WO2023236731A1 - 预编码配置方法及其装置、存储介质 - Google Patents

预编码配置方法及其装置、存储介质 Download PDF

Info

Publication number
WO2023236731A1
WO2023236731A1 PCT/CN2023/094336 CN2023094336W WO2023236731A1 WO 2023236731 A1 WO2023236731 A1 WO 2023236731A1 CN 2023094336 W CN2023094336 W CN 2023094336W WO 2023236731 A1 WO2023236731 A1 WO 2023236731A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
group
precoding
information
precoding configuration
Prior art date
Application number
PCT/CN2023/094336
Other languages
English (en)
French (fr)
Inventor
杨军
陈艺戬
窦建武
王瑜新
李永
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023236731A1 publication Critical patent/WO2023236731A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the embodiments of the present application relate to, but are not limited to, the field of communication technology, and in particular, to a precoding configuration method, its device, and a storage medium.
  • the transmitter (such as a communication base station) needs to send precoding configuration signaling to each accessed communication node (such as a terminal) one by one.
  • each communication Nodes need to occupy a specific downlink channel resource, which not only reduces the precoding configuration efficiency, but also increases resource overhead.
  • the precoding configuration signaling will include more redundant information, which will also increase the signaling overhead. . Therefore, how to implement precoding configuration of communication nodes while reducing signaling overhead and improving configuration efficiency is an issue that needs to be solved urgently.
  • Embodiments of the present application provide a precoding configuration method, device, and storage medium, which can realize precoding configuration of communication nodes while reducing signaling overhead and improving configuration efficiency.
  • embodiments of the present application provide a precoding configuration method, including:
  • Group multiple communication nodes to be configured with precoding to obtain multiple node groups generate corresponding precoding configuration signaling for each node group, wherein the precoding configuration signaling corresponding to each node group including precoding configuration information corresponding to each communication node in each node group; sending the corresponding precoding configuration signaling to each node group, so that each communication node in each node group The node obtains the corresponding precoding configuration information in the corresponding precoding configuration signaling for configuration.
  • embodiments of the present application also provide a precoding configuration device, including: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • a precoding configuration device including: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program Implement the precoding configuration method as described above.
  • embodiments of the present application also provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the precoding configuration method as described above.
  • embodiments of the present application further provide a computer program product, which includes a computer program or computer instructions.
  • the computer program or computer instructions are stored in a computer-readable storage medium.
  • the processor of the computer device obtains the information from the computer program or computer instructions.
  • the computer-readable storage medium reads the computer program or the computer instructions, and the processor executes the computer program or the computer instructions, so that the computer device performs the precoding configuration method as described above.
  • the embodiments of this application include: first grouping multiple communication nodes to be configured with precoding to obtain multiple node groups; Then, corresponding precoding configuration signaling is generated for each node group, where the precoding configuration signaling corresponding to each node group includes precoding configuration information corresponding to each communication node in each node group, and finally sent to each node group.
  • the corresponding precoding configuration signaling enables each communication node in each node group to obtain the corresponding precoding configuration information in the corresponding precoding configuration signaling for configuration. That is to say, each precoding configuration signaling can be sent to Multiple communication nodes in a node group do not need to send a precoding configuration signaling for each communication node.
  • each precoding configuration signaling also includes Precoding configuration information corresponding to each communication node in each node group. Therefore, each communication node in each node group can obtain the corresponding precoding configuration information in the corresponding precoding configuration signaling for configuration. Therefore, this application implements This example can realize precoding configuration of communication nodes while reducing signaling overhead and improving configuration efficiency.
  • Figure 1 is a flow chart of a precoding configuration method provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of node grouping provided by a specific example of this application.
  • Figure 3 is a schematic diagram of node grouping provided by another specific example of this application.
  • Figure 4 is a schematic diagram of node grouping provided by another specific example of this application.
  • Figure 5 is a schematic diagram of node grouping provided by another specific example of this application.
  • Figure 6 is a schematic diagram of node grouping provided by another specific example of this application.
  • Figure 7 is a schematic diagram of node grouping provided by another specific example of this application.
  • Figure 8 is a schematic diagram of node grouping provided by another specific example of this application.
  • Figure 9 is a flow chart of a specific method of step S120 in Figure 1;
  • Figure 10 is a flow chart of a specific method in step S230 in Figure 9;
  • FIG 11 is a flow chart of a specific method in step S330 in Figure 10;
  • Figure 12 is a flow chart of another specific method of step S230 in Figure 9;
  • FIG 13 is a flow chart of another specific method of step S120 in Figure 1;
  • Figure 14 is a flow chart of a specific method in step S630 in Figure 13;
  • FIG 15 is a flow chart of another specific method of step S630 in Figure 13;
  • Figure 16 is a flow chart of another specific method of step S120 in Figure 1;
  • Figure 17 is a flow chart of a specific method of step S950 in Figure 16;
  • Figure 18 is a flow chart of a specific method in step S1020 in Figure 17;
  • FIG 19 is a flow chart of another specific method of step S950 in Figure 16;
  • Figure 20 is a flow chart of another specific method of step S950 in Figure 16;
  • FIG 21 is a flow chart of another specific method of step S950 in Figure 16;
  • Figure 22 is a flow chart of a specific method of step S130 in Figure 1;
  • FIG 23 is a flow chart of another specific method of step S130 in Figure 1;
  • Figure 24 is a flow chart of another specific method of step S130 in Figure 1;
  • Figure 25 is a schematic diagram of determining precoding configuration information provided by a specific example of this application.
  • Figure 26 is a schematic structural diagram of a precoding configuration device provided by an embodiment of the present application.
  • This application provides a precoding configuration method, device, and storage medium.
  • multiple communication nodes to be configured with precoding are grouped to obtain multiple node groups, and then corresponding precoding configuration signaling is generated for each node group.
  • the precoding configuration signaling corresponding to each node group includes precoding configuration information corresponding to each communication node in each node group, and finally the corresponding precoding configuration signaling is sent to each node group, so that the Each communication node obtains the corresponding precoding configuration information in the corresponding precoding configuration signaling for configuration. That is to say, each precoding configuration signaling can be sent to multiple communication nodes in a node group without the need for each communication node.
  • a communication node sends a precoding configuration signaling, which not only improves the precoding configuration efficiency, but also reduces the signaling overhead, and each precoding configuration signaling also includes the precoding corresponding to each communication node in each node group.
  • Configuration information therefore, each communication node in each node group can obtain the corresponding precoding configuration information in the corresponding precoding configuration signaling for configuration. Therefore, the embodiments of the present application can reduce signaling overhead and improve configuration efficiency.
  • the precoding configuration of communication nodes is implemented below.
  • MIMO Multiple input and Multiple output, large-scale input and output
  • Massive MIMO Massive Multiple input and Multiple output , very large-scale input and output
  • beam control can be achieved by precoding technology, that is, by changing the exit phase of each oscillator on the array, so that the transmitted signals are superimposed in phase in the specified direction to obtain better directional gain.
  • precoding technology that is, by changing the exit phase of each oscillator on the array, so that the transmitted signals are superimposed in phase in the specified direction to obtain better directional gain.
  • precoding configuration information such as precoding weights, or codebooks
  • the codebook designed in advance consists of several pieces of precoding configuration information, and the pieces of precoding configuration information respectively correspond to different beam directions.
  • the transmitter such as a communication base station
  • the accessed communication nodes such as terminals
  • each communication node A specific downlink channel resource needs to be occupied, which not only reduces the precoding configuration efficiency, but also increases resource overhead.
  • the precoding configuration signaling since each precoding configuration signaling sent to each communication node needs to carry the same message header, the precoding configuration signaling will include more redundant information, which will also increase the signaling overhead. . Moreover, the channel correlation between communication nodes with regular distribution is strong, so the corresponding precoding configuration information is also relevant. Therefore, there will be redundant information between precoding configuration signaling. Based on the above situation, it is necessary to optimize the existing precoding configuration method, improve precoding configuration efficiency, and reduce signaling overhead.
  • RIS is a reflective array or a transmissive array composed of a large number of reconfigurable electromagnetic units with sub-wavelength dimensions, which can change the properties of the electromagnetic signal incident on its surface.
  • the space electromagnetic signal can be dynamically controlled, such as changing the propagation direction of the incident electromagnetic signal. Therefore, in order to achieve dynamic regulation,
  • the corresponding RIS needs to be designed according to the incident signal, reflection direction and transmission direction.
  • deploying a large number of low-cost RIS in the environment can expand the coverage of wireless signals without increasing the number of communication base stations, reduce network construction costs, and improve the energy efficiency of wireless communication systems. Therefore, RIS is expected to become the future 6G network one of the key technologies.
  • RIS is a passive array, it can only passively reflect or transmit electromagnetic signals incident on its surface. And based on cost considerations, RIS is usually designed as an array without measurement function or an array with only a small number of electromagnetic units with measurement function. Therefore, RIS cannot complete channel measurement independently and needs to cooperate with communication base stations to complete channel measurement and precoding configuration.
  • the communication base station requires a large amount of precoding configuration signaling to deliver precoding configuration information to each RIS. Therefore, there are also problems of precoding configuration efficiency and signaling overhead.
  • Figure 1 is a flow chart of a precoding configuration method provided by an embodiment of the present application.
  • the precoding configuration method may include but is not limited to step S110, step S120 and step S130.
  • Step S110 Group multiple communication nodes to be configured with precoding to obtain multiple node groups.
  • a feasible implementation manner assumes that the number of communication nodes to be configured with precoding is N, then the N communication nodes to be configured with precoding are grouped to obtain K node groups, where K represents the number of node groups, and K ⁇ 1 , N ⁇ 1, N>K, there are no specific restrictions here.
  • the communication node can be a communication base station, a mobile terminal, an Internet of Things device, a Reconfigurable Intelligent Surface (RIS), a wireless relay node, etc., which are not listed here.
  • RIS Reconfigurable Intelligent Surface
  • a feasible implementation manner is to group multiple communication nodes to be configured with precoding.
  • channel correlation refers to the uplink channels occupied by different communication nodes or the correlation between uplink channels.
  • communication nodes with the same service users or the same coverage area can coordinate and cooperate when performing beam adjustment. Therefore, in order to avoid affecting the user experience during the beam switching process, communication nodes with the same service users or the same coverage area are required. Beam adjustment is performed simultaneously. Communication nodes with the same service users or the same coverage area also have strong channel correlation, and their precoding configuration information also has strong correlation. Therefore, the precoding to be configured can be based on the service user or coverage area. Multiple communication nodes are grouped.
  • the multiple communication nodes to be configured with precoding may include different communication node types, and communication nodes with the same communication node type have similar precoding configuration information. Therefore, the precoding to be configured can be configured according to the communication node type. Multiple communication nodes are grouped.
  • a feasible implementation method is obtained by grouping multiple communication nodes to be configured with precoding according to the communication node type. If the number of communication nodes in the node group is large, the communication nodes in the node group can be grouped based on channel correlation, location information, service users or coverage areas. The details will not be discussed here. limit.
  • the channel correlation threshold is a specific value, assuming that the total number of communication nodes to be configured with precoding is M,
  • the M communication nodes to be configured with precoding are grouped according to the channel correlation.
  • the channel correlation of the N communication nodes to be configured with precoding is greater than the channel correlation threshold, the N communication nodes are divided into a node group.
  • the other (M-N) communication nodes are divided into a node group, where N is the number of communication nodes whose channel correlation is greater than the channel correlation threshold, and M ⁇ N, M ⁇ 1, N ⁇ 1; or, when the channel The correlation threshold is an interval value.
  • the total number of communication nodes to be configured with precoding is M.
  • the M communication nodes to be configured with precoding are grouped according to channel correlation. Among them, those whose channel correlation is greater than the channel correlation threshold can be grouped.
  • the N communication nodes to be configured with precoding are divided into a node group, the W communication nodes to be configured with precoding whose channel correlation is within the channel correlation threshold are divided into a node group, and the channel correlation is smaller than the channel correlation threshold.
  • the (M-W-N) communication nodes to be configured with precoding according to the threshold are divided into a node group, where M ⁇ N, M ⁇ W, M ⁇ 1, N ⁇ 1, and W ⁇ 1.
  • the channel correlation threshold can be set according to actual conditions, and the embodiments of this application do not impose specific restrictions on this.
  • the precoding to be configured is grouped based on channel correlation.
  • Multiple mobile terminals are grouped, that is, multiple mobile terminals to be configured with precoding are grouped according to the uplink channels occupied by multiple mobile terminals or the correlation between uplink channels.
  • the uplink and downlink channels of mobile terminals on the same floor in the building have strong correlation in the vertical direction. Therefore, the mobile terminals on the same floor can be divided into a node group. As shown in Figure 2, the building has 5 floors. , it can be divided into 5 node groups, and there are no specific restrictions here.
  • the transmitter is a communication base station
  • the communication nodes are mobile terminals in the cell
  • the multiple mobile terminals all communicate with the The base station establishes a connection, that is, the multiple mobile terminals are communication nodes for which precoding is to be configured.
  • the location information is the location distance between multiple communication nodes to be configured with precoding
  • mobile terminals whose location distance is less than the distance threshold can be divided into a node group, as shown in Figure 3.
  • the location distance between three mobile terminals If the location distance between the other two communication nodes is less than the distance threshold, then the three mobile terminals can be divided into the first node group 120, and the location distance between the other two communication nodes is less than the distance threshold, then the two communication nodes can be divided into the second node group 120. 110, wherein the distance threshold can be set according to the actual situation; when the location information is the location distance of multiple communication nodes to be configured with precoding relative to the reference location, and the location distance includes the length distance, the location between the mobile terminal and the base station can be Mobile terminals whose length distance is in the distance interval are divided into a node group. The distance interval can be set according to the actual situation.
  • the length distance between the mobile terminal and the base station position is between 0 meters and r1 meters.
  • the two communication nodes in the interval are divided into the first node group, and the four communication nodes whose length distance between the mobile terminal and the base station are in the interval of r1 to r2 meters are divided into the second node group; when the location information is the precoding to be configured
  • the position distance of multiple communication nodes relative to the reference position, and the position distance includes an angular distance
  • mobile terminals whose angular distances between the mobile terminal and the base station are in the same angular interval can be divided into a node group, where the angular interval It can be set according to the actual situation.
  • the six mobile terminals are grouped according to the angular distance of the six communication nodes to be configured with the precoding relative to the base station position, and three node groups are obtained, where each Each node group has two communication nodes, and this embodiment of the present application does not specifically limit this.
  • multiple communication nodes to be configured with precoding are grouped according to service users or coverage areas.
  • the communication nodes are a first reflective RIS deployed outside the first building and a second reflective RIS deployed outside the second building, and the The first reflective RIS and the second reflective RIS are both used to reflect the base station signal of the communication base station onto the street to achieve signal enhancement or system capacity improvement. Therefore, the first reflective RIS and the second reflective RIS have the same coverage area, so the first reflective RIS and the second reflective RIS can be divided into a node group; as shown in Figure 7, assuming that the transmitter is a communication base station, and the communication nodes are the first wireless nodes distributed in the first building.
  • the relay node and the second wireless relay node distributed in the second building, and the first wireless relay node and the second wireless relay node are both used to relay the base station signal of the communication base station to the same coverage area, Therefore, the first wireless relay node and the second wireless relay node can be divided into a node group; as shown in Figure 8, assuming that the transmitter is a communication base station and the communication node is a transmissive RIS integrated in the high-speed train window, it can The base station signal outside the high-speed train window is transmitted into the carriage, and the RIS on the same carriage is only used to transmit the base station signal outside the high-speed rail window into the carriage, so as to achieve signal enhancement in high-speed mobile scenarios for the mobile terminals in the carriage.
  • the RIS on the same carriage can be divided into one node group, that is, it can be divided into two node groups.
  • there are two RIS that is, two communication nodes
  • There are three RIS i.e. three communication nodes
  • grouping multiple communication nodes to be configured with precoding according to service users or coverage areas is also applicable to other communication nodes with communication service functions. The embodiments of this application do not specifically limit this.
  • the location information may be the location distance between the multiple communication nodes for which precoding is to be configured, or it may be the location distance between the communication nodes for which precoding is to be configured.
  • the position distance of multiple communication nodes relative to the reference position, where the position distance may include at least one of length distance and angular distance, is not specifically limited here. It can be understood that when the location distance is less than the distance threshold, the uplink channels or uplink channels corresponding to the communication nodes are similar. Therefore, there is a strong channel correlation between the communication nodes, and their precoding configuration information is also relatively similar. Strong correlation, in which the distance threshold can be set according to the actual situation, therefore, multiple communication nodes to be configured with precoding can be grouped according to location information.
  • a feasible implementation manner is that when a change in any of the communication node location, number of communication nodes, or wireless channel environment is detected, or a regrouping instruction is received, multiple communication nodes to be configured with precoding can be grouped, where No specific restrictions are imposed.
  • Step S120 Generate corresponding precoding configuration signaling for each node group.
  • the precoding configuration signaling corresponding to each node group may include precoding configuration information corresponding to each communication node in each node group.
  • Step S130 Send the corresponding precoding configuration signaling to each node group, so that each communication node in each node group obtains the corresponding precoding configuration information in the corresponding precoding configuration signaling for configuration.
  • a feasible implementation manner is to use multicast mode to send corresponding precoding configuration signaling to each node group, which is not specifically limited here.
  • the precoding configuration information may include precoding configuration information for transmitting wireless signals, precoding configuration information for receiving wireless signals, precoding configuration information for wireless signal relay, and precoding configuration information for reflection. Any one of the precoding configuration information of the wireless signal and the precoding configuration information used to transmit the wireless signal is not specifically limited here.
  • the precoding configuration information used to transmit wireless signals can be used to configure the transmission precoding weights of service data, pilot signals or synchronization signals to adjust the transmission beam direction of the service data, pilot signals or synchronization signals; for
  • the precoding configuration information for receiving wireless signals can be used to configure the receiving precoding weights of service data, pilot signals and synchronization signals to adjust the strongest reception direction of service data, pilot signals or synchronization signals; used for reflection or transmission wireless communication
  • the precoding configuration information of the signal is generally used for the precoding configuration of the smart metasurface to achieve reflection or transmission of the propagation direction of the wireless signal. Since smart metasurfaces generally use passive arrays and are not aware of the service type, their precoding configuration There is no need to distinguish between business types.
  • the role of the precoding configuration information used for wireless signal relay is similar to the role of the precoding configuration information used for transmitting wireless signals and the role of the precoding configuration information used for reflecting wireless signals, and will not be described again here.
  • assuming that the number of node groups is K, and corresponding precoding configuration signaling is generated for each node group, a total of K precoding configuration signaling is generated, and the i-th precoding configuration signaling is passed through the group. broadcast to all communication nodes in the corresponding i-th node group, where i 1,2,...,K, and the number of communication nodes in each node group is at least two, and there are no specific restrictions here. .
  • multiple communication nodes to be configured with precoding are first grouped to obtain multiple node groups, and then corresponding precoding is generated for each node group.
  • Configuration signaling where the precoding configuration signaling corresponding to each node group includes precoding configuration information corresponding to each communication node in each node group, and finally the corresponding precoding configuration signaling is sent to each node group, so that each Each communication node in the node group obtains the corresponding precoding configuration information in the corresponding precoding configuration signaling for configuration. That is to say, each precoding configuration signaling can be sent to multiple communication nodes in a node group.
  • each precoding configuration signaling also includes communication with each communication node within each node group.
  • Corresponding precoding configuration information therefore, each communication node in each node group can obtain the corresponding precoding configuration information in the corresponding precoding configuration signaling for configuration. Therefore, the embodiment of the present application can reduce signaling overhead and improve Precoding configuration of communication nodes is achieved under the condition of configuration efficiency.
  • step S120 is further described. This step S120 may include but is not limited to step S210, step S220 and step S230.
  • Step S210 Assign group identifiers to each node group.
  • Step S220 Assign node identifiers to each communication node in each node group.
  • Step S230 Generate corresponding precoding configuration signaling for each node group according to the group identification and node identification.
  • a group identifier can be assigned to each node group, then a node identifier can be assigned to each communication node in each node group, and finally according to the group identifier and
  • the node identification generates corresponding precoding configuration signaling for each node group, so that each communication node in each node group can determine the corresponding precoding configuration signaling according to the group identification, and then obtain it in the precoding configuration signaling according to the node identification.
  • step S120 may also include but is not limited to the following steps:
  • the group identification and the node identification may be notified to each corresponding communication node through the first signaling.
  • a group identifier is assigned to each node group, and a node identifier is assigned to each communication node in each node group. Then, the group identifier and the node identifier can be notified to the corresponding communication nodes through the first signaling, and finally, the group identifier and the node identifier can be notified to the corresponding communication nodes.
  • Generate corresponding precoding configuration signaling for each node group based on the group identification and node identification. That is to say, each communication node in each node group can know its own group identification in advance before receiving the corresponding precoding configuration signaling.
  • each communication node in each node group can determine the corresponding precoding configuration signaling based on the known group identification, and then obtain the precoding configuration signaling corresponding to itself based on the known node identification.
  • Encoding configuration information this embodiment of the present application does not specifically limit this.
