的MAC地址的目标信息发送给第二通信节点,使得第二通信节点根据该路由器的MAC地址确定第一通信节点的位置;又如,第一通信节点处于无蜂窝(Cell-free)通信系统中,则第一通信节点可以获得无蜂窝通信系统接入点(Access Point,AP)的标识信息,然后第一通信节点可以将包括该无蜂窝通信系统接入点的标识信息的目标信息发送给第二通信节点,使得第二通信节点根据该无蜂窝通信系统接入点的标识信息确定第一通信节点的位置;再如,假设第一通信节点处于蓝牙无线通信系统中,则第一通信节点可以获得蓝牙接入点的标识信息,然后第一通信节点可以将包括该蓝牙接入点的标识信息的目标信息发送给第二通信节点,使得第二通信节点根据该蓝牙接入点的标识信息确定第一通信节点的位置,本申请实施例对此不作具体限制。
在一可行的实施例中,定时提前量可以根据第二通信节点发送的广播信号而确定,并且广播信号可以 包括下行同步信号或者下行参考信号,在此不做具体限制。例如,第二通信节点可以发送广播信号通知第一通信节点该第二通信节点的位置,然后第一通信节点可以根据第二通信节点的位置以及自身的位置,计算出第一通信节点与第二通信节点之间的距离,进而确定目标信息的传输时延,进而确定发送目标信息所需的定时提前量;又如,第二通信节点发送下行同步信号或者下行参考信号给第一通信节点,第一通信节点可以计算出下行同步信号的强度或者下行参考信号的强度,通过信号的强弱来估算定时提前量,第一通信节点自主确定定时提前量后,根据该定时提前量对第二通信节点发送目标信息。在此不做具体限制。
一可行的实施方式,当标识信息包括小区标识信息,目标信息还可以包括第一通信节点接收小区标识信息的无线信号的强度;或者,当标识信息包括基站标识信息,目标信息还可以包括第一通信节点接收基站标识信息的无线信号的强度;或者,当标识信息包括波束标识信息,目标信息还可以包括第一通信节点接收波束标识信息的无线信号的强度;或者,当标识信息包括无线信号接入点的标识信息,目标信息还可以包括第一通信节点接收无线信号接入点的标识信息的无线信号的强度。通过这些标识信息对应的无线信号的强度信息,第二通信节点可以更加准确确定第一通信节点的位置。其中,上述所有的无线信号的强度可以是接收信号强度指示,在此不做具体限制。
一可行的实施方式,目标信息还可以包括地貌信息、气候信息、气体浓度信息(比如化学气体浓度信息)、路况信息和安防信息等,其中,气候信息可以包括光照信息、气温信息、降水信息、风力信息和沙尘信息等,在此不再一一列举。
本实施例中,通过采用包括有上述步骤S110的信息传输方法,第一通信节点在目标发送时间向第二通信节点发送目标信息,其中,目标发送时间根据预存的定时提前量而确定,目标信息包括定时提前量和第一通信节点接收到的标识信息,标识信息包括如下至少之一:小区标识信息;基站标识信息;波束标识信息;无线信号接入点的标识信息,即是说,第一通信节点可以根据预存的定时提前量确定目标发送时间,在目标发送时间向第二通信节点发送目标信息,无需从第二通信节点处获取定时提前量,从而无需与第二通信节点经过一系列交互应答过程,以避免该交互应答过程所产生的信令开销,同时,够使得第二通信节点根据目标信息进行多径信道的估计,并将目标信息中的定时提前量和目标信息经历的多径信道结合起来,从而确定第一通信节点发送的目标信息到达第二通信节点所经历的所有路径的传输时延,根据所有路径的传输时延计算出传输距离。第一通信节点可以根据预存的定时提前量确定目标发送时间,在目标发送时间向第二通信节点发送目标信息,可以减少目标信息到达第二通信节点的时延,从而降低了第二通信节点对目标信息的解调难度。因此,本申请实施例可以在降低信令开销的情况下,实现第一通信节点对第二通信节点的信息传输。
在一实施例中,如图5所示,对步骤S110进行进一步的说明,该步骤S110可以包括但不限于有步骤S210、步骤S220和步骤S230。
步骤S210:确定一条扩展序列。
步骤S220:将对目标信息进行编码调制形成的调制符号与扩展序列进行相乘,得到扩展后的目标信息。
步骤S230:在目标发送时间向第二通信节点发送扩展后的目标信息。
本实施例中,由于第二通信节点(比如基站)可能会在相同时频资源上收到大量不同第一通信节点(比如终端)发送的至少包含其接收到的标识信息和定时提前量的目标信息,这些大量的目标信息的传输是竞争的,从而可能会造成资源碰撞的问题。为解决上述问题,可以优化目标信息的调制性能,如可以先将至少包含其接收到的标识信息和定时提前量的目标信息进行编码调制,形成对应的调制符号;然后将每个调制符号通过扩展序列扩展得到扩展后的目标信息,比如可以通过一条长度L的扩展序列将每个调制符号扩展成一个长度L的符号,此处对如何扩展不作具体限定,例如,设扩展前的第n个调制符号是sn,L长扩展序列是[c1,c2,...cL],将sn进行扩展,即可以是将sn与扩展序列的每个元素进行相乘,得到扩展后的L个符号,即[sn×c1,sn×c2,...,sn×cL]。最后可以将扩展后的目标信息传输至对应的第二通信节点。
在一可行的实施例中,扩展序列可以根据目标信息而确定;或者,扩展序列可以根据目标信息中的第一数量的比特信息在预设序列集合中确定,其中,预设序列集合包括第二数量的扩展序列,第一数量与第二数量成对数函数关系,该对数函数为以2为底数的对数函数,比如,假设第二数量是V个,则第一数量为log2V个,在此不做具体限制。
可以理解的是,若扩展后的目标信息在频域传输,则可以改善调制符号的分集效果;若扩展后的目标信息的传输功率受限,而扩展后的目标信息在时域传输,则可以提升每个扩展调制符号的能量累积,以及提升信噪比。
本实施例中,通过采用包括有上述步骤S210至步骤S230的信息传输方法,首先第一通信节点可以确定一条扩展序列,接着将对目标信息进行编码调制形成的调制符号与扩展序列进行相乘,得到扩展后的目标信息,最后在目标发送时间向第二通信节点发送扩展后的目标信息,因此,本申请实施例能够通过对目标信息进行扩展而提高目标信息的解调性能。
在一实施例中,目标信息中可以包括与第一通信节点身份相关的信息,因此,本申请实施例可以应用 于基于位置信息的物联网应用,例如资产跟踪,物流管理,老人、小孩或者宠物防丢失等。另外,这种应用场景下,位置信息的获取和利用,通常需要事先获得用户的允许。
在一实施例中,目标信息中可以不包括与第一通信节点身份相关的信息,在此不做具体限制。
在一实施例中,可以在第一通信节点处于没有与第二通信节点建立数据连接的目标状态下,第一通信节点在目标发送时间向第二通信节点发送不包含第一通信节点的标识信息的目标信息,即是说,第一通信节点在处于没有与第二通信节点建立数据连接的目标状态下,在目标发送时间向第二通信节点发送不包含第一通信节点的标识信息的目标信息,可以避免发送目标信息前先向第二通信节点进行随机接入的过程,从而可以避免在随机接入的过程中功率的损耗,同时,又能够使得第二通信节点根据不包含第一通信节点的标识信息的目标信息确定第一通信节点的位置,以避免私隐问题,因此,本申请实施例可以在低功耗和避免私隐问题的情况下,实现第一通信节点对第二通信节点的信息传输。另外,本申请实施例可以应用于基于位置信息的环境感知应用,这种应用只需知道由某些位置发射的电磁波信号到达基站所经历的信道,并不需要知道电磁波信号由哪个发射机发射。因此,本申请实施例可以避免隐私或伦理问题,减少用户的顾虑,从而可以大大增加可以提供位置信息的终端数量,从而提升基于“位置及其对应无线信道信息”的各种方案的性能。
在一实施例中,如图6所示,对步骤S110进行进一步的说明,该步骤S110可以包括但不限于有步骤S310和步骤S320。
步骤S310:接收来自第二通信节点的广播信令,广播信令用于指示第一通信节点发送目标信息所采用的公共信道。
一可行的实施方式,公共信道可以是第二通信节点预先配置的,在此不作具体限制。
步骤S320:在目标发送时间通过公共信道向第二通信节点发送目标信息。
本实施例中,通过采用包括有上述步骤S310至步骤S320的信息传输方法,首先第一通信节点接收来自第二通信节点的用于指示第一通信节点发送目标信息所采用的公共信道的广播信令,然后在目标发送时间通过该公共信道向第二通信节点发送目标信息,为第一通信节点向第二通信节点发送目标信息提供良好的发送环境,本实施例对此不作具体限制。
值得注意的是,即使是处于与第二通信节点建立数据连接的状态的第一通信节点,通常还没有专用的上行传输资源,所以第一通信节点每次传输信息前还需要先向第二通信节点申请上行传输资源,在获得第二通信节点的上行传输资源的授权后,才能在第二通信节点指定的时频资源上传输信息。而且如果发射目标信息的第一通信节点的数量比较多,且大量第一通信节点传输位置信息前都需要进入数据连接状态,那么会有大量的第一通信节点进行随机接入,然后申请上行传输资源,而大量的第一通信节点申请上行传输资源会提高发生碰撞或阻塞的概率,最终第一通信节点为了完成上行信息传输或上行数据传输而消耗更多的能量。
针对上述大量的第一通信节点申请上行传输资源所发生碰撞或阻塞的情况,有一种传统的上行数据传输的方式是半持续式调度(Semi-Persistent Scheduling,SPS),目的是降低小数据分组业务的物理控制信令开销和时延,十分适用于周期性的业务,比如基于网际互连协议的语音传输(Voice over Internet Protocol,VoIP),VoIP在连续通话(Talk Spurt)时的数据速率基本恒定,比如每个连续通话的时间平均在1~2s,每20ms产生一个语音包,因此每个连续通话包含50~100个语音包,其间的小尺度衰落通过闭环的功率控制进行补偿,以保证接收侧信号的信噪比(Signal Noise Ratio,SNR)基本恒定,因此,在此段时间内的调制与编码策略(Modulation and Coding Scheme,MCS)可以保持不变,而所分配的物理资源可以保持不变,也可以根据固定的规则跳变,因此,在进行上行信息传输或上行数据传输时,无须动态信令。而且,SPS通常工作在数据连接状态,即第一通信节点已经完成随机接入过程。尽管调度的频次远远低于数据分组的频率,但在申请上行传输资源时,不同第一通信节点不会发生资源碰撞,例如不会发生参考信号或者导频的碰撞。并且,在5G系统中,演进的SPS可以用于低时延高可靠通信的场景,此时的SPS被称为Configured Grant,即预配置的资源授权。Configured Grant也可以作为一种免授权方式或免调度方式,因为其可以免去每次进行上行信息传输或上行数据传输的“动态的授权申请”或“动态的调度申请”,所以预配置的资源授权的实质是“免动态授权”或“免动态调度”。而且,在该SPS式“免动态调度”的方式下,第一通信节点的上行传输资源同样是由第二通信节点预配置的,以避免发生资源(比如参考信号或者导频)碰撞。
