WO2023236000A1 - 储能系统的控制方法和储能系统 - Google Patents

储能系统的控制方法和储能系统 Download PDF

Info

Publication number
WO2023236000A1
WO2023236000A1 PCT/CN2022/097046 CN2022097046W WO2023236000A1 WO 2023236000 A1 WO2023236000 A1 WO 2023236000A1 CN 2022097046 W CN2022097046 W CN 2022097046W WO 2023236000 A1 WO2023236000 A1 WO 2023236000A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
modules
storage sub
charge
sub
Prior art date
Application number
PCT/CN2022/097046
Other languages
English (en)
French (fr)
Inventor
李盟
卢艳华
余东旭
吴国秀
梁李柳元
徐祥祥
骆兵团
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280093372.6A priority Critical patent/CN118830161A/zh
Priority to PCT/CN2022/097046 priority patent/WO2023236000A1/zh
Publication of WO2023236000A1 publication Critical patent/WO2023236000A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of energy storage, and in particular, to a control method and energy storage system for an energy storage system.
  • the energy storage system in the flexible DC transmission system mainly realizes energy storage by connecting energy storage sub-modules in series to form ultra-high voltage.
  • the switching strategy of the energy storage sub-module affects the utilization rate of the energy storage system.
  • a control method of an energy storage system includes N energy storage sub-modules, where N is a positive integer greater than 1.
  • the method includes: obtaining N energy storage sub-modules.
  • the remaining battery capacity SOC and charge and discharge limit current of each energy storage sub-module in , the working state includes the input state and the cut-out state.
  • the SOC and charge and discharge limit current of each of the N energy storage sub-modules are first obtained. , and then control the state of each energy storage sub-module according to the SOC and charge and discharge limit current of each energy storage sub-module, that is, the working state of each energy storage sub-module is controlled to be an input state or a cut-out state.
  • the state of the energy storage sub-module is controlled according to the SOC of each energy storage sub-module and the charge and discharge limit current, which can achieve SOC balance between each energy storage sub-module and avoid the SOC imbalance caused by the energy storage sub-module.
  • the available capacity of the energy storage system decreases, thereby increasing the utilization rate of the energy storage system.
  • the method further includes: obtaining the charging and discharging limit current of the energy storage system; and controlling the status of N energy storage sub-modules, including: according to each of the energy storage sub-modules, The SOC of the sub-module, the charge and discharge limit current of each energy storage sub-module and the charge and discharge limit current of the energy storage system control the status of the N energy storage sub-modules.
  • the switching of the energy storage sub-module is determined based on three aspects: the SOC of each energy storage sub-module, the charge and discharge limit current of each energy storage sub-module, and the charge and discharge limit current of the energy storage system.
  • This strategy can avoid the charge and discharge limit current of the energy storage system being affected by the charge and discharge limit current of a single energy storage sub-module, causing the entire energy storage system to be unable to charge and discharge normally, and improve the reliability of the system.
  • N is controlled based on the SOC of each energy storage sub-module, the charge and discharge limit current of each energy storage sub-module, and the charge and discharge limit current of the energy storage system.
  • the status of the energy storage sub-modules includes: in the case of I 1 ⁇ I 2 , in the N energy storage sub-modules, determine the n energy storage sub-modules according to the SOC of each energy storage sub-module.
  • the energy sub-module controls n energy storage sub-modules to be in the input state, and controls the remaining energy storage sub-modules in the N energy storage sub-modules to be in the cut-out state; where I 1 is the N energy storage sub-modules.
  • determining n energy storage sub-modules includes: when the energy storage sub-modules are discharging, selecting n with the largest SOC among the N energy storage sub-modules. energy storage sub-module.
  • N is controlled based on the SOC of each energy storage sub-module, the charge and discharge limit current of each energy storage sub-module, and the charge and discharge limit current of the energy storage system.
  • the status of the energy storage sub-modules includes: in the case of I 1 ⁇ I 2 and M ⁇ n, in the M energy storage sub-modules, determine n according to the SOC of each energy storage sub-module.
  • the determining of n energy storage sub-modules includes: when the energy storage system is charging, selecting n with the smallest SOC among the M energy storage sub-modules.
  • the energy storage sub-module includes: when the energy storage system is charging, selecting n with the smallest SOC among the M energy storage sub-modules.
  • determining n energy storage sub-modules includes: when the energy storage system is discharging, selecting n with the largest SOC among the M energy storage sub-modules. The energy storage sub-module.
  • the method further includes: in the case of I 1 ⁇ I 2 and M ⁇ n, controlling the energy storage system to reduce the value of n, or controlling the energy storage system to stop running. ;
  • I 1 is the smallest charge and discharge limit current among the charge and discharge limit currents of the N energy storage sub-modules
  • I 2 is the charge and discharge limit current of the energy storage system
  • M is the charge and discharge limit current not less than I
  • the number of energy storage sub-modules is 2
  • n is the number of energy storage sub-modules that need to be invested.
  • an energy storage system including: N energy storage sub-modules, where N is a positive integer greater than 1; a controller used to obtain each energy storage sub-module in the N energy storage sub-modules.
  • the remaining battery power SOC and charge and discharge limit current of the module control the working status of N energy storage sub-modules according to the SOC and charge and discharge limit current of each energy storage sub-module.
  • the working status includes input status and cut-out status.
  • the controller is configured to: obtain the charging and discharging limit current of the energy storage system; and control the status of N energy storage sub-modules, including: according to each energy storage The SOC of the sub-module, the charge and discharge limit current of each energy storage sub-module and the charge and discharge limit current of the energy storage system control the status of the N energy storage sub-modules.
  • the controller is configured to: when I 1 ⁇ I 2 , determine n energy storage sub-modules according to the SOC of each energy storage sub-module in the N energy storage sub-modules.
  • the energy storage sub-module controls n energy storage sub-modules to be in the input state, and controls the remaining energy storage sub-modules in the N energy storage sub-modules to be in the cut-out state; where, I 1 is N The smallest charge and discharge limit current among the charge and discharge limit currents of the energy storage sub-module, I 2 is the charge and discharge limit current of the energy storage system, and n is the number of the energy storage sub-modules that need to be invested.
  • the controller is configured to: when the energy storage system is charging, select the n energy storage sub-modules with the smallest SOC among the N energy storage sub-modules.
  • the controller is configured to: when the energy storage system is discharging, select n energy storage sub-modules with the largest SOC among the N energy storage sub-modules.
  • the controller is configured to: when the energy storage system is charging, select n energy storage sub-modules with the smallest SOC among the M energy storage sub-modules.
  • the controller is configured to: when the energy storage system is discharging, select n energy storage sub-modules with the largest SOC among the M energy storage sub-modules.
