WO2023236127A1 - 一种机电液复合传动装置及其控制方法 - Google Patents

一种机电液复合传动装置及其控制方法 Download PDF

Info

Publication number
WO2023236127A1
WO2023236127A1 PCT/CN2022/097759 CN2022097759W WO2023236127A1 WO 2023236127 A1 WO2023236127 A1 WO 2023236127A1 CN 2022097759 W CN2022097759 W CN 2022097759W WO 2023236127 A1 WO2023236127 A1 WO 2023236127A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
power
clutch
assembly
hydraulic
Prior art date
Application number
PCT/CN2022/097759
Other languages
English (en)
French (fr)
Inventor
朱镇
盛杰
蔡英凤
陈龙
夏长高
江浩斌
田翔
韩江义
朱建国
曾发林
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB2312716.0A priority Critical patent/GB2619188A/en
Publication of WO2023236127A1 publication Critical patent/WO2023236127A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/06Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type
    • F16H47/08Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type the mechanical gearing being of the type with members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/082Planet carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/10Braking arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0069Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising ten forward speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a transmission device and a control method thereof.
  • it provides an electromechanical-hydraulic compound transmission device with three transmission modes: mechanical, hydraulic and electrical, and a control method thereof. It belongs to the technical field of variable speed transmission devices.
  • variable speed transmission methods currently used in engineering machinery generally include gear single-flow transmission, hydraulic single-flow transmission, and hydraulic-gear compound transmission.
  • Gear single-flow transmission has high efficiency, but the transmission ratio is fixed, and frequent gear changes are required during operation;
  • hydraulic single-flow transmission Flow transmission can easily achieve stepless speed regulation and transmit large torque, but its transmission efficiency is low;
  • hydraulic-gear compound transmission is a transmission method in which hydraulic power flow and mechanical power flow are connected in parallel, which combines gear transmission
  • the high efficiency and large torque of hydraulic transmission but it has high requirements on variable hydraulic pumps, quantitative hydraulic motors and hydraulic systems;
  • the hybrid electric continuously variable transmission can not only meet the requirements of power coupling, but also realize brake feedback and continuously variable speed change. , power compensation and many other functions, it can also output different speeds and torques, and flexibly realize the mutual conversion between various energies.
  • the existing technology only involves the design of a single-flow transmission device and a composite transmission device in which two single-flow transmissions are connected in parallel, and cannot fully meet the design requirements for multi-mode transmission devices, especially multiple composite modes, under different working conditions of engineering machinery.
  • the present invention provides an electromechanical-hydraulic compound transmission device and a control method thereof.
  • the present invention realizes hydraulic transmission, mechanical transmission, and electrical continuously variable transmission transmission by switching the clutch assembly and the brake assembly.
  • mechanical-electrical converging transmission, hydraulic-mechanical shunt transmission, hydraulic-electrical shunt transmission, hydraulic-mechanical-electrical shunt transmission, hydraulic-mechanical converging transmission, hydraulic-electrical converging transmission, mechanical-hydraulic-electrical converging transmission in various modes Switching can meet the multi-mode needs of the transmission device under different working conditions of engineering machinery.
  • an electromechanical and hydraulic compound transmission device including
  • Input shaft assembly including input shaft and first clutch C 1 ;
  • the power split component includes the power split component input shaft, the first gear pair, the second clutch C 2 , the power split component ring gear, the power split component planet carrier and the power split component sun gear; the power split component ring gear and the power split component
  • the component input shaft is connected, the power splitter component input shaft is connected to the input shaft through the first clutch C1 , and the power splitter component ring gear is connected to the power splitter component planetary carrier through the second clutch C2 ;
  • the hydraulic transmission assembly includes a third clutch C 3 , a variable pump, a hydraulic pipeline, a fixed motor, a second gear pair, and a fourth clutch C 4 ; the input end of the hydraulic transmission assembly is connected to the sun gear of the power splitting assembly, and the The input end of the hydraulic transmission component is connected to the variable pump through the third clutch C3 , which outputs high-pressure oil to the fixed motor through the hydraulic pipeline, and the second gear pair is connected to the output shaft of the fixed motor through the fourth clutch C4 ;
  • the transmission component of the electric continuously variable transmission includes the fifth clutch C 5 , the third gear pair, the input shaft of the electric continuously variable transmission, the electric continuously variable transmission, and the output shaft of the electric continuously variable transmission; the power split component planetary carrier passes through the fifth clutch C 5. Connected to the input shaft of the electric continuously variable transmission;
  • Mechanical transmission assembly including the fourth gear pair, sixth clutch C 6 , brake B, mechanical transmission assembly input shaft, fifth gear pair, seventh clutch C 7 , mechanical transmission assembly ring gear, mechanical transmission assembly sun gear, eighth Clutch C 8 , mechanical transmission assembly planet carrier, mechanical transmission assembly output shaft;
  • the electric continuously variable transmission output shaft is connected to the mechanical transmission assembly sun gear through the sixth clutch C 6
  • the brake B is connected to the mechanical transmission assembly sun gear
  • the power splitting assembly planetary carrier is connected to the mechanical transmission assembly ring gear through the seventh clutch C7
  • the mechanical transmission assembly sun gear is connected to the mechanical transmission assembly planetary carrier through the eighth clutch C8 ;
  • the power bus assembly includes a power bus assembly ring gear, a power bus assembly sun gear, a power bus assembly planetary carrier, and a ninth clutch C 9 ;
  • the power bus assembly ring gear is fixedly connected to the output shaft of the mechanical transmission component, and the power bus assembly
  • the ring gear is connected to the power bus assembly planet carrier through the ninth clutch C 9 , and the power bus assembly sun gear is connected to the output end of the hydraulic transmission assembly;
  • Output shaft, the output shaft is connected with the power bus assembly planetary carrier.
  • the invention realizes hydraulic transmission, mechanical transmission, electrical continuously variable transmission transmission, mechanical-electrical converging transmission, hydraulic-mechanical shunt transmission, hydraulic-electrical shunt transmission, hydraulic-mechanical-electrical shunt transmission, hydraulic -Switching between mechanical converging transmission, hydraulic-electrical converging transmission, and mechanical-hydraulic-electrical converging transmission can meet the multi-mode needs of transmission devices under different working conditions of engineering machinery, improve engine power utilization, and improve fuel economy. .
  • the shift impact is effectively reduced and the speed ratio adjustment range is increased; the hydraulic transmission starts quickly and works smoothly, making it easy to achieve rapid and shock-free speed changes and reversals.
  • the transmission ratio change process of the electric continuously variable transmission is continuous.
  • the impact on the mechanism during use is minimal. It effectively broadens the speed regulation range and can meet the requirements of large-scale non-linear stepless speed regulation.
  • the hydraulic-electrical composite transmission and mechanical-hydraulic-electrical composite transmission methods improve the system transmission efficiency and can meet the requirements of efficient stepless speed regulation in the area. Require.
  • a control method for an electromechanical and hydraulic compound transmission device which realizes three types of transmission modes: a single type of transmission mode, a power splitting compound transmission mode, and a power converging compound transmission mode by controlling the engagement switching between the clutch and the brake B.
  • a single type of transmission mode The modes include hydraulic transmission mode, mechanical transmission mode, and electric continuously variable transmission transmission mode; the power split compound transmission mode includes hydraulic-mechanical split transmission mode, hydraulic-electrical split transmission mode, hydraulic-mechanical-electrical split transmission mode; power-shunt compound transmission The modes include mechanical-electrical converging transmission mode, hydraulic-mechanical converging transmission mode, hydraulic-electrical converging transmission mode, and mechanical-hydraulic-electrical converging transmission mode.
  • control method of the single type of transmission mode is as follows:
  • Hydraulic transmission mode the first clutch C 1 , the second clutch C 2 , the third clutch C 3 , the fourth clutch C 4 and the ninth clutch C 9 are combined, and at the same time the fifth clutch C 5 , the sixth clutch C 6 and the seventh clutch Clutch C 7 , eighth clutch C 8 and brake B are separated.
  • the power is driven by the input shaft through the first gear pair to work the variable pump.
  • the variable pump outputs high-pressure oil to drive the fixed motor to rotate.
  • the power output from the output end of the fixed motor Transmitted to the output shaft output through the second gear pair;
  • Mechanical transmission mode the first clutch C 1 , the second clutch C 2 , the seventh clutch C 7 and the ninth clutch C 9 are combined with the brake B, and at the same time the third clutch C 3 , the fourth clutch C 4 and the fifth clutch C 5 , the sixth clutch C 6 and the eighth clutch C 8 are separated, and the power is driven from the input shaft through the first clutch C 1 , the second clutch C 2 and the seventh clutch C 7 to drive the ring gear of the mechanical transmission assembly.
  • the mechanical transmission assembly The power output from the ring gear is transmitted to the output shaft through the mechanical transmission component planetary carrier;
  • Electric continuously variable transmission transmission mode the first clutch C 1 , the second clutch C 2 , the fifth clutch C 5 , the sixth clutch C 6 , the eighth clutch C 8 and the ninth clutch C 9 are combined, and at the same time the third clutch C 3 , the fourth clutch C 4 , the seventh clutch C 7 and the brake B are separated.
  • the power split component and the power sink component are each fixedly connected as one. The power is transmitted from the input shaft through the power split component, the electric continuously variable transmission transmission component and the power sink component. to the output shaft output.
  • control method of the power split compound transmission mode is as follows:
  • Hydraulic-mechanical split transmission mode the first clutch C 1 , the third clutch C 3 , the fourth clutch C 4 , the seventh clutch C 7 , the ninth clutch C 9 are combined with the brake B, and at the same time the second clutch C 2 and the fifth clutch Clutch C 5 , sixth clutch C 6 and eighth clutch C 8 are separated, and the power is transmitted from the input shaft through the input shaft of the power split component to the power split component ring gear for splitting: all the way the power is transmitted through the power split component sun gear and hydraulic transmission component to the power sink component sun gear, and the other power is transmitted to the power sink component ring gear through the power splitter component planetary carrier, mechanical transmission component ring gear, and mechanical transmission component planetary carrier.
  • the power sink component is firmly connected as a whole and transmitted to the power sink component sun
  • the power of the wheel and the power transmitted to the ring gear of the converging assembly are transmitted to the output shaft output through the power converging assembly;
  • Hydraulic-electric split transmission mode the first clutch C 1 , the third clutch C 3 , the fourth clutch C 4 , the fifth clutch C 5 , the sixth clutch C 6 , the eighth clutch C 8 and the ninth clutch C 9 are combined, At the same time, the second clutch C 2 , the seventh clutch C 7 and the brake B are separated, and the power is transmitted from the input shaft through the input shaft of the power split component to the power split component ring gear for shunting: all the way the power is transmitted through the power split component sun gear and hydraulic transmission component to the sun gear of the power confluence assembly, and the other power is transmitted to the input shaft of the electric continuously variable transmission through the planetary carrier of the power splitting assembly.
  • the input shaft of the electric continuously variable transmission drives the electric continuously variable transmission to work.
  • the power output by the electric continuously variable transmission passes through
  • the output shaft of the electric continuously variable transmission is transmitted to the ring gear of the bus assembly, and the power bus assembly is fixedly connected as a whole.
  • the power transmitted to the sun gear of the power bus assembly and the power transmitted to the ring gear of the bus assembly are transmitted to the output shaft output through the power bus assembly;
  • Hydraulic-mechanical-electrical split transmission mode first clutch C 1 , third clutch C 3 , fourth clutch C 4 , fifth clutch C 5 , sixth clutch C 6 , seventh clutch C 7 and ninth clutch C 9 Combined, at the same time, the second clutch C 2 , the eighth clutch C 8 and the brake B are separated, and the power is transmitted from the input shaft through the input shaft of the power split component to the power split component ring gear for splitting: all the power passes through the power split component sun gear, hydraulic transmission The assembly is transmitted to the sun gear of the power confluence assembly, and the power is split again through the planetary carrier of the power splitting assembly.
  • the power is transmitted to the input shaft of the electric continuously variable transmission through the fifth clutch C5 , and the input shaft of the electric continuously variable transmission drives the electric continuously variable transmission.
  • the power output by the electric continuously variable transmission is transmitted to the sun gear of the mechanical transmission assembly through the output shaft of the electric continuously variable transmission, and the other power is transmitted to the ring gear of the mechanical transmission assembly through the seventh clutch C7 .
  • the two power sources are in the mechanical transmission.
  • the components merge at the planet carrier, and the combined power is transmitted to the ring gear of the converging component.
  • the power converging component is fixedly connected as a whole.
  • the power transmitted to the sun gear of the power converging component and the power transmitted to the ring gear of the converging component are transmitted to the output through the power converging component. shaft output.
  • control method of the power convergence compound transmission mode is as follows:
  • Mechanical-electrical convergence transmission mode the first clutch C 1 , the second clutch C 2 , the fifth clutch C 5 , the sixth clutch C 6 , the seventh clutch C 7 and the ninth clutch C 9 are combined, and at the same time the third clutch C 3 , the fourth clutch C 4 , the eighth clutch C 8 and the brake B are separated, the power split component and the power confluence component are each fixedly connected as one, and the power is split from the input shaft through the power split component: all the way the power is transmitted through the fifth clutch C 5 to the input shaft of the electric continuously variable transmission.
  • the input shaft of the electric continuously variable transmission drives the electric continuously variable transmission to work.
  • the power output by the electric continuously variable transmission is transmitted to the mechanical transmission assembly sun gear through the output shaft of the electric continuously variable transmission.
  • the other power It is transmitted to the ring gear of the mechanical transmission component through the seventh clutch C7 , and the two-way power is merged at the planetary carrier of the mechanical transmission component.
  • the combined power is transmitted to the output shaft output through the power merging component;
  • Hydraulic-mechanical converging transmission mode the first clutch C 1 , the second clutch C 2 , the third clutch C 3 , the fourth clutch C 4 , the seventh clutch C 7 are combined with the brake B, and at the same time the fifth clutch C 5 and the sixth clutch Clutch C 6 and ninth clutch C 9 are separated, and the power split component is fixedly connected into one body.
  • the power is split from the input shaft through the power split component: one power is transmitted to the power merging component sun gear through the hydraulic transmission component, and the other power passes through the power split
  • the planetary carrier component, the mechanical transmission component ring gear, and the mechanical transmission component planetary carrier are transmitted to the power sink component ring gear.
  • the power transmitted to the power sink component sun gear and the power transmitted to the sink component ring gear merge at the power sink component planetary carrier. Passed to the output shaft output;
  • Hydraulic-electric confluence transmission mode the first clutch C 1 , the second clutch C 2 , the third clutch C 3 , the fourth clutch C 4 , the fifth clutch C 5 , the sixth clutch C 6 and the eighth clutch C 8 are combined at the same time
  • the seventh clutch C 7 , the ninth clutch C 9 and the brake B are separated, and the power splitting component is fixedly connected as a whole.
  • the power is split from the input shaft through the power splitting component: one way of power is transmitted to the power converging component sun gear through the hydraulic transmission component, and the other is The power is transmitted to the input shaft of the electric continuously variable transmission through the planetary carrier of the power split component.
  • the input shaft of the electric continuously variable transmission drives the electric continuously variable transmission to work.
  • the power output by the electric continuously variable transmission is transmitted to the input shaft of the electric continuously variable transmission through the output shaft of the electric continuously variable transmission.
