WO2023236597A1 - 电子雾化装置及温控方法 - Google Patents

电子雾化装置及温控方法 Download PDF

Info

Publication number
WO2023236597A1
WO2023236597A1 PCT/CN2023/079039 CN2023079039W WO2023236597A1 WO 2023236597 A1 WO2023236597 A1 WO 2023236597A1 CN 2023079039 W CN2023079039 W CN 2023079039W WO 2023236597 A1 WO2023236597 A1 WO 2023236597A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic atomization
sub
atomization information
conductor
temperature
Prior art date
Application number
PCT/CN2023/079039
Other languages
English (en)
French (fr)
Inventor
陈晓强
朱庆平
孙清杰
袁华凯
郑良福
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2023236597A1 publication Critical patent/WO2023236597A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • Embodiments of the present application relate to the field of electronic technology, and in particular to electronic atomization devices and temperature control methods.
  • the heating elements of existing electronic atomization devices can be divided into two types, ceramic heating elements and cotton core heating elements. Both of them generate heat through resistance heating, so that the liquid in the atomization element is atomized. Once the heating element is generated If the atomization temperature is too high, it will not only affect the user's experience, but even endanger the user's personal safety. For example, when the heating temperature is too high, firstly, the life of the heating element will be shortened or even failed. Secondly, when the atomization temperature is too high, the heating element will produce harmful components (such as the increase of heavy metals or other organic substances). Cause harm to human body.
  • the testing technology of the atomization temperature generated by the heating element is a technical pain point.
  • Current temperature measurement technology such as temperature coefficient of resistance (TCR) temperature measurement technology, uses the temperature coefficient of resistance of the material itself to monitor the resistance at different temperatures to obtain the corresponding temperature. It has shortcomings such as low temperature measurement accuracy and slow feedback speed.
  • the purpose of this application is to provide an electronic atomization device and a temperature control method to solve some or all of the above technical problems in the prior art.
  • this application provides an electronic atomization device, which includes:
  • Electronic atomization information control sub-device and electronic atomization information generation sub-device the electronic atomization information generation sub-device is detachably connected to the electronic atomization information control sub-device;
  • the electronic atomization information control sub-device is used to power the electronic atomization information generation sub-device;
  • thermoelectric potential After the electronic atomization information generation sub-device is powered on, it generates thermoelectric potential
  • the electronic atomization information control sub-device is also used to periodically collect the thermoelectric potential generated by the electronic atomization information generation sub-device; when it is determined based on the thermoelectric potential that the temperature of the electronic atomization information generation sub-device is higher than the first preset When the temperature threshold is reached, a temperature control strategy is generated; and according to the temperature control strategy, the temperature of the electronic atomization information generation sub-device is regulated to below the first preset temperature threshold, wherein the electronic atomization information control sub-device stores thermoelectric potential and temperature mapping relationship between them.
  • the electronic atomization information control sub-device is specifically configured to intermittently power the electronic atomization information generation sub-device in the form of pulse width modulation, and when the electronic atomization information generation sub-device is not powered The gap collects the thermoelectric potential generated by the electronic atomization information generation sub-device.
  • the electronic atomization information control sub-device includes: a power supply module, a processing module and a signal acquisition module;
  • One end of the signal acquisition module is electrically connected to the positive terminal of the electronic atomization information generation sub-device, and the other end is electrically connected to the negative terminal of the electronic atomization information generation sub-device to form a first loop;
  • One end of the power supply module is electrically connected to the positive terminal of the electronic atomization information generation sub-device, and the other end is electrically connected to the negative terminal of the electronic atomization information generation sub-device to form a second circuit;
  • a power supply module used to power the electronic atomization information generation sub-device through the second circuit
  • a signal acquisition module used to periodically collect the thermoelectric potential generated by the electronic atomization information generation sub-device through the first loop
  • a processing module configured to generate a temperature control strategy when the temperature of the electronic atomization information generation sub-device is determined to be higher than a first preset temperature threshold according to the thermoelectric potential, and to regulate the temperature of the electronic atomization information generation sub-device according to the temperature control strategy. below the first preset temperature threshold.
  • the electronic atomization information control sub-device also includes: a signal amplification module;
  • the signal amplification module is used to amplify the thermoelectric potential and obtain the amplified thermoelectric potential, so that the subsequent processing module can determine whether the temperature of the electronic atomization information generation sub-device is higher than the first preset temperature threshold based on the amplified thermoelectric potential. .
  • the electronic atomization information generating sub-device at least includes an electric heating element
  • the positive terminal of the electric heating element is provided with a first conductor, and the negative terminal of the electric heating element is provided with a second conductor;
  • the electric heating element is electrically connected to the third wire through the first wire, and the electric heating element is electrically connected to the fourth wire through the second wire to establish a first loop between the signal acquisition module and the electric heating element;
  • the electric heating element is electrically connected to the fifth wire through the first wire, and the electric heating element is electrically connected to the sixth wire through the second wire to establish a second loop between the signal acquisition module and the electric heating element, wherein the third The wire is a wire electrically connected to one end of the signal acquisition module, the fourth wire is a wire electrically connected to the other end of the signal acquisition module, the fifth wire is a wire electrically connected to one end of the power supply module, and the sixth wire is the other end of the power supply module. connected wires;
  • the first conductor and the second conductor both satisfy the first constraint condition, and the third conductor, the fourth conductor, the fifth conductor and the sixth conductor all satisfy the second constraint condition.
  • the first constraint includes:
  • the signal acquisition module uses the first wire and the second wire to identify that the accuracy of the thermoelectric potential signal meets the preset accuracy conditions
  • the signal acquisition module identifies that the stability of the thermoelectric potential signal meets the preset stability conditions through the first wire and the second wire.
  • the second constraint includes:
  • the materials that make up the third conductor to the sixth conductor have a high temperature withstand capability greater than or equal to the first preset temperature threshold;
  • the materials that make up the third conductor to the sixth conductor have a corrosion resistance that is greater than or equal to the preset level
  • the materials constituting the third conductor to the sixth conductor have a preset level of plasticity
  • the resistivity of the materials constituting the third conductor to the sixth conductor is less than the preset resistivity threshold.
  • the temperature control strategy includes:
  • the electronic atomization information control sub-device is specifically used for:
  • the power supply power provided by the electronic atomization information generating sub-device is reduced to Less than or equal to the preset power threshold
  • the power supply that provides power to the electronic atomization information generating sub-device is directly disconnected.
  • this application provides a temperature control method for an electronic atomization device.
  • the method is executed by the electronic atomization information control sub-device in the electronic atomization device introduced in the first aspect.
  • the electronic atomization device includes: Atomization information control sub-device and electronic atomization information generation sub-device, the electronic atomization information generation sub-device is detachably connected to the electronic atomization information control sub-device; the method includes:
  • thermoelectric potential generated by the electronic atomization information generation sub-device After powering the electronic atomization information generation sub-device, periodically collect the thermoelectric potential generated by the electronic atomization information generation sub-device;
  • thermoelectric potential When it is determined according to the thermoelectric potential that the temperature of the electronic atomization information generating sub-device is higher than the first preset temperature threshold, generating a temperature control strategy
  • the temperature of the electronic atomization information generating sub-device is controlled to be below a first preset temperature threshold.
  • thermoelectric potential is generated at both ends of the electronic atomization information generation sub-device.
  • the electronic atomization information control sub-device can periodically collect the thermoelectric potential generated by the electronic atomization information generation sub-device; and when it is determined based on the thermoelectric potential that the temperature of the electronic atomization information generation sub-device is higher than the first preset temperature threshold, the generated temperature control strategy, and according to the temperature control strategy, regulate the temperature of the electronic atomization information generating sub-device to below the first preset temperature threshold.
  • the temperature of the electronic atomization information generating sub-device (including the atomization element and the heating element) is too high, causing harm to the user's personal safety.
  • the solution of this application monitors the temperature of the electronic atomization information generating sub-device and controls it within a range (lower than the first preset temperature threshold), it is possible to avoid shortening the life of the heating element and also It can prevent the heating element from producing harmful components due to high temperature and causing harm to the human body.