虽然如SPS或者Configured Grant这样的预配置的免调度方式可以降低上行信息传输或上行数据传输的物理控制信令开销,但是如果沿用SPS方式来实现大量第一通信节点的目标信息传输,第一通信节点的频谱效率依然很低。比如,在第一通信节点发生越区切换的情况下,使用SPS方式来实现第一通信节点的目标信息传输,第一通信节点的频谱效率会很低。在一示例中,假设第一通信节点在小区A中的第二通信节点申请了一份上行传输资源,但第一通信节点在此过程中发生了越区切换,那么第一通信节点就需要向新进入的小区B的第二通信节点申请一份新的预配置的上行传输资源,同时通知小区A的第二通信节点释 放为第一通信节点所预配置的上行传输资源。而且第一通信节点向小区B区重新申请一份上行传输资源是一个较复杂的过程,会显著增加第一通信节点的功耗。并且,在传输目标信息这个场景中,为了省电,第一通信节点发射目标信息的频率不会过于频繁。因此,为了提高效率,预配置上行传输资源的间隔通常会比较长,这意味着越区切换所造成的不利影响会显著增加,这会显著降低第二通信节点的频谱效率。即便是位置没有发生变化的第二通信节点,在长时间内其周围环境是很容易发生变化的,尤其是处于小区较边缘的第二通信节点,这也会导致越区切换,使得第二通信节点的频谱效率降低。因此,如SPS或者Configured Grant这样的预配置的免调度方式并不适合大量第一通信节点传输目标信息的这个场景。
基于上述分析,在一实施例中,在第一通信节点处于没有与第二通信节点建立数据连接的目标状态下,第一通信节点接收来自第二通信节点的用于指示第一通信节点发送目标信息所采用的公共时频资源的广播信令,然后根据该广播信令从公共时频资源中选择目标时频资源,之后利用该时频资源在目标发送时间向第二通信节点发送目标信息,因此,本申请实施例能够使得第二通信节点无需为每个第一通信节点的目标信息的传输安排专门的时频资源(或者是无需为每个第一通信节点的目标信息的传输安排不同的时频资源),从而也节省了信令开销。
在一实施例中,在第一通信节点处于没有与第二通信节点建立数据连接的目标状态下,第一通信节点接收来自第二通信节点的用于指示第一通信节点发送目标信息所采用的公共时频资源和用于指示第一通信节点发送目标信息所采用的公共信道的广播信令,然后根据该广播信令从公共时频资源中选择目标时频资源,最后利用该目标时频资源通过公共信道向第二通信节点发送目标信息,即是说,当需要发送目标信息时,在第一通信节点处于没有与第二通信节点建立数据连接的目标状态下,第一通信节点可以无需事先与第二通信节点建立数据连接,也无需向第二通信节点申请上行传输资源(即无需获得上行传输资源的授权和调度),而是自主地直接在目标发送时间发送目标信息,由于第一通信节点是在没有与第二通信节点建立数据连接的目标状态下完成目标信息的传输,因此完成目标信息的传输后,第一通信节点和第二通信节点均无需进行释放连接的操作,可以马上进入没有与第二通信节点建立数据连接的目标状态,因此,本申请实施例能够在低功耗的情况下,实现第一通信节点对第二通信节点的信息传输,同时也节省了信令开销。
值得注意的是,在第一通信节点处于没有与第二通信节点建立数据连接的目标状态下,第一通信节点向第二通信节点传输信息时所包含的导频(比如前导或者参考信号)可以通过第一通信节点自主选择或者产生,其中,自主选择导频是指从预设导频集合中确定导频;而自主产生导频是指第一通信节点按照预设的规则或公式来产生导频。
相反,若第一通信节点发送的导频需要第二通信节点的信令指示或安排,则第一通信节点发送导频之前就需要先获得第二通信节点下发的指示导频的信令,那么第一通信节点必须先与第二通信节点建立数据连接,因此就需要建立数据连接的一系列过程,因而也会存在建立数据连接的过程中的所有问题。第一通信节点自主选择或者产生导频可以避免这些问题,但是,若第一通信节点自主选择或者产生导频,则会导致一个问题,即由于没有一个中心节点对不同的第一通信节点发送的导频进行统筹安排,因此不同的第一通信节点从一个导频数量有限的预设导频集合里自主选择导频,会出现选择相同的导频的情况,从而会产生导频碰撞的问题。在高过载(即向同一个第二通信节点发送目标信息的第一通信节点很多)的场景下,出现导频碰撞的概率非常高,比如,导频数量N=64时,任意两个第一通信节点导频碰撞的概率就是1/64,因此,当同时发送信息的第一通信节点较多时,碰撞概率远大于1/64。一旦不同的第一通信节点的导频发生碰撞,那么第二通信节点就难以通过导频解调该多个第一通信节点的目标信息,从而导致传输性能恶化。
下面对沿用传统的导频方案来实现在第一通信节点处于没有与第二通信节点建立数据连接的目标状态下传输信号而造成导频的高碰撞概率的原因进行具体说明。
具体地,如图7、图8和图9所示,导频可以位于数据/消息的前面,或者数据/消息的中间,其中“/”表示或者。传统的导频方案有一个特点,即每次传输的导频可以只有一个或者一种,其中,一个导频是指由一条序列组成的导频,一种导频是指由多条有关联的序列组成的导频,这就是导频的高碰撞概率的原因。以前导为例,传输一个前导,即[P1,P2],而该前导是由一条前导序列P简单重复而成,即P1=P2=P(如图10所示),该前导方案可以用于确定时频偏信息;或者,传输一个前导,即[P1,P2],而[P1,P2]是由一条前导序列P通过正交覆盖码(Orthogonal Cover Code,OCC)加权重复而成,因此P1=P,P2=P(如图10所示),或者P1=P,P2=-P(如图11所示),第一通信节点可以随机选择前导序列P以及OCC;或者,传输一个前导[P1,P2],而[P1,P2]是由一条前导序列P通过其他加权重复而成,即可以是P1=αP,P2=βP,其中α,β是加权值(相当于OCC加权,即[α,β]=[1,1]或者[1,-1]的特例),该前导方案可以进一步增加前导数量,但却可能破坏前导的正交性。同理,解调参考信号(Demodulation Reference Signal,DMRS)也有以上特点。在一些导频方案中,会同时存在前导和DMRS,而前导和DMRS分别可以有以上特点,而且前导和DMRS相关联,因此通常确定了前导,也就确定了对应的DMRS。所以,导频的开销是有限的。所以,在第一通信节点处于没有与第二通信节点建立数据连接的目标状态下传输信号,当同时发送信 息的第一通信节点较多时,发生导频碰撞的概率较高。
基于上述分析,在一实施例中,如图12所示,对步骤S110进行进一步的说明,该步骤S110可以包括但不限于有步骤S410和步骤S420。
步骤S410:确定多个导频。
可以理解的是,导频可以称为导频信号,或参考信号(Reference Signal,RS),或解调参考信号,或前导,而且从形式上看,导频通常是一条序列或一串符号,所以导频也称为导频序列。因此,多个导频可以是两个或者更多的导频序列,在此不做具体限制。
一可行的实施方式,多个导频之间相互独立,即多个导频之间不关联或者不相关。如图13和图14所示,图13是两个相互独立的导频(即导频P1和导频P2)的示意图,图14是w个相互独立的导频的示意图,其中w个相互独立的导频分别表示为P1、P2、......、Pw,其中w可以为大于2的正整数,在此不做具体限制。
一可行的实施方式,确定多个导频的实施方式有很多,比如,根据目标信息确定多个导频;或者,根据目标信息中的若干个比特信息确定多个导频;或者,根据目标信息中的多组第三数量的比特信息从预设导频集合中确定多个导频,也就是一组第三数量的比特信息从预设导频集合中确定多个导频中的一个导频,其中,预设导频集合包括第四数量的导频,第三数量与第四数量成对数函数关系,该对数函数为以2为底数的对数函数,比如,假设第三数量为log2M个,则第四数量是M个,在此不做具体限制。
在一实施例中,如图13和图15所示,导频的数量为两个,该两个导频分别是P1和P2,其中P1和P2均来自包括第四数量N的导频的预设导频集合Z,第一通信节点从Z中确定P1和P2,其中P1和P2之间相互独立,第四数量N的导频分别表示为Z1、Z2、Z3、......、ZN。若N=2m(即2的m次幂),则从Z中确定一个导频需要m个(即第三数量为m)比特信息,即根据目标信息中的第三数量m的比特信息从预设导频集合Z中确定一个导频,因此,第一通信节点从Z中确定P1,需要m个比特信息,第一通信节点从Z中确定P2,也需要另外的m个比特信息,而确定P1需要的m个比特信息与确定P2需要的m个比特信息是独立无关的。所以,第一通信节点可以通过2组比特信息,每组m个比特信息,确定P1和P2。当某个第一通信节点的目标信息译码正确,第二通信节点就可以获取该第一通信节点的两个导频(即P1和P2),进而可以重构出这两个导频,从而可以进行导频的干扰消除。
进一步地,当第四数量N=64时,根据N=2m可以得到第三数量m=6,所以第一通信节点可以根据目标信息中的任意6个比特信息确定P1,又根据目标信息中的另外6个比特信息确定P2;或者,第一通信节点也可以通过某个规则在目标信息中的若干个比特信息中产生6个比特信息,根据该6个比特信息确定P1,又通过该规则在目标信息中的若干个比特信息中产生6个比特信息,根据该6个比特信息确定P2。当然,也可以根据除了上述中的12个比特之外的12个比特信息确定P1,P2,但需要把这额外的12个比特信息也发送给第二通信节点,如此,会降低传输效率。又或者,第一通信节点也可以通过某个规则在包括64个导频的预设导频集合Z中选择一个导频,即对64个导频进行编号,在1号至64号中选择一个编号,该编号的导频即是P1,同理,重复上述操作确定P2。因此,本申请实施例可以不用在目标信息中额外增加指示导频的信息,从而节省导频开销。
一可行的实施方式,多个导频中至少有两个导频属于不同的导频集合;或者,多个导频中至少有两个导频的导频长度不相同。
在一实施例中,两个导频P1和P2分别属于两个不同导频集合,分别是第一导频集合和第二导频集合,那么从第一导频集合中确定P1的索引值和从第二导频集合确定P2的索引值是独立无关的。
在一实施例中,包含N1条导频序列的第一导频集合中的导频的导频长度,与包含N2条导频序列的第二导频集合中的导频的导频长度可以相同,也可以不同。其中,N1和N2均表示导频序列的数量,N1和N2均是正整数,且N1和N2可以为任意数值,在此不做具体限制。
一可行的实施方式,第一通信节点可以按照预设的规则或者公式产生导频,而通过预设的规则或者公式而产生的所有导频可以构成一个预设导频集合或者导频集合,本申请实施例对此不做具体限制。