  • the controller is configured to: when I 1 ⁇ I 2 and M ⁇ n, control the energy storage system to reduce the value of n, or control the energy storage system to stop running. ;
  • I 1 is the smallest charge and discharge limit current among the charge and discharge limit currents of the N energy storage sub-modules
  • I 2 is the charge and discharge limit current of the energy storage system
  • M is the charge and discharge limit current not less than I
  • the number of energy storage sub-modules is 2
  • n is the number of energy storage sub-modules that need to be invested.
  • FIG. 1 is a schematic diagram of the energy storage system applied in this application.
  • FIG. 2 is a schematic structural diagram of an energy storage submodule according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an energy storage submodule according to another embodiment of the present application.
  • Figure 4 is a schematic flow chart of a control method for an energy storage system according to an embodiment of the present application.
  • Figure 5 is a schematic flow chart of a control method for an energy storage system according to another embodiment of the present application.
  • Figure 6 is a flow chart of a control method of an energy storage system according to yet another embodiment of the present application.
  • FIG. 7 is a schematic block diagram of an energy storage system according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an energy storage system control device according to an embodiment of the present application.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
  • Flexible DC transmission is a new generation of DC transmission technology. It is structurally composed of a converter station and a DC transmission line (usually a DC cable).
  • the converter station is composed of a converter and converter transformer equipment. Composed of flow impedance equipment, etc.
  • the converter in flexible DC transmission is a voltage source converter. Its biggest feature is the use of turn-off devices and high-frequency modulation technology. .
  • Flexible DC transmission has the advantages of being able to supply power to passive networks, without commutation failure, without the need for communication between converter stations, and with the ease of constructing a multi-terminal DC system.
  • the energy storage system realizes energy storage by connecting energy storage sub-modules in series to form ultra-high voltage.
  • the charge and discharge limit current of a single energy storage sub-module will affect the charge and discharge limit current of the energy storage system, reducing the reliability of the energy storage system, thereby affecting the normal charge and discharge of the flexible DC transmission system; at the same time, the remaining energy of the battery of the energy storage sub-module
  • the imbalance may lead to a decrease in the available capacity of the energy storage system and reduce the utilization rate of the energy storage system.
  • embodiments of the present application provide an energy storage system control method and an energy storage system, which control the state of the energy storage sub-module according to the SOC and charge and discharge limit current of each energy storage sub-module, and can solve the problem of energy storage sub-modules.
  • the problem of SOC imbalance between modules will improve the utilization rate of the energy storage system.
  • FIG. 1 is a schematic diagram of the energy storage system applied in this application.
  • the energy storage system 10 includes N energy storage sub-modules 11, where N is a positive integer greater than 1, and each of the N energy storage sub-modules 11 can be arranged in series.
  • FIG 4 is a schematic flow chart of a control method for an energy storage system according to an embodiment of the present application.
  • the energy storage system includes N energy storage sub-modules, where N is a positive integer greater than 1.
  • the energy storage system may be the energy storage system shown in Figure 1.
  • the method 400 includes:
  • S420 Control the working status of N energy storage sub-modules according to the SOC and charge and discharge limit current of each energy storage sub-module.
  • N energy storage sub-modules form an energy storage system, so the available battery capacity of the N energy storage sub-modules constitutes the available capacity of the system.
  • the SOC gap between energy storage sub-modules is too large, the system will always give priority to the energy storage sub-module with a larger SOC and shelve the energy storage sub-module with a lower SOC. Over time, the available capacity of the energy storage system will decrease. Reduce the utilization rate of the energy storage system.
  • the energy storage sub-module When the energy storage sub-module is in the input state, that is, the energy storage sub-module participates in the work of the energy storage system; when the energy storage sub-module is in the cut-out state, that is, the energy storage sub-module is in a static state and does not participate in the work of the energy storage system. Energy storage system at work.
  • Figure 5 is a schematic flow chart of a control method for an energy storage system according to another embodiment of the present application. As shown in Figure 5, the method 400 may also include:
  • S421 Control the status of N energy storage sub-modules according to the SOC of each energy storage sub-module, the charge and discharge limit current of each energy storage sub-module, and the charge and discharge limit current of the energy storage system.
  • Whether the charge and discharge limit current of the energy storage sub-module is greater than the charge and discharge limit current of the energy storage system is the prerequisite for whether the energy storage sub-module can participate in the switching of the energy storage system. Therefore, when controlling the state of each energy storage submodule based on its SOC and charge and discharge limit current, it is first necessary to determine whether each energy storage submodule can participate in the switching of the energy storage system.
  • the switching strategy of the energy storage sub-module is determined based on the SOC of each energy storage system sub-module, the charge and discharge limit current of each energy storage sub-module and the charge and discharge limit current of the energy storage system. It can avoid the charge and discharge limit current of the energy storage system being affected by the charge and discharge limit current of a single energy storage sub-module, causing the entire energy storage system to be unable to charge and discharge normally, and improve the reliability of the system.
  • n energy storage sub-modules determine n energy storage sub-modules according to the SOC of each energy storage sub-module among the N energy storage sub-modules, and control the n energy storage sub-modules.
  • the module is in the input state, and the remaining energy storage sub-modules among the N energy storage sub-modules are controlled to be in the cut-out state; among them, I 1 is the smallest charge and discharge limit current among the charge and discharge limit currents of the N energy storage sub-modules, I 2 is the charging and discharging current limit of the energy storage system, and n is the number of energy storage sub-modules that need to be invested.
  • n smallest energy storage sub-modules are selected.
  • n energy storage sub-modules with the smallest SOC are selected to be in the input state, that is, the n energy storage sub-modules with the smallest SOC are charged, so that each sub-module can be realized to the greatest extent. SOC balance among them.
  • n energy storage sub-modules with the largest SOC among the N energy storage sub-modules are selected.
  • the n energy storage sub-modules with the largest SOC are selected as the input state, that is, the n energy storage sub-modules with the largest SOC are discharged, and the remaining energy storage sub-modules with small SOC are left static. , this can achieve the SOC balance between each sub-module to the greatest extent.