  • step S230 is further described.
  • This step S230 may include: It is not limited to step S310, step S320 and step S330.
  • Step S310 Determine the precoding configuration information set of each node group according to the obtained channel information.
  • Step S320 Extract the first configuration information and the second configuration information from the precoding configuration information set of each node group, where the first configuration information includes common information applicable to the configuration of all communication nodes in the group, and the second configuration information Includes personalized information for the configuration of each communication node within the group.
  • mobile terminals located on different floors in the building have different horizontal angles and the same pitch angle relative to the communication base station.
  • the pitch angle is common information, while the horizontal angle is personalized information.
  • Information for another example, as shown in Figure 4, the length distances between mobile terminals in the same node group and the communication base station belong to the same distance interval, but the angular distances of the mobile terminals belonging to the same distance interval relative to the base station position of the communication base station are inconsistent.
  • the length distance is common information
  • the angular distance is personalized information
  • the angular distances of mobile terminals in the same node group relative to the base station position of the communication base station belong to the same angle interval
  • Mobile terminals in the same node group have different length distances from communication base stations, so the angular distance can be common information
  • the length distance is personalized information
  • different RISs on the same carriage such as the Two RIS in one compartment, or three RIS in the second compartment
  • the pitch angle is common information
  • the horizontal angle is Personalized information is not specifically limited here.
  • Step S330 Generate corresponding precoding configuration signaling for each node group according to the group identification, node identification, first configuration information, and second configuration information.
  • the precoding configuration information set of each node group is first determined according to the obtained channel information, and then the precoding configuration information set of each node group is extracted.
  • first configuration information and second configuration information wherein the first configuration information includes common information applicable to the configuration of all communication nodes in the group, and the second configuration information includes personalized information applicable to the configuration of each communication node in the group,
  • corresponding precoding configuration signaling is generated for each node group according to the group identification, node identification, first configuration information and second configuration information. That is to say, the configuration suitable for each communication node in the group can be filtered out. common information and eliminate redundant information to achieve the purpose of reducing signaling overhead.
  • each communication node in each node group can determine the corresponding precoding configuration signaling according to the group identifier, and add the first configuration information in the precoding configuration signaling.
  • common information obtained in the precoding configuration signaling and then obtain personalized information suitable for its own configuration from the second configuration information in the precoding configuration signaling based on the node identifier, and generate its own precoding configuration information based on the common information and personalized information.
  • Step S330 is further described.
  • Step S330 may include but is not limited to step S410 and step S420.
  • Step S410 Perform precoding and compression on the first configuration information and the second configuration information to obtain the compressed first configuration information and the compressed second configuration information.
  • Step S420 Generate corresponding precoding configuration signaling for each node group according to the group identification, the node identification, the compressed first configuration information, and the compressed second configuration information.
  • the first configuration information and the second configuration information are first precoded and compressed to obtain the compressed first configuration information and the compressed third configuration information.
  • Two configuration information and then generate corresponding precoding configuration signaling for each node group according to the group identification, node identification, compressed first configuration information and compressed second configuration information. Therefore, the embodiment of the present application can The first configuration information and the second configuration information are precoded and compressed to eliminate redundant information in the first configuration information and the second configuration information, thereby reducing the signal Order overhead.
  • Table 1 is a signaling format for precoding configuration signaling.
  • the signaling format includes at least the following information:
  • UID set which includes UID 1, UID 2,..., UID N;
  • the PM set includes PM 1, PM 2,..., PM N.
  • GID represents the group identification, which is used to indicate that the precoding configuration information is only applicable to the communication node with the GID
  • UID is the node identification
  • UID 1, UID 2,..., UID N respectively represent different The node identification corresponding to the communication node.
  • CommonData represents common information.
  • PM 1, PM 2,..., PM N respectively include personalized information suitable for the configuration of the corresponding communication node.
  • Each UID corresponds to a PM ( For example, UID 1 corresponds to PM 1), each PM is an array or matrix, and each PM contains compressed precoding configuration information obtained by precoding and compressing the precoding configuration information based on common information.
  • Each communication node that receives the precoding configuration signaling can restore the compressed precoding configuration information according to the CommonData and the PM after its UID (that is, the PM corresponding to the UID) according to the agreed rules, and then use the restored Configure the precoding configuration information.
  • a node group includes communication node A and communication node B, and communication node A and communication node B each include an array composed of N rows and M columns of oscillators.
  • communication node A and Communication between communication base stations can only be carried out through direct links
  • communication between communication node B and communication base station can only be carried out through direct links
  • the direct links between base stations have the same pitch angle ⁇ , and the horizontal angle corresponding to the direct link between communication node A and the communication base station is ⁇ 1, and the corresponding horizontal angle of the direct link between communication node B and the communication base station is ⁇ 2.
  • the PM of communication node A i.e. PM A
  • the PM of communication node B i.e. PM B
  • PM A and PM B both contain data ⁇
  • the common information is data ⁇
  • PM A includes data ⁇ A
  • PM B includes data ⁇ B
  • the personalized information is data ⁇ A and data ⁇ B . Therefore, the data ⁇ (i.e. common information) can be extracted and pre-coded and compressed so that PM A only includes relevant data containing data ⁇ A
  • PM B only includes relevant data containing data ⁇ B , as shown in Table 3 below. shown.
  • the communication node A After the communication node A obtains the common information ⁇ and the personalized information ⁇ A from the received precoding configuration signaling, it reconstructs the precoding configuration information according to its array dimensions N and M, and uses the reconstructed precoding configuration information for Beam adjustment. Similarly, the method by which communication node B obtains the precoding configuration information is similar to that by communication node A, which will not be described again here. In addition, the order of the fields in the above-mentioned precoding configuration signaling can be adjusted according to actual needs. The communication node that receives the precoding configuration signaling can accurately extract the correct information according to the agreed order. The embodiments of this application do not impose specific restrictions on this. .
  • the above embodiment constructs precoding configuration information based on accurate dimensional information. Since this method requires relatively complex calculations based on channel information, the real-time performance of configuration of communication nodes is easily affected. To this end, a possible implementation is proposed below.
  • step S230 in the case where the communication node has pre-stored target precoding configuration information, and the target precoding configuration information includes first configuration information and second configuration information, step S230 is further explained. , this step S230 may include but is not limited to step S510 and step S520.
  • Step S510 Generate a common identifier corresponding to the first configuration information and a personalized identifier corresponding to the second configuration information.
  • Step S520 Generate corresponding precoding configuration signaling for each node group according to the group identifier, node identifier, common identifier, and personalized identifier.
  • the communication node pre-stores the target precoding configuration information, and the target precoding configuration information includes the first configuration information and the second configuration information.
  • the target precoding configuration information includes the first configuration information and the second configuration information.
  • a common identifier corresponding to the first configuration information and a personalized identifier corresponding to the second configuration information can be generated, and then corresponding precoding configuration information is generated for each node group based on the group identifier, node identifier, common identifier, and personalized identifier. That is to say, when the communication node pre-stores multiple precoding configuration information, the communication node can directly determine the pre-coding configuration information among the multiple pre-coding configuration information according to the group identification and node identification in the pre-coding configuration signaling.
  • Corresponding target precoding configuration information and then obtain the first configuration information in the target precoding configuration information according to the common identifier, obtain the corresponding second configuration information in the target precoding configuration information according to the personalized identifier, and convert the first
  • the configuration information is combined with the second configuration information to obtain the precoding configuration information corresponding to itself in time, without the need to perform complex calculations on the channel information to reconstruct the precoding configuration information, thereby avoiding the need to perform complex calculations on the channel information.
  • the time overhead caused by calculation improves the efficiency of configuring communication nodes.
  • a certain node group includes communication node A and communication node B, and both communication node A and communication node B have pre-stored codebooks designed in advance.
  • the codebook includes several pieces of precoding configuration information.
  • the first configuration information in each precoding configuration information is assigned a corresponding common identifier, and the second configuration information in each precoding configuration information is assigned A corresponding personalized logo is assigned.
  • the transmitter can generate corresponding precoding configuration signaling based on the assigned common identifier and the assigned personalized identifier.
  • the signaling format of the precoding configuration signaling is as shown in Table 5.
  • GID is the group identifier
  • UID is the node identifier
  • PMI C is the common identifier, which is used to identify common information applicable to the configuration of communication node A and communication node B
  • PMI A is the personalized identifier of communication node A.
  • the PMI A is used to identify personalized information applicable to the configuration of communication node A
  • PMI B is the personalized identifier of communication node B
  • the PMI B is used to identify personalized information applicable to the configuration of communication node B.
  • Communication node A can determine the corresponding personalized identification and common identification based on the received GID, UID, PMI C and PMI A, and select the corresponding precoding from the codebook pre-stored by communication node A based on the personalized identification and common identification.
  • Configuration information ie, target precoding configuration information
  • the method used by communication node B to determine the target precoding configuration information is similar to that of communication node A, which will not be described again here.
  • the corresponding precoding configuration signaling generated for each node group in the above embodiments all carries the node identifier of each communication node in each node group, therefore, when the number of communication nodes in the node group is large, , the signaling overhead increases accordingly.
  • Step S120 is further described.
  • Step S120 may include but is not limited to step S610, step S620 and step S630.
  • Step S610 Assign group identifiers to each node group.
  • Step S620 Sort all communication nodes in each node group to obtain the group sequence number of each communication node in each node group.
  • a feasible implementation method is to sort all communication nodes in each node group.
  • Step S630 Generate corresponding precoding configuration signaling for each node group according to the group identification and intra-group sequence number.
  • a group identifier can be assigned to each node group, and then all communication nodes in each node group can be sorted to obtain each node group in each node group.
  • the group sequence number of the communication node and finally generate corresponding precoding configuration signaling for each node group according to the group identification and the group sequence number, avoiding the signaling overhead caused by carrying the node identification of each communication node, and reducing the signaling overhead.
  • step S120 may also include but is not limited to the following steps:
  • the group identification and intra-group sequence number are notified to each corresponding communication node through the second signaling.
  • group identifiers are first assigned to each node group, and all communication nodes in each node group are sorted to obtain the intra-group sequence numbers of each communication node in each node group. Then, the group identifiers can be assigned to each node group through second signaling. and the serial number in the group are notified to each corresponding communication node. Finally, each node can be grouped according to the group ID and the serial number in the group. Generate corresponding precoding configuration signaling so that each communication node can obtain the group ID and group sequence number in advance. After the precoding configuration signaling is sent to each node group, each communication node can directly determine the corresponding group ID based on the known group ID. Precoding configuration signaling, and then determining the precoding configuration information corresponding to itself in the precoding configuration signaling according to the sequence number in the group. This embodiment of the present application does not specifically limit this.
  • step S630 is further described. This step S630 may include but is not limited to step S710, step S720, step S730 and step S740.
  • Step S710 Determine the precoding configuration information set of each node group according to the obtained channel information.
  • Step S720 Extract the first configuration information and the second configuration information from the precoding configuration information set of each node group.
  • Step S730 Sort the second configuration information according to the sequence number within the group to obtain the sorted second configuration information.
  • Step S740 Generate corresponding precoding configuration signaling for each node group according to the group identifier, the first configuration information and the sorted second configuration information.
  • the precoding configuration method including the above steps S710 to S740, first determine the precoding configuration information set of each node group according to the obtained channel information, and then extract the precoding configuration information set of each node group.
  • the first configuration information and the second configuration information, and then the second configuration information is sorted according to the sequence number in the group to obtain the sorted second configuration information.
  • Each node group generates corresponding precoding configuration signaling, so that each communication node in each node group extracts the second configuration information that is the same as its own sort from the sorted second configuration information according to its respective intra-group sequence number, without using
  • the node identification determines the corresponding second configuration information, thereby avoiding the signaling overhead caused by carrying the node identification of each communication node, and reducing the signaling overhead.
  • the signaling format of the precoding configuration signaling generated according to the group identifier, the first configuration information and the sorted second configuration information can be as shown in Table 6, where GID represents the group identifier and CommonData represents The first configuration information, PM 1, PM 2,..., PM N represents the sorted second configuration information.
  • step S630 may also include but is not limited to the following steps:
  • Precoding and compressing the first configuration information and the second configuration information to obtain compressed first configuration information and compressed second configuration information.
  • the precoding configuration information set of each node group can be determined based on the obtained channel information, and then the first configuration information and the second configuration information in the precoding configuration information set of each node group are extracted, and then the first configuration
  • the information and the second configuration information are precoded and compressed to obtain the compressed first configuration information and the compressed second configuration information.
  • the compressed second configuration information is sorted according to the sequence number in the group to obtain the sorted compressed second configuration information. two configuration information, and finally generate corresponding precoding configuration signaling for each node group according to the group identification, the compressed first configuration information and the sorted compressed second configuration information.
  • the embodiment of the present application can pass the first The configuration information and the second configuration information are precoded and compressed to eliminate redundant information in the first configuration information and the second configuration information, reduce the signaling overhead of precoding configuration signaling, and at the same time, facilitate each communication within each node group.
  • the nodes extract the compressed second configuration information that is the same as their own order from the sorted compressed second configuration information according to their respective intra-group serial numbers, without using the node identifier to determine the corresponding compressed second configuration information, and then The signaling overhead caused by carrying the node identification of each communication node is avoided and the signaling overhead is reduced.
  • step S630 in the case where the communication node has pre-stored target precoding configuration information, and the target precoding configuration information includes first configuration information and second configuration information, step S630 is further explained. , this step S630 may include but is not limited to step S810, step S820 and step S830.
  • Step S810 Generate a common identifier corresponding to the first configuration information and a personalized identifier corresponding to the second configuration information.
  • Step S820 Sort the personalized identifiers according to the serial numbers in the group to obtain the sorted personalized identifiers.
  • Step S830 Generate corresponding precoding configuration signaling for each node group according to the group identifier, common identifier and sorted personalized identifier.
  • the communication node pre-stores the target precoding configuration information
  • the target precoding configuration information includes the first configuration information and the second configuration information.
  • the group identifier, commonality The identified and sorted personalized identifiers generate corresponding precoding configuration signaling for each node group, so that each communication node in each node group obtains the corresponding first configuration information from the pre-stored target precoding configuration information according to the common identifier,
  • the personalized identifier that is the same as the sorted identifier is determined from the sorted personalized identifiers, and then the corresponding second configuration information is obtained from the pre-stored target precoding configuration information based on the personalized identifier, without using the node
  • the group sequence number of communication node A is 1, and the group sequence number of communication node B is 2, then according to the group identification, commonality identification and
  • the signaling format of the precoding configuration signaling generated from the sorted personalized identifiers can be shown in Table 7, where GID is the group identifier, PIM C is the common identifier, and PMI A is the personalized identifier of communication node A.
  • PIM B is the personalized identification of communication node B.
  • the first configuration information and the second configuration information for generating precoding configuration information in the precoding configuration signaling in some of the above embodiments are obtained by calculating the channel information, therefore, when the nodes are grouped When there are a large number of communication nodes in the system, the calculation amount of channel information is large, which affects the real-time performance of beam control. To this end, a possible implementation is proposed below.
  • step S120 is further described.
  • This step S120 may include but is not limited to step S910, step S920, step S930, step S940 and step S950.
  • Step S910 Assign group identifiers to each node group.
  • Step S920 Assign node identifiers to each communication node in each node group.
  • Step S930 Determine the intra-group reference node and multiple intra-group communication nodes of each node group.
  • the reference nodes in the group can be determined through random selection or through sorted selection, which is not specifically limited here.
  • the communication node at the starting position can be selected as the reference node in the group, or the communication node at the end position can be selected as the reference node in the group. There are no specific restrictions here. .
  • Step S940 Determine the correlation type information between the communication nodes in each group and the reference nodes in the group.
  • the correlation type information may include channel correlation or other correlation type information, which is not specifically limited here. For example, it can be determined that the correlation type information of communication nodes with similar locations in the node group is information. Tao correlation.
  • Step S950 Generate corresponding precoding configuration signaling for each node group according to the group identifier and correlation type information.
  • the precoding configuration method including the above-mentioned steps S910 to S950, first allocate identifiers to each node group, and allocate node identifiers to each communication node within each node group, and then determine the group of each node group. internal reference nodes and multiple intra-group communication nodes, and then determine the correlation type information between each intra-group communication node and the intra-group reference node, and finally generate corresponding precoding for each node group based on the group identification and correlation type information.
  • Configuration signaling is sent to the corresponding node group according to the group identifier in the precoding configuration signaling, so that each communication node in the corresponding node group can obtain the corresponding correlation type information and corresponding information in the precoding configuration signaling.
  • precoding configuration information for configuration can only determine the precoding configuration information for the reference node in the group, and then use the correlation type information and the precoding configuration information of the reference node in the group corresponding to the correlation type information to determine the precoding configuration information with the reference node in the group.
  • the precoding configuration information of multiple intra-group communication nodes with correlation type information between reference nodes shortens the time to determine the precoding configuration information, improves the precoding configuration efficiency, and meets the real-time requirements of beam control.
  • step S120 may also include but is not limited to the following steps:
  • the group identification, node identification, correlation type information and node information of the reference node in the group are notified to the corresponding communication nodes through the third signaling.
  • the node identifier may include the node identifier of the reference node in the group and the node identifier of the communication node in the group, or may only include the node identifier of the communication node in the group, which is not specifically limited here.
  • identifiers are first assigned to each node group, and node identifiers are assigned to each communication node in each node group. Then, the intra-group reference node and multiple intra-group communication nodes of each node group are determined, and then each group is determined.
  • Correlation type information between the communication node within the group and the reference node within the group and then notify the corresponding communication nodes through the third signaling of the group identification, node identification, correlation type information and node information of the reference node within the group, and finally according to The group identification and correlation type information generate corresponding precoding configuration signaling for each node group, so that the communication node can determine the corresponding precoding configuration signaling based on the group identification learned in advance, and then use the node identification learned in advance to generate the corresponding precoding configuration signaling.
  • the corresponding correlation type information is obtained from the coded configuration signaling, and the node information of the reference node in the group can also be used to determine whether it is a reference node in the group. This embodiment of the present application does not specifically limit this.
  • the communication node when it determines that it is a reference node in the group based on the node information of the reference node in the group, it can obtain the corresponding precoding configuration information in the corresponding precoding configuration signaling for configuration.
  • the communication node determines itself according to the node information of the reference node in the group, When the node information of the reference node in the group determines that it is not a reference node in the group, that is, it is a communication node in the group, it can be based on the corresponding correlation type information and the precoding configuration information of the reference node in the group corresponding to the correlation type information. Determine its own precoding configuration information and use its own precoding configuration information for configuration. Therefore, the embodiment of the present application shortens the time for determining the precoding configuration information, thus meeting the real-time requirements of beam control.
  • step S950 is further described. This step S950 may include but is not limited to step S1010 and step S1020.
  • Step S1010 For each node group, determine the reference precoding configuration information of the reference node in the group based on the obtained channel information, and determine the related precoding information between the communication node in each group and the reference node in the group based on the correlation type information.
  • Step S1020 Generate corresponding precoding configuration signaling for each node group according to the group identification, node identification, reference precoding configuration information and related precoding information.
  • the node identification may include the node identification of the reference node in the group and the node identification of the communication node in the group.