在一实施例中,产生导频的公式可以是一个ZC序列(即Zadoff Chu序列)公式,比如通过在ZC序列公式中设置不同的“根(root)”值和/或者不同的“循环移位”值而产生不同的导频,即产生P1的“循环移位”与产生P2的“循环移位”是独立无关的;或者,产生P1的“根”与产生P2的“根”是独立无关的,产生P1的“循环移位”与产生P2的“循环移位”是独立无关的。
在一实施例中,可以通过一个移位寄存器序列发生器,例如最大长度移位寄存器序列发生器,生成导频,比如通过在移位寄存器序列发生器中设置不同的“初始状态”而生成不同的导频,因此,产生P1的“初始状态”和产生P2的“初始状态”独立无关。
在另一实施例中,一个导频P1可以通过一种生成N条导频序列的序列生成方法生成,另一个导频P2可以通过另一种生成M条导频序列的序列生成方法生成,其中,生成M条导频序列的序列生成方法与生成N条导频序列的序列生成方法并不相同,即N≠M,所以P1和P2之间独立无关。例如通过一个ZC序 列公式1生成N条导频序列,通过另一个ZC序列公式2生成M条导频序列,ZC序列公式1中的“根”和ZC序列公式2中的“根”不同,和/或者ZC序列公式1中的“循环移位”和ZC序列公式2中的“循环移位”不同,因此,ZC序列公式1和ZC序列公式2生成的导频序列不同,因而产生P1的“根”与产生P2的“根”是独立无关的,和/或者产生P1的“循环移位”与产生P2的“循环移位”是独立无关的。其中,N和M均表示导频序列的数量,且N和M均是正整数,而包括N条导频序列的预设导频集合V如图16所示,其中,N条导频序列分别表示V1、V2、V3、......、VN,而包括M条导频序列的预设导频集合W如图17所示,其中,M条导频序列分别表示W1、W2、W3、......、WM,在此不做具体限制。
在另一实施例中,一个导频P1可以通过一种生成N条导频序列的序列生成方法生成,另一个导频P2可以通过另一种生成M条导频序列的序列生成方法生成,其中,生成N条导频序列的序列生成方法是由一个移位寄存器序列发生器1生成的,生成M条导频序列的序列生成方法是由一个移位寄存器序列发生器2生成的。由于移位寄存器序列发生器1中设置的“初始状态”与移位寄存器序列发生器2中设置的“初始状态”不同,移位寄存器序列发生器1生成的导频序列与移位寄存器序列发生器2生成的导频序列也不相同,即N≠M,所以生成P1的“初始状态”和生成P2的“初始状态”独立无关。其中,N和M均表示导频序列的数量,且N和M均是正整数,而包括N条导频序列的预设导频集合V如图16所示,其中,N条导频序列分别表示V1、V2、V3、......、VN,而包括M条导频序列的预设导频集合W如图17所示,其中,M条导频序列分别表示W1、W2、W3、......、WM,在此不做具体限制。
一可行的实施方式,导频可以是LTE标准定义的PRACH(physical random access Channel,物理随机接入信道)preamble(前导)序列;或者是NR标准定义的PRACH preamble序列;或者是LTE标准定义的DMRS序列;或者是NR标准定义的DMRS序列;或者是MLSR(Maximum Length Shift Register,最大长度移位寄存器)序列;或者是DFT(Discrete Fourier Transform,离散傅里叶变换)序列;又或者是Walsh-Hadamard(沃尔什-阿达玛)序列,在此不做具体限制。
步骤S420:在目标发送时间向第二通信节点发送目标信息和所有导频。
一可行的实施方式,目标信息可以包括导频的相关信息,比如,导频在预设导频集合中的索引值,或者产生导频的初始状态等。例如,当某个第一通信节点的目标信息译码成功后,就可以获取该第一通信节点在此次传输过程中传输的所有导频的相关信息,进而有利于重构出所有的导频,从而可以进行导频的干扰消除。
在本实施例中,通过采用包括上述步骤S410和步骤S420的信息传输方法,首先第一通信节点确定多个导频,然后在目标发送时间向第二通信节点发送目标信息和所有导频,以便第二通信节点充分利用导频估计目标信息所经历的信道信息和时频偏信息,进而实现对目标信息的解调。
在一实施例中,如图18所示,对步骤S110进行进一步的说明,该步骤S110可以包括但不限于有步骤S510和步骤S520。
步骤S510:确定1个导频,导频包括第六数量的非零值符号,第六数量大于零且小于五。
可以理解的是,导频可以称为导频信号,或参考信号,或解调参考信号,或前导,而且从形式上看,导频通常是一条序列或一串符号,所以导频也称为导频序列。而且导频的数量可以是一个,在此不做具体限制。
可以理解的是,确定导频的实施方式有很多,比如,根据目标信息确定导频;或者,根据目标信息中的若干个比特信息确定导频;或者,根据目标信息中的第三数量的比特信息从预设导频集合中确定导频,其中,预设导频集合包括第四数量的导频,第三数量与第四数量成对数函数关系,该对数函数为以2为底数的对数函数,比如,假设第三数量为log2M个,则第四数量是M个,在此不做具体限制。
可以理解的是,第三数量可以是64、128或者更多,在此不做具体限制。
在一实施例中,第一通信节点可以按照预设的规则或者公式产生导频,而通过预设的规则或者公式而产生的所有导频可以构成一个预设导频集合或者导频集合,本申请实施例对此不做具体限制。比如,产生导频的公式可以是一个ZC序列公式,比如通过在ZC序列公式中设置“根”值和/或者“循环移位”值而产生导频;又如,可以通过一个移位寄存器序列发生器生成导频,本申请实施例对此不做具体限制。
一可行的实施方式,导频可以是LTE标准定义的PRACH preamble序列;或者是NR标准定义的PRACH preamble序列;或者是LTE标准定义的DMRS序列;或者是NR标准定义的DMRS序列;或者是MLSR序列;或者是DFT序列;又或者是Walsh-Hadamard序列,在此不做具体限制。
步骤S520:在目标发送时间向第二通信节点发送目标信息和导频。
本实施例中,通过采用包括有上述步骤S510至步骤S520的信息传输方法,首先第一通信节点确定导频,然后在目标发送时间向第二通信节点发送目标信息和导频,以便第二通信节点根据导频中的非零值信号确定整个传输带宽的信道信息和时频偏信息。
另外,图19是本申请另一个实施例提供的一种信息传输方法,该信息传输方法应用于第二通信节点,该信息传输方法可以包括但不限于步骤S610。
步骤S610:接收第一通信节点在目标发送时间发送的目标信息,其中,目标发送时间由第一通信节点根据预存的定时提前量确定,目标信息包括定时提前量和第一通信节点接收到的标识信息,标识信息包括小区标识信息、基站标识信息、波束标识信息、无线信号接入点的标识信息中的至少之一。
一可行的实施方式,定时提前量可以是一个数值,其可以用若干个比特来表示。例如,从0至最大定时提前量分成2D(2的D次方)份,其中,0至最大定时提前量范围内的任意一个定时提前量可以用D比特表示,其中D可以为任意正整数,从而确定定时提前量。第一通信节点会将根据定时提前量确定目标发送时间,并且将该定时提前量对应的D个比特放到目标信息中进行编码调制,然后传输给第二通信节点,当第二通信节点将该第一通信节点的目标信息解调译码正确后,可以通过定时提前量对应的D个比特,确定第一通信节点的定时提前量。
在一可行的实施例中,当标识信息包括无线信号接入点的标识信息,无线信号接入点的标识信息可以包括无蜂窝通信系统接入点的标识信息、无线局域网接入点的标识信息、无线广域网接入点的标识信息、蓝牙接入点的标识信息中的任意一个,在此不做具体限制。例如,假设第一通信节点处于无线局域网中(比如WIFI系统中),第一通信节点可以获取无线局域网路由器(比如WIFI路由器)的标识信息,该标识信息可以是路由器的MAC地址,然后第一通信节点将包括该路由器的MAC地址的目标信息发送给第二通信节点,使得第二通信节点根据该路由器的MAC地址确定第一通信节点的位置;又如,第一通信节点处于无蜂窝通信系统中,则第一通信节点可以获得无蜂窝通信系统接入点的标识信息,然后第一通信节点可以将包括该无蜂窝通信系统接入点的标识信息的目标信息发送给第二通信节点,使得第二通信节点根据该无蜂窝通信系统接入点的标识信息确定第一通信节点的位置;再如,假设第一通信节点处于蓝牙无线通信系统中,则第一通信节点可以获得蓝牙接入点的标识信息,然后第一通信节点可以将包括该蓝牙接入点的标识信息的目标信息发送给第二通信节点,使得第二通信节点根据该蓝牙接入点的标识信息确定第一通信节点的位置,本申请实施例对此不作具体限制。
在一可行的实施例中,当标识信息包括小区标识信息,目标信息还可以包括第一通信节点接收小区标识信息的无线信号的强度;或者,当标识信息包括基站标识信息,目标信息还可以包括第一通信节点接收基站标识信息的无线信号的强度;或者,当标识信息包括波束标识信息,目标信息还可以包括第一通信节点接收波束标识信息的无线信号的强度;或者,当标识信息包括无线信号接入点的标识信息,目标信息还可以包括第一通信节点接收无线信号接入点的标识信息的无线信号的强度。通过这些标识信息对应的无线信号的强度信息,第二通信节点可以更加准确确定第一通信节点的位置。其中,上述所有的无线信号的强度可以是接收信号强度指示,在此不做具体限制。
一可行的实施方式,无线信号接入点可以是无线局域网路由器,而无线局域网路由器可以是WIFI路由器,在此不做具体限制。
一可行的实施方式,标识信息可以是MAC地址、IP地址、端口号、SSID、设备码或者是其他可以唯一识别无线通信设备的信息等,其中,设备码可以是IMEI或者MEID等,在此不做具体限制。
在一可行的实施例中,当标识信息包括小区标识信息,小区标识信息可以包括多个小区的小区标识;或者,当标识信息包括基站标识信息,基站标识信息可以包括多个基站的基站标识;或者,当标识信息包括波束标识信息,波束标识信息可以包括多个波束的波束标识;或者,当标识信息包括无线信号接入点的标识信息,无线信号接入点的标识信息可以包括多个无线信号接入点的标识,在此不做具体限制。
在一可行的实施例中,定时提前量可以根据第二通信节点发送的广播信号而确定,并且广播信号可以包括下行同步信号或者下行参考信号,在此不做具体限制。例如,第二通信节点可以发送广播信号通知第一通信节点该第二通信节点的位置,然后第一通信节点可以根据第二通信节点的位置以及自身的位置,计算出第一通信节点与第二通信节点之间的距离,进而确定目标信息的传输时延,进而确定发送目标信息所需的定时提前量;又如,第二通信节点发送下行同步信号或者下行参考信号给第一通信节点,第一通信节点可以计算出下行同步信号的强度或者下行参考信号的强度,通过信号的强弱来估算定时提前量,第一通信节点自主确定定时提前量后,根据该定时提前量对第二通信节点发送目标信息。在此不做具体限制。
