WO2023233903A1 - Moving body control device and program - Google Patents

Moving body control device and program Download PDF

Info

Publication number
WO2023233903A1
WO2023233903A1 PCT/JP2023/017022 JP2023017022W WO2023233903A1 WO 2023233903 A1 WO2023233903 A1 WO 2023233903A1 JP 2023017022 W JP2023017022 W JP 2023017022W WO 2023233903 A1 WO2023233903 A1 WO 2023233903A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
braking
driving torque
slip
driving
Prior art date
Application number
PCT/JP2023/017022
Other languages
French (fr)
Japanese (ja)
Inventor
茂 神尾
海博 劉
恵介 河合
優 窪田
洋一 畔柳
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023233903A1 publication Critical patent/WO2023233903A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a control device and a program for a mobile object.
  • This vehicle includes a motor, disc brakes, and a steering device.
  • the motor causes the vehicle to travel by applying torque to the wheels according to the amount of depression of the accelerator pedal by the driver.
  • Disc brakes stop a vehicle by applying braking torque to the wheels based on the driver's depression of the brake pedal.
  • a steering device turns a vehicle by steering wheels based on a driver's operation of a steering wheel.
  • a power generation device such as a motor, a braking device such as a brake, and a steering device are required. . This is a factor that complicates the structure of the vehicle and reduces the robustness of the vehicle.
  • An object of the present disclosure is to provide a control device and program for a moving body that can simplify the structure and improve robustness.
  • a control device for a moving body includes a first braking/driving torque applying section that applies a first braking/driving torque to a right driving wheel, and a second braking/driving torque applying section that applies a second braking/driving torque to a left driving wheel.
  • This is a control device that controls a moving body that has a torque applying section and a right driven wheel and a left driven wheel that are formed of caster wheels.
  • the control device includes a torque control section that controls a first braking/driving torque applying section and a second braking/driving torque applying section.
  • the torque control unit controls the turning, front and back of the moving body by controlling the first braking/driving torque and the second braking/driving torque, or by controlling the rotation speed of the right drive wheel and the rotation speed of the left drive wheel, respectively. forward movement, and performs slip control.
  • the program according to one aspect of the present disclosure includes a first braking/driving torque applying unit that applies a first braking/driving torque to the right driving wheel, and a second braking/driving torque applying unit that applies a second braking/driving torque to the left driving wheel.
  • This is a program for controlling a moving body having a right driven wheel and a left driven wheel consisting of caster wheels.
  • This program controls the turning of the moving object by controlling the first braking/driving torque and the second braking/driving torque, or by controlling the rotation speed of the right drive wheel and the left drive wheel, respectively.
  • the CPU executes processing for speeding up and suppressing slippage.
  • the structure of the moving object can be simplified because it is possible to turn, move forward and backward, and suppress slipping of the moving object without using an electric power steering device or a braking device. At the same time, robustness can be ensured.
  • FIG. 1 is a diagram schematically showing a schematic configuration of a vehicle according to a first embodiment.
  • FIG. 2 is a diagram schematically showing the side structure of the driven wheel of the first embodiment.
  • FIG. 3 is a block diagram showing the electrical configuration of the vehicle of the first embodiment.
  • FIG. 4 is a diagram schematically showing the configuration of the travel operation section of the first embodiment.
  • FIG. 5 is a block diagram showing the configuration of the EVECU of the first embodiment.
  • FIG. 6 is a flowchart showing the procedure of processing executed by the speed calculation section of the first embodiment.
  • FIGS. 7A and 7B are diagrams showing an example of a map used by the speed difference calculating section of the first embodiment.
  • FIG. 8 is a flowchart showing the procedure of processing executed by the slip control section of the first embodiment.
  • FIG. 9 is a flowchart showing the procedure of processing executed by the torque distribution section of the first embodiment.
  • FIGS. 10A and 10B are graphs showing an example of the torque applied to the left drive wheel and the right drive wheel of the first embodiment.
  • FIG. 11 is a flowchart showing the procedure of processing executed by the torque distribution section of the second embodiment.
  • the vehicle 10 of the present embodiment includes driven wheels 21R, 21L, driving wheels 22R, 22L, in-wheel motors 30R, 30L, and an EV (Electric Vehicle) ECU (Electronic Control Unit) 40. It is equipped with The vehicle 10 is a so-called slow mobility vehicle whose running speed is limited to a predetermined speed or less.
  • the predetermined speed is set to "20 [km/h]", "50 [km/h]", etc.
  • This vehicle 10 is not provided with a braking device or a steering device, and braking and turning of the vehicle 10 are realized by torque control of the in-wheel motors 30R and 30L.
  • the vehicle 10 corresponds to a moving body.
  • the driven wheels 21R and 21L are provided at the rear right and rear left of the vehicle 10, respectively.
  • the driven wheels 21R and 21L are rotatable wheels, so-called caster wheels.
  • the driven wheels 21R, 21L have fulcrums 210R, 210L fixed to the vehicle body 11, respectively, and are supported so as to be rotatable 360 degrees around the fulcrums 210R, 210L. That is, as shown in FIG. 2, if the axes passing through the centers of the fulcrums 210R and 210L and parallel to the vertical direction of the vehicle 10 are m10R and m10L, then the driven wheels 21R and 21L will move 360 degrees around the axes m10R and m10L. Each is rotatably supported.
  • the driven wheels 21R and 21L rotate in the circumferential direction C around the axes m11R and m11L as the vehicle 10 travels.
  • the driven wheel 21R is also referred to as the "right driven wheel 21R”
  • the driven wheel 21L is also referred to as the "left driven wheel 21L”.
  • drive wheels 22R and 22L are provided at the front right and front left of the vehicle 10, respectively. Driving torque and braking torque are applied to the driving wheels 22R, 22L from in-wheel motors 30R, 30L.
  • the drive wheel 22R will also be referred to as the "right drive wheel 22R”
  • the drive wheel 22L will also be referred to as the "left drive wheel 22L”.
  • the driving torque and the braking torque are also collectively referred to as "braking/driving torque.”
  • the in-wheel motor 30R corresponds to a first braking/driving torque applying section
  • the braking/driving torque applied from the in-wheel motor 30R to the right drive wheel 22R corresponds to the first braking/driving torque.
  • the in-wheel motor 30L corresponds to a second braking/driving torque applying section
  • the braking/driving torque applied from the in-wheel motor 30L to the left drive wheel 22L corresponds to the second braking/driving torque.
  • the in-wheel motors 30R and 30L are built into the drive wheels 22R and 22L, respectively.
  • the in-wheel motors 30R, 30L include motor generators 31R, 31L, inverter devices 32R, 32L, MG (Motor Generator) ECUs 33R, 33L, and rotation sensors 34R, 34L, respectively. ing.
  • Inverter device 32R converts DC power supplied from a battery mounted on vehicle 10 into three-phase AC power, and supplies the converted three-phase AC power to motor generator 31R.
  • Motor generator 31R operates as an electric motor when vehicle 10 accelerates. When operating as an electric motor, motor generator 31R is driven based on three-phase AC power supplied from inverter device 32R. The drive torque of motor generator 31R is transmitted to right drive wheel 22R, thereby rotating right drive wheel 22R and accelerating vehicle 10.
  • the motor generator 31R shown in FIG. 3 operates as a generator when the vehicle 10 is braked. When operating as a generator, the motor generator 31R generates electricity through regenerative operation. Braking torque is applied to the right drive wheel 22R by the regenerative operation of the motor generator 31R. Three-phase AC power generated by motor generator 31R is converted to DC power by inverter device 32R, and the battery of vehicle 10 is charged.
  • Rotation sensor 34R detects the rotation speed of the output shaft of motor generator 31R, and outputs a signal corresponding to the detected rotation speed to MGECU 33R.
  • the MGECU 33R is mainly composed of a microcomputer including a CPU, memory, and the like. MGECU 33R controls motor generator 31R by executing a program stored in advance in its memory.
  • MGECU 33R acquires information on the rotational speed of motor generator 31R based on the output signal of rotation sensor 34R. Furthermore, the MGECU 33R calculates the rotational speed of the right drive wheel 22R based on the rotational speed of the motor generator 31R using an arithmetic expression, a map, or the like. Furthermore, the MGECU 33R calculates the right drive wheel speed VR from the rotational speed of the right drive wheel 22R based on a predetermined calculation formula.
  • the right drive wheel speed VR is the speed of the right drive wheel 22R in the traveling direction of the vehicle 10.
  • the MGECU 33R is communicably connected to the EVECU 40 via an in-vehicle network such as a CAN installed in the vehicle 10.
  • the EVECU 40 sets a first target braking/driving torque TR*, which is a target value of the braking/driving torque of the right drive wheel 22R, and transmits the set first target braking/driving torque TR* to the MGECU 33R.
  • the MGECU 33R monitors the rotational speed of the motor generator 31R and controls the motor generator 31R so that the actual torque output from the motor generator 31R becomes the first target braking/driving torque TR*.
  • the first target braking/driving torque TR* is set to a positive value when accelerating the vehicle 10 in the forward direction D1 shown in FIG.
  • the first target braking/driving torque TR* is set to a negative value when decelerating the vehicle 10, that is, when causing the motor generator 31R to perform a regenerative operation.
  • the MGECU 33R transmits various information that can be acquired by the MGECU 33R, such as the right drive wheel speed VR, to the EVECU 40 in response to a request from the EVECU 40.
  • the motor generator 31L, inverter device 32L, MGECU 33L, and rotation sensor 34L of the in-wheel motor 30L operate similarly to each component of the in-wheel motor 30R.
  • the MGECU 33L monitors the rotational speed of the motor generator 31L and controls the motor generator 31L so that the actual torque output from the motor generator 31L becomes the second target braking/driving torque TL*.
  • the second target braking/driving torque TL* is a target value of the braking/driving torque of the left drive wheel 22L, which is set by the EVECU 40. Furthermore, the MGECU 33L transmits various information that can be obtained by the MGECU 33L, such as the left drive wheel speed VL, to the EVECU 40 in response to a request from the EVECU 40.
  • the vehicle 10 further includes a shift operation section 50 and a travel operation section 60 as operation sections for the driver to operate the vehicle 10.
  • the shift operation section 50 it is possible to select, for example, a P (parking) range, an R (reverse) range, or a D (drive) range.
  • the P range is selected when the vehicle 10 is stopped.
  • the R range is selected when the vehicle 10 is driven in the backward direction D2 shown in FIG.
  • the D range is selected when the vehicle 10 is driven in the forward direction D1 shown in FIG.
  • Shift operation unit 50 outputs a signal indicating the selection state of P range, R range, and D range to EVECU 40.
  • the driving operation unit 60 shown in FIG. 4 is configured to accelerate, decelerate, and turn the vehicle 10 to the right when the R range or the D range is selected in the shift operation unit 50, that is, when moving the vehicle 10 forward or backward. , and the part operated when making a left turn.
  • a joystick 61 is provided in the travel operation section 60.
  • the joystick 61 can be operated from the neutral position shown in FIG. 4 in a forward direction J1, a backward direction J2, a rightward direction J3, a leftward direction J4, and directions intermediate therebetween.
  • the driver operates the joystick 61 from the neutral position in the forward direction J1, backward direction J2, rightward direction J3, and leftward direction J4, the vehicle 10 can be accelerated, decelerated, turned right, and turned left.
  • the operation amount S1 shown in FIG. 4 indicates the operation amount of the joystick 61 from the neutral position to the forward direction J1.
  • the larger the operation amount S2 of the joystick 61 in the backward direction J2 from the neutral position the larger the deceleration of the vehicle 10 becomes.
  • the travel operation section 60 outputs a signal indicating the operation state of the joystick 61 to the EVECU 40.
  • the operation amount S1 of the joystick 61 from the neutral position to the forward direction J1 will be referred to as the "accelerator operation amount S1 of the travel operation section 60," and the operation amount S2 of the joystick 61 toward the rear direction J2 will be referred to as the “brake operation amount of the travel operation section 60.” S2".
  • the operation amounts S3 and S4 in the right direction J3 and the left direction J4 are referred to as "the left and right direction operation amount S34 of the travel operation unit 60.”
  • the left-right direction operation amount S34 represents the operation amount S3 in the right direction J3 as a positive value, and represents the operation amount S4 in the left direction J4 as a negative value.
  • the accelerator operation amount S1 and the brake operation amount S2 of the travel operation unit 60 correspond to the first operation amount performed on the vehicle 10 in order to accelerate or decelerate the vehicle 10. Further, the left-right direction operation amount S34 of the travel operation unit 60 corresponds to a second operation amount performed on the vehicle 10 in order to turn the vehicle 10.
  • the vehicle 10 further includes a yaw rate sensor 70 and an acceleration sensor 71.
  • the yaw rate sensor 70 detects the actual yaw rate Y, which is the yaw rate actually occurring in the vehicle body 11.
  • the actual yaw rate Y is the rotational speed around the vertical axis passing through the center of gravity Gc of the vehicle body 11.
  • the actual yaw rate Y of this embodiment represents the rotation speed of the vehicle body 11 in the right direction D3 as a positive value, and represents the rotation speed of the vehicle body 11 in the left direction D4 as a negative value.
  • the acceleration sensor 71 detects the acceleration of the vehicle body 11.
  • the acceleration sensor 71 is a so-called 6-axis acceleration sensor that can detect acceleration in the pitch direction, low direction, and yaw direction in addition to acceleration in the longitudinal direction, lateral direction, and vertical direction of the vehicle body 11. It is.
  • Each sensor 70, 71 outputs a signal corresponding to the detected physical quantity to the EVECU 40.
  • the EVECU 40 is mainly composed of a microcomputer including a CPU, memory, and the like. In this embodiment, the EVECU 40 corresponds to a control device and a computer. The EVECU 40 centrally controls the running of the vehicle 10 by executing a program stored in advance in its memory.
  • the EVECU 40 receives output signals from the shift operation section 50, the travel operation section 60, the yaw rate sensor 70, and the acceleration sensor 71.
  • the EVECU 40 acquires information on the operation state of the shift operation section 50 and the operation amounts S1, S2, and S34 of the drive operation section 60 based on the output signals of the shift operation section 50 and the travel operation section 60, respectively.
  • the EVECU 40 acquires information such as the actual yaw rate Y and acceleration A of the vehicle body 11 based on the respective output signals of the yaw rate sensor 70 and the acceleration sensor 71.
  • the EVECU 40 acquires information on the right drive wheel speed VR and the left drive wheel speed VL from the MGECUs 33R and 33L of the in-wheel motors 30R and 30L, respectively.
  • the EVECU 40 sets the first target braking/driving torque TR* and the second target braking/driving torque TL* based on the acquired information. For example, when the driving operation unit 60 is operated in the forward direction J1 while the D range is selected in the shift operation unit 50, the EVECU 40 controls the first target braking/driving torque TR* and the second target braking/driving torque TL*. are set to the same positive value and transmitted to the in-wheel motors 30R and 30L, respectively. As a result, the same positive torque is applied from the in-wheel motors 30R, 30L to the drive wheels 22R, 22L, so that the vehicle 10 accelerates in the forward direction D1 shown in FIG. On the other hand, when the traveling operation unit 60 is operated in the backward direction J2, regenerative torque is applied from the in-wheel motors 30R, 30L to the drive wheels 22R, 22L, and the vehicle 10 is decelerated.
  • the EVECU 40 controls the first target braking/driving torque TR* and the second target braking/driving torque TL*. and cause a deviation. Specifically, the EVECU 40 sets the second target braking/driving torque TL* to be larger than the first target braking/driving torque TR*, and transmits them to the in-wheel motors 30R and 30L, respectively. As a result, the torque applied from the in-wheel motor 30L to the left drive wheel 22L is greater than the torque applied from the in-wheel motor 30R to the right drive wheel 22R, so that the vehicle 10 is Turn in direction D3.
  • the EVECU 40 applies a torque applied from the in-wheel motor 30R to the right drive wheel 22R, rather than a torque applied from the in-wheel motor 30L to the left drive wheel 22L.
  • the vehicle 10 is caused to turn in the left direction D4 shown in FIG.
  • the EVECU 40 has a basic braking/driving torque setting section 41, a speed calculation section 42, and a torque deviation setting section as functional configurations realized by executing a program stored in its memory. section 43 and a torque control section 44.
  • the basic braking/driving torque setting section 41 includes a braking/driving torque calculating section 410 , a speed upper limit calculating section 411 , and a selecting section 412 .
  • the braking/driving torque calculating section 410 calculates a first basic braking/driving torque based on the operating state of the shift operating section 50, the operating amounts S1, S2, S34 of the travel operating section 60, and the vehicle speed Vb calculated by the speed calculating section 42.
  • Set Ta The vehicle speed Vb is an estimated value of the speed of the vehicle body 11 in the traveling direction.
  • the first basic braking/driving torque Ta is a reference value of the braking/driving torque to be applied to the right drive wheel 22R and the left drive wheel 22L, respectively, in order to accelerate or decelerate the vehicle 10.
  • the braking/driving torque calculation section 410 calculates the accelerator operation which is the operation amount of the travel operation section 60.
  • a first basic braking/driving torque Ta is calculated from the amount S1 and the vehicle speed Vb based on a map, a calculation formula, etc. In this case, the first basic braking/driving torque Ta is set to a positive value.
  • the braking/driving torque calculation section 410 calculates the amount of brake operation that is the operation amount of the travel operation section 60.
  • a first basic braking/driving torque Ta is calculated from the amount S2 and the vehicle speed Vb based on a map, a calculation formula, etc. In this case, the first basic braking/driving torque Ta is set to a negative value.
  • the braking/driving torque calculation section 410 similarly calculates the first basic braking/driving torque based on the accelerator operation amount S1 and the brake operation amount S2 of the travel operation section 60. Set Ta.
  • the first basic braking/driving torque Ta is set to a negative value
  • the first basic braking/driving torque Ta is set to a negative value.
  • the first basic braking/driving torque Ta is set to a positive value.
  • the speed upper limit calculation section 411 sets the second basic braking/driving torque Tb based on the vehicle speed Vb calculated by the speed calculation section 42 and the left/right direction operation amount S34 of the travel operation section 60.
  • the second basic braking/driving torque Tb is the upper limit value of the braking/driving torque to be applied to the right drive wheel 22R and the left drive wheel 22L, respectively, in order to limit the traveling speed of the vehicle body 11 to a preset upper limit speed or less.
  • the speed upper limit calculating section 411 calculates the upper limit speed Vmax, which is the upper limit value of the traveling speed of the vehicle body 11, from the left and right direction operation amount S34 of the traveling operation section 60 from a map.
  • the upper limit speed Vmax is set to become smaller as the absolute value of the left-right operation amount S34 of the travel operation unit 60 becomes larger.
  • the speed upper limit calculation unit 411 sets the second basic braking/driving torque Tb by feedback control based on the deviation between the current vehicle speed Vb and the upper limit speed Vmax.
  • the first basic braking/driving torque Ta and the second basic braking/driving torque Tb calculated by the braking/driving torque calculation unit 410 and the speed upper limit calculation unit 411 are input to the selection unit 412.
  • the selection unit 412 sets the smaller of the first basic braking/driving torque Ta and the second basic braking/driving torque Tb as the third basic braking/driving torque Tc.
  • the third basic braking/driving torque Tc set by the selection section 412 is input to the torque control section 44.
  • the third basic braking/driving torque Tc is a target value of the braking/driving torque to be applied to the right drive wheel 22R and the left drive wheel 22L, respectively, in order to accelerate or decelerate the vehicle 10.
  • the speed calculation unit 42 acquires information on the right drive wheel speed VR from the in-wheel motor 30R, and also acquires information on the left drive wheel speed VL from the in-wheel motor 30L. Further, the speed calculation unit 42 acquires information on the acceleration A of the vehicle body 11 in the traveling direction based on the output signal of the acceleration sensor 71.
  • the speed calculation unit 42 estimates a vehicle speed Vb, which is the speed of the vehicle body 11, based on the right drive wheel speed VR, the left drive wheel speed VL, and the acceleration A of the vehicle body 11.
  • the speed calculation unit 42 calculates the vehicle speed Vb by executing the process shown in FIG. Note that the speed calculation unit 42 repeatedly executes the process shown in FIG. 6 at a predetermined cycle while the vehicle 10 is started. As shown in FIG. 6, the speed calculation unit 42 first calculates the vehicle speed VG from the acceleration A of the vehicle body 11 based on the following equation f1 as processing in step S10.
  • VG VG n-1 + ⁇ A (f1)
  • VG n-1 is the previous estimated value of the vehicle speed calculated by formula f1.
  • the speed calculation unit 42 determines whether the first basic braking/driving torque Ta satisfies "Ta>0" as processing in step S11 following step S10. If the first basic braking/driving torque Ta satisfies "Ta>0", the speed calculation unit 42 makes an affirmative determination in the process of step S11. In this case, the speed calculating unit 42 determines that the vehicle 10 is in an accelerating state, and calculates the final estimated value Vb of the vehicle body speed using the following equation f2 as the process of step S12.
  • Vb MIN(VL, VR, VG) (f2)
  • Vb MIN(VL, VR, VG) (f2)
  • the final estimated value Vb of the vehicle speed is set to either the left driving wheel speed VL or the calculated vehicle speed VG.
  • the final estimated value Vb of the vehicle speed is set to either the right driving wheel speed VR or the calculated value VG of the vehicle speed.
  • both the right drive wheel 22R and the left drive wheel 22L slip both the right drive wheel speed VR and the left drive wheel speed VL increase. In this case, the final estimated value Vb of the vehicle speed is set to the calculated value VG of the vehicle speed.
  • the speed calculation unit 42 makes a negative determination in the process of step S11. In this case, the speed calculation unit 42 determines that the vehicle 10 is decelerating, and calculates the final estimated value Vb of the vehicle body speed using the following equation f3 as the process of step S13.
  • Vb MAX(VL, VR, VG) (f3)
  • the speed calculation unit 42 eliminates the integration error of the calculated value VG of the vehicle body speed by using the right drive wheel speed VR and the left drive wheel speed VL, which have high estimation accuracy.
  • the speed calculation unit 42 performs the process of step S14 such that the final estimated value Vb of the vehicle speed is the right drive wheel speed VR and the left drive wheel speed VR. It is determined whether the speed matches any of the speeds VL or not. If the final vehicle speed estimate Vb matches the right drive wheel speed VR, the speed calculation unit 42 makes an affirmative determination in step S14, and performs the following steps in step S15.
  • the calculated value VG of the vehicle body speed is set as the right drive wheel speed VR.
  • the speed calculation unit 42 sets the calculated value VG of the vehicle speed to the left driving wheel speed VL.
  • step S14 the speed calculation unit 42 performs the process of step S14 when the final estimated value Vb of the vehicle speed does not match either the right drive wheel speed VR or the left drive wheel speed VL. A negative determination is made in step 2, and the processing shown in FIG. 6 is ended.
  • the vehicle speed Vb calculated by the speed calculation section 42 is input to the basic braking/driving torque setting section 41 and the torque deviation setting section 43.
  • the torque deviation setting section 43 includes a speed difference calculation section 430, a subtraction section 431, an addition section 432, a first feedback control section 433, and a second feedback control section 434.
  • the speed difference calculation unit 430 calculates the target speed difference ⁇ V* based on the vehicle speed Vb, the actual yaw rate Y of the vehicle body 11 calculated based on the output signal of the yaw rate sensor 70, and the left-right direction operation amount S34 of the travel operation unit 60.
  • the target speed difference ⁇ V* is a target value of the speed difference that should be generated between the right drive wheel speed VR and the left drive wheel speed VL in order to cause the vehicle 10 to turn.
  • the speed difference calculation unit 430 sets the basic speed difference ⁇ Vb from the vehicle speed Vb and the left-right direction operation amount S34 of the travel operation unit 60 using a map shown in FIG. 7(A) or the like.
  • the basic speed difference ⁇ Vb is a reference value for the target speed difference ⁇ V*.
  • the speed difference calculation unit 430 sets the target yaw rate Y* from the vehicle speed Vb and the left-right operation amount S34 of the travel operation unit 60 using a map shown in FIG. 7(B) or the like.
  • Target yaw rate Y* is a target value of the yaw rate of the vehicle body 11.
  • the speed difference calculation unit 430 calculates a speed difference correction value ⁇ Vc based on a calculation formula etc.
  • a target speed difference ⁇ V* is calculated by correcting the speed difference ⁇ Vb. Note that the speed difference calculation unit 430 uses the target speed difference ⁇ V* as is when the shift operation unit 50 is set to the D range, but uses the target speed difference ⁇ V* as is when the shift operation unit 50 is set to the R range. The positive and negative signs of the speed difference ⁇ V* are set to be reversed.
  • the target speed difference ⁇ V* set by the speed difference calculating section 430 is input to the subtracting section 431 and the adding section 432.
  • the subtraction unit 431 obtains the target right drive wheel speed VR* by subtracting the target speed difference ⁇ V* from the vehicle speed Vb calculated by the speed calculation unit 42.
  • the adding unit 432 adds the target speed difference ⁇ V* to the vehicle speed Vb calculated by the speed calculating unit 42 to obtain the target left driving wheel speed VL*.
  • the first feedback control unit 433 Based on the target right drive wheel speed VR* calculated by the subtraction unit 431, the first feedback control unit 433 performs feedback control based on the deviation between the actual right drive wheel speed VR and the target right drive wheel speed VR*. Calculate driving wheel correction torque ⁇ TcR.
  • the right driving wheel correction torque ⁇ TcR calculated by the first feedback control section 433 is input to the torque control section 44 .
  • the second feedback control unit 434 Based on the target left drive wheel speed VL* calculated by the addition unit 432, the second feedback control unit 434 performs feedback control on the left drive wheel based on the deviation between the actual left drive wheel speed VL and the target left drive wheel speed VL*. Calculate driving wheel correction torque ⁇ TcL.
  • the left driving wheel correction torque ⁇ TcL calculated by the second feedback control section 434 is input to the torque control section 44.
  • the torque control section 44 includes a torque distribution section 440, a first slip control section 441, and a second slip control section 442.
  • the torque distribution unit 440 generates a third basic braking/driving torque Tc calculated by the selection unit 412, a right driving wheel correction torque ⁇ TcR calculated by the first feedback control unit 433, and a left driving wheel correction torque ⁇ TcR calculated by the second feedback control unit 434.
  • a first target braking/driving torque TR* and a second target braking/driving torque TL* are calculated from the drive wheel correction torque ⁇ TcL.
  • the first target braking/driving torque TR* and the second target braking/driving torque TL* calculated by the torque distribution section 440 are input to the first slip control section 441 and the second slip control section 442, respectively.
  • the corrected torques ⁇ TcR and ⁇ TcL correspond to the torque deviation.
