WO2023234230A1 - 情報処理装置、情報処理方法及び情報処理プログラム - Google Patents

情報処理装置、情報処理方法及び情報処理プログラム Download PDF

Info

Publication number
WO2023234230A1
WO2023234230A1 PCT/JP2023/019817 JP2023019817W WO2023234230A1 WO 2023234230 A1 WO2023234230 A1 WO 2023234230A1 JP 2023019817 W JP2023019817 W JP 2023019817W WO 2023234230 A1 WO2023234230 A1 WO 2023234230A1
Authority
WO
WIPO (PCT)
Prior art keywords
characteristic data
color
information processing
coloring member
amount
Prior art date
Application number
PCT/JP2023/019817
Other languages
English (en)
French (fr)
Inventor
善朗 山崎
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023234230A1 publication Critical patent/WO2023234230A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/48Photometry, e.g. photographic exposure meter using chemical effects
    • G01J1/50Photometry, e.g. photographic exposure meter using chemical effects using change in colour of an indicator, e.g. actinometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/52Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present disclosure relates to an information processing device, an information processing method, and an information processing program.
  • a coloring member that develops a color depending on the amount of energy when energy (for example, pressure, heat, ultraviolet rays, etc.) is applied.
  • energy for example, pressure, heat, ultraviolet rays, etc.
  • a coloring member there is, for example, Prescale (registered trademark) (manufactured by Fuji Film Co., Ltd.), which can obtain a coloring density depending on the applied pressure.
  • a pressure measurement sheet (for example, prescale) is placed on a calibration sheet, and the density, size, etc. of the photographed image are determined based on the calibration sheet included in the photographed image. It is disclosed that distortion and shape are corrected and density values of a pressure measurement sheet included in the corrected image are converted into pressure values.
  • a measurement sheet colored to a density corresponding to the amount of external energy is imaged by a sensor having multiple spectral sensitivities (for example, R sensitivity, G sensitivity, and B sensitivity). It is disclosed that an image signal of a captured image is acquired, and a surface distribution of the amount of external energy applied to a measurement sheet is derived based on the ratio of signals for each spectral sensitivity.
  • any device owned by the user such as a smartphone or digital camera, which has a camera function, as a photographing device for coloring members.
  • a photographing device for coloring members When photographing a color-forming member using a camera in this manner, variations may occur in the lighting conditions (for example, brightness and color temperature) in the environment in which the photograph is taken. If the illumination conditions differ, the correspondence between the color on the image obtained by photographing the coloring member and the amount of energy applied to the coloring member will also differ. With the technology described in International Publication No. 2021/235364 and International Publication No. 2022/059342, if there are variations in illumination conditions, it may not be possible to appropriately derive the energy amount based on the image obtained by photographing the coloring member. there were.
  • the present disclosure provides an information processing device, an information processing method, and an information processing program that support appropriate measurement.
  • a first aspect of the present disclosure is an information processing device that includes at least one processor, and the processor specifies illumination conditions when photographing a coloring member that develops color with a density distribution according to the amount of applied energy. , a photograph obtained by acquiring characteristic data in which the relationship between the color on the image photographed under illumination conditions and the amount of energy applied to the coloring member is determined in advance, and photographing the coloring member under illumination conditions. An image is acquired, and the amount of energy applied to the coloring member is derived based on the captured image using characteristic data.
  • a second aspect of the present disclosure is that in the first aspect, a plurality of characteristic data are predetermined for each illumination condition, and the processor acquires characteristic data corresponding to the specified illumination condition from among the plurality of characteristic data. You may.
  • the processor replaces the characteristic data with characteristic data corresponding to another illumination condition similar to the specified illumination condition.
  • the amount of energy applied to the coloring member may be derived based on the captured image by acquiring the characteristic data and using alternative characteristic data.
  • the processor replaces the characteristic data with characteristic data corresponding to another illumination condition similar to the specified illumination condition. Acquire the characteristic data, generate characteristic data corresponding to the specified illumination condition based on the alternative characteristic data, and use the generated characteristic data to derive the amount of energy applied to the coloring member based on the photographed image. Good too.
  • the processor may specify the illumination condition using a sensor that measures a light spectrum in an environment in which the coloring member is photographed. good.
  • the processor may receive input of lighting conditions.
  • the photographed image includes a patch for calibrating the color of the coloring member
  • the processor includes a patch included in the photographed image.
  • the patch may be used to calibrate the color of the coloring member included in the photographed image.
  • An eighth aspect of the present disclosure is an information processing method, which specifies illumination conditions when photographing a color-forming member that develops color with a density distribution according to the amount of applied energy; Obtain characteristic data in which the relationship between the color of the color and the amount of energy applied to the coloring member is determined in advance, obtain a photographed image obtained by photographing the coloring member under illumination conditions, and use the characteristic data to obtain a photographed image of the coloring member under illumination conditions. , includes a process of deriving the amount of energy applied to the coloring member based on the photographed image.
  • a ninth aspect of the present disclosure is an information processing program that specifies illumination conditions when photographing a coloring member that develops color with a density distribution according to the applied energy amount, Obtain characteristic data in which the relationship between the color of the color and the amount of energy applied to the coloring member is determined in advance, obtain a photographed image obtained by photographing the coloring member under illumination conditions, and use the characteristic data to obtain a photographed image of the coloring member under illumination conditions. This is for causing a computer to execute a process of deriving the amount of energy applied to the coloring member based on the photographed image.
  • the information processing device, information processing method, and information processing program of the present disclosure support appropriate measurement.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of an information processing system.
  • FIG. 3 is a schematic diagram showing how a photographed image is photographed. It is a figure showing an example of a color development member and a calibration member.
  • 1 is a block diagram illustrating an example of a hardware configuration of an information processing apparatus according to a first exemplary embodiment.
  • FIG. FIG. 3 is a diagram showing an example of a device profile.
  • FIG. 3 is a diagram showing an example of a device profile.
  • FIG. 3 is a diagram showing an example of characteristic data.
  • 1 is a block diagram illustrating an example of a functional configuration of an information processing apparatus according to a first exemplary embodiment.
  • FIG. FIG. 3 is a diagram showing an example of a screen displayed on a display.
  • FIG. 2 is a block diagram illustrating an example of the hardware configuration of an information processing device according to a second exemplary embodiment.
  • FIG. 3 is a diagram showing an example of characteristic data.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration of an information processing device according to a second exemplary embodiment. It is a flowchart which shows an example of 2nd information processing.
  • FIG. 1 is a diagram showing a schematic configuration of an information processing system 1.
  • the information processing system 1 includes an information processing device 10, a server 4, and a database 6.
  • the information processing device 10 and the server 4 are connected to each other via a wired or wireless network so that they can communicate with each other.
  • the information processing system 1 is a system for measuring the amount of energy using a coloring member 90 that, when energy (for example, pressure, heat, ultraviolet rays, etc.) is applied, develops a color with a concentration distribution according to the amount of applied energy. be. Specifically, the information processing device 10 acquires an image of the coloring member 90 after energy has been applied, and derives the amount of energy applied to the coloring member 90 from the image.
  • energy for example, pressure, heat, ultraviolet rays, etc.
  • Prescale registered trademark (manufactured by Fujifilm Corporation), which can obtain a coloring density depending on the applied pressure
  • Prescale is a sheet-like support coated with a coloring agent containing microcapsules containing a colorless dye and a color developer.
  • the coloring agent contains multiple types of microcapsules having different sizes and strengths, the amount of microcapsules destroyed varies depending on the applied pressure, and the coloring density also varies. Therefore, by observing the color density, the magnitude and pressure distribution of the pressure applied to the prescale can be measured.
  • Thermoscale (trade name) (manufactured by Fujifilm Corporation) which develops color according to the amount of heat
  • UV Scale trade name (manufactured by Fujifilm Corporation) which develops color according to the amount of ultraviolet light
  • the server 4 is a general-purpose computer in which a software program that provides the functions of a database management system (DBMS) is installed.
  • the server 4 acquires the captured image 50, the amount of energy derived from the captured image 50, and additional information (details will be described later) from the information processing device 10, and stores them in the database 6.
  • the connection form between the server 4 and the database 6 is not particularly limited; for example, they may be connected via a data bus, or may be connected via a network such as NAS (Network Attached Storage) or SAN (Storage Area Network). It may also be in the form of
  • a user places a coloring member 90 on a calibration member 80 and takes a photograph using an information processing device 10 having a camera 40 (see FIG. 4). I do.
  • the information processing device 10 obtains a photographed image 50 including the calibration member 80 and the coloring member 90.
  • the photographed image 50 may be affected by the lighting conditions (for example, illuminance and color temperature), photographing angle, photographing distance, etc. in the environment in which the photograph is taken. That is, the captured image 50 may have variations in distortion, tilt, size, shading, color, and the like.
  • the calibration member 80 is for correcting these influences on the photographed image 50.
  • FIG. 3 shows the photographed surface 80S of the calibration member 80 on which the coloring member 90 is placed.
  • the calibration member 80 is a support made of paper, resin, etc., and formed into a sheet or plate shape.
  • the photographed surface 80S includes a plurality of patches 83, four figures 86A to 86D, a central region 88, and a frame 89 surrounding the outer edge of the central region 88.
  • the colors of the plurality of patches 83 may be different from each other, or there may be two or more patches 83 of the same color.
  • the plurality of patches 83 are for calibrating the color of the coloring member 90.
  • the four figures 86A to 86D are for indicating the range that should be included in the angle of view when the user photographs the calibration member 80 and the coloring member 90.
  • the frame 89 is for correcting the shape of the captured image 50, such as distortion, inclination, and size.
  • the information processing device 10 calculates the amount of energy applied to the coloring member 90 based on an image obtained by photographing the coloring member 90, taking into account the difference in color space between photographing devices. Perform measurements.
  • the information processing device 10 includes a CPU (Central Processing Unit) 21, a nonvolatile storage section 22, and a memory 23 as a temporary storage area.
  • the information processing device 10 also includes a display 24 such as a liquid crystal display, an input section 25, a network I/F (Interface) 26, and a camera 40.
  • the CPU 21, the storage unit 22, the memory 23, the display 24, the input unit 25, the network I/F 26, and the camera 40 are connected to each other via a bus 28 such as a system bus and a control bus so that they can exchange various information with each other. .
  • a bus 28 such as a system bus and a control bus
  • the storage unit 22 is realized by, for example, a storage medium such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), and a flash memory.
  • the storage unit 22 stores an information processing program 27 in the information processing device 10, a device profile 16, and characteristic data 18.
  • the CPU 21 reads out the information processing program 27 from the storage unit 22, loads it into the memory 23, and executes the loaded information processing program 27.
  • the CPU 21 is an example of a processor according to the present disclosure.
  • the input unit 25 is for receiving user operations, and is, for example, a touch panel, buttons, keyboard, mouse, etc.
  • the network I/F 26 performs wired or wireless communication with the server 4 and other external devices (not shown).
  • the camera 40 has a plurality of sensors having different spectral sensitivities, and under the control of the CPU 21, the sensor photographs a subject and outputs an image signal of the photographed image 50.
  • the information processing device 10 for example, a smartphone with a camera function, a tablet terminal, a wearable terminal, a personal computer, etc. can be used as appropriate.
  • FIG. 5 shows an example of the device profile 16.
  • the device profile 16 is a lookup table that defines the correspondence between colors in a first color space in which images captured by the camera 40 are expressed and colors in a second color space different from the first color space.
  • LUT Lookup Table
  • the first color space is, for example, an RGB color system that represents colors using three variables: R (red), G (green), and B (blue).
  • the second color space is, for example, an L*a*b* color system that expresses colors using three variables: lightness L*, position a* from red to green, and position b* from yellow to blue.
  • the device profile 16 is for converting a color in a first color space unique to each type of photographing device into a color in a second color space that is independent of the type of photographing device. That is, the first color space depends on the type of photographing device, and the device profile is determined for each type of photographing device.
  • FIG. 6 shows an example of a device profile 16P related to a photographing device of a different model from that shown in FIG. 5.