  • the temperature condition is determined directly based on the thermoelectric potential. Compared with the existing technology, the feedback accuracy and feedback speed are both improved to a certain extent, which can overcome the shortcomings of the existing technology such as low accuracy of temperature measurement and slow feedback speed. .
  • Figure 1 is a schematic structural diagram of an electronic atomization device provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of an electronic atomization information control sub-device provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of another electronic atomization information control sub-device provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of an atomization element provided by an embodiment of the present application.
  • Figure 5 is a specific structural schematic diagram of the electronic atomization device provided by the embodiment of the present application.
  • Figure 6 is a schematic flow chart of a temperature control method for an electronic atomization device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an electronic atomization device provided by an embodiment of the present application.
  • the device includes: electronic atomization information control sub-device 10 and electronic atomization information generation sub-device 20.
  • the electronic atomization information generating sub-device 20 is detachably connected to the electronic atomization information control sub-device 10 .
  • the electronic atomization information control sub-device 10 is used to power the electronic atomization information generation sub-device 20;
  • thermoelectric potential After the electronic atomization information generation sub-device 20 is powered on, it generates thermoelectric potential
  • the electronic atomization information control sub-device 10 is also used to periodically collect the thermoelectric potential generated by the electronic atomization information generation sub-device 20; when it is determined based on the thermoelectric potential that the temperature of the electronic atomization information generation sub-device 20 is higher than the first preset When the temperature threshold is reached, a temperature control strategy is generated, and according to the temperature control strategy, the temperature of the electronic atomization information generating sub-device 20 is regulated to be below the first preset temperature threshold.
  • the embodiment of the present application supplies power to the electronic atomization information generation sub-device 20 through the electronic atomization information control sub-device 10.
  • the electronic atomization information generation sub-device 20 can refer to the thermocouple principle to control the electronic atomization process. After the information control sub-device 10 supplies power to itself, it generates thermoelectric potential.
  • the electronic atomization information control sub-device 10 is used to periodically collect the thermoelectric potential generated by the electronic atomization information generation sub-device 20 .
  • thermoelectric potential and temperature is stored inside the electronic atomization information control sub-device 10 .
  • it is stored in the form of a mapping relationship table.
  • thermoelectric potential can be compared with each thermoelectric potential in the internally stored mapping relationship table between thermoelectric potential and temperature, and then determine corresponding temperature data.
  • a temperature control strategy needs to be generated. And according to the temperature control strategy, the temperature of the electronic atomization information generating sub-device 20 is regulated to below the first preset temperature threshold.
  • the electronic atomization information control sub-device 10 can intermittently power the electronic atomization information generation sub-device 20 in the form of pulse width modulation.
  • the pulse square wave when power is supplied in the form of a square wave, during the power supply process, the pulse square wave has two conditions: high level and low level. Then, when the square wave is in a high-level state, the electronic atomization information control sub-device 10 supplies power to the electronic atomization information generation sub-device 20 . When the square wave is in a low-level state, the level signal is actually an "invalid" signal and cannot power the electronic atomization information generating sub-device 20 . At this time, the electronic atomization information control sub-device 10 can use this gap to collect the thermoelectric potential generated by the electronic atomization information generation sub-device 20 .
  • the corresponding temperature data is determined based on the thermoelectric potential, and then it is determined whether the current temperature data has exceeded the first preset temperature threshold. If it has been exceeded, a corresponding temperature control strategy is generated.
  • temperature control strategies may include but are not limited to the following two strategies:
  • the selection of temperature control strategy can be determined based on actual conditions. For example, in another optional embodiment, when it is determined according to the thermoelectric potential that the temperature of the electronic atomization information generating sub-device 20 is higher than the first preset temperature threshold and lower than or equal to the second preset temperature threshold, the The power supply power provided by the electronic atomization information generating sub-device 20 is reduced to less than or equal to the preset power threshold.
  • the power supply that provides power to the electronic atomization information generating sub-device 20 is directly disconnected, wherein the first preset Assume that the temperature threshold is smaller than the second preset temperature threshold.
  • the electronic atomization information generating sub-device 20 can be The power supply provided by the device 20 adjusts the temperature of the electronic atomization information generating sub-device 20 to below the first preset temperature threshold.
  • thermoelectric potential the current temperature determined based on the thermoelectric potential has exceeded the second preset temperature threshold, which means that the temperature is too high and some quick and decisive measures need to be taken immediately.
  • the "source" of the thermoelectric potential generated by the electronic atomization information generating sub-device 20 is directly disconnected to eliminate future troubles and avoid harm to the user himself.
  • the first preset temperature threshold is 25 degrees Celsius
  • the second preset temperature threshold is 30 degrees Celsius.
  • the specific corresponding values of the first preset temperature threshold and the second preset temperature threshold need to be set according to the actual situation. This is only an example and does not serve as a reference to the actual situation.
  • the electronic atomization information control sub-device 10 includes: a power supply module 101 , a processing module 102 and a signal acquisition module 103 .
  • one end of the signal acquisition module 103 is electrically connected to the positive terminal of the electronic atomization information generation sub-device 20, and the other end is electrically connected to the negative terminal of the electronic atomization information generation sub-device 20 to form a first loop.
  • One end of the power supply module 101 is electrically connected to the positive terminal of the electronic atomization information generating sub-device 20, and the other end is electrically connected to the negative terminal of the electronic atomization information generating sub-device 20 to form a second circuit.
  • the power supply module 101 is used to supply power to the electronic atomization information generation sub-device 20 through the second loop;
  • the wires at the positive and negative ends of the electronic atomization information generation sub-device 20 use different wire materials, thereby ensuring that after the power supply module 101 supplies power to the electronic atomization information generation sub-device 20 through the second circuit, thermoelectricity is generated. potential.
  • the signal acquisition module 103 is used to periodically collect the thermoelectric potential generated by the electronic atomization information generation sub-device 20 through the first loop.
  • the signal acquisition module 103 specifically collects the thermoelectric potential generated by the electronic atomization information generation sub-device 20 when the pulse waveform is in a low-level state.
  • the processing module 102 is configured to generate a temperature control strategy when it is determined according to the thermoelectric potential that the temperature of the electronic atomization information generating sub-device 20 is higher than a first preset temperature threshold. According to the temperature control strategy, the temperature of the electronic atomization information generating sub-device 20 is regulated to below the first preset temperature threshold.
  • thermoelectric potential generated at both ends of the electronic atomization information generation sub-device 20 may be relatively small, when establishing the mapping relationship between temperature and thermoelectric potential, the corresponding values for different temperatures are The thermoelectric potentials will be relatively close and errors are prone to occur.
  • the electronic atomization information control sub-device 10 may also include: a signal amplification module 104;
  • the signal amplification module 104 is used to amplify the thermoelectric potential and obtain the amplified thermoelectric potential, so that the subsequent processing module 102 determines whether the temperature of the electronic atomization information generating sub-device 20 is higher than the first predetermined temperature based on the amplified thermoelectric potential. Set the temperature threshold.
  • the electronic atomization information generating sub-device 20 at least includes an electric heating element 201 (that is, the atomization element mentioned in the background art); of course, other structures are also included, but other structures belong to the present invention.
  • an electric heating element 201 that is, the atomization element mentioned in the background art
  • a first conductor 202 is provided at the positive end of the electric heating element 201, and a second conductor 203 is provided at the negative end of the electric heating element 201.
  • the first conductor 202 and the second conductor 203 are the electronic atomization information generator mentioned above.
  • the wires at the positive and negative ends of the device 20, the first wire 202 and the second wire 203, are made of different materials, so that after the electricity is obtained, a thermoelectric potential can be generated.
  • the electric heating element 201 is electrically connected to the third wire 204 through the first wire 202, and is electrically connected to the fourth wire 205 through the second wire 203 to establish a first loop between the signal acquisition module 103 and the electric heating element 201. ;
  • the electric heating element 201 is electrically connected to the fifth wire 206 through the first wire 202, and is electrically connected to the sixth wire 207 through the second wire 203 to establish a second loop between the power supply module 101 and the electric heating element 201;
  • the third wire 204 is a wire electrically connected to one end of the signal acquisition module 103