  • the first slip control unit 441 determines whether or not the situation is such that the slip of the right drive wheel 22R should be suppressed, and if it is determined that the situation is not such that the slip of the right drive wheel 22R should be suppressed, The first target braking/driving torque TR* output from the distribution unit 440 is output as is to the in-wheel motor 30R. On the other hand, when the first slip control unit 441 determines that the situation is such that the slip of the right drive wheel 22R should be suppressed, the first slip control unit 441 limits the absolute value of the first target braking/driving torque TR* to below the first slip torque TsR. The first slip suppression control is executed.
  • the first slip torque TsR is a braking/driving torque that should be applied to the right drive wheel 22R in order to make the slip rate of the right drive wheel 22R a predetermined target slip rate.
  • the second slip control unit 442 performs the same control on the left drive wheel 22L as the first slip control unit 441 performs on the right drive wheel 22R. That is, when the second slip control unit 442 determines that the situation is such that the slip of the left drive wheel 22L should be suppressed, the second slip control unit 442 limits the absolute value of the second target braking/driving torque TL* to the second slip torque TsL or less. Execute second slip suppression control.
  • first slip control unit 441 and the second slip control unit 442 share a slip control flag Xslip that indicates whether slip suppression control is being executed.
  • the first slip control unit 441 and the second slip control unit 442 set the slip control flag Xslip to “1” when at least one of the first slip suppression control and the second slip suppression control is being executed. Further, the first slip control section 441 and the second slip control section 442 set the slip control flag Xslip to "0" when both the first slip suppression control and the second slip suppression control are not executed.
  • the first slip control unit 441 executes the process shown in FIG. Note that the first slip control unit 441 repeatedly executes the process shown in FIG. 8 at a predetermined cycle while the vehicle 10 is running. As shown in FIG. 8, the first slip control unit 441 calculates the deviation
  • the predetermined value Vth10 is a determination value for determining whether the situation is such that the slip of the right drive wheel 22R should be suppressed, and is set to, for example, "3 [km/h]".
  • the first slip control unit 441 makes an affirmative determination in the process of step S20. In this case, the first slip control unit 441 determines that the situation is such that the slip of the right drive wheel 22R should be suppressed.
  • the first slip control unit 441 If the first slip control unit 441 makes a positive determination in the process of step S20, it executes the first slip suppression control as the process of the subsequent step S21. That is, the first slip control unit 441 limits the absolute value of the first target braking/driving torque TR* to be equal to or less than the first slip torque TsR. The first slip control unit 441 sets the slip control flag Xslip to "1" as processing in step S22 following step S21.
  • the first slip control unit 441 determines whether the first basic braking/driving torque Ta satisfies "Ta>0" as a process in step S23 following step S22. If the first basic braking/driving torque Ta satisfies "Ta>0", the first slip control unit 441 makes an affirmative determination in the process of step S23. In this case, the first slip control unit 441 determines that the vehicle 10 is in an accelerating state, and calculates a target slip speed Vcmd from the vehicle body speed Vb based on the following formula f4 as processing in step S24. .
  • Vcmd (1+ ⁇ ) ⁇ Vb (f4)
  • the predetermined value ⁇ is set in advance based on the target slip ratio of the right drive wheel 22R. For example, when the target slip rate when the right drive wheel 22R slips is set to 3%, the predetermined value ⁇ is set to "0.03".
  • the first slip control unit 441 makes a negative determination in the process of step S23. In this case, the first slip control unit 441 determines that the vehicle 10 is decelerating, and calculates the target slip speed Vcmd based on the following equation f5 as the process of step S25.
  • the first slip control unit 441 calculates the first slip torque TsR as a process of subsequent step S26. Specifically, the first slip control unit 441 controls the first slip torque TsR by PI feedback control based on the deviation between the target slip speed Vcmd calculated in the process of step S23 or the process of step S24 and the right drive wheel speed VR. Calculate. That is, the first slip control unit 441 calculates the speed deviation eV from the target slip speed Vcmd and the right drive wheel speed VR based on the following equation f6.
  • the first slip control unit 441 calculates the first slip torque TsR from the calculated speed deviation eV based on the following equation f7.
  • TsR Kp ⁇ eV+Ki ⁇ eV (f7)
  • Kp and Ki are predetermined proportional gains and integral gains that are set in advance.
  • the first slip control unit 441 limits the first slip torque TsR to a range from a lower limit value Tmin to an upper limit value Tmax based on the following equation f8.
  • the lower limit value Tmin and the upper limit value Tmax are set in advance.
  • the lower limit Tmin for example, the maximum braking torque that can be output from the motor generator 31R of the in-wheel motor 30R is used.
  • the upper limit Tmax for example, the maximum drive torque that can be output from the motor generator 31R of the in-wheel motor 30R is used.
  • the first slip control unit 441 determines whether the first basic braking/driving torque Ta is greater than or equal to the first slip torque TsR as processing in step S27 following step S26. If the first basic braking/driving torque Ta is greater than or equal to the first slip torque TsR, the first slip control unit 441 makes an affirmative determination in the process of step S27, and adjusts the right drive wheel speed VR as the process of step S28. The deviation
  • the predetermined value Vth11 is a determination value for determining whether the slip state of the right drive wheel 22R has converged, and is set to, for example, "0 [km/h]". Note that the predetermined value Vth11 and the predetermined value Vth10 used in the process of step S20 may be the same value.
  • the predetermined time is set to "1 [sec]", for example.
  • the first slip control unit 441 makes a negative determination in the process of step S28, it determines that the slip state of the right drive wheel 22R has not converged, and temporarily ends the process shown in FIG. do. In this case, the first slip suppression control is continued. By continuing the first slip suppression control, when the deviation
  • the first slip suppression control is further continued, and the state in which the deviation
  • the first slip control unit 441 maintains the slip control flag Xslip at “1” when the second slip control unit 442 is executing the second slip suppression control.
  • the first slip control section 441 maintains the slip control flag Xslip at "0" when the second slip control section 442 is not executing the second slip suppression control.
  • the slip control flag Xslip is set to "1" when either the first slip suppression control or the second slip suppression control is executed, and when both of them are not executed It will be set to "0".
  • the first slip control unit 441 continuously executes the first slip suppression control for a period after starting the first slip suppression control in the process of step S21 until ending the first slip suppression control in the process of step S30. do. Even if the slip state of the right drive wheel 22R has not converged, the first slip control unit 441 controls the first basic braking/driving torque Ta if a negative determination is made in the process of step S27. If the torque becomes less than the first slip torque TsR, the first slip suppression control is finished as the process in step S30, and then the process in step S31 is executed.
  • the first slip control section 441 ends the first slip suppression control.
  • the first slip control unit 441 determines whether the first basic braking/driving torque Ta satisfies "Ta>0" as the process of step S32. If the first basic braking/driving torque Ta satisfies "Ta>0", the first slip control unit 441 makes an affirmative determination in the process of step S32. In this case, the first slip control unit 441 determines that the vehicle 10 is in an accelerating state, and sets the first slip torque TsR to the upper limit value Tmax as processing in step S33.
  • the first slip control unit 441 makes a negative determination in the process of step S32. In this case, the first slip control unit 441 determines that the vehicle 10 is decelerating, and sets the first slip torque TsR to the lower limit value Tmin in step S34. The process in step S33 and the process in step S34 are performed to avoid using the first slip torque TsR for calculating the first target braking/driving torque TR* when the first slip suppression control is not being executed. . After the first slip control unit 441 executes the process of step S33 or the process of step S34, it ends the process shown in FIG.
  • the second slip control unit 442 shown in FIG. 5 executes the same process as the process shown in FIG. 8 on the left drive wheel 22L.
  • the slip suppression control for the right drive wheel 22R and the slip suppression control for the left drive wheel 22L are independently executed by the first slip control section 441 and the second slip control section 442, respectively.
  • the vehicle 10 when the braking/driving torque is limited by executing slip suppression control on either the right drive wheel 22R or the left drive wheel 22L, the vehicle 10 must be limited in the braking/driving torque for the other drive wheel as well. It is not possible to maintain the running condition of the vehicle properly. For example, in a situation where the right drive wheel 22R is in contact with a low- ⁇ road, which is a road surface with a low road surface friction coefficient, and the left drive wheel 22L is in contact with a high- ⁇ road, which is a road surface with a high road surface friction coefficient.
  • the torque distribution unit 440 executes the process shown in FIG. 9 as a process to realize the braking/driving torque for each of the drive wheels 22R, 22L as described above. Note that the torque distribution unit 440 repeatedly executes the process shown in FIG. 9 at a predetermined cycle while the vehicle 10 is running.
  • the torque distribution unit 440 first determines whether the first basic braking/driving torque Ta satisfies "Ta>0" as the process of step S40. If the first basic braking/driving torque Ta satisfies "Ta>0", the torque distribution unit 440 makes an affirmative determination in the process of step S40. In this case, the torque distribution unit 440 determines that the vehicle 10 is in an accelerating state, and as a process of step S41, the third basic braking/driving torque Tc and the first slip torque TsR calculated by the selection unit 412 are , and the second slip torque TsL, the fourth basic braking/driving torque Td is calculated based on the following equation f9.
  • Td MIN(Tc, TsR, TsL) (f9) That is, the torque distribution unit 440 sets the smallest one among the third basic braking/driving torque Tc, the first slip torque TsR, and the second slip torque TsL as the fourth basic braking/driving torque Td.
  • step S42 the torque distribution unit 440 determines whether the slip control flag Xslip is set to "0".
  • the torque distribution unit 440 determines that the result is positive in the process of step S42. make judgments.
  • the torque distribution unit 440 sets the first target braking/driving torque TR* and the second target braking/driving torque TL* based on the following equations f10 and f11 as the process of step S51.
  • the first slip torque TsR and the second slip torque TsL are set to the upper limit value Tmax by the process of step S33 shown in FIG. Therefore, in the process of step S41, the fourth basic braking/driving torque Td is set to the third basic braking/driving torque Tc.
  • the first target braking/driving torque TR* is set to "Tc+ ⁇ TcR”
  • the second target braking/driving torque TL* is set to "Tc+ ⁇ TcL”. That is, the torque distribution unit 440 sets the target braking/driving torques TR*, TL* using the normal setting procedure described above.
  • the torque distribution unit 440 determines whether the fourth basic braking/driving torque Td matches the second slip torque TsL as processing in step S43.
  • the torque distribution unit 440 makes a positive determination in the process of step S43.
  • the torque distribution unit 440 determines that the second slip suppression control is being executed for the left drive wheel 22L, and performs the second slip suppression control based on the following equations f12 and f13 as the process of step S44.
  • a first target braking/driving torque TR* and a second target braking/driving torque TL* are set.
  • the second target braking/driving torque TL* of the left drive wheel 22L is limited to the second slip torque TsL.
  • the first target braking/driving torque TR* of the non-slip right driving wheel 22R is calculated from the fourth basic braking/driving torque Td by the absolute value of the right driving wheel correction torque
  • the fourth basic braking/driving torque Td is set to the second slip torque TsL
  • the first slip torque TsR has a value smaller than the third basic braking/driving torque Tc and the second slip torque TsL. Therefore, in the process of step S41, the fourth basic braking/driving torque Td is set to the first slip torque TsR.
  • the torque distribution unit 440 makes a negative determination in the process of step S43. In this case, the torque distribution unit 440 determines that the first slip suppression control is being executed for the right drive wheel 22R, and performs the first slip suppression control based on the following equations f14 and f15 as the process of step S45.
  • a first target braking/driving torque TR* and a second target braking/driving torque TL* are set.
  • the torque distribution unit 440 makes a negative determination in the process of step S40. In this case, the torque distribution unit 440 determines that the vehicle 10 is decelerating, and executes the processes of steps S46 to S51. Note that the processing in steps S46 to S50 is a modification of the processing in steps S41 to S45 to correspond to the deceleration of the vehicle 10, and is the same or similar to the processing in steps S41 to S45, A detailed explanation will be omitted.
  • the drive operation unit 60 When the drive operation unit 60 is operated to an intermediate position between the forward direction D1 and the right direction D3 in a situation where neither of the drive wheels 22R and 22L of the vehicle 10 is slipping, the right drive wheel 22R and the left drive wheel 22L are driven respectively.
  • the torque is set, for example, as shown in FIG. 10(A).
  • the third basic braking/driving torque Tc is set based on the accelerator operation amount S1 which is the operating amount in the forward direction D1 of the traveling operation unit 60, and the third basic braking/driving torque Tc is set as the fourth basic braking/driving torque Td. is used as is.
  • the right driving wheel correction torque ⁇ TcR and the left driving wheel correction torque ⁇ TcL are set based on the left and right direction operation amount S34 of the travel operation unit 60.
  • the right driving wheel correction torque ⁇ TcR is set to a negative value
  • the left driving wheel correction torque ⁇ TcL is set to a positive value. Therefore, the in-wheel motor 30R applies a torque obtained by adding the right driving wheel correction torque ⁇ TcR to the third basic braking/driving torque Tc to the right driving wheel 22R, as shown in FIG. 10(A).
  • the in-wheel motor 30L applies a torque obtained by adding the left drive wheel correction torque ⁇ TcL to the third basic braking/driving torque Tc to the left drive wheel 22L.
  • the torque applied to the left drive wheel 22L becomes smaller than the torque applied to the right drive wheel 22R, so the vehicle 10 turns in the right direction D3.
  • the drive torque of each of the right drive wheel 22R and the left drive wheel 22L is set, for example, as shown in FIG. 10(B).
  • the third basic braking/driving torque Tc is set based on the accelerator operation amount S1, which is the operation amount of the driving operation section 60 in the forward direction D1.
  • a second slip torque TsL that can suppress the slip of the left drive wheel 22L is set.
  • the fourth basic braking/driving torque Td is set to the second slip torque TsL.
  • the right driving wheel correction torque ⁇ TcR and the left driving wheel correction torque ⁇ TcL are set based on the left and right direction operation amount S34 of the travel operation unit 60.
  • the right driving wheel correction torque ⁇ TcR is set to a negative value
  • the left driving wheel correction torque ⁇ TcL is set to a positive value.
  • the in-wheel motor 30L applies the second slip torque TsL to the left drive wheel 22L, as shown in FIG. 10(B).
  • the in-wheel motor 30R applies a torque “TsL ⁇
  • obtained by subtracting “
  • the EVECU 40 includes a torque control section 44 that controls the in-wheel motor 30R and the in-wheel motor 30L.
  • the torque control unit 44 controls the braking/driving torques applied from the in-wheel motors 30R, 30L to the right drive wheel 22R and left drive wheel 22L, respectively, thereby controlling turning, forward/backward movement, and slippage of the vehicle 10.
  • turning, forward/backward movement, and slip suppression of the vehicle 10 can be realized without using an electric power steering device or a braking device, so that the structure of the vehicle 10 can be simplified and robustness can be ensured. be able to.
  • the torque control unit 44 generates a first slip torque TsR, which is a braking/driving torque to be applied to the right drive wheel 22R in order to make the slip rate of the right drive wheel 22R a predetermined target slip rate, and the left drive wheel 22L.
  • a second slip torque TsL which is a braking/driving torque to be applied to the left driving wheel 22L, is calculated in order to make the slip ratio of the left drive wheel 22L a predetermined target slip ratio.
  • First slip suppression control is executed to control the first braking/driving torque of the right driving wheel 22R, and the second braking/driving torque of the left driving wheel 22L is limited based on the first slip torque.
  • the torque control unit 44 controls the slip of the left drive wheel 22L based on the second slip torque TsL.
  • the second slip suppression control that controls the second braking/driving torque of the left driving wheel 22L is executed, and the first braking/driving torque of the right driving wheel 22R is limited based on the second slip torque.
  • the torque control unit 44 limits the braking/driving torque of each drive wheel 22R, 22L based on the first slip torque TsR, while controlling the absolute value of the first braking/driving torque.
  • the vehicle 10 is turned by controlling the in-wheel motors 30R and 30L, respectively, so that a deviation occurs between the absolute value of the second braking and driving torque.
  • the torque control unit 44 limits the braking/driving torque of each drive wheel 22R, 22L based on the second slip torque TsL, while controlling the absolute value of the first braking/driving torque.
  • the vehicle 10 is turned by controlling the in-wheel motors 30R and 30L, respectively, so that a deviation occurs between the absolute value of the second braking and driving torque. According to this configuration, it is possible to turn the vehicle 10 while suppressing slips of the drive wheels 22R and 22L.
  • the EVECU 40 includes a basic braking/driving torque setting section 41 and a torque deviation setting section 43.
  • the basic braking/driving torque setting unit 41 sets the third basic braking/driving torque Tc based on the accelerator operation amount S1 and the brake operation amount S2 performed on the vehicle 10 in order to accelerate or decelerate the vehicle 10.
  • the torque deviation setting unit 43 sets the correction torques ⁇ TcR and ⁇ TcL based on the left-right direction operation amount S34 performed on the vehicle 10 in order to turn the vehicle 10.
  • the torque control unit 44 adds a predetermined value to the third basic braking/driving torque Tc based on the above equations f10 and f11.
  • the torque control unit 44 sets the first target braking/driving torque TR* to the first slip torque TsR based on the above equations f14 and f15, and also sets the first target braking/driving torque TR* to the first slip torque TsR.
  • the second target braking/driving torque TL* is set based on the calculated value obtained by correcting the four basic braking/driving torques Td using the correction torques ⁇ TcR and ⁇ TcL.
  • the torque control unit 44 sets the second target braking/driving torque TL* to the second slip torque TsL based on the above equations f13 and f14, and also sets the fourth basic slip torque TsL.
  • the first target braking/driving torque TR* is set based on the calculated value obtained by correcting the braking/driving torque Td using the correction torques ⁇ TcR and ⁇ TcL. According to this configuration, it is possible to easily set the first target braking/driving torque TR* and the second target braking/driving torque TL* that enable the vehicle 10 to turn while suppressing the slip of the vehicle 10.
  • step S44 As the processing in steps S41 and S43 shown in FIG. When is smaller than the second slip torque TsL, it is determined that the right drive wheel 22R is in contact with a road surface having a lower coefficient of road friction than the left drive wheel 22L, and the process of step S44 is executed. Furthermore, as the processing in steps S41 and S43 shown in FIG. When it is smaller than the first slip torque TsR, it is determined that the left drive wheel 22L is in contact with a road surface having a lower coefficient of road friction than the right drive wheel 22R, and the process of step S45 is executed.
  • the torque control unit 44 determines which of the left driving wheel 22L and the right driving wheel 22R is on a road surface with a low coefficient of road friction, using the opposite criteria for determining whether the vehicle 10 is decelerating or accelerating. Determine if it is grounded. According to this configuration, it is possible to easily determine which of the right drive wheel 22R and the left drive wheel 22L is in contact with a road surface having a low coefficient of road friction.
  • the EVECU 40 includes a speed calculation unit 42 that calculates an estimated value of the vehicle speed Vb based on at least one of the right drive wheel speed VR and the left drive wheel speed VL.
  • the speed calculation unit 42 calculates the speed of the vehicle body based on the integral value of the acceleration A of the vehicle body 11, as shown in FIG. 6 and the above equation f1. Calculate speed Vb. According to this configuration, it is possible to estimate the right drive wheel speed VR and the left drive wheel speed VL without providing a sensor for detecting the speed of the vehicle body 11.
  • the speed calculation unit 42 calculates the integrated value of the right drive wheel speed VR, the left drive wheel speed VL, and the acceleration A of the vehicle body 11, as shown in step S12 in FIG. Among the speeds of the vehicle 10 estimated from the above, the smallest one is used as the estimated value of the vehicle body speed Vb. In addition, when the vehicle 10 is decelerating, the speed calculation unit 42 calculates the speed of the vehicle 10 that is the highest among the speeds of the vehicle 10 estimated from the integrated value of the right drive wheel speed VR, the left drive wheel speed VL, and the acceleration A of the vehicle body 11. The larger one is used as the estimated value of the vehicle speed Vb. According to this configuration, the vehicle speed Vb can be estimated more appropriately.
  • the torque control unit 44 of this embodiment executes the process shown in FIG. 11.
  • the torque control unit 44 repeatedly executes the process shown in FIG. 11 at a predetermined cycle while the vehicle 10 is started.
  • the torque distribution unit 440 first determines whether the slip control flag Xslip is "1" in step S60. When the slip control flag Xslip is "0", that is, when both the first slip suppression control and the second slip suppression control are not being executed, the torque distribution unit 440 temporarily ends the process shown in FIG. 11. .
  • step S60 the torque distribution unit 440 performs step S60 when the slip control flag
  • a process in S61 it is determined whether the absolute value
  • a process in S61 it is determined whether the absolute value
  • the torque distribution unit 440 of the present embodiment determines that the absolute value
  • the slip control units 441 and 442 set the slip control flag Xslip to "0" as processing in step S63 following step S62.
  • the torque distribution unit 440 sets the first target braking/driving torque TR* and the second target braking/driving torque TL* to "0", and continues this state for a predetermined period of time.
  • the slip control of the right drive wheel 22R and the left drive wheel 22L is interrupted and the vehicle 10 is decelerated, so that simple fail-safe control can be executed.
  • the slip control units 441 and 442 release the first target braking/driving torque TR* and the second target braking/driving torque TL* from being set to "0". This allows the first slip control section 441 and the second slip control section 442 to perform the first slip suppression control and the second slip suppression control again.
  • step S61 determines that the situation is such that slip suppression control can be appropriately executed, and ends the process shown in FIG. 11.
  • the EVECU 40 of the vehicle 10 of the present embodiment described above it is possible to further obtain the action and effect shown in (7) below.
  • the torque control unit 44 adjusts the actual yaw rate Y of the vehicle 10 and the target yaw rate Y*.
  • continues to be equal to or greater than a predetermined value, the first target braking/driving torque TR* and the second target braking/driving torque TL* are reset.
  • the above embodiment can also be implemented in the following forms.
  • the torque control unit 44 controls the rotational speed of the right drive wheel 22R and the left drive Turning, forward and backward movement, and slip suppression of the vehicle 10 may be performed by controlling the rotational speeds of the wheels 22L, respectively.
  • This rotational speed control can be realized by a control procedure similar to the control procedure shown in FIG.
  • the configuration of the above embodiment is applicable not only to the vehicle 10 but also to any moving object.
  • the EVECU 40 and its control method described in the present disclosure are implemented using one or more processors and memories that are programmed to perform one or more functions embodied by a computer program. It may also be realized by a dedicated computer.
  • the EVECU 40 and its control method described in this disclosure may be implemented by a dedicated computer provided by configuring a processor that includes one or more dedicated hardware logic circuits.
  • the EVECU 40 and the control method thereof described in the present disclosure include a processor configured by a combination of a processor and memory programmed to perform one or more functions and a processor including one or more hardware logic circuits. It may be implemented by one or more dedicated computers.
  • a computer program may be stored as instructions executed by a computer on a computer-readable non-transitory tangible storage medium.
  • Dedicated hardware logic circuits and hardware logic circuits may be implemented by digital circuits that include multiple logic circuits, or by analog circuits.
  • the torque deviation setting unit sets a target yaw rate, which is a target value of the yaw rate of the moving body, based on the second operation amount, and sets the target yaw rate, which is a target value of the yaw rate of the moving body, based on the deviation between the actual yaw rate of the moving body and the target yaw rate.
  • a torque deviation is set, and when the torque control unit is executing control to suppress slip of the right drive wheel or the left drive wheel, the torque control unit determines the absolute value of the deviation between the actual yaw rate of the moving body and the target yaw rate.
  • each value of the first target braking/driving torque and the second target braking/driving torque is reset when a state where the value continues to be equal to or higher than a predetermined value is continued.
  • the torque control section executes the first slip suppression control based on the fact that the absolute value of the deviation between the speed of the right drive wheel and the speed of the moving body becomes a predetermined value or more, and controls the speed of the left drive wheel.
  • the second slip suppression control is executed based on the fact that the absolute value of the deviation between the speed of the moving body and the speed of the moving body becomes a predetermined value or more, and the second slip suppression control is performed to reduce at least one of the speed of the right drive wheel and the speed of the left drive wheel.
  • the speed calculation unit further includes a speed calculation unit (42) that calculates an estimated value of the speed of the moving body based on the speed calculation unit, and the speed calculation unit is configured to calculate an estimated value of the speed of the moving body based on the moving direction of the moving body when both the right drive wheel and the left drive wheel slip.
  • a speed calculation unit (42) that calculates an estimated value of the speed of the moving body based on the speed calculation unit, and the speed calculation unit is configured to calculate an estimated value of the speed of the moving body based on the moving direction of the moving body when both the right drive wheel and the left drive wheel slip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A control device (40) controls a moving body having a first braking/driving torque-applying part (30R) that applies a first braking/driving torque to a right drive wheel, a second braking/driving torque-applying part (30L) that applies a second braking/driving torque to a left driving wheel, and a right driven wheel and a left driven wheel composed of caster wheels. The control device includes a torque control unit (44) that controls the first braking/driving torque-applying part and the second braking/driving torque-applying part. The torque control unit performs turning, forward and reverse movement, and slip suppression for the moving body by controlling both the first braking/driving torque and the second braking/driving torque, or by controlling both the rotation speed of the right drive wheel and the rotation speed of the left drive wheel.