  • colors that are expressed in the same way in the first color space may be expressed differently in the second color space if the types of photographic devices are different.
  • FIG. 7 shows an example of the characteristic data 18.
  • the characteristic data 18 is data in which the relationship between the color in the second color space and the amount of energy applied to the coloring member 90 is determined in advance.
  • pressure is shown as an example of the amount of energy.
  • the characteristic data 18 since the color of the second color space does not depend on the type of photographing device, the characteristic data 18 also does not depend on the type of photographing device.
  • the information processing device 10 includes an acquisition section 30, a correction section 32, a derivation section 34, and a control section 36.
  • the CPU 21 executes the information processing program 27, the CPU 21 functions as each functional unit of the acquisition unit 30, the correction unit 32, the derivation unit 34, and the control unit 36.
  • the acquisition unit 30 acquires a photographed image 50 obtained by photographing the coloring member 90 with the camera 40.
  • the photographed image 50 may include the calibration member 80 including the patch 83 for calibrating the color of the coloring member 90.
  • the photographed image 50 is expressed in the first color space.
  • the acquisition unit 30 also acquires the device profile 16 and characteristic data 18 stored in the storage unit 22.
  • the correction unit 32 corrects at least one of the distortion, tilt, size, shading, and color of the captured image 50 acquired by the acquisition unit 30. This corrects the effects of lighting conditions (for example, illuminance and color temperature), shooting angle, shooting distance, etc. in the environment in which the shooting is performed, which may occur in the shot image 50 when the user shoots.
  • lighting conditions for example, illuminance and color temperature
  • shooting angle, shooting distance, etc. in the environment in which the shooting is performed, which may occur in the shot image 50 when the user shoots.
  • the correction unit 32 may extract the frame 89 from the photographed image 50 and correct the distortion, tilt, and size of the photographed image 50 based on the shape of the extracted frame 89.
  • a method for extracting the frame 89 a known method using edge extraction processing in an image or the like can be applied as appropriate. For example, if the frame 89 is a rectangle as shown in FIG. , corrects the shape of the photographed image 50, such as distortion, inclination, and size.
  • the correction unit 32 may perform shading correction on the captured image 50.
  • Shading is a variation in brightness that occurs on the photographed image 50 due to a decrease in the amount of peripheral light caused by the optical system of the camera 40 and variations in illuminance distribution in the lighting environment in which photography is performed.
  • the shading correction method any known method can be applied as appropriate.
  • the correction unit 32 may calibrate the color of the coloring member 90 included in the captured image 50 using the patch 83 included in the captured image 50. This is because the color of the coloring member 90 is affected by lighting conditions (for example, illuminance and color temperature) in the environment in which photography is performed.
  • lighting conditions for example, illuminance and color temperature
  • any known method can be applied as appropriate.
  • the reference color for each patch 83 included in the calibration member 80 is stored in advance in the storage unit 22, and the correction unit 32 makes sure that the color of each patch 83 included in the photographed image 50 matches the respective reference color.
  • the color of the photographed image 50 may be adjusted so as to
  • the calibration member 80 may include two or more patches 83 of the same color.
  • two or more patches 83 that are originally formed in the same color may appear in different colors on the photographed image 50 due to the influence of the lighting environment in which the photograph is taken, the photographing angle, the photographing distance, etc. . Therefore, for example, the correction unit 32 may adjust the color of the photographed image 50 so that the average color of the patches 83 formed of the same color in the photographed image 50 matches the reference color.
  • the correction unit 32 adjusts the color of the photographed image 50 so that, among the patches 83 formed with the same color, the color in the photographed image 50 that is closest to the reference color matches the standard color. Good too.
  • the correction unit 32 may perform calibration using some of the patches 83 among the plurality of patches 83 included in the captured image 50.
  • the correction unit 32 may change the patch 83 used for calibration depending on the type of coloring member 90.
  • a plurality of types of prescales which are an example of the coloring member 90, are manufactured with different measurable pressure ranges, such as those for low pressure, medium pressure, and high pressure.
  • a thermoscale, a UV scale, etc. can also be used in addition to the prescale.
  • the correction unit 32 performs calibration using some of the patches 83 included in the captured image 50, which are predetermined according to the type of coloring member 90 included in the captured image 50. It's okay.
  • the correspondence between the type of coloring member 90 and the patch 83 used for calibration may be stored in the storage unit 22 in advance, for example.
  • the type of coloring member 90 included in the photographed image 50 may be input by the user via the input unit 25 (see FIG. 9), or an identification code indicating the type of coloring member 90 may be attached to the coloring member 90.
  • the correction unit 32 may read the identification code in advance to identify the identification code.
  • the derivation unit 34 uses the device profile 16 acquired by the acquisition unit 30 to convert the captured image 50 expressed in the first color space to an image expressed in the second color space. Specifically, the derivation unit 34 converts the photographed image 50 expressed in the first color space after correction of at least one of distortion, tilt, size, shading, and color by the correction unit 32 into a second color space. Convert to an image expressed in color space.
  • first image when the captured image 50 is expressed in the first color space, it will be referred to as a "first image,” and when it is expressed in the second color space, it will be referred to as a "second image.”
  • the derivation unit 34 uses the characteristic data 18 acquired by the acquisition unit 30 to derive the amount of energy applied to the coloring member 90 based on the second image.
  • the characteristic data 18 may be prepared in advance for each type of coloring member 90 (for example, for low pressure, medium pressure, high pressure, etc.) and stored in the storage unit 22.
  • the derivation unit 34 may derive the amount of energy applied to the coloring member 90 based on the second image, using the characteristic data 18 according to the type of the coloring member 90 included in the photographed image 50. .
  • the derivation unit 34 may derive various indicators regarding the amount of energy applied to the coloring member 90.
  • Various indicators include, for example, the energy distribution obtained by deriving the amount of energy for each pixel in the colored region of the coloring member 90 (hereinafter referred to as the "coloring region"), and the maximum and minimum values of the energy amount in the coloring region. These are representative values such as values, average values, and median values.
  • the area of the coloring region the proportion of the area of the coloring region whose energy amount is within a predetermined range, the uniformity of the energy amount of the coloring region, and the load of the coloring region (area of the coloring region and energy product of the average values of quantities), etc.
  • Another example is the degree of agreement or deviation from the standard when a standard is predetermined regarding the degree of coloring (ie, energy amount and energy distribution) of the coloring member 90.
  • the control unit 36 controls the display 24 to display the captured image 50 (first image), the amount of energy derived by the derivation unit 34, and various indicators related to the amount of energy.
  • FIG. 9 shows an example of the screen D displayed on the display 24 by the control unit 36. On the screen D, an image of the portion of the coloring member 90 in the photographed image 50 and various indicators related to the amount of energy derived from the coloring member 90 are displayed.
  • the control unit 36 may perform control to extract the coloring member 90 from the photographed image 50 and display it on the display 24. Further, the control unit 36 may use, as the captured image 50 to be displayed on the display 24, an image after at least one of distortion, tilt, size, shading, and color has been corrected by the correction unit 32.
  • the "pressure area” on screen D means the area of the above-mentioned coloring region.
  • Average pressure means the average value of the energy amount in the above coloring region.
  • “Load” means the product of pressurized area and average pressure.
  • Uniformity of pressure values means uniformity of pressure values in the coloring region.
  • control unit 36 may receive input of supplementary information regarding the photographed image 50.
  • Screen D displays the type of coloring member 90, pressure type, room temperature, humidity, and light source as an example of supplementary information regarding the photographed image 50, and displays a pull-down menu 92 for accepting input thereof.
  • the pressure types include, for example, instantaneous pressure indicating the magnitude of the pressure instantaneously applied to the prescale, and continuous pressure indicating the time integral of the magnitude of the pressure continuously applied to the prescale.
  • the light source is, for example, the standard illuminant D65 and the auxiliary illuminants D50, D55, and D75 defined in JIS Z 8720:2012.
  • additional information may include identification information of the calibration member 80, the coloring member 90, the user who applied energy to the coloring member 90, the user who photographed the coloring member 90, etc., the user's evaluation results regarding the amount of energy, and , various test conditions, etc. may be used.
  • control unit 36 transmits at least one of the photographed image 50 before correction by the correction unit 32, the photographed image 50 after correction, and the image of the coloring member 90 extracted from the photographed image 50 to the network I/F 26. to the server 4 via. Further, the control unit 36 transmits the energy amount derived by the derivation unit 34, various indicators related to the energy amount, and supplementary information to the server 4. The server 4 associates the information received from the information processing device 10 (control unit 36) and stores it in the database 6.
  • the operation of the information processing device 10 according to the first exemplary embodiment will be described.
  • the first information processing shown in FIG. 10 is executed by the CPU 21 executing the information processing program 27.
  • the first information processing is executed, for example, when the user issues an instruction to start execution via the input unit 25.
  • step S10 the acquisition unit 30 acquires the captured image 50 captured by the camera 40, and the device profile 16 and characteristic data 18 stored in the storage unit 22.
  • the photographed image 50 is expressed in a first color space, and includes a calibration member 80 and a coloring member 90.
  • step S12 the correction unit 32 corrects at least one of the distortion, tilt, size, shading, and color of the captured image 50 acquired in step S10.
  • step S14 the derivation unit 34 uses the device profile 16 acquired in step S10 to convert the photographed image 50 expressed in the first color space corrected in step S12 into the captured image 50 expressed in the second color space. Convert to image.
  • step S16 the derivation unit 34 uses the characteristic data 18 acquired in step S10 to derive the amount of energy applied to the coloring member 90 based on the image converted to the second color space in step S14.
  • step S18 the control unit 36 performs control to display the captured image 50 corrected in step S12 and the energy amount derived in step S16 on the display 24, and ends the first information processing.
  • the information processing device 10 includes at least one processor, and the processor photographs the coloring member 90 that develops color with a density distribution according to the amount of applied energy.
  • a captured image 50 (first image) is obtained, and a correspondence relationship between the colors in the first color space in which the first image is expressed and the colors in a second color space different from the first color space is determined.
  • the image is converted into a second image expressed in a second color space, and the characteristic data 18 is used to derive the amount of energy applied to the coloring member 90 based on the second image.
  • the information processing apparatus 10 converts the photographed image 50 expressed in a first color space that depends on the type of photographing device into a second color space that is independent of the type of photographic device. After conversion, the amount of energy is derived. Therefore, even when using any type of imaging device, it is possible to support appropriate measurement of the amount of energy.
  • the device profile 16 is stored in the storage unit 22 in advance, but the present invention is not limited to this.
  • the device profile for converting the RGB color system to the L*a*b* color system as described above may be stored in advance in the storage unit 22 by the manufacturer of the photographing device, but if not. There is also. In this case, the CPU 21 may newly generate the device profile 16.
  • any known method can be applied as appropriate.
  • the acquisition unit 30 may obtain a chart obtained by photographing a color chart including a plurality of patches in which colors in the second color space are predetermined (that is, known) using the photographing device of the photographed image 50 (first image). Images may also be acquired. For each patch included in the chart image acquired by the acquisition unit 30, the derivation unit 34 determines, for each patch included in the chart image acquired by the acquisition unit 30, a color in the first color space in which the chart image is expressed, a color in the second color space (that is, a known color), You may also generate a device profile 16 that associates the . Note that a general-purpose color chart may be used as this color chart, or the calibration member 80 may be used.
  • the device profile 16 is an LUT in which colors in the first color space and colors in the second color space are associated with each other (see FIG. 5). It is not limited to this.
  • a conversion formula for converting a color in the first color space to a color in the second color space may be stored in the storage unit 22 in advance.
  • the derivation unit 34 may convert the color in the first color space to the color in the second color space using the conversion formula.
  • the information processing device 10 when a user photographs the coloring member 90 using the camera 40, variations may occur in the illumination conditions (for example, illuminance and color temperature) in the environment in which the photograph is taken. If the illumination conditions differ, the correspondence between the colors on the photographed image 50 obtained by photographing the coloring member 90 and the amount of energy applied to the coloring member 90 will also differ. Therefore, the information processing device 10 according to the present exemplary embodiment derives the amount of energy applied to the coloring member 90 based on an image obtained by photographing the coloring member 90, taking into consideration the difference in illumination conditions. .