  • the identification may also only include the node identification of the communication node in the group, and there is no specific restriction here.
  • the communication nodes of each node group can determine the corresponding precoding configuration signaling according to the group identification, and then obtain the corresponding precoding configuration information in the precoding configuration signaling according to the node identification.
  • the communication node is a group If the communication node is an internal reference node, it can directly obtain the reference precoding configuration information for configuration.
  • the communication node is an intra-group communication node, it can directly obtain the relevant precoding information for configuration. There are no specific restrictions here.
  • the reference precoding configuration information of the reference node in the group can be determined according to the obtained channel information, and according to the correlation type
  • the information determines the relevant precoding information between the communication nodes in each group and the reference nodes in the group, and then generates corresponding precoding configuration signaling for each node group based on the group identification, node identification, reference precoding configuration information and related precoding information.
  • the embodiment of the present application only needs to determine the reference precoding configuration information of the reference node in the group based on the obtained channel information, and does not need to determine the precoding configuration information of the communication nodes in each group within the node group based on the obtained channel information. Therefore, It avoids the calculation amount of calculating channel information to determine the precoding configuration information of the communication nodes in the group, shortens the time to determine the precoding configuration information, improves the precoding configuration efficiency, and meets the real-time requirements of beam control. .
  • the signaling format of the precoding configuration signaling generated based on the group identification, node identification, reference precoding configuration information and related precoding information can be as follows: As shown in Table 8, where GID represents the group identification, PMR represents the reference precoding configuration information of the reference node in the group, UID 1, UID2,..., UID N respectively represents the node identification of the communication nodes in different groups. COR 1, COR 2,..., COR N respectively represent the relevant precoding information between the communication nodes in each group and the reference nodes in the group, and the node identifier of the reference node in each group and its corresponding related precoding information The coding information corresponds one to one. For example, the relevant precoding information corresponding to the reference node in the group with the node identifier UID 1 is COR 1.
  • step S1020 is further described.
  • Step S1020 may include but is not limited to step S1110 and step S1120.
  • Step S1110 Perform precoding compression on the reference precoding configuration information to obtain compressed reference precoding configuration information.
  • Step S1120 Generate corresponding precoding configuration signaling for each node group according to the group identification, node identification, relevant precoding information and compressed reference precoding configuration information.
  • the reference precoding configuration information can be precoded and compressed to obtain the compressed reference precoding configuration information, and then the reference precoding configuration information can be obtained according to the group identification and node identification. , the relevant precoding information and the compressed reference precoding configuration information to generate corresponding precoding configuration signaling for each node group. Therefore, the embodiment of the present application can eliminate the reference precoding by performing precoding compression on the reference precoding configuration information. redundant information in the configuration information, thus reducing the signaling overhead of precoding configuration signaling.
  • step S950 when the communication node pre-stores a candidate precoding configuration information set, and the candidate precoding configuration information set includes the reference precoding configuration information of the reference node in the group, step S950 is further performed.
  • step S950 may include but is not limited to step S1210 and step S1220.
  • Step S1210 For each node group, generate a reference precoding identifier corresponding to the reference precoding configuration information, and determining relevant precoding information between communication nodes in each group and reference nodes in the group according to the correlation type information.
  • Step S1220 Generate corresponding precoding configuration signaling for each node group according to the group identifier, node identifier, reference precoding identifier and related precoding information.
  • a reference precoding identifier corresponding to the reference precoding configuration information can be generated, and each node can be determined according to the correlation type information.
  • the reference node can determine the corresponding reference precoding configuration information based on the reference precoding identification, and the communication nodes in the group can determine the relevant precoding information based on the node identification, without the time overhead incurred by reconstructing the precoding configuration information, improving communication
  • the efficiency of node configuration meets the real-time demand for beam control.
  • Step S950 is further described.
  • Step S950 may include but is not limited to step S1310, step S1320, step S1330 and step S1340.
  • Step S1310 For each node group, determine the reference precoding configuration information of the reference node in the group based on the obtained channel information, and determine the related precoding information between the communication node in each group and the reference node in the group based on the correlation type information.
  • Step S1320 Sort all communication nodes in each node group to obtain the group sequence number of each communication node in each node group.
  • Step S1330 For each node group, sort the relevant precoding information according to the sequence number within the group to obtain the sorted relevant precoding information.
  • Step S1340 Generate corresponding precoding configuration signaling for each node group according to the group identifier, reference precoding configuration information and sorted related precoding information.
  • the reference precoding configuration information of the reference node in the group can be determined according to the obtained channel information, and according to the correlation type
  • the information determines the relevant precoding information between the communication nodes in each group and the reference nodes in the group, and then sorts all the communication nodes in each node group to obtain the group sequence number of each communication node in each node group, and for each node Grouping, the relevant precoding information can be sorted according to the sequence number in the group to obtain the sorted relevant precoding information, and finally the corresponding precoding is generated for each node group according to the group identification, reference precoding configuration information and sorted relevant precoding information.
  • each intra-group communication node in each node group extracts relevant precoding information that is the same as its own sorting from the sorted relevant precoding information according to its own intra-group sequence number, and allows the reference node in the group to extract the relevant precoding information based on its own sequence number.
  • the sequence number within the group is determined with reference to the precoding configuration information, without the need to use the node identifier to determine and correspond to the relevant precoding information, thereby avoiding the signaling overhead caused by carrying the node identifier of each communication node, and reducing the signaling overhead.
  • the signaling format of the precoding configuration signaling generated based on the group identifier, reference precoding configuration information and sorted related precoding information can be as shown in Table 9, where GID represents the group identifier, and PMR Represents the reference precoding configuration information of the reference node in the group, COR 1, COR 2,..., COR N represents the sorted related precoding information.
  • a set of candidate precoding configuration information is pre-stored in the communication node.
  • the code configuration information set includes the reference precoding configuration information of the reference node in the group.
  • step S950 will be further described. This step S950 may include but is not limited to step S1410, step S1420, step S1430, and step S1440.
  • Step S1410 For each node group, generate a reference precoding identifier corresponding to the reference precoding configuration information, and determine the relevant precoding information between the communication node in each group and the reference node in the group according to the correlation type information.
  • Step S1420 Sort all communication nodes in each node group to obtain the group sequence number of each communication node in each node group.
  • Step S1430 For each node group, sort the relevant precoding information according to the sequence number within the group to obtain the sorted relevant precoding information.
  • Step S1440 Generate corresponding precoding configuration signaling for each node group according to the group identifier, the reference precoding identifier and the sorted related precoding information.
  • a reference precoding identifier corresponding to the reference precoding configuration information can be generated, and each node can be determined according to the correlation type information.
  • the relevant precoding information between the communication nodes in the group and the reference nodes in the group, and then all the communication nodes in each node group are sorted to obtain the group sequence number of each communication node in each node group.
  • you can The relevant precoding information is sorted according to the sequence number within the group to obtain the sorted relevant precoding information.
  • corresponding precoding configuration signaling is generated for each node group based on the group identifier, the reference precoding identifier and the sorted relevant precoding information. So that each intra-group communication node in each node group extracts relevant precoding information that is the same as its own sorting from the sorted relevant precoding information according to its respective intra-group serial number, and configures it according to the corresponding relevant precoding information without using The node identification and the corresponding related precoding information are determined, thus avoiding the signaling overhead caused by carrying the node identification of each communication node, reducing the signaling overhead. At the same time, it also enables the reference node in the group to be determined based on the reference precoding identification. Refer to the precoding configuration information for configuration.
  • the signaling format of the precoding configuration signaling generated according to the group identifier, the reference precoding identifier and the sorted related precoding information can be as shown in Table 10, where GID represents the group identifier, PMI- R represents the reference precoding identification, COR 1, COR 2,..., COR N represents the sorted related precoding information.
  • step S130 is further described.
  • This step S130 may include but is not limited to step S1510, step S1520 and step S1530.
  • Step S1510 Determine the first scrambling code corresponding to each node group according to the group identifier of each node group.
  • the first scrambling code is a pseudo-random code sequence, which is not specifically limited here.
  • Step S1520 Scramble the precoding configuration information in the precoding configuration signaling corresponding to each node group according to each first scrambling code to obtain scrambled precoding configuration signaling.
  • Step S1530 Send corresponding scrambled precoding configuration signaling to each node group.
  • the first scrambling code corresponding to each node group can be determined according to the group identifier of each node group, and then each first scrambling code can be
  • the precoding configuration information in the precoding configuration signaling corresponding to the node group is scrambled to obtain the scrambled precoding configuration signaling, and finally sends the corresponding scrambled precoding configuration signaling to each node group, so that each communication node in each node group can only descramble the corresponding scrambled precoding configuration signaling, and then in the The corresponding precoding configuration information is obtained from the precoding configuration signaling. Therefore, the embodiment of the present application can distinguish different node groups through the scrambled precoding configuration signaling.
  • step S130 is further described.
  • This step S130 may include but is not limited to step S1610, step S1620, step S1630 and step S1640.
  • Step S1610 Sort multiple node groups to obtain the group sequence number of each node group.
  • Step S1620 Determine the second scrambling code corresponding to each node group according to the group sequence number of each node group.
  • the second scrambling code is a pseudo-random code sequence, which is not specifically limited here.
  • Step S1630 Scramble the precoding configuration information in the precoding configuration signaling corresponding to each node group according to each second scrambling code to obtain scrambled precoding configuration signaling.
  • Step S1640 Send corresponding scrambled precoding configuration signaling to each node group.
  • multiple node groups can be sorted to obtain the group sequence number of each node group, and then each node group is determined according to the group sequence number of each node group.
  • the precoding configuration information in the precoding configuration signaling corresponding to each node group is scrambled according to each second scrambling code to obtain the scrambled precoding configuration signaling, and finally to each node group.
  • the node groups send the corresponding scrambled precoding configuration signaling, so that each communication node in each node group can only descramble the corresponding scrambled precoding configuration signaling, and then obtain the precoding configuration signaling in the Corresponding precoding configuration information, therefore, embodiments of the present application can distinguish different node groups through scrambled precoding configuration signaling.
  • step S130 is further described.
  • This step S130 may include but is not limited to step S1710, step S1720 and step S1730.
  • Step S1710 For each node group, determine the third scrambling code according to the node identifier of the reference node in the group.
  • the third scrambling code is a pseudo-random code sequence, which is not specifically limited here.
  • Step S1720 Scramble the precoding configuration information in the precoding configuration signaling corresponding to each node group according to each third scrambling code to obtain scrambled precoding configuration signaling.
  • Step S1730 Send corresponding scrambled precoding configuration signaling to each node group.
  • the third scrambling code can be determined according to the node identifier of the reference node in the group, and then each third scrambling code can be determined according to each third scrambling code.
  • the precoding configuration information in the precoding configuration signaling corresponding to the node group is scrambled to obtain the scrambled precoding configuration signaling, and finally the corresponding scrambled precoding configuration signaling is sent to each node group, so that Each communication node in each node group can only descramble the corresponding scrambled precoding configuration signaling, and then obtain the corresponding precoding configuration information in the precoding configuration signaling. Therefore, the embodiment of the present application can add The scrambled precoding configuration signaling is used to distinguish different node groups.
  • allocating a group identity and an allocation node identity to a communication node to be configured with precoding may include the following steps:
  • Step 1 Perform statistics on communication nodes to be configured with precoding
  • Step 2 The communication nodes to be configured with precoding are grouped according to the specified grouping standard
  • Step 3 Assign group identifiers to each node group and assign node identifiers to each communication node within each node group;
  • Step 4 Send the group identification and node identification to each communication node to be configured with precoding through the designated downlink channel;
  • Step 5 Each communication node to be configured with precoding receives precoding configuration signaling through the designated channel;
  • Step 6 Each communication node to be configured with precoding obtains the group identity and node identity from the received precoding configuration signaling, and stores them in the internal memory.
  • assigning group identifiers to communication nodes to be configured with precoding allocation and sorting each communication node in each node group may include the following steps:
  • Step 1 Perform statistics on communication nodes to be configured with precoding
  • Step 2 The communication nodes to be configured with precoding are grouped according to the specified grouping standard
  • Step 3 Assign group identifiers to each node group, sort all communication nodes in each node group, and obtain the group serial number of each communication node in each node group;
  • Step 4 Send the group identification and group sequence number of each communication node to each communication node to be configured with precoding through the designated downlink channel.
  • Step 5 Each communication node to be configured with precoding receives precoding configuration signaling through the designated channel;
  • Step 6 Each communication node to be configured with precoding obtains the group identification and group sequence number from the received precoding configuration signaling, and stores them in the internal memory.
  • determining the reference node in the group of each node group, and notifying the node information of the reference node in the group to the corresponding communication nodes may include the following steps:
  • Step 1 Perform statistics on communication nodes to be configured with precoding
  • Step 2 The communication nodes to be configured with precoding are grouped according to the specified grouping standard
  • Step 3 Determine the reference nodes within the group for each node group
  • Step 4 Send the reference node in the group to the communication node to be configured with precoding through the designated downlink channel;
  • Step 5 The communication node to be configured with precoding receives the precoding configuration signaling through the designated channel;
  • Step 6 The communication node to be configured with precoding obtains the node information of the reference node in the group from the received precoding configuration signaling, and saves it in the internal memory.
  • step 3 can also sort all the communication nodes in each node group to obtain the group sequence number of each communication node in each node group.
  • step 6 can save the group sequence number of each communication node in the internal memory. .
  • the group identifier and intra-group sequence number of each communication node in all the above embodiments can be changed. For example, for a communication node with mobile capabilities, when its location changes, the original grouping standard will no longer apply, and the communication node needs to be re-grouped. Therefore, for the step of grouping communication nodes in all embodiments, the communication nodes can be re-grouped according to a preset time interval; or the communication nodes can be re-grouped according to a preset trigger condition, such as a communication node reporting a location change. Afterwards, the communication nodes are re-grouped.
  • a group identifier (or a group identifier and an intra-group sequence number) will be re-assigned to each node group, and the communication nodes need to be re-grouped according to the precoding configuration signaling.
  • the communication nodes to be configured with precoding allocation are assigned group identifiers, and the communication nodes within each node group are assigned Sorting of each communication node may include the following steps:
  • Step 1 Determine the precoding configuration information corresponding to the communication node, or generate the corresponding precoding configuration information based on the common information applicable to the configuration of the communication node and the personalized information applicable to the configuration of the communication node, and use the precoding configuration information to configure.
  • Step 2 Determine the scrambling code (such as the first scrambling code, the second scrambling code or the third scrambling code) corresponding to each node group, and use it to scramble the precoding configuration information to generate the scrambled precoding configuration information. make.
  • the scrambling code such as the first scrambling code, the second scrambling code or the third scrambling code
  • Step 3 Send the scrambled precoding configuration signaling through the designated multicast channel.
  • Step 4 The communication node receives the scrambled precoding configuration signaling from the multicast channel.
  • Step 5 Descramble the scrambled precoding configuration signaling to obtain the descrambled precoding configuration signaling, and obtain the precoding configuration information from the descrambled precoding configuration signaling; or obtain the precoding configuration information from the descrambling precoding configuration signaling.
  • the first configuration information and the second configuration information are obtained from the subsequent precoding configuration signaling, and precoding reconstruction is performed on the first configuration information and the second configuration information to obtain the precoding configuration information.
  • Step 6 Use the obtained precoding configuration information to complete the beam control configuration.
  • the three mobile terminals can be divided into the first node group 120. Therefore, the first node can be The corresponding precoding configuration information is determined by grouping, and the position distance between the other two communication nodes is less than the distance threshold, then the two communication nodes can be divided into the second node group 110, and the corresponding precoding configuration information can be determined for the second node group. Precoding configuration information.
  • the length distances between mobile terminals in the same node group and the communication base station belong to the same distance interval, and the angular distances of the mobile terminals belonging to the same distance interval relative to the base station position of the communication base station are inconsistent. Therefore, only the length distance between one of the mobile terminals and the communication base station can be measured, and the angular distance of each mobile terminal relative to the base station position of the communication base station can be measured at the same time to determine the precoding configuration information corresponding to each mobile terminal, which will not be detailed here. limit.
  • the transmitter is a communication base station
  • the communication nodes are a first reflective RIS deployed outside the first building and a second reflective RIS deployed outside the second building.
  • the first reflective RIS and the second reflective RIS have the same coverage area, and usually the direct path energy is the strongest, it can be directly determined according to the position of the first reflective RIS and the second reflective RIS, as well as the first Based on the coverage area of the reflective RIS and the coverage area of the second reflective RIS, the reflection channel of the first reflective RIS and the reflection channel of the second reflective RIS are inferred, and then based on the location of the base station and the location of the first reflective RIS and the second reflective RIS The position of the second reflective RIS is used to estimate the incident channel of the first reflective RIS and the incident channel of the second reflective RIS, thereby directly estimating the corresponding precoding configuration information.
  • a small number of active measurement units on the first reflective RIS and the second reflective RIS can be used to achieve a
  • the transmitter is a communication base station
  • the communication node is a transmissive RIS integrated in a high-speed train window. Due to the high-speed movement of the high-speed train, the precoding configuration information corresponding to the RIS is updated frequently, so it is more Efficient precoding determination methods are needed.
  • the relative position of the high-speed train window since the relative position of the high-speed train window is fixed, it is only necessary to measure the azimuth angle ⁇ 1 of the first window and the distance r1 between the first window and the communication base station. can be calculated based on simple geometric formulas
  • the relative position of the second window and the base station is determined to determine the precoding configuration information corresponding to the transmissive RIS of the first window and the precoding configuration information corresponding to the transmissive RIS of the second window. It is understandable that due to vehicle speed, track conditions, environmental occlusion, etc., if the distance between the vehicle window and the communication base station is too far, the estimation error will be very large. Therefore, it is necessary to determine the appropriate node grouping according to the actual situation, taking into account efficiency and accuracy. .
  • the precoding configuration device 200 includes a memory 202, a processor 201, and a program stored in the memory 202 and capable of running on the processor 201. Computer program.
  • the processor 201 and the memory 202 may be connected through a bus or other means.
  • the memory 202 can be used to store non-transitory software programs and non-transitory computer executable programs.
  • the memory 202 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory 202 optionally includes memory located remotely relative to the processor 201, and these remote memories may be connected to the processor 201 through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the non-transitory software programs and instructions required to implement the precoding configuration method of the above embodiment are stored in the memory 202.
  • the precoding configuration method in the above embodiment is executed, for example, the above described Method steps S110 to S130 in Figure 1, method steps S210 to S230 in Figure 9, method steps S310 to S330 in Figure 10, method steps S410 to S420 in Figure 11, method steps S510 to S520 in Figure 12, Method steps S610 to S630 in Figure 13, method steps S710 to S740 in Figure 14, method steps S810 to S830 in Figure 15, method steps S910 to S950 in Figure 16, method steps S1010 to S1020 in Figure 17, Method steps S1110 to S1120 in Figure 18, method steps S1210 to S1220 in Figure 19, method steps S1310 to S1340 in Figure 20, method steps S1410 to S1440 in Figure 21, method steps S1510 to S1530 in Figure 22, Method steps S1610 to S1640 in Figure 23 and method steps S1710 to S1730 in Figure 24 .
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • one embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are executed by a processor or controller, for example, executing the above
  • the method steps S110 to S130 in Fig. 1, the method steps S210 to S230 in Fig. 9, the method steps S310 to S330 in Fig. 10, the method steps S410 to S420 in Fig. 11, the method steps S510 to S510 in Fig. 12 are described.
  • an embodiment of the present application also provides a computer program product, including a computer program or computer instructions.
  • the computer program or computer instructions are stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer program from the computer-readable storage medium.
  • the computer program or computer instructions are obtained, and the processor executes the computer program or computer instructions, so that the computer device performs the precoding configuration method in the above embodiment, for example, performs the method step S110 in Figure 1 described above.
  • method steps S210 to S230 in Figure 9 method steps S310 to S330 in Figure 10, method steps S410 to S420 in Figure 11, method steps S510 to S520 in Figure 12, method step S610 in Figure 13 to S630, method steps S710 to S740 in Figure 14, method steps S810 to S830 in Figure 15, method steps S910 to S950 in Figure 16, method steps S1010 to S1020 in Figure 17, method step S1110 in Figure 18 to S1120, method steps S1210 to S1220 in Figure 19, method steps S1310 to S1340 in Figure 20, method steps S1410 to S1440 in Figure 21, method steps S1510 to S1530 in Figure 22, method step S1610 in Figure 23 to S1640, method steps S1710 to S1730 in Figure 24 .
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种预编码配置方法及其装置、存储介质,该方法包括:对待配置预编码的多个通信节点进行分组得到多个节点分组;为各个节点分组生成对应的预编码配置信令,该各个节点分组所对应的预编码配置信令包括与各个节点分组内每个通信节点对应的预编码配置信息;向各个节点分组发送对应的预编码配置信令,使得各个节点分组内的各个通信节点获取相应的预编码配置信令中对应的预编码配置信息以进行配置。