Description

移動体の制御装置、プログラムMobile control device, program 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年5月31日に出願された日本国特許出願2022-089039号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2022-089039 filed on May 31, 2022, and claims the benefit of priority thereof, and all contents of the patent application are Incorporated herein by reference.
 本開示は、移動体の制御装置、及びプログラムに関する。 The present disclosure relates to a control device and a program for a mobile object.
 従来、下記の特許文献1に記載の車両がある。この車両は、モータと、ディスクブレーキと、操舵装置とを備えている。モータは、運転者のアクセルペダルの踏み込み量に応じたトルクを車輪に付与することにより車両を走行させる。ディスクブレーキは、運転者のブレーキペダルの踏み込み操作に基づいて車輪に制動トルクを付与することにより車両を停車させる。操舵装置は、運転者のステアリングホイールの操作に基づいて車輪を転舵させることにより車両を旋回させる。 Conventionally, there is a vehicle described in Patent Document 1 below. This vehicle includes a motor, disc brakes, and a steering device. The motor causes the vehicle to travel by applying torque to the wheels according to the amount of depression of the accelerator pedal by the driver. Disc brakes stop a vehicle by applying braking torque to the wheels based on the driver's depression of the brake pedal. A steering device turns a vehicle by steering wheels based on a driver's operation of a steering wheel.
特開2006-341656号公報Japanese Patent Application Publication No. 2006-341656
 特許文献1に記載されるような車両では、車両の走行、制動、旋回、スリップ抑制といった動作を実現しようとすると、モータ等の動力発生装置、ブレーキ等の制動装置、並びに操舵装置が必要である。これが車両の構造を複雑化させるとともに、車両のロバスト性を低下させる要因となっている。 In a vehicle as described in Patent Document 1, in order to realize operations such as running, braking, turning, and suppressing slip of the vehicle, a power generation device such as a motor, a braking device such as a brake, and a steering device are required. . This is a factor that complicates the structure of the vehicle and reduces the robustness of the vehicle.
 本開示の目的は、構造を簡素化することができるとともに、ロバスト性を向上させることが可能な移動体の制御装置及びプログラムを提供することにある。 An object of the present disclosure is to provide a control device and program for a moving body that can simplify the structure and improve robustness.
 本開示の一態様による移動体の制御装置は、右駆動輪に第1制駆動トルクを付与する第1制駆動トルク付与部と、左駆動輪に第2制駆動トルクを付与する第2制駆動トルク付与部と、キャスタ輪からなる右従動輪及び左従動輪とを有する移動体を制御する制御装置である。制御装置は、第1制駆動トルク付与部及び第2制駆動トルク付与部を制御するトルク制御部を備える。トルク制御部は、第1制駆動トルク及び第2制駆動トルクをそれぞれ制御することにより、又は右駆動輪の回転速度及び左駆動輪の回転速度をそれぞれ制御することにより、移動体の旋回、前後進、及びスリップ抑制を行う。 A control device for a moving body according to an aspect of the present disclosure includes a first braking/driving torque applying section that applies a first braking/driving torque to a right driving wheel, and a second braking/driving torque applying section that applies a second braking/driving torque to a left driving wheel. This is a control device that controls a moving body that has a torque applying section and a right driven wheel and a left driven wheel that are formed of caster wheels. The control device includes a torque control section that controls a first braking/driving torque applying section and a second braking/driving torque applying section. The torque control unit controls the turning, front and back of the moving body by controlling the first braking/driving torque and the second braking/driving torque, or by controlling the rotation speed of the right drive wheel and the rotation speed of the left drive wheel, respectively. forward movement, and performs slip control.
 また、本開示の一態様によるプログラムは、右駆動輪に第1制駆動トルクを付与する第1制駆動トルク付与部と、左駆動輪に第2制駆動トルクを付与する第2制駆動トルク付与部と、キャスタ輪からなる右従動輪及び左従動輪とを有する移動体を制御するためのプログラムである。このプログラムは、第1制駆動トルク及び第2制駆動トルクをそれぞれ制御することにより、又は右駆動輪の回転速度及び左駆動輪の回転速度をそれぞれ制御することにより、当該移動体の旋回、前後進、及びスリップ抑制を行う処理を実行させる。 Further, the program according to one aspect of the present disclosure includes a first braking/driving torque applying unit that applies a first braking/driving torque to the right driving wheel, and a second braking/driving torque applying unit that applies a second braking/driving torque to the left driving wheel. This is a program for controlling a moving body having a right driven wheel and a left driven wheel consisting of caster wheels. This program controls the turning of the moving object by controlling the first braking/driving torque and the second braking/driving torque, or by controlling the rotation speed of the right drive wheel and the left drive wheel, respectively. The CPU executes processing for speeding up and suppressing slippage.
 これらの制御装置及びプログラムによれば、電動パワーステアリング装置や制動装置を用いることなく移動体の旋回、前後進、及びスリップ抑制を行うことができるため、移動体の構造を簡素化することができるとともにロバスト性を確保することができる。 According to these control devices and programs, the structure of the moving object can be simplified because it is possible to turn, move forward and backward, and suppress slipping of the moving object without using an electric power steering device or a braking device. At the same time, robustness can be ensured.
図1は、第1実施形態の車両の概略構成を模式的に示す図である。FIG. 1 is a diagram schematically showing a schematic configuration of a vehicle according to a first embodiment. 図2は、第1実施形態の従動輪の側面構造を模式的に示す図である。FIG. 2 is a diagram schematically showing the side structure of the driven wheel of the first embodiment. 図3は、第1実施形態の車両の電気的な構成を示すブロック図である。FIG. 3 is a block diagram showing the electrical configuration of the vehicle of the first embodiment. 図4は、第1実施形態の走行操作部の構成を模式的に示す図である。FIG. 4 is a diagram schematically showing the configuration of the travel operation section of the first embodiment. 図5は、第1実施形態のEVECUの構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the EVECU of the first embodiment. 図6は、第1実施形態の速度演算部により実行される処理の手順を示すフローチャートである。FIG. 6 is a flowchart showing the procedure of processing executed by the speed calculation section of the first embodiment. 図7(A),(B)は、第1実施形態の速度差演算部により用いられるマップの一例を示す図である。FIGS. 7A and 7B are diagrams showing an example of a map used by the speed difference calculating section of the first embodiment. 図8は、第1実施形態のスリップ制御部により実行される処理の手順を示すフローチャートである。FIG. 8 is a flowchart showing the procedure of processing executed by the slip control section of the first embodiment. 図9は、第1実施形態のトルク分配部により実行される処理の手順を示すフローチャートである。FIG. 9 is a flowchart showing the procedure of processing executed by the torque distribution section of the first embodiment. 図10(A),(B)は、第1実施形態の左駆動輪及び右駆動輪に付与されるトルクの一例を示すグラフである。FIGS. 10A and 10B are graphs showing an example of the torque applied to the left drive wheel and the right drive wheel of the first embodiment. 図11は、第2実施形態のトルク分配部により実行される処理の手順を示すフローチャートである。FIG. 11 is a flowchart showing the procedure of processing executed by the torque distribution section of the second embodiment.
 以下、移動体の制御装置及びプログラムの一実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 はじめに、第1実施形態の車両の概略構成について説明する。図1に示されるように、本実施形態の車両10は、従動輪21R,21Lと、駆動輪22R,22Lと、インホイールモータ30R,30Lと、EV(Electric Vehicle)ECU(Electronic Control Unit)40とを備えている。車両10は、その走行速度が所定速度以下に制限されている、いわゆるスローモビリティである。所定速度は「20[km/h]」や「50[km/h]」等に設定される。この車両10には制動装置及び操舵装置が設けられておらず、車両10の制動及び旋回がインホイールモータ30R,30Lのトルク制御により実現される。本実施形態では車両10が移動体に相当する。
Hereinafter, one embodiment of a control device and a program for a moving body will be described with reference to the drawings. In order to facilitate understanding of the description, the same components in each drawing are denoted by the same reference numerals as much as possible, and redundant description will be omitted.
<First embodiment>
First, the schematic configuration of the vehicle of the first embodiment will be described. As shown in FIG. 1, the vehicle 10 of the present embodiment includes driven wheels 21R, 21L, driving wheels 22R, 22L, in- wheel motors 30R, 30L, and an EV (Electric Vehicle) ECU (Electronic Control Unit) 40. It is equipped with The vehicle 10 is a so-called slow mobility vehicle whose running speed is limited to a predetermined speed or less. The predetermined speed is set to "20 [km/h]", "50 [km/h]", etc. This vehicle 10 is not provided with a braking device or a steering device, and braking and turning of the vehicle 10 are realized by torque control of the in- wheel motors 30R and 30L. In this embodiment, the vehicle 10 corresponds to a moving body.
 従動輪21R,21Lは車両10の右後方及び左後方にそれぞれ設けられている。従動輪21R,21Lは、回転自在な車輪、いわゆるキャスタ輪である。従動輪21R,21Lは、車体11に固定された支点210R,210Lをそれぞれ有しており、支点210R,210Lを中心に360度回転可能に支持されている。すなわち、図2に示されるように支点210R,210Lの中心をそれぞれ通り、且つ車両10の上下方向に並行な軸線をm10R,m10Lとすると、従動輪21R,21Lは軸線m10R,m10Lを中心に360度回転可能にそれぞれ支持されている。従動輪21R,21Lは車両10の走行に伴って軸線m11R,m11Lを中心とする周方向Cに回転する。以下では、従動輪21Rを「右従動輪21R」とも称し、従動輪21Lを「左従動輪21L」とも称する。 The driven wheels 21R and 21L are provided at the rear right and rear left of the vehicle 10, respectively. The driven wheels 21R and 21L are rotatable wheels, so-called caster wheels. The driven wheels 21R, 21L have fulcrums 210R, 210L fixed to the vehicle body 11, respectively, and are supported so as to be rotatable 360 degrees around the fulcrums 210R, 210L. That is, as shown in FIG. 2, if the axes passing through the centers of the fulcrums 210R and 210L and parallel to the vertical direction of the vehicle 10 are m10R and m10L, then the driven wheels 21R and 21L will move 360 degrees around the axes m10R and m10L. Each is rotatably supported. The driven wheels 21R and 21L rotate in the circumferential direction C around the axes m11R and m11L as the vehicle 10 travels. Below, the driven wheel 21R is also referred to as the "right driven wheel 21R", and the driven wheel 21L is also referred to as the "left driven wheel 21L".
 図1に示されるように、駆動輪22R,22Lは車両10の右前方及び左前方にそれぞれ設けられている。駆動輪22R,22Lにはインホイールモータ30R,30Lから駆動トルク及び制動トルクが付与される。以下では、駆動輪22Rを「右駆動輪22R」とも称し、駆動輪22Lを「左駆動輪22L」とも称する。また、駆動トルク及び制動トルクをまとめて「制駆動トルク」とも称する。本実施形態ではインホイールモータ30Rが第1制駆動トルク付与部に相当し、インホイールモータ30Rから右駆動輪22Rに付与される制駆動トルクが第1制駆動トルクに相当する。また、インホイールモータ30Lが第2制駆動トルク付与部に相当し、インホイールモータ30Lから左駆動輪22Lに付与される制駆動トルクが第2制駆動トルクに相当する。 As shown in FIG. 1, drive wheels 22R and 22L are provided at the front right and front left of the vehicle 10, respectively. Driving torque and braking torque are applied to the driving wheels 22R, 22L from in- wheel motors 30R, 30L. Hereinafter, the drive wheel 22R will also be referred to as the "right drive wheel 22R", and the drive wheel 22L will also be referred to as the "left drive wheel 22L". Further, the driving torque and the braking torque are also collectively referred to as "braking/driving torque." In this embodiment, the in-wheel motor 30R corresponds to a first braking/driving torque applying section, and the braking/driving torque applied from the in-wheel motor 30R to the right drive wheel 22R corresponds to the first braking/driving torque. Further, the in-wheel motor 30L corresponds to a second braking/driving torque applying section, and the braking/driving torque applied from the in-wheel motor 30L to the left drive wheel 22L corresponds to the second braking/driving torque.
 インホイールモータ30R,30Lは駆動輪22R,22Lにそれぞれ内蔵されている。図3に示されるように、インホイールモータ30R,30Lは、モータジェネレータ31R,31Lと、インバータ装置32R,32Lと、MG(Motor Generator)ECU33R,33Lと、回転センサ34R,34Lとをそれぞれ有している。 The in- wheel motors 30R and 30L are built into the drive wheels 22R and 22L, respectively. As shown in FIG. 3, the in- wheel motors 30R, 30L include motor generators 31R, 31L, inverter devices 32R, 32L, MG (Motor Generator) ECUs 33R, 33L, and rotation sensors 34R, 34L, respectively. ing.
 インバータ装置32Rは、車両10に搭載されるバッテリから供給される直流電力を三相交流電力に変換するとともに、変換した三相交流電力をモータジェネレータ31Rに供給する。
 モータジェネレータ31Rは車両10の加速時に電動機として動作する。モータジェネレータ31Rは、電動機として動作する場合、インバータ装置32Rから供給される三相交流電力に基づいて駆動する。モータジェネレータ31Rの駆動トルクが右駆動輪22Rに伝達されることにより右駆動輪22Rが回転して車両10が加速する。
Inverter device 32R converts DC power supplied from a battery mounted on vehicle 10 into three-phase AC power, and supplies the converted three-phase AC power to motor generator 31R.
Motor generator 31R operates as an electric motor when vehicle 10 accelerates. When operating as an electric motor, motor generator 31R is driven based on three-phase AC power supplied from inverter device 32R. The drive torque of motor generator 31R is transmitted to right drive wheel 22R, thereby rotating right drive wheel 22R and accelerating vehicle 10.
 図3に示されるモータジェネレータ31Rは車両10の制動時に発電機として動作する。モータジェネレータ31Rは、発電機として動作する場合、回生動作することにより発電する。モータジェネレータ31Rの回生動作により右駆動輪22Rに制動トルクが付与される。モータジェネレータ31Rにより発電される三相交流電力はインバータ装置32Rにより直流電力に変換されて車両10のバッテリに充電される。 The motor generator 31R shown in FIG. 3 operates as a generator when the vehicle 10 is braked. When operating as a generator, the motor generator 31R generates electricity through regenerative operation. Braking torque is applied to the right drive wheel 22R by the regenerative operation of the motor generator 31R. Three-phase AC power generated by motor generator 31R is converted to DC power by inverter device 32R, and the battery of vehicle 10 is charged.
 回転センサ34Rは、モータジェネレータ31Rの出力軸の回転速度を検出するとともに、検出された回転速度に応じた信号をMGECU33Rに出力する。
 MGECU33Rは、CPUやメモリ等を有するマイクロコンピュータを中心に構成されている。MGECU33Rは、そのメモリに予め記憶されているプログラムを実行することによりモータジェネレータ31Rを制御する。
Rotation sensor 34R detects the rotation speed of the output shaft of motor generator 31R, and outputs a signal corresponding to the detected rotation speed to MGECU 33R.
The MGECU 33R is mainly composed of a microcomputer including a CPU, memory, and the like. MGECU 33R controls motor generator 31R by executing a program stored in advance in its memory.
 具体的には、MGECU33Rは、回転センサ34Rの出力信号に基づいてモータジェネレータ31Rの回転速度の情報を取得する。また、MGECU33Rは、モータジェネレータ31Rの回転速度に基づいて右駆動輪22Rの回転速度を演算式やマップ等を用いて演算する。また、MGECU33Rは、右駆動輪22Rの回転速度から所定の演算式に基づいて右駆動輪速VRを演算する。右駆動輪速VRは、車両10の進行方向における右駆動輪22Rの速度である。 Specifically, MGECU 33R acquires information on the rotational speed of motor generator 31R based on the output signal of rotation sensor 34R. Furthermore, the MGECU 33R calculates the rotational speed of the right drive wheel 22R based on the rotational speed of the motor generator 31R using an arithmetic expression, a map, or the like. Furthermore, the MGECU 33R calculates the right drive wheel speed VR from the rotational speed of the right drive wheel 22R based on a predetermined calculation formula. The right drive wheel speed VR is the speed of the right drive wheel 22R in the traveling direction of the vehicle 10.
 MGECU33Rは、車両10に搭載されるCAN等の車載ネットワークを介してEVECU40と通信可能に接続されている。EVECU40は、右駆動輪22Rの制駆動トルクの目標値である第1目標制駆動トルクTR*を設定するとともに、設定された第1目標制駆動トルクTR*をMGECU33Rに送信する。MGECU33Rは、モータジェネレータ31Rの回転速度を監視しつつ、モータジェネレータ31Rから出力される実際のトルクが第1目標制駆動トルクTR*となるようにモータジェネレータ31Rを制御する。第1目標制駆動トルクTR*は、車両10を図1に示される前方向D1に加速させる場合、すなわちモータジェネレータ31Rを電動機として動作させる場合には正の値に設定される。また、第1目標制駆動トルクTR*は、車両10を減速させる場合、すなわちモータジェネレータ31Rを回生動作させる場合には負の値に設定される。 The MGECU 33R is communicably connected to the EVECU 40 via an in-vehicle network such as a CAN installed in the vehicle 10. The EVECU 40 sets a first target braking/driving torque TR*, which is a target value of the braking/driving torque of the right drive wheel 22R, and transmits the set first target braking/driving torque TR* to the MGECU 33R. The MGECU 33R monitors the rotational speed of the motor generator 31R and controls the motor generator 31R so that the actual torque output from the motor generator 31R becomes the first target braking/driving torque TR*. The first target braking/driving torque TR* is set to a positive value when accelerating the vehicle 10 in the forward direction D1 shown in FIG. 1, that is, when operating the motor generator 31R as an electric motor. Further, the first target braking/driving torque TR* is set to a negative value when decelerating the vehicle 10, that is, when causing the motor generator 31R to perform a regenerative operation.
 MGECU33Rは、EVECU40からの要求に応じて右駆動輪速VR等、MGECU33Rにより取得可能な各種情報をEVECU40に送信する。
 インホイールモータ30Lのモータジェネレータ31L、インバータ装置32L、MGECU33L、及び回転センサ34Lはインホイールモータ30Rの各構成要素と同様に動作する。例えば、MGECU33Lは、モータジェネレータ31Lの回転速度を監視しつつ、モータジェネレータ31Lから出力される実際のトルクが第2目標制駆動トルクTL*となるようにモータジェネレータ31Lを制御する。第2目標制駆動トルクTL*は、EVECU40により設定される左駆動輪22Lの制駆動トルクの目標値である。また、MGECU33Lは、EVECU40からの要求に応じて左駆動輪速VL等、MGECU33Lにより取得可能な各種情報をEVECU40に送信する。
The MGECU 33R transmits various information that can be acquired by the MGECU 33R, such as the right drive wheel speed VR, to the EVECU 40 in response to a request from the EVECU 40.
The motor generator 31L, inverter device 32L, MGECU 33L, and rotation sensor 34L of the in-wheel motor 30L operate similarly to each component of the in-wheel motor 30R. For example, the MGECU 33L monitors the rotational speed of the motor generator 31L and controls the motor generator 31L so that the actual torque output from the motor generator 31L becomes the second target braking/driving torque TL*. The second target braking/driving torque TL* is a target value of the braking/driving torque of the left drive wheel 22L, which is set by the EVECU 40. Furthermore, the MGECU 33L transmits various information that can be obtained by the MGECU 33L, such as the left drive wheel speed VL, to the EVECU 40 in response to a request from the EVECU 40.
 図3に示されるように、車両10は、運転者が車両10を操作するための操作部として、シフト操作部50と、走行操作部60とを更に備えている。
 シフト操作部50では、例えばP(パーキング)レンジ、R(リバース)レンジ、及びD(ドライブ)レンジのいずれかを選択することが可能となっている。Pレンジは、車両10を停車させる際に選択される。Rレンジは、車両10を図1に示される後方向D2に走行させる際に選択される。Dレンジは、車両10を図1に示される前方向D1に走行させる際に選択される。シフト操作部50は、Pレンジ、Rレンジ、及びDレンジの選択状態を示す信号をEVECU40に出力する。
As shown in FIG. 3, the vehicle 10 further includes a shift operation section 50 and a travel operation section 60 as operation sections for the driver to operate the vehicle 10.
In the shift operation section 50, it is possible to select, for example, a P (parking) range, an R (reverse) range, or a D (drive) range. The P range is selected when the vehicle 10 is stopped. The R range is selected when the vehicle 10 is driven in the backward direction D2 shown in FIG. The D range is selected when the vehicle 10 is driven in the forward direction D1 shown in FIG. Shift operation unit 50 outputs a signal indicating the selection state of P range, R range, and D range to EVECU 40.
 図4に示される走行操作部60は、シフト操作部50においてRレンジ又はDレンジが選択されているときに、すなわち車両10を前進又は後進させるときに、車両10の加速、減速、右旋回、及び左旋回を行う際に操作する部分である。走行操作部60にはジョイスティック61が設けられている。ジョイスティック61は、図4に示される中立位置から前方向J1、後方向J2、右方向J3、左方向J4、並びにそれらの中間の方向に操作することが可能である。運転者はジョイスティック61を中立位置から前方向J1、後方向J2、右方向J3、及び左方向J4にそれぞれ操作すると、車両10を加速、減速、右旋回、及び左旋回させることができる。また、運転者がジョイスティック61を前方向J1及び右方向J3の中間方向に操作すると、車両10を加速させつつ右旋回させることができる。図4に示される操作量S1は、ジョイスティック61の中立位置から前方向J1への操作量を示している。操作量S1が大きくなる程、車両10の加速度をより大きくすることができる。同様に、ジョイスティック61の中立位置から後方向J2への操作量S2が大きくなるほど、車両10の減速度がより大きくなる。さらに、ジョイスティック61の中立位置から右方向J3又は左方向J4への操作量S3,S4が大きくなるほど、車両10の旋回速度がより大きくなる。走行操作部60は、そのジョイスティック61の操作状態を示す信号をEVECU40に出力する。 The driving operation unit 60 shown in FIG. 4 is configured to accelerate, decelerate, and turn the vehicle 10 to the right when the R range or the D range is selected in the shift operation unit 50, that is, when moving the vehicle 10 forward or backward. , and the part operated when making a left turn. A joystick 61 is provided in the travel operation section 60. The joystick 61 can be operated from the neutral position shown in FIG. 4 in a forward direction J1, a backward direction J2, a rightward direction J3, a leftward direction J4, and directions intermediate therebetween. When the driver operates the joystick 61 from the neutral position in the forward direction J1, backward direction J2, rightward direction J3, and leftward direction J4, the vehicle 10 can be accelerated, decelerated, turned right, and turned left. Furthermore, when the driver operates the joystick 61 in an intermediate direction between the forward direction J1 and the rightward direction J3, the vehicle 10 can be accelerated and turned to the right. The operation amount S1 shown in FIG. 4 indicates the operation amount of the joystick 61 from the neutral position to the forward direction J1. The larger the operation amount S1 is, the larger the acceleration of the vehicle 10 can be. Similarly, the larger the operation amount S2 of the joystick 61 in the backward direction J2 from the neutral position, the larger the deceleration of the vehicle 10 becomes. Furthermore, the larger the operation amount S3, S4 of the joystick 61 from the neutral position to the right direction J3 or the left direction J4 becomes, the greater the turning speed of the vehicle 10 becomes. The travel operation section 60 outputs a signal indicating the operation state of the joystick 61 to the EVECU 40.
 以下では、ジョイスティック61の中立位置から前方向J1への操作量S1を「走行操作部60のアクセル操作量S1」と称し、後方向J2への操作量S2を「走行操作部60のブレーキ操作量S2」と称する。また、右方向J3及び左方向J4の操作量S3,S4を「走行操作部60の左右方向操作量S34」と称する。左右方向操作量S34は、右方向J3の操作量S3を正の値で表し、左方向J4の操作量S4を負の値で表す。本実施形態では、走行操作部60のアクセル操作量S1及びブレーキ操作量S2が、車両10を加速又は減速させるために車両10に対して行われる第1操作量に相当する。また、走行操作部60の左右方向操作量S34が、車両10を旋回させるために車両10に対して行われる第2操作量に相当する。 Hereinafter, the operation amount S1 of the joystick 61 from the neutral position to the forward direction J1 will be referred to as the "accelerator operation amount S1 of the travel operation section 60," and the operation amount S2 of the joystick 61 toward the rear direction J2 will be referred to as the "brake operation amount of the travel operation section 60." S2". Further, the operation amounts S3 and S4 in the right direction J3 and the left direction J4 are referred to as "the left and right direction operation amount S34 of the travel operation unit 60." The left-right direction operation amount S34 represents the operation amount S3 in the right direction J3 as a positive value, and represents the operation amount S4 in the left direction J4 as a negative value. In this embodiment, the accelerator operation amount S1 and the brake operation amount S2 of the travel operation unit 60 correspond to the first operation amount performed on the vehicle 10 in order to accelerate or decelerate the vehicle 10. Further, the left-right direction operation amount S34 of the travel operation unit 60 corresponds to a second operation amount performed on the vehicle 10 in order to turn the vehicle 10.
 図3に示されるように、車両10は、ヨーレートセンサ70と、加速度センサ71とを更に備えている。
 ヨーレートセンサ70は、車体11に実際に発生しているヨーレートである実ヨーレートYを検出する。図1に示されるように、実ヨーレートYは、車体11の重心点Gcを通る鉛直軸周りの回転速度である。本実施形態の実ヨーレートYは、車体11の右方向D3への回転速度を正の値で表し、車体11の左方向D4への回転速度を負の値で表す。
As shown in FIG. 3, the vehicle 10 further includes a yaw rate sensor 70 and an acceleration sensor 71.
The yaw rate sensor 70 detects the actual yaw rate Y, which is the yaw rate actually occurring in the vehicle body 11. As shown in FIG. 1, the actual yaw rate Y is the rotational speed around the vertical axis passing through the center of gravity Gc of the vehicle body 11. The actual yaw rate Y of this embodiment represents the rotation speed of the vehicle body 11 in the right direction D3 as a positive value, and represents the rotation speed of the vehicle body 11 in the left direction D4 as a negative value.
 加速度センサ71は車体11の加速度を検出する。加速度センサ71は、車体11の前後方向、左右方向、及び上下方向のそれぞれの加速度に加えて、ピッチ方向、ロー方向、及びヨー方向のそれぞれの加速度を検出することができる、いわゆる6軸加速度センサである。 The acceleration sensor 71 detects the acceleration of the vehicle body 11. The acceleration sensor 71 is a so-called 6-axis acceleration sensor that can detect acceleration in the pitch direction, low direction, and yaw direction in addition to acceleration in the longitudinal direction, lateral direction, and vertical direction of the vehicle body 11. It is.
 各センサ70,71は、検出された物理量に応じた信号をEVECU40に出力する。
 EVECU40は、CPUやメモリ等を有するマイクロコンピュータを中心に構成されている。本実施形態では、EVECU40が制御装置及びコンピュータに相当する。EVECU40は、そのメモリに予め記憶されているプログラムを実行することにより車両10の走行を統括的に制御する。
Each sensor 70, 71 outputs a signal corresponding to the detected physical quantity to the EVECU 40.
The EVECU 40 is mainly composed of a microcomputer including a CPU, memory, and the like. In this embodiment, the EVECU 40 corresponds to a control device and a computer. The EVECU 40 centrally controls the running of the vehicle 10 by executing a program stored in advance in its memory.
 具体的には、EVECU40には、シフト操作部50、走行操作部60、ヨーレートセンサ70、及び加速度センサ71のそれぞれの出力信号が取り込まれている。EVECU40は、シフト操作部50及び走行操作部60のそれぞれの出力信号に基づいて、シフト操作部50の操作状態、及び走行操作部60の操作量S1,S2,S34の情報を取得する。また、EVECU40は、ヨーレートセンサ70及び加速度センサ71のそれぞれの出力信号に基づいて、車体11の実ヨーレートY及び加速度A等の情報を取得する。さらに、EVECU40は、インホイールモータ30R,30LのMGECU33R,33Lから右駆動輪速VR及び左駆動輪速VLの情報をそれぞれ取得する。 Specifically, the EVECU 40 receives output signals from the shift operation section 50, the travel operation section 60, the yaw rate sensor 70, and the acceleration sensor 71. The EVECU 40 acquires information on the operation state of the shift operation section 50 and the operation amounts S1, S2, and S34 of the drive operation section 60 based on the output signals of the shift operation section 50 and the travel operation section 60, respectively. Furthermore, the EVECU 40 acquires information such as the actual yaw rate Y and acceleration A of the vehicle body 11 based on the respective output signals of the yaw rate sensor 70 and the acceleration sensor 71. Further, the EVECU 40 acquires information on the right drive wheel speed VR and the left drive wheel speed VL from the MGECUs 33R and 33L of the in- wheel motors 30R and 30L, respectively.
 EVECU40は、取得したそれらの情報に基づいて第1目標制駆動トルクTR*及び第2目標制駆動トルクTL*を設定する。例えば、EVECU40は、シフト操作部50においてDレンジが選択されている状態で走行操作部60が前方向J1に操作された場合、第1目標制駆動トルクTR*及び第2目標制駆動トルクTL*を同一の正の値に設定するとともに、それらをインホイールモータ30R,30Lにそれぞれ送信する。これにより、インホイールモータ30R,30Lから駆動輪22R,22Lに同一の正のトルクが付与されるため、車両10が図1に示される前方向D1に加速する。一方、走行操作部60が後方向J2に操作された場合、インホイールモータ30R,30Lから駆動輪22R,22Lに回生トルクが付与されて車両10が減速する。 The EVECU 40 sets the first target braking/driving torque TR* and the second target braking/driving torque TL* based on the acquired information. For example, when the driving operation unit 60 is operated in the forward direction J1 while the D range is selected in the shift operation unit 50, the EVECU 40 controls the first target braking/driving torque TR* and the second target braking/driving torque TL*. are set to the same positive value and transmitted to the in- wheel motors 30R and 30L, respectively. As a result, the same positive torque is applied from the in- wheel motors 30R, 30L to the drive wheels 22R, 22L, so that the vehicle 10 accelerates in the forward direction D1 shown in FIG. On the other hand, when the traveling operation unit 60 is operated in the backward direction J2, regenerative torque is applied from the in- wheel motors 30R, 30L to the drive wheels 22R, 22L, and the vehicle 10 is decelerated.
 また、EVECU40は、シフト操作部50においてDレンジが選択されている状態で走行操作部60が右方向J3に操作された場合、第1目標制駆動トルクTR*と第2目標制駆動トルクTL*とに偏差を生じさせる。具体的には、EVECU40は、第1目標制駆動トルクTR*よりも第2目標制駆動トルクTL*を大きく設定するとともに、それらをインホイールモータ30R,30Lにそれぞれ送信する。これにより、インホイールモータ30Rから右駆動輪22Rに付与されるトルクよりも、インホイールモータ30Lから左駆動輪22Lに付与されるトルクの方が大きくなるため、車両10が図1に示される右方向D3に旋回する。一方、走行操作部60が左方向J4に操作された場合、EVECU40は、インホイールモータ30Lから左駆動輪22Lに付与されるトルクよりも、インホイールモータ30Rから右駆動輪22Rに付与されるトルクを大きくすることにより、車両10を図1に示される左方向D4に旋回させる。 Furthermore, when the travel operation section 60 is operated in the right direction J3 while the D range is selected in the shift operation section 50, the EVECU 40 controls the first target braking/driving torque TR* and the second target braking/driving torque TL*. and cause a deviation. Specifically, the EVECU 40 sets the second target braking/driving torque TL* to be larger than the first target braking/driving torque TR*, and transmits them to the in- wheel motors 30R and 30L, respectively. As a result, the torque applied from the in-wheel motor 30L to the left drive wheel 22L is greater than the torque applied from the in-wheel motor 30R to the right drive wheel 22R, so that the vehicle 10 is Turn in direction D3. On the other hand, when the traveling operation unit 60 is operated in the left direction J4, the EVECU 40 applies a torque applied from the in-wheel motor 30R to the right drive wheel 22R, rather than a torque applied from the in-wheel motor 30L to the left drive wheel 22L. By increasing , the vehicle 10 is caused to turn in the left direction D4 shown in FIG.