  • the information processing device 10 according to the second exemplary embodiment will be described below, but some explanations that overlap with the first exemplary embodiment will be omitted.
  • the information processing device 10 includes a CPU 21, a storage section 22, a memory 23, a display 24, an input section 25, a network I/F 26, a camera 40, and a sensor 42.
  • the information processing device 10 according to the second exemplary embodiment includes a sensor 42 and a plurality of characteristic data 19 corresponding to various lighting conditions are stored in the storage unit 22, and the device profile 16 is not stored. This is different from the information processing apparatus 10 according to the first exemplary embodiment in that there is no difference.
  • the sensor 42 is a sensor that measures the light spectrum in the environment where the coloring member 90 is photographed by the camera 40.
  • a sensor 42 for example, a known spectrometer, colorimeter, or the like that can measure the intensity of light for each wavelength can be used as appropriate.
  • FIG. 12 shows an example of a plurality of characteristic data 19 corresponding to various lighting conditions.
  • the plurality of characteristic data 19 includes a predetermined relationship between the color on the image photographed under each illumination condition and the amount of energy applied to the coloring member 90 for each illumination condition when photographing the coloring member 90. This is the data obtained.
  • pressure is shown as an example of the amount of energy.
  • the illumination conditions include, for example, the type of illumination, illuminance, color temperature, illuminance distribution, etc. in the environment in which the coloring member 90 is photographed.
  • the standard illuminant D65 and auxiliary illuminant D50 defined in JIS Z 8720:2012, and illuminance (in lux) are used as the illumination conditions.
  • the information processing device 10 includes an acquisition section 30, a correction section 32, a derivation section 34, a control section 36, and a specification section 38.
  • the CPU 21 executes the information processing program 27, the CPU 21 functions as each functional unit of the acquisition unit 30, the correction unit 32, the derivation unit 34, the control unit 36, and the identification unit 38.
  • the CPU 21 is an example of a processor according to the present disclosure.
  • the specifying unit 38 specifies the lighting conditions when the user photographs the coloring member 90 with the camera 40.
  • the identifying unit 38 may use the sensor 42 to identify the lighting conditions.
  • the acquisition unit 30 acquires characteristic data 19 corresponding to the illumination condition specified by the identification unit 38 from the storage unit 22. Specifically, the acquisition unit 30 acquires the characteristic data 19 corresponding to the specified illumination condition from among the plurality of characteristic data 19 predetermined for each illumination condition stored in the storage unit 22.
  • the acquisition unit 30 acquires a photographed image 50 obtained by photographing the coloring member 90 with the camera 40 under the lighting conditions specified by the specifying unit 38. That is, the photographed image 50 is affected by the illumination conditions specified by the specifying unit 38.
  • the photographed image 50 may include a calibration member 80 including a patch 83 for calibrating the color of the coloring member 90.
  • the correction unit 32 corrects at least one of the distortion, tilt, size, shading, and color of the captured image 50 acquired by the acquisition unit 30.
  • the correction unit 32 may calibrate the color of the coloring member 90 included in the captured image 50 using the patch 83 included in the captured image 50 . This is because the color of the coloring member 90 is influenced by the characteristics of the photographing device and the like.
  • the derivation unit 34 uses the characteristic data 19 acquired by the acquisition unit 30 to derive the amount of energy applied to the coloring member 90 based on the photographed image 50.
  • the characteristic data 19 may be prepared in advance for each type of coloring member 90 (for example, low pressure, medium pressure, high pressure, etc.) and stored in the storage unit 22.
  • the derivation unit 34 may derive the amount of energy applied to the coloring member 90 based on the photographed image 50 using the characteristic data 19 corresponding to the type of the coloring member 90 included in the photographed image 50.
  • the derivation unit 34 may derive various indicators regarding the amount of energy applied to the coloring member 90.
  • the control unit 36 controls the display 24 to display the captured image 50, the amount of energy derived by the derivation unit 34, and various indicators related to the amount of energy (see FIG. 9). Further, the control unit 36 may receive input of supplementary information regarding the photographed image 50. Further, the control unit 36 transmits at least one of the photographed image 50 before correction by the correction unit 32, the photographed image 50 after correction, and the image of the coloring member 90 extracted from the photographed image 50 to the network I/F 26. to the server 4 via. Further, the control unit 36 transmits the energy amount derived by the derivation unit 34, various indicators related to the energy amount, and supplementary information to the server 4. The server 4 associates the information received from the information processing device 10 (control unit 36) and stores it in the database 6.
  • the second information processing shown in FIG. 14 is executed by the CPU 21 executing the information processing program 27.
  • the second information processing is executed, for example, when a user issues an instruction to start execution via the input unit 25.
  • step S30 the specifying unit 38 specifies the lighting conditions when the user photographs the coloring member 90 with the camera 40.
  • step S32 the acquisition unit 30 acquires the photographed image 50 taken by the camera 40 under the illumination conditions specified in step S30, and the characteristic data 19 corresponding to the illumination conditions specified in step S30.
  • step S34 the correction unit 32 corrects at least one of the distortion, tilt, size, shading, and color of the captured image 50 acquired in step S32.
  • step S36 the derivation unit 34 uses the characteristic data 19 acquired in step S32 to derive the amount of energy applied to the coloring member 90 based on the photographed image 50 acquired in step S32.
  • step S38 the control unit 36 performs control to display the captured image 50 acquired in step S32 and the energy amount derived in step S36 on the display 24, and ends the second information processing.
  • the information processing device 10 includes at least one processor, and the processor is capable of photographing the coloring member 90 that develops color with a density distribution according to the amount of applied energy.
  • the lighting conditions are specified, the characteristic data 19 in which the relationship between the color on the image photographed under the lighting conditions and the amount of energy applied to the coloring member 90 is predetermined is obtained, and the coloring member 90 is set under the lighting conditions.
  • a photographed image 50 obtained by photographing the coloring member 90 is obtained, and the amount of energy applied to the coloring member 90 is derived based on the photographed image 50 using the characteristic data 19.
  • the information processing device 10 derives the amount of energy using characteristic data for each lighting condition in the environment in which photography is performed. Therefore, even when photographing under arbitrary lighting conditions, it is possible to support appropriate measurement of the amount of energy.
  • the characteristic data 19 corresponding to the illumination condition specified by the specifying section 38 is stored in the storage section 22 in advance, but the present invention is not limited to this. It is assumed that there are a wide variety of lighting conditions in the environment in which the user takes pictures, and it may be difficult to predetermine all of the characteristic data 19. Therefore, for example, if the characteristic data 19 corresponding to the illumination condition specified by the specifying unit 38 using the sensor 42 does not exist, the acquiring unit 30 determines the characteristic data 19 corresponding to another illumination condition similar to the specified illumination condition. Alternative characteristic data may be obtained.
  • the storage unit 22 stores in advance characteristic data 19 corresponding to the light source D50 (color temperature 5003K) and the light source D65 (color temperature 6504K).
  • the acquisition unit 30 acquires the characteristic data 19 corresponding to the light source D50 (color temperature 5003K), which has a closer color temperature, as alternative characteristic data.
  • the derivation unit 34 may derive the amount of energy applied to the coloring member 90 based on the photographed image 50 using the alternative characteristic data acquired by the acquisition unit 30.
  • the acquisition unit 30 may generate new characteristic data corresponding to the illumination condition specified by the specifying unit 38 based on the alternative characteristic data. Specifically, the acquisition unit 30 acquires two or more pieces of characteristic data 19 stored in advance in the storage unit 22 as alternative characteristic data, and uses the weighted average of the two or more pieces of alternative characteristic data to identify the data by the specifying unit 38. Characteristic data corresponding to the illumination conditions may be generated.
  • the storage unit 22 stores in advance characteristic data 19 corresponding to the light source D50 (color temperature 5003K), the light source D65 (color temperature 6504K), and the light source D75 (color temperature 7504K).
  • the acquisition unit 30 obtains characteristic data 19 corresponding to light source D50 (color temperature 5003K) and light source D65 (color temperature 6504K) having similar color temperatures. It may also be acquired as alternative characteristic data. Further, the acquisition unit 30 may generate characteristic data corresponding to a color temperature of 5100K by a weighted average of two alternative characteristic data corresponding to light source D50 (color temperature 5003K) and light source D65 (color temperature 6504K).
  • the derivation unit 34 may derive the amount of energy applied to the coloring member 90 based on the captured image 50 using the characteristic data generated by the acquisition unit 30.
  • the identification unit 38 uses the sensor 42 included in the information processing device 10 to identify the lighting conditions, but the invention is not limited thereto.
  • the identifying unit 38 may identify the lighting conditions using an external sensor having the same function as the sensor 42, and in this case, the information processing device 10 does not need to include the sensor 42.
  • the specifying unit 38 may receive input of illumination conditions from the user, as shown in screen D of FIG. 9 .
  • the characteristic data 18 (data in which the relationship between the color of the second color space and the amount of energy applied to the coloring member 90 is determined in advance) according to the first exemplary embodiment is determined for each illumination condition.
  • the derivation unit 34 uses the device profile 16 to convert the captured image 50 expressed in the first color space into an image expressed in the second color space, and then uses the device profile 16 to convert the captured image 50 into an image expressed in the second color space.
  • the amount of energy applied to the coloring member 90 may be derived based on the second image using the characteristic data 18 corresponding to the illumination conditions.
  • the correction unit 32 performs shading correction on the photographed image 50, and the derivation unit 34 derives the energy amount based on the photographed image 50 after the shading correction.
  • International Publication No. 2022/059342 discloses that by using the ratio of signals for each spectral sensitivity of an image, unevenness in the surface distribution of density values in an image can be eliminated without performing shading correction.
  • the derivation unit 34 may derive the ratio of signals for each spectral sensitivity of the captured image 50 using the technique described in International Publication No. 2022/059342, and may derive the energy amount based on the ratio. In this case, the correction unit 32 does not need to perform shading correction on the captured image 50.
  • the present invention is not limited to this.
  • a digital camera, scanner, or the like external to the information processing apparatus 10 may be used as the photographing device.
  • the information processing device 10 does not need to include the camera 40.
  • a mode is described in which the calibration member 80 is photographed together with the coloring member 90 in order to correct at least one of the distortion, tilt, size, shading, and color of the photographed image 50.
  • the calibration member 80 may not be photographed, but only the coloring member 90 may be photographed. Further, in this case, the function of the correction section 32 may be omitted.
  • the various processors mentioned above include the CPU, which is a general-purpose processor that executes software (programs) and functions as various processing units, as well as circuits that are manufactured after manufacturing, such as FPGA (Field Programmable Gate Array).
  • Programmable logic devices PLDs
  • ASICs Application Specific Integrated Circuits
  • One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of multiple FPGAs, or a combination of a CPU and an FPGA). combination). Further, the plurality of processing units may be configured with one processor.
  • one processor is configured with a combination of one or more CPUs and software, as typified by computers such as a client and a server.
  • a processor functions as multiple processing units.
  • processors that use a single IC (Integrated Circuit) chip, such as System on Chip (SoC), which implements the functions of an entire system that includes multiple processing units. be.
  • SoC System on Chip
  • various processing units are configured using one or more of the various processors described above as a hardware structure.
  • circuitry that is a combination of circuit elements such as semiconductor elements can be used.
  • the information processing program 27 is stored (installed) in the storage unit 22 in advance, but the present invention is not limited to this.
  • the information processing program 27 is provided in a form recorded on a recording medium such as a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital Versatile Disc Read Only Memory), and a USB (Universal Serial Bus) memory. Good too. Further, the information processing program 27 may be downloaded from an external device via a network.
  • the technology of the present disclosure extends not only to the information processing program but also to a storage medium that non-temporarily stores the information processing program.
  • the technology of the present disclosure can also be combined as appropriate with the above exemplary embodiments and examples.
  • the descriptions and illustrations described above are detailed explanations of portions related to the technology of the present disclosure, and are merely examples of the technology of the present disclosure.
  • the above description regarding the configuration, function, operation, and effect is an example of the configuration, function, operation, and effect of the part related to the technology of the present disclosure. Therefore, unnecessary parts may be deleted, new elements may be added, or replacements may be made to the written and illustrated contents described above without departing from the gist of the technology of the present disclosure. Needless to say.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