Description

预编码配置方法及其装置、存储介质
相关申请的交叉引用
本申请基于申请号为202210655284.2、申请日为2022年06月10日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于通信技术领域,尤其涉及一种预编码配置方法及其装置、存储介质。
背景技术
在传统天线通信标准中,发射机(如通信基站)需要向各个接入的通信节点(如终端)逐个下发预编码配置信令,而在下发预编码配置信令的过程中,每个通信节点需要占用一个特定的下行信道资源,这不仅造成降低了预编码配置效率,还增加了资源开销。另外,由于向每个通信节点下发的每个预编码配置信令都需要携带相同的报文头,所以预编码配置信令中会包括较多的冗余信息,继而也增加了信令开销。因此,如何在降低信令开销和提高配置效率的情况下实现对通信节点的预编码配置,是亟待解决的一个问题。
发明内容
本申请实施例提供了一种预编码配置方法及其装置、存储介质,能够在降低信令开销和提高配置效率的情况下实现对通信节点的预编码配置。
第一方面,本申请实施例提供了一种预编码配置方法,包括:
对待配置预编码的多个通信节点进行分组,得到多个节点分组;为各个所述节点分组生成对应的预编码配置信令,其中,各个所述节点分组所对应的所述预编码配置信令包括与各个所述节点分组内每个所述通信节点对应的预编码配置信息;向各个所述节点分组发送对应的所述预编码配置信令,使得各个所述节点分组内的各个所述通信节点获取相应的所述预编码配置信令中对应的所述预编码配置信息以进行配置。
第二方面,本申请实施例还提供了一种预编码配置装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的预编码配置方法。
第三方面,本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上所述的预编码配置方法。
第四方面,本申请实施例还提供了一种计算机程序产品,包括计算机程序或计算机指令,所述计算机程序或所述计算机指令存储在计算机可读存储介质中,计算机设备的处理器从所述计算机可读存储介质读取所述计算机程序或所述计算机指令,所述处理器执行所述计算机程序或所述计算机指令,使得所述计算机设备执行如上所述的预编码配置方法。
本申请实施例包括:首先对待配置预编码的多个通信节点进行分组,得到多个节点分组, 接着为各个节点分组生成对应的预编码配置信令,其中,各个节点分组所对应的预编码配置信令包括与各个节点分组内每个通信节点对应的预编码配置信息,最后向各个节点分组发送对应的预编码配置信令,使得各个节点分组内的各个通信节点获取相应的预编码配置信令中对应的预编码配置信息以进行配置,即是说,每个预编码配置信令可以发送给一个节点分组中的多个通信节点,无需为每一个通信节点发送一个预编码配置信令,这不仅提高了预编码配置效率,还降低了信令开销,并且每个预编码配置信令还包括与各个节点分组内每个通信节点对应的预编码配置信息,因此,各个节点分组内的各个通信节点可以获取相应的预编码配置信令中对应的预编码配置信息进行配置,因此,本申请实施例能够在降低信令开销和提高配置效率的情况下实现对通信节点的预编码配置。
附图说明
图1是本申请一个实施例提供的预编码配置方法的流程图;
图2是本申请一个具体示例提供的节点分组的示意图;
图3是本申请另一个具体示例提供的节点分组的示意图;
图4是本申请另一个具体示例提供的节点分组的示意图;
图5是本申请另一个具体示例提供的节点分组的示意图;
图6是本申请另一个具体示例提供的节点分组的示意图;
图7是本申请另一个具体示例提供的节点分组的示意图;
图8是本申请另一个具体示例提供的节点分组的示意图;
图9是图1中步骤S120的一种具体方法的流程图;
图10是图9中步骤S230的一种具体方法的流程图;
图11是图10中步骤S330的一种具体方法的流程图;
图12是图9中步骤S230的另一种具体方法的流程图;
图13是图1中步骤S120的另一种具体方法的流程图;
图14是图13中步骤S630的一种具体方法的流程图;
图15是图13中步骤S630的另一种具体方法的流程图;
图16是图1中步骤S120的另一种具体方法的流程图;
图17是图16中步骤S950的一种具体方法的流程图;
图18是图17中步骤S1020的一种具体方法的流程图;
图19是图16中步骤S950的另一种具体方法的流程图;
图20是图16中步骤S950的另一种具体方法的流程图;
图21是图16中步骤S950的另一种具体方法的流程图;
图22是图1中步骤S130的一种具体方法的流程图;
图23是图1中步骤S130的另一种具体方法的流程图;
图24是图1中步骤S130的另一种具体方法的流程图;
图25是本申请一个具体示例提供的确定预编码配置信息的示意图;
图26是本申请一个实施例提供的预编码配置装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图的描述中,多个(或多项)的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请提供了一种预编码配置方法及其装置、存储介质,首先对待配置预编码的多个通信节点进行分组,得到多个节点分组,接着为各个节点分组生成对应的预编码配置信令,其中,各个节点分组所对应的预编码配置信令包括与各个节点分组内每个通信节点对应的预编码配置信息,最后向各个节点分组发送对应的预编码配置信令,使得各个节点分组内的各个通信节点获取相应的预编码配置信令中对应的预编码配置信息以进行配置,即是说,每个预编码配置信令可以发送给一个节点分组中的多个通信节点,而无需为每一个通信节点发送一个预编码配置信令,这不仅提高了预编码配置效率,还降低了信令开销,并且每个预编码配置信令还包括与各个节点分组内每个通信节点对应的预编码配置信息,因此,各个节点分组内的各个通信节点可以获取相应的预编码配置信令中对应的预编码配置信息进行配置,因此,本申请实施例能够在降低信令开销和提高配置效率的情况下实现对通信节点的预编码配置。
值得注意的是,相关技术中,由于阵列天线可以动态调控波束,实现空间资源的高效利用,因此,MIMO(Multiple input and Multiple output,大规模输入输出)技术和Massive MIMO(Massive Multiple input and Multiple output,超大规模输入输出)技术在4G和5G网络中被广泛应用。另外,波束的调控可以由预编码技术实现,即通过改变阵列上每一个振子的出射相位,使发射信号在指定方向上同相叠加而获得更好的方向性增益。当通信节点的位置发生改变时,通过调整阵列的预编码配置信息,可以实现波束方向的调整,从而实现对通信节点的跟踪。在现有标准中,通常需要提前设计一组或者多组预编码配置信息(比如预编码权值,即码本),然后根据导频信息从提前设计的码本中选择最佳的预编码配置信息进行配置,其中,提前设计的码本由若干个预编码配置信息组成,该若干个预编码配置信息分别对应不同的波束方向。在传统无线通信标准中,发射机(如通信基站)需要向接入的通信节点(如终端)逐个下发预编码配置信令,而在下发预编码配置信令的过程中,每个通信节点需要占用一个特定的下行信道资源,这不仅造成降低了预编码配置效率,还增加了资源开销。另外,由于向每个通信节点下发的每个预编码配置信令都需要携带相同的报文头,所以预编码配置信令中会包括较多的冗余信息,继而也增加了信令开销。而且,具有分布规律的通信节点之间的信道相关性较强,从而对应的预编码配置信息也具有相关性,因此,预编码配置信令之间会存在冗余信息。基于上述情况,优化现有的预编码配置方式,提升预编码配置效率,降低信令开销,是有必要的。
同样地,RIS是由大量亚波长尺寸的可重构电磁单元构成的反射阵列或者透射阵列,其可以改变入射到其表面的电磁信号的属性。而且通过改变该阵列上各个电磁单元的状态,可以动态地调控空间电磁信号,例如改变入射电磁信号的传播方向。因此,为了实现动态调控, 需要根据入射信号、反射方向和透射方向设计对应的RIS。而且,在环境中部署大量低成本的RIS,可以在不增加通信基站数量的情况下扩展无线信号的覆盖范围,降低网络建设成本,同时提升无线通信系统的能效,因此,RIS有望成为未来6G网络的关键技术之一。但是,由于RIS是一种无源的阵列,因此只能被动地将入射到其表面的电磁信号进行反射或者透射。并且基于成本考虑,RIS通常被设计成无测量功能的阵列或者只有少量电磁单元具有测量功能的阵列,因而RIS不能自主完成信道测量,需要与通信基站配合才能完成信道测量和预编码配置。当RIS在无线通信小区内大量部署时,通信基站需要大量的预编码配置信令才能向各个RIS下发预编码配置信息,因此,同样存在预编码配置效率和信令开销的问题。
另外,一些新型的无线中继节点也开始具有波束调控能力,因而也有预编码配置的需求。而且,由于无线中继节点的成本低于通信基站的成本,因此,对无线中继节点的需求量也会远多于对通信基站的需求量。所以当该无线中继节点也需要与通信基站配合才能完成预编码配置时,为了提升预编码配置效率,同样需要考虑优化配置方案。
基于上述分析,下面结合附图,对本申请实施例作进一步阐述。
参照图1,图1是本申请一个实施例提供的预编码配置方法的流程图,该预编码配置方法可以包括但不限于步骤S110、步骤S120和步骤S130。
步骤S110:对待配置预编码的多个通信节点进行分组,得到多个节点分组。
一可行的实施方式,假设待配置预编码的通信节点的数量为N,则对待配置预编码的N个通信节点进行分组,得到K个节点分组,其中K表示节点分组的数量,且K≥1,N≥1,N>K,在此不做具体限制。
一可行的实施方式,通信节点可以是通信基站、移动终端、物联网设备、可重构的智能超表面(Reconfigurable Intelligent Surface,RIS)、无线中继节点等,在此不一一列举。
一可行的实施方式,对待配置预编码的多个通信节点进行分组,可以有很多实施方式,其中,可以包括根据信道相关性对待配置预编码的多个通信节点进行分组;根据位置信息对待配置预编码的多个通信节点进行分组;根据服务用户或者覆盖区域对待配置预编码的多个通信节点进行分组;根据通信节点类型对待配置预编码的多个通信节点进行分组中的至少之一,在此不作具体限制。其中,信道相关性是指不同的通信节点占用的上行信道或者上行信道之间的相关性。
可以理解的是,当不同的通信节点的信道相关性大于信道相关性阈值时,其预编码配置信息之间具有较强的相关性,因此,可以根据信道相关性对待配置预编码的多个通信节点进行分组,其中,信道相关性阈值可以根据实际情况设定。
可以理解的是,具有相同服务用户或者相同覆盖区域的通信节点在进行波束调整时可以协调配合,因此,为了避免在波束切换过程中影响用户体验,需要具有相同服务用户或者相同覆盖区域的通信节点同步进行波束调整。而具有相同服务用户或者相同覆盖区域的通信节点也具有较强的信道相关性,其预编码配置信息之间也具有较强的相关性,因此,可以根据服务用户或者覆盖区域对待配置预编码的多个通信节点进行分组。
可以理解的是,待配置预编码的多个通信节点中可能包括不同的通信节点类型,而通信节点类型相同的通信节点具有相似的预编码配置信息,因此,可以根据通信节点类型对待配置预编码的多个通信节点进行分组。
一可行的实施方式,当根据通信节点类型对待配置预编码的多个通信节点进行分组而得 到的节点分组,若该节点分组中的通信节点的数量较多,可以再根据信道相关性、位置信息、服务用户或者覆盖区域,对该节点分组中的通信节点进行分组,在此不做具体限制。
在一实施例中,以根据信道相关性对待配置预编码的多个通信节点进行分组为例,当信道相关性阈值为具体数值时,假设待配置预编码的通信节点的总数量为M个,根据信道相关性对该待配置预编码的M个通信节点进行分组,当待配置预编码的N个通信节点的信道相关性大于信道相关性阈值时,将该N个通信节点分为一个节点分组,另外的(M-N)个通信节点分为一个节点分组,其中,N为信道相关性大于信道相关性阈值的通信节点的数量,且M≥N,M≥1,N≥1;或者,当信道相关性阈值为区间值,待配置预编码的通信节点的总数量为M个,根据信道相关性对待配置预编码的M个通信节点进行分组,其中,可以将信道相关性大于信道相关性阈值的待配置预编码的N个通信节点分为一个节点分组,将信道相关性处于该信道相关性阈值内的待配置预编码的W个通信节点分为一个节点分组,将信道相关性小于该信道相关性阈值的待配置预编码的(M-W-N)个通信节点分为一个节点分组,其中,M≥N,M≥W,M≥1,N≥1,W≥1。其中,信道相关性阈值可以根据实际情况设定,本申请实施例对此不作具体限制。
在一实施例中,以根据信道相关性对待配置预编码的多个通信节点进行分组为例,假设待配置预编码的通信节点为小区内的移动终端,根据信道相关性对该待配置预编码的多个移动终端进行分组,即根据多个移动终端占用的上行信道或者上行信道之间的相关性,对该待配置预编码的多个移动终端进行分组,其中,由于位于小区内的同一栋建筑中相同楼层的移动终端的上下行信道在垂直方向上具有较强的相关性,因此,可以将处于同一楼层的移动终端分为一个节点分组,如图2所示,该建筑有5个楼层,则可以分为5个节点分组,在此不做具体限制。
在一实施例中,以根据位置信息对待配置预编码的多个通信节点进行分组为例,假设发射机为通信基站,通信节点为小区内的移动终端,且该多个移动终端均与该通信基站建立连接,即该多个移动终端为待配置预编码的通信节点。当位置信息为待配置预编码的多个通信节点之间的位置距离,可以将位置距离小于距离阈值的移动终端分为一个节点分组,如图3所示,三个移动终端之间的位置距离均小于距离阈值,则可以将该三个移动终端分为第一节点分组120,而另外两个通信节点之间的位置距离小于距离阈值,则可以将该两个通信节点分为第二节点分组110,其中,距离阈值可以根据实际情况设定;当位置信息为待配置预编码的多个通信节点相对于参考位置的位置距离,且位置距离包括长度距离时,可以将移动终端与基站位置之间的长度距离处于距离区间的移动终端分为一个节点分组,其中,距离区间可以根据实际情况设定,如图4所示,将移动终端与基站位置之间的长度距离处于0米至r1米区间的两个通信节点分为第一节点分组,将移动终端与基站位置之间的长度距离处于r1至r2米区间的四个通信节点分为第二节点分组;当位置信息为待配置预编码的多个通信节点相对于参考位置的位置距离,且位置距离包括角度距离时,可以将移动终端与基站位置之间的角度距离处于同一角度区间的移动终端分为一个节点分组,其中,角度区间可以根据实际情况设定,如图5所示,根据待配置预编码的六个通信节点相对于基站位置的角度距离,对该六个移动终端进行分组,得到三个节点分组,其中,每个节点分组均有两个通信节点,本申请实施例对此不作具体限制。
在一实施例中,以根据服务用户或者覆盖区域对待配置预编码的多个通信节点进行分组 为例,如图6所示,假设发射机为通信基站,通信节点分别为部署在第一建筑物外的第一反射型RIS和部署在第二建筑物外的第二反射型RIS,且第一反射型RIS和第二反射型RIS均用于将该通信基站的基站信号反射到街道上,实现信号增强或者系统容量提升,因此,该第一反射型RIS和第二反射型RIS具有相同的覆盖区域,因而可以将第一反射型RIS和第二反射型RIS分为一个节点分组;如图7所示,假设发射机为通信基站,通信节点分别为分布在第一建筑物的第一无线中继节点和分布在第二建筑物的第二无线中继节点,且该第一无线中继节点和第二无线中继节点均用于将该通信基站的基站信号中转到相同的覆盖区域,因而可以将该第一无线中继节点和第二无线中继节点分为一个节点分组;如图8所示,假设发射机为通信基站,通信节点为高铁车窗集成的透射型的RIS,可以将高铁车窗外的基站信号透射到车厢内,且同一车厢上的RIS只用于将高铁车窗外的基站信号透射到本车厢内,为该车厢内的移动终端实现高速移动场景中的信号增强,因此,可以将同一节车厢上的RIS分为一个节点分组,即可以分成两个节点分组,其中,第一个车厢(第一个节点分组)中有两个RIS(即两个通信节点),第二个车厢(第二个节点分组)中有三个RIS(即三个通信节点)。另外,根据服务用户或者覆盖区域对待配置预编码的多个通信节点进行分组,对其他具有通信服务功能的通信节点也适用。本申请实施例对此不做具体限制。
一可行的实施方式,当根据位置信息对待配置预编码的多个通信节点进行分组时,位置信息可以是待配置预编码的多个通信节点之间的位置距离,也可以是待配置预编码的多个通信节点相对于参考位置的位置距离,其中,位置距离可以包括长度距离、角度距离中的至少之一,在此不作具体限制。可以理解的是,当位置距离小于距离阈值时,该通信节点对应的上行信道或者上行信道相似,因此,该通信节点之间具有较强的信道相关性,其预编码配置信息之间也具有较强的相关性,其中,距离阈值可以根据实际情况设定,因此,可以根据位置信息对待配置预编码的多个通信节点进行分组。
一可行的实施方式,当检测到通信节点位置、通信节点数量或无线信道环境中的任意一个发生变化,或者接收到重新分组指令,则可以对待配置预编码的多个通信节点进行分组,在此不作具体限制。
步骤S120:为各个节点分组生成对应的预编码配置信令。
一可选的实施方式,各个节点分组所对应的预编码配置信令可以包括与各个节点分组内每个通信节点对应的预编码配置信息。
步骤S130:向各个节点分组发送对应的预编码配置信令,使得各个节点分组内的各个通信节点获取相应的预编码配置信令中对应的预编码配置信息以进行配置。
一可行的实施方式,可以采用组播方式向各个节点分组发送对应的预编码配置信令,在此不做具体限制。
一可选的实施方式,预编码配置信息可以包括用于发射无线信号的预编码配置信息,用于接收无线信号的预编码配置信息,用于无线信号中继的预编码配置信息,用于反射无线信号的预编码配置信息,以及用于透射无线信号的预编码配置信息中的任意一个,在此不做具体限制。其中,用于发射无线信号的预编码配置信息可以用于配置业务数据、导频信号或同步信号的发射预编码权值,以调整业务数据、导频信号或者同步信号的发射波束方向;用于接收无线信号的预编码配置信息可以用于配置业务数据、导频信号和同步信号的接收预编码权值,以调整业务数据、导频信号或者同步信号的最强接收方向;用于反射或者透射无线信 号的预编码配置信息一般用于智能超表面的预编码配置,用以实现对无线信号的传播方向的反射或者透射,由于智能超表面一般采用被动阵列,不感知业务类型,因此其预编码配置不需要区分业务类型。而用于无线信号中继的预编码配置信息的作用与用于透射无线信号的预编码配置信息的作用以及用于反射无线信号的预编码配置信息的作用类似,在此不再赘述。
在一实施例中,假设节点分组的数量为K个,为各个节点分组生成对应的预编码配置信令,则一共生成K个预编码配置信令,将第i个预编码配置信令通过组播方式发送给对应的第i个节点分组中的所有通信节点,其中i=1,2,……,K,且各个节点分组中的通信节点的数量至少为两个,在此不做具体限制。
本实施例中,通过采用包括有上述步骤S110至步骤S130的预编码配置方法,首先对待配置预编码的多个通信节点进行分组,得到多个节点分组,接着为各个节点分组生成对应的预编码配置信令,其中,各个节点分组所对应的预编码配置信令包括与各个节点分组内每个通信节点对应的预编码配置信息,最后向各个节点分组发送对应的预编码配置信令,使得各个节点分组内的各个通信节点获取相应的预编码配置信令中对应的预编码配置信息以进行配置,即是说,每个预编码配置信令可以发送给一个节点分组中的多个通信节点,而无需为每一个通信节点发送一个预编码配置信令,这不仅提高了预编码配置效率,还降低了信令开销,并且每个预编码配置信令还包括与各个节点分组内每个通信节点对应的预编码配置信息,因此,各个节点分组内的各个通信节点可以获取相应的预编码配置信令中对应的预编码配置信息进行配置,因此,本申请实施例能够在降低信令开销和提高配置效率的情况下实现对通信节点的预编码配置。
在一实施例中,如图9所示,对步骤S120进行进一步的说明,该步骤S120可以包括但不限于有步骤S210、步骤S220和步骤S230。
步骤S210:为各个节点分组分配分组标识。
步骤S220:为各个节点分组内的各个通信节点分配节点标识。
步骤S230:根据分组标识和节点标识为各个节点分组生成对应的预编码配置信令。
在本实施例中,通过采用包括上述步骤S210至步骤S230的预编码配置方法,首先可以为各个节点分组分配分组标识,接着为各个节点分组内的各个通信节点分配节点标识,最后根据分组标识和节点标识为各个节点分组生成对应的预编码配置信令,以便各个节点分组内的各个通信节点可以根据分组标识确定对应的预编码配置信令,再根据节点标识在该预编码配置信令中获取与自身对应的预编码配置信息。
在一实施例中,在执行步骤S230之前,该步骤S120还可以包括但不限于有以下步骤:
可以通过第一信令将分组标识和节点标识通告相应的各个通信节点。
本实施例中,首先为各个节点分组分配分组标识,以及为各个节点分组内的各个通信节点分配节点标识,接着可以通过第一信令将分组标识和节点标识通告相应的各个通信节点,最后可以根据分组标识和节点标识为各个节点分组生成对应的预编码配置信令,即是说,各个节点分组中的各个通信节点在接收到对应的预编码配置信令之前,可以提前获知自身的分组标识和节点标识,以便各个节点分组内的各个通信节点可以根据已知的分组标识确定对应的预编码配置信令,再根据已知的节点标识在该预编码配置信令中获取与自身对应的预编码配置信息,本申请实施例对此不做具体限制。
在一实施例中,如图10所示,对步骤S230进行进一步的说明,该步骤S230可以包括但 不限于有步骤S310、步骤S320和步骤S330。