 次に、図5を参照して、EVECU40により実行される車両10の制御方法について詳細に説明する。
 図5に示されるように、EVECU40は、そのメモリに記憶されたプログラムを実行することにより実現される機能的な構成として、基本制駆動トルク設定部41と、速度演算部42と、トルク偏差設定部43と、トルク制御部44とを備えている。
Next, with reference to FIG. 5, a method of controlling the vehicle 10 executed by the EVECU 40 will be described in detail.
As shown in FIG. 5, the EVECU 40 has a basic braking/driving torque setting section 41, a speed calculation section 42, and a torque deviation setting section as functional configurations realized by executing a program stored in its memory. section 43 and a torque control section 44.
 基本制駆動トルク設定部41は、制駆動トルク演算部410と、速度上限演算部411と、選択部412とを有している。
 制駆動トルク演算部410は、シフト操作部50の操作状態、走行操作部60の操作量S1,S2,S34、及び速度演算部42により演算される車体速Vbに基づいて第1基本制駆動トルクTaを設定する。車体速Vbは車体11の進行方向の速度の推定値である。第1基本制駆動トルクTaは、車両10を加速又は減速させるために右駆動輪22R及び左駆動輪22Lにそれぞれ付与すべき制駆動トルクの基準値である。
The basic braking/driving torque setting section 41 includes a braking/driving torque calculating section 410 , a speed upper limit calculating section 411 , and a selecting section 412 .
The braking/driving torque calculating section 410 calculates a first basic braking/driving torque based on the operating state of the shift operating section 50, the operating amounts S1, S2, S34 of the travel operating section 60, and the vehicle speed Vb calculated by the speed calculating section 42. Set Ta. The vehicle speed Vb is an estimated value of the speed of the vehicle body 11 in the traveling direction. The first basic braking/driving torque Ta is a reference value of the braking/driving torque to be applied to the right drive wheel 22R and the left drive wheel 22L, respectively, in order to accelerate or decelerate the vehicle 10.
 例えば、制駆動トルク演算部410は、シフト操作部50においてDレンジが選択されている状態で走行操作部60が前方向J1に操作された場合、その走行操作部60の操作量であるアクセル操作量S1と車体速Vbとからマップや演算式等に基づいて第1基本制駆動トルクTaを演算する。この場合、第1基本制駆動トルクTaは正の値に設定される。また、制駆動トルク演算部410は、シフト操作部50においてDレンジが選択されている状態で走行操作部60が後方向J2に操作された場合、その走行操作部60の操作量であるブレーキ操作量S2と車体速Vbとからマップや演算式等に基づいて第1基本制駆動トルクTaを演算する。この場合、第1基本制駆動トルクTaは負の値に設定される。 For example, when the travel operation section 60 is operated in the forward direction J1 while the D range is selected in the shift operation section 50, the braking/driving torque calculation section 410 calculates the accelerator operation which is the operation amount of the travel operation section 60. A first basic braking/driving torque Ta is calculated from the amount S1 and the vehicle speed Vb based on a map, a calculation formula, etc. In this case, the first basic braking/driving torque Ta is set to a positive value. Furthermore, when the travel operation section 60 is operated in the backward direction J2 while the D range is selected in the shift operation section 50, the braking/driving torque calculation section 410 calculates the amount of brake operation that is the operation amount of the travel operation section 60. A first basic braking/driving torque Ta is calculated from the amount S2 and the vehicle speed Vb based on a map, a calculation formula, etc. In this case, the first basic braking/driving torque Ta is set to a negative value.
 なお、制駆動トルク演算部410は、シフト操作部50においてRレンジが選択されている場合にも同様に走行操作部60のアクセル操作量S1及びブレーキ操作量S2に基づいて第1基本制駆動トルクTaを設定する。但し、この場合には、走行操作部60が前方向J1に操作されているときには第1基本制駆動トルクTaが負の値に設定され、走行操作部60が後方向J2に操作されているときには第1基本制駆動トルクTaが正の値に設定される。 Note that even when the R range is selected in the shift operation section 50, the braking/driving torque calculation section 410 similarly calculates the first basic braking/driving torque based on the accelerator operation amount S1 and the brake operation amount S2 of the travel operation section 60. Set Ta. However, in this case, when the travel operation unit 60 is operated in the forward direction J1, the first basic braking/driving torque Ta is set to a negative value, and when the travel operation unit 60 is operated in the rear direction J2, the first basic braking/driving torque Ta is set to a negative value. The first basic braking/driving torque Ta is set to a positive value.
 速度上限演算部411は、速度演算部42により演算される車体速Vb及び走行操作部60の左右方向操作量S34に基づいて第2基本制駆動トルクTbを設定する。第2基本制駆動トルクTbは、車体11の走行速度を、予め設定された上限速度以下に制限するために右駆動輪22R及び左駆動輪22Lにそれぞれ付与すべき制駆動トルクの上限値である。例えば、速度上限演算部411は、走行操作部60の左右方向操作量S34から車体11の走行速度の上限値である上限速度Vmaxをマップから演算する。このマップでは、走行操作部60の左右方向操作量S34の絶対値が大きくなるほど、上限速度Vmaxが小さくなるように設定されている。速度上限演算部411は、現在の車体速Vbと、上限速度Vmaxとの偏差に基づくフィードバック制御により第2基本制駆動トルクTbを設定する。 The speed upper limit calculation section 411 sets the second basic braking/driving torque Tb based on the vehicle speed Vb calculated by the speed calculation section 42 and the left/right direction operation amount S34 of the travel operation section 60. The second basic braking/driving torque Tb is the upper limit value of the braking/driving torque to be applied to the right drive wheel 22R and the left drive wheel 22L, respectively, in order to limit the traveling speed of the vehicle body 11 to a preset upper limit speed or less. . For example, the speed upper limit calculating section 411 calculates the upper limit speed Vmax, which is the upper limit value of the traveling speed of the vehicle body 11, from the left and right direction operation amount S34 of the traveling operation section 60 from a map. In this map, the upper limit speed Vmax is set to become smaller as the absolute value of the left-right operation amount S34 of the travel operation unit 60 becomes larger. The speed upper limit calculation unit 411 sets the second basic braking/driving torque Tb by feedback control based on the deviation between the current vehicle speed Vb and the upper limit speed Vmax.
 制駆動トルク演算部410及び速度上限演算部411によりそれぞれ演算された第1基本制駆動トルクTa及び第2基本制駆動トルクTbは選択部412に入力される。選択部412は、第1基本制駆動トルクTa及び第2基本制駆動トルクTbのうち、いずれか小さい方を第3基本制駆動トルクTcに設定する。選択部412により設定された第3基本制駆動トルクTcはトルク制御部44に入力される。第3基本制駆動トルクTcは、車両10を加速又は減速させるために右駆動輪22R及び左駆動輪22Lにそれぞれ付与すべき制駆動トルクの目標値である。 The first basic braking/driving torque Ta and the second basic braking/driving torque Tb calculated by the braking/driving torque calculation unit 410 and the speed upper limit calculation unit 411 are input to the selection unit 412. The selection unit 412 sets the smaller of the first basic braking/driving torque Ta and the second basic braking/driving torque Tb as the third basic braking/driving torque Tc. The third basic braking/driving torque Tc set by the selection section 412 is input to the torque control section 44. The third basic braking/driving torque Tc is a target value of the braking/driving torque to be applied to the right drive wheel 22R and the left drive wheel 22L, respectively, in order to accelerate or decelerate the vehicle 10.
 速度演算部42は、インホイールモータ30Rから右駆動輪速VRの情報を取得するとともに、インホイールモータ30Lから左駆動輪速VLの情報を取得する。また、速度演算部42は、加速度センサ71の出力信号に基づいて、車体11の進行方向の加速度Aの情報を取得する。速度演算部42は、右駆動輪速VR、左駆動輪速VL、及び車体11の加速度Aに基づいて、車体11の速度である車体速Vbを推定する。 The speed calculation unit 42 acquires information on the right drive wheel speed VR from the in-wheel motor 30R, and also acquires information on the left drive wheel speed VL from the in-wheel motor 30L. Further, the speed calculation unit 42 acquires information on the acceleration A of the vehicle body 11 in the traveling direction based on the output signal of the acceleration sensor 71. The speed calculation unit 42 estimates a vehicle speed Vb, which is the speed of the vehicle body 11, based on the right drive wheel speed VR, the left drive wheel speed VL, and the acceleration A of the vehicle body 11.
 具体的には、速度演算部42は、図6に示される処理を実行することにより車体速Vbを演算する。なお、速度演算部42は、車両10が起動している間、図6に示される処理を所定の周期で繰り返し実行する。
 図6に示されるように、速度演算部42は、まず、ステップS10の処理として、車体11の加速度Aから以下の式f1に基づいて車体速VGを演算する。
Specifically, the speed calculation unit 42 calculates the vehicle speed Vb by executing the process shown in FIG. Note that the speed calculation unit 42 repeatedly executes the process shown in FIG. 6 at a predetermined cycle while the vehicle 10 is started.
As shown in FIG. 6, the speed calculation unit 42 first calculates the vehicle speed VG from the acceleration A of the vehicle body 11 based on the following equation f1 as processing in step S10.
 VG=VGn-1+∫A (f1)
 式f1において、VGn-1は、式f1により演算された車体速の前回の推定値である。
 速度演算部42は、ステップS10に続くステップS11の処理として、第1基本制駆動トルクTaが「Ta>0」を満たしているか否かを判断する。速度演算部42は、第1基本制駆動トルクTaが「Ta>0」を満たしている場合には、ステップS11の処理で肯定的な判断を行う。この場合、速度演算部42は、車両10が加速している状態であると判定して、ステップS12の処理として、最終的な車体速の推定値Vbを以下の式f2により演算する。
VG=VG n-1 +∫A (f1)
In formula f1, VG n-1 is the previous estimated value of the vehicle speed calculated by formula f1.
The speed calculation unit 42 determines whether the first basic braking/driving torque Ta satisfies "Ta>0" as processing in step S11 following step S10. If the first basic braking/driving torque Ta satisfies "Ta>0", the speed calculation unit 42 makes an affirmative determination in the process of step S11. In this case, the speed calculating unit 42 determines that the vehicle 10 is in an accelerating state, and calculates the final estimated value Vb of the vehicle body speed using the following equation f2 as the process of step S12.
 Vb=MIN(VL,VR,VG) (f2)
 例えば右駆動輪22R及び左駆動輪22Lが共にスリップしていない場合、右駆動輪速VR、左駆動輪速VL、及び車体速の演算値VGは略同一の値となる。したがって、最終的な車体速の推定値Vbは、右駆動輪速VR、左駆動輪速VL、及び車体速の演算値VGのいずれかに設定される。
Vb=MIN(VL, VR, VG) (f2)
For example, when both the right drive wheel 22R and the left drive wheel 22L are not slipping, the right drive wheel speed VR, the left drive wheel speed VL, and the calculated value VG of the vehicle body speed are approximately the same value. Therefore, the final vehicle speed estimate Vb is set to any one of the right drive wheel speed VR, the left drive wheel speed VL, and the calculated vehicle speed VG.
 また、右駆動輪22Rがスリップした場合、右駆動輪22Rの回転速度に基づいて演算される右駆動輪速VRが大きくなる。この場合、最終的な車体速の推定値Vbは左駆動輪速VL及び車体速の演算値VGのいずれかに設定される。同様に、左駆動輪22Lがスリップした場合、最終的な車体速の推定値Vbは右駆動輪速VR及び車体速の演算値VGのいずれかに設定される。さらに、右駆動輪22R及び左駆動輪22Lが共にスリップした場合、右駆動輪速VR及び左駆動輪速VLが共に大きくなる。この場合、最終的な車体速の推定値Vbは車体速の演算値VGに設定される。 Furthermore, when the right drive wheel 22R slips, the right drive wheel speed VR calculated based on the rotational speed of the right drive wheel 22R increases. In this case, the final estimated value Vb of the vehicle speed is set to either the left driving wheel speed VL or the calculated vehicle speed VG. Similarly, when the left driving wheel 22L slips, the final estimated value Vb of the vehicle speed is set to either the right driving wheel speed VR or the calculated value VG of the vehicle speed. Further, when both the right drive wheel 22R and the left drive wheel 22L slip, both the right drive wheel speed VR and the left drive wheel speed VL increase. In this case, the final estimated value Vb of the vehicle speed is set to the calculated value VG of the vehicle speed.
 このように、上記の式f2を用いて最終的な車体速の推定値Vbを設定すれば、スリップした駆動輪の速度を除外しつつ車体速Vbを推定することができるため、より適切な車体速Vbを演算することが可能である。
 速度演算部42は、ステップS11の処理において、第1基本制駆動トルクTaが「Ta>0」を満たしていない場合には、ステップS11の処理で否定的な判断を行う。この場合、速度演算部42は、車両10が減速している状態であると判定して、ステップS13の処理として、最終的な車体速の推定値Vbを以下の式f3により演算する。
In this way, by setting the final estimated value Vb of the vehicle body speed using the above formula f2, it is possible to estimate the vehicle body speed Vb while excluding the speed of the driving wheel that has slipped, so that a more appropriate vehicle body speed can be determined. It is possible to calculate the speed Vb.
If the first basic braking/driving torque Ta does not satisfy "Ta>0" in the process of step S11, the speed calculation unit 42 makes a negative determination in the process of step S11. In this case, the speed calculation unit 42 determines that the vehicle 10 is decelerating, and calculates the final estimated value Vb of the vehicle body speed using the following equation f3 as the process of step S13.
 Vb=MAX(VL,VR,VG) (f3)
 ところで、上記のf1により演算される車体速の演算値VGには積分誤差が含まれている。そのため、上記の式f2及び式f3において車体速の演算値VGを最終的な車体速の推定値Vbとして用いる場合には、最終的な車体速の推定値Vbの演算精度が低下する可能性がある。そこで、速度演算部42は、推定精度が高い右駆動輪速VR及び左駆動輪速VLを利用することで車体速の演算値VGの積分誤差を解消する。
Vb=MAX(VL, VR, VG) (f3)
By the way, the calculated value VG of the vehicle speed calculated by the above f1 includes an integral error. Therefore, when using the calculated value VG of the vehicle speed as the final estimated value Vb of the vehicle speed in the above formulas f2 and f3, there is a possibility that the calculation accuracy of the final estimated value Vb of the vehicle speed will decrease. be. Therefore, the speed calculation unit 42 eliminates the integration error of the calculated value VG of the vehicle body speed by using the right drive wheel speed VR and the left drive wheel speed VL, which have high estimation accuracy.
 具体的には、速度演算部42は、ステップS12の処理又はステップS13の処理を実行した後、ステップS14の処理として、最終的な車体速の推定値Vbが右駆動輪速VR及び左駆動輪速VLのいずれかと一致しているか否かを判断する。速度演算部42は、最終的な車体速の推定値Vbが右駆動輪速VRと一致している場合には、ステップS14の処理で肯定的な判断を行って、続くステップS15の処理として、車体速の演算値VGを右駆動輪速VRに設定する。同様に、速度演算部42は、最終的な車体速の推定値Vbが左駆動輪速VLと一致している場合には、車体速の演算値VGを左駆動輪速VLに設定する。これにより、車体速の演算値VGに積分誤差が含まれている場合であっても、車体速の演算値VGが右駆動輪速VR又は左駆動輪速VLに設定された時点で、車体速の演算値VGの積分誤差が解消される。なお、速度演算部42は、ステップS14の処理において、最終的な車体速の推定値Vbが右駆動輪速VR及び左駆動輪速VLのいずれとも一致していない場合には、ステップS14の処理で否定的な判断を行って、図6に示される処理を終了する。 Specifically, after executing the process of step S12 or the process of step S13, the speed calculation unit 42 performs the process of step S14 such that the final estimated value Vb of the vehicle speed is the right drive wheel speed VR and the left drive wheel speed VR. It is determined whether the speed matches any of the speeds VL or not. If the final vehicle speed estimate Vb matches the right drive wheel speed VR, the speed calculation unit 42 makes an affirmative determination in step S14, and performs the following steps in step S15. The calculated value VG of the vehicle body speed is set as the right drive wheel speed VR. Similarly, when the final estimated value Vb of the vehicle speed matches the left driving wheel speed VL, the speed calculation unit 42 sets the calculated value VG of the vehicle speed to the left driving wheel speed VL. As a result, even if the calculated value VG of the vehicle body speed includes an integral error, the vehicle body speed The integral error of the calculated value VG is eliminated. Note that in the process of step S14, the speed calculation unit 42 performs the process of step S14 when the final estimated value Vb of the vehicle speed does not match either the right drive wheel speed VR or the left drive wheel speed VL. A negative determination is made in step 2, and the processing shown in FIG. 6 is ended.
 図5に示されるように、速度演算部42により演算される車体速Vbは基本制駆動トルク設定部41及びトルク偏差設定部43に入力される。
 トルク偏差設定部43は、速度差演算部430と、減算部431と、加算部432と、第1フィードバック制御部433と、第2フィードバック制御部434とを有している。
As shown in FIG. 5, the vehicle speed Vb calculated by the speed calculation section 42 is input to the basic braking/driving torque setting section 41 and the torque deviation setting section 43.
The torque deviation setting section 43 includes a speed difference calculation section 430, a subtraction section 431, an addition section 432, a first feedback control section 433, and a second feedback control section 434.
 速度差演算部430は、車体速Vb、ヨーレートセンサ70の出力信号に基づいて演算される車体11の実ヨーレートY、及び走行操作部60の左右方向操作量S34に基づいて目標速度差ΔV*を設定する。目標速度差ΔV*は、車両10を旋回させるために右駆動輪速VRと左駆動輪速VLとの間に発生させるべき速度差の目標値である。 The speed difference calculation unit 430 calculates the target speed difference ΔV* based on the vehicle speed Vb, the actual yaw rate Y of the vehicle body 11 calculated based on the output signal of the yaw rate sensor 70, and the left-right direction operation amount S34 of the travel operation unit 60. Set. The target speed difference ΔV* is a target value of the speed difference that should be generated between the right drive wheel speed VR and the left drive wheel speed VL in order to cause the vehicle 10 to turn.
 例えば、速度差演算部430は、車体速Vb及び走行操作部60の左右方向操作量S34から、図7(A)に示されるマップ等を用いて基本速度差ΔVbを設定する。基本速度差ΔVbは目標速度差ΔV*の基準値である。また、速度差演算部430は、車体速Vb及び走行操作部60の左右方向操作量S34から、図7(B)に示されるマップ等を用いて目標ヨーレートY*を設定する。目標ヨーレートY*は車体11のヨーレートの目標値である。速度差演算部430は、車両10の実ヨーレートYと目標ヨーレートY*との偏差から演算式等に基づいて速度差補正値ΔVcを演算するとともに、演算された速度差補正値ΔVcに基づいて基本速度差ΔVbを補正することにより目標速度差ΔV*を演算する。なお、速度差演算部430は、シフト操作部50がDレンジに設定されている場合には目標速度差ΔV*をそのまま用いる一方、シフト操作部50がRレンジに設定されている場合には目標速度差ΔV*の正負の符号を逆に設定する。 For example, the speed difference calculation unit 430 sets the basic speed difference ΔVb from the vehicle speed Vb and the left-right direction operation amount S34 of the travel operation unit 60 using a map shown in FIG. 7(A) or the like. The basic speed difference ΔVb is a reference value for the target speed difference ΔV*. Further, the speed difference calculation unit 430 sets the target yaw rate Y* from the vehicle speed Vb and the left-right operation amount S34 of the travel operation unit 60 using a map shown in FIG. 7(B) or the like. Target yaw rate Y* is a target value of the yaw rate of the vehicle body 11. The speed difference calculation unit 430 calculates a speed difference correction value ΔVc based on a calculation formula etc. from the deviation between the actual yaw rate Y and the target yaw rate Y* of the vehicle 10, and also calculates the basic speed difference correction value ΔVc based on the calculated speed difference correction value ΔVc. A target speed difference ΔV* is calculated by correcting the speed difference ΔVb. Note that the speed difference calculation unit 430 uses the target speed difference ΔV* as is when the shift operation unit 50 is set to the D range, but uses the target speed difference ΔV* as is when the shift operation unit 50 is set to the R range. The positive and negative signs of the speed difference ΔV* are set to be reversed.
 図5に示されるように、速度差演算部430により設定された目標速度差ΔV*は減算部431及び加算部432に入力される。減算部431は、速度演算部42により演算される車体速Vbから目標速度差ΔV*を減算することにより目標右駆動輪速VR*を求める。加算部432は、速度演算部42により演算された車体速Vbに目標速度差ΔV*を加算することにより目標左駆動輪速VL*を求める。 As shown in FIG. 5, the target speed difference ΔV* set by the speed difference calculating section 430 is input to the subtracting section 431 and the adding section 432. The subtraction unit 431 obtains the target right drive wheel speed VR* by subtracting the target speed difference ΔV* from the vehicle speed Vb calculated by the speed calculation unit 42. The adding unit 432 adds the target speed difference ΔV* to the vehicle speed Vb calculated by the speed calculating unit 42 to obtain the target left driving wheel speed VL*.
 第1フィードバック制御部433は、減算部431により演算される目標右駆動輪速VR*に基づいて、実際の右駆動輪速VRと目標右駆動輪速VR*との偏差に基づくフィードバック制御により右駆動輪補正トルクΔTcRを演算する。第1フィードバック制御部433により演算される右駆動輪補正トルクΔTcRはトルク制御部44に入力される。 Based on the target right drive wheel speed VR* calculated by the subtraction unit 431, the first feedback control unit 433 performs feedback control based on the deviation between the actual right drive wheel speed VR and the target right drive wheel speed VR*. Calculate driving wheel correction torque ΔTcR. The right driving wheel correction torque ΔTcR calculated by the first feedback control section 433 is input to the torque control section 44 .
 第2フィードバック制御部434は、加算部432により演算される目標左駆動輪速VL*に基づいて、実際の左駆動輪速VLと目標左駆動輪速VL*との偏差に基づくフィードバック制御により左駆動輪補正トルクΔTcLを演算する。第2フィードバック制御部434により演算される左駆動輪補正トルクΔTcLはトルク制御部44に入力される。 Based on the target left drive wheel speed VL* calculated by the addition unit 432, the second feedback control unit 434 performs feedback control on the left drive wheel based on the deviation between the actual left drive wheel speed VL and the target left drive wheel speed VL*. Calculate driving wheel correction torque ΔTcL. The left driving wheel correction torque ΔTcL calculated by the second feedback control section 434 is input to the torque control section 44.
 トルク制御部44は、トルク分配部440と、第1スリップ制御部441と、第2スリップ制御部442とを備えている。
 トルク分配部440は、選択部412により演算される第3基本制駆動トルクTc、第1フィードバック制御部433により演算される右駆動輪補正トルクΔTcR、及び第2フィードバック制御部434により演算される左駆動輪補正トルクΔTcLから第1目標制駆動トルクTR*及び第2目標制駆動トルクTL*を演算する。具体的には、トルク分配部440は、第3基本制駆動トルクTcに右駆動輪補正トルクΔTcRを加算することにより第1目標制駆動トルクTR*(=Tc+ΔTcR)を求める。同様に、トルク分配部440は、第3基本制駆動トルクTcに左駆動輪補正トルクΔTcLを加算することにより第2目標制駆動トルクTL*(=Tc+ΔTcL)を求める。トルク分配部440により演算された第1目標制駆動トルクTR*及び第2目標制駆動トルクTL*は第1スリップ制御部441及び第2スリップ制御部442にそれぞれ入力される。本実施形態では、補正トルクΔTcR,ΔTcLがトルク偏差に相当する。
The torque control section 44 includes a torque distribution section 440, a first slip control section 441, and a second slip control section 442.
The torque distribution unit 440 generates a third basic braking/driving torque Tc calculated by the selection unit 412, a right driving wheel correction torque ΔTcR calculated by the first feedback control unit 433, and a left driving wheel correction torque ΔTcR calculated by the second feedback control unit 434. A first target braking/driving torque TR* and a second target braking/driving torque TL* are calculated from the drive wheel correction torque ΔTcL. Specifically, the torque distribution unit 440 calculates the first target braking/driving torque TR* (=Tc+ΔTcR) by adding the right driving wheel correction torque ΔTcR to the third basic braking/driving torque Tc. Similarly, the torque distribution unit 440 obtains the second target braking/driving torque TL* (=Tc+ΔTcL) by adding the left driving wheel correction torque ΔTcL to the third basic braking/driving torque Tc. The first target braking/driving torque TR* and the second target braking/driving torque TL* calculated by the torque distribution section 440 are input to the first slip control section 441 and the second slip control section 442, respectively. In this embodiment, the corrected torques ΔTcR and ΔTcL correspond to the torque deviation.
 第1スリップ制御部441は、右駆動輪22Rのスリップを抑制すべき状況であるか否かを判断するとともに、右駆動輪22Rのスリップを抑制すべき状況ではないと判断した場合には、トルク分配部440から出力される第1目標制駆動トルクTR*をそのままインホイールモータ30Rに出力する。一方、第1スリップ制御部441は、右駆動輪22Rのスリップを抑制すべき状況であると判断した場合には、第1目標制駆動トルクTR*の絶対値を第1スリップトルクTsR以下に制限する第1スリップ抑制制御を実行する。第1スリップトルクTsRは、右駆動輪22Rのスリップ率を所定の目標スリップ率にするために右駆動輪22Rに付与すべき制駆動トルクである。 The first slip control unit 441 determines whether or not the situation is such that the slip of the right drive wheel 22R should be suppressed, and if it is determined that the situation is not such that the slip of the right drive wheel 22R should be suppressed, The first target braking/driving torque TR* output from the distribution unit 440 is output as is to the in-wheel motor 30R. On the other hand, when the first slip control unit 441 determines that the situation is such that the slip of the right drive wheel 22R should be suppressed, the first slip control unit 441 limits the absolute value of the first target braking/driving torque TR* to below the first slip torque TsR. The first slip suppression control is executed. The first slip torque TsR is a braking/driving torque that should be applied to the right drive wheel 22R in order to make the slip rate of the right drive wheel 22R a predetermined target slip rate.
 第2スリップ制御部442は、第1スリップ制御部441が右駆動輪22Rに対して行う制御と同様の制御を左駆動輪22Lに対して実行する。すなわち、第2スリップ制御部442は、左駆動輪22Lのスリップを抑制すべき状況であると判断した場合に、第2目標制駆動トルクTL*の絶対値を第2スリップトルクTsL以下に制限する第2スリップ抑制制御を実行する。 The second slip control unit 442 performs the same control on the left drive wheel 22L as the first slip control unit 441 performs on the right drive wheel 22R. That is, when the second slip control unit 442 determines that the situation is such that the slip of the left drive wheel 22L should be suppressed, the second slip control unit 442 limits the absolute value of the second target braking/driving torque TL* to the second slip torque TsL or less. Execute second slip suppression control.
 なお、第1スリップ制御部441及び第2スリップ制御部442は、スリップ抑制制御を実行しているか否かを示すスリップ制御フラグXslipを共有している。第1スリップ制御部441及び第2スリップ制御部442は、第1スリップ抑制制御及び第2スリップ抑制制御の少なくとも一方が実行されている場合にはスリップ制御フラグXslipを「1」に設定する。また、第1スリップ制御部441及び第2スリップ制御部442は、第1スリップ抑制制御及び第2スリップ抑制制御が共に実行されていない場合にはスリップ制御フラグXslipを「0」に設定する。 Note that the first slip control unit 441 and the second slip control unit 442 share a slip control flag Xslip that indicates whether slip suppression control is being executed. The first slip control unit 441 and the second slip control unit 442 set the slip control flag Xslip to “1” when at least one of the first slip suppression control and the second slip suppression control is being executed. Further, the first slip control section 441 and the second slip control section 442 set the slip control flag Xslip to "0" when both the first slip suppression control and the second slip suppression control are not executed.
 次に、第1スリップ制御部441及び第2スリップ制御部442により実行される処理の手順について具体的に説明する。なお、第1スリップ制御部441及び第2スリップ制御部442が実行する処理は同一であるため、以下では第1スリップ制御部441の手順について代表して説明する。 Next, the procedure of the process executed by the first slip control section 441 and the second slip control section 442 will be specifically explained. Note that since the processes executed by the first slip control section 441 and the second slip control section 442 are the same, the procedure of the first slip control section 441 will be described below as a representative.
 第1スリップ制御部441は、図8に示される処理を実行する。なお、第1スリップ制御部441は、車両10が起動している期間、図8に示される処理を所定の周期で繰り返し実行する。
 図8に示されるように、第1スリップ制御部441は、ステップS20の処理として、右駆動輪速VRと車体速Vbとの偏差|VR-Vb|を演算するとともに、演算された偏差|VR-Vb|が「|VR-Vb|≧Vth10」を満たしているか否かを判断する。所定値Vth10は、右駆動輪22Rのスリップを抑制すべき状況であるか否かを判定するための判定値であって、例えば「3[km/h]」に設定される。第1スリップ制御部441は、偏差|VR-Vb|が「|VR-Vb|≧Vth10」を満たしている場合には、ステップS20の処理で肯定的な判断を行う。この場合、第1スリップ制御部441は、右駆動輪22Rのスリップを抑制すべき状況であると判定する。
The first slip control unit 441 executes the process shown in FIG. Note that the first slip control unit 441 repeatedly executes the process shown in FIG. 8 at a predetermined cycle while the vehicle 10 is running.
As shown in FIG. 8, the first slip control unit 441 calculates the deviation |VR−Vb| between the right drive wheel speed VR and the vehicle body speed Vb, and also calculates the calculated deviation |VR It is determined whether -Vb| satisfies "|VR-Vb|≧Vth10". The predetermined value Vth10 is a determination value for determining whether the situation is such that the slip of the right drive wheel 22R should be suppressed, and is set to, for example, "3 [km/h]". If the deviation |VR-Vb| satisfies "|VR-Vb|≧Vth10", the first slip control unit 441 makes an affirmative determination in the process of step S20. In this case, the first slip control unit 441 determines that the situation is such that the slip of the right drive wheel 22R should be suppressed.