  • the fourth wire 205 is a wire electrically connected to the other end of the signal acquisition module 103 .
  • the fifth wire 206 is a wire electrically connected to one end of the power supply module 101
  • the sixth wire 207 is a wire electrically connected to the other end of the power supply module 101 .
  • the wire materials in the prior art are usually made of iron, copper, constantan and other materials. These materials are not suitable for use as leads. The reason is that the resistance is high, the power loss is large, the heat is large, and the corrosion resistance is poor.
  • the electronic atomization information generation sub-device 20 stores a highly corrosive atomization liquid, it is easy to cause corrosion to the leads, and even cause the leads to produce heavy metal ions. Once the user passes When the mouth, nose and other parts come into contact with the electronic atomization device, it is easy to inhale heavy metal ions, causing inevitable damage to the human body.
  • the first preset condition needs to be met when selecting the constituent materials of the first conductor 202 and the second conductor 203.
  • the third wire 204 , the fourth wire 205 , the fifth wire 206 , and the sixth wire 207 are mainly on the side of the electronic atomization information control sub-device 10 for communicating with the electronic atomization information generation sub-device 20
  • certain constraints also need to be met. That is, the first conductor 202 and the second conductor 203 both need to satisfy the first constraint condition, and the third conductor 204, the fourth conductor 205, the fifth conductor 206, and the sixth conductor 207 all need to satisfy the second constraint condition.
  • the first constraint includes:
  • the signal acquisition module 103 identifies whether the accuracy of the thermoelectric potential signal meets the preset accuracy conditions through the first wire 202 and the second wire 203;
  • the signal acquisition module 103 identifies whether the stability of the thermoelectric potential signal meets the preset stability conditions through the first wire 202 and the second wire 203 .
  • thermoelectric potential signal in order to effectively identify the thermoelectric potential signal, when selecting the materials of the first wire 202 and the second wire 203, select a material of the same level as the mainstream K-type thermocouple, and the thermoelectric potential is approximately ⁇ 10 ⁇ V. /°C;
  • thermoelectric potential changes in a linear or near-linear relationship with good repeatability.
  • the second constraint includes:
  • the third conductor 204 to the sixth conductor 207 are made of materials whose high temperature withstand capability is greater than or equal to the first preset temperature threshold;
  • the materials that make up the third conductor 204 to the sixth conductor 207 have a corrosion ability that is greater than or equal to the preset level;
  • the constituent materials of the third conductor 204 to the sixth conductor 207 have a preset level of plasticity
  • the resistivity of the materials constituting the third conductor 204 to the sixth conductor 207 is less than the preset resistivity threshold.
  • the third conductor 204 to the sixth conductor 207 meet the following requirements:
  • the resistivity is the same order of magnitude as that of existing nickel leads.
  • thermoelectric potential curve generated by the pairing of materials is similar to the curve of K galvanic couple (NiCr-NiSi), which is conducive to relevant temperature measurement (converting electrical signals into actual temperatures) on electronic cigarettes. Therefore, the above-mentioned pair of conductors that can form a thermoelectric potential pair can be used as the first conductor and the second conductor respectively.
  • the individual metal wires can be used uniformly as the third conductor to the sixth conductor.
  • Ni is used for the third to sixth lead wires.
  • this is just an example.
  • Other conductive materials that are applicable to the solution of the present application, can meet the above constraints, and can form a thermoelectric potential pair, as well as conductive materials that are ordinary conductors, also fall within the scope of protection of the present application.
  • thermoelectric potential material As a lead, precise temperature measurement and control on the electronic atomization device can be achieved, and it can also ensure that the generation of atomization components does not increase additional processes and costs compared to existing technologies.
  • Table 1 provides the resistivity and electrode potential of common materials for comparison.
  • Table 2 provides the specific mapping relationship between thermoelectric potential and temperature when the first conductor 202 and the second conductor 203 mentioned in the embodiment of the present application form a thermoelectric potential pair.
  • Figure 4 shows a schematic diagram of an atomization element in an embodiment of the present application.
  • the atomizing element is composed of a first wire 202 (lead A in the figure) and a second wire 203 (lead B in the figure), and an electrothermal material. After the lead A and lead B are energized, a thermoelectric potential can be generated.
  • the specific working principle is an existing technology, so it will not be described in detail here.
  • Figure 5 shows a specific structural schematic diagram of the electronic atomization device in the embodiment of the present application.
  • the node position (the position of the black dot) in the figure is used to represent the power supply module in the electronic atomization information control sub-device through wires and
  • the atomizing element is electrically connected, and the signal acquisition module is electrically connected to the atomizing element through wires.
  • thermoelectric potential is generated at both ends of the electronic atomization information generation sub-device.
  • the electronic atomization information control sub-device can periodically collect the thermoelectric potential generated by the electronic atomization information generation sub-device; and when it is determined based on the thermoelectric potential that the temperature of the electronic atomization information generation sub-device is higher than the first preset temperature threshold, the generated temperature control strategy, and according to the temperature control strategy, regulate the temperature of the electronic atomization information generating sub-device to below the first preset temperature threshold.
  • the temperature of the electronic atomization information generating sub-device (including the atomization element and the heating element) can be avoided from being too high, thereby avoiding harm to the user's personal safety.
  • the temperature of the electronic atomization information generating sub-device is monitored and controlled within a range (lower than the first preset temperature threshold) in the solution of this application, shortening of the life of the heating element can be avoided, and it can also Prevent the heating element from causing harm to the human body due to the harmful components produced by the high temperature.
  • the temperature situation is determined directly based on the thermoelectric potential, so that the feedback accuracy and feedback speed are improved to a certain extent compared with the existing technology, and can overcome the low accuracy of temperature measurement and slow feedback speed in the existing technology. defect.
  • FIG. 6 is a schematic flowchart of a temperature control method for an electronic atomization device provided by an embodiment of the present application. The method is executed by the electronic atomization information control sub-device in any of the electronic atomization devices introduced above. , the method includes:
  • Step 610 After powering on the electronic atomization information generation sub-device, periodically collect the thermoelectric potential generated by the electronic atomization information generation sub-device.
  • Step 620 When it is determined according to the thermoelectric potential that the temperature of the electronic atomization information generating sub-device is higher than the first preset temperature threshold, a temperature control strategy is generated.
  • Step 630 According to the temperature control strategy, regulate the temperature of the electronic atomization information generating sub-device to below the first preset temperature threshold.
  • thermoelectric potential generated by the electronic atomization information generation sub-device you may refer to but are not limited to the following implementations:
  • the electronic atomization information generating sub-device is powered intermittently in the form of pulse width modulation, and the thermoelectric potential generated by the electronic atomization information generating sub-device is collected during gaps when the electronic atomization information generating sub-device is not powered.
  • temperature control strategies include:
  • the electronic atomization information generating sub-device when it is determined according to the thermoelectric potential that the temperature of the electronic atomization information generating sub-device is higher than the first preset temperature threshold and lower than or equal to the second preset temperature threshold, the electronic atomization information generating sub-device provides The power supply is reduced to less than or equal to the preset power threshold;
  • the power supply that provides power to the electronic atomization information generating sub-device is directly disconnected.
  • An embodiment of the present application provides a temperature control method for an electronic atomization device.
  • the electronic atomization information control sub-device supplies power to the electronic atomization information generation sub-device, a thermoelectric potential is generated at both ends of the electronic atomization information generation sub-device.
  • the electronic atomization information control sub-device can periodically collect the thermoelectric potential generated by the electronic atomization information generation sub-device; and based on the thermoelectric potential, it is determined that the temperature of the electronic atomization information generation sub-device is higher than When the first preset temperature threshold is reached, a temperature control strategy is generated, and according to the temperature control strategy, the temperature of the electronic atomization information generating sub-device is adjusted to be below the first preset temperature threshold.
  • the temperature of the electronic atomization information generating sub-device (including the atomization element and the heating element) is too high, causing harm to the user's personal safety.
  • the temperature of the electronic atomization information generating sub-device is monitored and controlled within a range (lower than the first preset temperature threshold) in this application solution, shortening of the life of the heating element and the generation of heat can be avoided.
  • the body produces harmful components due to high temperatures and causes harm to the human body.
  • the temperature situation is determined directly based on the thermoelectric potential, so that the feedback accuracy and feedback speed are improved to a certain extent compared with the existing technology, and can overcome the low accuracy of temperature measurement and slow feedback speed in the existing technology. defect.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Abstract