步骤S310:根据获得的信道信息确定各个节点分组的预编码配置信息集合。
步骤S320:提取各个节点分组的预编码配置信息集合中的第一配置信息和第二配置信息,其中,第一配置信息包括适用于组内所有通信节点的配置的共性信息,而第二配置信息包括适用于组内各个通信节点的配置的个性化信息。
举一示例,如图2所示,该建筑中位于不同楼层的移动终端相对于通信基站而言具有不同的水平角度和相同的俯仰角度,其中,俯仰角度为共性信息,而水平角度为个性化信息;又如,如图4所示,图中同一节点分组内的移动终端与通信基站的长度距离属于同一距离区间,而属于同一距离区间的移动终端相对于通信基站的基站位置的角度距离不一致,因而,该长度距离为共性信息,该角度距离为个性化信息;同样地,如图5所示,同一节点分组内的移动终端相对于通信基站的基站位置的角度距离属于同一角度区间,而同一节点分组内的移动终端与通信基站的长度距离不同,因此角度距离可以为共性信息,该长度距离为个性化信息;再如,如图8所示,同一车厢上的不同的RIS(比如第一个车厢中的两个RIS,或者第二个车厢中的三个RIS)相对于通信基站而言具有不同的水平角度和相同的俯仰角度,因而,该俯仰角度为共性信息,该水平角度为个性化信息,在此不做具体限制。
步骤S330:根据分组标识、节点标识、第一配置信息和第二配置信息为各个节点分组生成对应的预编码配置信令。
本实施例中,通过采用包括上述步骤S310至步骤S330的预编码配置方法,首先根据获得的信道信息确定各个节点分组的预编码配置信息集合,然后提取各个节点分组的预编码配置信息集合中的第一配置信息和第二配置信息,其中,第一配置信息包括适用于组内所有通信节点的配置的共性信息,而第二配置信息包括适用于组内各个通信节点的配置的个性化信息,最后根据分组标识、节点标识、第一配置信息和第二配置信息为各个节点分组生成对应的预编码配置信令,即是说,可以通过筛选出适用于组内的每个通信节点的配置的共性信息,消除冗余信息,以达到降低信令开销的目的。另外,当预编码配置信令发送给各个节点分组之后,各个节点分组中的各个通信节点可以根据分组标识确定对应的预编码配置信令,并在该预编码配置信令中的第一配置信息中获取的共性信息,再根据节点标识在该预编码配置信令中的第二配置信息中获取适用于自身的配置的个性化信息,根据该共性信息和个性化信息生成自身的预编码配置信息。
在一实施例中,如图11所示,对步骤S330进行进一步的说明,该步骤S330可以包括但不限于有步骤S410和步骤S420。
步骤S410:对第一配置信息和第二配置信息进行预编码压缩,得到压缩后的第一配置信息和压缩后的第二配置信息。
步骤S420:根据分组标识、节点标识、压缩后的第一配置信息和压缩后的第二配置信息为各个节点分组生成对应的预编码配置信令。
在本实施例中,通过采用包括上述步骤S410和步骤S420的预编码配置方法,首先对第一配置信息和第二配置信息进行预编码压缩,得到压缩后的第一配置信息和压缩后的第二配置信息,然后根据分组标识、节点标识、压缩后的第一配置信息和压缩后的第二配置信息为各个节点分组生成对应的预编码配置信令,因此,本申请实施例能够通过对第一配置信息和第二配置信息进行预编码压缩而消除第一配置信息和第二配置信息中的冗余信息,降低了信 令开销。
在一实施例中,如表1所示,表1为一种预编码配置信令的信令格式。
表1
该信令格式中至少包括如下信息:
(1)GID;
(2)CommonData;
(3)UID集合,该UID集合包括UID 1、UID 2、......、UID N;
(4)PM集合,该PM集合包括PM 1、PM 2、......、PM N。
其中,GID表示分组标识,其用于指示该预编码配置信息只适用于具有该GID的通信节点,UID为节点标识,而UID 1、UID 2、......、UID N分别表示不同的通信节点对应的节点标识,CommonData表示共性信息,PM 1、PM 2、......、PM N分别包括适用于对应的通信节点的配置的个性化信息,每个UID对应一个PM(比如UID 1对应PM 1),每个PM为一个数组或者矩阵,且每个PM包含根据共性信息对预编码配置信息进行预编码压缩而得到的压缩后的预编码配置信息。而接收到该预编码配置信令的各个通信节点可以根据CommonData和其UID后的PM(即与UID对应的PM)按照约定规则对该压缩后的预编码配置信息进行复原,然后利用该复原后的预编码配置信息进行配置。
基于上述实施例,在一实施例中,一个节点分组中包含通信节点A和通信节点B,且通信节点A和通信节点B均包含一个由N行M列振子组成的阵列,假设通信节点A与通信基站之间只能通过直射链路进行通信,通信节点B与通信基站之间也只能通过直射链路进行通信,且通信节点A与通信基站之间的直射链路和通信节点B与通信基站之间的直射链路具有相同的俯仰角β,而通信节点A与通信基站之间的直射链路对应的水平角为α1,通信节点B与通信基站之间的直射链路对应的水平角为α2。当不提取该节点分组的预编码配置信息集合中的个性化信息和共性信息时,通信节点A的PM(即PM A)与通信节点B的PM(即PM B)如表2所示,其中η=kd cosβ,ξA=kd sinβcosα1,ξB=kd sinβcosα2
表2
从上表可以看出,PM A和PM B中均包含数据η,则共性信息为数据η,PM A中包括数据ξA,而PM B中包括数据ξB,即个性化信息为数据ξA和数据ξB。因此,可以提取数据η(即共性信息),对数据η进行预编码压缩,使得PM A中仅包括含有数据ξA的相关数据,PM B中仅包括含有数据ξB的相关数据,如下表3所示。
表3
由表2和表3可知,经过预编码压缩之后,PM A的字段长度和PM B的字段长度均变为原来的N分之一。由于表3所示的PM A的字段和PM B的字段仍然具有很好的规律性,因此可以再次对PM A进行预编码压缩,得到ξA,以及再次对PM B进行预编码压缩,且可以得到ξB。最终,在分别对PM A和PM B进行两次预编码压缩之后,可以得到如表4所示的预编码配置信令。
表4
通信节点A从接收到的预编码配置信令中获取共性信息η和个性化信息ξA后,根据其阵列维度N和M重构预编码配置信息,将该重构的预编码配置信息用于波束调整。同样地,通信节点B得到预编码配置信息的方法与通信节点A的类似,在此不再赘述。另外,上述预编码配置信令中的字段顺序可以根据实际需要进行调整,接收预编码配置信令的通信节点可以根据约定的顺序准确提取出正确的信息,本申请实施例对此不做具体限制。
上述实施例根据精确的维度信息构建预编码配置信息,由于此方法需要根据信道信息进行较为复杂的计算,使得通信节点进行配置的实时性容易受到影响。为此,下面提出了一种可行的实施方式。
在一实施例中,如图12所示,在通信节点预存有目标预编码配置信息,且目标预编码配置信息包括第一配置信息和第二配置信息的情况下,对步骤S230进行进一步的说明,该步骤S230可以包括但不限于有步骤S510和步骤S520。
步骤S510:生成对应于第一配置信息的共性标识以及对应于第二配置信息的个性化标识。
步骤S520:根据分组标识、节点标识、共性标识和个性化标识为各个节点分组生成对应的预编码配置信令。
在本实施例中,通过采用包括上述步骤S510和步骤S520的预编码配置方法,在通信节点预存有目标预编码配置信息,且目标预编码配置信息包括第一配置信息和第二配置信息的情况下,可以生成对应于第一配置信息的共性标识以及对应于第二配置信息的个性化标识,然后根据分组标识、节点标识、共性标识和个性化标识为各个节点分组生成对应的预编码配置信令,即是说,当通信节点预存有多个预编码配置信息的情况下,通信节点可以直接根据预编码配置信令中的分组标识和节点标识在预存的多个预编码配置信息中确定其对应的目标预编码配置信息,再根据共性标识获取该目标预编码配置信息中的第一配置信息,根据个性化标识获取该目标预编码配置信息中的对应的第二配置信息,将该第一配置信息和该第二配置信息进行组合,及时得到与自身对应的预编码配置信息,而无需为重构预编码配置信息而对信道信息进行复杂的计算,继而避免了因对信道信息进行复杂的计算而产生的时间开销,提高了对通信节点的配置的效率。
在一实施例中,某个节点分组中包含通信节点A和通信节点B,且通信节点A和通信节点B均预存有提前设计好的码本,该码本中包括若干个预编码配置信息,且每个预编码配置信息中的第一配置信息均分配有对应的共性标识,每个预编码配置信息中的第二配置信息均 分配有对应的个性化标识。对于该节点分组,发射机可以根据分配好的共性标识和分配好的个性化标识生成对应的预编码配置信令,其中,预编码配置信令的信令格式如表5所示,在表5中,GID为分组标识,UID为节点标识,PMI C为共性标识,该共性标识用于标识适用于通信节点A和通信节点B的配置的共性信息,而PMI A为通信节点A的个性化标识,该PMI A用于标识适用于通信节点A的配置的个性化信息,PMI B为通信节点B的个性化标识,该PMI B用于标识适用于通信节点B的配置的个性化信息。
表5
通信节点A可以根据接收到的GID、UID、PMI C和PMI A确定对应的个性化标识和共性标识,并根据该个性化标识和共性标识从通信节点A预存的码本中选择对应的预编码配置信息(即目标预编码配置信息),然后利用该预编码配置信息进行配置。同样地,通信节点B确定目标预编码配置信息的方法与通信节点A的类似,在此不再赘述。
值得注意的是,由于上述实施例中为各个节点分组生成对应的预编码配置信令中均携带有各个节点分组内的各个通信节点的节点标识,因此,当节点分组内的通信节点数量较多时,信令开销随之增加。
基于上述情况,在一实施例中,如图13所示,对步骤S120进行进一步的说明,该步骤S120可以包括但不限于有步骤S610、步骤S620和步骤S630。
步骤S610:为各个节点分组分配分组标识。
步骤S620:对各个节点分组内的所有通信节点进行排序,得到各个节点分组内各个通信节点的组内序号。
一可行的实施方式,对各个节点分组内的所有通信节点进行排序,有很多实施方式,比如,对各个节点分组内的所有通信节点进行随机排序;或者,根据预设参考节点和预设参考指标对各个节点分组内的所有通信节点进行排序,例如,假设预设参考节点为通信基站,预设参考指标为通信节点与通信基站之间的距离,或者通信节点相对于通信基站的水平角度;或者,根据各个节点分组内通信节点之间的相关性对各个节点分组内的所有通信节点进行排序,其中,各个节点分组内通信节点之间的相关性可以为信道相关性,也可以为其他相关性,在此不做具体限制。
步骤S630:根据分组标识和组内序号为各个节点分组生成对应的预编码配置信令。
在本实施例中,通过采用包括上述步骤S610至步骤S630的预编码配置方法,首先可以为各个节点分组分配分组标识,接着对各个节点分组内的所有通信节点进行排序,得到各个节点分组内各个通信节点的组内序号,最后根据分组标识和组内序号为各个节点分组生成对应的预编码配置信令,避免为携带各个通信节点的节点标识而产生的信令开销,降低了信令开销。
在一实施例中,在执行步骤S630之前,步骤S120还可以包括但不限于有以下步骤:
通过第二信令将分组标识和组内序号通告相应的各个通信节点。
本实施例中,首先为各个节点分组分配分组标识,并对各个节点分组内的所有通信节点进行排序,得到各个节点分组内各个通信节点的组内序号,接着可以通过第二信令将分组标识和组内序号通告相应的各个通信节点,最后可以根据分组标识和组内序号为各个节点分组 生成对应的预编码配置信令,以便各个通信节点可以提前获取分组标识和组内序号,在预编码配置信令发送给各个节点分组之后,各个通信节点可以直接根据已知的分组标识确定对应的预编码配置信令,再根据组内序号在该预编码配置信令中确定与自身对应的预编码配置信息,本申请实施例对此不做具体限制。
在一实施例中,如图14所示,对步骤S630进行进一步的说明,该步骤S630可以包括但不限于有步骤S710、步骤S720、步骤S730和步骤S740。
步骤S710:根据获得的信道信息确定各个节点分组的预编码配置信息集合。
步骤S720:提取各个节点分组的预编码配置信息集合中的第一配置信息和第二配置信息。
步骤S730:根据组内序号对第二配置信息进行排序得到排序后的第二配置信息。
步骤S740:根据分组标识、第一配置信息和排序后的第二配置信息为各个节点分组生成对应的预编码配置信令。
在本实施例中,通过采用包括上述步骤S710至步骤S740的预编码配置方法,首先根据获得的信道信息确定各个节点分组的预编码配置信息集合,接着提取各个节点分组的预编码配置信息集合中的第一配置信息和第二配置信息,然后根据组内序号对第二配置信息进行排序得到排序后的第二配置信息,最后根据分组标识、第一配置信息和排序后的第二配置信息为各个节点分组生成对应的预编码配置信令,以便各个节点分组内的各个通信节点根据各自的组内序号从排序后的第二配置信息中提取与自身排序相同的第二配置信息,而无需利用节点标识确定与对应的第二配置信息,继而避免为携带各个通信节点的节点标识而产生的信令开销,降低了信令开销。
在一实施例中,根据分组标识、第一配置信息和排序后的第二配置信息而生成的预编码配置信令的信令格式可以如表6所示,其中,GID表示分组标识,CommonData表示第一配置信息,PM 1、PM 2、......、PM N表示排序后的第二配置信息。
表6
在一实施例中,在执行步骤S730之前,步骤S630还可以包括但不限于有以下步骤:
对第一配置信息和第二配置信息进行预编码压缩,得到压缩后的第一配置信息和压缩后的第二配置信息。
本实施例中,可以根据获得的信道信息确定各个节点分组的预编码配置信息集合,接着提取各个节点分组的预编码配置信息集合中的第一配置信息和第二配置信息,然后对第一配置信息和第二配置信息进行预编码压缩,得到压缩后的第一配置信息和压缩后的第二配置信息,根据组内序号对压缩后的第二配置信息进行排序得到,排序后的压缩的第二配置信息,最后根据分组标识、压缩后的第一配置信息和排序后的压缩的第二配置信息为各个节点分组生成对应的预编码配置信令,因此,本申请实施例能够通过对第一配置信息和第二配置信息进行预编码压缩以消除第一配置信息和第二配置信息中的冗余信息,降低预编码配置信令的信令开销,同时,还便于各个节点分组内的各个通信节点根据各自的组内序号从排序后的压缩的第二配置信息中提取与自身排序相同的压缩后的第二配置信息,而无需利用节点标识确定与对应的压缩后的第二配置信息,继而避免为携带各个通信节点的节点标识而产生的信令开销,降低了信令开销。
在一实施例中,如图15所示,在通信节点预存有目标预编码配置信息,且目标预编码配置信息包括第一配置信息和第二配置信息的情况下,对步骤S630进行进一步的说明,该步骤S630可以包括但不限于有步骤S810、步骤S820和步骤S830。
步骤S810:生成对应于第一配置信息的共性标识以及对应于第二配置信息的个性化标识。
步骤S820:根据组内序号对个性化标识进行排序得到排序后的个性化标识。
步骤S830:根据分组标识、共性标识和排序后的个性化标识为各个节点分组生成对应的预编码配置信令。
在本实施例中,通过采用包括上述步骤S810至步骤S830的预编码配置方法,在通信节点预存有目标预编码配置信息,且目标预编码配置信息包括第一配置信息和第二配置信息的情况下,首先生成对应于第一配置信息的共性标识以及对应于第二配置信息的个性化标识,接着根据组内序号对个性化标识进行排序得到排序后的个性化标识,最后根据分组标识、共性标识和排序后的个性化标识为各个节点分组生成对应的预编码配置信令,以便各个节点分组内的各个通信节点根据共性标识从预存的目标预编码配置信息中获取对应的第一配置信息,接着从排序后的个性化标识中确定与自身排序相同的个性化标识,再根据该个性化标识从预存的目标预编码配置信息中获取对应的第二配置信息,而无需利用节点标识确定与对应的第二配置信息,继而避免为携带各个通信节点的节点标识而产生的信令开销,降低了信令开销。
在一实施例中,假设某个分组中有通信节点A和通信节点B,且通信节点A的组内序号为1,而通信节点B的组内序号为2,则根据分组标识、共性标识和排序后的个性化标识而生成的预编码配置信令的信令格式可以如表7所示,其中,GID为分组标识,PIM C为共性标识,而PMI A为通信节点A的个性化标识,PIM B为通信节点B的个性化标识。
表7
值得注意的是,由于上述一些实施例中的预编码配置信令中的生成预编码配置信息的第一配置信息和第二配置信息均是通过对信道信息进行计算而得到,因此,当节点分组内的通信节点数量较多时,对信道信息进行计算的计算量较大,进行影响了波束调控的实时性。为此,下面提出了一种可行的实施方式。
在一实施例中,如图16所示,对步骤S120进行进一步的说明,该步骤S120可以包括但不限于有步骤S910、步骤S920、步骤S930、步骤S940和步骤S950。
步骤S910:为各个节点分组分配分组标识。
步骤S920:为各个节点分组内的各个通信节点分配节点标识。
步骤S930:确定各个节点分组的组内参考节点和多个组内通信节点。
一可行的实施方式,组内参考节点可以通过随机选择而确定,或者通过排序选择而确定,在此不做具体限制。例如,当组内参考节点通过排序选择而确定,则可以选择处于起始位置的通信节点作为组内参考节点,也可以选择处于末尾位置的通信节点作为组内参考节点,在此不做具体限制。
步骤S940:确定各个组内通信节点与组内参考节点之间的相关性类型信息。
一可行的实施方式,相关性类型信息可以包括信道相关性,也可以其他相关性类型信息,在此不做具体限制。比如,可以确定节点分组内位置相近的通信节点的相关性类型信息为信 道相关性。
步骤S950:根据分组标识和相关性类型信息为各个节点分组生成对应的预编码配置信令。
在本实施例中,通过采用包括上述步骤S910至步骤S950的预编码配置方法,首先为各个节点分组分配标识,以及为各个节点分组内的各个通信节点分配节点标识,接着确定各个节点分组的组内参考节点和多个组内通信节点,再确定各个组内通信节点与组内参考节点之间的相关性类型信息,最后根据该分组标识和相关性类型信息为各个节点分组生成对应的预编码配置信令,以便于根据预编码配置信令中的分组标识发送给对应的节点分组,使得对应的节点分组内的各个通信节点可以在预编码配置信令中获取对应的相关性类型信息和对应的预编码配置信息以进行配置。即是说,本申请实施例可以只为组内参考节点确定预编码配置信息,再利用相关性类型信息以及与该相关性类型信息对应的组内参考节点的预编码配置信息确定与该组内参考节点之间具有相关性类型信息的多个组内通信节点的预编码配置信息,缩短了确定预编码配置信息的时间,提高了预编码配置效率,满足了波束调控的实时性需求。
在一实施例中,在执行步骤S950之前,步骤S120还可以包括但不限于有以下步骤:
通过第三信令将分组标识、节点标识、相关性类型信息和组内参考节点的节点信息通告相应的各个通信节点。
可以理解的是,该节点标识可以包括组内参考节点的节点标识和组内通信节点的节点标识,也可以只包括组内通信节点的节点标识,在此不做具体限制。
在本实施例中,首先为各个节点分组分配标识,以及为各个节点分组内的各个通信节点分配节点标识,接着确定各个节点分组的组内参考节点和多个组内通信节点,再确定各个组内通信节点与组内参考节点之间的相关性类型信息,然后通过第三信令将分组标识、节点标识、相关性类型信息和组内参考节点的节点信息通告相应的各个通信节点,最后根据该分组标识和相关性类型信息为各个节点分组生成对应的预编码配置信令,使得通信节点可以根据提前获知的分组标识确定对应的预编码配置信令,再根据提前获知的节点标识在该预编码配置信令中获取对应的相关性类型信息,还可以根据组内参考节点的节点信息确定自身是否为组内参考节点,本申请实施例对此不做具体限制。
在一实施例中,当通信节点根据组内参考节点的节点信息确定自身为组内参考节点时,可以获取相应的预编码配置信令中对应的预编码配置信息以进行配置,当通信节点根据组内参考节点的节点信息确定自身不是组内参考节点时,即自身为组内通信节点,可以根据对应的相关性类型信息和与该相关性类型信息对应的组内参考节点的预编码配置信息确定自身的预编码配置信息,利用该自身的预编码配置信息以进行配置,因此,本申请实施例缩短了确定预编码配置信息的时间,从而满足了波束调控的实时性需求。
在一实施例中,如图17所示,对步骤S950进行进一步的说明,该步骤S950可以包括但不限于有步骤S1010和步骤S1020。
步骤S1010:对于各个节点分组,根据获得的信道信息确定组内参考节点的参考预编码配置信息,以及根据相关性类型信息确定各个组内通信节点与组内参考节点之间的相关预编码信息。
步骤S1020:根据分组标识、节点标识、参考预编码配置信息和相关预编码信息为各个节点分组生成对应的预编码配置信令。
可以理解的是,该节点标识可以包括组内参考节点的节点标识和组内通信节点的节点标 识,也可以只包括组内通信节点的节点标识,在此不做具体限制。
在一实施例中,各个节点分组的通信节点可以根据分组标识确定对应的预编码配置信令,接着根据节点标识在该预编码配置信令中获取对应的预编码配置信息,当通信节点为组内参考节点,则可以直接获取参考预编码配置信息以进行配置,当通信节点为组内通信节点,则直接获取相关预编码信息以进行配置,在此不做具体限制。
在本实施例中,通过采用包括上述步骤S1010至步骤S1020的预编码配置方法,首先对于各个节点分组,可以根据获得的信道信息确定组内参考节点的参考预编码配置信息,以及根据相关性类型信息确定各个组内通信节点与组内参考节点之间的相关预编码信息,然后根据分组标识、节点标识、参考预编码配置信息和相关预编码信息为各个节点分组生成对应的预编码配置信令,即是说,本申请实施例只需根据获得的信道信息确定组内参考节点的参考预编码配置信息,无需根据获得的信道信息确定节点分组内各个组内通信节点的预编码配置信息,从而避免了为确定组内通信节点的预编码配置信息而对信道信息进行计算所产生的计算量,缩短了确定预编码配置信息的时间,提高了预编码配置效率,满足了波束调控的实时性需求。