  • Convergence assembly ring gear, the power transmitted to the power condensation assembly sun gear and the power transmitted to the confluence assembly ring gear are merged at the power confluence assembly planetary carrier and then transmitted to the output shaft output;
  • Mechanical-hydraulic-electrical confluence transmission mode the combination of the first clutch C 1 , the second clutch C 2 , the third clutch C 3 , the fourth clutch C 4 , the fifth clutch C 5 , the sixth clutch C 6 and the seventh clutch C 7 , at the same time, the eighth clutch C 8 , the ninth clutch C 9 and the brake B are separated, the power split component is fixedly connected as a whole, and the power is split from the input shaft through the power split component: all the power is transmitted to the power confluence component sun gear through the hydraulic transmission component , one channel of power is diverted again through the planetary carrier of the power splitting component, and one channel of power is transmitted to the input shaft of the electric continuously variable transmission through the fifth clutch C5 .
  • the input shaft of the electric continuously variable transmission drives the electric continuously variable transmission to work.
  • the electric continuously variable transmission The power output by the transmission is transmitted to the sun gear of the mechanical transmission assembly through the output shaft of the electric continuously variable transmission.
  • the other power is transmitted to the ring gear of the mechanical transmission assembly through the seventh clutch C7 .
  • the two powers merge at the planet carrier of the mechanical transmission assembly. After the merger
  • the power is transmitted to the ring gear of the bus assembly.
  • the power transmitted to the sun gear of the power bus assembly and the power transmitted to the ring gear of the bus assembly are merged at the planetary carrier of the power bus assembly and then transmitted to the output shaft.
  • the output shaft speed n o of the single type of transmission mode is calculated as follows:
  • n o is the output shaft speed
  • n I is the input shaft speed
  • e is the displacement ratio of the hydraulic transmission component
  • i 1 is the transmission ratio of the first gear pair
  • i 2 is the transmission ratio of the second gear pair
  • n o is the output shaft speed
  • n I is the input shaft speed
  • i 5 is the transmission ratio of the fifth gear pair
  • k 2 is the planetary gear characteristic parameter of the mechanical transmission component
  • n o is the output shaft speed
  • n I is the input shaft speed
  • i 3 is the transmission ratio of the third gear pair
  • i 4 is the transmission ratio of the fourth gear pair
  • i e is the transmission of the electric continuously variable transmission transmission assembly.
  • the output shaft speed n o of the power split compound transmission mode is calculated as follows:
  • n o is the output shaft speed
  • n I is the input shaft speed
  • k 1 is the planetary gear characteristic parameter of the power split component
  • k 2 is the planetary gear characteristic parameter of the mechanical transmission component
  • i 1 is the transmission of the first gear pair Ratio
  • i 2 is the transmission ratio of the second gear pair
  • i 5 is the transmission ratio of the fifth gear pair
  • e is the displacement ratio of the hydraulic transmission component
  • n o is the output shaft speed
  • n I is the input shaft speed
  • k 1 is the planetary gear characteristic parameter of the power split component
  • i 1 is the transmission ratio of the first gear pair
  • i 2 is the transmission ratio of the second gear pair.
  • i 3 is the transmission ratio of the third gear pair
  • i 4 is the transmission ratio of the fourth gear pair
  • i e is the transmission ratio of the electric continuously variable transmission transmission component
  • e is the displacement ratio of the hydraulic transmission component
  • n o is the output shaft speed
  • n I is the input shaft speed
  • k 1 is the planetary gear characteristic parameter of the power split component
  • k 2 is the planetary gear characteristic parameter of the mechanical transmission component
  • i 1 is the transmission of the first gear pair Ratio
  • i 2 is the transmission ratio of the second gear pair
  • i 3 is the transmission ratio of the third gear pair
  • i 4 is the transmission ratio of the fourth gear pair
  • i 5 is the transmission ratio of the fifth gear pair
  • i e is the electrical The transmission ratio of the continuously variable transmission transmission component
  • e is the displacement ratio of the hydraulic transmission component.
  • the calculation method of the output shaft speed n o of the power convergence compound transmission mode is as follows:
  • n o is the output shaft speed
  • n I is the input shaft speed
  • k 2 is the planetary gear characteristic parameter of the mechanical transmission component
  • i 3 is the transmission ratio of the third gear pair
  • i 4 is the transmission ratio of the fourth gear pair.
  • i 5 is the transmission ratio of the fifth gear pair
  • i e is the transmission ratio of the electric continuously variable transmission transmission component;
  • n o is the output shaft speed
  • n I is the input shaft speed
  • k 2 is the planetary gear characteristic parameter of the mechanical transmission component
  • k 3 is the planetary gear characteristic parameter of the power confluence component
  • i 1 is the transmission of the first gear pair Ratio
  • i 2 is the transmission ratio of the second gear pair
  • e is the displacement ratio of the hydraulic transmission component
  • n o is the output shaft speed
  • n I is the input shaft speed
  • k 3 is the planetary gear characteristic parameter of the power confluence assembly
  • i 1 is the transmission ratio of the first gear pair
  • i 2 is the transmission ratio of the second gear pair.
  • i 3 is the transmission ratio of the third gear pair
  • i 4 is the transmission ratio of the fourth gear pair
  • i e is the transmission ratio of the electric continuously variable transmission transmission component
  • e is the displacement ratio of the hydraulic transmission component
  • n o is the output shaft speed
  • n I is the input shaft speed
  • k 2 is the planetary gear characteristic parameter of the mechanical transmission component
  • k 3 is the planetary gear characteristic parameter of the power confluence component
  • i 1 is the transmission of the first gear pair Ratio
  • i 2 is the transmission ratio of the second gear pair
  • i 3 is the transmission ratio of the third gear pair
  • i 4 is the transmission ratio of the fourth gear pair
  • i 5 is the transmission ratio of the fifth gear pair
  • i e is the electrical The transmission ratio of the continuously variable transmission transmission component
  • e is the displacement ratio of the hydraulic transmission component.
  • the preferred option is to switch between the hydraulic transmission mode and the electric continuously variable transmission mode by adjusting the displacement ratio of the hydraulic transmission component, adjusting the transmission ratio of the electric continuously variable transmission component, and controlling the engagement between the clutch and brake B. Stepless speed switching between multiple transmission modes.
  • the transmission modes involved in the stepless speed regulation switching between the multiple transmission modes are as follows:
  • Hydraulic transmission mode - "Hydraulic-electrical convergence transmission mode” - "Mechanical-hydraulic-electrical convergence transmission mode or hydraulic transmission mode” - "Mechanical transmission mode” - "Hydraulic-mechanical convergence transmission mode”;
  • Hydraulic transmission mode - "Mechanical-electrical confluence transmission mode” - “Electrical continuously variable transmission transmission mode” - "Hydraulic-electrical split transmission mode”;
  • the present invention realizes hydraulic transmission, mechanical transmission, electrical continuously variable transmission transmission, mechanical-electrical confluence transmission, hydraulic-mechanical shunt transmission, hydraulic-electrical shunt transmission, and hydraulic-mechanical-electrical shunt transmission.
  • the switching of multiple modes of transmission, hydraulic-mechanical converging transmission, hydraulic-electrical converging transmission, and mechanical-hydraulic-electrical converging transmission can meet the multi-mode needs of transmission devices under different working conditions of engineering machinery, improve engine power utilization, and improve Fuel economy.
  • the shift impact is effectively reduced and the speed ratio adjustment range is increased; the hydraulic transmission starts quickly and works smoothly, making it easy to achieve rapid and shock-free speed changes and reversals.
  • the transmission ratio change process of the electric continuously variable transmission is continuous.
  • the impact on the mechanism during use is minimal.
  • the electromechanical-hydraulic compound transmission device of the present invention has multiple modes, effectively broadens the speed regulation range, and can meet the requirements of large-scale non-linear stepless speed regulation.
  • the hydraulic-electrical compound transmission and mechanical-hydraulic-electrical compound transmission modes improve the system The transmission efficiency can meet the requirements of efficient stepless speed regulation in the region.
  • Figure 1 is a structural principle diagram of the present invention.
  • Figure 2 is a schematic diagram of the power flow in the hydraulic transmission mode of the present invention.
  • Figure 3 is a schematic diagram of the power flow in the mechanical transmission mode of the present invention.
  • Figure 4 is a schematic diagram of the power flow in the transmission mode of the electric continuously variable transmission of the present invention.
  • Figure 5 is a schematic diagram of the power flow direction in the hydraulic-mechanical split transmission mode of the present invention.
  • Figure 6 is a schematic diagram of the power flow direction in the hydraulic-electric split transmission mode of the present invention.
  • Figure 7 is a schematic diagram of the power flow direction in the hydraulic-mechanical-electrical split transmission mode of the present invention.
  • Figure 8 is a schematic diagram of the power flow in the mechanical-electrical confluence transmission mode of the present invention.
  • Figure 9 is a schematic diagram of the power flow direction in the hydraulic-mechanical converging transmission mode of the present invention.
  • Figure 10 is a schematic diagram of the power flow in the hydraulic-electrical converging transmission mode of the present invention.
  • Figure 11 is a schematic diagram of the power flow direction in the mechanical-hydraulic-electrical converging transmission mode of the present invention.
  • Figure 12 shows the multi-mode switching process of the present invention: "hydraulic transmission mode” - "hydraulic-electrical convergence transmission mode” - "mechanical-hydraulic-electrical convergence transmission mode or hydraulic transmission mode” - "mechanical transmission mode” - “hydraulic-mechanical convergence Transmission mode” output speed and input speed relationship diagram.
  • Figure 13 is a diagram showing the relationship between the output speed and the input speed of the multi-mode switching process of the present invention: "hydraulic transmission mode” - "mechanical-electrical confluence transmission mode” - “electrical continuously variable transmission transmission mode” - “hydraulic-electrical split transmission mode”.
  • Figure 14 is a diagram showing the relationship between the output speed and the input speed of the multi-mode switching process of the present invention between "hydraulic transmission mode” and “hydraulic-mechanical-electrical split transmission mode”.
  • Figure 15 is a diagram showing the relationship between the output speed and the input speed of the multi-mode switching process of the present invention between "hydraulic transmission mode” and “hydraulic-mechanical split transmission mode”.
  • the term “above” or “below” a first feature of a second feature may include direct contact between the first and second features, or may also include the first and second features. Not in direct contact but through additional characteristic contact between them.
  • the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
  • “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • an electromechanical and hydraulic compound transmission device includes
  • Input shaft assembly 1 includes input shaft 11 and first clutch C 1 12;
  • the power split component 2 includes a power split component input shaft 21, a first gear pair 22, a second clutch C 2 23, a power split component ring gear 24, a power split component planetary carrier 25, and a power split component sun gear 26; the power The power splitter assembly ring gear 24 is connected to the power splitter assembly input shaft 21.
  • the power splitter assembly input shaft 21 is connected to the input shaft 11 through the first clutch C 1 12.
  • the power splitter assembly ring gear 24 is connected to the second clutch C 2 23. Connected to the power split component planetary carrier 25;
  • the hydraulic transmission assembly 3 includes a third clutch C 3 31, a variable pump 32, a hydraulic pipeline 33, a fixed motor 34, a second gear pair 35, and a fourth clutch C 4 36; the input end of the hydraulic transmission assembly 3 and the power The sun gear 26 of the diverter assembly is connected, and the input end of the hydraulic transmission assembly 3 is connected to the variable pump 32 through the third clutch C 3 31.
  • the variable pump 32 outputs high-pressure oil to the quantitative motor 34 through the hydraulic pipeline 33.
  • the second The gear pair 35 is connected to the output shaft of the fixed motor 34 through the fourth clutch C 4 36;
  • the electric continuously variable transmission transmission assembly 4 includes the fifth clutch C 5 41, the third gear pair 42, the electric continuously variable transmission input shaft 43, the electric continuously variable transmission 44, and the electric continuously variable transmission output shaft 45; the power split component planetary
  • the frame 25 is connected to the electric continuously variable transmission input shaft 43 through the fifth clutch C 5 41;
  • the mechanical transmission assembly 5 includes the fourth gear pair 51, the sixth clutch C 6 52, the brake B53, the mechanical transmission assembly input shaft 54, the fifth gear pair 55, the seventh clutch C 7 56, the mechanical transmission assembly ring gear 57, and the mechanical transmission assembly 57.
  • the electric continuously variable transmission output shaft 45 communicates with the mechanical transmission assembly sun gear 58 through the sixth clutch C 6 52 connection
  • the brake B53 is connected to the mechanical transmission assembly sun gear 58
  • the power splitting assembly planet carrier 25 is connected to the mechanical transmission assembly ring gear 57 through the seventh clutch C 7 56
  • the mechanical transmission assembly sun gear 58 is connected through the eighth clutch C 7 56
  • Clutch C 8 59 is connected to the mechanical transmission component planetary carrier 510;
  • the power bus assembly 6 includes a power bus assembly ring gear 61, a power bus assembly sun gear 62, a power bus assembly planetary carrier 63, and a ninth clutch C 9 64; the power bus assembly ring gear 61 is fixed to the mechanical transmission assembly output shaft 511 Connected, the power bus assembly ring gear 61 is connected to the power bus assembly planet carrier 63 through the ninth clutch C 9 64, and the power bus assembly sun gear 62 is connected to the output end of the hydraulic transmission assembly 3;
  • the output shaft 7 is connected to the power bus assembly planetary carrier 63 .
  • the invention realizes hydraulic transmission, mechanical transmission, electrical continuously variable transmission transmission, mechanical-electrical converging transmission, hydraulic-mechanical shunt transmission, hydraulic-electrical shunt transmission, hydraulic-mechanical-electrical shunt transmission, hydraulic -Switching between mechanical converging transmission, hydraulic-electrical converging transmission, and mechanical-hydraulic-electrical converging transmission can meet the multi-mode needs of transmission devices under different working conditions of engineering machinery, improve engine power utilization, and improve fuel economy. .
  • the shift impact is effectively reduced and the speed ratio adjustment range is increased; the hydraulic transmission starts quickly and works smoothly, making it easy to achieve rapid and shock-free speed changes and reversals.
  • the transmission ratio change process of the electric continuously variable transmission is continuous.
  • the impact on the mechanism during use is minimal. It effectively broadens the speed regulation range and can meet the requirements of large-scale non-linear stepless speed regulation.
  • the hydraulic-electrical composite transmission and mechanical-hydraulic-electrical composite transmission methods improve the system transmission efficiency and can meet the requirements of efficient stepless speed regulation in the area. Require.
  • a control method for an electromechanical and hydraulic compound transmission device which realizes three types of transmission modes: a single type of transmission mode, a power splitting compound transmission mode, and a power confluence compound transmission mode by controlling the engagement switching between the clutch and the brake B53.
  • a single type of transmission mode The modes include hydraulic transmission mode, mechanical transmission mode, and electric continuously variable transmission transmission mode; the power split compound transmission mode includes hydraulic-mechanical split transmission mode, hydraulic-electrical split transmission mode, hydraulic-mechanical-electrical split transmission mode; power-shunt compound transmission
  • the modes include mechanical-electrical converging transmission mode, hydraulic-mechanical converging transmission mode, hydraulic-electrical converging transmission mode, and mechanical-hydraulic-electrical converging transmission mode.
  • control method of hydraulic transmission mode is as follows:
  • the first clutch C 1 12, the second clutch C 2 23, the third clutch C 3 31, the fourth clutch C 4 36 and the ninth clutch C 9 64 are combined, while the fifth clutch C 5 41 and the sixth clutch C 6 52 , the seventh clutch C 7 56, the eighth clutch C 8 59 and the brake B53 are separated.
  • the power is driven by the input shaft 11 through the first gear pair 22 to work the variable pump 32.
  • the variable pump 32 outputs high-pressure oil to drive the fixed motor 34 to rotate. , the power output from the output end of the quantitative motor 34 is transmitted to the output shaft 7 through the second gear pair 35 for output.
  • the calculation method of the output shaft 7 speed in hydraulic transmission mode is as follows:
  • n o is the rotation speed of the output shaft 7
  • n I is the rotation speed of the input shaft 11
  • e is the displacement ratio of the hydraulic transmission assembly 3