 第1スリップ制御部441は、ステップS20の処理で肯定的な判断を行った場合、続くステップS21の処理として第1スリップ抑制制御を実行する。すなわち、第1スリップ制御部441は、第1目標制駆動トルクTR*の絶対値を第1スリップトルクTsR以下に制限する。第1スリップ制御部441は、ステップS21に続くステップS22の処理として、スリップ制御フラグXslipを「1」に設定する。 If the first slip control unit 441 makes a positive determination in the process of step S20, it executes the first slip suppression control as the process of the subsequent step S21. That is, the first slip control unit 441 limits the absolute value of the first target braking/driving torque TR* to be equal to or less than the first slip torque TsR. The first slip control unit 441 sets the slip control flag Xslip to "1" as processing in step S22 following step S21.
 第1スリップ制御部441は、ステップS22に続くステップS23の処理として、第1基本制駆動トルクTaが「Ta>0」を満たしているか否かを判断する。第1スリップ制御部441は、第1基本制駆動トルクTaが「Ta>0」を満たしている場合には、ステップS23の処理で肯定的な判断を行う。この場合、第1スリップ制御部441は、車両10が加速している状態であると判定して、ステップS24の処理として、車体速Vbから以下の式f4に基づいて目標スリップ速度Vcmdを演算する。 The first slip control unit 441 determines whether the first basic braking/driving torque Ta satisfies "Ta>0" as a process in step S23 following step S22. If the first basic braking/driving torque Ta satisfies "Ta>0", the first slip control unit 441 makes an affirmative determination in the process of step S23. In this case, the first slip control unit 441 determines that the vehicle 10 is in an accelerating state, and calculates a target slip speed Vcmd from the vehicle body speed Vb based on the following formula f4 as processing in step S24. .
 Vcmd=(1+α)×Vb (f4)
 式f4において、所定値αは右駆動輪22Rの目標スリップ率に基づいて予め設定されている。例えば右駆動輪22Rがスリップした際の目標スリップ率が3%に設定されている場合、所定値αは「0.03」に設定される。
Vcmd=(1+α)×Vb (f4)
In formula f4, the predetermined value α is set in advance based on the target slip ratio of the right drive wheel 22R. For example, when the target slip rate when the right drive wheel 22R slips is set to 3%, the predetermined value α is set to "0.03".
 第1スリップ制御部441は、ステップS23の処理において、第1基本制駆動トルクTaが「Ta>0」を満たしていない場合には、ステップS23の処理で否定的な判断を行う。この場合、第1スリップ制御部441は、車両10が減速している状態であると判定して、ステップS25の処理として、以下の式f5に基づいて目標スリップ速度Vcmdを演算する。 If the first basic braking/driving torque Ta does not satisfy "Ta>0" in the process of step S23, the first slip control unit 441 makes a negative determination in the process of step S23. In this case, the first slip control unit 441 determines that the vehicle 10 is decelerating, and calculates the target slip speed Vcmd based on the following equation f5 as the process of step S25.
 Vcmd=(1-α)×Vb (f5)
 第1スリップ制御部441は、ステップS23の処理又はステップS24の処理を行った後、続くステップS26の処理として、第1スリップトルクTsRを演算する。具体的には、第1スリップ制御部441は、ステップS23の処理又はステップS24の処理で演算された目標スリップ速度Vcmdと右駆動輪速VRとの偏差に基づくPIフィードバック制御により第1スリップトルクTsRを演算する。すなわち、第1スリップ制御部441は、目標スリップ速度Vcmd及び右駆動輪速VRから以下の式f6に基づいて速度偏差eVを演算する。
Vcmd=(1-α)×Vb (f5)
After performing the process of step S23 or the process of step S24, the first slip control unit 441 calculates the first slip torque TsR as a process of subsequent step S26. Specifically, the first slip control unit 441 controls the first slip torque TsR by PI feedback control based on the deviation between the target slip speed Vcmd calculated in the process of step S23 or the process of step S24 and the right drive wheel speed VR. Calculate. That is, the first slip control unit 441 calculates the speed deviation eV from the target slip speed Vcmd and the right drive wheel speed VR based on the following equation f6.
 eV=Vcmd-VR (f6)
 続いて、第1スリップ制御部441は、演算された速度偏差eVから以下の式f7に基づいて第1スリップトルクTsRを演算する。
 TsR=Kp×eV+Ki×∫eV (f7)
 式f7において、「Kp」及び「Ki」は、予め設定されている所定の比例ゲイン及び積分ゲインである。
eV=Vcmd-VR (f6)
Next, the first slip control unit 441 calculates the first slip torque TsR from the calculated speed deviation eV based on the following equation f7.
TsR=Kp×eV+Ki×∫eV (f7)
In formula f7, "Kp" and "Ki" are predetermined proportional gains and integral gains that are set in advance.
 なお、第1スリップ制御部441は、第1スリップトルクTsRを以下の式f8に基づいて下限値Tminから上限値Tmaxの範囲に制限する。
 Tmin<TsR<Tmax (f8)
 下限値Tmin及び上限値Tmaxは予め設定されている。下限値Tminとしては、例えばインホイールモータ30Rのモータジェネレータ31Rから出力することが可能な最大制動トルクが用いられる。上限値Tmaxとしては、例えばインホイールモータ30Rのモータジェネレータ31Rから出力することが可能な最大駆動トルクが用いられる。
Note that the first slip control unit 441 limits the first slip torque TsR to a range from a lower limit value Tmin to an upper limit value Tmax based on the following equation f8.
Tmin<TsR<Tmax (f8)
The lower limit value Tmin and the upper limit value Tmax are set in advance. As the lower limit Tmin, for example, the maximum braking torque that can be output from the motor generator 31R of the in-wheel motor 30R is used. As the upper limit Tmax, for example, the maximum drive torque that can be output from the motor generator 31R of the in-wheel motor 30R is used.
 第1スリップ制御部441は、ステップS26に続くステップS27の処理として、第1基本制駆動トルクTaが第1スリップトルクTsR以上であるか否かを判断する。第1スリップ制御部441は、第1基本制駆動トルクTaが第1スリップトルクTsR以上である場合、ステップS27の処理で肯定的な判断を行って、ステップS28の処理として、右駆動輪速VRと車体速Vbとの偏差|VR-Vb|を演算して、「|VR-Vb|≦Vth11」を満たしている状態が所定時間だけ継続しているか否かを判断する。所定値Vth11は、右駆動輪22Rのスリップ状態が収束したか否かを判定するための判定値であって、例えば「0[km/h]」に設定される。なお、所定値Vth11と、ステップS20の処理で用いられる所定値Vth10とは同一の値であってもよい。所定時間は例えば「1[sec]」に設定される。 The first slip control unit 441 determines whether the first basic braking/driving torque Ta is greater than or equal to the first slip torque TsR as processing in step S27 following step S26. If the first basic braking/driving torque Ta is greater than or equal to the first slip torque TsR, the first slip control unit 441 makes an affirmative determination in the process of step S27, and adjusts the right drive wheel speed VR as the process of step S28. The deviation |VR-Vb| between the vehicle speed Vb and the vehicle speed Vb is calculated, and it is determined whether the condition that "|VR-Vb|≦Vth11" continues for a predetermined period of time. The predetermined value Vth11 is a determination value for determining whether the slip state of the right drive wheel 22R has converged, and is set to, for example, "0 [km/h]". Note that the predetermined value Vth11 and the predetermined value Vth10 used in the process of step S20 may be the same value. The predetermined time is set to "1 [sec]", for example.
 第1スリップ制御部441は、ステップS28の処理で否定的な判断を行った場合には、右駆動輪22Rのスリップ状態が収束していないと判定して、図8に示される処理を一旦終了する。この場合、第1スリップ抑制制御が継続される。
 第1スリップ抑制制御が継続されることにより、右駆動輪速VRと車体速Vbとの偏差|VR-Vb|が小さくなると、偏差|VR-Vb|が「|VR-Vb|<Vth10」を満たすようになる。この場合、第1スリップ制御部441は、ステップS20の処理で否定的な判断を行って、続くステップS29の処理として、スリップ制御フラグXslipが「0」に設定されるか否かを判断する。この段階ではスリップ制御フラグXslipが「1」に設定されているため、第1スリップ制御部441は、ステップS29の処理で否定的な判断を行って、ステップS23以降の処理を実行する。
If the first slip control unit 441 makes a negative determination in the process of step S28, it determines that the slip state of the right drive wheel 22R has not converged, and temporarily ends the process shown in FIG. do. In this case, the first slip suppression control is continued.
By continuing the first slip suppression control, when the deviation |VR-Vb| between the right drive wheel speed VR and the vehicle body speed Vb becomes smaller, the deviation |VR-Vb| becomes "|VR-Vb|<Vth10". Become satisfied. In this case, the first slip control unit 441 makes a negative determination in the process of step S20, and determines whether the slip control flag Xslip is set to "0" in the subsequent process of step S29. Since the slip control flag Xslip is set to "1" at this stage, the first slip control unit 441 makes a negative determination in the process of step S29 and executes the processes from step S23 onwards.
 その後、第1スリップ抑制制御が更に継続されて、右駆動輪速VRと車体速Vbとの偏差|VR-Vb|が「|VR-Vb|≦Vth11」を満たしている状態が所定時間だけ継続すると、第1スリップ制御部441は、ステップS28の処理で肯定的な判断を行う。この場合、第1スリップ制御部441は、右駆動輪22Rのスリップ状態が収束したと判定して、ステップS30の処理として第1スリップ抑制制御を終了した後、ステップS31の処理としてスリップ制御フラグXslipを「0」に設定する。 Thereafter, the first slip suppression control is further continued, and the state in which the deviation |VR-Vb| between the right drive wheel speed VR and the vehicle body speed Vb satisfies "|VR-Vb|≦Vth11" continues for a predetermined time. Then, the first slip control unit 441 makes an affirmative determination in step S28. In this case, the first slip control unit 441 determines that the slip state of the right drive wheel 22R has converged, and after completing the first slip suppression control as the process in step S30, sets the slip control flag Xslip as the process in step S31. Set to "0".
 なお、第1スリップ制御部441は、ステップS31の処理において、第2スリップ制御部442が第2スリップ抑制制御を実行している場合には、スリップ制御フラグXslipを「1」に維持する。これに対して、第1スリップ制御部441は、第2スリップ制御部442が第2スリップ抑制制御を実行していない場合には、スリップ制御フラグXslipを「0」に維持する。これにより、スリップ制御フラグXslipは、第1スリップ抑制制御及び第2スリップ抑制制御のいずれか一方が実行されている場合には「1」に設定され、それらの両方が実行されていない場合には「0」に設定されることになる。 Note that in the process of step S31, the first slip control unit 441 maintains the slip control flag Xslip at “1” when the second slip control unit 442 is executing the second slip suppression control. On the other hand, the first slip control section 441 maintains the slip control flag Xslip at "0" when the second slip control section 442 is not executing the second slip suppression control. As a result, the slip control flag Xslip is set to "1" when either the first slip suppression control or the second slip suppression control is executed, and when both of them are not executed It will be set to "0".
 第1スリップ制御部441は、ステップS21の処理で第1スリップ抑制制御を開始した後、ステップS30の処理で第1スリップ抑制制御を終了するまでの期間、第1スリップ抑制制御を継続して実行する。
 第1スリップ制御部441は、右駆動輪22Rのスリップ状態が収束していない場合であっても、ステップS27の処理で否定的な判断を行った場合には、すなわち第1基本制駆動トルクTaが第1スリップトルクTsR未満になった場合には、ステップS30の処理として第1スリップ抑制制御を終了した後、ステップS31の処理を実行する。第1基本制駆動トルクTaが第1スリップトルクTsR未満になれば、第1基本制駆動トルクTaに基づいて第1目標制駆動トルクTR*を設定したとしても、スリップを生じさせるような制駆動トルクが右駆動輪22Rに付与されることはない。そのため、第1基本制駆動トルクTaが第1スリップトルクTsR未満になった場合には、第1スリップ制御部441は第1スリップ抑制制御を終了する。
The first slip control unit 441 continuously executes the first slip suppression control for a period after starting the first slip suppression control in the process of step S21 until ending the first slip suppression control in the process of step S30. do.
Even if the slip state of the right drive wheel 22R has not converged, the first slip control unit 441 controls the first basic braking/driving torque Ta if a negative determination is made in the process of step S27. If the torque becomes less than the first slip torque TsR, the first slip suppression control is finished as the process in step S30, and then the process in step S31 is executed. If the first basic braking/driving torque Ta becomes less than the first slip torque TsR, even if the first target braking/driving torque TR* is set based on the first basic braking/driving torque Ta, the braking/driving that causes slip will occur. No torque is applied to the right drive wheel 22R. Therefore, when the first basic braking/driving torque Ta becomes less than the first slip torque TsR, the first slip control section 441 ends the first slip suppression control.
 ステップS31の処理を通じてスリップ制御フラグXslipが「0」に設定されると、その後に第1スリップ制御部441が図8に示される処理を実行した際に、第1スリップ制御部441はステップS29の処理で肯定的な判断を行う。この場合、第1スリップ制御部441は、ステップS32の処理として、第1基本制駆動トルクTaが「Ta>0」を満たしているか否かを判断する。第1スリップ制御部441は、第1基本制駆動トルクTaが「Ta>0」を満たしている場合には、ステップS32の処理で肯定的な判断を行う。この場合、第1スリップ制御部441は、車両10が加速している状態であると判定して、ステップS33の処理として、第1スリップトルクTsRを上限値Tmaxに設定する。一方、第1スリップ制御部441は、第1基本制駆動トルクTaが「Ta>0」を満たしていない場合には、ステップS32の処理で否定的な判断を行う。この場合、第1スリップ制御部441は、車両10が減速している状態であると判定して、ステップS34の処理として、第1スリップトルクTsRを下限値Tminに設定する。ステップS33の処理及びステップS34の処理は、第1スリップ抑制制御が実行されていない時に第1スリップトルクTsRが第1目標制駆動トルクTR*の演算に用いられることを回避するために実行される。第1スリップ制御部441は、ステップS33の処理又はステップS34の処理を実行した後、図8に示される処理を終了する。 When the slip control flag Xslip is set to "0" through the process in step S31, when the first slip control section 441 subsequently executes the process shown in FIG. Make a positive judgment in processing. In this case, the first slip control unit 441 determines whether the first basic braking/driving torque Ta satisfies "Ta>0" as the process of step S32. If the first basic braking/driving torque Ta satisfies "Ta>0", the first slip control unit 441 makes an affirmative determination in the process of step S32. In this case, the first slip control unit 441 determines that the vehicle 10 is in an accelerating state, and sets the first slip torque TsR to the upper limit value Tmax as processing in step S33. On the other hand, if the first basic braking/driving torque Ta does not satisfy "Ta>0", the first slip control unit 441 makes a negative determination in the process of step S32. In this case, the first slip control unit 441 determines that the vehicle 10 is decelerating, and sets the first slip torque TsR to the lower limit value Tmin in step S34. The process in step S33 and the process in step S34 are performed to avoid using the first slip torque TsR for calculating the first target braking/driving torque TR* when the first slip suppression control is not being executed. . After the first slip control unit 441 executes the process of step S33 or the process of step S34, it ends the process shown in FIG.
 上述の通り、図5に示される第2スリップ制御部442は、左駆動輪22Lに対して、図8に示される処理と同一の処理を実行する。本実施形態では、右駆動輪22Rのスリップ抑制制御と左駆動輪22Lのスリップ抑制制御とが、第1スリップ制御部441及び第2スリップ制御部442により独立してそれぞれ実行される。 As described above, the second slip control unit 442 shown in FIG. 5 executes the same process as the process shown in FIG. 8 on the left drive wheel 22L. In this embodiment, the slip suppression control for the right drive wheel 22R and the slip suppression control for the left drive wheel 22L are independently executed by the first slip control section 441 and the second slip control section 442, respectively.
 ところで、右駆動輪22R及び左駆動輪22Lのいずれか一方でスリップ抑制制御が実行されることにより制駆動トルクが制限された場合、他方の駆動輪に関しても制駆動トルクを制限しなければ車両10の走行状態を適切に維持することができない。例えば、路面摩擦係数が低い路面である低μ路に右駆動輪22Rが接地しており、且つ路面摩擦係数が高い路面である高μ路に左駆動輪22Lが接地しているような状況で右駆動輪22Rがスリップした場合、右駆動輪22Rの駆動トルクのみを制限すると、右駆動輪22Rの駆動トルクが左駆動輪22Lの駆動トルクよりも小さくなるため、意図せずに車両10が右方向D3に旋回することになる。これを回避するためには、スリップ抑制制御により右駆動輪22Rの駆動トルクが制限された場合には、左駆動輪22Lの駆動トルクも同様に制限する必要がある。換言すれば、低μ路に接地している駆動輪の制駆動トルクに基づいて、高μ路に湿地している駆動輪の制駆動トルクを制限する必要がある。また、このような状況で車両10を更に旋回させるためには、駆動輪22R,22Lの両方の駆動トルクを制限している状態を維持しつつ、駆動輪22R,22Lのそれぞれの制駆動トルクに偏差を生じさせる必要がある。 By the way, when the braking/driving torque is limited by executing slip suppression control on either the right drive wheel 22R or the left drive wheel 22L, the vehicle 10 must be limited in the braking/driving torque for the other drive wheel as well. It is not possible to maintain the running condition of the vehicle properly. For example, in a situation where the right drive wheel 22R is in contact with a low-μ road, which is a road surface with a low road surface friction coefficient, and the left drive wheel 22L is in contact with a high-μ road, which is a road surface with a high road surface friction coefficient. When the right drive wheel 22R slips, if only the drive torque of the right drive wheel 22R is limited, the drive torque of the right drive wheel 22R becomes smaller than the drive torque of the left drive wheel 22L, so the vehicle 10 may unintentionally slide to the right. The vehicle will turn in direction D3. In order to avoid this, when the drive torque of the right drive wheel 22R is limited by the slip suppression control, it is necessary to similarly limit the drive torque of the left drive wheel 22L. In other words, it is necessary to limit the braking/driving torque of the driving wheels that are in contact with the high μ road based on the braking/driving torque of the driving wheels that are in contact with the low μ road. In addition, in order to further turn the vehicle 10 in such a situation, while maintaining the state in which the drive torque of both the drive wheels 22R and 22L is limited, the braking/driving torque of each of the drive wheels 22R and 22L is changed. It is necessary to create a deviation.
 以上のような駆動輪22R,22Lのそれぞれの制駆動トルクを実現するための処理として、トルク分配部440は、図9に示される処理を実行する。なお、トルク分配部440は、車両10が起動している期間、図9に示される処理を所定の周期で繰り返し実行する。 The torque distribution unit 440 executes the process shown in FIG. 9 as a process to realize the braking/driving torque for each of the drive wheels 22R, 22L as described above. Note that the torque distribution unit 440 repeatedly executes the process shown in FIG. 9 at a predetermined cycle while the vehicle 10 is running.
 図9に示されるように、トルク分配部440は、まず、ステップS40の処理として、第1基本制駆動トルクTaが「Ta>0」を満たしているか否かを判断する。トルク分配部440は、第1基本制駆動トルクTaが「Ta>0」を満たしている場合には、ステップS40の処理で肯定的な判断を行う。この場合、トルク分配部440は、車両10が加速している状態であると判定して、ステップS41の処理として、選択部412により演算される第3基本制駆動トルクTc、第1スリップトルクTsR、及び第2スリップトルクTsLから以下の式f9に基づいて第4基本制駆動トルクTdを演算する。 As shown in FIG. 9, the torque distribution unit 440 first determines whether the first basic braking/driving torque Ta satisfies "Ta>0" as the process of step S40. If the first basic braking/driving torque Ta satisfies "Ta>0", the torque distribution unit 440 makes an affirmative determination in the process of step S40. In this case, the torque distribution unit 440 determines that the vehicle 10 is in an accelerating state, and as a process of step S41, the third basic braking/driving torque Tc and the first slip torque TsR calculated by the selection unit 412 are , and the second slip torque TsL, the fourth basic braking/driving torque Td is calculated based on the following equation f9.
 Td=MIN(Tc,TsR,TsL) (f9)
 すなわち、トルク分配部440は、第3基本制駆動トルクTc、第1スリップトルクTsR、及び第2スリップトルクTsLのうち、最も小さいものを第4基本制駆動トルクTdに設定する。
Td=MIN(Tc, TsR, TsL) (f9)
That is, the torque distribution unit 440 sets the smallest one among the third basic braking/driving torque Tc, the first slip torque TsR, and the second slip torque TsL as the fourth basic braking/driving torque Td.
 トルク分配部440は、ステップS41に続くステップS42の処理として、スリップ制御フラグXslipが「0」に設定されているか否かを判断する。トルク分配部440は、スリップ制御フラグXslipが「0」に設定されている場合、すなわち第1スリップ抑制制御及び第2スリップ抑制制御が共に実行されていない場合には、ステップS42の処理で肯定的な判断を行う。この場合、トルク分配部440は、ステップS51の処理として、以下の式f10,f11に基づいて第1目標制駆動トルクTR*及び第2目標制駆動トルクTL*を設定する。 In step S42 following step S41, the torque distribution unit 440 determines whether the slip control flag Xslip is set to "0". When the slip control flag Xslip is set to "0", that is, when both the first slip suppression control and the second slip suppression control are not executed, the torque distribution unit 440 determines that the result is positive in the process of step S42. make judgments. In this case, the torque distribution unit 440 sets the first target braking/driving torque TR* and the second target braking/driving torque TL* based on the following equations f10 and f11 as the process of step S51.
 TR*=Td+ΔTcR (f10)
 TL*=Td+ΔTcL (f11)
 第1スリップ抑制制御及び第2スリップ抑制制御が共に実行されていない場合、図8に示されるステップS33の処理により第1スリップトルクTsR及び第2スリップトルクTsLは上限値Tmaxに設定されている。したがって、ステップS41の処理において第4基本制駆動トルクTdは第3基本制駆動トルクTcに設定される。結果的に、ステップS51の処理では、第1目標制駆動トルクTR*が「Tc+ΔTcR」に設定され、第2目標制駆動トルクTL*が「Tc+ΔTcL」に設定されることになる。すなわち、トルク分配部440は、上述した通常の設定手順で目標制駆動トルクTR*,TL*を設定する。
TR*=Td+ΔTcR (f10)
TL*=Td+ΔTcL (f11)
When both the first slip suppression control and the second slip suppression control are not executed, the first slip torque TsR and the second slip torque TsL are set to the upper limit value Tmax by the process of step S33 shown in FIG. Therefore, in the process of step S41, the fourth basic braking/driving torque Td is set to the third basic braking/driving torque Tc. As a result, in the process of step S51, the first target braking/driving torque TR* is set to "Tc+ΔTcR", and the second target braking/driving torque TL* is set to "Tc+ΔTcL". That is, the torque distribution unit 440 sets the target braking/driving torques TR*, TL* using the normal setting procedure described above.
 一方、トルク分配部440は、スリップ制御フラグXslipが「1」に設定されている場合、すなわち第1スリップ抑制制御及び第2スリップ抑制制御のいずれか一方が実行されている場合には、ステップS42の処理で否定的な判断を行う。この場合、トルク分配部440は、ステップS43の処理として、第4基本制駆動トルクTdが第2スリップトルクTsLと一致しているか否かを判断する。 On the other hand, when the slip control flag Make a negative judgment in the process. In this case, the torque distribution unit 440 determines whether the fourth basic braking/driving torque Td matches the second slip torque TsL as processing in step S43.
 例えば、左駆動輪22Lに対して第2スリップ抑制制御が実行されている場合、第2スリップトルクTsLは第3基本制駆動トルクTc及び第1スリップトルクTsRよりも小さい値となる。したがって、ステップS41の処理において第4基本制駆動トルクTdが第2スリップトルクTsLに設定される。結果的に、トルク分配部440はステップS43の処理で肯定的な判断を行う。この場合、トルク分配部440は、左駆動輪22Lに対して第2スリップ抑制制御が実行されている状況であると判定して、ステップS44の処理として、以下の式f12,f13に基づいて第1目標制駆動トルクTR*及び第2目標制駆動トルクTL*を設定する。 For example, when the second slip suppression control is executed for the left drive wheel 22L, the second slip torque TsL has a value smaller than the third basic braking/driving torque Tc and the first slip torque TsR. Therefore, in the process of step S41, the fourth basic braking/driving torque Td is set to the second slip torque TsL. As a result, the torque distribution unit 440 makes a positive determination in the process of step S43. In this case, the torque distribution unit 440 determines that the second slip suppression control is being executed for the left drive wheel 22L, and performs the second slip suppression control based on the following equations f12 and f13 as the process of step S44. A first target braking/driving torque TR* and a second target braking/driving torque TL* are set.
 TR*=Td-|ΔTcR|-|ΔTcL| (f12)
 TL*=TsL (f13)
 このように、左駆動輪22Lに対して第2スリップ抑制制御が実行されている場合には、左駆動輪22Lの第2目標制駆動トルクTL*が第2スリップトルクTsLに制限される。一方、スリップしていない右駆動輪22Rの第1目標制駆動トルクTR*は、第4基本制駆動トルクTdから右駆動輪補正トルクの絶対値|ΔTcR|及び左駆動輪補正トルクの絶対値|TcL|を減算した値に設定される。第4基本制駆動トルクTdが第2スリップトルクTsLに設定されていることを考慮すると、右駆動輪22Rの第1目標制駆動トルクTR*も第2スリップトルクTsL以下に制限されることになる。
TR*=Td-|ΔTcR|-|ΔTcL| (f12)
TL*=TsL (f13)
In this manner, when the second slip suppression control is performed on the left drive wheel 22L, the second target braking/driving torque TL* of the left drive wheel 22L is limited to the second slip torque TsL. On the other hand, the first target braking/driving torque TR* of the non-slip right driving wheel 22R is calculated from the fourth basic braking/driving torque Td by the absolute value of the right driving wheel correction torque |ΔTcR| and the absolute value of the left driving wheel correction torque | It is set to a value obtained by subtracting TcL|. Considering that the fourth basic braking/driving torque Td is set to the second slip torque TsL, the first target braking/driving torque TR* of the right drive wheel 22R is also limited to the second slip torque TsL or less. .
 一方、右駆動輪22Rに対して第1スリップ抑制制御が実行されている場合、第1スリップトルクTsRは第3基本制駆動トルクTc及び第2スリップトルクTsLよりも小さい値となる。したがって、ステップS41の処理において第4基本制駆動トルクTdが第1スリップトルクTsRに設定される。結果的に、トルク分配部440はステップS43の処理で否定的な判断を行う。この場合、トルク分配部440は、右駆動輪22Rに対して第1スリップ抑制制御が実行されている状況であると判定して、ステップS45の処理として、以下の式f14,f15に基づいて第1目標制駆動トルクTR*及び第2目標制駆動トルクTL*を設定する。 On the other hand, when the first slip suppression control is executed for the right drive wheel 22R, the first slip torque TsR has a value smaller than the third basic braking/driving torque Tc and the second slip torque TsL. Therefore, in the process of step S41, the fourth basic braking/driving torque Td is set to the first slip torque TsR. As a result, the torque distribution unit 440 makes a negative determination in the process of step S43. In this case, the torque distribution unit 440 determines that the first slip suppression control is being executed for the right drive wheel 22R, and performs the first slip suppression control based on the following equations f14 and f15 as the process of step S45. A first target braking/driving torque TR* and a second target braking/driving torque TL* are set.
 TR*=TsR (f14)
 TL*=Td-|ΔTcR|-|ΔTcL| (f15)
 一方、トルク分配部440は、ステップS40の処理において、第1基本制駆動トルクTaが「Ta>0」を満たしていない場合には、ステップS40の処理で否定的な判断を行う。この場合、トルク分配部440は、車両10が減速している状況であると判定して、ステップS46~S51の処理を実行する。なお、ステップS46~S50の処理は、ステップS41~S45の処理を車両10の減速時に対応するように変更した処理であり、ステップS41~S45の処理と同一又は類似の処理であるため、それらの詳細な説明は割愛する。
TR*=TsR (f14)
TL*=Td-|ΔTcR|-|ΔTcL| (f15)
On the other hand, if the first basic braking/driving torque Ta does not satisfy "Ta>0" in the process of step S40, the torque distribution unit 440 makes a negative determination in the process of step S40. In this case, the torque distribution unit 440 determines that the vehicle 10 is decelerating, and executes the processes of steps S46 to S51. Note that the processing in steps S46 to S50 is a modification of the processing in steps S41 to S45 to correspond to the deceleration of the vehicle 10, and is the same or similar to the processing in steps S41 to S45, A detailed explanation will be omitted.
 次に、本実施形態の動作例について説明する。
 車両10の駆動輪22R,22Lが共にスリップしていない状況で走行操作部60が前方向D1及び右方向D3の中間位置に操作された場合、右駆動輪22R及び左駆動輪22Lのそれぞれの駆動トルクは例えば図10(A)に示されるように設定される。まず、走行操作部60の前方向D1の操作量であるアクセル操作量S1に基づいて第3基本制駆動トルクTcが設定されるとともに、第4基本制駆動トルクTdとして第3基本制駆動トルクTcがそのまま用いられる。また、走行操作部60の左右方向操作量S34に基づいて右駆動輪補正トルクΔTcR及び左駆動輪補正トルクΔTcLが設定される。この場合、右駆動輪補正トルクΔTcRは負の値に設定される一方、左駆動輪補正トルクΔTcLは正の値に設定される。したがって、インホイールモータ30Rは、図10(A)に示されるように第3基本制駆動トルクTcに右駆動輪補正トルクΔTcRを加算したトルクを右駆動輪22Rに付与する。また、インホイールモータ30Lは、第3基本制駆動トルクTcに左駆動輪補正トルクΔTcLを加算したトルクを左駆動輪22Lに付与する。結果的に、右駆動輪22Rに付与されるトルクよりも、左駆動輪22Lに付与されるトルクの方が小さくなるため、車両10が右方向D3に旋回する。
Next, an example of the operation of this embodiment will be described.
When the drive operation unit 60 is operated to an intermediate position between the forward direction D1 and the right direction D3 in a situation where neither of the drive wheels 22R and 22L of the vehicle 10 is slipping, the right drive wheel 22R and the left drive wheel 22L are driven respectively. The torque is set, for example, as shown in FIG. 10(A). First, the third basic braking/driving torque Tc is set based on the accelerator operation amount S1 which is the operating amount in the forward direction D1 of the traveling operation unit 60, and the third basic braking/driving torque Tc is set as the fourth basic braking/driving torque Td. is used as is. Furthermore, the right driving wheel correction torque ΔTcR and the left driving wheel correction torque ΔTcL are set based on the left and right direction operation amount S34 of the travel operation unit 60. In this case, the right driving wheel correction torque ΔTcR is set to a negative value, while the left driving wheel correction torque ΔTcL is set to a positive value. Therefore, the in-wheel motor 30R applies a torque obtained by adding the right driving wheel correction torque ΔTcR to the third basic braking/driving torque Tc to the right driving wheel 22R, as shown in FIG. 10(A). Further, the in-wheel motor 30L applies a torque obtained by adding the left drive wheel correction torque ΔTcL to the third basic braking/driving torque Tc to the left drive wheel 22L. As a result, the torque applied to the left drive wheel 22L becomes smaller than the torque applied to the right drive wheel 22R, so the vehicle 10 turns in the right direction D3.