在一实施例中,当节点标识中不包括组内参考节点的节点标识,根据分组标识、节点标识、参考预编码配置信息和相关预编码信息生成的预编码配置信令的信令格式可以如表8所示,其中,GID表示分组标识,PMR表示组内参考节点的参考预编码配置信息,UID 1、UID2、......、UID N分别表示不同组内通信节点的节点标识,COR 1、COR 2、......、COR N分别表示各个组内通信节点与该组内参考节点之间的相关预编码信息,且各个组内参考节点的节点标识与其对应的相关预编码信息一一对应,比如,节点标识为UID 1的组内参考节点对应的相关预编码信息为COR 1。
表8
在一实施例中,如图18所示,对步骤S1020进行进一步的说明,该步骤S1020可以包括但不限于有步骤S1110和步骤S1120。
步骤S1110:对参考预编码配置信息进行预编码压缩,得到压缩后的参考预编码配置信息。
步骤S1120:根据分组标识、节点标识、相关预编码信息和压缩后的参考预编码配置信息为各个节点分组生成对应的预编码配置信令。
在本实施例中,通过采用包括上述步骤S1110至步骤S1120的预编码配置方法,可以对参考预编码配置信息进行预编码压缩,得到压缩后的参考预编码配置信息,然后根据分组标识、节点标识、相关预编码信息和压缩后的参考预编码配置信息为各个节点分组生成对应的预编码配置信令,因此,本申请实施例能够通过对参考预编码配置信息进行预编码压缩,消除参考预编码配置信息中的冗余信息,进而降低了预编码配置信令的信令开销。
在一实施例中,如图19所示,在通信节点预存有候选预编码配置信息集合,候选预编码配置信息集合包括组内参考节点的参考预编码配置信息的情况下,对步骤S950进行进一步的说明,该步骤S950可以包括但不限于有步骤S1210和步骤S1220。
步骤S1210:对于各个节点分组,生成对应于参考预编码配置信息的参考预编码标识, 以及根据相关性类型信息确定各个组内通信节点与组内参考节点之间的相关预编码信息。
步骤S1220:根据分组标识、节点标识、参考预编码标识和相关预编码信息为各个节点分组生成对应的预编码配置信令。
在本实施例中,通过采用包括上述步骤S1210至步骤S1220的预编码配置方法,首先对于各个节点分组,可以生成对应于参考预编码配置信息的参考预编码标识,以及根据相关性类型信息确定各个组内通信节点与组内参考节点之间的相关预编码信息,然后根据分组标识、节点标识、参考预编码标识和相关预编码信息为各个节点分组生成对应的预编码配置信令,以便组内参考节点可以根据参考预编码标识确定对应的参考预编码配置信息,以及组内通信节点可以根据节点标识确定相关预编码信息,而无需为重构预编码配置信息而产生的时间开销,提高了通信节点的配置的效率,满足了波束调控的实时性需求。
在一实施例中,如图20所示,对步骤S950进行进一步的说明,该步骤S950可以包括但不限于有步骤S1310、步骤S1320、步骤S1330和步骤S1340。
步骤S1310:对于各个节点分组,根据获得的信道信息确定组内参考节点的参考预编码配置信息,以及根据相关性类型信息确定各个组内通信节点与组内参考节点之间的相关预编码信息。
步骤S1320:对各个节点分组内的所有通信节点进行排序,得到各个节点分组内各个通信节点的组内序号。
步骤S1330:对于各个节点分组,根据组内序号对相关预编码信息进行排序得到排序后的相关预编码信息。
步骤S1340:根据分组标识、参考预编码配置信息和排序后的相关预编码信息为各个节点分组生成对应的预编码配置信令。
在本实施例中,通过采用包括上述步骤S1310至步骤S1340的预编码配置方法,首先对于各个节点分组,可以根据获得的信道信息确定组内参考节点的参考预编码配置信息,以及根据相关性类型信息确定各个组内通信节点与组内参考节点之间的相关预编码信息,接着对各个节点分组内的所有通信节点进行排序,得到各个节点分组内各个通信节点的组内序号,而对于各个节点分组,可以根据组内序号对相关预编码信息进行排序得到排序后的相关预编码信息,最后根据分组标识、参考预编码配置信息和排序后的相关预编码信息为各个节点分组生成对应的预编码配置信令,以便各个节点分组内的各个组内通信节点根据各自的组内序号从排序后的相关预编码信息中提取与自身排序相同的相关预编码信息,以及使得组内参考节点根据自身的组内序号确定参考预编码配置信息,而无需利用节点标识确定与对应的相关预编码信息,继而避免为携带各个通信节点的节点标识而产生的信令开销,降低了信令开销。
在一实施例中,根据分组标识、参考预编码配置信息和排序后的相关预编码信息而生成的预编码配置信令的信令格式可以如表9所示,其中,GID表示分组标识,PMR表示组内参考节点的参考预编码配置信息,COR 1、COR 2、......、COR N表示排序后的的相关预编码信息。
表9
在另一实施例中,如图21所示,在通信节点预存有候选预编码配置信息集合,候选预编 码配置信息集合包括组内参考节点的参考预编码配置信息的情况下,对步骤S950进行进一步的说明,该步骤S950可以包括但不限于有步骤S1410、步骤S1420、步骤S1430和步骤S1440。
步骤S1410:对于各个节点分组,生成对应于参考预编码配置信息的参考预编码标识,以及根据相关性类型信息确定各个组内通信节点与组内参考节点之间的相关预编码信息。
步骤S1420:对各个节点分组内的所有通信节点进行排序,得到各个节点分组内各个通信节点的组内序号。
步骤S1430:对于各个节点分组,根据组内序号对相关预编码信息进行排序得到排序后的相关预编码信息。
步骤S1440:根据分组标识、参考预编码标识和排序后的相关预编码信息为各个节点分组生成对应的预编码配置信令。
在本实施例中,通过采用包括上述步骤S1410至步骤S1440的预编码配置方法,首先对于各个节点分组,可以生成对应于参考预编码配置信息的参考预编码标识,以及根据相关性类型信息确定各个组内通信节点与组内参考节点之间的相关预编码信息,然后对各个节点分组内的所有通信节点进行排序,得到各个节点分组内各个通信节点的组内序号,而对于各个节点分组,可以根据组内序号对相关预编码信息进行排序得到排序后的相关预编码信息,最后根据分组标识、参考预编码标识和排序后的相关预编码信息为各个节点分组生成对应的预编码配置信令,以便各个节点分组内的各个组内通信节点根据各自的组内序号从排序后的相关预编码信息中提取与自身排序相同的相关预编码信息,根据对应的相关预编码信息进行配置,而无需利用节点标识确定与对应的相关预编码信息,继而避免为携带各个通信节点的节点标识而产生的信令开销,降低了信令开销,同时,还能使得组内参考节点可以根据参考预编码标识确定参考预编码配置信息以进行配置。
在一实施例中,根据分组标识、参考预编码标识和排序后的相关预编码信息而生成的预编码配置信令的信令格式可以如表10所示,其中,GID表示分组标识,PMI-R表示参考预编码标识,COR 1、COR 2、......、COR N表示排序后的的相关预编码信息。
表10
在一实施例中,如图22所示,对步骤S130进行进一步的说明,该步骤S130可以包括但不限于有步骤S1510、步骤S1520和步骤S1530。
步骤S1510:根据各个节点分组的分组标识确定各个节点分组所对应的第一扰码。
可以理解的是,第一扰码是一个伪随机码序列,在此不做具体限制。
步骤S1520:根据各个第一扰码对各个节点分组所对应的预编码配置信令中的预编码配置信息进行加扰,得到加扰后的预编码配置信令。
步骤S1530:向各个节点分组发送对应的加扰后的预编码配置信令。
可以理解的是,只有与加扰后的预编码配置信令对应的节点分组内的通信节点才能够对该加扰后的预编码配置信令进行解扰,进而获得该预编码配置信令中的预编码配置信息。
在本实施例中,通过采用包括上述步骤S1510至步骤S1530的预编码配置方法,可以根据各个节点分组的分组标识确定各个节点分组所对应的第一扰码,然后根据各个第一扰码对各个节点分组所对应的预编码配置信令中的预编码配置信息进行加扰,得到加扰后的预编码 配置信令,最后向各个节点分组发送对应的加扰后的预编码配置信令,使得各个节点分组内的各个通信节点只能解扰对应的加扰后的预编码配置信令,进而在该预编码配置信令中获得对应的预编码配置信息,因此,本申请实施例可以通过加扰后的预编码配置信令而区分不同的节点分组。
在另一实施例中,如图23所示,对步骤S130进行进一步的说明,该步骤S130可以包括但不限于有步骤S1610、步骤S1620、步骤S1630和步骤S1640。
步骤S1610:对多个节点分组进行排序,得到各个节点分组的分组序号。
步骤S1620:根据各个节点分组的分组序号确定各个节点分组所对应的第二扰码。
可以理解的是,第二扰码是一个伪随机码序列,在此不做具体限制。
步骤S1630:根据各个第二扰码对各个节点分组所对应的预编码配置信令中的预编码配置信息进行加扰,得到加扰后的预编码配置信令。
步骤S1640:向各个节点分组发送对应的加扰后的预编码配置信令。
可以理解的是,只有与加扰后的预编码配置信令对应的节点分组内的通信节点才能够对该加扰后的预编码配置信令进行解扰,进而获得该预编码配置信令中的预编码配置信息。
在本实施例中,通过采用包括上述步骤S1610至步骤S1640的预编码配置方法,可以对多个节点分组进行排序,得到各个节点分组的分组序号,然后根据各个节点分组的分组序号确定各个节点分组所对应的第二扰码,根据各个第二扰码对各个节点分组所对应的预编码配置信令中的预编码配置信息进行加扰,得到加扰后的预编码配置信令,最后向各个节点分组发送对应的加扰后的预编码配置信令,使得各个节点分组内的各个通信节点只能解扰对应的加扰后的预编码配置信令,进而在该预编码配置信令中获得对应的预编码配置信息,因此,本申请实施例可以通过加扰后的预编码配置信令而区分不同的节点分组。
在另一实施例中,如图24所示,对步骤S130进行进一步的说明,该步骤S130可以包括但不限于有步骤S1710、步骤S1720和步骤S1730。
步骤S1710:对于各个节点分组,根据组内参考节点的节点标识确定第三扰码。
可以理解的是,第三扰码是一个伪随机码序列,在此不做具体限制。
步骤S1720:根据各个第三扰码对各个节点分组所对应的预编码配置信令中的预编码配置信息进行加扰,得到加扰后的预编码配置信令。
步骤S1730:向各个节点分组发送对应的加扰后的预编码配置信令。
在本实施例中,通过采用包括上述步骤S1710至步骤S1730的预编码配置方法,对于各个节点分组,可以根据组内参考节点的节点标识确定第三扰码,然后根据各个第三扰码对各个节点分组所对应的预编码配置信令中的预编码配置信息进行加扰,得到加扰后的预编码配置信令,最后向各个节点分组发送对应的加扰后的预编码配置信令,使得各个节点分组内的各个通信节点只能解扰对应的加扰后的预编码配置信令,进而在该预编码配置信令中获得对应的预编码配置信息,因此,本申请实施例可以通过加扰后的预编码配置信令而区分不同的节点分组。
针对上述实施例所提供的预编码配置方法,下面以具体的示例进行详细的描述:
在一实施例中,对待配置预编码的通信节点分配分组标识和分配节点标识,可以包括有以下步骤:
步骤1:对待配置预编码的通信节点进行统计;
步骤2:对待配置预编码的通信节点按照指定的分组标准进行分组;
步骤3:对各个节点分组分配分组标识并为各个节点分组内的各个通信节点分配节点标识;
步骤4:通过指定的下行信道将分组标识和节点标识下发给各个待配置预编码的通信节点;
步骤5:各个待配置预编码的通信节点通过指定的信道接收预编码配置信令;
步骤6:各个待配置预编码的通信节点从接收的预编码配置信令中获取分组标识和节点标识,并保存在内部存储器中。
在一实施例中,对待配置预编码分配的通信节点分配分组标识,并对各个节点分组内的各个通信节点进行排序,可以包括有以下步骤:
步骤1:对待配置预编码的通信节点进行统计;
步骤2:对待配置预编码的通信节点按照指定的分组标准进行分组;
步骤3:为各个节点分组分配分组标识,并对各个节点分组内的所有通信节点进行排序,得到各个节点分组内各个通信节点的组内序号;
步骤4:将各个通信节点的分组标识和组内序号通过指定的下行信道下发给各个待配置预编码的通信节点。
步骤5:各个待配置预编码的通信节点通过指定的信道接收预编码配置信令;
步骤6:各个待配置预编码的通信节点从接收的预编码配置信令中获取分组标识和组内序号,并保存在内部存储器中。
在一实施例中,确定各个节点分组的组内参考节点,并将组内参考节点的节点信息通告相应的各个通信节点,可以包括有以下步骤:
步骤1:对待配置预编码的通信节点进行统计;
步骤2:对待配置预编码的通信节点按照指定的分组标准进行分组;
步骤3:确定各个节点分组的组内参考节点;
步骤4:将组内参考节点通过指定的下行信道下发给待配置预编码的通信节点;
步骤5:待配置预编码的通信节点通过指定的信道接收预编码配置信令;
步骤6:待配置预编码的通信节点从接收的预编码配置信令中获取组内参考节点的节点信息,并保存在内部存储器中。
其中,步骤3还可以对各个节点分组内的所有通信节点进行排序,得到各个节点分组内各个通信节点的组内序号,对应地,步骤6可以将各个通信节点的组内序号保存在内部存储器中。
需要注意的是,上述所有实施例中的各个通信节点的分组标识和组内序号均可以改变。例如,对于具有移动能力的通信节点,当其位置发生改变后会导致其不再适用原有的分组标准,需要对该通信节点重新进行分组。因此,对于所有实施例中对通信节点进行分组的步骤,可以按照预设时间间隔而对该通信节点重新进行分组;或者根据预设触发条件对该通信节点重新进行分组,例如通信节点上报位置变动后,对该通信节点重新进行分组。并且每次对通信节点进行分组都会为重新为各个节点分组分配分组标识(或分组标识和组内序号),而通信节点需要根据预编码配置信令重新进行分组。
在一实施例中,对待配置预编码分配的通信节点分配分组标识,并对各个节点分组内的 各个通信节点进行排序,可以包括有以下步骤:
步骤1:确定通信节点对应的预编码配置信息,或者根据适用于通信节点的配置的共性信息以及适用于该通信节点的配置的个性化信息生成对应的预编码配置信息,并利用该预编码配置信息以进行配置。
步骤2:确定各个节点分组所对应的扰码(比如第一扰码、第二扰码或者第三扰码),并用于对预编码配置信息进行加扰,生成加扰后的预编码配置信令。
步骤3:通过指定的组播信道下发该加扰后的预编码配置信令。
步骤4:该通信节点从组播信道接收该加扰后的预编码配置信令。
步骤5:对加扰后的预编码配置信令进行解扰,得到解扰后的预编码配置信令,并从解扰后的预编码配置信令中获取预编码配置信息;或者从解扰后的预编码配置信令中获取第一配置信息和第二配置信息,对该第一配置信息和第二配置信息进行预编码重构,得到预编码配置信息。
步骤6:利用获得的预编码配置信息完成波束调控配置。
在一实施例中,如图2所示,假设处于同一楼层的移动终端为一个节点分组,该组内所有移动终端与地面之间的高度相同,且该移动终端相对于通信基站的倾斜角度不同,因此,可以将只测量其中一个移动终端的垂直方位,同时测量各个移动终端的水平方位,以确定各个移动终端对应的预编码配置信息,在此不做具体限制。
在一实施例中,如图3所示,三个移动终端之间的位置距离均小于距离阈值,则可以将该三个移动终端分为第一节点分组120,因此,可以对该第一节点分组确定对应的预编码配置信息,而另外两个通信节点之间的位置距离小于距离阈值,则可以将该两个通信节点分为第二节点分组110,可以对该第二节点分组确定对应的预编码配置信息。
在一实施例中,如图4所示,同一节点分组内的移动终端与通信基站的长度距离属于同一距离区间,而属于同一距离区间的移动终端相对于通信基站的基站位置的角度距离不一致,因此,可以将只测量其中一个移动终端与通信基站的长度距离,同时测量各个移动终端相对于通信基站的基站位置的角度距离,以确定各个移动终端对应的预编码配置信息,在此不做具体限制。
在一实施例中,如图6所示,假设发射机为通信基站,通信节点分别为部署在第一建筑物外的第一反射型RIS和部署在第二建筑物外的第二反射型RIS,由于第一反射型RIS和第二反射型RIS具有相同的覆盖区域,且通常直射路径能量最强,因此可以直接根据第一反射型RIS的位置和第二反射型RIS的位置,以及第一反射型RIS的覆盖区域和第二反射型RIS的覆盖区域,推测出第一反射型RIS的反射信道和第二反射型RIS的反射信道,然后根据基站位置和第一反射型RIS的位置和第二反射型RIS的位置,估算第一反射型RIS的入射信道和第二反射型RIS的入射信道,从而直接估算出对应的预编码配置信息。或者,利用第一反射型RIS和第二反射型RIS上的少量主动测量单元实现更准确的估算,在此不做具体限制。
在一实施例中,如图8所示,发射机为通信基站,通信节点为高铁车窗集成的透射型的RIS,由于其高铁高速移动,其RIS对应的预编码配置信息更新频繁,因此更需要高效的预编码确定方法。
在一实施例中,如图25所示,由于高铁车窗的相对位置是固定的,因此只需要测得第一车窗的方位角θ1以及第一车窗与通信基站之间的距离r1,就可以根据简单的几何公式计算出 第二车窗与基站的相对位置,从而确定适用于第一车窗的透射型的RIS对应的预编码配置信息和第二车窗的透射型的RIS对应的预编码配置信息。可以理解的是,由于车速、轨道路况、环境遮挡等原因,若车窗与通信基站之间相距太远,估算误差会非常大,因此需要根据实际情况确定合适的节点分组,兼顾效率和准确度。
另外,参照图26,本申请的一个实施例还提供了一种预编码配置装置,该预编码配置装置200包括存储器202、处理器201及存储在存储器202上并可在处理器201上运行的计算机程序。
处理器201和存储器202可以通过总线或者其他方式连接。
存储器202作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器202可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器202可选包括相对于处理器201远程设置的存储器,这些远程存储器可以通过网络连接至该处理器201。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述实施例的预编码配置方法所需的非暂态软件程序以及指令存储在存储器202中,当被处理器201执行时,执行上述实施例中的预编码配置方法,例如,执行以上描述的图1中的方法步骤S110至S130、图9中的方法步骤S210至S230、图10中的方法步骤S310至S330、图11中的方法步骤S410至S420、图12中的方法步骤S510至S520、图13中的方法步骤S610至S630、图14中的方法步骤S710至S740、图15中的方法步骤S810至S830、图16中的方法步骤S910至S950、图17中的方法步骤S1010至S1020、图18中的方法步骤S1110至S1120、图19中的方法步骤S1210至S1220、图20中的方法步骤S1310至S1340、图21中的方法步骤S1410至S1440、图22中的方法步骤S1510至S1530、图23中的方法步骤S1610至S1640、图24中的方法步骤S1710至S1730。
以上所描述的设备实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,执行以上描述的图1中的方法步骤S110至S130、图9中的方法步骤S210至S230、图10中的方法步骤S310至S330、图11中的方法步骤S410至S420、图12中的方法步骤S510至S520、图13中的方法步骤S610至S630、图14中的方法步骤S710至S740、图15中的方法步骤S810至S830、图16中的方法步骤S910至S950、图17中的方法步骤S1010至S1020、图18中的方法步骤S1110至S1120、图19中的方法步骤S1210至S1220、图20中的方法步骤S1310至S1340、图21中的方法步骤S1410至S1440、图22中的方法步骤S1510至S1530、图23中的方法步骤S1610至S1640、图24中的方法步骤S1710至S1730。
此外,本申请的一个实施例还提供了一种计算机程序产品,包括计算机程序或计算机指令,计算机程序或计算机指令存储在计算机可读存储介质中,计算机设备的处理器从计算机可读存储介质读取计算机程序或计算机指令,处理器执行计算机程序或计算机指令,使得计算机设备执行上述实施例中的预编码配置方法,例如,执行以上描述的图1中的方法步骤S110 至S130、图9中的方法步骤S210至S230、图10中的方法步骤S310至S330、图11中的方法步骤S410至S420、图12中的方法步骤S510至S520、图13中的方法步骤S610至S630、图14中的方法步骤S710至S740、图15中的方法步骤S810至S830、图16中的方法步骤S910至S950、图17中的方法步骤S1010至S1020、图18中的方法步骤S1110至S1120、图19中的方法步骤S1210至S1220、图20中的方法步骤S1310至S1340、图21中的方法步骤S1410至S1440、图22中的方法步骤S1510至S1530、图23中的方法步骤S1610至S1640、图24中的方法步骤S1710至S1730。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (30)