  • i 1 is the transmission ratio of the first gear pair 22
  • i 2 is the transmission ratio of the second gear pair 35. gear ratio.
  • control method of mechanical transmission mode is as follows:
  • the first clutch C 1 12, the second clutch C 2 23, the seventh clutch C 7 56 and the ninth clutch C 9 64 are combined with the brake B53, while the third clutch C 3 31, the fourth clutch C 4 36 and the fifth clutch C 5 41, the sixth clutch C 6 52, and the eighth clutch C 8 59 are separated, and the power is driven by the input shaft 11 through the first clutch C 1 12, the second clutch C 2 23, and the seventh clutch C 7 56 to drive the mechanical transmission assembly.
  • the ring gear 57 works, and the power output by the mechanical transmission assembly ring gear 57 is transmitted to the output shaft 7 through the mechanical transmission assembly planetary carrier 510 .
  • the calculation method of the output shaft 7 speed in mechanical transmission mode is as follows:
  • n o is the rotation speed of the output shaft 7
  • n I is the rotation speed of the input shaft 11
  • i 5 is the transmission ratio of the fifth gear pair 55
  • k 2 is the planetary gear characteristic parameter of the mechanical transmission assembly 5 .
  • control method of the electric continuously variable transmission transmission mode is as follows:
  • the first clutch C 1 12, the second clutch C 2 23, the fifth clutch C 5 41, the sixth clutch C 6 52, the eighth clutch C 8 59 and the ninth clutch C 9 64 are combined, while the third clutch C 3 31 , the fourth clutch C 4 36, the seventh clutch C 7 56 and the brake B53 are separated, the power split component 2 and the power confluence component 6 are each fixedly connected as one, and the power is transmitted from the input shaft 11 through the power split component 2 and the electric continuously variable transmission Component 4 and power confluence component 6 are transmitted to the output shaft 7 for output.
  • the calculation method of the output shaft 7 speed in the electric continuously variable transmission transmission mode is as follows:
  • n o is the rotation speed of the output shaft 7
  • n I is the rotation speed of the input shaft 11
  • i 3 is the transmission ratio of the third gear pair 42
  • i 4 is the transmission ratio of the fourth gear pair 51
  • i e is the electric continuously variable transmission.
  • control method of hydraulic-mechanical split transmission mode is as follows:
  • the first clutch C 1 12, the third clutch C 3 31, the fourth clutch C 4 36, the seventh clutch C 7 56, the ninth clutch C 9 64 are combined with the brake B53, while the second clutch C 2 23, the fifth clutch C 5 41, the sixth clutch C 6 52 and the eighth clutch C 8 59 are separated, and the power is transmitted from the input shaft 11 through the power split component input shaft 21 to the power split component ring gear 24 for splitting: all the way the power passes through the power split component sun gear 26.
  • the hydraulic transmission component 3 is transmitted to the power confluence component sun gear 62, and the other power is transmitted to the power confluence component ring gear 61 through the power split component planetary carrier 25, the mechanical transmission component ring gear 57, and the mechanical transmission component planetary carrier 510.
  • the assembly 6 is fixedly connected as a whole, and the power transmitted to the sun gear 62 of the power bus assembly and the power transmitted to the ring gear 61 of the bus assembly are transmitted to the output shaft 7 through the power bus assembly 6 for output.
  • the calculation method of the output shaft 7 speed in the hydraulic-mechanical split transmission mode is as follows:
  • n o is the rotation speed of the output shaft 7
  • n I is the rotation speed of the input shaft 11
  • k 1 is the planetary gear characteristic parameter of the power split component 2
  • k 2 is the planetary gear characteristic parameter of the mechanical transmission component 5
  • i 1 is the first As for the transmission ratio of the gear pair 22
  • i 2 is the transmission ratio of the second gear pair 35
  • i 5 is the transmission ratio of the fifth gear pair 55
  • e is the displacement ratio of the hydraulic transmission assembly 3.
  • control method of hydraulic-electric split transmission mode is as follows:
  • the first clutch C 1 12, the third clutch C 3 31, the fourth clutch C 4 36, the fifth clutch C 5 41, the sixth clutch C 6 52, the eighth clutch C 8 59 and the ninth clutch C 9 64 are combined, At the same time, the second clutch C 2 23, the seventh clutch C 7 56 and the brake B53 are separated, and the power is transmitted from the input shaft 11 through the power split component input shaft 21 to the power split component ring gear 24 for splitting: all the way the power passes through the power split component sun gear 26.
  • the hydraulic transmission assembly 3 is transmitted to the power merging assembly sun gear 62, and the other power is transmitted to the electric continuously variable transmission input shaft 43 through the power splitting assembly planetary carrier 25.
  • the electric continuously variable transmission input shaft 43 drives the electric continuously variable transmission 44.
  • the power output by the electric continuously variable transmission 44 is transmitted to the bus assembly ring gear 61 through the electric continuously variable transmission output shaft 45.
  • the power bus assembly 6 is fixedly connected as a whole, and the power transmitted to the power bus assembly sun gear 62 is combined with the power transferred to the sun gear 62 of the power bus assembly.
  • the power of the bus assembly ring gear 61 is transmitted to the output shaft 7 through the power bus assembly 6 for output.
  • the calculation method of the output shaft 7 speed in the hydraulic-electric split transmission mode is as follows:
  • n o is the rotation speed of the output shaft 7
  • n I is the rotation speed of the input shaft 11
  • k 1 is the planetary gear characteristic parameter of the power split component 2
  • i 1 is the transmission ratio of the first gear pair 22
  • i 2 is the second gear
  • i 3 is the transmission ratio of the third gear pair 42
  • i 4 is the transmission ratio of the fourth gear pair 51
  • i e is the transmission ratio of the electric continuously variable transmission transmission assembly 4
  • e is the hydraulic transmission assembly 3 displacement ratio.
  • control method of the hydraulic-mechanical-electrical split transmission mode is as follows:
  • Hydraulic-mechanical-electrical split transmission mode first clutch C 1 12, third clutch C 3 31, fourth clutch C 4 36, fifth clutch C 5 41, sixth clutch C 6 52, seventh clutch C 7 56 Combined with the ninth clutch C 9 64, the second clutch C 2 23, the eighth clutch C 8 59 and the brake B53 are separated at the same time.
  • the power is transmitted from the input shaft 11 through the power split component input shaft 21 to the power split component ring gear 24.
  • One way of power is transmitted to the power converging component sun gear 62 through the power splitting component sun gear 26 and hydraulic transmission component 3.
  • One way of power is split again through the power splitting component planetary carrier 25.
  • One way of power is transmitted to the electrical vacuum through the fifth clutch C 5 41.
  • the input shaft 43 of the electrical continuously variable transmission drives the electrical continuously variable transmission 44 to work.
  • the power output by the electrical continuously variable transmission 44 is transmitted to the mechanical transmission assembly sun gear 58 through the electrical continuously variable transmission output shaft 45.
  • the other power is transmitted to the mechanical transmission assembly ring gear 57 through the seventh clutch C 7 56.
  • the two power sources are merged at the mechanical transmission assembly planet carrier 510.
  • the combined power is transmitted to the confluence assembly ring gear 61, and the power confluence assembly 6 is fixedly connected. Integrated, the power transmitted to the sun gear 62 of the power bus assembly and the power transmitted to the ring gear 61 of the bus assembly are transmitted to the output shaft 7 through the power bus assembly 6 for output.
  • the calculation method of the output shaft 7 speed in the hydraulic-mechanical-electrical split transmission mode is as follows:
  • n o is the rotation speed of the output shaft 7
  • n I is the rotation speed of the input shaft 11
  • k 1 is the planetary gear characteristic parameter of the power split component 2
  • k 2 is the planetary gear characteristic parameter of the mechanical transmission component 5
  • i 1 is the first
  • the transmission ratio of the gear pair 22 is the transmission ratio of the second gear pair 35
  • i 3 is the transmission ratio of the third gear pair 42
  • i 4 is the transmission ratio of the fourth gear pair 51
  • i 5 is the fifth gear pair
  • i e is the transmission ratio of the electric continuously variable transmission transmission component 4
  • e is the displacement ratio of the hydraulic transmission component 3.
  • control method of mechanical-electrical confluence transmission mode is as follows:
  • the power output by the electric continuously variable transmission 44 The output shaft 45 of the electric continuously variable transmission is transmitted to the mechanical transmission assembly sun gear 58, and the other power is transmitted to the mechanical transmission assembly ring gear 57 through the seventh clutch C 7 56.
  • the two lines of power merge at the mechanical transmission assembly planet carrier 510.
  • the final power is transmitted to the output shaft 7 through the power confluence assembly 6 for output.
  • n o is the rotation speed of the output shaft 7
  • n I is the rotation speed of the input shaft 11
  • k 2 is the planetary gear characteristic parameter of the mechanical transmission assembly 5
  • i 3 is the transmission ratio of the third gear pair 42
  • i 4 is the fourth gear.
  • the transmission ratio of the pair 51, i 5 is the transmission ratio of the fifth gear pair 55, and i e is the transmission ratio of the electric continuously variable transmission transmission assembly 4.
  • control method of the hydraulic-mechanical converging transmission mode is as follows:
  • the first clutch C 1 12, the second clutch C 2 23, the third clutch C 3 31, the fourth clutch C 4 36, the seventh clutch C 7 56 and the brake B53 are combined, while the fifth clutch C 5 41 and the sixth clutch C 6 52 and the ninth clutch C 9 64 are separated, and the power split component 2 is fixedly connected as a whole.
  • the power is split from the input shaft 11 through the power split component 2: all the power is transmitted to the power confluence component sun gear 62 through the hydraulic transmission component 3, The other power is transmitted to the power converging component ring gear 61 through the power splitting component planetary carrier 25, the mechanical transmission component ring gear 57, and the mechanical transmission component planetary carrier 510.
  • the power transmitted to the power converging component sun gear 62 is the same as the power transmitted to the converging component ring gear.
  • the power of 61 is combined at the power merging assembly planetary carrier 63 and then transmitted to the output shaft 7 for output.
  • the calculation method of the output shaft 7 speed in the hydraulic-mechanical converging transmission mode is as follows:
  • n o is the rotation speed of the output shaft 7
  • n I is the rotation speed of the input shaft 11
  • k 2 is the planetary gear characteristic parameter of the mechanical transmission assembly 5
  • k 3 is the planetary gear characteristic parameter of the power confluence assembly 6
  • i 1 is the first
  • the transmission ratio of the gear pair 22 is the transmission ratio of the second gear pair 35
  • e is the displacement ratio of the hydraulic transmission assembly 3.
  • control method of hydraulic-electrical converging transmission mode is as follows:
  • Hydraulic-electric confluence transmission mode first clutch C 1 12, second clutch C 2 23, third clutch C 3 31, fourth clutch C 4 36, fifth clutch C 5 41, sixth clutch C 6 52 and eighth clutch Clutch C 8 59 is combined, and at the same time the seventh clutch C 7 56, the ninth clutch C 9 64 and the brake B53 are separated, the power split component 2 is fixedly connected as a whole, and the power is split from the input shaft 11 through the power split component 2: all the way the power passes through
  • the hydraulic transmission assembly 3 is transmitted to the power confluence assembly sun gear 62, and the other power is transmitted to the electric continuously variable transmission input shaft 43 through the power splitting assembly planetary carrier 25.
  • the electric continuously variable transmission input shaft 43 drives the electric continuously variable transmission 44 to work.
  • the power output by the electric continuously variable transmission 44 is transmitted to the bus assembly ring gear 61 through the electric continuously variable transmission output shaft 45.
  • the power transmitted to the power bus assembly sun gear 62 and the power transmitted to the bus assembly ring gear 61 are in the power bus assembly. After the planet carrier 63 merges, it is transmitted to the output shaft 7 for output.
  • n o is the rotation speed of the output shaft 7
  • n I is the rotation speed of the input shaft 11
  • k 3 is the planetary gear characteristic parameter of the power confluence assembly 6
  • i 1 is the transmission ratio of the first gear pair 22
  • i 2 is the second gear
  • i 3 is the transmission ratio of the third gear pair 42
  • i 4 is the transmission ratio of the fourth gear pair 51
  • i e is the transmission ratio of the electric continuously variable transmission transmission assembly 4
  • e is the hydraulic transmission assembly 3 displacement ratio.
  • control method of the mechanical-hydraulic-electrical converging transmission mode is as follows:
  • Mechanical-hydraulic-electrical convergence transmission mode first clutch C 1 12, second clutch C 2 23, third clutch C 3 31, fourth clutch C 4 36, fifth clutch C 5 41, sixth clutch C 6 52 and The seventh clutch C 7 56 is combined, and at the same time the eighth clutch C 8 59, the ninth clutch C 9 64 and the brake B53 are separated.
  • the power split component 2 is connected as a whole, and the power is split from the input shaft 11 through the power split component 2: all the way The power is transmitted to the sun gear 62 of the power converging assembly through the hydraulic transmission assembly 3, and the power is split again through the planet carrier 25 of the power splitting assembly. The power is transmitted to the input shaft 43 of the electric continuously variable transmission through the fifth clutch C 5 41.
  • the continuously variable transmission input shaft 43 drives the electric continuously variable transmission 44 to work.
  • the power output by the electric continuously variable transmission 44 is transmitted to the mechanical transmission assembly sun gear 58 through the electric continuously variable transmission output shaft 45, and the other power passes through the seventh clutch C 7 56 is transmitted to the mechanical transmission assembly ring gear 57.
  • the two power sources are merged at the mechanical transmission assembly planet carrier 510.
  • the combined power is transmitted to the confluence assembly ring gear 61, and the power transmitted to the power confluence assembly sun gear 62 is the same as the power transmitted to the confluence assembly.
  • the power of the ring gear 61 is combined at the power merging assembly planetary carrier 63 and then transmitted to the output shaft 7 for output.
  • n o is the rotation speed of the output shaft 7
  • n I is the rotation speed of the input shaft 11
  • k 2 is the planetary gear characteristic parameter of the mechanical transmission assembly 5
  • k 3 is the planetary gear characteristic parameter of the power confluence assembly 6
  • i 1 is the first
  • the transmission ratio of the gear pair 22 is the transmission ratio of the second gear pair 35
  • i 3 is the transmission ratio of the third gear pair 42
  • i 4 is the transmission ratio of the fourth gear pair 51
  • i 5 is the fifth gear pair
  • i e is the transmission ratio of the electric continuously variable transmission transmission component 4
  • e is the displacement ratio of the hydraulic transmission component 3.
  • various transmissions are realized by adjusting the displacement ratio of the hydraulic transmission components, adjusting the transmission ratio of the electric continuously variable transmission transmission components, and controlling the engagement between the clutch and brake B. Stepless speed switching between modes.
  • the transmission modes involved in the stepless speed regulation switching between the various transmission modes are as follows:
  • Hydraulic transmission mode - "Hydraulic-electrical convergence transmission mode” - "Mechanical-hydraulic-electrical convergence transmission mode or hydraulic transmission mode” - "Mechanical transmission mode” - "Hydraulic-mechanical convergence transmission mode”;
  • Hydraulic transmission mode - "Mechanical-electrical confluence transmission mode” - “Electrical continuously variable transmission transmission mode” - "Hydraulic-electrical split transmission mode”;
  • Transmission mode switching process 1 "Hydraulic transmission mode” - "Hydraulic-electrical convergence transmission mode” - "Mechanical-hydraulic-electrical convergence transmission mode or hydraulic transmission mode” - "Mechanical transmission mode” - "Hydraulic-mechanical convergence transmission mode” .
  • the output-input speed relationship of the hydraulic-electrical convergence transmission mode is:
  • the output-input speed relationship of the mechanical-hydraulic-electrical convergence transmission mode is:
  • the output-input speed relationship of the hydraulic-mechanical converging transmission mode is:
  • the output speed increases linearly with the increase in the displacement ratio e of the hydraulic transmission mechanism.
  • Transmission mode switching process two "hydraulic transmission mode” - "mechanical-electrical converging transmission mode” - "electrical continuously variable transmission transmission mode” - "hydraulic-electrical split transmission mode”.
  • the output-input speed relationship of the mechanical-electrical convergence transmission mode is:
  • the output-input speed relationship of the electric continuously variable transmission transmission mode is:
  • the output speed increases linearly with the increase in the displacement ratio e of the hydraulic transmission mechanism.
  • the hydraulic transmission mode can be switched simultaneously to mechanical-electrical confluence transmission mode, electric continuously variable transmission transmission mode, and hydraulic-electrical split transmission mode.
  • Transmission mode switching process three “hydraulic transmission mode” - "hydraulic-mechanical-electrical split transmission mode”.
  • the output-input speed relationship of the hydraulic-mechanical-electrical split transmission mode is:
  • Transmission mode switching process four "hydraulic transmission mode” - "hydraulic-mechanical split transmission mode”.
  • the output-input speed relationship of the hydraulic-mechanical split transmission mode is:

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)
  • Transmission Devices (AREA)
  • Control Of Transmission Device (AREA)

Abstract

本发明公开了一种机电液复合传动装置及其控制方法,包括输入轴组件、功率分流组件、液压传动组件、电气无级变速器传动组件、机械传动组件、功率汇流组件和输出轴,通过控制离合器和制动器之间的接合切换实现单一类型传动模式、功率分流复合传动模式、功率汇流复合传动模式三种类型的传动模式。有益效果:本发明可实现各种传动模式的自由切换,能够满足工程机械不同工况下对传动装置多模式的需要,提高发动机功率利用率,改善燃油经济性;同时有效减小了换挡冲击,增大了速比调节范围;液压传动起步快、工作平稳,易于实现快速而无冲击地变速与换向,电气无级变速器传动比变化过程具有连续性,在使用过程中对机构的冲击极小。

Description

一种机电液复合传动装置及其控制方法 技术领域
本发明涉及一种传动装置及其控制方法,特别提供了一种机械、液压和电气三种传动模式复合的机电液复合传动装置及其控制方法,属于变速传动装置技术领域。
背景技术
我国是一个石油资源紧缺的能源消耗大国,其中大部分石油被车辆所消耗,随着国家对节能减排越来越重视,农机的节油也备受关注。农机在工作过程中运行的条件比道路车辆恶劣,经常遇到阻力激增的情况。小功率的农机往往要牺牲一定的作业效率才能克服这些极端情况,随之而来的还有油耗增加;大功率的农机则存在成本高,体积大等问题,且在相对良好的作业条件下存在功率过剩的问题。
目前应用在工程机械上的变速传动方式一般有齿轮单流传动、液压单流传动、液压-齿轮复合传动;齿轮单流传动效率高,但传动比固定,操作过程中需要频繁换挡;液压单流传动能够方便地实现无级调速,且传递转矩大,但其传动效率低;液压-齿轮复合传动是一种液压功率流和机械功率流并联的一种传动方式,兼具了齿轮传动的高效率和液压传动的大转矩,但其对变量液压泵和定量液压马达及液压系统要求高;混合动力电气无极变速器不仅能满足动力耦合的要求,且能实现制动回馈、无级变速、动力补偿等诸多功能,还可以输出不同的转速和转矩,灵活的实现多种能量间的相互转换。
现有技术仅涉及到单流传动装置和两种单流传动并联的复合传动装置的设计,无法完全满足工程机械不同工况下对传动装置多模式,尤其是多种复合模式的设计要求。
发明内容
发明目的:针对现有技术中存在的不足,本发明提供了一种机电液复合传动装置及其控制方法,本发明通过切换离合器组件和制动器组件,实现液压传动、机械传动、电气无级变速器传动、机械-电气汇流传动、液压-机械分流传动、液压-电气分流传动、液压-机械-电气分流传动、液压-机械汇流传动、液压-电气汇流传动、机械-液压-电气汇流传动多种模式的切换,能够满足工程机械不同工况下对传动装置多模式的需要。
技术方案:一种机电液复合传动装置,包括
输入轴组件,包括输入轴、第一离合器C 1
功率分流组件,包括功率分流组件输入轴、第一齿轮副、第二离合器C 2、功率分流组件齿圈、功率分流组件行星架和功率分流组件太阳轮;所述功率分流组件齿圈与功率分流组件输入轴连接,所述功率分流组件输入轴通过第一离合器C 1与输入轴连接,所述功率分流组件齿圈通过第二离合器C 2与功率分流组件行星架连接;
液压传动组件,包括第三离合器C 3、变量泵、液压管道、定量马达、第二齿轮副、第四离合器C 4;所述液压传动组件输入端与所述功率分流组件太阳轮连接,所述液压传动组 件输入端通过第三离合器C 3与变量泵连接,所述变量泵通过液压管道向定量马达输出高压油液,所述第二齿轮副通过第四离合器C 4与定量马达输出轴连接;
电气无级变速器传动组件,包括第五离合器C 5、第三齿轮副、电气无级变速器输入轴、电气无级变速器、电气无级变速器输出轴;所述功率分流组件行星架通过第五离合器C 5与电气无级变速器输入轴连接;
机械传动组件,包括第四齿轮副、第六离合器C 6、制动器B、机械传动组件输入轴、第五齿轮副、第七离合器C 7、机械传动组件齿圈、机械传动组件太阳轮、第八离合器C 8、机械传动组件行星架、机械传动组件输出轴;所述电气无级变速器输出轴通过第六离合器C 6与机械传动组件太阳轮连接,所述制动器B与机械传动组件太阳轮连接,所述功率分流组件行星架通过第七离合器C 7与机械传动组件齿圈连接,所述机械传动组件太阳轮通过第八离合器C 8与机械传动组件行星架连接;
功率汇流组件,包括功率汇流组件齿圈、功率汇流组件太阳轮、功率汇流组件行星架、第九离合器C 9;所述功率汇流组件齿圈与机械传动组件输出轴固定连接,所述功率汇流组件齿圈通过第九离合器C 9与功率汇流组件行星架连接,所述功率汇流组件太阳轮与液压传动组件输出端连接;
输出轴,所述输出轴与功率汇流组件行星架连接。
本发明通过切换离合器组件和制动器组件,实现液压传动、机械传动、电气无级变速器传动、机械-电气汇流传动、液压-机械分流传动、液压-电气分流传动、液压-机械-电气分流传动、液压-机械汇流传动、液压-电气汇流传动、机械-液压-电气汇流传动多种模式的切换,能够满足工程机械不同工况下对传动装置多模式的需要,提高发动机功率利用率,改善燃油经济性。同时有效减小了换挡冲击,增大了速比调节范围;液压传动起步快、工作平稳,易于实现快速而无冲击地变速与换向,电气无级变速器传动比变化过程具有连续性,在使用过程中对机构的冲击极小。有效拓宽了调速范围,能够满足大范围非线性无级调速的要求,液压-电气复合传动、机械-液压-电气复合传动方式提高了系统传动效率,能够满足区域内高效无级调速的要求。
一种机电液复合传动装置的控制方法,通过控制离合器和制动器B之间的接合切换实现单一类型传动模式、功率分流复合传动模式、功率汇流复合传动模式三种类型的传动模式,单一类型的传动模式包括液压传动模式、机械传动模式、电气无级变速器传动模式;功率分流复合传动模式包括液压-机械分流传动模式、液压-电气分流传动模式、液压-机械-电气分流传动模式;功率汇流复合传动模式包括机械-电气汇流传动模式、液压-机械汇流传动模式、液压-电气汇流传动模式、机械-液压-电气汇流传动模式。
各个传动模式的接合元件如表1所示,具体如下:
表1模式切换元件接合状态
Figure PCTCN2022097759-appb-000001
优选项,所述单一类型的传动模式的控制方法如下:
液压传动模式:第一离合器C 1、第二离合器C 2、第三离合器C 3、第四离合器C 4和第九离合器C 9结合,同时第五离合器C 5、第六离合器C 6、第七离合器C 7、第八离合器C 8和制动器B分离,动力由输入轴经过第一齿轮副驱动变量泵工作,所述变量泵输出高压油液驱动定量马达旋转,所述定量马达输出端输出的动力通过第二齿轮副传递至输出轴输出;
机械传动模式:第一离合器C 1、第二离合器C 2、第七离合器C 7和第九离合器C 9和制动器B结合,同时第三离合器C 3、第四离合器C 4、第五离合器C 5、第六离合器C 6、第八离合器C 8分离,动力由输入轴依次经过第一离合器C 1、第二离合器C 2、第七离合器C 7驱动机械传动组件齿圈工作,所述机械传动组件齿圈输出的动力通过机械传动组件行星架传递至输出轴输出;
电气无级变速器传动模式:第一离合器C 1、第二离合器C 2、第五离合器C 5、第六离合器C 6、第八离合器C 8和第九离合器C 9结合,同时第三离合器C 3、第四离合器C 4、第 七离合器C 7和制动器B分离,功率分流组件与功率汇流组件各自固连为一体,动力由输入轴经过功率分流组件、电气无级变速器传动组件、功率汇流组件传递至输出轴输出。
优选项,所述功率分流复合传动模式的控制方法如下:
液压-机械分流传动模式:第一离合器C 1、第三离合器C 3、第四离合器C 4、第七离合器C 7、第九离合器C 9和制动器B结合,同时第二离合器C 2、第五离合器C 5、第六离合器C 6和第八离合器C 8分离,动力由输入轴经过功率分流组件输入轴传递至功率分流组件齿圈处分流:一路动力经过功率分流组件太阳轮、液压传动组件传递至功率汇流组件太阳轮,另一路动力经过功率分流组件行星架、机械传动组件齿圈、机械传动组件行星架传递至功率汇流组件齿圈,功率汇流组件固连为一体,传递至功率汇流组件太阳轮的动力与传递至汇流组件齿圈的动力经过功率汇流组件传递至输出轴输出;
液压-电气分流传动模式:第一离合器C 1、第三离合器C 3、第四离合器C 4、第五离合器C 5、第六离合器C 6、第八离合器C 8和第九离合器C 9结合,同时第二离合器C 2、第七离合器C 7和制动器B分离,动力由输入轴经过功率分流组件输入轴传递至功率分流组件齿圈处分流:一路动力经过功率分流组件太阳轮、液压传动组件传递至功率汇流组件太阳轮,另一路动力经过功率分流组件行星架传递至电气无级变速器输入轴,所述电气无级变速器输入轴驱动电气无级变速器工作,所述电气无级变速器输出的动力通过电气无级变速器输出轴传递至汇流组件齿圈,功率汇流组件固连为一体,传递至功率汇流组件太阳轮的动力与传递至汇流组件齿圈的动力经过功率汇流组件传递至输出轴输出;
液压-机械-电气分流传动模式:第一离合器C 1、第三离合器C 3、第四离合器C 4、第五离合器C 5、第六离合器C 6、第七离合器C 7和第九离合器C 9结合,同时第二离合器C 2、第八离合器C 8和制动器B分离,动力由输入轴经过功率分流组件输入轴传递至功率分流组件齿圈处分流:一路动力经过功率分流组件太阳轮、液压传动组件传递至功率汇流组件太阳轮,一路动力经过功率分流组件行星架处再次分流,一路动力经过第五离合器C 5传递至电气无级变速器输入轴,所述电气无级变速器输入轴驱动电气无级变速器工作,所述电气无级变速器输出的动力通过电气无级变速器输出轴传递至机械传动组件太阳轮,另一路动力经过第七离合器C 7传递至机械传动组件齿圈,两路动力在机械传动组件行星架处汇合,汇合后的动力传递至汇流组件齿圈,功率汇流组件固连为一体,传递至功率汇流组件太阳轮的动力与传递至汇流组件齿圈的动力经过功率汇流组件传递至输出轴输出。
优选项,所述功率汇流复合传动模式的控制方法如下:
机械-电气汇流传动模式:第一离合器C 1、第二离合器C 2、第五离合器C 5、第六离合器C 6、第七离合器C 7和第九离合器C 9结合,同时第三离合器C 3、第四离合器C 4、第八离合器C 8和制动器B分离,功率分流组件与功率汇流组件各自固连为一体,动力由输入轴经过功率分流组件处分流:一路动力经过第五离合器C 5传递至电气无级变速器输入轴, 所述电气无级变速器输入轴驱动电气无级变速器工作,所述电气无级变速器输出的动力通过电气无级变速器输出轴传递至机械传动组件太阳轮,另一路动力经过第七离合器C 7传递至机械传动组件齿圈,两路动力在机械传动组件行星架处汇合,汇合后的动力经过功率汇流组件传递至输出轴输出;
液压-机械汇流传动模式:第一离合器C 1、第二离合器C 2、第三离合器C 3、第四离合器C 4、第七离合器C 7和制动器B结合,同时第五离合器C 5、第六离合器C 6和第九离合器C 9分离,功率分流组件固连为一体,动力由输入轴经过功率分流组件处分流:一路动力经过液压传动组件传递至功率汇流组件太阳轮,另一路动力经过功率分流组件行星架、机械传动组件齿圈、机械传动组件行星架传递至功率汇流组件齿圈,传递至功率汇流组件太阳轮的动力与传递至汇流组件齿圈的动力在功率汇流组件行星架处汇合后传递至输出轴输出;
液压-电气汇流传动模式:第一离合器C 1、第二离合器C 2、第三离合器C 3、第四离合器C 4、五离合器C 5、第六离合器C 6和第八离合器C 8结合,同时第七离合器C 7、第九离合器C 9和制动器B分离,功率分流组件固连为一体,动力由输入轴经过功率分流组件处分流:一路动力经过液压传动组件传递至功率汇流组件太阳轮,另一路动力经过功率分流组件行星架传递至电气无级变速器输入轴,所述电气无级变速器输入轴驱动电气无级变速器工作,所述电气无级变速器输出的动力通过电气无级变速器输出轴传递至汇流组件齿圈,传递至功率汇流组件太阳轮的动力与传递至汇流组件齿圈的动力在功率汇流组件行星架处汇合后传递至输出轴输出;
机械-液压-电气汇流传动模式:第一离合器C 1、第二离合器C 2、第三离合器C 3、第四离合器C 4、五离合器C 5、第六离合器C 6和第七离合器C 7结合,同时第八离合器C 8、第九离合器C 9和制动器B分离,功率分流组件固连为一体,动力由输入轴经过功率分流组件处分流:一路动力经过液压传动组件传递至功率汇流组件太阳轮,一路动力经过功率分流组件行星架处再次分流,一路动力经过第五离合器C 5传递至电气无级变速器输入轴,所述电气无级变速器输入轴驱动电气无级变速器工作,所述电气无级变速器输出的动力通过电气无级变速器输出轴传递至机械传动组件太阳轮,另一路动力经过第七离合器C 7传递至机械传动组件齿圈,两路动力在机械传动组件行星架处汇合,汇合后的动力传递至汇流组件齿圈,传递至功率汇流组件太阳轮的动力与传递至汇流组件齿圈的动力在功率汇流组件行星架处汇合后传递至输出轴输出。
优选项,所述单一类型的传动模式的输出轴转速n o计算方法如下:
液压传动模式:
Figure PCTCN2022097759-appb-000002
式中,n o为输出轴转速,n I为输入轴转速,e为液压传动组件排量比,i 1为第一齿轮副的传动比,i 2为第二齿轮副的传动比;
机械传动模式:
Figure PCTCN2022097759-appb-000003
式中,n o为输出轴转速,n I为输入轴转速,i 5为第五齿轮副的传动比,k 2为机械传动组件的行星齿轮特性参数;
电气无级变速器传动模式:
Figure PCTCN2022097759-appb-000004
式中,n o为输出轴转速,n I为输入轴转速,i 3为第三齿轮副的传动比,i 4为第四齿轮副的传动比,i e为电气无级变速器传动组件的传动比。
优选项,所述功率分流复合传动模式的输出轴转速n o计算方法如下:
液压-机械分流传动模式:
Figure PCTCN2022097759-appb-000005
式中,n o为输出轴转速,n I为输入轴转速,k 1为功率分流组件的行星齿轮特性参数,k 2为机械传动组件的行星齿轮特性参数,i 1为第一齿轮副的传动比,i 2为第二齿轮副的传动比,i 5为第五齿轮副的传动比,e为液压传动组件排量比;
液压-电气分流传动模式:
Figure PCTCN2022097759-appb-000006
式中,n o为输出轴转速,n I为输入轴转速,k 1为功率分流组件的行星齿轮特性参数,i 1为第一齿轮副的传动比,i 2为第二齿轮副的传动比,i 3为第三齿轮副的传动比,i 4为第四齿轮副的传动比,i e为电气无级变速器传动组件的传动比,e为液压传动组件排量比;
液压-机械-电气分流传动模式:
Figure PCTCN2022097759-appb-000007
式中,n o为输出轴转速,n I为输入轴转速,k 1为功率分流组件的行星齿轮特性参数,k 2为机械传动组件的行星齿轮特性参数,i 1为第一齿轮副的传动比,i 2为第二齿轮副的传动比,i 3为第三齿轮副的传动比,i 4为第四齿轮副的传动比,i 5为第五齿轮副的传动比,i e为电气无级变速器传动组件的传动比,e为液压传动组件排量比。