少なくとも1つのプロセッサを備え、前記プロセッサは、印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影する場合の照明条件を特定し、前記照明条件下において撮影される画像上の色と、前記発色部材に印加されたエネルギー量と、の関係が予め定められた特性データを取得し、前記照明条件下において前記発色部材を撮影して得られる撮影画像を取得し、前記特性データを用いて、前記撮影画像に基づき、前記発色部材に印加されたエネルギー量を導出する情報処理装置。

Description

情報処理装置、情報処理方法及び情報処理プログラム
 本開示は、情報処理装置、情報処理方法及び情報処理プログラムに関する。
 従来、エネルギー(例えば圧力、熱及び紫外線等)が印加されるとエネルギー量に応じて発色する発色部材を用いて、エネルギー量を測定する技術が知られている。このような発色部材としては、例えば、印加される圧力に応じた発色濃度が得られるプレスケール(登録商標)(富士フイルム株式会社製)がある。
 例えば、国際公開第2021/235364号には、キャリブレーションシート上に圧力測定シート(例えばプレスケール)を配置して撮影し、撮影画像に含まれるキャリブレーションシートに基づいて撮影画像の濃度、サイズ、歪み及び形状を補正し、補正後の画像に含まれる圧力測定シートの濃度値を圧力値に変換することが開示されている。また例えば、国際公開第2022/059342号には、外部エネルギー量に応じた濃度に発色した測定用シートが、複数の分光感度(例えばR感度、G感度及びB感度)を有するセンサにより撮像された撮像画像の画像信号を取得し、分光感度ごとの信号の比率に基づいて、測定用シートに加えられた外部エネルギー量の面分布を導出することが開示されている。
 近年、発色部材の撮影デバイスとして、例えばユーザが所有するカメラ機能を有するスマートフォン及びデジタルカメラ等の任意のデバイスを適用可能とすることが望まれている。このようにカメラを用いて発色部材を撮影する場合、撮影を行う環境における照明条件(例えば明るさ及び色温度)にばらつきが生じることがあった。照明条件が異なると、発色部材を撮影して得られる画像上の色と、発色部材に印加されたエネルギー量との対応関係も異なるものとなる。国際公開第2021/235364号及び国際公開第2022/059342号に記載の技術では、照明条件にばらつきがある場合、発色部材を撮影して得られる画像に基づくエネルギー量の導出が適切にできない場合があった。
 本開示は、適切な測定を支援する情報処理装置、情報処理方法及び情報処理プログラムを提供する。
 本開示の第1態様は、情報処理装置であって、少なくとも1つのプロセッサを備え、プロセッサは、印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影する場合の照明条件を特定し、照明条件下において撮影される画像上の色と、発色部材に印加されたエネルギー量と、の関係が予め定められた特性データを取得し、照明条件下において発色部材を撮影して得られる撮影画像を取得し、特性データを用いて、撮影画像に基づき、発色部材に印加されたエネルギー量を導出する。
 本開示の第2態様は、上記第1態様において、照明条件ごとに複数の特性データが予め定められており、プロセッサは、複数の特性データのうち、特定した照明条件に対応する特性データを取得してもよい。
 本開示の第3態様は、上記第2態様において、プロセッサは、特定した照明条件に対応する特性データが存在しない場合、特定した照明条件に類似する他の照明条件に対応する特性データである代替特性データを取得し、代替特性データを用いて、撮影画像に基づき、発色部材に印加されたエネルギー量を導出してもよい。
 本開示の第4態様は、上記第2態様において、プロセッサは、特定した照明条件に対応する特性データが存在しない場合、特定した照明条件に類似する他の照明条件に対応する特性データである代替特性データを取得し、代替特性データに基づき、特定した照明条件に対応する特性データを生成し、生成した特性データを用いて、撮影画像に基づき、発色部材に印加されたエネルギー量を導出してもよい。
 本開示の第5態様は、上記第1態様から第4態様の何れか1つにおいて、プロセッサは、発色部材を撮影する環境における光スペクトルを測定するセンサを用いて、照明条件を特定してもよい。
 本開示の第6態様は、上記第1態様から第5態様の何れか1つにおいて、プロセッサは、照明条件の入力を受け付けてもよい。
 本開示の第7態様は、上記第1態様から第6態様の何れか1つにおいて、撮影画像は、発色部材の色についてキャリブレーションを行うためのパッチを含み、プロセッサは、撮影画像に含まれるパッチを用いて、撮影画像に含まれる発色部材の色についてキャリブレーションを行ってもよい。
 本開示の第8態様は、情報処理方法であって、印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影する場合の照明条件を特定し、照明条件下において撮影される画像上の色と、発色部材に印加されたエネルギー量と、の関係が予め定められた特性データを取得し、照明条件下において発色部材を撮影して得られる撮影画像を取得し、特性データを用いて、撮影画像に基づき、発色部材に印加されたエネルギー量を導出する処理を含む。
 本開示の第9態様は、情報処理プログラムであって、印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影する場合の照明条件を特定し、照明条件下において撮影される画像上の色と、発色部材に印加されたエネルギー量と、の関係が予め定められた特性データを取得し、照明条件下において発色部材を撮影して得られる撮影画像を取得し、特性データを用いて、撮影画像に基づき、発色部材に印加されたエネルギー量を導出する処理をコンピュータに実行させるためのものである。
 上記態様によれば、本開示の情報処理装置、情報処理方法及び情報処理プログラムは、適切な測定を支援する。
情報処理システムの概略構成の一例を示す図である。 撮影画像の撮影の様子を示す概略図である。 発色部材及びキャリブレーション部材の一例を示す図である。 第1例示的実施形態に係る情報処理装置のハードウェア構成の一例を示すブロック図である。 デバイスプロファイルの一例を示す図である。 デバイスプロファイルの一例を示す図である。 特性データの一例を示す図である。 第1例示的実施形態に係る情報処理装置の機能的な構成の一例を示すブロック図である。 ディスプレイに表示される画面の一例を示す図である。 第1情報処理の一例を示すフローチャートである。 第2例示的実施形態に係る情報処理装置のハードウェア構成の一例を示すブロック図である。 特性データの一例を示す図である。 第2例示的実施形態に係る情報処理装置の機能的な構成の一例を示すブロック図である。 第2情報処理の一例を示すフローチャートである。
[第1例示的実施形態]
 以下、図面を参照して本開示の例示的実施形態について説明する。まず、図1を参照して、本開示の情報処理装置10を適用する情報処理システム1の構成について説明する。図1は、情報処理システム1の概略構成を示す図である。情報処理システム1は、情報処理装置10と、サーバ4と、データベース6と、を備える。情報処理装置10とサーバ4とは、有線又は無線のネットワークを介して互いに通信可能な状態で接続されている。
 情報処理システム1は、エネルギー(例えば圧力、熱及び紫外線等)が印加されると印加されたエネルギー量に応じた濃度分布で発色する発色部材90を用いて、エネルギー量を測定するためのシステムである。具体的には、情報処理装置10が、エネルギーが印加された後の発色部材90を撮影した画像を取得し、当該画像から発色部材90に印加されたエネルギー量を導出する。
 発色部材90としては、例えば、印加される圧力に応じた発色濃度が得られるプレスケール(登録商標)(富士フイルム株式会社製)を適用できる。プレスケールは、無色染料が含まれるマイクロカプセルを含む発色剤と、顕色剤とがシート状の支持体に塗布されたものである。プレスケールに圧力が印加されると、マイクロカプセルが破壊されて無色染料が顕色剤に吸着し、発色する。また、発色剤は、大きさ及び強度が異なる複数種のマイクロカプセルを含有しているため、印加される圧力に応じて破壊されるマイクロカプセルの量が異なり、発色濃度も異なる。したがって、発色濃度を観察することにより、プレスケールに印加された圧力の大きさ及び圧力分布等を測定できる。
 また例えば、発色部材90としては、熱量に応じて発色するサーモスケール(商品名)(富士フイルム株式会社製)、及び、紫外線光量に応じて発色するUVスケール(商品名)(富士フイルム株式会社製)等を適用してもよい。
 サーバ4は、汎用のコンピュータにデータベース管理システム(DataBase Management System:DBMS)の機能を提供するソフトウェアプログラムがインストールされたものである。サーバ4は、情報処理装置10から、撮影画像50、撮影画像50から導出されたエネルギー量、及び付帯情報(詳細は後述)を取得し、データベース6に格納する。なお、サーバ4とデータベース6との接続形態は特に限定されず、例えば、データバスによって接続される形態でもよいし、NAS(Network Attached Storage)及びSAN(Storage Area Network)等のネットワークを介して接続される形態でもよい。
 情報処理システム1においては、図2に示すように、キャリブレーション部材80の上に発色部材90を載置した状態で、ユーザがカメラ40を有する情報処理装置10(図4参照)を用いて撮影を行う。これにより情報処理装置10は、キャリブレーション部材80と発色部材90とを含む撮影画像50を取得する。このようにユーザが撮影を行う場合、撮影画像50は、撮影が行われる環境における照明条件(例えば照度及び色温度)、撮影角度及び撮影距離等の影響を受けることがある。すなわち、撮影画像50は、歪み、傾き、大きさ、シェーディング及び色等についてばらつきを有する場合がある。キャリブレーション部材80は、撮影画像50におけるこれらの影響を補正するためのものである。
 図3に、発色部材90が載置された状態のキャリブレーション部材80における被撮影面80Sを示す。キャリブレーション部材80は、例えば紙及び樹脂等を含んで構成される支持体が、シート状又は板状に形成されたものである。図3に示すように、被撮影面80Sは、複数のパッチ83と、4つの図形86A~86Dと、中央領域88と、中央領域88の外縁を囲う枠89と、を含む。複数のパッチ83の色はそれぞれ異なっていてもよいし、同一の色のパッチ83が2以上あってもよい。
 複数のパッチ83は、発色部材90の色についてキャリブレーションを行うためのものである。4つの図形86A~86Dは、ユーザがキャリブレーション部材80及び発色部材90を撮影する場合に、画角に収めるべき範囲を示すためのものである。枠89は、撮影画像50の歪み、傾き及び大きさ等の形状を補正するためのものである。
 ところで、発色部材90の撮影デバイス(カメラ40を有する情報処理装置10)としては、例えばユーザが所有するスマートフォン等の任意のデバイスを適用可能とすることが望まれている。しかし、各種の撮影デバイスでは、それぞれ固有の色空間によってカラー画像が表現される。したがって、発色部材90を撮影して得られる画像上の色と、発色部材90に印加されたエネルギー量との対応関係も、撮影デバイスごとに異なるものとなる。そこで、本例示的実施形態に係る情報処理装置10は、撮影デバイスごとの色空間の差異を考慮したうえで、発色部材90を撮影して得られる画像に基づく発色部材90に印加されたエネルギー量の測定を行う。
 以下、情報処理装置10について詳細に説明する。まず、図4を参照して、第1例示的実施形態に係る情報処理装置10のハードウェア構成の一例を説明する。図4に示すように、情報処理装置10は、CPU(Central Processing Unit)21、不揮発性の記憶部22、及び一時記憶領域としてのメモリ23を含む。また、情報処理装置10は、液晶ディスプレイ等のディスプレイ24、入力部25、ネットワークI/F(Interface)26、及びカメラ40を含む。CPU21、記憶部22、メモリ23、ディスプレイ24、入力部25、ネットワークI/F26及びカメラ40は、システムバス及びコントロールバス等のバス28を介して相互に各種情報の授受が可能に接続されている。
 記憶部22は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)及びフラッシュメモリ等の記憶媒体によって実現される。記憶部22には、情報処理装置10における情報処理プログラム27と、デバイスプロファイル16と、特性データ18と、が記憶される。CPU21は、記憶部22から情報処理プログラム27を読み出してからメモリ23に展開し、展開した情報処理プログラム27を実行する。CPU21が本開示のプロセッサの一例である。
 入力部25は、ユーザの操作を受け付けるためのものであり、例えばタッチパネル、ボタン、キーボード及びマウス等である。ネットワークI/F26は、サーバ4及びその他外部装置(不図示)との有線又は無線通信を行う。カメラ40は、互いに異なる複数の分光感度を有するセンサを有し、CPU21の制御により、センサにより被写体を撮影して、その撮影画像50の画像信号を出力する。情報処理装置10としては、例えば、カメラ機能を有するスマートフォン、タブレット端末、ウェアラブル端末及びパーソナルコンピュータ等を適宜適用できる。
 図5に、デバイスプロファイル16の一例を示す。デバイスプロファイル16は、カメラ40により撮影された画像が表現されている第1色空間の色と、第1色空間とは異なる第2色空間の色と、の対応関係が定められたルックアップテーブル(LUT:Lookup Table)である。第1色空間は、例えば、R(赤)、G(緑)及びB(青)の3変数で色を表すRGB表色系である。第2色空間は、例えば、明度L*、赤から緑の位置a*、黄から青の位置b*の3変数で色を表すL*a*b*表色系である。
 カメラ40により撮影された画像には、カメラ40の分光感度及び再現可能な色域等の撮影デバイスの特性が反映されるため、第1色空間の色にも、撮影デバイスの特性が反映されている。デバイスプロファイル16は、撮影デバイスの種類ごとに固有の第1色空間の色を、撮影デバイスの種類に非依存の第2色空間の色に変換するためのものである。すなわち、第1色空間は撮影デバイスの種類に依存し、デバイスプロファイルは撮影デバイスの種類ごとに定められる。