  1. 一种预编码配置方法,包括:
    对待配置预编码的多个通信节点进行分组,得到多个节点分组;
    为各个所述节点分组生成对应的预编码配置信令,其中,各个所述节点分组所对应的所述预编码配置信令包括与各个所述节点分组内每个所述通信节点对应的预编码配置信息;
    向各个所述节点分组发送对应的所述预编码配置信令,使得各个所述节点分组内的各个所述通信节点获取相应的所述预编码配置信令中对应的所述预编码配置信息以进行配置。
  2. 根据权利要求1所述的预编码配置方法,其中,所述对待配置预编码的多个通信节点进行分组,包括如下至少之一:
    根据信道相关性对待配置预编码的多个通信节点进行分组;
    根据位置信息对待配置预编码的多个通信节点进行分组;
    根据服务用户或者覆盖区域对待配置预编码的多个通信节点进行分组;
    根据通信节点类型对待配置预编码的多个通信节点进行分组。
  3. 根据权利要求2所述的预编码配置方法,其中,当根据位置信息对待配置预编码的多个通信节点进行分组,所述位置信息包括如下至少之一:
    待配置预编码的多个所述通信节点之间的位置距离;
    待配置预编码的多个所述通信节点相对于参考位置的位置距离,所述位置距离包括长度距离和/或角度距离。
  4. 根据权利要求1所述的预编码配置方法,其中,所述对待配置预编码的多个通信节点进行分组,包括:
    当检测到通信节点位置、通信节点数量或无线信道环境中的任意一个发生变化,或者接收到重新分组指令,对待配置预编码的多个通信节点进行分组。
  5. 根据权利要求1所述的预编码配置方法,其中,所述为各个所述节点分组生成对应的预编码配置信令,包括:
    为各个所述节点分组分配分组标识;
    为各个所述节点分组内的各个所述通信节点分配节点标识;
    根据所述分组标识和所述节点标识为各个所述节点分组生成对应的预编码配置信令。
  6. 根据权利要求5所述的预编码配置方法,其中,所述根据所述分组标识和所述节点标识为各个所述节点分组生成对应的预编码配置信令之前,所述为各个所述节点分组生成对应的预编码配置信令还包括:
    通过第一信令将所述分组标识和所述节点标识通告相应的各个所述通信节点。
  7. 根据权利要求5所述的预编码配置方法,其中,所述根据所述分组标识和所述节点标识为各个所述节点分组生成对应的预编码配置信令,包括:
    根据获得的信道信息确定各个所述节点分组的预编码配置信息集合;
    提取各个所述节点分组的所述预编码配置信息集合中的第一配置信息和第二配置信息,其中,所述第一配置信息包括适用于组内所有所述通信节点的配置的共性信息,所述第二配置信息包括适用于组内各个所述通信节点的配置的个性化信息;
    根据所述分组标识、所述节点标识、所述第一配置信息和所述第二配置信息为各个所述 节点分组生成对应的预编码配置信令。
  8. 根据权利要求7所述的预编码配置方法,其中,所述根据所述分组标识、所述节点标识、所述第一配置信息和所述第二配置信息为各个所述节点分组生成对应的预编码配置信令,包括:
    对所述第一配置信息和所述第二配置信息进行预编码压缩,得到压缩后的所述第一配置信息和压缩后的所述第二配置信息;
    根据所述分组标识、所述节点标识、压缩后的所述第一配置信息和压缩后的所述第二配置信息为各个所述节点分组生成对应的预编码配置信令。
  9. 根据权利要求5所述的预编码配置方法,其中,所述通信节点预存有目标预编码配置信息,所述目标预编码配置信息包括第一配置信息和第二配置信息;
    所述根据所述分组标识和所述节点标识为各个所述节点分组生成对应的预编码配置信令,包括:
    生成对应于所述第一配置信息的共性标识以及对应于所述第二配置信息的个性化标识;
    根据所述分组标识、所述节点标识、所述共性标识和所述个性化标识为各个所述节点分组生成对应的预编码配置信令。
  10. 根据权利要求1所述的预编码配置方法,其中,所述为各个所述节点分组生成对应的预编码配置信令,包括:
    为各个所述节点分组分配分组标识;
    对各个所述节点分组内的所有所述通信节点进行排序,得到各个所述节点分组内各个所述通信节点的组内序号;
    根据所述分组标识和所述组内序号为各个所述节点分组生成对应的预编码配置信令。
  11. 根据权利要求10所述的预编码配置方法,其中,所述对各个所述节点分组内的所有所述通信节点进行排序,包括如下之一:
    对各个所述节点分组内的所有所述通信节点进行随机排序;
    根据预设参考节点和预设参考指标对各个所述节点分组内的所有所述通信节点进行排序;
    根据各个所述节点分组内所述通信节点之间的相关性对各个所述节点分组内的所有所述通信节点进行排序。
  12. 根据权利要求10所述的预编码配置方法,其中,所述根据所述分组标识和所述组内序号为各个所述节点分组生成对应的预编码配置信令之前,所述为各个所述节点分组生成对应的预编码配置信令还包括:
    通过第二信令将所述分组标识和所述组内序号通告相应的各个所述通信节点。
  13. 根据权利要求10所述的预编码配置方法,其中,所述根据所述分组标识和所述组内序号为各个所述节点分组生成对应的预编码配置信令,包括:
    根据获得的信道信息确定各个所述节点分组的预编码配置信息集合;
    提取各个所述节点分组的所述预编码配置信息集合中的第一配置信息和第二配置信息;
    根据所述组内序号对所述第二配置信息进行排序得到排序后的所述第二配置信息;
    根据所述分组标识、所述第一配置信息和排序后的所述第二配置信息为各个所述节点分组生成对应的预编码配置信令。
  14. 根据权利要求13所述的预编码配置方法,其中,所述根据所述组内序号对所述第二 配置信息进行排序得到排序后的所述第二配置信息之前,所述根据所述分组标识和所述组内序号为各个所述节点分组生成对应的预编码配置信令还包括:
    对所述第一配置信息和所述第二配置信息进行预编码压缩,得到压缩后的所述第一配置信息和压缩后的所述第二配置信息。
  15. 根据权利要求10所述的预编码配置方法,其中,所述通信节点预存有目标预编码配置信息,所述目标预编码配置信息包括第一配置信息和第二配置信息;
    所述根据所述分组标识和所述组内序号为各个所述节点分组生成对应的预编码配置信令,包括:
    生成对应于所述第一配置信息的共性标识以及对应于所述第二配置信息的个性化标识;
    根据所述组内序号对所述个性化标识进行排序得到排序后的所述个性化标识;
    根据所述分组标识、所述共性标识和排序后的所述个性化标识为各个所述节点分组生成对应的预编码配置信令。
  16. 根据权利要求1所述的预编码配置方法,其中,所述为各个所述节点分组生成对应的预编码配置信令,包括:
    为各个所述节点分组分配分组标识;
    为各个所述节点分组内的各个所述通信节点分配节点标识;
    确定各个所述节点分组的组内参考节点和多个组内通信节点;
    确定各个所述组内通信节点与所述组内参考节点之间的相关性类型信息;
    根据所述分组标识和所述相关性类型信息为各个所述节点分组生成对应的预编码配置信令。
  17. 根据权利要求16所述的预编码配置方法,其中,所述组内参考节点通过随机选择而确定,或者通过排序选择而确定。
  18. 根据权利要求16所述的预编码配置方法,其中,所述根据所述分组标识和所述相关性类型信息为各个所述节点分组生成对应的预编码配置信令之前,所述为各个所述节点分组生成对应的预编码配置信令还包括:
    通过第三信令将所述分组标识、所述节点标识、所述相关性类型信息和所述组内参考节点的节点信息通告相应的各个所述通信节点。
  19. 根据权利要求16所述的预编码配置方法,其中,所述根据所述分组标识和所述相关性类型信息为各个所述节点分组生成对应的预编码配置信令,包括:
    对于各个所述节点分组,根据获得的信道信息确定所述组内参考节点的参考预编码配置信息,以及根据所述相关性类型信息确定各个所述组内通信节点与所述组内参考节点之间的相关预编码信息;
    根据所述分组标识、所述节点标识、所述参考预编码配置信息和所述相关预编码信息为各个所述节点分组生成对应的预编码配置信令。
  20. 根据权利要求19所述的预编码配置方法,其中,所述根据所述分组标识、所述节点标识、所述参考预编码配置信息和所述相关预编码信息为各个所述节点分组生成对应的预编码配置信令,包括:
    对所述参考预编码配置信息进行预编码压缩,得到压缩后的所述参考预编码配置信息;
    根据所述分组标识、所述节点标识、所述相关预编码信息和压缩后的所述参考预编码配 置信息为各个所述节点分组生成对应的预编码配置信令。
  21. 根据权利要求16所述的预编码配置方法,其中,所述通信节点预存有候选预编码配置信息集合,所述候选预编码配置信息集合包括所述组内参考节点的参考预编码配置信息;
    所述根据所述分组标识和所述相关性类型信息为各个所述节点分组生成对应的预编码配置信令,包括:
    对于各个所述节点分组,生成对应于所述参考预编码配置信息的参考预编码标识,以及根据所述相关性类型信息确定各个所述组内通信节点与所述组内参考节点之间的相关预编码信息;
    根据所述分组标识、所述节点标识、所述参考预编码标识和所述相关预编码信息为各个所述节点分组生成对应的预编码配置信令。
  22. 根据权利要求16所述的预编码配置方法,其中,所述根据所述分组标识和所述相关性类型信息为各个所述节点分组生成对应的预编码配置信令,包括:
    对于各个所述节点分组,根据获得的信道信息确定所述组内参考节点的参考预编码配置信息,以及根据所述相关性类型信息确定各个所述组内通信节点与所述组内参考节点之间的相关预编码信息;
    对各个所述节点分组内的所有所述通信节点进行排序,得到各个所述节点分组内各个所述通信节点的组内序号;
    对于各个所述节点分组,根据所述组内序号对所述相关预编码信息进行排序得到排序后的所述相关预编码信息;
    根据所述分组标识、所述参考预编码配置信息和排序后的所述相关预编码信息为各个所述节点分组生成对应的预编码配置信令。
  23. 根据权利要求16所述的预编码配置方法,其中,所述通信节点预存有候选预编码配置信息集合,所述候选预编码配置信息集合包括所述组内参考节点的参考预编码配置信息;
    所述根据所述分组标识和所述相关性类型信息为各个所述节点分组生成对应的预编码配置信令,包括:
    对于各个所述节点分组,生成对应于所述参考预编码配置信息的参考预编码标识,以及根据所述相关性类型信息确定各个所述组内通信节点与所述组内参考节点之间的相关预编码信息;
    对各个所述节点分组内的所有所述通信节点进行排序,得到各个所述节点分组内各个所述通信节点的组内序号;
    对于各个所述节点分组,根据所述组内序号对所述相关预编码信息进行排序得到排序后的所述相关预编码信息;
    根据所述分组标识、所述参考预编码标识和排序后的所述相关预编码信息为各个所述节点分组生成对应的预编码配置信令。
  24. 根据权利要求1所述的预编码配置方法,其中,所述预编码配置信息包括如下之一:
    用于发射无线信号的预编码配置信息;
    用于接收无线信号的预编码配置信息;
    用于无线信号中继的预编码配置信息;
    用于反射无线信号的预编码配置信息;
    用于透射无线信号的预编码配置信息。
  25. 根据权利要求5、10或16所述的预编码配置方法,其中,所述向各个所述节点分组发送对应的所述预编码配置信令,包括:
    根据各个所述节点分组的所述分组标识确定各个所述节点分组所对应的第一扰码;
    根据各个所述第一扰码对各个所述节点分组所对应的所述预编码配置信令中的所述预编码配置信息进行加扰,得到加扰后的所述预编码配置信令;
    向各个所述节点分组发送对应的加扰后的所述预编码配置信令。
  26. 根据权利要求1所述的预编码配置方法,其中,所述向各个所述节点分组发送对应的所述预编码配置信令,包括:
    对所述多个节点分组进行排序,得到各个所述节点分组的分组序号;
    根据各个所述节点分组的所述分组序号确定各个所述节点分组所对应的第二扰码;
    根据各个所述第二扰码对各个所述节点分组所对应的所述预编码配置信令中的所述预编码配置信息进行加扰,得到加扰后的所述预编码配置信令;
    向各个所述节点分组发送对应的加扰后的所述预编码配置信令。
  27. 根据权利要求16所述的预编码配置方法,其中,所述向各个所述节点分组发送对应的所述预编码配置信令,包括:
    对于各个所述节点分组,根据所述组内参考节点的所述节点标识确定第三扰码;
    根据各个所述第三扰码对各个所述节点分组所对应的所述预编码配置信令中的所述预编码配置信息进行加扰,得到加扰后的所述预编码配置信令;
    向各个所述节点分组发送对应的加扰后的所述预编码配置信令。
  28. 根据权利要求1所述的预编码配置方法,其中,所述向各个所述节点分组发送对应的所述预编码配置信令,包括:
    采用组播方式向各个所述节点分组发送对应的所述预编码配置信令。
  29. 一种预编码配置装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至28任意一项所述的预编码配置方法。
  30. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至28任意一项所述的预编码配置方法。
PCT/CN2023/094336 2022-06-10 2023-05-15 预编码配置方法及其装置、存储介质 WO2023236731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210655284.2A CN117255364A (zh) 2022-06-10 2022-06-10 预编码配置方法及其装置、存储介质
CN202210655284.2 2022-06-10