  • n energy storage sub-modules are determined according to the SOC of each energy storage sub-module among the M energy storage sub-modules, and n is controlled.
  • the energy storage sub-modules are in the input state, and the remaining energy storage sub-modules among the M energy storage sub-modules are controlled to be in the cut-out state; where, I 1 is the smallest charge and discharge limit among the charge and discharge limit currents of the N energy storage sub-modules.
  • I 2 is the charge and discharge limit current of the energy storage system
  • M is the number of energy storage sub-modules whose charge and discharge limit current is not less than I 2
  • M energy storage sub-modules are the charge and discharge limit current not less than the charge and discharge limit current of the energy storage system. Discharge the energy storage sub-module that limits the current.
  • n is the number of energy storage sub-modules that need to be invested.
  • the M energy storage sub-modules meet the switching requirements.
  • the system is charging, that is, the battery module in the energy storage sub-module is also in a charging state. At this time, the power module connected to the battery module needs to be put into the energy storage system.
  • n energy storage sub-modules are selected from the M energy storage sub-modules and switched to the energy storage system.
  • the n energy storage sub-modules with the smallest SOC are selected as the input state, that is, the n energy storage sub-modules with the smallest SOC are charged, and the remaining energy storage sub-modules with the largest SOC among the M energy storage sub-modules are charged.
  • the module is left to rest, so that the M energy storage sub-modules participating in the switching of the energy storage system can be balanced among SOCs.
  • n energy storage sub-modules are selected from the M energy storage sub-modules and switched to the energy storage system.
  • the system is discharging, that is, the battery module in the energy storage sub-module is also in a discharge state. At this time, the power module connected to the battery module needs to be put into the energy storage system.
  • n energy storage sub-modules are selected from the M energy storage sub-modules and switched to the energy storage system.
  • the system is discharging, select the n energy storage sub-modules with the largest SOC as the input state, that is, discharge the n energy storage sub-modules with the largest SOC, and the remaining energy storage sub-modules with the smallest SOC among the M energy storage sub-modules
  • the module is allowed to stand still to solve the problem of SOC imbalance among the M energy storage sub-modules to the greatest extent.
  • the energy storage system can be controlled to reduce the value of n, or the energy storage system can be controlled to stop running; where I 1 is the charging capacity of N energy storage sub-modules.
  • I 2 is the charge and discharge limit current of the energy storage system
  • M is the number of energy storage sub-modules whose charge and discharge limit current is not less than I 2
  • n is the energy storage sub-module that needs to be invested quantity.
  • the energy storage system determines the required number of energy storage sub-modules based on its own needs. When the number of energy storage sub-modules that can participate in the investment in the energy storage system is not enough to meet the needs of the energy storage system, the energy storage system cannot work properly.
  • n is the number of energy storage sub-modules that need to be invested in the energy storage system.
  • FIG. 6 is a flow chart of a control method of an energy storage system according to yet another embodiment of the present application. Similar steps between this embodiment and the foregoing embodiments can be referred to the foregoing embodiments, and will not be described again for the sake of simplicity.
  • Step S601 start.
  • Step S602 Determine the number n of energy storage sub-modules that need to be invested, the minimum charge and discharge limit current I 1 , and the charge and discharge limit current I 2 of the energy storage system.
  • Step S603 determine whether I 1 is greater than or equal to I 2 .
  • Step S605 Under charging conditions, the first n energy storage sub-modules with lower SOC are selected and put in, and the remaining energy storage sub-modules are in the cut-out state.
  • Step S606 In the case of discharge, the first n energy storage sub-modules with higher SOC are selected and put in, and the remaining energy storage sub-modules are in the cut-out state.
  • the Kth energy storage submodule is an energy storage submodule that is infinitely close to the charging and discharging limit current of the energy storage system after sorting.
  • Step S611 In the case of discharge, the first n energy storage sub-modules with higher SOC are selected and put in, and the remaining energy storage sub-modules are in the cut-out state.
  • FIG. 7 is a schematic block diagram of an energy storage system according to an embodiment of the present application.
  • the energy storage system 10 includes: N energy storage sub-modules 11, N is a positive integer greater than 1; a controller 12, used to obtain each of the N energy storage sub-modules 11
  • the remaining battery power SOC and charge and discharge limit current are controlled according to the SOC and charge and discharge limit current of each energy storage sub-module, and the working status of the N energy storage sub-modules 11 is controlled.
  • the working status includes an input state or a cut-out state.
  • the controller 12 is used to: obtain the charging and discharging limit current of the energy storage system; control the status of N energy storage sub-modules 11, including: according to the SOC of each energy storage sub-module, the The charge and discharge limit current and the charge and discharge limit current of the energy storage system control the status of the N energy storage sub-modules 11.
  • the controller 12 is configured to select n energy storage sub-modules with the smallest SOC among the N energy storage sub-modules 11 when the energy storage system is charging.
  • the controller 12 is configured to: determine n energy storage sub-modules among the M energy storage sub-modules according to the SOC of each energy storage sub-module when I 1 ⁇ I 2 and M ⁇ n, Control n energy storage sub-modules to be in the input state, and control the remaining energy storage sub-modules among the M energy storage sub-modules to be in the cut-out state; among them, I 1 is the smallest charge and discharge limit current among the N energy storage sub-modules.
  • I 2 is the charge and discharge limit current of the energy storage system
  • M is the number of energy storage sub-modules whose charge and discharge limit current is not less than I 2
  • M energy storage sub-modules have a charge and discharge limit current not less than that of the energy storage system
  • the charge and discharge current-limiting energy storage submodule n is the number of energy storage submodules that need to be invested.
  • the controller 12 is configured to select n energy storage sub-modules with the smallest SOC among the M energy storage sub-modules when the energy storage system is charging.
  • the controller 12 is configured to select n energy storage sub-modules with the largest SOC among the M energy storage sub-modules when the energy storage system is discharging.
  • the controller 12 is used to: when I 1 ⁇ I 2 and M ⁇ n, control the energy storage system to reduce the value of n, or control the energy storage system to stop running; where I 1 is N storage units.
  • I 1 is N storage units.
  • I 2 is the charge and discharge limit current of the energy storage system
  • M is the number of energy storage sub-modules whose charge and discharge limit current is not less than I 2
  • n is the need to invest The number of energy storage sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供一种储能系统的控制方法和储能系统。该储能系统包括N个储能子模块,N为大于1的正整数,该储能系统的控制方法包括:获取N个储能子模块中的每个储能子模块的电池剩余电量SOC和充放电限制电流;根据每个储能子模块的SOC和充放电限制电流,控制N个储能子模块的工作状态,工作状态包括投入状态和切出状态。本申请实施例提供的技术方案,能够解决储能子模块间SOC不均衡的问题,进而提高储能系统的利用率。