 図6に、図5とは異なる機種の撮影デバイスに係るデバイスプロファイル16Pの一例を示す。図5及び図6に示すように、撮影デバイスの種類が異なれば、第1色空間では同じように表現される色が、第2色空間では異なって表現されることがある。例えば、図5の撮影デバイスにより撮影された画像上で(R、G、B)=(220、25、50)で表される色を、L*a*b*表色系(第2色空間)に変換すると、(L*、a*、b*)=(47、70、40)で表される。一方、図6の撮影デバイスにより撮影された画像上で同様に(R、G、B)=(220、25、50)で表される色を、L*a*b*表色系(第2色空間)に変換すると、(L*、a*、b*)=(55、72、34)と異なる色に表される。
 図7に、特性データ18の一例を示す。特性データ18は、第2色空間の色と、発色部材90に印加されたエネルギー量と、の関係が予め定められたデータである。図7においては、エネルギー量の一例として、圧力を示している。上述したように、第2色空間の色は撮影デバイスの種類に依らないため、特性データ18も、撮影デバイスの種類には非依存である。
 次に、図8を参照して、第1例示的実施形態に係る情報処理装置10の機能的な構成の一例について説明する。図8に示すように、情報処理装置10は、取得部30、補正部32、導出部34及び制御部36を含む。CPU21が情報処理プログラム27を実行することにより、CPU21が取得部30、補正部32、導出部34及び制御部36の各機能部として機能する。
 取得部30は、カメラ40によって発色部材90を撮影して得られる撮影画像50を取得する。上述したように、撮影画像50は、発色部材90の色についてキャリブレーションを行うためのパッチ83を含むキャリブレーション部材80を含んでいてもよい。ここで、撮影画像50は、第1色空間によって表現されている。また、取得部30は、記憶部22に記憶されているデバイスプロファイル16と、特性データ18と、を取得する。
 補正部32は、取得部30により取得された撮影画像50の歪み、傾き、大きさ、シェーディング及び色のうち少なくとも1つを補正する。これにより、ユーザが撮影を行う場合に撮影画像50に生じ得る、撮影が行われる環境における照明条件(例えば照度及び色温度)、撮影角度及び撮影距離等の影響が補正される。
 例えば、補正部32は、撮影画像50から枠89を抽出し、抽出した枠89の形状に基づいて、撮影画像50の歪み、傾き及び大きさを補正してもよい。枠89の抽出方法としては、画像におけるエッジ抽出処理等を用いた公知の方法を適宜適用できる。例えば、図3に示すように枠89が矩形である場合、補正部32は、撮影画像50から抽出した枠89の4つの角がそれぞれ90度となるよう、射影変換及びアフィン変換等を行って、撮影画像50の歪み、傾き及び大きさ等の形状を補正する。
 また例えば、補正部32は、撮影画像50について、シェーディング補正を行ってもよい。シェーディングとは、カメラ40の光学系に起因する周辺光量の低下、及び、撮影を行う照明環境における照度分布のばらつき等によって撮影画像50上に生じる、明度のばらつきである。シェーディング補正の方法としては、公知の方法を適宜適用できる。
 また例えば、補正部32は、撮影画像50に含まれるパッチ83を用いて、撮影画像50に含まれる発色部材90の色についてキャリブレーションを行ってもよい。発色部材90の色は、撮影が行われる環境における照明条件(例えば照度及び色温度)等の影響を受けるためである。キャリブレーションの方法としては、公知の方法を適宜適用できる。例えば、キャリブレーション部材80に含まれるパッチ83ごとに基準色を予め記憶部22に記憶しておき、補正部32は、撮影画像50に含まれるパッチ83ごとの色が、それぞれの基準色に一致するよう、撮影画像50の色を調整してもよい。
 なお、上述したように、キャリブレーション部材80には、同一の色のパッチ83が2以上含まれていてもよい。例えば、撮影が行われる照明環境、撮影角度及び撮影距離等の影響によって、本来は同一の色で形成された2以上のパッチ83が、撮影画像50上ではそれぞれ異なる色で発現されることがある。そこで例えば、補正部32は、同一の色で形成されたパッチ83の撮影画像50における平均の色が、基準色に一致するよう、撮影画像50の色を調整してもよい。また例えば、補正部32は、同一の色で形成されたパッチ83のうち、撮影画像50における色が最も基準色に近い色が、基準色に一致するよう、撮影画像50の色を調整してもよい。
 また、補正部32は、撮影画像50に含まれる複数のパッチ83のうち、一部のパッチ83を用いてキャリブレーションを行ってもよい。また例えば、補正部32は、キャリブレーションに用いるパッチ83を、発色部材90の種類に応じて異ならせてもよい。例えば、発色部材90の一例としてのプレスケールは、低圧用、中圧用及び高圧用等の、測定可能な圧力の範囲が異なる複数の品種が製造されている。また例えば、上述したように発色部材90としては、プレスケールの他にサーモスケール及びUVスケール等を用いることもできる。
 そこで、補正部32は、撮影画像50に含まれる複数のパッチ83のうち、撮影画像50に含まれる発色部材90の種類に応じて予め定められた一部のパッチ83を用いてキャリブレーションを行ってもよい。発色部材90の種類とキャリブレーションに用いるパッチ83との対応関係は、例えば予め記憶部22に記憶されていてもよい。撮影画像50に含まれる発色部材90の種類は、例えば、ユーザが入力部25を介して入力してもよいし(図9参照)、発色部材90の種類を示す識別コードを発色部材90に付しておき、補正部32が当該識別コードを読み取ることで特定してもよい。
 導出部34は、取得部30により取得されたデバイスプロファイル16を用いて、第1色空間で表現されている撮影画像50を、第2色空間で表現された画像に変換する。具体的には、導出部34は、補正部32により歪み、傾き、大きさ、シェーディング及び色のうち少なくとも1つが補正された後の第1色空間で表現されている撮影画像50を、第2色空間で表現された画像に変換する。以下、区別のため、撮影画像50が第1色空間で表現されている場合は「第1画像」といい、第2色空間で表現されている場合は「第2画像」という。
 また、導出部34は、取得部30により取得された特性データ18を用いて、第2画像に基づき、発色部材90に印加されたエネルギー量を導出する。なお、特性データ18は、発色部材90の種類(例えば低圧用、中圧用及び高圧用等)ごとに予め用意され、記憶部22に記憶されていてもよい。この場合、導出部34は、撮影画像50に含まれる発色部材90の種類に応じた特性データ18を用いて、第2画像に基づき、発色部材90に印加されたエネルギー量を導出してもよい。
 また、導出部34は、発色部材90に印加されたエネルギー量に関する各種指標を導出してもよい。各種指標とは、例えば、発色部材90の発色した領域(以下「発色領域」という)の画素ごとにエネルギー量を導出することで求められるエネルギー分布、並びに、発色領域のエネルギー量の最大値、最小値、平均値及び中央値等の代表値である。また例えば、発色領域の面積、発色領域のうちエネルギー量が予め定められた範囲に入っている面積の割合、発色領域のエネルギー量の均一性、並びに、発色領域の荷重(発色領域の面積とエネルギー量の平均値の積)等である。また例えば、発色部材90の発色度合(すなわちエネルギー量及びエネルギー分布)について基準が予め定められている場合の、当該基準との一致度合又は乖離度合である。
 制御部36は、撮影画像50(第1画像)、及び、導出部34により導出されたエネルギー量及び当該エネルギー量に関する各種指標をディスプレイ24に表示させる制御を行う。図9に、制御部36によってディスプレイ24に表示される画面Dの一例を示す。画面Dには、撮影画像50における発色部材90の部分の画像と、当該発色部材90から導出されたエネルギー量に関する各種指標と、が表示されている。
 画面Dに示すように、制御部36は、撮影画像50から発色部材90の部分を抽出して、ディスプレイ24に表示させる制御を行ってもよい。また、制御部36は、ディスプレイ24に表示させる撮影画像50として、補正部32により歪み、傾き、大きさ、シェーディング及び色のうち少なくとも1つが補正された後のものを用いてもよい。画面Dにおける「加圧面積」は上記の発色領域の面積を意味する。「平均圧力」は上記の発色領域のエネルギー量の平均値を意味する。「荷重」は加圧面積と平均圧力との積を意味する。「圧力値の均一性」は、発色領域の圧力値の均一性を意味する。
 また、制御部36は、撮影画像50に関する付帯情報の入力を受け付けてもよい。画面Dにおいては、撮影画像50に関する付帯情報の一例として、発色部材90の品種、圧力種、室温、湿度及び光源を表示し、それらの入力を受け付けるためのプルダウンメニュー92を表示している。圧力種とは、例えば、プレスケールに瞬間的に加えられた圧力の大きさを示す瞬間圧、及び、プレスケールに持続的に加えられた圧力の大きさの時間積分を示す持続圧等である。光源とは、例えば、JIS Z 8720:2012に規定される標準イルミナントD65並びに補助イルミナントD50、D55及びD75等である。また例えば、付帯情報として、キャリブレーション部材80、発色部材90、発色部材90にエネルギーを印加したユーザ及び発色部材90の撮影を行ったユーザ等の識別情報、エネルギー量についてのユーザによる評価結果、並びに、各種検査条件等を用いてもよい。
 また、制御部36は、補正部32による補正前の撮影画像50、補正後の撮影画像50、及び撮影画像50から抽出した発色部材90の部分の画像のうち少なくとも1つを、ネットワークI/F26を介してサーバ4に送信する。また、制御部36は、導出部34により導出されたエネルギー量及び当該エネルギー量に関する各種指標、並びに付帯情報を、サーバ4に送信する。サーバ4は、情報処理装置10(制御部36)から受信した情報を、対応付けてデータベース6に格納する。
 次に、図10を参照して、第1例示的実施形態に係る情報処理装置10の作用を説明する。情報処理装置10において、CPU21が情報処理プログラム27を実行することによって、図10に示す第1情報処理が実行される。第1情報処理は、例えば、ユーザにより入力部25を介して実行開始の指示があった場合に実行される。
 ステップS10で、取得部30は、カメラ40により撮影された撮影画像50と、記憶部22に記憶されているデバイスプロファイル16及び特性データ18と、を取得する。ここで、撮影画像50は、第1色空間によって表現されており、キャリブレーション部材80と発色部材90とを含む。ステップS12で、補正部32は、ステップS10で取得された撮影画像50の歪み、傾き、大きさ、シェーディング及び色のうち少なくとも1つを補正する。
 ステップS14で、導出部34は、ステップS10で取得されたデバイスプロファイル16を用いて、ステップS12で補正された第1色空間で表現されている撮影画像50を、第2色空間で表現された画像に変換する。ステップS16で、導出部34は、ステップS10で取得された特性データ18を用いて、ステップS14で第2色空間に変換された画像に基づき、発色部材90に印加されたエネルギー量を導出する。ステップS18で、制御部36は、ステップS12で補正された撮影画像50、及び、ステップS16で導出されたエネルギー量をディスプレイ24に表示させる制御を行い、本第1情報処理を終了する。
 以上説明したように、本開示の一態様に係る情報処理装置10は、少なくとも1つのプロセッサを備え、プロセッサは、印加されたエネルギー量に応じた濃度分布で発色する発色部材90を撮影して得られる撮影画像50(第1画像)を取得し、第1画像が表現されている第1色空間の色と、第1色空間とは異なる第2色空間の色と、の対応関係が定められたデバイスプロファイル16を取得し、第2色空間の色と、発色部材90に印加されたエネルギー量と、の関係が予め定められた特性データ18を取得し、デバイスプロファイル16を用いて、第1画像を第2色空間で表現された第2画像に変換し、特性データ18を用いて、第2画像に基づき、発色部材90に印加されたエネルギー量を導出する。
 すなわち、第1例示的実施形態に係る情報処理装置10は、撮影デバイスの種類に依存する第1色空間によって表現されている撮影画像50を、撮影デバイスの種類に非依存の第2色空間に変換したうえで、エネルギー量の導出を行う。したがって、任意の機種の撮影デバイスを用いる場合であっても、エネルギー量の適切な測定を支援できる。
 なお、上記第1例示的実施形態においては、デバイスプロファイル16が予め記憶部22に記憶されている形態について説明したが、これに限らない。上述したようなRGB表色系をL*a*b*表色系に変換するためのデバイスプロファイルは、撮影デバイスの製造メーカにより予め記憶部22に記憶されている場合もあるが、そうでない場合もある。この場合、CPU21は、デバイスプロファイル16を新たに生成してもよい。デバイスプロファイル16の生成方法としては、公知の方法を適宜適用できる。
 例えば、取得部30は、第2色空間の色が予め定められた(すなわち既知の)複数のパッチを含むカラーチャートを、撮影画像50(第1画像)の撮影デバイスによって撮影して得られるチャート画像を取得してもよい。導出部34は、取得部30により取得されたチャート画像に含まれるパッチごとに、チャート画像が表現されている第1色空間の色と、第2色空間の色(すなわち既知の色)と、を対応付けたデバイスプロファイル16を生成してもよい。なお、このカラーチャートとしては、汎用のものを用いてもよいし、キャリブレーション部材80を用いてもよい。
 また、上記第1例示的実施形態においては、デバイスプロファイル16が、第1色空間の色と第2色空間の色とが対応付けられたLUTである例(図5参照)を示したが、これに限らない。例えば、LUTの形態であるデバイスプロファイル16に代えて、第1色空間の色を第2色空間の色に変換する変換式を予め記憶部22に記憶しておいてもよい。この場合、導出部34が、当該変換式を用いて第1色空間の色を第2色空間の色に変換してもよい。
[第2例示的実施形態]
 図2に示すように、ユーザがカメラ40を用いて発色部材90を撮影する場合、撮影を行う環境における照明条件(例えば照度及び色温度)にばらつきが生じることがある。照明条件が異なると、発色部材90を撮影して得られる撮影画像50上の色と、発色部材90に印加されたエネルギー量との対応関係も異なるものとなる。そこで、本例示的実施形態に係る情報処理装置10は、照明条件の差異を考慮したうえで、発色部材90を撮影して得られる画像に基づく発色部材90に印加されたエネルギー量の導出を行う。以下、第2例示的実施形態に係る情報処理装置10について説明するが、第1例示的実施形態と重複する説明については一部省略する。
 図11を参照して、第2例示的実施形態に係る情報処理装置10のハードウェア構成の一例を説明する。図11に示すように、情報処理装置10は、CPU21、記憶部22、メモリ23、ディスプレイ24、入力部25、ネットワークI/F26、カメラ40及びセンサ42を含む。第2例示的実施形態に係る情報処理装置10は、センサ42を含む点、並びに、記憶部22に各種照明条件に対応する複数の特性データ19が記憶されており、デバイスプロファイル16は記憶されていない点で、第1例示的実施形態に係る情報処理装置10と相違する。