 一方、走行操作部60が前方向D1及び右方向D3の中間位置に操作されている状況で車両10の左駆動輪22Lがスリップした場合、右駆動輪22R及び左駆動輪22Lのそれぞれの駆動トルクは例えば図10(B)に示されるように設定される。まず、走行操作部60の前方向D1の操作量であるアクセル操作量S1に基づいて第3基本制駆動トルクTcが設定される。また、左駆動輪22Lがスリップしているため、左駆動輪22Lのスリップを抑制することが可能な第2スリップトルクTsLが設定される。この場合、第3基本制駆動トルクTcよりも第2スリップトルクTsLの方が小さければ、第4基本制駆動トルクTdが第2スリップトルクTsLに設定される。また、走行操作部60の左右方向操作量S34に基づいて右駆動輪補正トルクΔTcR及び左駆動輪補正トルクΔTcLが設定される。この場合、右駆動輪補正トルクΔTcRは負の値に設定される一方、左駆動輪補正トルクΔTcLは正の値に設定される。以上により、インホイールモータ30Lは、図10(B)に示されるように第2スリップトルクTsLを左駆動輪22Lに付与する。また、インホイールモータ30Rは、第2スリップトルクTsLから「|ΔTcR|+|ΔTcL|」を減算したトルク「TsL-|ΔTcR|-|ΔTcL|」を右駆動輪22Rに付与する。結果的に、左駆動輪22Lのスリップが抑制されつつ、車両10が右方向D3に旋回する。 On the other hand, if the left drive wheel 22L of the vehicle 10 slips in a situation where the travel operation unit 60 is operated to an intermediate position between the forward direction D1 and the right direction D3, the drive torque of each of the right drive wheel 22R and the left drive wheel 22L is set, for example, as shown in FIG. 10(B). First, the third basic braking/driving torque Tc is set based on the accelerator operation amount S1, which is the operation amount of the driving operation section 60 in the forward direction D1. Furthermore, since the left drive wheel 22L is slipping, a second slip torque TsL that can suppress the slip of the left drive wheel 22L is set. In this case, if the second slip torque TsL is smaller than the third basic braking/driving torque Tc, the fourth basic braking/driving torque Td is set to the second slip torque TsL. Furthermore, the right driving wheel correction torque ΔTcR and the left driving wheel correction torque ΔTcL are set based on the left and right direction operation amount S34 of the travel operation unit 60. In this case, the right driving wheel correction torque ΔTcR is set to a negative value, while the left driving wheel correction torque ΔTcL is set to a positive value. As a result of the above, the in-wheel motor 30L applies the second slip torque TsL to the left drive wheel 22L, as shown in FIG. 10(B). Further, the in-wheel motor 30R applies a torque “TsL−|ΔTcR|−|ΔTcL|” obtained by subtracting “|ΔTcR|+|ΔTcL|” from the second slip torque TsL to the right drive wheel 22R. As a result, the vehicle 10 turns in the right direction D3 while the slip of the left drive wheel 22L is suppressed.
 以上説明した本実施形態のEVECU40によれば、以下の(1)~(6)に示される作用及び効果を得ることができる。
 (1)EVECU40は、インホイールモータ30R及びインホイールモータ30Lを制御するトルク制御部44を備える。トルク制御部44は、インホイールモータ30R,30Lから右駆動輪22R及び左駆動輪22Lにそれぞれ付与される制駆動トルクを制御することにより車両10の旋回、前後進、及びスリップ抑制を行う。この構成によれば、電動パワーステアリング装置や制動装置を用いることなく車両10の旋回、前後進、及びスリップ抑制を実現できるため、車両10の構造を簡素化することができるとともにロバスト性を確保することができる。
According to the EVECU 40 of the present embodiment described above, the functions and effects shown in (1) to (6) below can be obtained.
(1) The EVECU 40 includes a torque control section 44 that controls the in-wheel motor 30R and the in-wheel motor 30L. The torque control unit 44 controls the braking/driving torques applied from the in- wheel motors 30R, 30L to the right drive wheel 22R and left drive wheel 22L, respectively, thereby controlling turning, forward/backward movement, and slippage of the vehicle 10. According to this configuration, turning, forward/backward movement, and slip suppression of the vehicle 10 can be realized without using an electric power steering device or a braking device, so that the structure of the vehicle 10 can be simplified and robustness can be ensured. be able to.
 (2)トルク制御部44は、右駆動輪22Rのスリップ率を所定の目標スリップ率にするために右駆動輪22Rに付与すべき制駆動トルクである第1スリップトルクTsR、及び左駆動輪22Lのスリップ率を所定の目標スリップ率にするために左駆動輪22Lに付与すべき制駆動トルクである第2スリップトルクTsLを演算する。トルク制御部44は、右駆動輪22Rが左駆動輪22Lよりも路面摩擦係数が低い路面に接地している場合、右駆動輪22Rのスリップを抑制する制御として、第1スリップトルクTsRに基づいて右駆動輪22Rの第1制駆動トルクを制御する第1スリップ抑制制御を実行するとともに、第1スリップトルクに基づいて左駆動輪22Lの第2制駆動トルクを制限する。トルク制御部44は、左駆動輪22Lが右駆動輪22Rよりも路面摩擦係数が低い路面に接地している場合、左駆動輪22Lのスリップを抑制する制御として、第2スリップトルクTsLに基づいて左駆動輪22Lの第2制駆動トルクを制御する第2スリップ抑制制御を実行するとともに、第2スリップトルクに基づいて右駆動輪22Rの第1制駆動トルクを制限する。トルク制御部44は、第1スリップ抑制制御を実行している場合、第1スリップトルクTsRに基づいて各駆動輪22R,22Lの制駆動トルクを制限しつつ、第1制駆動トルクの絶対値と第2制駆動トルクの絶対値とに偏差が生じるようにインホイールモータ30R,30Lをそれぞれ制御して車両10を旋回させる。トルク制御部44は、第2スリップ抑制制御を実行している場合、第2スリップトルクTsLに基づいて各駆動輪22R,22Lの制駆動トルクを制限しつつ、第1制駆動トルクの絶対値と第2制駆動トルクの絶対値とに偏差が生じるようにインホイールモータ30R,30Lをそれぞれ制御して車両10を旋回させる。この構成によれば、駆動輪22R,22Lのスリップを抑制しつつ車両10を旋回させることが可能となる。 (2) The torque control unit 44 generates a first slip torque TsR, which is a braking/driving torque to be applied to the right drive wheel 22R in order to make the slip rate of the right drive wheel 22R a predetermined target slip rate, and the left drive wheel 22L. A second slip torque TsL, which is a braking/driving torque to be applied to the left driving wheel 22L, is calculated in order to make the slip ratio of the left drive wheel 22L a predetermined target slip ratio. When the right drive wheel 22R is in contact with a road surface having a lower coefficient of road friction than the left drive wheel 22L, the torque control unit 44 performs control based on the first slip torque TsR to suppress the slip of the right drive wheel 22R. First slip suppression control is executed to control the first braking/driving torque of the right driving wheel 22R, and the second braking/driving torque of the left driving wheel 22L is limited based on the first slip torque. When the left drive wheel 22L is in contact with a road surface having a lower coefficient of road friction than the right drive wheel 22R, the torque control unit 44 controls the slip of the left drive wheel 22L based on the second slip torque TsL. The second slip suppression control that controls the second braking/driving torque of the left driving wheel 22L is executed, and the first braking/driving torque of the right driving wheel 22R is limited based on the second slip torque. When the first slip suppression control is being executed, the torque control unit 44 limits the braking/driving torque of each drive wheel 22R, 22L based on the first slip torque TsR, while controlling the absolute value of the first braking/driving torque. The vehicle 10 is turned by controlling the in- wheel motors 30R and 30L, respectively, so that a deviation occurs between the absolute value of the second braking and driving torque. When the second slip suppression control is being executed, the torque control unit 44 limits the braking/driving torque of each drive wheel 22R, 22L based on the second slip torque TsL, while controlling the absolute value of the first braking/driving torque. The vehicle 10 is turned by controlling the in- wheel motors 30R and 30L, respectively, so that a deviation occurs between the absolute value of the second braking and driving torque. According to this configuration, it is possible to turn the vehicle 10 while suppressing slips of the drive wheels 22R and 22L.
 (3)EVECU40は、基本制駆動トルク設定部41と、トルク偏差設定部43とを備える。基本制駆動トルク設定部41は、車両10を加速又は減速させるために車両10に対して行われるアクセル操作量S1及びブレーキ操作量S2に基づいて第3基本制駆動トルクTcを設定する。トルク偏差設定部43は、車両10を旋回させるために車両10に対して行われる左右方向操作量S34に基づいて補正トルクΔTcR,ΔTcLを設定する。トルク制御部44は、第1スリップ抑制制御及び第2スリップ抑制制御を共に実行していない場合、上記の式f10,f11に基づいて、第3基本制駆動トルクTcに対して所定値を加算する補正を行うことにより第1目標制駆動トルクTR*及び第2目標制駆動トルクTL*のいずれか一方を設定するとともに、第3基本制駆動トルクTcに対して所定値を減算する補正を行うことにより第1目標制駆動トルクTR*及び第2目標制駆動トルクTL*のいずれか他方を設定する。トルク制御部44は、第1スリップ抑制制御が実行されている場合には、上記の式f14,f15に基づいて、第1目標制駆動トルクTR*を第1スリップトルクTsRに設定するとともに、第4基本制駆動トルクTdを補正トルクΔTcR,ΔTcLにより補正することにより得られる演算値に基づいて第2目標制駆動トルクTL*を設定する。トルク制御部44は、第2スリップ抑制制御が実行されている場合、上記の式f13,f14に基づいて、第2目標制駆動トルクTL*を第2スリップトルクTsLに設定するとともに、第4基本制駆動トルクTdを補正トルクΔTcR,ΔTcLにより補正することにより得られる演算値に基づいて第1目標制駆動トルクTR*を設定する。この構成によれば、車両10のスリップを抑制しつつ車両10の旋回が可能な第1目標制駆動トルクTR*及び第2目標制駆動トルクTL*を容易に設定することができる。 (3) The EVECU 40 includes a basic braking/driving torque setting section 41 and a torque deviation setting section 43. The basic braking/driving torque setting unit 41 sets the third basic braking/driving torque Tc based on the accelerator operation amount S1 and the brake operation amount S2 performed on the vehicle 10 in order to accelerate or decelerate the vehicle 10. The torque deviation setting unit 43 sets the correction torques ΔTcR and ΔTcL based on the left-right direction operation amount S34 performed on the vehicle 10 in order to turn the vehicle 10. When both the first slip suppression control and the second slip suppression control are not executed, the torque control unit 44 adds a predetermined value to the third basic braking/driving torque Tc based on the above equations f10 and f11. Setting either the first target braking/driving torque TR* or the second target braking/driving torque TL* by performing the correction, and also making a correction by subtracting a predetermined value from the third basic braking/driving torque Tc. The other of the first target braking/driving torque TR* and the second target braking/driving torque TL* is set. When the first slip suppression control is being executed, the torque control unit 44 sets the first target braking/driving torque TR* to the first slip torque TsR based on the above equations f14 and f15, and also sets the first target braking/driving torque TR* to the first slip torque TsR. The second target braking/driving torque TL* is set based on the calculated value obtained by correcting the four basic braking/driving torques Td using the correction torques ΔTcR and ΔTcL. When the second slip suppression control is being executed, the torque control unit 44 sets the second target braking/driving torque TL* to the second slip torque TsL based on the above equations f13 and f14, and also sets the fourth basic slip torque TsL. The first target braking/driving torque TR* is set based on the calculated value obtained by correcting the braking/driving torque Td using the correction torques ΔTcR and ΔTcL. According to this configuration, it is possible to easily set the first target braking/driving torque TR* and the second target braking/driving torque TL* that enable the vehicle 10 to turn while suppressing the slip of the vehicle 10.
 (4)トルク制御部44は、図9に示されるステップS41,S43の処理として、第4基本制駆動トルクTdが第2スリップトルクTsLと一致している場合、換言すれば第1スリップトルクTsRが第2スリップトルクTsLよりも小さいときには、右駆動輪22Rが左駆動輪22Lよりも路面摩擦係数が低い路面に接地していると判断して、ステップS44の処理を実行する。また、トルク制御部44は、図9に示されるステップS41,S43の処理として、第4基本制駆動トルクTdが第2スリップトルクTsLと一致していない場合、換言すれば第2スリップトルクTsLが第1スリップトルクTsRよりも小さいときには、左駆動輪22Lが右駆動輪22Rよりも路面摩擦係数が低い路面に接地していると判断して、ステップS45の処理を実行する。更に、トルク制御部44は、車両10が減速している場合、車両10が加速している場合と逆の判断基準で、左駆動輪22L及び右駆動輪22Rのいずれが路面摩擦係数の低い路面に接地しているかを判断する。この構成によれば、右駆動輪22R及び左駆動輪22Lのいずれが路面摩擦係数の低い路面に接地しているかを容易に判断することができる。 (4) As the processing in steps S41 and S43 shown in FIG. When is smaller than the second slip torque TsL, it is determined that the right drive wheel 22R is in contact with a road surface having a lower coefficient of road friction than the left drive wheel 22L, and the process of step S44 is executed. Furthermore, as the processing in steps S41 and S43 shown in FIG. When it is smaller than the first slip torque TsR, it is determined that the left drive wheel 22L is in contact with a road surface having a lower coefficient of road friction than the right drive wheel 22R, and the process of step S45 is executed. Furthermore, when the vehicle 10 is decelerating, the torque control unit 44 determines which of the left driving wheel 22L and the right driving wheel 22R is on a road surface with a low coefficient of road friction, using the opposite criteria for determining whether the vehicle 10 is decelerating or accelerating. Determine if it is grounded. According to this configuration, it is possible to easily determine which of the right drive wheel 22R and the left drive wheel 22L is in contact with a road surface having a low coefficient of road friction.
 (5)EVECU40は、右駆動輪速VR及び左駆動輪速VLの少なくとも一方に基づいて車体速Vbの推定値を演算する速度演算部42を備える。速度演算部42は、右駆動輪22R及び左駆動輪22Lが共にスリップしている場合には、図6及び上記の式f1に示されるように、車体11の加速度Aの積分値に基づいて車体速Vbを演算する。この構成によれば、車体11の速度を検出するセンサを設けることなく、右駆動輪速VR及び左駆動輪速VLを推定することが可能となる。 (5) The EVECU 40 includes a speed calculation unit 42 that calculates an estimated value of the vehicle speed Vb based on at least one of the right drive wheel speed VR and the left drive wheel speed VL. When both the right drive wheel 22R and the left drive wheel 22L are slipping, the speed calculation unit 42 calculates the speed of the vehicle body based on the integral value of the acceleration A of the vehicle body 11, as shown in FIG. 6 and the above equation f1. Calculate speed Vb. According to this configuration, it is possible to estimate the right drive wheel speed VR and the left drive wheel speed VL without providing a sensor for detecting the speed of the vehicle body 11.
 (6)速度演算部42は、車両10が加速している場合、図6のステップS12に示されるように、右駆動輪速VR、左駆動輪速VL、及び車体11の加速度Aの積算値から推定される車両10の速度のうち、最も小さいものを車体速Vbの推定値として用いる。また、速度演算部42は、車両10が減速している場合、右駆動輪速VR、左駆動輪速VL、及び車体11の加速度Aの積算値から推定される車両10の速度のうち、最も大きいものを車体速Vbの推定値として用いる。この構成によれば、より適切に車体速Vbを推定することができる。 (6) When the vehicle 10 is accelerating, the speed calculation unit 42 calculates the integrated value of the right drive wheel speed VR, the left drive wheel speed VL, and the acceleration A of the vehicle body 11, as shown in step S12 in FIG. Among the speeds of the vehicle 10 estimated from the above, the smallest one is used as the estimated value of the vehicle body speed Vb. In addition, when the vehicle 10 is decelerating, the speed calculation unit 42 calculates the speed of the vehicle 10 that is the highest among the speeds of the vehicle 10 estimated from the integrated value of the right drive wheel speed VR, the left drive wheel speed VL, and the acceleration A of the vehicle body 11. The larger one is used as the estimated value of the vehicle speed Vb. According to this configuration, the vehicle speed Vb can be estimated more appropriately.
 <第2実施形態>
 次に、EVECU40の第2実施形態について説明する。以下、第1実施形態のEVECU40との相違点を中心に説明する。
 第1実施形態の車両10では、図5に示される処理を実行するために、例えば右駆動輪速VRや左駆動輪速VLの情報が必要となる。そのため、図3に示される回転センサ34R,34Lに瞬断故障等の異常が生じると、右駆動輪速VRや左駆動輪速VL等を適切に検出することができなくなり、結果として図5に示される処理を適切に実行できなくなるおそれがある。
<Second embodiment>
Next, a second embodiment of the EVECU 40 will be described. Hereinafter, differences from the EVECU 40 of the first embodiment will be mainly explained.
In the vehicle 10 of the first embodiment, information on the right drive wheel speed VR and the left drive wheel speed VL, for example, is required to execute the process shown in FIG. Therefore, if an abnormality such as a momentary power failure occurs in the rotation sensors 34R and 34L shown in FIG. 3, it becomes impossible to appropriately detect the right drive wheel speed VR, left drive wheel speed VL, etc., and as a result, There is a risk that the indicated process may not be executed properly.
 そこで本実施形態では、何らかのセンサや装置等に異常が生じることにより図5に示される処理やスリップ抑制制御を適切に実行することができなくなった場合、あるいはそれらの処理や制御が実行不可能となった場合には、インホイールモータ30R,30Lの出力トルクを「0」にリセットすることにより車両10の安全を確保する。 Therefore, in this embodiment, if the process shown in FIG. 5 or the slip suppression control cannot be executed appropriately due to an abnormality occurring in some sensor or device, or if the process or control is impossible to execute, In this case, the safety of the vehicle 10 is ensured by resetting the output torque of the in- wheel motors 30R and 30L to "0".
 具体的には、本実施形態のトルク制御部44は図11に示される処理を実行する。なお、トルク制御部44は、車両10が起動している間、図11に示される処理を所定の周期で繰り返し実行する。
 図11に示されるように、トルク分配部440は、まず、ステップS60の処理として、スリップ制御フラグXslipが「1」であるか否かを判断する。トルク分配部440は、スリップ制御フラグXslipが「0」である場合、すなわち第1スリップ抑制制御及び第2スリップ抑制制御が共に実行されていない場合には、図11に示される処理を一旦終了する。
Specifically, the torque control unit 44 of this embodiment executes the process shown in FIG. 11. Note that the torque control unit 44 repeatedly executes the process shown in FIG. 11 at a predetermined cycle while the vehicle 10 is started.
As shown in FIG. 11, the torque distribution unit 440 first determines whether the slip control flag Xslip is "1" in step S60. When the slip control flag Xslip is "0", that is, when both the first slip suppression control and the second slip suppression control are not being executed, the torque distribution unit 440 temporarily ends the process shown in FIG. 11. .
 トルク分配部440は、ステップS60の処理において、スリップ制御フラグXslipが「1」である場合、すなわち第1スリップ抑制制御及び第2スリップ抑制制御のいずれか一方が実行されている場合には、ステップS61の処理として、車体11の目標ヨーレートY*と実ヨーレートYとの偏差の絶対値|Y*-Y|が所定値Ya以上である状態が所定時間以上継続しているか否かを判断する。スリップ抑制制御が実行されている状態で車両10が旋回する際、図5に示される処理が適切に実行されていれば、速度差演算部430が車体11の目標ヨーレートY*と実ヨーレートYとの偏差に基づくフィードバック制御を実行しているため、車体11の実ヨーレートYと目標ヨーレートY*との間には偏差が生じ難い。これに対して、車両10のセンサ等に異常が生じると、図5に示される処理が適切に実行されなくなるため、車両10の旋回が適切に行われず、結果として車体11の目標ヨーレートY*と実ヨーレートYとに偏差が生じ易くなる。 In the process of step S60, the torque distribution unit 440 performs step S60 when the slip control flag As a process in S61, it is determined whether the absolute value |Y*-Y| of the deviation between the target yaw rate Y* and the actual yaw rate Y of the vehicle body 11 continues to be greater than or equal to a predetermined value Ya for a predetermined time or longer. When the vehicle 10 turns while the slip suppression control is being executed, if the process shown in FIG. Since the feedback control is performed based on the deviation of , a deviation is unlikely to occur between the actual yaw rate Y of the vehicle body 11 and the target yaw rate Y*. On the other hand, if an abnormality occurs in a sensor or the like of the vehicle 10, the process shown in FIG. Deviation from the actual yaw rate Y is likely to occur.
 そこで、本実施形態のトルク分配部440は、偏差の絶対値|Y*-Y|が所定値Ya以上である状態が所定時間以上継続している場合には、すなわちステップS61の処理で肯定的な判定を行った場合には、センサ等の異常によりスリップ抑制制御を適切に実行できなくなったと判定する。この場合、スリップ制御部441、442は、ステップS62の処理として、スリップ抑制制御を中断する。すなわち、第1スリップ制御部441は、第1スリップ抑制制御を実行している場合には、これを中断する。第2スリップ制御部442も同様である。スリップ制御部441、442は、ステップS62に続くステップS63の処理として、スリップ制御フラグXslipを「0」に設定する。また、トルク分配部440は、ステップS64の処理として、第1目標制駆動トルクTR*及び第2目標制駆動トルクTL*を「0」に設定するとともに、その状態を所定時間継続する。以上により、右駆動輪22R及び左駆動輪22Lのスリップ制御が中断されるとともに、車両10が減速するため、簡易的なフェイルセーフ制御を実行することができる。そして所定時間が経過した後、スリップ制御部441、442は、第1目標制駆動トルクTR*及び第2目標制駆動トルクTL*を「0」に設定している状態を解除する。これにより、第1スリップ制御部441及び第2スリップ制御部442は第1スリップ抑制制御及び第2スリップ抑制制御を再び実行することが可能となる。 Therefore, in the case where the absolute value of the deviation |Y*-Y| continues for a predetermined time or more, the torque distribution unit 440 of the present embodiment determines that the absolute value |Y*-Y| of the deviation is positive in the process of step S61. If such a determination is made, it is determined that slip suppression control cannot be appropriately executed due to an abnormality in a sensor or the like. In this case, the slip control units 441 and 442 interrupt the slip suppression control as the process of step S62. That is, the first slip control unit 441 interrupts the first slip suppression control when it is being executed. The same applies to the second slip control section 442. The slip control units 441 and 442 set the slip control flag Xslip to "0" as processing in step S63 following step S62. Further, as the process of step S64, the torque distribution unit 440 sets the first target braking/driving torque TR* and the second target braking/driving torque TL* to "0", and continues this state for a predetermined period of time. As described above, the slip control of the right drive wheel 22R and the left drive wheel 22L is interrupted and the vehicle 10 is decelerated, so that simple fail-safe control can be executed. After a predetermined period of time has elapsed, the slip control units 441 and 442 release the first target braking/driving torque TR* and the second target braking/driving torque TL* from being set to "0". This allows the first slip control section 441 and the second slip control section 442 to perform the first slip suppression control and the second slip suppression control again.
 一方、トルク分配部440は、ステップS61の処理で否定的な判定を行った場合には、スリップ抑制制御を適切に実行できる状況であると判定して、図11に示される処理を終了する。
 以上説明した本実施形態の車両10のEVECU40によれば、以下の(7)に示される作用及び効果を更に得ることができる。
On the other hand, if the torque distribution unit 440 makes a negative determination in the process of step S61, it determines that the situation is such that slip suppression control can be appropriately executed, and ends the process shown in FIG. 11.
According to the EVECU 40 of the vehicle 10 of the present embodiment described above, it is possible to further obtain the action and effect shown in (7) below.
 (7)トルク制御部44は、右駆動輪22Rの第1スリップ抑制制御又は左駆動輪22Lの第2スリップ抑制制御を実行しているとき、車両10の実ヨーレートYと目標ヨーレートY*との偏差の絶対値|Y*-Y|が所定値以上である状態が継続したとき、第1目標制駆動トルクTR*及び第2目標制駆動トルクTL*をリセットする。これにより、スリップ抑制制御が実行されている状態で車両10が旋回する際、センサ等の異常により車両10が適切に旋回できない場合には、第1目標制駆動トルクTR*及び第2目標制駆動トルクTL*がリセットされるため、車両10の安全性を確保することが可能となる。 (7) When executing the first slip suppression control for the right drive wheel 22R or the second slip suppression control for the left drive wheel 22L, the torque control unit 44 adjusts the actual yaw rate Y of the vehicle 10 and the target yaw rate Y*. When the absolute value of the deviation |Y*-Y| continues to be equal to or greater than a predetermined value, the first target braking/driving torque TR* and the second target braking/driving torque TL* are reset. As a result, when the vehicle 10 turns while the slip suppression control is being executed and the vehicle 10 cannot turn properly due to an abnormality in the sensor, etc., the first target braking/driving torque TR* and the second target braking/driving torque Since the torque TL* is reset, it is possible to ensure the safety of the vehicle 10.
 <他の実施形態>
 なお、上記実施形態は、以下の形態にて実施することもできる。
 ・トルク制御部44は、インホイールモータ30R,30Lから右駆動輪22R及び左駆動輪22Lにそれぞれ付与される制駆動トルクを制御するという方法に代えて、右駆動輪22Rの回転速度及び左駆動輪22Lの回転速度をそれぞれ制御することにより車両10の旋回、前後進、及びスリップ抑制を行ってもよい。この回転速度制御は、図5に示される制御手順と類似の制御手順で実現可能である。
<Other embodiments>
Note that the above embodiment can also be implemented in the following forms.
- Instead of controlling the braking/driving torque applied from the in- wheel motors 30R, 30L to the right drive wheel 22R and left drive wheel 22L, the torque control unit 44 controls the rotational speed of the right drive wheel 22R and the left drive Turning, forward and backward movement, and slip suppression of the vehicle 10 may be performed by controlling the rotational speeds of the wheels 22L, respectively. This rotational speed control can be realized by a control procedure similar to the control procedure shown in FIG.
 ・上記実施形態の構成は、車両10に限らず、任意の移動体に適用可能である。
 ・本開示に記載のEVECU40及びその制御方法は、コンピュータプログラムにより具体化された1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された1つ又は複数の専用コンピュータにより、実現されてもよい。本開示に記載のEVECU40及びその制御方法は、1つ又は複数の専用ハードウェア論理回路を含むプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。本開示に記載のEVECU40及びその制御方法は、1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと1つ又は複数のハードウェア論理回路を含むプロセッサとの組み合わせにより構成された1つ又は複数の専用コンピュータにより、実現されてもよい。コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。専用ハードウェア論理回路及びハードウェア論理回路は、複数の論理回路を含むデジタル回路、又はアナログ回路により実現されてもよい。
- The configuration of the above embodiment is applicable not only to the vehicle 10 but also to any moving object.
- The EVECU 40 and its control method described in the present disclosure are implemented using one or more processors and memories that are programmed to perform one or more functions embodied by a computer program. It may also be realized by a dedicated computer. The EVECU 40 and its control method described in this disclosure may be implemented by a dedicated computer provided by configuring a processor that includes one or more dedicated hardware logic circuits. The EVECU 40 and the control method thereof described in the present disclosure include a processor configured by a combination of a processor and memory programmed to perform one or more functions and a processor including one or more hardware logic circuits. It may be implemented by one or more dedicated computers. A computer program may be stored as instructions executed by a computer on a computer-readable non-transitory tangible storage medium. Dedicated hardware logic circuits and hardware logic circuits may be implemented by digital circuits that include multiple logic circuits, or by analog circuits.
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 ・This disclosure is not limited to the above specific examples. Design changes made by those skilled in the art to the specific examples described above are also included within the scope of the present disclosure as long as they have the characteristics of the present disclosure. The elements included in each of the specific examples described above, as well as their arrangement, conditions, shapes, etc., are not limited to those illustrated, and can be changed as appropriate. The elements included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.
 <付記>
 本発明の他の特徴を以下の通り示す。
 前記トルク偏差設定部は、前記第2操作量に基づいて、前記移動体のヨーレートの目標値である目標ヨーレートを設定し、前記移動体の実際のヨーレートと前記目標ヨーレートとの偏差に基づいて前記トルク偏差を設定し、前記トルク制御部は、前記右駆動輪又は前記左駆動輪のスリップを抑制する制御を実行している場合、前記移動体の実際のヨーレートと前記目標ヨーレートとの偏差の絶対値が所定値以上である状態が継続したときに、前記第1目標制駆動トルク及び前記第2目標制駆動トルクのそれぞれの値をリセットする、請求項3~5のいずれか一項に記載の移動体の制御装置。
<Additional notes>
Other features of the invention are as follows.
The torque deviation setting unit sets a target yaw rate, which is a target value of the yaw rate of the moving body, based on the second operation amount, and sets the target yaw rate, which is a target value of the yaw rate of the moving body, based on the deviation between the actual yaw rate of the moving body and the target yaw rate. A torque deviation is set, and when the torque control unit is executing control to suppress slip of the right drive wheel or the left drive wheel, the torque control unit determines the absolute value of the deviation between the actual yaw rate of the moving body and the target yaw rate. According to any one of claims 3 to 5, each value of the first target braking/driving torque and the second target braking/driving torque is reset when a state where the value continues to be equal to or higher than a predetermined value is continued. A control device for a mobile object.
 前記トルク制御部は、前記右駆動輪の速度と前記移動体の速度との偏差の絶対値が所定値以上になることに基づいて前記第1スリップ抑制制御を実行するとともに、前記左駆動輪の速度と前記移動体の速度との偏差の絶対値が所定値以上になることに基づいて前記第2スリップ抑制制御を実行し、前記右駆動輪の速度及び前記左駆動輪の速度の少なくとも一方に基づいて前記移動体の速度の推定値を演算する速度演算部(42)を更に備え、前記速度演算部は、前記右駆動輪及び前記左駆動輪が共にスリップした場合、前記移動体の進行方向の加速度の積算値に基づいて前記移動体の速度の推定値を演算する、請求項2~6のいずれか一項に記載の移動体の制御装置。 The torque control section executes the first slip suppression control based on the fact that the absolute value of the deviation between the speed of the right drive wheel and the speed of the moving body becomes a predetermined value or more, and controls the speed of the left drive wheel. The second slip suppression control is executed based on the fact that the absolute value of the deviation between the speed of the moving body and the speed of the moving body becomes a predetermined value or more, and the second slip suppression control is performed to reduce at least one of the speed of the right drive wheel and the speed of the left drive wheel. The speed calculation unit further includes a speed calculation unit (42) that calculates an estimated value of the speed of the moving body based on the speed calculation unit, and the speed calculation unit is configured to calculate an estimated value of the speed of the moving body based on the moving direction of the moving body when both the right drive wheel and the left drive wheel slip. 7. The control device for a moving body according to claim 2, wherein the estimated value of the velocity of the moving body is calculated based on the integrated value of acceleration of the moving body.