Description

储能系统的控制方法和储能系统 技术领域
本申请涉及储能领域,尤其涉及一种储能系统的控制方法和储能系统。
背景技术
为加强柔性直流输电系统的有功功率调节能力,充分发挥柔性直流输电系统参与电网支撑的作用,在柔性直流输电系统中应用储能系统具有重要的研究意义。
柔性直流输电系统中的储能系统主要是通过储能子模块串联形成特高压的方式实现储能。储能子模块的投切策略影响储能系统的利用率。
因此,如何提高储能系统的利用率,是一个亟需解决的问题。
发明内容
本申请提供了一种储能系统的控制方法和储能系统,能够解决储能子模块间电池剩余容量(State of Charge,SOC)不均衡的问题,进而提高储能系统的利用率。
第一方面,提供了一种储能系统的控制方法,所述储能系统包括N个储能子模块,N为大于1的正整数,所述方法包括:获取N个所述储能子模块中的每个所述储能子模块的电池剩余电量SOC和充放电限制电流;根据每个所述储能子模块的SOC和充放电限制电流,控制N个所述储能子模块的工作状态,所述工作状态包括投入状态和切出状态。
本申请的实施例中,在储能系统中的N个储能子模块的状态未确定的情况下,先获取N个储能子模块中的每个储能子模块的SOC和充放电限制电流,再根据每个储能子模块的SOC和充放电限制电流,来控制每个储能子模块的状态,即控制每个储能子模块的工作状态是为投入状态或切出状态。这样根据每个储能子模块的SOC和充放电限制电流来控制储能子模块的状态,可以实现每个储能子模块之间的SOC均衡,避免因储能子模块的SOC不均衡而导致储能系统的可用容量下降,进而提高储能系统的利用率。
在一种可能的实施方式中,所述方法还包括:获取所述储能系统的充放电限制电流;所述控制N个所述储能子模块的状态,包括:根据每个所述储能子模块的SOC、每个所述储能子模块的充放电限制电流和所述储能系统的充放电限制电流,控制N个所述储能子模块的状态。
本申请的实施例中,根据每个储能子模块的SOC、每个储能子模块的充放电限制电流和储能系统的充放电限制电流这三个方面来决定储能子模块的投切策略,可以避免储能系统的充放电限制电流受单个储能子模块的充放电限制电流影响而导致的整个储能系统无法正常充放电,提高系统的可靠性。
在一种可能的实施方式中,所述根据每个所述储能子模块的SOC、每个所述储能子模块的充放电限制电流和所述储能系统的充放电限制电流,控制N个所述储能子模块的状态,包括:在I 1≥I 2的情况下,在N个所述储能子模块中根据每个所述储能子模块的SOC,确定n个所述储能子模块,控制n个所述储能子模块为投入状态,控制N个所述储能子模块中剩余的所述储能子模块为切出状态;其中,I 1为N个所述储能子模块的充放电限制电流中最小的充放电限制电流,I 2为所述储能系统的充放电限制电流,n为需要投入的所述储能子模块的数量。
本申请的实施例中,当所有储能子模块中最小的充放电限制电流大于储能系统的充放电限制电流时,N个储能子模块均满足投切要求。这时,只需选择n个储能子模块为投入状态,其余剩下的储能子模块为切出状态。
在一种可能的实施方式中,所述确定n个所述储能子模块,包括:在所述储能系统处于充电的情况下,选择n个最小的储能子模块。
本申请实施例中,当所有的储能子模块中最小的充放电限制电流大于储能系统的充放电限制电流时,N个储能子模块均满足投切要求。在系统处于充电的情况下,选择n个SOC最小的储能子模块为投入状态,即对n个SOC最小的储能子模块进行充电,剩余SOC大的储能子模块静置,这样可以最大程度上实现每个子模块之间的SOC均衡。
在一种可能的实施方式中,所述确定n个所述储能子模块,包括:在所述储能子模块处于放电的情况下,选择N个所述储能子模块中SOC最大的n个储能子模块。
本申请实施例中,当所有的储能子模块中最小的充放电限制电流大于储能系统的充放电限制电流时,N个储能子模块均满足投切要求。在系统处于放电的情况下,选择n个SOC最大的储能子模块为投入状态,即对n个SOC最大的储能子模块进行放电,剩余SOC小的储能子模块静置,这样可以更好的实现每个储能子模块之间的SOC均衡。
在一种可能的实施方式中,所述根据每个所述储能子模块的SOC、每个所述储能子模块的充放电限制电流和所述储能系统的充放电限制电流,控制N个所述储能子模块的状态,包括:在I 1<I 2且M≥n的情况下,在M个所述储能子模块中根据每个所述储能子模块的SOC,确定n个所述储能子模块,控制n个所述储能子模块为投入状态,控制M个所述储能子模块中剩余的所述储能子模块为切出状态;其中,I 1为N个所述储 能子模块的充放电限制电流中最小的充放电限制电流,I 2为所述储能系统的充放电限制电流,M为充放电限制电流不小于I 2的所述储能子模块的数量,M个所述储能子模块为充放电限制电流不小于所述储能系统的充放电限制电流的所述储能子模块,n为需要投入的所述储能子模块的数量。
本申请实施例中,在I 1<I 2且M≥n的情况下,即只有M个储能子模块的充放电限制电流大于储能系统的充放电限制电流,也就是只有M个满足投切要求。此时在M个储能子模块中选择n个储能子模块为投入状态,剩余的储能子模块为切出状态。
在一种可能的实施方式中,所述确定n个所述储能子模块,包括:在所述储能系统处于充电的情况下,选择M个所述储能子模块中SOC最小的n个所述储能子模块。
本申请实施例中,当有M个储能子模块满足投切策略时,即在M个储能子模块挑选n个储能子模块投切到储能系统中。当系统处于充电的情况下,选择n个SOC最小的储能子模块为投入状态,即对n个SOC最小的储能子模块进行充电,M个储能子模块中剩余SOC大的储能子模块静置,这样最大程度上解决M个储能子模块间的SOC不均衡问题。
在一种可能的实施方式中,所述确定n个所述储能子模块,包括:在所述储能系统处于放电的情况下,选择M个所述储能子模块中SOC最大的n个所述储能子模块。
本申请实施例中,当有M个储能子模块满足投切策略时,即在M个储能子模块挑选n个储能子模块投切到储能系统中。当系统处于放电的情况下,选择n个SOC最大的储能子模块为投入状态,即对n个SOC最大的储能子模块进行放电,M个储能子模块中剩余SOC小的储能子模块静置,这样最大程度上解决M个储能子模块间的SOC不均衡问题。
在一种可能的实施方式中,所述方法还包括:在I 1<I 2且M<n 的情况下,控制所述储能系统降低n的值,或,控制所述储能系统停止运行;其中,I 1为N个所述储能子模块的充放电限制电流中最小的充放电限制电流,I 2为所述储能系统的充放电限制电流,M为充放电限制电流不小于I 2的所述储能子模块的数量,n为需要投入的所述储能子模块的数量。
本申请实施例中,n为需要投入到储能系统的储能子模块数量。当充放电限制电流大于储能系统的充放电限制电流的储能子模块数量M小于n时,也就是满足投切要求的储能子模块的数量不能满足储能系统的需求。此时,储能系统需降低输出功率,既降低需要投入到储能系统的储能子模块数量以维持系统的正常运行或使系统停运。
第二方面,提供了一种储能系统,包括:N个储能子模块,N为大于1的正整数;控制器,用于获取N个所述储能子模块中的每个储能子模块的电池剩余电量SOC和充放电限制电流,根据每个所述储能子模块的SOC和充放电限制电流,控制N个所述储能子模块的工作状态,所述所述工作状态包括投入状态和切出状态。
在一种可能的实施方式中,所述控制器用于:获取所述储能系统的充放电限制电流;所述控制N个所述储能子模块的状态,包括:根据每个所述储能子模块的SOC、每个所述储能子模块的充放电限制电流和所述储能系统的充放电限制电流,控制N个所述储能子模块的状态。
在一种可能的实施方式中,所述控制器用于:在I 1≥I 2的情况下,在N个所述储能子模块中根据每个所述储能子模块的SOC,确定n个所述储能子模块,控制n个所述储能子模块为投入状态,控制N个所述储能子模块中剩余的所述储能子模块为切出状态;其中,I 1为N个所述储能子模块的充放电限制电流中最小的充放电限制电流,I 2为所述储能系统的充放电限制电流,n为需要投入的所述储能子模块的数量。
在一种可能的实施方式中,所述控制器用于:在所述储能系统处 于充电的情况下,选择N个所述储能子模块中SOC最小的n个所述储能子模块。
在一种可能的实施方式中,所述控制器用于:在所述储能系统处于放电的情况下,选择N个所述储能子模块中SOC最大的n个所述储能子模块。