 センサ42は、カメラ40によって発色部材90を撮影する環境における、光スペクトルを測定するセンサである。このようなセンサ42としては、例えば、波長ごとの光の強度を測定可能な、公知の分光測定器及び色彩照度計等を適宜適用できる。
 図12に、各種照明条件に対応する複数の特性データ19の一例を示す。複数の特性データ19は、発色部材90を撮影する場合の照明条件ごとに、各照明条件下において撮影される画像上の色と、発色部材90に印加されたエネルギー量と、の関係が予め定められたデータである。図12においては、エネルギー量の一例として、圧力を示している。照明条件とは、例えば、発色部材90の撮影が行われる環境における照明の種類、照度、色温度及び照度分布等である。図12の例では、照明条件として、JIS Z 8720:2012に規定される標準イルミナントD65及び補助イルミナントD50、並びに照度(単位はルクス)を用いている。
 照明条件が異なれば、同様に発色している発色部材90を同様の撮影デバイスによって撮影する場合でも、撮影画像50上の色が異なって表現されることがある。例えば、光源D65と光源D50では、同じ赤い物体を見ても、光源D65の方が青みがかって見える。したがって、例えば、圧力30MPa分のエネルギー量が印加されて発色した発色部材90を同じように撮影しても、光源D50下で撮影した場合は(R、G、B)=(220、25、50)と表され、光源D65下で撮影した場合は(R、G、B)=(220、39、84)と異なる色で表されることがある。
 次に、図13を参照して、第2例示的実施形態に係る情報処理装置10の機能的な構成の一例について説明する。図13に示すように、情報処理装置10は、取得部30、補正部32、導出部34、制御部36及び特定部38を含む。CPU21が情報処理プログラム27を実行することにより、CPU21が取得部30、補正部32、導出部34、制御部36及び特定部38の各機能部として機能する。CPU21が本開示のプロセッサの一例である。
 特定部38は、ユーザがカメラ40によって発色部材90を撮影する場合の照明条件を特定する。例えば、特定部38は、センサ42を用いて、照明条件を特定してもよい。
 取得部30は、記憶部22から、特定部38により特定された照明条件に対応する特性データ19を取得する。具体的には、取得部30は、記憶部22に記憶されている照明条件ごとに予め定められた複数の特性データ19のうち、特定した照明条件に対応する特性データ19を取得する。
 また、取得部30は、特定部38により特定された照明条件下において、カメラ40によって発色部材90を撮影して得られる撮影画像50を取得する。すなわち、撮影画像50は、特定部38により特定された照明条件の影響を受けているものである。なお、撮影画像50は、発色部材90の色についてキャリブレーションを行うためのパッチ83を含むキャリブレーション部材80を含んでいてもよい。
 補正部32は、取得部30により取得された撮影画像50の歪み、傾き、大きさ、シェーディング及び色のうち少なくとも1つを補正する。例えば、補正部32は、撮影画像50に含まれるパッチ83を用いて、撮影画像50に含まれる発色部材90の色についてキャリブレーションを行ってもよい。発色部材90の色は、撮影デバイスの特性等の影響を受けるためである。
 導出部34は、取得部30により取得された特性データ19を用いて、撮影画像50に基づき、発色部材90に印加されたエネルギー量を導出する。なお、特性データ19は、発色部材90の種類(例えば低圧用、中圧用及び高圧用等)ごとに予め用意され、記憶部22に記憶されていてもよい。この場合、導出部34は、撮影画像50に含まれる発色部材90の種類に応じた特性データ19を用いて、撮影画像50に基づき、発色部材90に印加されたエネルギー量を導出してもよい。また、導出部34は、発色部材90に印加されたエネルギー量に関する各種指標を導出してもよい。
 制御部36は、撮影画像50、及び、導出部34により導出されたエネルギー量及び当該エネルギー量に関する各種指標をディスプレイ24に表示させる制御を行う(図9参照)。また、制御部36は、撮影画像50に関する付帯情報の入力を受け付けてもよい。また、制御部36は、補正部32による補正前の撮影画像50、補正後の撮影画像50、及び撮影画像50から抽出した発色部材90の部分の画像のうち少なくとも1つを、ネットワークI/F26を介してサーバ4に送信する。また、制御部36は、導出部34により導出されたエネルギー量及び当該エネルギー量に関する各種指標、並びに付帯情報を、サーバ4に送信する。サーバ4は、情報処理装置10(制御部36)から受信した情報を、対応付けてデータベース6に格納する。
 次に、図14を参照して、第2例示的実施形態に係る情報処理装置10の作用を説明する。情報処理装置10において、CPU21が情報処理プログラム27を実行することによって、図14に示す第2情報処理が実行される。第2情報処理は、例えば、ユーザにより入力部25を介して実行開始の指示があった場合に実行される。
 ステップS30で、特定部38は、ユーザがカメラ40によって発色部材90を撮影する場合の照明条件を特定する。ステップS32で、取得部30は、ステップS30で特定された照明条件下においてカメラ40により撮影された撮影画像50と、ステップS30で特定された照明条件に対応する特性データ19と、を取得する。ステップS34で、補正部32は、ステップS32で取得された撮影画像50の歪み、傾き、大きさ、シェーディング及び色のうち少なくとも1つを補正する。
 ステップS36で、導出部34は、ステップS32で取得された特性データ19を用いて、ステップS32で取得された撮影画像50に基づき、発色部材90に印加されたエネルギー量を導出する。ステップS38で、制御部36は、ステップS32で取得された撮影画像50、及び、ステップS36で導出されたエネルギー量をディスプレイ24に表示させる制御を行い、本第2情報処理を終了する。
 以上説明したように、本開示の一態様に係る情報処理装置10は、少なくとも1つのプロセッサを備え、プロセッサは、印加されたエネルギー量に応じた濃度分布で発色する発色部材90を撮影する場合の照明条件を特定し、照明条件下において撮影される画像上の色と、発色部材90に印加されたエネルギー量と、の関係が予め定められた特性データ19を取得し、照明条件下において発色部材90を撮影して得られる撮影画像50を取得し、特性データ19を用いて、撮影画像50に基づき、発色部材90に印加されたエネルギー量を導出する。
 すなわち、第2例示的実施形態に係る情報処理装置10は、撮影が行われる環境における照明条件ごとの特性データを用いて、エネルギー量の導出を行う。したがって、任意の照明条件下において撮影する場合であっても、エネルギー量の適切な測定を支援できる。
 なお、上記第2例示的実施形態においては、特定部38が特定した照明条件に対応する特性データ19が予め記憶部22に記憶されている形態について説明したが、これに限らない。ユーザが撮影を行う環境における照明条件は多岐にわたることが想定され、その全ての特性データ19を予め定めておくことが困難な場合がある。そこで例えば、特定部38がセンサ42によって特定した照明条件に対応する特性データ19が存在しない場合、取得部30は、特定された照明条件に類似する他の照明条件に対応する特性データ19である代替特性データを取得してもよい。
 例えば、記憶部22には、光源D50(色温度5003K)と、光源D65(色温度6504K)とのそれぞれに対応する特性データ19が予め記憶されているとする。撮影を行う環境における色温度がセンサ42によって5100Kと特定された場合、取得部30は、より色温度の近い光源D50(色温度5003K)に対応する特性データ19を、代替特性データとして取得してもよい。導出部34は、取得部30により取得された代替特性データを用いて、撮影画像50に基づき、発色部材90に印加されたエネルギー量を導出してもよい。
 また例えば、取得部30は、代替特性データに基づき、特定部38により特定された照明条件に対応する新たな特性データを生成してもよい。具体的には、取得部30は、記憶部22に予め記憶されている2以上の特性データ19を代替特性データとして取得し、当該2以上の代替特性データの加重平均によって、特定部38により特定された照明条件に対応する特性データを生成してもよい。
 例えば、記憶部22には、光源D50(色温度5003K)と、光源D65(色温度6504K)と、光源D75(色温度7504K)とのそれぞれに対応する特性データ19が予め記憶されているとする。撮影を行う環境における色温度がセンサ42によって5100Kと特定された場合、取得部30は、色温度の近い光源D50(色温度5003K)及び光源D65(色温度6504K)に対応する特性データ19を、代替特性データとして取得してもよい。また、取得部30は、光源D50(色温度5003K)及び光源D65(色温度6504K)に対応する2つの代替特性データの加重平均によって、色温度5100Kに対応する特性データを生成してもよい。導出部34は、取得部30により生成された特性データを用いて、撮影画像50に基づき、発色部材90に印加されたエネルギー量を導出してもよい。
 なお、上記第2例示的実施形態においては、特定部38が、情報処理装置10が備えるセンサ42を用いて、照明条件を特定する形態について説明したが、これに限らない。例えば、特定部38は、センサ42と同等の機能を有する外部のセンサを用いて照明条件を特定してもよく、この場合、情報処理装置10はセンサ42を備えなくてもよい。また例えば、特定部38は、図9の画面Dに示したように、ユーザによる照明条件の入力を受け付けてもよい。
 なお、上記第1例示的実施形態及び第2例示的実施形態を適宜組み合わせてもよい。例えば、第1例示的実施形態に係る特性データ18(第2色空間の色と、発色部材90に印加されたエネルギー量と、の関係が予め定められたデータ)を、照明条件ごとに定めてもよい。この場合、導出部34は、デバイスプロファイル16を用いて、第1色空間で表現されている撮影画像50を、第2色空間で表現された画像に変換した後、特定部38により特定された照明条件に対応する特性データ18を用いて、第2画像に基づき、発色部材90に印加されたエネルギー量を導出してもよい。
 また、上記各例示的実施形態においては、補正部32が撮影画像50のシェーディング補正を行い、導出部34がシェーディング補正後の撮影画像50に基づいてエネルギー量を導出する形態について説明したが、これに限らない。例えば、国際公開第2022/059342号には、画像の分光感度ごとの信号の比率を用いることで、シェーディング補正を行わずに、画像における濃度値の面分布のムラを解消することが開示されている。導出部34は、国際公開第2022/059342号に記載の技術を用いて、撮影画像50の分光感度ごとの信号の比率を導出し、当該比率に基づきエネルギー量を導出してもよい。この場合、補正部32は、撮影画像50のシェーディング補正を行わなくともよい。
 また、上記各例示的実施形態においては、撮影画像50の撮影デバイスとして、情報処理装置10が備えるカメラ40を用いる形態について説明したが、これに限らない。例えば、撮影デバイスとして、情報処理装置10の外部のデジタルカメラ及びスキャナ等を用いてもよい。この場合、情報処理装置10は、カメラ40を備えていなくてもよい。
 また、上記各例示的実施形態においては、撮影画像50の歪み、傾き、大きさ、シェーディング及び色のうち少なくとも1つを補正するために、発色部材90とともにキャリブレーション部材80を撮影する形態について説明したが、これに限らない。例えば、撮影デバイスとしてスキャナを用いる場合には、撮影画像50の歪み、傾き、大きさ、シェーディング及び色等のばらつきを抑制できる。この場合、キャリブレーション部材80については撮影せず、発色部材90のみを撮影するようにしてもよい。またこの場合、補正部32の機能を省略してもよい。
 また、上記各例示的実施形態において、例えば、取得部30、補正部32、導出部34、制御部36及び特定部38といった各種の処理を実行する処理部(processing unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(processor)を用いることができる。上記各種のプロセッサには、前述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせや、CPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。
 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアント及びサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System on Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。
 さらに、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)を用いることができる。
 また、上記例示的実施形態では、情報処理プログラム27が記憶部22に予め記憶(インストール)されている態様を説明したが、これに限定されない。情報処理プログラム27は、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の記録媒体に記録された形態で提供されてもよい。また、情報処理プログラム27は、ネットワークを介して外部装置からダウンロードされる形態としてもよい。さらに、本開示の技術は、情報処理プログラムに加えて、情報処理プログラムを非一時的に記憶する記憶媒体にもおよぶ。
 本開示の技術は、上記例示的実施形態例及び実施例を適宜組み合わせることも可能である。以上に示した記載内容及び図示内容は、本開示の技術に係る部分についての詳細な説明であり、本開示の技術の一例に過ぎない。例えば、上記の構成、機能、作用及び効果に関する説明は、本開示の技術に係る部分の構成、機能、作用及び効果の一例に関する説明である。よって、本開示の技術の主旨を逸脱しない範囲内において、以上に示した記載内容及び図示内容に対して、不要な部分を削除したり、新たな要素を追加したり、置き換えたりしてもよいことはいうまでもない。
 2022年6月3日に出願された日本国特許出願2022-091060号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (9)