优选项,所述功率汇流复合传动模式的输出轴转速n o计算方法如下:
机械-电气汇流传动模式:
Figure PCTCN2022097759-appb-000008
式中,n o为输出轴转速,n I为输入轴转速,k 2为机械传动组件的行星齿轮特性参数,i 3为第三齿轮副的传动比,i 4为第四齿轮副的传动比,i 5为第五齿轮副的传动比,i e为电气无级变速器传动组件的传动比;
液压-机械汇流传动模式:
Figure PCTCN2022097759-appb-000009
式中,n o为输出轴转速,n I为输入轴转速,k 2为机械传动组件的行星齿轮特性参数,k 3为功率汇流组件的行星齿轮特性参数,i 1为第一齿轮副的传动比,i 2为第二齿轮副的传动比,e为液压传动组件排量比;
液压-电气汇流传动模式:
Figure PCTCN2022097759-appb-000010
式中,n o为输出轴转速,n I为输入轴转速,k 3为功率汇流组件的行星齿轮特性参数,i 1为第一齿轮副的传动比,i 2为第二齿轮副的传动比,i 3为第三齿轮副的传动比,i 4为第四齿轮副的传动比,i e为电气无级变速器传动组件的传动比,e为液压传动组件排量比;
机械-液压-电气汇流传动模式:
Figure PCTCN2022097759-appb-000011
式中,n o为输出轴转速,n I为输入轴转速,k 2为机械传动组件的行星齿轮特性参数,k 3为功率汇流组件的行星齿轮特性参数,i 1为第一齿轮副的传动比,i 2为第二齿轮副的传动比,i 3为第三齿轮副的传动比,i 4为第四齿轮副的传动比,i 5为第五齿轮副的传动比,i e为电气无级变速器传动组件的传动比,e为液压传动组件排量比。
优选项,为了实现液压传动模式、电气无级变速器传动模式之间的切换,通过调整液压传动组件排量比、调节电气无级变速器传动组件的传动比、控制离合器和制动器B之间的接合实现多种传动模式之间的无级调速切换。
优选项,所述的多种传动模式之间无级调速切换所涉及的传动模式如下:
“液压传动模式”—“液压-电气汇流传动模式”—“机械-液压-电气汇流传动模式或液压传动模式”—“机械传动模式”—“液压-机械汇流传动模式”;
“液压传动模式”—“机械-电气汇流传动模式”—“电气无级变速器传动模式”— “液压-电气分流传动模式”;
“液压传动模式”—“液压-机械-电气分流传动模式”;
“液压传动模式”—“液压-机械分流传动模式”。
有益效果:本发明通过切换离合器组件和制动器组件,实现液压传动、机械传动、电气无级变速器传动、机械-电气汇流传动、液压-机械分流传动、液压-电气分流传动、液压-机械-电气分流传动、液压-机械汇流传动、液压-电气汇流传动、机械-液压-电气汇流传动多种模式的切换,能够满足工程机械不同工况下对传动装置多模式的需要,提高发动机功率利用率,改善燃油经济性。同时有效减小了换挡冲击,增大了速比调节范围;液压传动起步快、工作平稳,易于实现快速而无冲击地变速与换向,电气无级变速器传动比变化过程具有连续性,在使用过程中对机构的冲击极小。本发明的机电液复合传动装置具有多种模式,有效拓宽了调速范围,能够满足大范围非线性无级调速的要求,液压-电气复合传动、机械-液压-电气复合传动方式提高了系统传动效率,能够满足区域内高效无级调速的要求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明的结构原理图。
图2为本发明液压传动模式的功率流向示意图。
图3为本发明机械传动模式的功率流向示意图。
图4为本发明电气无级变速器传动模式的功率流向示意图。
图5为本发明液压-机械分流传动模式的功率流向示意图。
图6为本发明液压-电气分流传动模式的功率流向示意图。
图7为本发明液压-机械-电气分流传动模式的功率流向示意图。
图8为本发明机械-电气汇流传动模式的功率流向示意图。
图9为本发明液压-机械汇流传动模式的功率流向示意图。
图10为本发明液压-电气汇流传动模式的功率流向示意图。
图11为本发明机械-液压-电气汇流传动模式的功率流向示意图。
图12为本发明多模式切换过程“液压传动模式”—“液压-电气汇流传动模式”—“机械-液压-电气汇流传动模式或液压传动模式”—“机械传动模式”—“液压-机械汇流传动模式”输出转速与输入转速关系图。
图13为本发明多模式切换过程“液压传动模式”—“机械-电气汇流传动模式”—“电气无级变速器传动模式”—“液压-电气分流传动模式”输出转速与输入转速关系图。
图14为本发明多模式切换过程“液压传动模式”—“液压-机械-电气分流传动模式”输出转速与输入转速关系图。
图15为本发明多模式切换过程“液压传动模式”—“液压-机械分流传动模式”输出转速与输入转速关系图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
如图1所示,一种机电液复合传动装置,包括
输入轴组件1,包括输入轴11、第一离合器C 112;
功率分流组件2,包括功率分流组件输入轴21、第一齿轮副22、第二离合器C 223、功率分流组件齿圈24、功率分流组件行星架25和功率分流组件太阳轮26;所述功率分流组件齿圈24与功率分流组件输入轴21连接,所述功率分流组件输入轴21通过第一离合器C 112与输入轴11连接,所述功率分流组件齿圈24通过第二离合器C 223与功率分流组件行星架25连接;
液压传动组件3,包括第三离合器C 331、变量泵32、液压管道33、定量马达34、第二齿轮副35、第四离合器C 436;所述液压传动组件3输入端与所述功率分流组件太阳轮26连接,所述液压传动组件3输入端通过第三离合器C 331与变量泵32连接,所述变量泵32通过液压管道33向定量马达34输出高压油液,所述第二齿轮副35通过第四离合器C 436 与定量马达34输出轴连接;
电气无级变速器传动组件4,包括第五离合器C 541、第三齿轮副42、电气无级变速器输入轴43、电气无级变速器44、电气无级变速器输出轴45;所述功率分流组件行星架25通过第五离合器C 541与电气无级变速器输入轴43连接;
机械传动组件5,包括第四齿轮副51、第六离合器C 652、制动器B53、机械传动组件输入轴54、第五齿轮副55、第七离合器C 756、机械传动组件齿圈57、机械传动组件太阳轮58、第八离合器C 859、机械传动组件行星架510、机械传动组件输出轴511;所述电气无级变速器输出轴45通过第六离合器C 652与机械传动组件太阳轮58连接,所述制动器B53与机械传动组件太阳轮58连接,所述功率分流组件行星架25通过第七离合器C 756与机械传动组件齿圈57连接,所述机械传动组件太阳轮58通过第八离合器C 859与机械传动组件行星架510连接;
功率汇流组件6,包括功率汇流组件齿圈61、功率汇流组件太阳轮62、功率汇流组件行星架63、第九离合器C 964;所述功率汇流组件齿圈61与机械传动组件输出轴511固定连接,所述功率汇流组件齿圈61通过第九离合器C 964与功率汇流组件行星架63连接,所述功率汇流组件太阳轮62与液压传动组件3输出端连接;
输出轴7,所述输出轴7与功率汇流组件行星架63连接。
本发明通过切换离合器组件和制动器组件,实现液压传动、机械传动、电气无级变速器传动、机械-电气汇流传动、液压-机械分流传动、液压-电气分流传动、液压-机械-电气分流传动、液压-机械汇流传动、液压-电气汇流传动、机械-液压-电气汇流传动多种模式的切换,能够满足工程机械不同工况下对传动装置多模式的需要,提高发动机功率利用率,改善燃油经济性。同时有效减小了换挡冲击,增大了速比调节范围;液压传动起步快、工作平稳,易于实现快速而无冲击地变速与换向,电气无级变速器传动比变化过程具有连续性,在使用过程中对机构的冲击极小。有效拓宽了调速范围,能够满足大范围非线性无级调速的要求,液压-电气复合传动、机械-液压-电气复合传动方式提高了系统传动效率,能够满足区域内高效无级调速的要求。
一种机电液复合传动装置的控制方法,通过控制离合器和制动器B53之间的接合切换实现单一类型传动模式、功率分流复合传动模式、功率汇流复合传动模式三种类型的传动模式,单一类型的传动模式包括液压传动模式、机械传动模式、电气无级变速器传动模式;功率分流复合传动模式包括液压-机械分流传动模式、液压-电气分流传动模式、液压-机械-电气分流传动模式;功率汇流复合传动模式包括机械-电气汇流传动模式、液压-机械汇流传动模式、液压-电气汇流传动模式、机械-液压-电气汇流传动模式。
各个传动模式的接合元件如表1所示,具体如下:
1模式切换元件接合状态
Figure PCTCN2022097759-appb-000012
如图2所示,液压传动模式的控制方法如下:
第一离合器C 112、第二离合器C 223、第三离合器C 331、第四离合器C 436和第九离合器C 964结合,同时第五离合器C 541、第六离合器C 652、第七离合器C 756、第八离合器C 859和制动器B53分离,动力由输入轴11经过第一齿轮副22驱动变量泵32工作,所述变量泵32输出高压油液驱动定量马达34旋转,所述定量马达34输出端输出的动力通过第二齿轮副35传递至输出轴7输出。
液压传动模式的输出轴7转速计算方法如下:
Figure PCTCN2022097759-appb-000013
式中,n o为输出轴7转速,n I为输入轴11转速,e为液压传动组件3排量比,i 1为第一齿轮副22的传动比,i 2为第二齿轮副35的传动比。
如图3所示,机械传动模式的控制方法如下:
第一离合器C 112、第二离合器C 223、第七离合器C 756和第九离合器C 964和制动器B53结合,同时第三离合器C 331、第四离合器C 436、第五离合器C 541、第六离合器C 652、第八离合器C 859分离,动力由输入轴11依次经过第一离合器C 112、第二离合器C 223、第七离合器C 756驱动机械传动组件齿圈57工作,所述机械传动组件齿圈57输出的动力通过机械传动组件行星架510传递至输出轴7输出。
机械传动模式的输出轴7转速计算方法如下:
Figure PCTCN2022097759-appb-000014
式中,n o为输出轴7转速,n I为输入轴11转速,i 5为第五齿轮副55的传动比,k 2为机械传动组件5的行星齿轮特性参数。
如图4所示,电气无级变速器传动模式的控制方法如下:
第一离合器C 112、第二离合器C 223、第五离合器C 541、第六离合器C 652、第八离合器C 859和第九离合器C 964结合,同时第三离合器C 331、第四离合器C 436、第七离合器C 756和制动器B53分离,功率分流组件2与功率汇流组件6各自固连为一体,动力由输入轴11经过功率分流组件2、电气无级变速器传动组件4、功率汇流组件6传递至输出轴7输出。
电气无级变速器传动模式的输出轴7转速计算方法如下:
Figure PCTCN2022097759-appb-000015
式中,n o为输出轴7转速,n I为输入轴11转速,i 3为第三齿轮副42的传动比,i 4为第四齿轮副51的传动比,i e为电气无级变速器传动组件4的传动比。
如图5所示,液压-机械分流传动模式的控制方法如下:
第一离合器C 112、第三离合器C 331、第四离合器C 436、第七离合器C 756、第九离合器C 964和制动器B53结合,同时第二离合器C 223、第五离合器C 541、第六离合器C 652和第八离合器C 859分离,动力由输入轴11经过功率分流组件输入轴21传递至功率分流组件齿圈24处分流:一路动力经过功率分流组件太阳轮26、液压传动组件3传递至功率汇流组件太阳轮62,另一路动力经过功率分流组件行星架25、机械传动组件齿圈57、机械传动组件行星架510传递至功率汇流组件齿圈61,功率汇流组件6固连为一体,传递至功率汇流组件太阳轮62的动力与传递至汇流组件齿圈61的动力经过功率汇流组件6传递至输出轴7输出。
液压-机械分流传动模式的输出轴7转速计算方法如下:
Figure PCTCN2022097759-appb-000016
式中,n o为输出轴7转速,n I为输入轴11转速,k 1为功率分流组件2的行星齿轮特性 参数,k 2为机械传动组件5的行星齿轮特性参数,i 1为第一齿轮副22的传动比,i 2为第二齿轮副35的传动比,i 5为第五齿轮副55的传动比,e为液压传动组件3排量比。
如图6所示,液压-电气分流传动模式的控制方法如下:
第一离合器C 112、第三离合器C 331、第四离合器C 436、第五离合器C 541、第六离合器C 652、第八离合器C 859和第九离合器C 964结合,同时第二离合器C 223、第七离合器C 756和制动器B53分离,动力由输入轴11经过功率分流组件输入轴21传递至功率分流组件齿圈24处分流:一路动力经过功率分流组件太阳轮26、液压传动组件3传递至功率汇流组件太阳轮62,另一路动力经过功率分流组件行星架25传递至电气无级变速器输入轴43,所述电气无级变速器输入轴43驱动电气无级变速器44工作,所述电气无级变速器44输出的动力通过电气无级变速器输出轴45传递至汇流组件齿圈61,功率汇流组件6固连为一体,传递至功率汇流组件太阳轮62的动力与传递至汇流组件齿圈61的动力经过功率汇流组件6传递至输出轴7输出。
液压-电气分流传动模式的输出轴7转速计算方法如下:
Figure PCTCN2022097759-appb-000017
式中,n o为输出轴7转速,n I为输入轴11转速,k 1为功率分流组件2的行星齿轮特性参数,i 1为第一齿轮副22的传动比,i 2为第二齿轮副35的传动比,i 3为第三齿轮副42的传动比,i 4为第四齿轮副51的传动比,i e为电气无级变速器传动组件4的传动比,e为液压传动组件3排量比。
如图7所示,液压-机械-电气分流传动模式的控制方法如下:
液压-机械-电气分流传动模式:第一离合器C 112、第三离合器C 331、第四离合器C 436、第五离合器C 541、第六离合器C 652、第七离合器C 756和第九离合器C 964结合,同时第二离合器C 223、第八离合器C 859和制动器B53分离,动力由输入轴11经过功率分流组件输入轴21传递至功率分流组件齿圈24处分流:一路动力经过功率分流组件太阳轮26、液压传动组件3传递至功率汇流组件太阳轮62,一路动力经过功率分流组件行星架25处再次分流,一路动力经过第五离合器C 541传递至电气无级变速器输入轴43,所述电气无级变速器输入轴43驱动电气无级变速器44工作,所述电气无级变速器44输出的动力通过电气无级变速器输出轴45传递至机械传动组件太阳轮58,另一路动力经过第七离合器C 756传递至机械传动组件齿圈57,两路动力在机械传动组件行星架510处汇合,汇合后的动力传递至汇流组件齿圈61,功率汇流组件6固连为一体,传递至功率汇流组件太阳轮62的动力与传递至汇流组件齿圈61的动力经过功率汇流组件6传递至输出轴7输出。
液压-机械-电气分流传动模式的输出轴7转速计算方法如下:
Figure PCTCN2022097759-appb-000018