在一种可能的实施方式中,所述控制器用于:在I 1<I 2且M≥n的情况下,在M个所述储能子模块中根据每个所述储能子模块的SOC,确定n个所述储能子模块,控制n个所述储能子模块为投入状态,控制M个所述储能子模块中剩余的所述储能子模块为切出状态;其中,I 1为N个所述储能子模块的充放电限制电流中最小的充放电限制电流,I 2为所述储能系统的充放电限制电流,M为充放电限制电流不小于I 2的所述储能子模块的数量,M个所述储能子模块为充放电限制电流不小于所述储能系统的充放电限制电流的所述储能子模块,n为需要投入的所述储能子模块的数量。
在一种可能的实施方式中,所述控制器用于:在所述储能系统处于充电的情况下,选择M个所述储能子模块中SOC最小的n个所述储能子模块。
在一种可能的实施方式中,所述控制器用于:在所述储能系统处于放电的情况下,选择M个所述储能子模块中SOC最大的n个所述储能子模块。
在一种可能的实施方式中,所述控制器用于:在I 1<I 2且M<n的情况下,控制所述储能系统降低n的值,或,控制所述储能系统停止运行;其中,I 1为N个所述储能子模块的充放电限制电流中最小的充放电限制电流,I 2为所述储能系统的充放电限制电流,M为充放电限制电流不小于I 2的所述储能子模块的数量,n为需要投入的所述储能子模块的数量。
第三方面,提供了一种储能系统控制的装置,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,使所述装置实现第一方面中任意一种可能的实施方式中的方法。
第四方面,提供了一种可读存储介质,所述可读存储介质存储有计算机程序,所述计算机程序被计算设备执行时使得所述计算设备实现第一方面中任意一种可能的实施方式中的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请应用的储能系统的示意图;
图2是本申请一实施例的储能子模块的结构示意图;
图3是本申请另一实施例的储能子模块的结构示意图;
图4是本申请一实施例的储能系统的控制方法的示意性流程图;
图5是本申请另一实施例的储能系统的控制方法的示意性流程图;
图6是本申请再一实施例的储能系统的控制方法的流程图;
图7是本申请一实施例的储能系统的示意性框图;
图8是本申请一实施例的储能系统控制的装置的示意性框图。
具体实施方式
使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基 于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的个个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”、“设置”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
柔性直流输电是新一代的直流输电技术,其在结构上是由换流站和直流输电线路(通常为直流电缆)构成,而换流站又是由换流器和换流变压设备,换流阻抗设备等组成。与基于相控换相技术的电流源换流器型高压直流输电不同,柔性直流输电中的换流器为电压源换流器,其最大的特点在于采用了可关断器件和高频调制技术。柔性直流输电具有可向无源 网络供电、不会出现换相失败、换流站间无需通信以及易于构成多端直流系统等优点。
为加强柔性直流输电系统的有功功率调节能力,充分发挥柔性直流输电系统参与电网支撑的作用,在柔性直流输电系统中应用储能系统具有重要的研究意义。在柔性直流输电系统中运用储能系统主要有以下三点作用:(1)柔性直流输电是新能源并网的有效方式,通过将储能系统应用于柔性直流输电系统可以有效抑制新能源固有的波动对电网的不利影响;(2)通过将储能系统应用于柔性直流输电系统可降低故障对电网造成的功率冲击,提高电力系统的稳定性和安全性;(3)功率盈余是威胁柔性直流输电系统安全运行的重要问题,通过应用储能系统存储盈余功率,可保障系统故障防御能力,提高柔性直流输电系统的运行可靠性。
因此,储能系统性能的好坏对柔性直流输电系统有着重要的影响。储能系统通过储能子模块串联形成特高压的方式实现储能。单个储能子模块的充放电限制电流会影响储能系统的充放电限制电流,使储能系统的可靠性降低,进而影响柔性直流输电系统的正常充放电;同时储能子模块的电池剩余能量的不均衡或导致储能系统的可用容量下降,降低储能系统的利用率。
鉴于此,本申请实施例提供了一种储能系统的控制方法和储能系统,根据每个储能子模块的SOC和充放电限制电流来控制储能子模块的状态,能够解决储能子模块间SOC不均衡的问题,进而提高储能系统的利用率。
图1是本申请应用的储能系统的示意图。如图1所示,该储能系统10包括N个储能子模块11,N为大于1的正整数,N个储能子模块11中的每个储能子模块可串联排列。
图2是本申请一实施例的储能子模块的结构示意图,图3是本申请另一实施例的储能子模块的结构示意图。如图2和图3所示,储能子模块由功率模块211和电池模块212组成,储能子模块中的功率模块211为投入状态时,与功率模块211相接的电池模块212即为充电或放电状态; 当功率模块211为切出状态时,与功率模块211相接的电池模块312即为静置状态。
图4是本申请一实施例的储能系统的控制方法的示意性流程图。该储能系统包括N个储能子模块,N为大于1的正整数。例如,该储能系统可以是如图1所示的储能系统。如图4所示,该方法400包括:
S410,获取N个储能子模块中的每个储能子模块的电池剩余电量SOC和充放电限制电流;
S420,根据每个储能子模块的SOC和充放电限制电流,控制N个储能子模块的工作状态。
其中,工作状态包括投入状态和切出状态。
本申请实施例中,SOC是电池使用一段时间或长期搁置不用与其完全充电状态的容量的比值,通常用百分数表示。其取值范围为0~1,当SOC=0时,表示电池放电完全,当SOC=1时表示电池完全充满。
N个储能子模块组成储能系统,因此N个储能子模块的电池可用容量组成系统的可用容量。当储能子模块间的SOC差距过大时,系统总是优先选择SOC较大的储能子模块,将SOC较低的储能子模块搁置,久而久之将会造成储能系统的可用容量下降,使储能系统的利用率降低。
当储能子模块为投入状态时,即该储能子模块参与到储能系统的工作中;当储能子模块为切出状态时,即该储能子模块处于静置状态,未参与到储能系统的工作中。
上述方案中,在储能系统中的N个储能储能子模块的状态未决定前,先获取N个子模块中的每个储能子模块的SOC和充放电限制电流。再根据每个储能子模块的SOC和充放电限制电流,来控制每个储能子模块的状态。这样根据每个储能子模块的SOC和充放电限制电流来控制每个储能子模块的状态,可以实现每个储能子模块之间的SOC均衡,避免因储能子模块的SOC不均衡而导致的储能系统的可用容量下降,进而提高储能系统的利用率。
图5是本申请另一实施例的储能系统的控制方法的示意性流程图。如图5所示,该方法400还可以包括:
S430,获取储能系统的充放电限制电流;
相应地,上述S420具体可以为:
S421,根据每个储能子模块的SOC、每个储能子模块的充放电限制电流和储能系统的充放电限制电流,控制N个储能子模块的状态。
储能子模块的充放电限制电流是否大于储能系统的充放电限制电流是储能子模块能否参与到储能系统的投切的前提。因此,在根据每个储能子模块的SOC和充放电限制电流来控制每个储能子模块的状态时,首先要判断每个储能子模块是否能够参与到储能系统的投切中。
上述方案中,根据每个储能系统子模块的SOC、每个储能子模块的充放电限制电流和储能系统的充放电限制电流这三个方面来决定储能子模块的投切策略,可以避免储能系统的充放电限制电流受单个储能子模块的充放电限制电流影响而导致的整个储能系统无法正常充放电,提高系统的可靠性。
可选地,在S421中,在I 1≥I 2的情况下,在N个储能子模块中根据每个储能子模块的SOC,确定n个储能子模块,控制n个储能子模块为投入状态,控制N个储能子模块中剩余的储能子模块为切出状态;其中,I 1为N个储能子模块的充放电限制电流中最小的充放电限制电流,I 2为储能系统的充放电限制电流,n为需要投入的储能子模块的数量。
上述方案中,当所有储能子模块中最小的充放电限制电流大于储能系统的充放电限制电流时,即,N个储能子模块均满足投切要求。这时,只需选择n个储能子模块为投入状态,其余剩下的为切出状态,即可满足储能系统的需求。
可选地,在储能系统处于充电的情况下,选择n个最小的储能子模块。
当所有的储能子模块中最小的充放电限制电流大于储能系统的充放电限制电流时,N个储能子模块均满足投切要求。当系统处于充电时,即储能子模块中的电池模块也要处于充电状态,此时与电池模块相接的功率模块需投入到储能系统中。
上述方案中,在系统处于充电的情况下,选择n个SOC最小的 储能子模块为投入状态,即对n个SOC最小的储能子模块进行充电,这样可以最大程度上实现每个子模块之间的SOC均衡。