  1.  少なくとも1つのプロセッサを備え、
     前記プロセッサは、
     印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影する場合の照明条件を特定し、
     前記照明条件下において撮影される画像上の色と、前記発色部材に印加されたエネルギー量と、の関係が予め定められた特性データを取得し、
     前記照明条件下において前記発色部材を撮影して得られる撮影画像を取得し、
     前記特性データを用いて、前記撮影画像に基づき、前記発色部材に印加されたエネルギー量を導出する
     情報処理装置。
  2.  照明条件ごとに複数の前記特性データが予め定められており、
     前記プロセッサは、
     複数の前記特性データのうち、特定した前記照明条件に対応する前記特性データを取得する
     請求項1に記載の情報処理装置。
  3.  前記プロセッサは、
     特定した前記照明条件に対応する前記特性データが存在しない場合、特定した前記照明条件に類似する他の前記照明条件に対応する前記特性データである代替特性データを取得し、
     前記代替特性データを用いて、前記撮影画像に基づき、前記発色部材に印加されたエネルギー量を導出する
     請求項2に記載の情報処理装置。
  4.  前記プロセッサは、
     特定した前記照明条件に対応する前記特性データが存在しない場合、特定した前記照明条件に類似する他の前記照明条件に対応する前記特性データである代替特性データを取得し、
     前記代替特性データに基づき、特定した前記照明条件に対応する前記特性データを生成し、
     生成した前記特性データを用いて、前記撮影画像に基づき、前記発色部材に印加されたエネルギー量を導出する
     請求項2に記載の情報処理装置。
  5.  前記プロセッサは、
     前記発色部材を撮影する環境における光スペクトルを測定するセンサを用いて、前記照明条件を特定する
     請求項1に記載の情報処理装置。
  6.  前記プロセッサは、
     前記照明条件の入力を受け付ける
     請求項1に記載の情報処理装置。
  7.  前記撮影画像は、前記発色部材の色についてキャリブレーションを行うためのパッチを含み、
     前記プロセッサは、
     前記撮影画像に含まれる前記パッチを用いて、前記撮影画像に含まれる前記発色部材の色についてキャリブレーションを行う
     請求項1に記載の情報処理装置。
  8.  印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影する場合の照明条件を特定し、
     前記照明条件下において撮影される画像上の色と、前記発色部材に印加されたエネルギー量と、の関係が予め定められた特性データを取得し、
     前記照明条件下において前記発色部材を撮影して得られる撮影画像を取得し、
     前記特性データを用いて、前記撮影画像に基づき、前記発色部材に印加されたエネルギー量を導出する
     処理を含む情報処理方法。
  9.  印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影する場合の照明条件を特定し、
     前記照明条件下において撮影される画像上の色と、前記発色部材に印加されたエネルギー量と、の関係が予め定められた特性データを取得し、
     前記照明条件下において前記発色部材を撮影して得られる撮影画像を取得し、
     前記特性データを用いて、前記撮影画像に基づき、前記発色部材に印加されたエネルギー量を導出する
     処理をコンピュータに実行させるための情報処理プログラム。
PCT/JP2023/019817 2022-06-03 2023-05-26 情報処理装置、情報処理方法及び情報処理プログラム WO2023234230A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-091060 2022-06-03
JP2022091060 2022-06-03