本实施例中,通过采用包括有上述步骤S610的信息传输方法,第二通信节点接收第一通信节点在目标发送时间发送的目标信息,其中,目标发送时间根据预存的定时提前量而确定,目标信息包括定时提前量和第一通信节点接收到的标识信息,标识信息包括小区标识信息、基站标识信息、波束标识信息、无线信号接入点的标识信息中的至少之一,即是说,第一通信节点可以根据预存的定时提前量确定目标发送时间,在目标发送时间向第二通信节点发送目标信息,而无需从第二通信节点处获取定时提前量,从而无需与第二通信节点经过一系列交互应答过程,以避免该交互应答过程所产生的信令开销,同时,又能够使得第二通信节点根据目标信息中的标识信息确定第一通信节点的位置。因此,本申请实施例可以在降低信令开销的情况下,实现第一通信节点对第二通信节点的信息传输。
一可行的实施方式,目标信息还可以包括地貌信息、气候信息、气体浓度信息(比如化学气体浓度信息)、路况信息和安防信息等,其中,气候信息可以包括光照信息、气温信息、降水信息、风力信息和沙 尘信息等,在此不再一一列举。
在一实施例中,第二通信节点可以对来自第一通信节点的包括定时提前量的目标信息进行解调译码,解调译码正确后,可以获取到该第一通信节点发送的定时提前量。进一步地,第二通信节点可以根据目标信息进行多径信道的估计,并将目标信息中的定时提前量和目标信息经历的多径信道结合起来,从而确定第一通信节点发送的目标信息到达第二通信节点所经历的所有路径的传输时延,根据所有路径的传输时延计算出传输距离,进而可以对传输环境进行感知,本申请实施例对此不做具体限制。
在一实施例中,如图20所示,对步骤S610进行进一步的说明,该步骤S610可以包括但不限于有步骤S710和步骤S720。
步骤S710:向第一通信节点发送广播信令,广播信令用于指示第一通信节点发送目标信息所采用的公共信道。
一可行的实施方式中,公共信道可以是第二通信节点预先配置的,在此不做具体限制。
步骤S720:接收第一通信节点在目标发送时间通过公共信道发送的目标信息。
本实施例中,通过采用包括有上述步骤S710至步骤S720的信息传输方法,首先第二通信节点向第一通信节点发送用于指示第一通信节点发送目标信息所采用的公共信道的广播信令,然后接收第一通信节点在目标发送时间通过公共信道发送的目标信息,为第一通信节点向第二通信节点发送目标信息提供良好的发送环境,本实施例对此不作具体限制。
在一实施例中,如图21所示,该信息传输方法还可以包括但不限于有步骤S810、步骤S820、步骤S830、步骤S840和步骤S850。
步骤S810:接收来自第一通信节点的多个导频。
可以理解的是,导频可以称为导频信号,或参考信号(Reference Signal,RS),或解调参考信号,或前导,而且从形式上看,导频通常是一条序列或一串符号,所以导频也称为导频序列。因此,多个导频可以是两个或者更多的导频序列,在此不做具体限制。
在一可行的实施例中,多个导频之间相互独立,即多个导频之间不关联或者不相关。如图13和图14所示,图13是两个相互独立的导频(即导频P1和导频P2)的示意图,图14是W个相互独立的导频的示意图,其中w个相互独立的导频分别表示为P1、P2、......、Pw,其中w可以为大于2的正整数,在此不做具体限制。
在一可行的实施例中,确定多个导频的实施方式有很多,比如,根据目标信息确定多个导频;或者,根据目标信息中的若干个比特信息确定多个导频;或者,根据目标信息中的多组第三数量的比特信息从预设导频集合中确定多个导频,其中,预设导频集合包括第四数量的导频,第三数量与第四数量成对数函数关系,该对数函数为以2为底数的对数函数,比如,假设第三数量为log2M个,则第四数量是M个,在此不做具体限制。
在一实施例中,如图13和图15所示,导频的数量为两个,该两个导频分别是P1和P2,其中P1和P2均来自包括第四数量N的导频的预设导频集合Z,第一通信节点从Z中确定P1和P2,其中P1和P2之间相互独立,第四数量N的导频分别表示为Z1、Z2、Z3、......、ZN。若N=2m(即2的m次幂),则从Z中确定一个导频需要m个(即第三数量为m)比特信息,即根据目标信息中的第三数量m的比特信息从预设导频集合Z中确定一个导频,因此,第一通信节点从Z中确定P1,需要m个比特信息,第一通信节点从Z中确定P2,也需要另外的m个比特信息,而确定P1需要的m个比特信息与确定P2需要的m个比特信息是独立无关的。所以,第一通信节点可以通过2组比特信息,每组m个比特信息,确定P1和P2。当某个第一通信节点的目标信息译码正确,第二通信节点就可以获取该第一通信节点的两个导频(即P1和P2),从而可以进行导频的干扰消除。
进一步地,当第四数量N=64时,根据N=2m可以得到第三数量m=6,所以第一通信节点可以根据目标信息中的任意6个比特信息确定P1,又根据目标信息中的另外6个比特信息确定P2;或者,第一通信节点也可以通过某个规则在目标信息中的若干个比特信息中产生6个比特信息,根据该6个比特信息确定P1,又通过该规则在目标信息中的若干个比特信息中产生6个比特信息,根据该6个比特信息确定P2。当然,也可以根据除了上述中的12个比特之外的12个比特信息确定P1,P2,但需要把这额外的12个比特信息也发送给第二通信节点,如此,会降低传输效率。又或者,第一通信节点也可以通过某个规则在包括64个导频的预设导频集合Z中选择一个导频,即对64个导频进行编号,在1号至64号中选择一个编号,该编号的导频即是P1,同理,重复上述操作确定P2。因此,本申请实施例可以不用在目标信息中额外增加指示导频的信息,从而节省导频开销。
在一可行的实施例中,多个导频中至少有两个导频属于不同的导频集合;或者,多个导频中至少有两个导频的导频长度不相同;或者,每个导频均包括第五数量的非零值符号,第五数量大于零且小于五,在此不做具体限制。
在一实施例中,两个导频P1和P2分别属于两个不同导频集合,分别是导频集合和导频集合,那么从 导频集合中确定P1的索引值和从导频集合确定P2的索引值是独立无关的。
在一实施例中,包含N1条导频序列的导频集合中的导频的导频长度,与包含N2条导频序列的导频集合中的导频的导频长度可以相同,也可以不同。其中,N1和N2均表示导频序列的数量,N1和N2均是正整数,且N1和N2可以为任意数值,在此不做具体限制。
一可行的实施方式,第一通信节点可以按照预设的规则或者公式产生导频,而通过预设的规则或者公式而产生的所有导频可以构成一个预设导频集合或者导频集合,本申请实施例对此不做具体限制。
在一实施例中,产生导频的公式可以是一个ZC序列(即Zadoff Chu序列)公式,比如通过在ZC序列公式中设置不同的“根”值和/或者不同的“循环移位”值而产生不同的导频,即产生P1的“循环移位”与产生P2的“循环移位”是独立无关的;或者,产生P1的“根”与产生P2的“根”是独立无关的,产生P1的“循环移位”与产生P2的“循环移位”是独立无关的。
在一实施例中,可以通过一个移位寄存器序列发生器生成导频,比如通过在移位寄存器序列发生器中设置不同的“初始状态”而生成不同的导频,因此,产生P1的“初始状态”和产生P2的“初始状态”独立无关。
在另一实施例中,一个导频P1可以通过一种生成N条导频序列的序列生成方法生成,另一个导频P2可以通过另一种生成M条导频序列的序列生成方法生成,其中,生成M条导频序列的序列生成方法与生成N条导频序列的序列生成方法并不相同,即N≠M,所以P1和P2之间独立无关。例如通过一个ZC序列公式1生成N条导频序列,通过另一个ZC序列公式2生成M条导频序列,ZC序列公式1中的“根”和ZC序列公式2中的“根”不同,和/或者ZC序列公式1中的“循环移位”和ZC序列公式2中的“循环移位”不同,因此,ZC序列公式1和ZC序列公式2生成的导频序列不同,因而产生P1的“根”与产生P2的“根”是独立无关的,和/或者产生P1的“循环移位”与产生P2的“循环移位”是独立无关的。其中,N和M均表示导频序列的数量,且N和M均是正整数,而包括N条导频序列的预设导频集合V如图16所示,其中,N条导频序列分别表示V1、V2、V3、......、VN,而包括M条导频序列的预设导频集合W如图17所示,其中,M条导频序列分别表示W1、W2、W3、......、WM,在此不做具体限制。
在另一实施例中,一个导频P1可以通过一种生成N条导频序列的序列生成方法生成,另一个导频P2可以通过另一种生成M条导频序列的序列生成方法生成,其中,生成N条导频序列的序列生成方法是由一个移位寄存器序列发生器1生成的,生成M条导频序列的序列生成方法是由一个移位寄存器序列发生器2生成的。由于移位寄存器序列发生器1中设置的“初始状态”与移位寄存器序列发生器2中设置的“初始状态”不同,移位寄存器序列发生器1生成的导频序列与移位寄存器序列发生器2生成的导频序列也不相同,即N≠M,所以生成P1的“初始状态”和生成P2的“初始状态”独立无关。其中,N和M均表示导频序列的数量,且N和M均是正整数,而包括N条导频序列的预设导频集合V如图16所示,其中,N条导频序列分别表示V1、V2、V3、......、VN,而包括M条导频序列的预设导频集合W如图17所示,其中,M条导频序列分别表示W1、W2、W3、......、WM,在此不做具体限制。
一可行的实施方式,导频可以是LTE标准定义的PRACH preamble序列;或者是NR标准定义的PRACH preamble序列;或者是LTE标准定义的DMRS序列;或者是NR标准定义的DMRS序列;或者是MLSR序列;或者是DFT序列;又或者是Walsh-Hadamard序列,在此不做具体限制。
一可行的实施方式,可以将预设导频集合中的非零值符号很少的导频称为稀疏导频,比如导频,在此不做具体限制。
步骤S820:根据导频中确定目标信息经历的无线信道的信道信息。
步骤S830:根据信道信息对目标信息进行解调译码。
步骤S840:根据解调译码后的目标信息中包含的导频的信息重构导频。
步骤S850:将重构后的导频从接收信号中消除。
在本实施例中,通过采用包括上述步骤S810至步骤S850的信息传输方法,首先第一通信节点接收来自第一通信节点的多个导频,然后根据该导频中确定目标信息经历的无线信道的信道信息,接着根据信道信息对目标信息进行解调译码,再根据解调译码后的目标信息中包含的导频的信息重构导频,最后将重构后的导频从接收信号中消除,因此,本申请实施例可以在不增加导频资源开销的情况下,增加导频的数量,从而减少导频碰撞的概率,进一步支持更多第一通信节点的接入。