可选地,在储能子模块处于放电的情况下,选择N个储能子模块中SOC最大的n个储能子模块。
当所有的储能子模块中最小的充放电限制电流大于储能系统的充放电限制电流时,N个储能子模块均满足投切要求。当系统处于放电时,即储能子模块中的电池模块也要处于放电状态,此时与电池模块相接的功率模块需投入到储能系统中。
上述方案中,在系统处于放电的情况下,选择n个SOC最大的储能子模块为投入状态,即对n个SOC最大的储能子模块进行放电,剩余SOC小的储能子模块静置,这样可以最大程度上实现每个子模块之间的SOC均衡。
可选地,在S421中,在I 1<I 2且M≥n的情况下,在M个储能子模块中根据每个储能子模块的SOC,确定n个储能子模块,控制n个储能子模块为投入状态,控制M个储能子模块中剩余的储能子模块为切出状态;其中,I 1为N个储能子模块的充放电限制电流中最小的充放电限制电流,I 2为储能系统的充放电限制电流,M为充放电限制电流不小于I 2的储能子模块的数量,M个储能子模块为充放电限制电流不小于储能系统的充放电限制电流的储能子模块,n为需要投入的储能子模块的数量。
当I 1<I 2,也就是N个储能子模块中有的储能子模块的充放电限制电流小于储能系统的充放电限制电流,那么这些充放电限制电流小于储能系统的充放电限制电流的储能子模块无论其SOC的值如何,都不能参与在储能系统的投切中。而能够参与投切的,是充放电限制电流不小于储能系统的充放电限制电流的M个储能子模块。
上述方案中,在I 1<I 2且M≥n的情况下,即只有M个储能子模块的充放电限制电流大于储能系统的充放电限制电流,也就是只有M个满足投切要求。此时在M个储能子模块中选择n个储能子模块为投入状态,剩余的储能子模块为切出状态。
可选地,在储能系统处于充电的情况下,选择M个储能子模块 中SOC最小的n个储能子模块。
当只有M个储能子模块的充放电限制电流大于储能系统的充放电限制电流时,M个储能子模块满足投切要求。当系统处于充电时,即储能子模块中的电池模块也要处于充电状态,此时与电池模块相接的功率模块需投入到储能系统中。
上述方案中,当储能系统需要有n个储能子模块需要投入时,在M个储能子模块挑选n个储能子模块投切到储能系统中。当系统处于充电的情况下,选择n个SOC最小的储能子模块为投入状态,即对n个SOC最小的储能子模块进行充电,M个储能子模块中剩余SOC大的储能子模块静置,这样可以对参与到储能系统投切中的M个储能子模块进行SOC间的均衡。
可选地,在储能系统处于放电的情况下,选择M个储能子模块中SOC最大的n个储能子模块。
当储能系统需要有n个储能子模块需要投入时,在M个储能子模块挑选n个储能子模块投切到储能系统。当系统处于放电时,即储能子模块中的电池模块也要处于放电状态,此时与电池模块相接的功率模块需投入到储能系统中。
上述方案中,当有M个储能子模块满足投切策略时,即在M个储能子模块挑选n个储能子模块投切到储能系统中。当系统处于放电的情况下,选择n个SOC最大的储能子模块为投入状态,即对n个SOC最大的储能子模块进行放电,M个储能子模块中剩余SOC小的储能子模块静置,这样最大程度上解决M个储能子模块间的SOC不均衡问题。
可选地,在I 1<I 2且M<n的情况下,可以控制储能系统降低n的值,或,控制储能系统停止运行;其中,I 1为N个储能子模块的充放电限制电流中最小的充放电限制电流,I 2为储能系统的充放电限制电流,M为充放电限制电流不小于I 2的储能子模块的数量,n为需要投入的储能子模块的数量。
储能系统根据自身需求,确定所需的储能子模块投入的数量。当储能系统中能够参与到投入的储能子模块数量不足以满足储能系统的需求 时,储能系统无法正常工作。
上述方案中,n为需要投入到储能系统的储能子模块数量。当充放电限制电流大于储能系统的充放电限制电流的储能子模块数量M小于n时,也就是满足投切要求的储能子模块的数量不能满足储能系统的需求。此时,储能系统需降低输出功率,既降低需要投入到储能系统的储能子模块数量以维持系统的正常运行或使系统停运。
图6是本申请再一实施例的储能系统的控制方法的流程图。本实施例与前述实施例中类似的步骤可以参考前述实施例,为了简洁,在此不再赘述。
步骤S601,开始。
步骤S602,确定需要投入的储能子模块数量n,最小充放电限制电流I 1,储能系统充放电限制电流I 2
步骤S603,判断如果I 1是否大于或等于I 2
步骤S604,若I 1≥I 2,将N个储能子模块基于SOC排序。
步骤S605,在充电情况下选取前n个SOC较低的储能子模块投入,其余储能子模块为切出状态。
步骤S606,在放电情况下选取前n个SOC较高的储能子模块投入,其余储能子模块为切出状态。
步骤S607,若I 1<I 2,则定义基于排序后第N-n个储能子模块的充放电限制电流为I 3,基于排序后第K个储能子模块的充放电限制电流I 2
其中,第K个储能子模块为排序后与储能系统的充放电限制电流无限接近的储能子模块。
步骤S608,判断如果I 3是否大于或等于I 2
步骤S609,若I 3≥I 2,则将N-K个储能子模块基于SOC排序。
步骤S610,在充电情况下选取前n个SOC较低的储能子模块投入,其余储能子模块为切出状态。
步骤S611,在放电情况下选取前n个SOC较高的储能子模块投入,其余储能子模块为切出状态。
步骤S612,若I 3<I 2,限制储能系统的充放电限制电流为I 3
若储能系统继续维持充放电限制电流为I 2,那么符合投入要求的储能子模块的数量已经不能满足储能系统的要求,所以需降低储能系统的充放电限制电流,以满足储能系统的功率需求。
步骤S613,储能子模块的充放电限制电流大于I 3的可投入到储能系统中,其余储能子模块为切出状态。
本申请实施例还提供了一种储能系统,图7是本申请一实施例的储能系统的示意性框图。如图7所示,储能系统10包括:N个储能子模块11,N为大于1的正整数;控制器12,用于获取N个储能子模块11中的每个储能子模块的电池剩余电量SOC和充放电限制电流,根据每个储能子模块的SOC和充放电限制电流,控制N个储能子模块11的工作状态,工作状态包括投入状态或切出状态。
可选地,控制器12用于:获取储能系统的充放电限制电流;控制N个储能子模块11的状态,包括:根据每个储能子模块的SOC、每个储能子模块的充放电限制电流和储能系统的充放电限制电流,控制N个储能子模块11的状态。
可选地,控制器12用于:在I 1≥I 2的情况下,在N个储能子模块11中根据每个储能子模块的SOC,确定n个储能子模块,控制n个储能子模块为投入状态,控制N个储能子模块11中剩余的储能子模块为切出状态;其中,I 1为N个储能子模块11的充放电限制电流中最小的充放电限制电流,I 2为储能系统的充放电限制电流,n为需要投入的储能子模块的数量。
可选地,控制器12用于:在储能系统处于充电的情况下,选择N个储能子模块11中SOC最小的n个储能子模块。
可选地,控制器12用于:在储能系统处于放电的情况下,选择N个储能子模块11中SOC最大的n个储能子模块。
可选地,控制器12用于:在I 1<I 2且M≥n的情况下,在M个储能子模块中根据每个储能子模块的SOC,确定n个储能子模块,控制n个储能子模块为投入状态,控制M个储能子模块中剩余的储能子模块为切出状态;其中,I 1为N个储能子模块的充放电限制电流中最小的充放电限 制电流,I 2为储能系统的充放电限制电流,M为充放电限制电流不小于I 2的储能子模块的数量,M个储能子模块为充放电限制电流不小于储能系统的充放电限制电流的储能子模块,n为需要投入的储能子模块的数量。
可选地,控制器12用于:在储能系统处于充电的情况下,选择M个储能子模块中SOC最小的n个储能子模块。
可选地,控制器12用于:在储能系统处于放电的情况下,选择M个储能子模块中SOC最大的n个储能子模块。
可选地,控制器12用于:在I 1<I 2且M<n的情况下,控制储能系统降低n的值,或,控制储能系统停止运行;其中,I 1为N个储能子模块的充放电限制电流中最小的充放电限制电流,I 2为储能系统的充放电限制电流,M为充放电限制电流不小于I 2的储能子模块的数量,n为需要投入的储能子模块的数量。
本申请实施例还提供了一种储能系统控制的装置。如图8所示,该储能系统控制的装置80包括处理器81和存储器82,其中,存储器82用于存储计算机程序,处理器81用于调用计算机程序,使装置80实现前述本申请各种实施例的方法。
本申请实施例还提供了一种可读存储介质。该可读存储介质存储有计算机程序,该计算机程序被计算设备执行时使得该计算设备实现本申请各种实施例的方法。