Publications (1)

Publication Number Publication Date
WO2023234230A1 true WO2023234230A1 (ja) 2023-12-07

Family

ID=89025031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019817 WO2023234230A1 (ja) 2022-06-03 2023-05-26 情報処理装置、情報処理方法及び情報処理プログラム

Country Status (1)

Country Link
WO (1) WO2023234230A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150283839A1 (en) * 2012-11-14 2015-10-08 Active Device Development Limited Colour-Forming Materials, Contact Recording Devices and Pressure Recording Devices
JP2015215291A (ja) * 2014-05-13 2015-12-03 イーシン インコーポレイテッド エネルギー測定システム、シートマーカ及び濃度測定システム
WO2018004005A1 (ja) * 2016-06-30 2018-01-04 株式会社プロスパークリエイティブ 色変換システム、色変換装置及び色変換方法
WO2021235364A1 (ja) * 2020-05-22 2021-11-25 富士フイルム株式会社 面圧解析装置、方法及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150283839A1 (en) * 2012-11-14 2015-10-08 Active Device Development Limited Colour-Forming Materials, Contact Recording Devices and Pressure Recording Devices
JP2015215291A (ja) * 2014-05-13 2015-12-03 イーシン インコーポレイテッド エネルギー測定システム、シートマーカ及び濃度測定システム
WO2018004005A1 (ja) * 2016-06-30 2018-01-04 株式会社プロスパークリエイティブ 色変換システム、色変換装置及び色変換方法
WO2021235364A1 (ja) * 2020-05-22 2021-11-25 富士フイルム株式会社 面圧解析装置、方法及びプログラム

Similar Documents

Publication Publication Date Title
Wang et al. An optimized tongue image color correction scheme
RU2369035C2 (ru) Способ и устройство для калибровки цветов в камере и/или в устройстве дисплея и для коррекции дефектов цвета цифровых изображений
Quintana et al. A novel method for color correction in epiluminescence microscopy
BR112012017253B1 (pt) Método e aparelho para determinar dados de colorimetria de uma amostra de cor a partir de uma imagem da mesma
Nixon et al. Accurate device-independent colorimetric measurements using smartphones
Wighton et al. Chromatic aberration correction: an enhancement to the calibration of low‐cost digital dermoscopes
Pointer et al. Practical camera characterization for colour measurement
WO2023234230A1 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
WO2023234229A1 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
US20230243702A1 (en) Image analysis method, image analysis device, program, and recording medium
JP2007271567A (ja) カラーフィルタの色差安定波長特定方法及びプログラム
US20230230345A1 (en) Image analysis method, image analysis device, program, and recording medium
Cheng et al. Assessing color reproducibility of whole-slide imaging scanners
TW202413897A (zh) 資訊處理裝置、資訊處理方法和電腦程式產品
TW202413898A (zh) 資訊處理裝置、資訊處理方法及電腦程式產品
WO2023238777A1 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
WO2023234035A1 (ja) 制御装置、エネルギー測定装置、制御方法、エネルギー測定方法、制御プログラム、及びエネルギー測定プログラム
WO2023238776A1 (ja) 情報処理システム、情報処理方法及び情報処理プログラム
WO2023238778A1 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
WO2023234248A1 (ja) キャリブレーション部材、キャリブレーション装置、キャリブレーション方法及びキャリブレーションプログラム
WO2023234247A1 (ja) キャリブレーション部材、キャリブレーション装置、キャリブレーション方法及びキャリブレーションプログラム
Lee et al. Design and implementation of color correction system for images captured by digital camera
WO2024038778A1 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
WO2023234148A1 (ja) キャリブレーション部材、エネルギー測定装置、エネルギー測定方法、及びエネルギー測定プログラム
JP7450960B2 (ja) 色度測定方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815987

Country of ref document: EP

Kind code of ref document: A1