一可行的实施方式,目标信息可以包括导频的信息,比如,导频在预设导频集合中的索引值,或者产生导频的初始状态等。例如,当某个第一通信节点的目标信息译码成功后,就可以获取该第一通信节点在此次传输过程中传输的所有导频的信息,进而有利于重构出所有的导频,从而可以进行导频的干扰消除。
在一可行的实施例中,可以只根据该导频估计出目标信息经历的无线信道的部分信息,而无需根据该导频估计出目标信息经历的无线信道的全部信息,在此不做具体限制。
在一实施例中,如图22所示,该信息传输方法还可以包括但不限于有步骤S910和步骤S920。
步骤S910:根据不碰撞的多个导频确定与第一通信节点对应的目标信息。
在一实施例中,如图23和图24所示,假设两个第一通信节点分别是第一终端和第二终端,第一终端和第二终端均向同一个第二通信节点发送两个导频,其中,第一终端的两个导频分别是V1和V2,而第二终端的两个导频分别是W1和W2,若是V1和V2分别属于两个不同导频集合,即V1属于导频集合Z3,V2属于导频集合Z7,且W1和W2分别属于两个不同导频集合,即W1属于导频集合Z3,W2属于导频Z5,由于W1和V1均属于同一个导频集合,因此V1和W1发生碰撞,但是由于W2和V2属于不同的导频集合,因此V2和W2不会发生碰撞,因此,第二通信节点可以利用不碰撞的第二条导频序列(即V2和W2)进行信道估计,确定无线信道的信道信息,进而解调出第一终端和第二终端的目标信息。
步骤S920:根据目标信息确定第一通信节点的位置。
在本实施例中,通过采用包括上述步骤S910和步骤S920的信息传输方法,首先第二通信节点根据不碰撞的多个导频确定与第一通信节点对应的目标信息,然后根据目标信息确定第一通信节点的位置,因此,本申请实施例既可以减少导频碰撞的概率,又可以确定第一通信节点的位置。
在一实施例中,当第一通信节点向第二通信节点一次性发送两个或者更多的导频,且多个导频之间相互独立(即该多个导频称为独立多导频),第二通信节点根据不碰撞的多个导频确定与第一通信节点对应的目标信息,然后第二通信节点根据目标信息确定第一通信节点的位置,以减少导频碰撞的情况,进一步提升第二通信节点负载。即是说,可以在相同的导频开销下,不同的第一通信节点的独立多导频同时碰撞的概率会比传统单导频碰撞的概率小,因此,本申请实施例可以在第一通信节点处于没有与第二通信节点建立数据连接的目标状态下支持更多的接入的第一通信节点。
在一实施例中,当第二通信节点为基站时,通过基于迭代的接收机,基站每轮都可以通过不碰撞的多个导频确定与第一通信节点对应的目标信息,然后将目标信息和导频都重构出来,如此迭代直到确定所有的第一通信节点对应的目标信息。
值得注意的是,在第一通信节点与第二通信节点没有数据连接的传输场景或免调度的传输场景,上行传输资源(比如参考信号或者导频信息)也是第一通信节点自主选择的,所以不同第一通信节点是有可能选择相同的上行传输资源的,即资源碰撞。当第一通信节点的数量很多的情况下(即高过载)时,出现资源碰撞的概率非常高。一旦发生资源碰撞,第二通信节点很难通过上行传输资源分离出上行传输资源相同的第一通信节点。为了减少导频碰撞,以及估计信道和时频偏,导频资源需要成倍增加,即导频序列成倍变长,检测复杂度更是平方上升。而本申请实施例中,可以通过不碰撞的多个导频确定目标信息,以减少导频碰撞的概率,进一步提升接入的第一通信节点的数量。
一可行的实施方式,多个导频中每个导频均包括第五数量的非零值符号,第五数量大于零且小于五,在此不做具体限制。
在一实施例中,第二通信节点可以接收来自第一通信节点的导频,其中,导频包括第六数量的非零值符号,且第六数量大于零且小于五,然后根据导频确定第一通信节点信息传输所经历的无线信道的信道信息,最后根据信道信息对第一通信节点的目标信息进行解调译码,在此不做具体限制。
在一实施例中,第二通信节点可以接收来自第一通信节点的包括第六数量的非零值符号的导频,根据导频确定空域信道,然后通过确定的空域信道确定空域合并权值,进而对多根接收天线的接收符号进行合并,最后通过合并后的接收符号确定整个传输带宽的信道信息和时频偏信息,即是说,可以不需要通过导频确定整个传输带宽的信道信息和时频偏信息,,因此,本申请实施例极大地减轻导频的任务,使得每个导频信号占用的时频资源可以最小化,进而使得导频的数量可以最大化,最终可以支持更多的通过预配置免调度以及竞争式免调度方式进行信息传输的第一通信节点。
针对上述实施例所提供的信息传输方法,下面以稀疏导频为例进行示例性说明。
为了减少导频的碰撞,需要确定更多的导频,即预设导频集合中的导频数量要尽可能多,而增加导频数量意味着导频开销也增加。另外,还需要基于导频进行信道估计,时偏或者频偏的估计,以此来完成目标信息中数据符号的相关解调,所以每个参考信号都需要占用足够的资源,即每个参考信号在整个传输带宽以及所有的时间内不能分布得太稀疏,这样才能估计出整个传输带宽的信道信息(比如无线多径信道,也即频率选择性信道)以及传输时间内的时频偏信息。所以,要确保在第一通信节点处于没有与第二通信节点建立数据连接的目标状态下的传输性能,沿用传统的导频方案,会导致导频所占用的开销成倍增加,检测复杂度也会显著增加。
定义一种解调参考信号(DMRS)集合,其中该集合包含12个参考信号,解调参考信号也可称解调参考信号端口(DMRS ports),即是说,定义的一种包含12个解调参考信号端口(DMRS ports)的集合。
在一实施例中,如图25所示,图25为一实施例提供的一种定义物理资源块的示意图,定义一个物理资源块(Physical Resource Block,PRB),该物理资源块包含时域上的14个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)(或者,离散傅里叶变换扩展OFDM(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing,DFT-S-OFDM)或者,单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA))符号,以及频域上的12个子载波。其 中每个小格子是一个OFDM符号的一个子载波,通常也称为一个资源单元(Resource Element,RE),因此该物理资源块(PRB)一共包含12×14=168个资源单元(RE)。由于使用前2个OFDM符号来承载解调参考信号,即使用前2个OFDM符号作为参考信号(DMRS)区域,因此,解调参考信号(DMRS)占用的资源开销是1/7。其中,除参考信号(DMRS)区域外的区域为数据符号区域。
在一实施例中,如图26所示,图26为一实施例提供的一种定义解调参考信号的示意图,解调参考信号(DMRS)从占用资源单元(RE)位置来看可以分成三组,第一组解调参考信号(DMRS)的非零符号(或称为非零信号、有用信号等)(即符号是非零值)承载在第一资源单元(RE)上,该4个DMRS端口可以通过OCC码区分;第二组解调参考信号(DMRS)的非零符号承载在第二资源单元(RE)上,该4个DMRS端口可以通过OCC码区分;第三组解调参考信号(DMRS)的非零符号承载在第三资源单元(RE)上,该4个DMRS端口可以通过OCC码区分。其中,在图26中,第一资源单元所在的小方格用竖直线填充,第二资源单元所在的小方格用横直线填充,第三资源单元所在的小方格用波浪线填充,每组解调参考信号在空白未填充图案的资源单元(RE)上取值为0(即没有信号)。由此可见,对于每组解调参考信号来说,并不是在参考信号区域的所有资源单元(RE)上都有信号。但是,对某个第一通信节点(比如终端)而言,即便其使用的参考信号端口只是在参考信号区域的一些RE上没有信号,但是仍旧不能利用没有信号的RE传输数据。因此,每组解调参考信号中的参考信号(或者参考信号端口)占用的资源开销也是1/7。
若每组解调参考信号的非零符号承载在相同的资源单元(RE)上,则只能通过不同取值的非零符号区分出不同的参考信号,比如可通过时域OCC码以及频域OCC码来区分出不同的参考信号端口。在一实施例中,如图27所示,图27为一实施例提供的通过OCC码来区分出不同的参考信号端口的示意图。以图26中的第一组的4个解调参考信号为例,可以通过联合使用时域上的两长OCC码[1,1]、[1,-1],以及频域上的两长OCC码[1,1]、[1,-1]来分出该4个解调参考信号端口,即该组DMRS端口,通过在第一资源单元上承载不同的OCC码,来生成不同的DMRS端口。上述图26中的第二组中的4个参考信号和第三组中的4个参考信号的情况也类似。因此,一共可以得到定义的这种解调参考信号(DMRS)集合的12个解调参考信号,也即12个解调参考信号端口。
在一实施例中,如图28所示,图28为一实施例提供的一种采用OCC码定义解调参考信号的示意图,对于图26中的第一组中的4个解调参考信号,可以通过联合使用时域上的两长OCC码[1,1]、[1,-1],以及频域上的两长OCC码[1,1]、[1,-1]来分出该4个解调参考信号端口,其中,在图28中,第一列至第三列的阴影部分的数字由上至下均是1,第四列的阴影部分的数字由上至下均是-1,第五列至第七列的阴影部分的数字由上至下分别是1、-1、1、-1,第八列的阴影部分的数字由上至下分别是-1、1、-1、1。
在一实施例中,如图29所示,图29为一实施例提供的另一种采用OCC码定义解调参考信号的示意图。对于图26中的第二组中的4个解调参考信号,可以通过联合使用时域上的两长OCC码[1,1]、[1,-1],以及频域上的两长OCC码[1,1]、[1,-1]来分出该4个解调参考信号端口,其中,在图29中,第一列至第三列的阴影部分的数字由上至下均是1,第四列的阴影部分的数字由上至下均是-1,第五列至第七列的阴影部分的数字由上至下分别是1、-1、1、-1,第八列的阴影部分的数字由上至下分别是-1、1、-1、1。
在一实施例中,如图30所示,图30为一实施例提供的另一种采用OCC码的解调参考信号的示意图。8表示第一个参考信号单元,9表示第二个参考信号单元;对于图26中第三组的中的4个解调参考信号,可以通过联合使用时域上的两长OCC码[1,1]、[1,-1],以及频域上的两长OCC码[1,1]、[1,-1]来分出该4个解调参考信号端口,其中,在图30中,第一列至第三列的阴影部分的数字由上至下均是1,第四列的阴影部分的数字由上至下均是-1,第五列至第七列的阴影部分的数字由上至下分别是1、-1、1、-1,第八列的阴影部分的数字由上至下分别是-1、1、-1、1。