Claims (20)

  1. 一种储能系统的控制方法,其特征在于,所述储能系统包括N个储能子模块,N为大于1的正整数,所述方法包括:
    获取N个所述储能子模块中的每个所述储能子模块的电池剩余电量SOC和充放电限制电流;
    根据每个所述储能子模块的SOC和充放电限制电流,控制N个所述储能子模块的工作状态,所述工作状态包括投入状态和切出状态。
  2. 根据权利要求1所述的控制方法,其特征在于,所述方法还包括:
    获取所述储能系统的充放电限制电流;
    所述控制N个所述储能子模块的状态,包括:
    根据每个所述储能子模块的SOC、每个所述储能子模块的充放电限制电流和所述储能系统的充放电限制电流,控制N个所述储能子模块的状态。
  3. 根据权利要求2所述的控制方法,其特征在于,所述根据每个所述储能子模块的SOC、每个所述储能子模块的充放电限制电流和所述储能系统的充放电限制电流,控制N个所述储能子模块的状态,包括:
    在I 1≥I 2的情况下,在N个所述储能子模块中根据每个所述储能子模块的SOC,确定n个所述储能子模块,控制n个所述储能子模块为投入状态,控制N个所述储能子模块中剩余的所述储能子模块为切出状态;
    其中,I 1为N个所述储能子模块的充放电限制电流中最小的充放电限制电流,I 2为所述储能系统的充放电限制电流,n为需要投入的所述储能子模块的数量。
  4. 根据权利要求3所述的控制方法,其特征在于,所述确定n个所述储能子模块,包括:
    在所述储能系统处于充电的情况下,选择N个所述储能子模块中SOC最小的n个所述储能子模块。
  5. 根据权利要求3所述的控制方法,其特征在于,所述确定n个所述储能子模块,包括:
    在所述储能系统处于放电的情况下,选择N个所述储能子模块中SOC最大的n个所述储能子模块。
  6. 根据权利要求2所述的控制方法,其特征在于,所述根据每个所述储能子模块的SOC、每个所述储能子模块的充放电限制电流和所述储能系统的充放电限制电流,控制N个所述储能子模块的状态,包括:
    在I 1<I 2且M≥n的情况下,在M个所述储能子模块中根据每个所述储能子模块的SOC,确定n个所述储能子模块,控制n个所述储能子模块为投入状态,控制M个所述储能子模块中剩余的所述储能子模块为切出状态;
    其中,I 1为N个所述储能子模块的充放电限制电流中最小的充放电限制电流,I 2为所述储能系统的充放电限制电流,M为充放电限制电流不小于I 2的所述储能子模块的数量,M个所述储能子模块为充放电限制电流不小于所述储能系统的充放电限制电流的所述储能子模块,n为需要投入的所述储能子模块的数量。
  7. 根据权利要求6所述的控制方法,其特征在于,所述确定n个所述储能子模块,包括:
    在所述储能系统处于充电的情况下,选择M个所述储能子模块中SOC最小的n个所述储能子模块。
  8. 根据权利要求6所述的控制方法,其特征在于,所述确定n个所述储能子模块,包括:
    在所述储能系统处于放电的情况下,选择M个所述储能子模块中 SOC最大的n个所述储能子模块。
  9. 根据权利要求2所述的控制方法,其特征在于,所述方法还包括:
    在I 1<I 2且M<n的情况下,控制所述储能系统降低n的值,或,控制所述储能系统停止运行;
    其中,I 1为N个所述储能子模块的充放电限制电流中最小的充放电限制电流,I 2为所述储能系统的充放电限制电流,M为充放电限制电流不小于I 2的所述储能子模块的数量,n为需要投入的所述储能子模块的数量。
  10. 一种储能系统,其特征在于,包括:
    N个储能子模块,N为大于1的正整数;
    控制器,用于获取N个所述储能子模块中的每个所述储能子模块的电池剩余电量SOC和充放电限制电流,根据每个所述储能子模块的SOC和充放电限制电流,控制N个所述储能子模块的工作状态,所述工作状态包括投入状态和切出状态。
  11. 根据权利要求10所述的储能系统,其特征在于,所述控制器用于:
    获取所述储能系统的充放电限制电流;
    所述控制N个所述储能子模块的状态,包括:
    根据每个所述储能子模块的SOC、每个所述储能子模块的充放电限制电流和所述储能系统的充放电限制电流,控制N个所述储能子模块的状态。
  12. 根据权利要求11所述的储能系统,其特征在于,所述控制器用于:
    在I 1≥I 2的情况下,在N个所述储能子模块中根据每个所述储能子模块的SOC,确定n个所述储能子模块,控制n个所述储能子模块为投入状态,控制N个所述储能子模块中剩余的所述储能子模块为切出状态;
    其中,I 1为N个所述储能子模块的充放电限制电流中最小的充放电限制电流,I 2为所述储能系统的充放电限制电流,n为需要投入的所述储能子模块的数量。
  13. 根据权利要求12所述的储能系统,其特征在于,所述控制器用于:
    在所述储能系统处于充电的情况下,选择N个所述储能子模块中SOC最小的n个所述储能子模块。
  14. 根据权利要求12所述的储能系统,其特征在于,所述控制器用于:
    在所述储能系统处于放电的情况下,选择N个所述储能子模块中SOC最大的n个所述储能子模块。
  15. 根据权利要求11所述的储能系统,其特征在于,所述控制器用于:
    在I 1<I 2且M≥n的情况下,在M个所述储能子模块中根据每个所述储能子模块的SOC,确定n个所述储能子模块,控制n个所述储能子模块为投入状态,控制M个所述储能子模块中剩余的所述储能子模块为切出状态;
    其中,I 1为N个所述储能子模块的充放电限制电流中最小的充放电限制电流,I 2为所述储能系统的充放电限制电流,M为充放电限制电流不小于I 2的所述储能子模块的数量,M个所述储能子模块为充放电限制电流不小于所述储能系统的充放电限制电流的所述储能子模块,n为需要投入的所述储能子模块的数量。
  16. 根据权利要求15所述的储能系统,其特征在于,所述控制器用于:
    在所述储能系统处于充电的情况下,选择M个所述储能子模块中SOC最小的n个所述储能子模块。
  17. 根据权利要求15所述的储能系统,其特征在于,所述控制器用于:
    在所述储能系统处于放电的情况下,选择M个所述储能子模块中SOC最大的n个所述储能子模块。
  18. 根据权利要求11所述的储能系统,其特征在于,所述控制器还用于:
    在I 1<I 2且M<n的情况下,控制所述储能系统降低n的值,或,控制所述储能系统停止运行;
    其中,I 1为N个所述储能子模块的充放电限制电流中最小的充放电限制电流,I 2为所述储能系统的充放电限制电流,M为充放电限制电流不小于I 2的所述储能子模块的数量,n为需要投入的所述储能子模块的数量。
  19. 一种储能系统控制的装置,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,使所述装置实现上述权利要求1至9中任一项所述的方法。
  20. 一种可读存储介质,其特征在于,所述可读存储介质存储有计算机程序,所述计算机程序被计算设备执行时使得所述计算设备实现上述权利要求1至9中任一项所述的方法。
PCT/CN2022/097046 2022-06-06 2022-06-06 储能系统的控制方法和储能系统 WO2023236000A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280093372.6A CN118830161A (zh) 2022-06-06 2022-06-06 储能系统的控制方法和储能系统
PCT/CN2022/097046 WO2023236000A1 (zh) 2022-06-06 2022-06-06 储能系统的控制方法和储能系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/097046 WO2023236000A1 (zh) 2022-06-06 2022-06-06 储能系统的控制方法和储能系统