式中,n o为输出轴7转速,n I为输入轴11转速,k 1为功率分流组件2的行星齿轮特性参数,k 2为机械传动组件5的行星齿轮特性参数,i 1为第一齿轮副22的传动比,i 2为第二齿轮副35的传动比,i 3为第三齿轮副42的传动比,i 4为第四齿轮副51的传动比,i 5为第五齿轮副55的传动比,i e为电气无级变速器传动组件4的传动比,e为液压传动组件3排量比。
如图8所示,机械-电气汇流传动模式的控制方法如下:
机械-电气汇流传动模式:第一离合器C 112、第二离合器C 223、第五离合器C 541、第六离合器C 652、第七离合器C 756和第九离合器C 964结合,同时第三离合器C 331、第四离合器C 436、第八离合器C 859和制动器B53分离,功率分流组件2与功率汇流组件6各自固连为一体,动力由输入轴11经过功率分流组件2处分流:一路动力经过第五离合器C 541传递至电气无级变速器输入轴43,所述电气无级变速器输入轴43驱动电气无级变速器44工作,所述电气无级变速器44输出的动力通过电气无级变速器输出轴45传递至机械传动组件太阳轮58,另一路动力经过第七离合器C 756传递至机械传动组件齿圈57,两路动力在机械传动组件行星架510处汇合,汇合后的动力经过功率汇流组件6传递至输出轴7输出。
机械-电气汇流传动模式的输出轴7转速计算方法如下:
Figure PCTCN2022097759-appb-000019
式中,n o为输出轴7转速,n I为输入轴11转速,k 2为机械传动组件5的行星齿轮特性参数,i 3为第三齿轮副42的传动比,i 4为第四齿轮副51的传动比,i 5为第五齿轮副55的传动比,i e为电气无级变速器传动组件4的传动比。
如图9所示,液压-机械汇流传动模式的控制方法如下:
第一离合器C 112、第二离合器C 223、第三离合器C 331、第四离合器C 436、第七离合器C 756和制动器B53结合,同时第五离合器C 541、第六离合器C 652和第九离合器C 964分离,功率分流组件2固连为一体,动力由输入轴11经过功率分流组件2处分流:一路动力经过液压传动组件3传递至功率汇流组件太阳轮62,另一路动力经过功率分流组件行星架25、机械传动组件齿圈57、机械传动组件行星架510传递至功率汇流组件齿圈61,传递至功率汇流组件太阳轮62的动力与传递至汇流组件齿圈61的动力在功率汇流组件行星架63处汇合后传递至输出轴7输出。
液压-机械汇流传动模式的输出轴7转速计算方法如下:
Figure PCTCN2022097759-appb-000020
式中,n o为输出轴7转速,n I为输入轴11转速,k 2为机械传动组件5的行星齿轮特性参数,k 3为功率汇流组件6的行星齿轮特性参数,i 1为第一齿轮副22的传动比,i 2为第二齿轮副35的传动比,e为液压传动组件3排量比。
如图10所示,液压-电气汇流传动模式的控制方法如下:
液压-电气汇流传动模式:第一离合器C 112、第二离合器C 223、第三离合器C 331、第四离合器C 436、五离合器C 541、第六离合器C 652和第八离合器C 859结合,同时第七离合器C 756、第九离合器C 964和制动器B53分离,功率分流组件2固连为一体,动力由输入轴11经过功率分流组件2处分流:一路动力经过液压传动组件3传递至功率汇流组件太阳轮62,另一路动力经过功率分流组件行星架25传递至电气无级变速器输入轴43,所述电气无级变速器输入轴43驱动电气无级变速器44工作,所述电气无级变速器44输出的动力通过电气无级变速器输出轴45传递至汇流组件齿圈61,传递至功率汇流组件太阳轮62的动力与传递至汇流组件齿圈61的动力在功率汇流组件行星架63处汇合后传递至输出轴7输出。
液压-电气汇流传动模式的输出轴7转速计算方法如下:
Figure PCTCN2022097759-appb-000021
式中,n o为输出轴7转速,n I为输入轴11转速,k 3为功率汇流组件6的行星齿轮特性参数,i 1为第一齿轮副22的传动比,i 2为第二齿轮副35的传动比,i 3为第三齿轮副42的传动比,i 4为第四齿轮副51的传动比,i e为电气无级变速器传动组件4的传动比,e为液压传动组件3排量比。
如图11所示,机械-液压-电气汇流传动模式的控制方法如下:
机械-液压-电气汇流传动模式:第一离合器C 112、第二离合器C 223、第三离合器C 331、第四离合器C 436、五离合器C 541、第六离合器C 652和第七离合器C 756结合,同时第八离合器C 859、第九离合器C 964和制动器B53分离,功率分流组件2固连为一体,动力由输入轴11经过功率分流组件2处分流:一路动力经过液压传动组件3传递至功率汇流组件太阳轮62,一路动力经过功率分流组件行星架25处再次分流,一路动力经过第五离合器C 541传递至电气无级变速器输入轴43,所述电气无级变速器输入轴43驱动电气无级变速器44工作,所述电气无级变速器44输出的动力通过电气无级变速器输出轴45传递至机械传动组件太阳轮58,另一路动力经过第七离合器C 756传递至机械传动组件齿圈57,两路动力在机械传动组件行星架510处汇合,汇合后的动力传递至汇流组件齿圈61,传递至功率汇流组件太阳轮62的动力与传递至汇流组件齿圈61的动力在功率汇流组件行星架63 处汇合后传递至输出轴7输出。
液压-电气汇流传动模式的输出轴7转速计算方法如下:
Figure PCTCN2022097759-appb-000022
式中,n o为输出轴7转速,n I为输入轴11转速,k 2为机械传动组件5的行星齿轮特性参数,k 3为功率汇流组件6的行星齿轮特性参数,i 1为第一齿轮副22的传动比,i 2为第二齿轮副35的传动比,i 3为第三齿轮副42的传动比,i 4为第四齿轮副51的传动比,i 5为第五齿轮副55的传动比,i e为电气无级变速器传动组件4的传动比,e为液压传动组件3排量比。
为了实现液压传动模式、电气无级变速器传动模式之间的切换,通过调整液压传动组件排量比、调节电气无级变速器传动组件的传动比、控制离合器和制动器B之间的接合实现多种传动模式之间的无级调速切换。
所述的多种传动模式之间无级调速切换所涉及的传动模式如下:
“液压传动模式”—“液压-电气汇流传动模式”—“机械-液压-电气汇流传动模式或液压传动模式”—“机械传动模式”—“液压-机械汇流传动模式”;
“液压传动模式”—“机械-电气汇流传动模式”—“电气无级变速器传动模式”—“液压-电气分流传动模式”;
“液压传动模式”—“液压-机械-电气分流传动模式”;
“液压传动模式”—“液压-机械分流传动模式”。
举例说明:
主要参数为:i 1i 2=1,i 3i 4=1,i 5=2,k 1=3,k 2=2,k 3=3,i e∈[0.74,3.69]。
传动模式切换过程一:“液压传动模式”—“液压-电气汇流传动模式”—“机械-液压-电气汇流传动模式或液压传动模式”—“机械传动模式”—“液压-机械汇流传动模式”。
液压传动模式的输出-输入转速关系为:
Figure PCTCN2022097759-appb-000023
液压-电气汇流传动模式的输出-输入转速关系为:
Figure PCTCN2022097759-appb-000024
机械-液压-电气汇流传动模式的输出-输入转速关系为:
Figure PCTCN2022097759-appb-000025
Figure PCTCN2022097759-appb-000026
机械传动模式的输出-输入转速关系为:
Figure PCTCN2022097759-appb-000027
液压-机械汇流传动模式的输出-输入转速关系为:
Figure PCTCN2022097759-appb-000028
如图12所示,采用液压传动模式起步,输出转速随液压传动机构排量比e的增加而线 性增大,当e=0.5时,液压传动模式达到正向0.5n I;当同时满足e=0.5,i e=2.0,且e∈[0,1]以及i e∈[0.74,3.69]四个条件时,液压传动模式、液压-电气汇流传动模式、机械-液压-电气汇流传动模式三者可相互切换。同步切换机械-液压-电气汇流传动模式时,当e=0.5时,i e从3.69变化到0.74,机械-液压-电气汇流传动模式下的输出轴转速n o非线性地从0.44n I增加到0.71n I;同步切换到液压-电气汇流传动模式时,当满足i e=2.0时,e从0变化到1,液压-电气汇流传动模式下的输出轴转速n o非线性地从0.375n I增加到0.625n I;或者采用液压传动模式起步,输出转速随液压传动机构排量比e的增加而线性增大,当e=0.33,可以同步切换成机械传动模式或液压-机械汇流传动模式。
传动模式切换过程二:“液压传动模式”—“机械-电气汇流传动模式”—“电气无级变速器传动模式”—“液压-电气分流传动模式”。
液压传动模式的输出-输入转速关系为:
Figure PCTCN2022097759-appb-000029
机械-电气汇流传动模式的输出-输入转速关系为:
Figure PCTCN2022097759-appb-000030
电气无级变速器传动模式的输出-输入转速关系为:
Figure PCTCN2022097759-appb-000031
液压-电气分流传动模式的输出-输入转速关系为:
Figure PCTCN2022097759-appb-000032
如图13所示,采用液压传动模式起步,输出转速随液压传动机构排量比e的增加而线性增大,当e=1时,液压传动模式达到正向n I;当e=0.5时,液压传动模式可同步切换到机械-电气汇流传动模式、电气无级变速器传动模式、液压-电气分流传动模式。
传动模式切换过程三:“液压传动模式”—“液压-机械-电气分流传动模式”。
液压传动模式的输出-输入转速关系为:
Figure PCTCN2022097759-appb-000033
液压-机械-电气分流传动模式的输出-输入转速关系为:
Figure PCTCN2022097759-appb-000034
Figure PCTCN2022097759-appb-000035
如图14所示,采用液压传动模式起步,输出转速随液压传动机构排量比e的增加而线性增大,当e=1时,液压传动模式达到正向n I;当e=0.5且i e=0.5时,液压传动模式可同步切换到液压-机械-电气分流传动模式。
传动模式切换过程四:“液压传动模式”—“液压-机械分流传动模式”。
液压传动模式的输出-输入转速关系为:
Figure PCTCN2022097759-appb-000036
液压-机械分流传动模式的输出-输入转速关系为:
Figure PCTCN2022097759-appb-000037
如图15所示,采用液压传动模式起步,输出转速随液压传动机构排量比e的增加而线性增大,当e=0.33时,液压传动模式达到正向0.33n I,液压传动模式可同步切换到液压- 机械分流传动模式。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种机电液复合传动装置,其特征在于:包括
    输入轴组件(1),包括输入轴(11)、第一离合器C 1(12);
    功率分流组件(2),包括功率分流组件输入轴(21)、第一齿轮副(22)、第二离合器C 2(23)、功率分流组件齿圈(24)、功率分流组件行星架(25)和功率分流组件太阳轮(26);所述功率分流组件齿圈(24)与功率分流组件输入轴(21)连接,所述功率分流组件输入轴(21)通过第一离合器C 1(12)与输入轴(11)连接,所述功率分流组件齿圈(24)通过第二离合器C 2(23)与功率分流组件行星架(25)连接;
    液压传动组件(3),包括第三离合器C 3(31)、变量泵(32)、液压管道(33)、定量马达(34)、第二齿轮副(35)、第四离合器C 4(36);所述液压传动组件(3)输入端与所述功率分流组件太阳轮(26)连接,所述液压传动组件(3)输入端通过第三离合器C 3(31)与变量泵(32)连接,所述变量泵(32)通过液压管道(33)向定量马达(34)输出高压油液,所述第二齿轮副(35)通过第四离合器C 4(36)与定量马达(34)输出轴连接;
    电气无级变速器传动组件(4),包括第五离合器C 5(41)、第三齿轮副(42)、电气无级变速器输入轴(43)、电气无级变速器(44)、电气无级变速器输出轴(45);所述功率分流组件行星架(25)通过第五离合器C 5(41)与电气无级变速器输入轴(43)连接;
    机械传动组件(5),包括第四齿轮副(51)、第六离合器C 6(52)、制动器B(53)、机械传动组件输入轴(54)、第五齿轮副(55)、第七离合器C 7(56)、机械传动组件齿圈(57)、机械传动组件太阳轮(58)、第八离合器C 8(59)、机械传动组件行星架(510)、机械传动组件输出轴(511);所述电气无级变速器输出轴(45)通过第六离合器C 6(52)与机械传动组件太阳轮(58)连接,所述制动器B(53)与机械传动组件太阳轮(58)连接,所述功率分流组件行星架(25)通过第七离合器C 7(56)与机械传动组件齿圈(57)连接,所述机械传动组件太阳轮(58)通过第八离合器C 8(59)与机械传动组件行星架(510)连接;
    功率汇流组件(6),包括功率汇流组件齿圈(61)、功率汇流组件太阳轮(62)、功率汇流组件行星架(63)、第九离合器C 9(64);所述功率汇流组件齿圈(61)与机械传动组件输出轴(511)固定连接,所述功率汇流组件齿圈(61)通过第九离合器C 9(64)与功率汇流组件行星架(63)连接,所述功率汇流组件太阳轮(62)与液压传动组件(3)输出端连接;
    输出轴(7),所述输出轴(7)与功率汇流组件行星架(63)连接。
  2. 根据权利要求1所述的一种机电液复合传动装置的控制方法,其特征在于:通过控制离合器和制动器B(53)之间的接合切换实现单一类型传动模式、功率分流复合传动模式、功率汇流复合传动模式三种类型的传动模式,单一类型的传动模式包括液压传动模式、机械传动模式、电气无级变速器传动模式;功率分流复合传动模式包括液压-机械分流传动模式、液压-电气分流传动模式、液压-机械-电气分流传动模式;功率汇流复合传动模式包括机械-电气汇流传动模式、液压-机械汇流传动模式、液压-电气汇流传动模式、机械-液压-电气汇流传动模式。
  3. 根据权利要求2所述的机电液复合传动装置的控制方法,其特征在于:所述单一类型的传动模式的控制方法如下:
    液压传动模式:第一离合器C 1(12)、第二离合器C 2(23)、第三离合器C 3(31)、第四离合器C 4(36)和第九离合器C 9(64)结合,同时第五离合器C 5(41)、第六离合器C 6(52)、第七离合器C 7(56)、第八离合器C 8(59)和制动器B(53)分离,动力由输入轴(11)经过第一齿轮副(22)驱动变量泵(32)工作,所述变量泵(32)输出高压油液驱动定量马达(34)旋转,所述定量马达(34)输出端输出的动力通过第二齿轮副(35)传递至输出轴(7)输出;