本申请中可将时域及频域上相邻的若干个资源单元(RE)上承载的参考信号称为一个参考信号单元(Resource Signal Element,RSE),例如图25至图30中,时频域上连续的4个资源单元(RE)上承载的参考信号称为一个参考信号单元(RSE),形象地看,有图案填充下的“田字格”上的参考信号就是一个参考信号单元(RSE)。从信道估计的功能上看,一个参考信号单元(RSE)除了由时域或者频域上相邻的资源单元构成的特点外,还有一个特点,即在应用参考信号进行信道估计时,每个参考信号单元(RSE)可以估计一个信道值。
按此定义,如图25至图30所示,在定义的解调参考信号(DMRS)集合中,每一个参考信号在1个PRB带宽内都有2个参考信号单元(RSE),因此可以估计出一个1个PRB带宽内(也即12个子载波带宽内)2处的信道值。另外,1个PRB带宽内12个子载波的信道值可以通过这些参考信号单元估计值插值得到。
在一实施例中,如图31所示,图31为一实施例提供的一种基于PRB传输的示意图。如果一次传输包含X个PRB,则该参考信号集合中的12个解调参考信号(或者12个解调参考信号端口)如图所示,每个参考信号有2×X个参考信号单元(RSE),因此可以估计整个传输带宽内等间隔的2×X处的信道值,然后可以通过插值得到传输带宽内全部12×X个子载波的信道值。
基于上述实施例,12个解调参考信号(DMRS)从占用资源单元(RE)位置来看可以分成三组。其中,图32为一实施例提供的另一种定义解调参考信号的示意图,在图32中,可以通过OCC码区分的第一组的4个解调参考信号;图33为一实施例提供的另一种定义解调参考信号的示意图,在图33中,可以通过OCC码区分的第二组的4个解调参考信号;图34为一实施例提供的另一种定义解调参考信号的实现示意图,在图34中,可以通过OCC码区分的第三组的4个解调参考信号。
由此可见,为了估计每个接入的终端的整个传输带宽的信道,相关解调参考信号(或导频)占用的资源较大,换而言之,解调参考信号在整个传输带宽内存在一定的密度,不能太稀疏。在如图26至图34所示的实施例中,解调参考信号在整个传输带宽内的密度为每PRB有2处参考信号,或者每PRB有2个参考信号单元(RSE)。
对系统而言,参考信号的开销是1/7,即是说,系统付出了1/7的资源,只能设计12个解调参考信号。对于无连接传输状态下的数据传输而言,任意2个终端自主选择的参考信号的碰撞概率是1/12,可见,碰撞概率很高。所以,相关解调参考信号会严重限制无连接传输状态下数据传输的终端数量。
如果参考信号还需要估计一定的频偏(Frequency Offset),则每个参考信号的占用资源还会继续增加,换而言之,每个参考信号在传输信号中的密度还会继续增加。例如,参考信号再在时域上重复一次,以估计频偏,那么参考信号占用的资源翻倍,即资源开销为2/7。即是说,为了估计频选信道和频偏,系统付出2/7的资源,也只能设计12个解调参考信号。如果进一步,系统还需要应付一定的时偏(Timing Offset),则参考信号占用资源还会继续增加,例如,系统付出3/7甚至4/7的开销,才能设计出12个解调参考信号。如此大的开销,却只能得到少量的参考信号(即参考信号端口),由此可见,在无连接状态下传输数据,参考信号碰撞概率很高。
如果多径信道在频域变化得更快一些,即频选特性更加明显,则为了保证信道估计的精度,解调参考信号在频域上的密度会继续增加,每组解调参考信号在每个PRB带宽内有3个参考信号单元(如形象地看有3个田字格),因此,每个PRB上可以有3处估计值,而X个PRB上可以有3×X处估计值,然后通过线性插值可以得到X个PRB的全部子载波的信道。该参考信号同样占传输资源的1/7开销,但是只能分出8个解调参考信号(8个解调参考信号端口),比上述中定义的解调参考信号的数量还少。可见,信道估计能力通常和参考信号数量成反比。
因此,参考信号应用到无连接传输场景中所面临的问题为参考信号既要估计整个传输信道的频选信道以及时频偏,又要识别终端设备,所以参考信号占用的时频资源成倍递增,由此导致在一定资源下参考信号的数量严重不足,继而影响了可以进行信息传输的终端数量。
本申请主要出发点是极大地减轻参考信号的任务,因此可以使得每个参考信号占用的资源最小化,即是说使得每个参考信号在传输信号中的密度最稀疏,继而可以使得参考信号数量最大化,最终可以增加在预配置免调度以及竞争式免调度的方式下进行信息传输的终端的数量。
具体而言,本申请通过基于数据的信道估计技术(而不是基于参考信号),通过数据自身的特性,例如通过数据符号的星座图的几何特点,来估计整个传输带宽的信道以及估计时频偏,即是说,无需通过参考信号来估计整个传输带宽的信道和时频偏。以信道估计为例,为了简化描述,以块平衰(Block Flat Fading)信道为例。其中,星座图可以为BPSK符号的星座图,比如,如图35所示的终端发射的二相相移键控(Binary Phase Shift Keying,BPSK)符号的星座图,该星座图可认为是标准的BPSK星座图;或者,如图36所示的BPSK符号的星座图;或者,如图37所示的BPSK符号的星座图。具体地,如图36所示,BPSK符号经过无线信道以及无线接收机到达基站侧后就不再是图35所示的标准BPSK星座图,而是会被无线信道施加一个加权系数(即一个旋转加上缩放的变化),再加上接收机的加性高斯白噪声(Additive White Gaussian Noise,AWGN),得到的符号散点,因此,图36为经过信道加权后的符号对应的散点,利用符号散点的几何形状可以估计出信道加权。
基于上述分析,可知如BPSK这样的低阶调制信号,其旋转缩放(即经过信道加权)后的星座图仍然具有很强的几何特征,所以信道估计及均衡可以利用这种星座图的几何特征来估计出旋转量和缩放量,进而可以将星座图逆旋转回去,由此完成均衡,即得到信号均衡后的符号散点,如图37所示。具体地,如图36所示,基站接收到的符号对应的散点,还可以观察得出两团分离的散点,基站只需分别将圆形的散点和三角形的散点加起来,就可得到两个散点中心,然后将三角形散点对应的散点中心旋转180°,与圆形散点对应的散点中心加起来,就可得到最终的BPSK符号,该BPSK符号为以复数形式表示的信道加权,根据该信道加权也可以得到旋转量和缩放量,其中,该复数的角度为旋转量,而该复数的模为缩放量。
因此,本申请方案中,参考信号的任务比相关方案小得多,所以本申请方案中每个参考信号占用的资源比相关方案中每个参考信号占用的资源少,因此,在一定的开销下,本申请的参考信号数量比相关方案中的参考信号数量多。
另一方面,当基站有多根接收天线时,例如,R根接收天线,理论上该R根接收天线可以提供很强大的空域能力,以此提高多终端接入的性能。为了获得到这个空域能力,本申请提出可以使用“极稀疏”的 参考信号来估计各个终端信号所经历的空域信道hk=[hk1,hk2,...,hkR]t,其中,t是转置运算符,然后利用该空域信道来得到空域合并权值,进而对R根接收天线的接收信号做空域合并。具体而言,对终端k的信号进行空域合并,得到数据符号sk=hk'*y,其中,y=[yk1,yk2,...ykR]t是R根接收天线的接收信号,hk'是hk的共轭转置,然后接收机利用空域合并后的数据符号sk估计终端k的信号经历的整个传输带宽的信道以及估计时频偏,接着对空域合并后的数据符号sk补偿信道和时频偏,最后对补偿信道和时频偏的数据符号进行解调译码。
所以,本申请不用参考信号来估计整个传输带宽内的信道,也不用其估计时频偏。
在一实施例中,图38为一种定义参考信号的示意图,假设参考信号占用1个OFDM符号,一次传输包含X个PRB的时频资源,一个物理资源块(PRB)包含时域上的14个OFDM(或者DFT-S-OFDM或者SC-FDMA)符号,以及频域上的12个子载波。其中,使用前1个OFDM符号来承载解调参考信号,即前1个OFDM符号作为极稀疏导频区域,则1/14的资源用于传输参考信号,即12×X个资源单元(RE)用于传输参考信号。其中,除极稀疏导频区域外的区域为数据符号区域。
在一实施例中,如图39所示,图39为另一种系统定义的参考信号(即极稀疏导频)的示意图,该每一个参考信号均只在一个RE资源单元上有非零符号(非零信号,或有用信号),而在其余资源单元上都没有信号(即取值为0),因此,可以占1/14开销的参考信号区域,且总共可以分出12×X个参考信号。具体而言,如果有6个PRB,且每个PRB的资源开销均为1/14,则可以分出6×12=72个参考信号,其参考信号所占用的资源开销远大于NR系统中的参考信号数量(该NR系统中的参考信号数量为8个或者12个)。
在一实施例中,如图40所示,图40为另一种定义参考信号(即极稀疏导频端口)的示意图,系统定义的每个参考信号均只在2个RE资源单元上有非零符号(或者非零信号,或者有用信号),每2个RE可以通过2长的OCC分出2个参考信号,其余资源单元上都没有信号(即取值为0),因此,可以占1/14开销的参考信号区域,且总共可以分出12×X个参考信号。具体而言,如果有6个PRB,且每个PRB的资源开销均为1/14开销,则可以分出6×12=72个参考信号,其参考信号所占用的资源开销远大于NR系统中的参考信号数量(该NR系统中的参考信号数量为8个或者12个)。因此,极稀疏导频的非零符号的数量与PRB的数量呈正比。
在一实施例中,如图41所示,图41为一实施例提供的一种生成DMRS端口的示意图,通过在2个RE上承载不同的OCC码(如OCC码1、OCC码2),以生成不同的DMRS端口,其中,在图41中,RE用以竖直线填充的两个小方格表示。因此,可以占1/14开销的参考信号区域,且总共可以分出12×X个参考信号。具体而言,如果有6个PRB,且每个PRB的资源开销均为1/14开销,则可以分出6×12=72个参考信号,其参考信号所占用的资源开销远大于NR系统中的参考信号数量(该NR系统中的参考信号数量为8个或者12个)。
在一实施例中,如图42所示,图42为一实施例提供的另一种定义参考信号的示意图,其中,该系统定义的参考信号占用2个OFDM符号。
在一实施例中,如图43所示,图43为一实施例提供的另一种定义参考信号的示意图,该系统定义的每个参考信号均只在一组相邻的4个RE资源单元上有非零符号(或者非零信号,或者有用信号),但是会有4个参考信号复用一组相邻的4个RE,其中复用同一组相邻的4个RE的4个参考信号可以通过OCC码以区分,因此,当一次传输包括X个PRB,且每个PRB均占用1/7开销的参考信号区域,则总共可以分出24×X个参考信号。具体而言,如果一次传输包括6个PRB,且每个PRB均占用1/7的资源开销,则可以分出6×24=144个参考信号,因此,其参考信号所占用的资源开销远大于NR系统中的参考信号数量(该NR系统中的参考信号数量为8个或者12个),同时说明了极稀疏导频的数量与PRB的数量呈正比。