本申请实施例涉及一种电子雾化装置及温控方法,该装置包括:电子雾化信息控制子装置以及电子雾化信息生成子装置,电子雾化信息生成子装置以可拆卸的方式与电子雾化信息控制子装置连接;电子雾化信息控制子装置用于为电子雾化信息生成子装置供电;电子雾化信息生成子装置通电后,生成热电势;电子雾化信息控制子装置,还用于周期性采集电子雾化信息生成子装置生成的热电势;当根据热电势确定电子雾化信息生成子装置的温度高于第一预设温度阈值时,生成温度控制策略;并根据温度控制策略,调控电子雾化信息生成子装置的温度至第一预设温度阈值以下。通过该方式,可以避免电子雾化信息生成子装置的温度过高,对用户的人身安全造成危害的情况发生。

Description

电子雾化装置及温控方法
相关申请的交叉引用
本申请要求在2022年06月08日提交中国专利局、申请号为202210658819.1、发明名称为“电子雾化装置及温控方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子技术领域,尤其涉及电子雾化装置及温控方法。
背景技术
现有的电子雾化装置的发热体可分为两种,陶瓷发热体及棉芯发热体,二者都是通过电阻发热来产生热量,使得雾化元件中的液体雾化,一旦发热体生成的雾化温度过高,不仅仅会影响用户的体验,甚至还会危害用户的人身安全。例如,当出现发热体温度过高时,一是会导致发热体的寿命缩短甚至失效,二是雾化温度过高时,发热体会产生有害的成分(例如重金属或其他有机物质等的增加),对人体造成危害。
就现在的技术水平而言,对发热体生成的雾化温度的测试技术,属于一个技术痛点。目前的测温技术,例如电阻温度系数(temperature coefficient of resistance,简称TCR)测温技术,其通过材料本身的电阻温度系数,监控不同温度下的阻值,从而得出相应的温度。其存在测量温度的精度低和反馈速度慢等缺点。
发明内容
本申请的目的在于提供电子雾化装置及温控方法,以解决现有技术中的上述部分或全部技术问题。
第一方面,本申请提供了一种电子雾化装置,该装置包括:
电子雾化信息控制子装置以及电子雾化信息生成子装置,电子雾化信息生成子装置以可拆卸的方式与电子雾化信息控制子装置连接;
电子雾化信息控制子装置用于为电子雾化信息生成子装置供电;
电子雾化信息生成子装置通电后,生成热电势;
电子雾化信息控制子装置,还用于周期性采集电子雾化信息生成子装置生成的热电势;当根据热电势确定电子雾化信息生成子装置的温度高于第一预设 温度阈值时,生成温度控制策略;并根据温度控制策略,调控电子雾化信息生成子装置的温度至第一预设温度阈值以下,其中,电子雾化信息控制子装置中存储有热电势与温度之间映射关系。
在一种可选的实施方式中,电子雾化信息控制子装置具体用于,以脉冲宽度调制形式间歇性为电子雾化信息生成子装置供电,且在电子雾化信息生成子装置未供电的间隙采集电子雾化信息生成子装置生成的热电势。
在一种可选的实施方式中,电子雾化信息控制子装置,包括:供电模块、处理模块和信号采集模块;
信号采集模块的一端与电子雾化信息生成子装置的正极端电连接,另一端与电子雾化信息生成子装置的负极端电连接,构成第一回路;
供电模块的一端与电子雾化信息生成子装置的正极端电连接,另一端与电子雾化信息生成子装置的负极端电连接,构成第二回路;
供电模块,用于通过第二回路为电子雾化信息生成子装置供电;
信号采集模块,用于通过第一回路周期性采集电子雾化信息生成子装置生成的热电势;
处理模块,用于当根据热电势确定电子雾化信息生成子装置的温度高于第一预设温度阈值时,生成温度控制策略,并根据温度控制策略,调控电子雾化信息生成子装置的温度至第一预设温度阈值以下。
在一种可选的实施方式中,电子雾化信息控制子装置,还包括:信号放大模块;
信号放大模块,用于对热电势进行放大,获取经过放大后的热电势,以便后续处理模块根据经过放大后的热电势确定电子雾化信息生成子装置的温度是否高于第一预设温度阈值。
在一种可选的实施方式中,电子雾化信息生成子装置至少包括电热元件;
电热元件的正极端设置有第一导线,电热元件的负极端设置有第二导线;
电热元件通过第一导线,与第三导线电连接,以及,电热元件通过第二导线,与第四导线电连接,用以建立信号采集模块和电热元件之间的第一回路;
电热元件通过第一导线,与第五导线电连接,以及,电热元件通过第二导线,与第六导线电连接,用以建立信号采集模块和电热元件之间的第二回路,其中,第三导线为信号采集模块的一端电连接的导线,第四导线为信号采集模块的另一端电连接的导线;第五导线为供电模块的一端电连接的导线,第六导线为供电模块的另一端电连接的导线;
第一导线和第二导线均满足第一约束条件,第三导线、第四导线、第五导线和第六导线,均满足第二约束条件。
在一种可选的实施方式中,第一约束条件包括:
信号采集模块通过第一导线和第二导线,识别热电势信号的精度符合预设精度条件;
信号采集模块通过第一导线和第二导线,识别热电势信号的稳定性符合预设稳定性条件。
在一种可选的实施方式中,第二约束条件包括:
第三导线至第六导线的构成材料,承受高温能力大于或者等于第一预设温度阈值;
第三导线至第六导线的构成材料,承受预设物质的腐蚀能力大于或者等于预设等级;
第三导线至第六导线的构成材料,具有预设等级的可塑性;
第三导线至第六导线的构成材料,电阻率小于预设电阻率阈值。
在一种可选的实施方式中,温度控制策略包括:
将电子雾化信息生成子装置提供的供电功率降低至小于或者等于预设功率阈值;
或,直接断开对电子雾化信息生成子装置提供供电的供电电源。
在一种可选的实施方式中,电子雾化信息控制子装置具体用于:
当根据热电势确定电子雾化信息生成子装置的温度高于第一预设温度阈值,且低于或等于第二预设温度阈值时,将电子雾化信息生成子装置提供的供电功率降低至小于或者等于预设功率阈值;
或者,当根据热电势确定电子雾化信息生成子装置的温度高于第二预设温度阈值时,直接断开对电子雾化信息生成子装置提供供电的供电电源。
第二方面,本申请提供了一种电子雾化装置的温控方法,该方法由第一方面所介绍的电子雾化装置中的电子雾化信息控制子装置执行,电子雾化装置包括:电子雾化信息控制子装置以及电子雾化信息生成子装置,电子雾化信息生成子装置以可拆卸的方式与电子雾化信息控制子装置连接;该方法包括:
为电子雾化信息生成子装置供电后,周期性采集电子雾化信息生成子装置产生的热电势;
当根据热电势确定电子雾化信息生成子装置的温度高于第一预设温度阈值时,生成温度控制策略;
根据温度控制策略,调控电子雾化信息生成子装置的温度至第一预设温度阈值以下。
本申请实施例提供的上述技术方案与现有技术相比具有如下优点:
本申请实施例提供的电子雾化装置,其电子雾化信息控制子装置为电子雾化信息生成子装置供电后,在电子雾化信息生成子装置的两端产生热电势。电子雾化信息控制子装置可以周期性采集电子雾化信息生成子装置生成的热电势;并且在根据热电势确定电子雾化信息生成子装置的温度高于第一预设温度阈值时,生成温度控制策略,并根据温度控制策略,调控电子雾化信息生成子装置的温度至第一预设温度阈值以下。通过该方式,可以避免电子雾化信息生成子装置(包括雾化元件和发热体)的温度过高,对用户的人身安全造成危害的情况发生。正因为本申请方案中对电子雾化信息生成子装置的温度进行监控,将其控制在一个范围内(低于第一预设温度阈值),即可以避免发热体的寿命缩短的情况发生,也可以避免发热体因为高温产生有害成分对人体造成伤害的情况发生。再者,本申请中直接根据热电势来确定温度情况,反馈精度和反馈速度相较于现有技术,都有一定的提高,可以克服现有技术中测量温度的精度低以及反馈速度慢等缺陷。