Publications (1)

Publication Number Publication Date
WO2023236000A1 true WO2023236000A1 (zh) 2023-12-14

Family

ID=89117296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097046 WO2023236000A1 (zh) 2022-06-06 2022-06-06 储能系统的控制方法和储能系统

Country Status (2)

Country Link
CN (1) CN118830161A (zh)
WO (1) WO2023236000A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096918A (ja) * 2012-11-09 2014-05-22 Nissan Motor Co Ltd 組電池の制御装置
CN104578124A (zh) * 2014-12-25 2015-04-29 宁德时代新能源科技有限公司 一种电池储能管理系统
CN113098066A (zh) * 2021-04-30 2021-07-09 科华数据股份有限公司 一种功率调节方法、功率调节装置及终端设备
CN114079300A (zh) * 2020-08-12 2022-02-22 比亚迪股份有限公司 多组储能电池控制方法、装置、系统及其存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096918A (ja) * 2012-11-09 2014-05-22 Nissan Motor Co Ltd 組電池の制御装置
CN104578124A (zh) * 2014-12-25 2015-04-29 宁德时代新能源科技有限公司 一种电池储能管理系统
CN114079300A (zh) * 2020-08-12 2022-02-22 比亚迪股份有限公司 多组储能电池控制方法、装置、系统及其存储介质
CN113098066A (zh) * 2021-04-30 2021-07-09 科华数据股份有限公司 一种功率调节方法、功率调节装置及终端设备

Also Published As

Publication number Publication date
CN118830161A (zh) 2024-10-22

Similar Documents

Publication Publication Date Title
US20240014677A1 (en) Method for controlling energy storage system and energy storage system
CN111555335B (zh) 基于主从控制的自储能多端背靠背柔直系统协调控制方法
WO2018161590A1 (zh) 调节系统并联投入系统、控制方法、装置及存储介质
WO2023202411A1 (zh) 一种功率模块、充电桩及供电设备
CN112737041A (zh) 一种电池串联充放电电路及充放电控制方法
WO2021232418A1 (zh) 充电控制方法、储能模块及用电设备
CN105391112B (zh) 一种通信用移动应急电源及其电压自适应方法
CN117937413A (zh) 一种具有惯性支撑的混合储能直流微电网协调控制方法
CN106972541A (zh) 一种基于混合型子模块mmc的配电网多端柔性互联开关
CN110365036A (zh) 一种lcc-vsc直流输电系统的功率协调控制方法与装置
WO2023236000A1 (zh) 储能系统的控制方法和储能系统
WO2024103328A1 (zh) 供电终端、供电系统、供电控制方法及存储介质
CN116599101A (zh) 基于多目标协调的混合储能功率自适应分配方法及系统
CN110474341A (zh) 一种混合型mmc柔性直流输电系统降压运行控制方法
CN107681649B (zh) 一种控制直流微电网母线电压稳定的方法
CN115833216A (zh) 基于柔性直流系统的低压台区三相不平衡治理方法
CN115514237A (zh) 一种能量路由器低损耗待机方法
CN115102217A (zh) 一种lcc-mmc混合级联直流电网受端mmc稳定运行域的确定方法
CN110829584B (zh) 一种基于电池状态的不间断电源动态功率分配系统
CN114784947A (zh) 一种异构冗余供电系统
Huo et al. Research on the application of SOP in multi-station integrated system
WO2024060062A1 (zh) 电力系统的功率均衡方法、装置、计算机设备和存储介质
CN215419600U (zh) 一种微网并入配电网的自适应多功能端口变换器
CN116505570B (zh) 一种无中央控制器的四端口智能软开关系统及其控制方法
US11777337B2 (en) Power supply system and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945150

Country of ref document: EP

Kind code of ref document: A1