Publications (1)

Publication Number Publication Date
WO2023236731A1 true WO2023236731A1 (zh) 2023-12-14

Family

ID=89117494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094336 WO2023236731A1 (zh) 2022-06-10 2023-05-15 预编码配置方法及其装置、存储介质

Country Status (2)

Country Link
CN (1) CN117255364A (zh)
WO (1) WO2023236731A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140241455A1 (en) * 2013-02-28 2014-08-28 Electronics And Telecommunications Research Institute Precoding method and apparatus
US20200228935A1 (en) * 2017-08-31 2020-07-16 Petros ELIA System and method for managing distribution of information in multi-antenna and multi-transmitter environments
CN113873430A (zh) * 2021-10-22 2021-12-31 西京学院 一种基于时频分析的终端簇室内定位方法及定位系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140241455A1 (en) * 2013-02-28 2014-08-28 Electronics And Telecommunications Research Institute Precoding method and apparatus
US20200228935A1 (en) * 2017-08-31 2020-07-16 Petros ELIA System and method for managing distribution of information in multi-antenna and multi-transmitter environments
CN113873430A (zh) * 2021-10-22 2021-12-31 西京学院 一种基于时频分析的终端簇室内定位方法及定位系统

Also Published As

Publication number Publication date
CN117255364A (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
US9282541B2 (en) Method in which a terminal cooperates with another terminal to transmit data, and method for receiving the data
US20160338033A1 (en) Acquisition method, beam sending method, communication node, system and storage medium
EP3849263B1 (en) Method for processing multi-transmission reception point (trp) data, base station, terminal, and storage medium
EP3499739A1 (en) Feedback method and acquisition method for grouping indication information and device
US20150139001A1 (en) Method and apparatus for beam identification in multi-antenna systems
US8359042B2 (en) Communication system and method of performing interference control using random beamforming technique
CN115441913B (zh) 发送物理上行共享信道的方法及装置
CN110574478A (zh) 基于ue组分离的ma签名分配的系统和方法
WO2019024693A1 (zh) 上报信息的传输方法、用户侧设备和网络侧设备
WO2009037580A2 (en) Providing space division multiple access in a wireless network
JP2012519397A (ja) 協調ビーム形成方法、協調ビーム形成装置、および協調ビーム形成基地局
CN106888507B (zh) 信息传输方法、终端及基站
KR20180018430A (ko) 빔 포밍 방식을 사용하는 무선 통신 시스템에서 안테나 또는 빔 선택 방법 및 장치
Li et al. Efficient coastal communications with sparse network coding
CN111901080A (zh) 一种信息获取方法、装置、设备和存储介质
CN108141701A (zh) 用于车辆传输的取决于速度的传输格式
CN114071686A (zh) 一种同步信号块的传输方法和通信装置
CN101521902A (zh) 下行信道测量信息上报方法、终端设备和基站设备
US20200120640A1 (en) Signaling receiving method and related device
CN103561103B (zh) 业务迁移的控制方法和装置
Chen et al. The influence of MAC protocol on a non-synchronous localization scheme in large-scale UWSNs
CN105391513A (zh) 基于反馈信息形成预编码矩阵的方法、装置和系统
WO2023236731A1 (zh) 预编码配置方法及其装置、存储介质
Wang et al. MmWave-NOMA-based low-latency and high-reliable communications for enhancement of V2X services
WO2022242694A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818896

Country of ref document: EP

Kind code of ref document: A1