附图说明
图1为本申请实施例提供的一种电子雾化装置结构示意图。
图2本申请实施例提供的电子雾化信息控制子装置的结构示意图。
图3为本申请实施例提供的另一种电子雾化信息控制子装置的结构示意图。
图4为本申请实施例提供的一种雾化元件的示意图。
图5为本申请实施例提供的电子雾化装置的一个具体的结构示意图。
图6为本申请实施例提供的一种电子雾化装置的温控方法流程示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为便于对本申请实施例的理解,下面将结合附图以具体实施例做进一步的解释说明,实施例并不构成对本申请实施例的限定。
针对背景技术中所提及的技术问题,本申请实施例提供了一种电子雾化装置,具体参见图1所示,图1为本申请实施例提供的一种电子雾化装置结构示意图,该装置包括:电子雾化信息控制子装置10以及电子雾化信息生成子装置 20。其中,电子雾化信息生成子装置20以可拆卸的方式与电子雾化信息控制子装置10连接。
具体地,电子雾化信息控制子装置10用于为电子雾化信息生成子装置20供电;
电子雾化信息生成子装置20通电后,生成热电势;
电子雾化信息控制子装置10,还用于周期性地采集电子雾化信息生成子装置20生成的热电势;当根据热电势确定电子雾化信息生成子装置20的温度高于第一预设温度阈值时,生成温度控制策略,并根据温度控制策略,调控电子雾化信息生成子装置20的温度至第一预设温度阈值以下。
在一个具体的实施例中,本申请实施例通过电子雾化信息控制子装置10为电子雾化信息生成子装置20供电,电子雾化信息生成子装置20参照热电偶原理,可以在电子雾化信息控制子装置10为自身供电后,产生热电势。
那么,电子雾化信息控制子装置10则用于周期性采集电子雾化信息生成子装置20生成的热电势。
并且,在电子雾化信息控制子装置10的内部存储有热电势与温度之间的映射关系。例如,以映射关系表的形式进行存储。
因此,在电子雾化信息控制子装置10采集到热电势后,可以将采集到的热电势与内部存储的热电势与温度之间的映射关系表中的每一个热电势进行比对,进而确定与之对应的温度数据。
一旦确定温度数据高于第一预设温度阈值,则需要生成温度控制策略。并根据该温度控制策略,调控电子雾化信息生成子装置20的温度至第一预设温度阈值以下。
在一个可选的实施例中,电子雾化信息控制子装置10可以以脉冲宽度调制形式间歇性为电子雾化信息生成子装置20供电。
例如采用方波形式供电,在供电过程中,因为脉冲方波存在高电平和低电平两种情况。那么,在方波处于高电平状态时,电子雾化信息控制子装置10为电子雾化信息生成子装置20供电。在方波处于低电平状态时,实际上电平信号为“无效”信号,并不能够为电子雾化信息生成子装置20供电。此时,电子雾化信息控制子装置10则可以利用这个间隙采集电子雾化信息生成子装置20所产生的热电势。
进而,再根据热电势确定与之对应的温度数据,然后再确定当前的温度数据是否已经超过第一预设温度阈值。如果已经超过,则生成相应的温度控制策略。
可选地,温度控制策略可以包括但不限于如下两种策略:
将电子雾化信息生成子装置20提供的供电功率降低至小于或者等于预设功率阈值;
或,直接断开对电子雾化信息生成子装置20提供供电的供电电源。
可选地,温度控制策略的选择,可以根据实际情况来确定。例如,在另一个可选的实施例中,当根据热电势确定电子雾化信息生成子装置20的温度高于第一预设温度阈值,且低于或等于第二预设温度阈值时,将电子雾化信息生成子装置20提供的供电功率降低至小于或者等于预设功率阈值。
或者,当根据热电势确定电子雾化信息生成子装置20的温度高于第二预设温度阈值时,直接断开对电子雾化信息生成子装置20提供供电的供电电源,其中,第一预设温度阈值小于第二预设温度阈值。
也即,如果根据当前采集的热电势确定电子雾化信息生成子装置20的温度高于第一预设温度阈值,但是小于或者等于第二预设温度阈值,那么可以通过电子雾化信息生成子装置20提供的供电功率,调整电子雾化信息生成子装置20的温度至第一预设温度阈值以下。
然而,也有可能在某一次采集热电势后,根据热电势确定的当前温度已经超过第二预设温度阈值,则说明温度已经过高,需要立即采取某种快捷、果断的措施,那么则可以直接断开为电子雾化信息生成子装置20提供供电的供电电源。通过直接断电的方式,直接断开电子雾化信息生成子装置20产生热电势的“源头”,以除后患,避免对用户本身造成伤害。
在一个具体的实施例中,例如第一预设温度阈值为25摄氏度,第二预设温度阈值为30摄氏度。具体的第一预设温度阈值和第二预设温度阈值等的相应数值,需要根据实际情况设定,这里仅仅是举例说明,不做实际情况的参考。
可选地,参见图2所示,电子雾化信息控制子装置10,包括:供电模块101、处理模块102和信号采集模块103。
其中,信号采集模块103的一端与电子雾化信息生成子装置20的正极端电连接,另一端与电子雾化信息生成子装置20的负极端电连接,构成第一回路。
供电模块101的一端与电子雾化信息生成子装置20的正极端电连接,另一端与电子雾化信息生成子装置20的负极端电连接,构成第二回路。
供电模块101,用于通过第二回路为电子雾化信息生成子装置20供电;
其中,电子雾化信息生成子装置20的正极端与负极端两端的导线使用不同的导线材料,进而可以保证在供电模块101通过第二回路为电子雾化信息生成子装置20供电后,产生热电势。
信号采集模块103,用于通过第一回路周期性采集电子雾化信息生成子装置20生成的热电势。
信号采集模块103,具体是在脉冲波形处于低电平状态时,采集电子雾化信息生成子装置20生成的热电势。
处理模块102,用于当根据热电势确定电子雾化信息生成子装置20的温度高于第一预设温度阈值时,生成温度控制策略。根据温度控制策略,调控电子雾化信息生成子装置20的温度至第一预设温度阈值以下。
可选地,参见图3所示,考虑到电子雾化信息生成子装置20的两端所产生的热电势可能数据比较小,在建立温度与热电势之间的映射关系时,不同温度对应的热电势会比较接近,容易出现错误。
因此,该电子雾化信息控制子装置10,还可以包括:信号放大模块104;
信号放大模块104,用于对热电势进行放大,获取经过放大后的热电势,以便后续处理模块102根据经过放大后的热电势确定电子雾化信息生成子装置20的温度是否高于第一预设温度阈值。
可选地,参见图5所示,电子雾化信息生成子装置20至少包括电热元件201(也即是背景技术中所提及的雾化元件);当然也包括其他结构,但是其他结构属于现有技术,且不属于本申请侧重研究的重点,因此这里将不再过多介绍。
电热元件201的正极端设置有第一导线202,电热元件201的负极端设置有第二导线203,第一导线202和第二导线203,即为上文中所提及的电子雾化信息生成子装置20的正极端与负极端两端的导线,第一导线202和第二导线203采用不同的材料制成,因此可以在获取到电量后,生成热电势。
电热元件201通过第一导线202,与第三导线204电连接,以及,通过第二导线203,与第四导线205电连接,用以建立信号采集模块103和电热元件201之间的第一回路;