值得注意的是,本申请实施例中所示数值仅为示例性描述,不作具体限定,取值可以根据实际情况进行适应性调整。
由此可见,极稀疏导频为预设导频集合里的非零元素很少的导频,例如非零元素只有1-4个,因此,关于极稀疏导频的方案可以在不增加导频资源开销的情况下,显著增加导频的数量,继而显著减少导频碰撞的概率。另外,基站可以从极稀疏导频中估计出无线信道的部分信息,而无需从极稀疏导频中估计出无线信道的全部信息,而且基站可以从数据符号中进一步提取信道信息,进而利用该信道信息完成对数据符号的均衡。
需要说明的是,极稀疏导频仅仅用于空域合并,但并不能用于信道均衡,因此,极稀疏导频可以认为是一种空域合并参考信号,在此不作具体限制。
还需要说明的是,虽然图38、图39、图40和图41中所示极稀疏参考信号(即极稀疏导频)都位于传输资源的第一个符号,或者第一个符号和第二个符号,但本申请并不限制极稀疏参考信号的位置,例如极稀疏参考信号的位置也可以位于传输资源的中间。
在本实施例中,还可以结合上述的独立多导频和极稀疏导频以进一步减少导频碰撞的概率,进一步提升终端负载。
在一实施例中,图44为一实施例提供的一种极稀疏参考信号的示意图,其中,利用目标信息对该图进行说明,在图44中,数据包包括含有接收到的标识信息和定时提前量的目标信息,W个极稀疏参考信号,以及该W个极稀疏参考信号的信息,其中,该W个极稀疏参考信号的信息可以是W条极稀疏参考信号的索引号,P1、P2、......、Pw分别表示不同的极稀疏参考信号,在此不作具体限制。举一示例,当某个终端的数据包被译码成功后,可得知该终端在此次传输中使用的所有极稀疏导频的信息,从而可以进行导频信号的干扰消除。
可以理解的是,上述所有实施例中的第一通信节点可以是终端,例如,移动电话、智能电话、笔记本电脑、PDA(Personal Digital Assistant,个人数字助理)、PAD(平板电脑)、导航装置等移动终端,也可以是物联网设备终端等等,在此不做具体限制。
另外,参照图45,本申请的一个实施例还提供了一种信息传输装置,该信息传输装置200包括存储器202、处理器201及存储在存储器202上并可在处理器201上运行的计算机程序。
处理器201和存储器202可以通过总线或者其他方式连接。
存储器202作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器202可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器202可选包括相对于处理器201远程设置的存储器,这些远程存储器可以通过网络连接至该处理器201。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述实施例的信息传输方法所需的非暂态软件程序以及指令存储在存储器202中,当被处理器201执行时,执行上述实施例中的信息传输方法,例如,执行以上描述的图4中的方法步骤S110、图5中的方法步骤S210至S230、图6中的方法步骤S310至S320、图12中的方法步骤S410至S420、图18中的方法步骤S510至S520、图19中的方法步骤S610、图20中的方法步骤S710至S720、图21中的方法步骤S810至S850、图22中的方法步骤S910至S920。
以上所描述的设备实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述设备实施例中的一个处理器执行,可使得上述处理器执行上述实施例中的信息传输方法,执行以上描述的图4中的方法步骤S110、图5中的方法步骤S210至S230、图6中的方法步骤S310至S320、图12中的方法步骤S410至S420、图18中的方法步骤S510至S520、图19中的方法步骤S610、图20中的方法步骤S710至S720、图21中的方法步骤S810至S850、图22中的方法步骤S910至S920。
此外,本申请的一个实施例还提供了一种计算机程序产品,包括计算机程序或计算机指令,计算机程序或计算机指令存储在计算机可读存储介质中,计算机设备的处理器从计算机可读存储介质读取计算机程序或计算机指令,处理器执行计算机程序或计算机指令,使得计算机设备执行上述实施例中的信息传输方法,例如,执行以上描述的图4中的方法步骤S110、图5中的方法步骤S210至S230、图6中的方法步骤S310至S320、图12中的方法步骤S410至S420、图18中的方法步骤S510至S520、图19中的方法步骤S610、图20中的方法步骤S710至S720、图21中的方法步骤S810至S850、图22中的方法步骤S910至S920。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (32)

  1. 一种信息传输方法,应用于第一通信节点,所述信息传输方法包括:
    在目标发送时间向第二通信节点发送目标信息,其中,所述目标发送时间根据预存的定时提前量而确定,所述目标信息包括所述定时提前量和所述第一通信节点接收到的标识信息,所述标识信息包括如下至少之一:
    小区标识信息;
    基站标识信息;
    波束标识信息;
    无线信号接入点的标识信息。
  2. 根据权利要求1所述的信息传输方法,其中,当所述标识信息包括所述无线信号接入点的标识信息,所述无线信号接入点的标识信息包括如下之一:
    无蜂窝通信系统接入点的标识信息;
    无线局域网接入点的标识信息;
    无线广域网接入点的标识信息;
    蓝牙接入点的标识信息。
  3. 根据权利要求1所述的信息传输方法,其中:
    当所述标识信息包括所述小区标识信息,所述目标信息还包括所述第一通信节点接收所述小区标识信息的无线信号的强度;
    或者,
    当所述标识信息包括所述基站标识信息,所述目标信息还包括所述第一通信节点接收所述基站标识信息的无线信号的强度;
    或者,
    当所述标识信息包括所述波束标识信息,所述目标信息还包括所述第一通信节点接收所述波束标识信息的无线信号的强度;
    或者,
    当所述标识信息包括所述无线信号接入点的标识信息,所述目标信息还包括所述第一通信节点接收所述无线信号接入点的标识信息的无线信号的强度。
  4. 根据权利要求1所述的信息传输方法,其中:
    当所述标识信息包括所述小区标识信息,所述小区标识信息包括多个小区的小区标识;
    或者,
    当所述标识信息包括所述基站标识信息,所述基站标识信息包括多个基站的基站标识;
    或者,
    当所述标识信息包括所述波束标识信息,所述波束标识信息包括多个波束的波束标识;
    或者,
    当所述标识信息包括所述无线信号接入点的标识信息,所述无线信号接入点的标识信息包括多个无线信号接入点的标识。
  5. 根据权利要求1所述的信息传输方法,其中,所述定时提前量根据所述第二通信节点发送的广播信号而确定。
  6. 根据权利要求5所述的信息传输方法,其中,所述广播信号包括下行同步信号或者下行参考信号。
  7. 根据权利要求1所述的信息传输方法,其中,所述在目标发送时间向第二通信节点发送目标信息,包括:
    接收来自所述第二通信节点的广播信令,所述广播信令用于指示所述第一通信节点发送所述目标信息所采用的公共信道;
    在所述目标发送时间通过所述公共信道向所述第二通信节点发送所述目标信息。
  8. 根据权利要求1所述的信息传输方法,其中,所述在目标发送时间向第二通信节点发送目标信息,包括:
    确定一条扩展序列;
    将对所述目标信息进行编码调制形成的调制符号与所述扩展序列进行相乘,得到扩展后的目标信息;
    在所述目标发送时间向第二通信节点发送所述扩展后的目标信息。
  9. 根据权利要求8所述的信息传输方法,其中:
    所述扩展序列根据所述目标信息而确定;
    或者,
    所述扩展序列根据所述目标信息中的第一数量的比特信息在预设序列集合中确定,其中,所述预设序列集合包括第二数量的扩展序列,所述第一数量与所述第二数量成对数函数关系,所述对数函数为以2为底数的对数函数。
  10. 根据权利要求1所述的信息传输方法,其中,所述在目标发送时间向第二通信节点发送目标信息,包括:
    确定多个导频;
    在所述目标发送时间向第二通信节点发送所述目标信息和所有所述导频。
  11. 根据权利要求10所述的信息传输方法,其中,所述多个导频之间相互独立。
  12. 根据权利要求10所述的信息传输方法,其中,所述确定多个导频,包括如下之一:
    根据所述目标信息确定所述多个导频;
    根据所述目标信息中的若干个比特信息确定所述多个导频;
    根据所述目标信息中的多组第三数量的比特信息从预设导频集合中确定所述多个导频,其中,所述预设导频集合包括第四数量的导频,所述第三数量与所述第四数量成对数函数关系,所述对数函数为以2为底数的对数函数。
  13. 根据权利要求10所述的信息传输方法,其中:
    所述多个导频中至少有两个导频属于不同的导频集合;
    或者,
    所述多个导频中至少有两个导频的导频长度不相同。
  14. 根据权利要求10所述的信息传输方法,其中:
    每个所述导频均包括第五数量的非零值符号,所述第五数量大于零且小于五。
  15. 根据权利要求1所述的信息传输方法,其中,所述在目标发送时间向第二通信节点发送目标信息,包括:
    确定1个导频,所述导频包括第六数量的非零值符号,所述第六数量大于零且小于五;
    在所述目标发送时间向第二通信节点发送所述目标信息和所述导频。
  16. 根据权利要求1所述的信息传输方法,其中,所述目标信息中包括与所述第一通信节点身份相关的信息。
  17. 根据权利要求1所述的信息传输方法,其中,所述目标信息中不包括与所述第一通信节点身份相关的信息。
  18. 一种信息传输方法,应用于第二通信节点,所述信息传输方法包括:
    接收第一通信节点在目标发送时间发送的目标信息;
    其中,所述目标发送时间由所述第一通信节点根据预存的定时提前量确定,所述目标信息包括所述定时提前量和所述第一通信节点接收到的标识信息,所述标识信息包括如下至少之一:
    小区标识信息;
    基站标识信息;
    波束标识信息;
    无线信号接入点的标识信息。
  19. 根据权利要求18所述的信息传输方法,其中,当所述标识信息包括所述无线信号接入点的标识信息,所述无线信号接入点的标识信息包括如下之一:
    无蜂窝通信系统接入点的标识信息;
    无线局域网接入点的标识信息;
    无线广域网接入点的标识信息;
    蓝牙接入点的标识信息。
  20. 根据权利要求18所述的信息传输方法,其中:
    当所述标识信息包括所述小区标识信息,所述目标信息还包括所述第一通信节点接收所述小区标识信息的无线信号的强度;
    或者,
    当所述标识信息包括所述基站标识信息,所述目标信息还包括所述第一通信节点接收所述基站标识信息的无线信号的强度;
    或者,
    当所述标识信息包括所述波束标识信息,所述目标信息还包括所述第一通信节点接收所述波束标识信息的无线信号的强度;
    或者,
    当所述标识信息包括所述无线信号接入点的标识信息,所述目标信息还包括所述第一通信节点接收所述无线信号接入点的标识信息的无线信号的强度。
  21. 根据权利要求18所述的信息传输方法,其中:
    当所述标识信息包括所述小区标识信息,所述小区标识信息包括多个小区的小区标识;
    或者,
    当所述标识信息包括所述基站标识信息,所述基站标识信息包括多个基站的基站标识;
    或者,
    当所述标识信息包括所述波束标识信息,所述波束标识信息包括多个波束的波束标识;
    或者,
    当所述标识信息包括所述无线信号接入点的标识信息,所述无线信号接入点的标识信息包括多个无线信号接入点的标识。
  22. 根据权利要求18所述的信息传输方法,其中,所述定时提前量根据所述第二通信节点发送的广播信号而确定。
  23. 根据权利要求22所述的信息传输方法,其中,所述广播信号包括下行同步信号或者下行参考信号。
  24. 根据权利要求18所述的信息传输方法,其中,所述接收第一通信节点在目标发送时间发送的目标信息,包括:
    向所述第一通信节点发送广播信令,所述广播信令用于指示所述第一通信节点发送所述目标信息所采用的公共信道;
    接收所述第一通信节点在所述目标发送时间通过所述公共信道发送的所述目标信息。
  25. 根据权利要求18所述的信息传输方法,其中,所述信息传输方法还包括:
    接收来自所述第一通信节点的多个导频;
    根据所述导频确定所述目标信息经历的无线信道的信道信息;
    根据所述信道信息对所述目标信息进行解调译码;
    根据解调译码后的所述目标信息中包含的所述导频的信息重构所述导频;
    将重构后的所述导频从接收信号中消除。
  26. 根据权利要求25所述的信息传输方法,其中,所述多个导频之间相互独立。
  27. 根据权利要求25所述的信息传输方法,其中:
    所述多个导频中至少有两个所述导频属于不同的导频集合;
    或者,
    所述多个导频中至少有两个所述导频的导频长度不相同。
  28. 根据权利要求25所述的信息传输方法,其中:
    每个所述导频均包括第五数量的非零值符号,所述第五数量大于零且小于五。
  29. 根据权利要求25所述的信息传输方法,其中,所述信息传输方法还包括:
    根据不碰撞的多个所述导频确定与所述第一通信节点对应的所述目标信息;
    根据所述目标信息确定所述第一通信节点的位置。
  30. 根据权利要求18所述的信息传输方法,其中,所述信息传输方法还包括:
    接收来自所述第一通信节点的导频,所述导频包括第六数量的非零值符号,所述第六数量大于零且小于五;
    根据所述导频确定所述第一通信节点信息传输所经历的无线信道的信道信息;
    根据所述信道信息对所述第一通信节点的所述目标信息进行解调译码。
  31. 一种信息传输装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至30中任意一项所述的信息传输方法。
  32. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至30中任意一项所述的信息传输方法。
PCT/CN2023/097510 2022-06-08 2023-05-31 信息传输方法及其装置、存储介质 WO2023236837A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210642395.XA CN117241349A (zh) 2022-06-08 2022-06-08 信息传输方法及其装置、存储介质
CN202210642395.X 2022-06-08

Publications (1)

Publication Number Publication Date
WO2023236837A1 true WO2023236837A1 (zh) 2023-12-14

Family

ID=89081353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097510 WO2023236837A1 (zh) 2022-06-08 2023-05-31 信息传输方法及其装置、存储介质

Country Status (2)

Country Link
CN (1) CN117241349A (zh)
WO (1) WO2023236837A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140328309A1 (en) * 2011-12-20 2014-11-06 Kyocera Corporation Small cell uplink interference mitigation
WO2016115711A1 (zh) * 2015-01-22 2016-07-28 华为技术有限公司 获取ue位置的方法和装置
CN110679196A (zh) * 2019-08-14 2020-01-10 北京小米移动软件有限公司 随机接入消息传输方法、装置及可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140328309A1 (en) * 2011-12-20 2014-11-06 Kyocera Corporation Small cell uplink interference mitigation
WO2016115711A1 (zh) * 2015-01-22 2016-07-28 华为技术有限公司 获取ue位置的方法和装置
CN110679196A (zh) * 2019-08-14 2020-01-10 北京小米移动软件有限公司 随机接入消息传输方法、装置及可读存储介质

Also Published As

Publication number Publication date
CN117241349A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
CN107534871B (zh) 用于跟踪信道的系统及方法
US11582584B2 (en) Method and device in communication nodes for wireless communication
Choi et al. Device-to-device discovery for proximity-based service in LTE-advanced system
CN104685820A (zh) 用于信道估计的准同定位天线端口
CN113316958A (zh) 使用随机接入信道(rach)的定位
JP6631697B2 (ja) 無線通信システム、無線機器、リレーノード、及び、基地局
CN103108405A (zh) 无线通信方法和系统
CN114467274A (zh) 用于一个或多个跳频的探测参考信号(srs)配置
US11747429B2 (en) Differential matched summed positioning
US9924553B2 (en) Method and apparatus for measuring link quality in wireless communication system supporting device-to-device communication
JP2023528133A (ja) 低レイテンシまたはオンデマンド測位のための精度の希釈に支援された報告
US11849455B2 (en) Configurations of common physical uplink control channel resource sets
TW202002689A (zh) 利用受控傳輸功率和頻寬的定位參考信號傳輸
KR102284377B1 (ko) 단말 간 통신을 지원하는 무선통신시스템에서 단말이 d2d 신호를 전송하는 방법 및 이를 위한 장치
US11864150B2 (en) Uplink coordinated multipoint positioning
Mostafa et al. Aggregate preamble sequence design for massive machine-type communications in 5G networks
WO2023236837A1 (zh) 信息传输方法及其装置、存储介质
CN111757375A (zh) 无线通信的方法、终端设备、接入网设备
WO2023236780A1 (zh) 信息传输方法、通信节点及存储介质
WO2023237056A1 (zh) 信息传输方法及装置
WO2023236985A1 (zh) 一种信息传输方法、通信节点及存储介质
US20220191836A1 (en) Method and device in nodes used for wireless communication
WO2022100579A1 (zh) 初始接入的方法和装置
US20220174656A1 (en) Orthogonal random access channel (rach) preamble sequence for positioning
Nasraoui Enabling Techniques for IoT, mMTC, and URC in 5G and B5G Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819002

Country of ref document: EP

Kind code of ref document: A1