Claims (9)

  1.  右駆動輪(22R)に第1制駆動トルクを付与する第1制駆動トルク付与部(30R)と、左駆動輪(22L)に第2制駆動トルクを付与する第2制駆動トルク付与部(30L)と、キャスタ輪からなる右従動輪(21R)及び左従動輪(21L)とを有する移動体(10)を制御する制御装置(40)であって、
     前記第1制駆動トルク付与部及び前記第2制駆動トルク付与部を制御するトルク制御部(44)を備え、
     前記トルク制御部は、前記第1制駆動トルク及び前記第2制駆動トルクをそれぞれ制御することにより、又は前記右駆動輪の回転速度及び前記左駆動輪の回転速度をそれぞれ制御することにより、前記移動体の旋回、前後進、及びスリップ抑制を行う
     移動体の制御装置。
    A first braking/driving torque applying part (30R) that applies a first braking/driving torque to the right driving wheel (22R), and a second braking/driving torque applying part (30R) that applies a second braking/driving torque to the left driving wheel (22L). A control device (40) for controlling a moving body (10) having a right driven wheel (21R) and a left driven wheel (21L) consisting of caster wheels (30L),
    comprising a torque control unit (44) that controls the first braking/driving torque applying unit and the second braking/driving torque applying unit,
    The torque control section controls the first braking/driving torque and the second braking/driving torque, or by controlling the rotational speed of the right drive wheel and the left drive wheel, respectively. A control device for a moving object that turns the moving object, moves it forward and backward, and suppresses slippage.
  2.  前記トルク制御部は、
     前記右駆動輪のスリップ率を所定の目標スリップ率にするために前記右駆動輪に付与すべき制駆動トルクである第1スリップトルク、及び前記左駆動輪のスリップ率を前記目標スリップ率にするために前記左駆動輪に付与すべき制駆動トルクである第2スリップトルクを演算し、
     前記右駆動輪が前記左駆動輪よりも路面摩擦係数が低い路面に接地している場合、前記右駆動輪のスリップを抑制する制御として、前記第1スリップトルクに基づいて前記第1制駆動トルクを制御する第1スリップ抑制制御を実行するとともに、前記第1スリップトルクに基づいて前記第2制駆動トルクを制限し、
     前記左駆動輪が前記右駆動輪よりも路面摩擦係数が低い路面に接地している場合、前記左駆動輪のスリップを抑制する制御として、前記第2スリップトルクに基づいて前記第2制駆動トルクを制御する第2スリップ抑制制御を実行するとともに、前記第2スリップトルクに基づいて前記第1制駆動トルクを制限し、
     前記第1スリップ抑制制御を実行している場合、前記第1スリップトルクに基づいて前記第1制駆動トルク及び前記第2制駆動トルクを制限しつつ、前記第1制駆動トルクの絶対値と前記第2制駆動トルクの絶対値とに偏差が生じるように前記第1制駆動トルク付与部及び前記第2制駆動トルク付与部をそれぞれ制御して前記移動体を旋回させ、
     前記第2スリップ抑制制御を実行している場合、前記第2スリップトルクに基づいて前記第1制駆動トルク及び前記第2制駆動トルクを制限しつつ、前記第1制駆動トルクの絶対値と前記第2制駆動トルクの絶対値とに偏差が生じるように前記第1制駆動トルク付与部及び前記第2制駆動トルク付与部をそれぞれ制御して前記移動体を旋回させる
     請求項1に記載の移動体の制御装置。
    The torque control section includes:
    A first slip torque which is a braking/driving torque to be applied to the right driving wheel in order to make the slip ratio of the right driving wheel a predetermined target slip ratio, and a slip ratio of the left driving wheel to the target slip ratio. A second slip torque, which is a braking/driving torque to be applied to the left driving wheel, is calculated,
    When the right driving wheel is in contact with a road surface having a lower coefficient of road friction than the left driving wheel, the first braking/driving torque is controlled based on the first slip torque as control to suppress slip of the right driving wheel. executing a first slip suppression control that controls the second slip suppression control, and limiting the second braking/driving torque based on the first slip torque;
    When the left driving wheel is in contact with a road surface having a lower coefficient of road friction than the right driving wheel, the second braking/driving torque is controlled based on the second slip torque as control to suppress slip of the left driving wheel. executing second slip suppression control to control the second slip torque, and limiting the first braking/driving torque based on the second slip torque;
    When executing the first slip suppression control, while limiting the first braking/driving torque and the second braking/driving torque based on the first slip torque, the absolute value of the first braking/driving torque and the Turning the moving body by controlling the first braking/driving torque applying unit and the second braking/driving torque applying unit so that a deviation occurs between the absolute value of the second braking/driving torque,
    When executing the second slip suppression control, while limiting the first braking/driving torque and the second braking/driving torque based on the second slip torque, the absolute value of the first braking/driving torque and the The movement according to claim 1, wherein the first braking/driving torque applying unit and the second braking/driving torque applying unit are respectively controlled so that a deviation occurs between the absolute value of the second braking/driving torque, and the moving body is turned. body control device.
  3.  前記移動体を加速又は減速させるために前記移動体に対して行われる第1操作量に基づいて、前記第1制駆動トルク及び前記第2制駆動トルクの目標値である基本制駆動トルクを設定する基本制駆動トルク設定部(41)と、
     前記移動体を旋回させるために前記移動体に対して行われる第2操作量に基づいて、前記第1制駆動トルクと前記第2制駆動トルクとの偏差であるトルク偏差を設定するトルク偏差設定部(43)と、を更に備え、
     前記トルク制御部は、
     前記第1制駆動トルクが第1目標制駆動トルクとなるように前記第1制駆動トルク付与部を制御し、
     前記第2制駆動トルクが第2目標制駆動トルクとなるように前記第2制駆動トルク付与部を制御し、
     前記第1スリップ抑制制御及び前記第2スリップ抑制制御を共に実行していない場合、前記第1制駆動トルクと前記第2制駆動トルクとの間に前記トルク偏差が生じるように前記基本制駆動トルクに対して所定値を加算する補正を行うことにより第1目標制駆動トルク及び第2目標制駆動トルクのいずれか一方を設定するとともに、前記基本制駆動トルクに対して前記所定値を減算する補正を行うことにより前記第1目標制駆動トルク及び前記第2目標制駆動トルクのいずれか他方を設定し、
     前記第1スリップ抑制制御が実行されている場合には、前記第1目標制駆動トルクを前記第1スリップトルクに設定するとともに、前記基本制駆動トルクを前記トルク偏差により補正することにより得られる演算値に基づいて前記第2目標制駆動トルクを設定し、
     前記第2スリップ抑制制御が実行されている場合には、前記第2目標制駆動トルクを前記第2スリップトルクに設定するとともに、前記基本制駆動トルクを前記トルク偏差により補正することにより得られる演算値に基づいて前記第1目標制駆動トルクを設定する
     請求項2に記載の移動体の制御装置。
    Setting a basic braking/driving torque that is a target value of the first braking/driving torque and the second braking/driving torque based on a first operation amount performed on the moving body to accelerate or decelerate the moving body. a basic braking/driving torque setting section (41),
    Torque deviation setting that sets a torque deviation that is a deviation between the first braking/driving torque and the second braking/driving torque based on a second operation amount performed on the movable body in order to turn the movable body. further comprising a part (43);
    The torque control section includes:
    controlling the first braking/driving torque applying unit so that the first braking/driving torque becomes a first target braking/driving torque;
    controlling the second braking/driving torque applying unit so that the second braking/driving torque becomes a second target braking/driving torque;
    When both the first slip suppression control and the second slip suppression control are not executed, the basic braking/driving torque is adjusted such that the torque deviation occurs between the first braking/driving torque and the second braking/driving torque. Setting either the first target braking/driving torque or the second target braking/driving torque by performing correction by adding a predetermined value to the base braking/driving torque, and correction by subtracting the predetermined value from the basic braking/driving torque. setting the other of the first target braking/driving torque and the second target braking/driving torque,
    When the first slip suppression control is being executed, the calculation is obtained by setting the first target braking/driving torque to the first slip torque and correcting the basic braking/driving torque by the torque deviation. setting the second target braking/driving torque based on the value;
    When the second slip suppression control is being executed, the second target braking/driving torque is set to the second slip torque, and the calculation is obtained by correcting the basic braking/driving torque by the torque deviation. The control device for a moving body according to claim 2, wherein the first target braking/driving torque is set based on the value.
  4.  前記トルク制御部は、前記移動体が加速している場合、前記第1スリップトルクが前記第2スリップトルクよりも小さいときには、前記右駆動輪が前記左駆動輪よりも路面摩擦係数が低い路面に接地していると判断し、前記第2スリップトルクが前記第1スリップトルクよりも小さいときには、前記左駆動輪が前記右駆動輪よりも路面摩擦係数が低い路面に接地していると判断する
     請求項2又は3に記載の移動体の制御装置。
    When the moving body is accelerating and the first slip torque is smaller than the second slip torque, the torque control unit causes the right drive wheel to move to a road surface having a lower coefficient of road friction than the left drive wheel. When it is determined that the left driving wheel is in contact with the ground and the second slip torque is smaller than the first slip torque, it is determined that the left driving wheel is in contact with a road surface having a lower road surface friction coefficient than the right driving wheel. 4. A control device for a moving body according to item 2 or 3.
  5.  前記トルク制御部は、前記移動体が減速している場合、前記第1スリップトルクが前記第2スリップトルクよりも大きいときには、前記右駆動輪が前記左駆動輪よりも路面摩擦係数が低い路面に接地していると判断し、前記第2スリップトルクが前記第1スリップトルクよりも大きいときには、前記左駆動輪が前記右駆動輪よりも路面摩擦係数が低い路面に接地していると判断する
     請求項2又は3に記載の移動体の制御装置。
    When the moving object is decelerating and the first slip torque is larger than the second slip torque, the torque control unit causes the right drive wheel to move to a road surface having a lower coefficient of road friction than the left drive wheel. When it is determined that the left driving wheel is in contact with the ground and the second slip torque is larger than the first slip torque, it is determined that the left driving wheel is in contact with a road surface having a lower road surface friction coefficient than the right driving wheel. 4. A control device for a moving body according to item 2 or 3.
  6.  前記トルク偏差設定部は、
     前記第2操作量に基づいて、前記移動体のヨーレートの目標値である目標ヨーレートを設定し、
     前記移動体の実際のヨーレートと前記目標ヨーレートとの偏差に基づいて前記トルク偏差を設定し、
     前記トルク制御部は、前記右駆動輪又は前記左駆動輪のスリップを抑制する制御を実行している場合、前記移動体の実際のヨーレートと前記目標ヨーレートとの偏差の絶対値が所定値以上である状態が継続したときに、前記第1目標制駆動トルク及び前記第2目標制駆動トルクのそれぞれの値をリセットする
     請求項3に記載の移動体の制御装置。
    The torque deviation setting section includes:
    setting a target yaw rate that is a target value of the yaw rate of the moving body based on the second operation amount;
    setting the torque deviation based on the deviation between the actual yaw rate of the moving body and the target yaw rate;
    When the torque control unit is executing control to suppress slip of the right drive wheel or the left drive wheel, the torque control unit may control the torque control unit to control the torque control unit when the absolute value of the deviation between the actual yaw rate of the moving body and the target yaw rate is equal to or greater than a predetermined value. The control device for a moving body according to claim 3, wherein each value of the first target braking/driving torque and the second target braking/driving torque is reset when a certain state continues.
  7.  前記トルク制御部は、前記右駆動輪の速度と前記移動体の速度との偏差の絶対値が所定値以上になることに基づいて前記第1スリップ抑制制御を実行するとともに、前記左駆動輪の速度と前記移動体の速度との偏差の絶対値が所定値以上になることに基づいて前記第2スリップ抑制制御を実行し、
     前記右駆動輪の速度及び前記左駆動輪の速度の少なくとも一方に基づいて前記移動体の速度の推定値を演算する速度演算部(42)を更に備え、
     前記速度演算部は、前記右駆動輪及び前記左駆動輪が共にスリップした場合、前記移動体の進行方向の加速度の積算値に基づいて前記移動体の速度の推定値を演算する
     請求項2に記載の移動体の制御装置。
    The torque control section executes the first slip suppression control based on the fact that the absolute value of the deviation between the speed of the right drive wheel and the speed of the moving body becomes a predetermined value or more, and controls the speed of the left drive wheel. Executing the second slip suppression control based on the fact that the absolute value of the deviation between the speed and the speed of the moving body becomes a predetermined value or more,
    further comprising a speed calculation unit (42) that calculates an estimated value of the speed of the moving body based on at least one of the speed of the right drive wheel and the speed of the left drive wheel,
    The speed calculation unit calculates an estimated value of the speed of the moving body based on an integrated value of acceleration in the traveling direction of the moving body when both the right drive wheel and the left drive wheel slip. A control device for the mobile body described above.
  8.  前記速度演算部は、
     前記移動体の進行方向の加速度の積算値に基づいて前記移動体の速度を推定し、
     前記移動体が加速している場合、前記右駆動輪の速度、前記左駆動輪の速度、及び前記移動体の進行方向の加速度の積算値から推定される前記移動体の速度のうち、最も小さいものを前記移動体の速度の推定値として用い、
     前記移動体が減速している場合、前記右駆動輪の速度、前記左駆動輪の速度、及び前記移動体の進行方向の加速度の積算値から推定される前記移動体の速度のうち、最も大きいものを前記移動体の速度の推定値として用いる
     請求項7に記載の移動体の制御装置。
    The speed calculation section is
    Estimating the speed of the moving body based on the integrated value of acceleration in the moving direction of the moving body,
    When the moving body is accelerating, the speed of the moving body estimated from the integrated value of the speed of the right driving wheel, the speed of the left driving wheel, and the acceleration in the traveling direction of the moving body is the smallest. is used as an estimated value of the speed of the moving body,
    When the moving body is decelerating, the speed of the moving body estimated from the integrated value of the speed of the right driving wheel, the speed of the left driving wheel, and the acceleration in the traveling direction of the moving body is the greatest. The control device for a moving body according to claim 7, wherein a value of the velocity of the moving body is used as an estimated value of the speed of the moving body.
  9.  右駆動輪(22R)に第1制駆動トルクを付与する第1制駆動トルク付与部(30R)と、左駆動輪(22L)に第2制駆動トルクを付与する第2制駆動トルク付与部(30L)と、キャスタ輪からなる右従動輪(21R)及び左従動輪(21L)とを有する移動体(10)を制御するためのプログラムであって、
     コンピュータに、
     前記第1制駆動トルク及び前記第2制駆動トルクをそれぞれ制御することにより、又は前記右駆動輪の回転速度及び前記左駆動輪の回転速度をそれぞれ制御することにより、当該移動体の旋回、前後進、及びスリップ抑制を行う処理を実行させる
     プログラム。
    A first braking/driving torque applying part (30R) that applies a first braking/driving torque to the right driving wheel (22R), and a second braking/driving torque applying part (30R) that applies a second braking/driving torque to the left driving wheel (22L). A program for controlling a moving body (10) having a right driven wheel (21R) and a left driven wheel (21L) consisting of caster wheels (30L),
    to the computer,
    By controlling the first braking/driving torque and the second braking/driving torque, or by respectively controlling the rotational speed of the right drive wheel and the rotational speed of the left drive wheel, the turning, front and back of the moving object can be controlled. A program that executes processing for speeding up and suppressing slips.
PCT/JP2023/017022 2022-05-31 2023-05-01 Moving body control device and program WO2023233903A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-089039 2022-05-31
JP2022089039 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023233903A1 true WO2023233903A1 (en) 2023-12-07