电热元件201通过第一导线202,与第五导线206电连接,以及,通过第二导线203,与第六导线207电连接,用以建立供电模块101和电热元件201之间的第二回路;其中,第三导线204为信号采集模块103的一端电连接的导线,第四导线205为信号采集模块103的另一端电连接的导线。第五导线206为供电模块101的一端电连接的导线,第六导线207为供电模块101的另一端电连接的导线。
考虑到现有技术中的导线材料通常以铁、铜和康铜等材质构成。这些材料不适合作为引线。其中原因就在于电阻较高,功率损失大,发热量大;耐腐蚀性差。而当电子雾化信息生成子装置20中存储有具有较强腐蚀性的雾化液体时,很容易对引线造成腐蚀,甚至还使得引线产生重金属离子,一旦用户通过 口鼻等部位接触电子雾化装置时,很容易吸入重金属离子,对人体造成不可避免的损害。
因此为了保证第一导线202(引线)和第二导线203(引线)可以达到上述要求,则需要在选择第一导线202和第二导线203的构成材料时,满足第一预设条件。
类似的道理,第三导线204、第四导线205、第五导线206,以及第六导线207,主要是在电子雾化信息控制子装置10一侧,用以与电子雾化信息生成子装置20建立电连接,其同样需要满足一定的约束条件。即,第一导线202和第二导线203均需要满足第一约束条件,第三导线204、第四导线205、第五导线206,以及第六导线207均需要满足第二约束条件。
在一个可选的实施例中,第一约束条件包括:
信号采集模块103通过第一导线202和第二导线203,识别热电势信号的精度是否符合预设精度条件;
信号采集模块103通过第一导线202和第二导线203,识别热电势信号的稳定性是否符合预设稳定性条件。
在一个具体的实施例中,为了有效地识别热电势信号,在选择第一导线202和第二导线203的材料时,选择与主流的K型热电偶为同一级别的材料,热电势大约≥10μV/℃;
再者,需要保证材料随着温度变化时,热电势变化趋势成线性及近线性关系,且重复性好。
可选地,第二约束条件包括:
第三导线204至第六导线207的构成材料,承受高温能力大于或者等于第一预设温度阈值;
第三导线204至第六导线207的构成材料,承受预设物质的腐蚀能力大于或者等于预设等级;
第三导线204至第六导线207的构成材料,具有预设等级的可塑性;
第三导线204至第六导线207的构成材料,电阻率小于预设电阻率阈值。
在一个具体的实施例中,例如第三导线204至第六导线207满足如下要求:
1.耐温较高,建议800℃以上;
2.耐电子烟的烟油的腐蚀,且无明显的金属离子析出;
3.容易加工及塑性成型;
4.电阻率与现有镍引线处同一数量级。
结合以上要求,找到了W、Mo、Ag、Pt、Cu、Cr、Ni等金属丝来作为第一导线202至第六导线207的构成材料,一是最大限度的保持了原来的生产及组装工艺的稳定及变化,二是又可以充分满足热电势及引线的性能要求,经过计算及验证,其W-Ni、Cr-Ni、Mo-Ni、Ag-Ni、Pt-Ni等之间不同热电势材料之间的配对产生的热电势曲线与K电偶(NiCr-NiSi)的曲线类似,有利于在电子烟上进行相关的测温(转换电信号为实际温度)。因此,上述可以构成热电势对的导线对可以分别作为第一导线和第二导线。而单独的金属丝则可以统一用于作为三导线至第六导线。例如,第三导线至第六导线均采用Ni。当然,这里仅仅是举例说明,其他可适用于本申请方案,能够符合上述约束条件,且能够构成热电势对的导线材料,以及作为普通导线的导线材料同样属于本申请保护的范围内。
通过热电势材料作为引线,实现电子雾化装置上精确的测温及控制,且还能够保证雾化元件的生成相较于现有技术而言,不增加额外的工序和成本。
在一个具体的实施例中,如下表所示,表1提供了常见材料的电阻率及电极电位,以供对比。
表1
表2中则提供了本申请实施例中所提及的第一导线202和第二导线203构成热电势对时,具体的热电势与温度之间的映射关系。
表2
图4示出了本申请实施例中一种雾化元件的示意图。具体地,包括第一导线202(图中的引线A)和第二导线203(图中的引线B),以及电热材料构成雾化元件。而引线A和引线B之间在通电后,可以产生热电势。具体的工作原理为现有技术,因此这里不再过多赘述。
图5示出了本申请实施例中的电子雾化装置的一个具体的结构示意图,图中的节点位置(黑色点的位置)用以表示电子雾化信息控制子装置中的供电模块通过导线与雾化元件电连接,以及信号采集模块与通过导线与雾化元件电连接。
各部件及工作原理已经在上文中做了详细解释说明,因此这里不再赘述。
本申请实施例提供的一种电子雾化装置,电子雾化信息控制子装置为电子雾化信息生成子装置供电后,在电子雾化信息生成子装置的两端产生热电势。电子雾化信息控制子装置可以周期性采集电子雾化信息生成子装置生成的热电势;并且在根据热电势确定电子雾化信息生成子装置的温度高于第一预设温度阈值时,生成温度控制策略,并根据温度控制策略,调控电子雾化信息生成子装置的温度至第一预设温度阈值以下。通过该方式,可以避免电子雾化信息生成子装置(包括雾化元件和发热体)的温度过高,避免对用户的人身安全造成危害。正因为在本申请的方案中对电子雾化信息生成子装置的温度进行监控,将其控制在一个范围内(低于第一预设温度阈值),所以可以避免发热体的寿命缩短,也可以避免发热体因为高温产生有害成分而对人体造成伤害。再者,本申请中直接根据热电势来确定温度情况,使得反馈精度和反馈速度相较于现有技术,都有一定的提高,可以克服现有技术中测量温度的精度低以及反馈速度慢等缺陷。
以上,为本申请所提供的电子雾化装置所对应的装置结构实施例,下文中则介绍说明本申请所提供的电子雾化装置的控制方法所对应的实施例,具体如下。
图6为本申请实施例提供的一种电子雾化装置的温控方法流程示意图,该方法由上述任一项所介绍的电子雾化装置电子雾化装置中的电子雾化信息控制子装置执行,该方法包括:
步骤610,为电子雾化信息生成子装置供电后,周期性采集电子雾化信息生成子装置产生的热电势。
步骤620,当根据热电势确定电子雾化信息生成子装置的温度高于第一预设温度阈值时,生成温度控制策略。
步骤630,根据温度控制策略,调控电子雾化信息生成子装置的温度至第一预设温度阈值以下。
可选地,在电子雾化信息控制子装置为电子雾化信息生成子装置供电后,周期性采集电子雾化信息生成子装置生成的热电势时,可以参见但不限于如下实施方式:
以脉冲宽度调制形式间歇性地为电子雾化信息生成子装置供电,且在电子雾化信息生成子装置未供电的间隙采集电子雾化信息生成子装置生成的热电势。
可选地,温度控制策略包括:
将电子雾化信息生成子装置提供的供电功率降低至小于或者等于预设功率阈值;
或,直接断开对电子雾化信息生成子装置提供供电的供电电源。
可选地,当根据热电势确定电子雾化信息生成子装置的温度高于第一预设温度阈值,且低于或等于第二预设温度阈值时,将电子雾化信息生成子装置提供的供电功率降低至小于或者等于预设功率阈值;
或者,当根据热电势确定电子雾化信息生成子装置的温度高于第二预设温度阈值时,直接断开对电子雾化信息生成子装置提供供电的供电电源。
本申请实施例所提供的电子雾化装置的温控方法中的各步骤以及具体的执行细节均已在上述电子雾化装置对应的实施例中做了详细的解释说明,因此这里不再赘述。