    机械传动模式:第一离合器C 1(12)、第二离合器C 2(23)、第七离合器C 7(56)和第九离合器C 9(64)和制动器B(53)结合,同时第三离合器C 3(31)、第四离合器C 4(36)、第五离合器C 5(41)、第六离合器C 6(52)、第八离合器C 8(59)分离,动力由输入轴(11)依次经过第一离合器C 1(12)、第二离合器C 2(23)、第七离合器C 7(56)驱动机械传动组件齿圈(57)工作,所述机械传动组件齿圈(57)输出的动力通过机械传动组件行星架(510)传递至输出轴(7)输出;
    电气无级变速器传动模式:第一离合器C 1(12)、第二离合器C 2(23)、第五离合器C 5(41)、第六离合器C 6(52)、第八离合器C 8(59)和第九离合器C 9(64)结合,同时第三离合器C 3(31)、第四离合器C 4(36)、第七离合器C 7(56)和制动器B(53)分离,功率分流组件(2)与功率汇流组件(6)各自固连为一体,动力由输入轴(11)经过功率分流组件(2)、电气无级变速器传动组件(4)、功率汇流组件(6)传递至输出轴(7)输出。
  4. 根据权利要求2所述的机电液复合传动装置的控制方法,其特征在于,所述功率分流复合传动模式的控制方法如下:
    液压-机械分流传动模式:第一离合器C 1(12)、第三离合器C 3(31)、第四离合器C 4(36)、第七离合器C 7(56)、第九离合器C 9(64)和制动器B(53)结合,同时第二离合器C 2(23)、第五离合器C 5(41)、第六离合器C 6(52)和第八离合器C 8(59)分离,动力由输入轴(11)经过功率分流组件输入轴(21)传递至功率分流组件齿圈(24) 处分流:一路动力经过功率分流组件太阳轮(26)、液压传动组件(3)传递至功率汇流组件太阳轮(62),另一路动力经过功率分流组件行星架(25)、机械传动组件齿圈(57)、机械传动组件行星架(510)传递至功率汇流组件齿圈(61),功率汇流组件(6)固连为一体,传递至功率汇流组件太阳轮(62)的动力与传递至汇流组件齿圈(61)的动力经过功率汇流组件(6)传递至输出轴(7)输出;
    液压-电气分流传动模式:第一离合器C 1(12)、第三离合器C 3(31)、第四离合器C 4(36)、第五离合器C 5(41)、第六离合器C 6(52)、第八离合器C 8(59)和第九离合器C 9(64)结合,同时第二离合器C 2(23)、第七离合器C 7(56)和制动器B(53)分离,动力由输入轴(11)经过功率分流组件输入轴(21)传递至功率分流组件齿圈(24)处分流:一路动力经过功率分流组件太阳轮(26)、液压传动组件(3)传递至功率汇流组件太阳轮(62),另一路动力经过功率分流组件行星架(25)传递至电气无级变速器输入轴(43),所述电气无级变速器输入轴(43)驱动电气无级变速器(44)工作,所述电气无级变速器(44)输出的动力通过电气无级变速器输出轴(45)传递至汇流组件齿圈(61),功率汇流组件(6)固连为一体,传递至功率汇流组件太阳轮(62)的动力与传递至汇流组件齿圈(61)的动力经过功率汇流组件(6)传递至输出轴(7)输出;
    液压-机械-电气分流传动模式:第一离合器C 1(12)、第三离合器C 3(31)、第四离合器C 4(36)、第五离合器C 5(41)、第六离合器C 6(52)、第七离合器C 7(56)和第九离合器C 9(64)结合,同时第二离合器C 2(23)、第八离合器C 8(59)和制动器B(53)分离,动力由输入轴(11)经过功率分流组件输入轴(21)传递至功率分流组件齿圈(24)处分流:一路动力经过功率分流组件太阳轮(26)、液压传动组件(3)传递至功率汇流组件太阳轮(62),一路动力经过功率分流组件行星架(25)处再次分流,一路动力经过第五离合器C 5(41)传递至电气无级变速器输入轴(43),所述电气无级变速器输入轴(43)驱动电气无级变速器(44)工作,所述电气无级变速器(44)输出的动力通过电气无级变速器输出轴(45)传递至机械传动组件太阳轮(58),另一路动力经过第七离合器C 7(56)传递至机械传动组件齿圈(57),两路动力在机械传动组件行星架(510)处汇合,汇合后的动力传递至汇流组件齿圈(61),功率汇流组件(6)固连为一体,传递至功率汇流组件太阳轮(62)的动力与传递至汇流组件齿圈(61)的动力经过功率汇流组件(6)传递至输出轴(7)输出。
  5. 根据权利要求2所述的机电液复合传动装置的控制方法,其特征在于,所述功率汇流复合传动模式的控制方法如下:
    机械-电气汇流传动模式:第一离合器C 1(12)、第二离合器C 2(23)、第五离合器C 5(41)、第六离合器C 6(52)、第七离合器C 7(56)和第九离合器C 9(64)结合,同时第三离合器C 3(31)、第四离合器C 4(36)、第八离合器C 8(59)和制动器B(53)分离, 功率分流组件(2)与功率汇流组件(6)各自固连为一体,动力由输入轴(11)经过功率分流组件(2)处分流:一路动力经过第五离合器C 5(41)传递至电气无级变速器输入轴(43),所述电气无级变速器输入轴(43)驱动电气无级变速器(44)工作,所述电气无级变速器(44)输出的动力通过电气无级变速器输出轴(45)传递至机械传动组件太阳轮(58),另一路动力经过第七离合器C 7(56)传递至机械传动组件齿圈(57),两路动力在机械传动组件行星架(510)处汇合,汇合后的动力经过功率汇流组件(6)传递至输出轴(7)输出;
    液压-机械汇流传动模式:第一离合器C 1(12)、第二离合器C 2(23)、第三离合器C 3(31)、第四离合器C 4(36)、第七离合器C 7(56)和制动器B(53)结合,同时第五离合器C 5(41)、第六离合器C 6(52)和第九离合器C 9(64)分离,功率分流组件(2)固连为一体,动力由输入轴(11)经过功率分流组件(2)处分流:一路动力经过液压传动组件(3)传递至功率汇流组件太阳轮(62),另一路动力经过功率分流组件行星架(25)、机械传动组件齿圈(57)、机械传动组件行星架(510)传递至功率汇流组件齿圈(61),传递至功率汇流组件太阳轮(62)的动力与传递至汇流组件齿圈(61)的动力在功率汇流组件行星架(63)处汇合后传递至输出轴(7)输出;
    液压-电气汇流传动模式:第一离合器C 1(12)、第二离合器C 2(23)、第三离合器C 3(31)、第四离合器C 4(36)、五离合器C 5(41)、第六离合器C 6(52)和第八离合器C 8(59)结合,同时第七离合器C 7(56)、第九离合器C 9(64)和制动器B(53)分离,功率分流组件(2)固连为一体,动力由输入轴(11)经过功率分流组件(2)处分流:一路动力经过液压传动组件(3)传递至功率汇流组件太阳轮(62),另一路动力经过功率分流组件行星架(25)传递至电气无级变速器输入轴(43),所述电气无级变速器输入轴(43)驱动电气无级变速器(44)工作,所述电气无级变速器(44)输出的动力通过电气无级变速器输出轴(45)传递至汇流组件齿圈(61),传递至功率汇流组件太阳轮(62)的动力与传递至汇流组件齿圈(61)的动力在功率汇流组件行星架(63)处汇合后传递至输出轴(7)输出;
    机械-液压-电气汇流传动模式:第一离合器C 1(12)、第二离合器C 2(23)、第三离合器C 3(31)、第四离合器C 4(36)、五离合器C 5(41)、第六离合器C 6(52)和第七离合器C 7(56)结合,同时第八离合器C 8(59)、第九离合器C 9(64)和制动器B(53)分离,功率分流组件(2)固连为一体,动力由输入轴(11)经过功率分流组件(2)处分流:一路动力经过液压传动组件(3)传递至功率汇流组件太阳轮(62),一路动力经过功率分流组件行星架(25)处再次分流,一路动力经过第五离合器C 5(41)传递至电气无级变速器输入轴(43),所述电气无级变速器输入轴(43)驱动电气无级变速器(44)工作,所述电气无级变速器(44)输出的动力通过电气无级变速器输出轴(45)传递至机械 传动组件太阳轮(58),另一路动力经过第七离合器C 7(56)传递至机械传动组件齿圈(57),两路动力在机械传动组件行星架(510)处汇合,汇合后的动力传递至汇流组件齿圈(61),传递至功率汇流组件太阳轮(62)的动力与传递至汇流组件齿圈(61)的动力在功率汇流组件行星架(63)处汇合后传递至输出轴(7)输出。
  6. 根据权利要求3所述的机电液复合传动装置的控制方法,其特征在于,所述单一类型的传动模式的输出轴(7)转速n o计算方法如下:
    液压传动模式:
    Figure PCTCN2022097759-appb-100001
    式中,n o为输出轴(7)转速,n I为输入轴(11)转速,e为液压传动组件(3)排量比,i 1为第一齿轮副(22)的传动比,i 2为第二齿轮副(35)的传动比;
    机械传动模式:
    Figure PCTCN2022097759-appb-100002
    式中,n o为输出轴(7)转速,n I为输入轴(11)转速,i 5为第五齿轮副(55)的传动比,k 2为机械传动组件(5)的行星齿轮特性参数;
    电气无级变速器传动模式:
    Figure PCTCN2022097759-appb-100003
    式中,n o为输出轴(7)转速,n I为输入轴(11)转速,i 3为第三齿轮副(42)的传动比,i 4为第四齿轮副(51)的传动比,i e为电气无级变速器传动组件(4)的传动比。
  7. 根据权利要求4所述的机电液复合传动装置的控制方法,其特征在于,所述功率分流复合传动模式的输出轴(7)转速n o计算方法如下:
    液压-机械分流传动模式:
    Figure PCTCN2022097759-appb-100004
    式中,n o为输出轴(7)转速,n I为输入轴(11)转速,k 1为功率分流组件(2)的行星齿轮特性参数,k 2为机械传动组件(5)的行星齿轮特性参数,i 1为第一齿轮副(22)的传动比,i 2为第二齿轮副(35)的传动比,i 5为第五齿轮副(55)的传动比,e为液压传动组件(3)排量比;
    液压-电气分流传动模式:
    Figure PCTCN2022097759-appb-100005
    式中,n o为输出轴(7)转速,n I为输入轴(11)转速,k 1为功率分流组件(2)的行星齿轮特性参数,i 1为第一齿轮副(22)的传动比,i 2为第二齿轮副(35)的传动比,i 3为 第三齿轮副(42)的传动比,i 4为第四齿轮副(51)的传动比,i e为电气无级变速器传动组件(4)的传动比,e为液压传动组件(3)排量比;
    液压-机械-电气分流传动模式:
    Figure PCTCN2022097759-appb-100006
    式中,n o为输出轴(7)转速,n I为输入轴(11)转速,k 1为功率分流组件(2)的行星齿轮特性参数,k 2为机械传动组件(5)的行星齿轮特性参数,i 1为第一齿轮副(22)的传动比,i 2为第二齿轮副(35)的传动比,i 3为第三齿轮副(42)的传动比,i 4为第四齿轮副(51)的传动比,i 5为第五齿轮副(55)的传动比,i e为电气无级变速器传动组件(4)的传动比,e为液压传动组件(3)排量比。
  8. 根据权利要求5所述的机电液复合传动装置的控制方法,其特征在于,所述功率汇流复合传动模式的输出轴(7)转速n o计算方法如下:
    机械-电气汇流传动模式:
    Figure PCTCN2022097759-appb-100007
    式中,n o为输出轴(7)转速,n I为输入轴(11)转速,k 2为机械传动组件(5)的行星齿轮特性参数,i 3为第三齿轮副(42)的传动比,i 4为第四齿轮副(51)的传动比,i 5为第五齿轮副(55)的传动比,i e为电气无级变速器传动组件(4)的传动比;
    液压-机械汇流传动模式:
    Figure PCTCN2022097759-appb-100008
    式中,n o为输出轴(7)转速,n I为输入轴(11)转速,k 2为机械传动组件(5)的行星齿轮特性参数,k 3为功率汇流组件(6)的行星齿轮特性参数,i 1为第一齿轮副(22)的传动比,i 2为第二齿轮副(35)的传动比,e为液压传动组件(3)排量比;
    液压-电气汇流传动模式:
    Figure PCTCN2022097759-appb-100009
    式中,n o为输出轴(7)转速,n I为输入轴(11)转速,k 3为功率汇流组件(6)的行星齿轮特性参数,i 1为第一齿轮副(22)的传动比,i 2为第二齿轮副(35)的传动比,i 3为第三齿轮副(42)的传动比,i 4为第四齿轮副(51)的传动比,i e为电气无级变速器传动组件(4)的传动比,e为液压传动组件(3)排量比;
    机械-液压-电气汇流传动模式:
    Figure PCTCN2022097759-appb-100010
    式中,n o为输出轴(7)转速,n I为输入轴(11)转速,k 2为机械传动组件(5)的行星齿轮特性参数,k 3为功率汇流组件(6)的行星齿轮特性参数,i 1为第一齿轮副(22)的传动比,i 2为第二齿轮副(35)的传动比,i 3为第三齿轮副(42)的传动比,i 4为第四齿轮副(51)的传动比,i 5为第五齿轮副(55)的传动比,i e为电气无级变速器传动组件(4)的传动比,e为液压传动组件(3)排量比。
  9. 根据权利要求2所述的机电液复合传动装置的控制方法,其特征在于,通过调整液压传动组件(3)排量比、调节电气无级变速器传动组件(4)的传动比、控制离合器和制动器B(53)之间的接合实现多种传动模式之间的无级调速切换。
  10. 根据权利要求9所述的机电液复合传动装置的控制方法,其特征在于,所述的多种传动模式之间无级调速切换所涉及的传动模式如下:
    “液压传动模式”—“液压-电气汇流传动模式”—“机械-液压-电气汇流传动模式或液压传动模式”—“机械传动模式”—“液压-机械汇流传动模式”;
    “液压传动模式”—“机械-电气汇流传动模式”—“电气无级变速器传动模式”—“液压-电气分流传动模式”;
    “液压传动模式”—“液压-机械-电气分流传动模式”;
    “液压传动模式”—“液压-机械分流传动模式”。
PCT/CN2022/097759 2022-06-07 2022-06-09 一种机电液复合传动装置及其控制方法 WO2023236127A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2312716.0A GB2619188A (en) 2022-06-07 2022-06-09 Mechanical-electrical-hydraulic composite transmission device and a control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210635240.3A CN114909453B (zh) 2022-06-07 2022-06-07 一种机电液复合传动装置及其控制方法
CN202210635240.3 2022-06-07