Family

ID=89026384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017022 WO2023233903A1 (en) 2022-05-31 2023-05-01 Moving body control device and program

Country Status (1)

Country Link
WO (1) WO2023233903A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747860A (en) * 1993-08-05 1995-02-21 Nissan Motor Co Ltd Differential limit torque control device
JP2006067733A (en) * 2004-08-27 2006-03-09 Nissan Motor Co Ltd Electric vehicle
JP2010051160A (en) * 2008-08-25 2010-03-04 Yokohama National Univ Slip ratio estimator and method thereof, and slip ratio controller and method thereof
JP2015035943A (en) * 2013-07-08 2015-02-19 Ntn株式会社 Slip controller of electric vehicle
JP2016094139A (en) * 2014-11-17 2016-05-26 Ntn株式会社 Vehicle speed estimation device of four-wheel drive vehicle and control device
JP2016123172A (en) * 2014-12-24 2016-07-07 日産自動車株式会社 Vehicle drive force control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747860A (en) * 1993-08-05 1995-02-21 Nissan Motor Co Ltd Differential limit torque control device
JP2006067733A (en) * 2004-08-27 2006-03-09 Nissan Motor Co Ltd Electric vehicle
JP2010051160A (en) * 2008-08-25 2010-03-04 Yokohama National Univ Slip ratio estimator and method thereof, and slip ratio controller and method thereof
JP2015035943A (en) * 2013-07-08 2015-02-19 Ntn株式会社 Slip controller of electric vehicle
JP2016094139A (en) * 2014-11-17 2016-05-26 Ntn株式会社 Vehicle speed estimation device of four-wheel drive vehicle and control device
JP2016123172A (en) * 2014-12-24 2016-07-07 日産自動車株式会社 Vehicle drive force control device

Similar Documents

Publication Publication Date Title
JP6414044B2 (en) Vehicle driving force control device
EP3050765B1 (en) Control device for electric vehicle
US20170166203A1 (en) Electronic stability control system for vehicle
JP5883490B1 (en) Vehicle control apparatus and vehicle control method
WO2013125304A1 (en) Parking lock device for vehicle
JP5596756B2 (en) Electric vehicle
JP6502084B2 (en) Vehicle control system in case of single wheel failure of four-wheel independent drive vehicle
WO2011145410A1 (en) Apparatus for improving steering sensitivity of vehicle
JP5686721B2 (en) Control device for electric vehicle
CN107848426B (en) Drive control device for wheel independent drive type vehicle
JP2014080128A (en) Vehicular travel support device
JP6585446B2 (en) Vehicle braking / driving force control device
WO2023233903A1 (en) Moving body control device and program
JP2010241166A (en) Four-wheel drive controller and four-wheel drive control method for vehicle
WO2023233904A1 (en) Moving body control device and program
WO2023233905A1 (en) Control device for mobile object, and program
JP6504066B2 (en) Vehicle braking control device
WO2016125686A1 (en) Vehicle braking/driving torque control device
WO2022074717A1 (en) Control method and control device for electric four-wheel drive vehicle
JP6664885B2 (en) Vehicle braking / driving torque control device
WO2022264738A1 (en) Vehicle control device
WO2023037869A1 (en) Moving body and program
US20240239331A1 (en) Mobile object and program
JP2023049886A (en) Movable body and program
JP6823977B2 (en) Vehicle anti-skid control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815664

Country of ref document: EP

Kind code of ref document: A1