本申请实施例提供的一种电子雾化装置的温控方法,在电子雾化信息控制子装置为电子雾化信息生成子装置供电后,在电子雾化信息生成子装置的两端产生热电势。电子雾化信息控制子装置可以周期性采集电子雾化信息生成子装置生成的热电势;并且在根据热电势确定电子雾化信息生成子装置的温度高于 第一预设温度阈值时,生成温度控制策略,并根据温度控制策略,调控电子雾化信息生成子装置的温度至第一预设温度阈值以下。通过该方式,可以避免电子雾化信息生成子装置(包括雾化元件和发热体)的温度过高,对用户的人身安全造成危害的情况发生。正因为本申请方案中对电子雾化信息生成子装置的温度进行监控,将其控制在一个范围内(低于第一预设温度阈值),因此可以避免发热体的寿命缩短,也可以避免发热体因为高温产生有害成分而对人体造成伤害。再者,本申请中直接根据热电势来确定温度情况,使得反馈精度和反馈速度相较于现有技术,都有一定的提高,可以克服现有技术中测量温度的精度低以及反馈速度慢等缺陷。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上仅是本申请的示例性实施例,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种电子雾化装置,其特征在于,所述装置包括:电子雾化信息控制子装置以及电子雾化信息生成子装置,所述电子雾化信息生成子装置以可拆卸的方式与所述电子雾化信息控制子装置连接;
    所述电子雾化信息控制子装置用于为所述电子雾化信息生成子装置供电;
    所述电子雾化信息生成子装置通电后,生成热电势;
    所述电子雾化信息控制子装置,还用于周期性采集所述电子雾化信息生成子装置生成的热电势;当根据所述热电势确定所述电子雾化信息生成子装置的温度高于第一预设温度阈值时,生成温度控制策略;并根据所述温度控制策略,调控所述电子雾化信息生成子装置的温度至所述第一预设温度阈值以下,其中,所述电子雾化信息控制子装置中存储有热电势与温度之间映射关系。
  2. 根据权利要求1所述的装置,其特征在于,所述电子雾化信息控制子装置具体用于,以脉冲宽度调制形式间歇性为所述电子雾化信息生成子装置供电,且在所述电子雾化信息生成子装置未供电的间隙采集所述电子雾化信息生成子装置生成的热电势。
  3. 根据权利要求1或2所述的装置,其特征在于,所述电子雾化信息控制子装置,包括:供电模块、处理模块和信号采集模块;
    所述信号采集模块的一端与所述电子雾化信息生成子装置的正极端电连接,另一端与所述电子雾化信息生成子装置的负极端电连接,构成第一回路;
    所述供电模块的一端与所述电子雾化信息生成子装置的正极端电连接,另一端与所述电子雾化信息生成子装置的负极端电连接,构成第二回路;
    所述供电模块,用于通过所述第二回路为所述电子雾化信息生成子装置供电;
    所述信号采集模块,用于通过所述第一回路周期性采集所述电子雾化信息生成子装置生成的热电势;
    所述处理模块,用于当根据所述热电势确定所述电子雾化信息生成子装置的温度高于所述第一预设温度阈值时,生成所述温度控制策略,并根据所述温度控制策略,调控所述电子雾化信息生成子装置的温度至所述第一预设温度阈值以下。
  4. 根据权利要求3所述的装置,其特征在于,所述电子雾化信息控制子装置,还包括:信号放大模块;
    所述信号放大模块,用于对所述热电势进行放大,获取经过放大后的热电势,以便后续所述处理模块根据经过放大后的热电势确定所述电子雾化信息生成子装置的温度是否高于所述第一预设温度阈值。
  5. 根据权利要求3所述的装置,其特征在于,所述电子雾化信息生成子装置至少包括电热元件;
    所述电热元件的正极端设置有第一导线,所述电热元件的负极端设置有第二导线;
    所述电热元件通过所述第一导线,与第三导线电连接,以及,所述电热元件通过所述第二导线,与第四导线电连接,用以建立所述信号采集模块和所述电热元件之间的第一回路;
    所述电热元件通过所述第一导线,与第五导线电连接,以及,所述电热元件通过所述第二导线,与第六导线电连接,用以建立所述信号采集模块和所述电热元件之间的第二回路,其中,所述第三导线为所述信号采集模块的一端电连接的导线,所述第四导线为所述信号采集模块的另一端电连接的导线;所述第五导线为所述供电模块的一端电连接的导线,所述第六导线为所述供电模块的另一端电连接的导线;
    所述第一导线和所述第二导线均满足第一约束条件,所述第三导线、所述第四导线、所述第五导线和所述第六导线,均满足第二约束条件。
  6. 根据权利要求5所述的装置,其特征在于,所述第一约束条件包括:
    所述信号采集模块通过所述第一导线和所述第二导线,识别热电势信号的精度符合预设精度条件;
    所述信号采集模块通过所述第一导线和所述第二导线,识别热电势信号的稳定性符合预设稳定性条件。
  7. 根据权利要求5所述的装置,其特征在于,所述第二约束条件包括:
    所述第三导线至所述第六导线的构成材料,承受高温能力大于或者等于第一预设温度阈值;
    所述第三导线至所述第六导线的构成材料,承受预设物质的腐蚀能力大于或者等于预设等级;
    所述第三导线至所述第六导线的构成材料,具有预设等级的可塑性;
    所述第三导线至所述第六导线的构成材料,电阻率小于预设电阻率阈值。
  8. 根据权利要求1、2或4-7任一项所述的装置,其特征在于,所述温度控制策略包括:
    将所述电子雾化信息生成子装置提供的供电功率降低至小于或者等于预设功率阈值;
    或,直接断开对所述电子雾化信息生成子装置提供供电的供电电源。
  9. 根据权利要求8所述的装置,其特征在于,所述电子雾化信息控制子装置具体用于:
    当根据所述热电势确定所述电子雾化信息生成子装置的温度高于所述第一预设温度阈值,且低于或等于第二预设温度阈值时,将所述电子雾化信息生成子装置提供的供电功率降低至小于或者等于预设功率阈值;
    或者,当根据所述热电势确定所述电子雾化信息生成子装置的温度高于所述第二预设温度阈值时,直接断开对所述电子雾化信息生成子装置提供供电的供电电源。
  10. 一种电子雾化装置的温控方法,其特征在于,所述方法由权利要求1-9中任一项所述的电子雾化装置中的电子雾化信息控制子装置执行,所述电子雾化装置包括:所述电子雾化信息控制子装置以及电子雾化信息生成子装置,所述电子雾化信息生成子装置以可拆卸的方式与所述电子雾化信息控制子装置连接;所述方法包括:
    为所述电子雾化信息生成子装置供电后,周期性采集所述电子雾化信息生成子装置产生的热电势;
    当根据所述热电势确定所述电子雾化信息生成子装置的温度高于第一预设温度阈值时,生成温度控制策略;
    根据所述温度控制策略,调控所述电子雾化信息生成子装置的温度至所述第一预设温度阈值以下。
PCT/CN2023/079039 2022-06-08 2023-03-01 电子雾化装置及温控方法 WO2023236597A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210658819.1A CN117223902A (zh) 2022-06-08 2022-06-08 电子雾化装置及温控方法
CN202210658819.1 2022-06-08