Publications (1)

Publication Number Publication Date
WO2023236127A1 true WO2023236127A1 (zh) 2023-12-14

Family

ID=82770957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097759 WO2023236127A1 (zh) 2022-06-07 2022-06-09 一种机电液复合传动装置及其控制方法

Country Status (2)

Country Link
CN (1) CN114909453B (zh)
WO (1) WO2023236127A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2619188A (en) * 2022-06-07 2023-11-29 Univ Jiangsu Mechanical-electrical-hydraulic composite transmission device and a control method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090088290A1 (en) * 2005-05-19 2009-04-02 Toyota Jidosha Kabushiki Kaisha Vehicle drive device controller
CN103660910A (zh) * 2013-12-06 2014-03-26 合肥工业大学 一种油电静液复合的混合动力传动系统
EP3002146A1 (de) * 2014-09-26 2016-04-06 CLAAS Industrietechnik GmbH Getriebeanordnung
CN109185417A (zh) * 2018-09-27 2019-01-11 江苏大学 一种快速换向功率分流液压机械无级变速器
CN110953318A (zh) * 2019-11-06 2020-04-03 江苏大学 一种机械液压复合传动装置及控制方法
CN111946792A (zh) * 2020-07-20 2020-11-17 江苏大学 一种功率分流和功率汇流相结合的机液复合传动装置
CN113137462A (zh) * 2021-05-18 2021-07-20 吉林大学 一种作业车辆的行走传动装置及其控制方法
CN114001139A (zh) * 2021-10-27 2022-02-01 江苏大学 一种包含单泵多马达系统的机液复合传动装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113147378B (zh) * 2021-05-18 2022-10-04 吉林大学 一种多模式机械液压传动装置及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090088290A1 (en) * 2005-05-19 2009-04-02 Toyota Jidosha Kabushiki Kaisha Vehicle drive device controller
CN103660910A (zh) * 2013-12-06 2014-03-26 合肥工业大学 一种油电静液复合的混合动力传动系统
EP3002146A1 (de) * 2014-09-26 2016-04-06 CLAAS Industrietechnik GmbH Getriebeanordnung
CN109185417A (zh) * 2018-09-27 2019-01-11 江苏大学 一种快速换向功率分流液压机械无级变速器
CN110953318A (zh) * 2019-11-06 2020-04-03 江苏大学 一种机械液压复合传动装置及控制方法
CN111946792A (zh) * 2020-07-20 2020-11-17 江苏大学 一种功率分流和功率汇流相结合的机液复合传动装置
CN113137462A (zh) * 2021-05-18 2021-07-20 吉林大学 一种作业车辆的行走传动装置及其控制方法
CN114001139A (zh) * 2021-10-27 2022-02-01 江苏大学 一种包含单泵多马达系统的机液复合传动装置

Also Published As

Publication number Publication date
CN114909453A (zh) 2022-08-16
CN114909453B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2020147141A1 (zh) 一种混合动力多模式切换的无级变速传动系统
CN111207198B (zh) 一种集齿轮-液压-金属带为一体的多模式机液复合传动装置
CN205298454U (zh) 装载机用液压机械无级变速传动装置
US11072231B1 (en) Hydro-mechanical hybrid transmission device and control method thereof
CN111946792B (zh) 一种功率分流和功率汇流相结合的机液复合传动装置
CN112360949B (zh) 一种四段式液压机械复合无级传动装置
CN110360293B (zh) 一种液压机械无级变速器
CN113147378B (zh) 一种多模式机械液压传动装置及其控制方法
CN107143638B (zh) 液压机械复合无级传动装置
CN113124127B (zh) 一种谷物收割机用多模式液压机械无级变速装置
WO2023236127A1 (zh) 一种机电液复合传动装置及其控制方法
CN109764123B (zh) 一种行星齿轮特性参数可变的多模式切换动力传动系统
CN104595431A (zh) 一种大功率拖拉机液压机械无级变速器
CN108533701B (zh) 一种双行星排多段多离合式液压机械无级变速器
CN104329433A (zh) 拖拉机液压机械双流传动变速箱
WO2022027724A1 (zh) 一种兼具转速和转矩耦合的多模式无级变速器
CN113212141B (zh) 增程车辆电液混合驱动系统
CN204647180U (zh) 一种大功率拖拉机液压机械无级变速器
CN107246467B (zh) 装载机液压机械无级传动装置
WO2023159408A1 (zh) 一种多模式机液复合传动装置
CN107191567B (zh) 装载机液压机械复合无级传动装置
CN107152510B (zh) 装载机液压机械无级传动装置
WO2023155216A1 (zh) 一种液压机械串并联共存的传动装置及其控制方法
EP3584467A1 (en) Loader three-stage hydraulic mechanical stepless transmission device
CN211343920U (zh) 一种液压机械无级变速器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202312716

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220609

ENP Entry into the national phase

Ref document number: 2023551746

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945272

Country of ref document: EP

Kind code of ref document: A1