Publications (1)

Publication Number Publication Date
WO2023236597A1 true WO2023236597A1 (zh) 2023-12-14

Family

ID=89081340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079039 WO2023236597A1 (zh) 2022-06-08 2023-03-01 电子雾化装置及温控方法

Country Status (2)

Country Link
CN (1) CN117223902A (zh)
WO (1) WO2023236597A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117958498A (zh) * 2024-04-01 2024-05-03 深圳市酷斯达科技有限公司 一种电子雾化器输出自保护的控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612165A (en) * 1968-11-12 1971-10-12 Gulton Europ Ltd Temperature controllers
CN106102488A (zh) * 2014-11-28 2016-11-09 惠州市吉瑞科技有限公司 一种雾化器发热丝温度测控装置、测控方法和一种电子烟
CN106102493A (zh) * 2016-06-24 2016-11-09 惠州市吉瑞科技有限公司深圳分公司 一种电子烟控制方法
CN110236230A (zh) * 2019-06-21 2019-09-17 精赟智能科技(上海)有限公司 电子烟的温控装置及电子烟
CN213154006U (zh) * 2020-06-28 2021-05-11 赵乃霞 一种电子烟发热组件及电子烟
CN114223963A (zh) * 2021-12-24 2022-03-25 重庆江陶科技有限公司 用于气雾生成装置的电阻加热器及气雾生成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612165A (en) * 1968-11-12 1971-10-12 Gulton Europ Ltd Temperature controllers
CN106102488A (zh) * 2014-11-28 2016-11-09 惠州市吉瑞科技有限公司 一种雾化器发热丝温度测控装置、测控方法和一种电子烟
CN106102493A (zh) * 2016-06-24 2016-11-09 惠州市吉瑞科技有限公司深圳分公司 一种电子烟控制方法
CN110236230A (zh) * 2019-06-21 2019-09-17 精赟智能科技(上海)有限公司 电子烟的温控装置及电子烟
CN213154006U (zh) * 2020-06-28 2021-05-11 赵乃霞 一种电子烟发热组件及电子烟
CN114223963A (zh) * 2021-12-24 2022-03-25 重庆江陶科技有限公司 用于气雾生成装置的电阻加热器及气雾生成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117958498A (zh) * 2024-04-01 2024-05-03 深圳市酷斯达科技有限公司 一种电子雾化器输出自保护的控制方法及系统

Also Published As

Publication number Publication date
CN117223902A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
WO2023236597A1 (zh) 电子雾化装置及温控方法
WO2020113762A1 (zh) 一种用于烟雾发生装置的加热组件及电子烟
CN211431079U (zh) 一种电子烟用新型复合陶瓷发热体
EP4344346A1 (en) Method and apparatus for prolonging service life of ceramic electric heating body under direct-current power supply condition
CN113381086A (zh) 一种锂电池过热保护系统及方法
CN211431067U (zh) 一种电子烟用新型导电发热雾化一体化发热体
CN110839965A (zh) 一种电子烟发热组件
EP4023081A1 (en) Heating assembly for use in smoking apparatus
CN207721216U (zh) 电子烟及其加热装置
CN213188067U (zh) 一种用于抽烟装置的加热组件
CN211960911U (zh) 一种测控温一体的空气加热元件
CN215034304U (zh) 一种高效传热的分体式电烙铁
CN210642470U (zh) 一种用于烟雾发生装置的加热组件及电子烟
CN212014440U (zh) 一种发热组件及电子雾化装置
CN211020999U (zh) 陶瓷棒发热体
CN211458862U (zh) 一种电子烟发热组件
CN110959918B (zh) 一种发热组件及电子雾化装置
CN205271101U (zh) 焊机的过热保护电路
CN105629077B (zh) 一种测量熔融态玻璃电导率的装置及方法
CN205103683U (zh) 不设ntc的控温陶瓷发热片及温控系统
CN210469752U (zh) 弧形陶瓷发热片
CN216982140U (zh) 一种带有静电释放结构的半导体电热膜加热器
CN220274929U (zh) 一种hnb加热体及气溶胶产生装置
CN109470758A (zh) 一种可重复使用的空间原子氧传感器
CN211050234U (zh) 内热式针灸针小型加热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818765

Country of ref document: EP

Kind code of ref document: A1