JP2016094139A - Vehicle speed estimation device of four-wheel drive vehicle and control device - Google Patents

Vehicle speed estimation device of four-wheel drive vehicle and control device Download PDF

Info

Publication number
JP2016094139A
JP2016094139A JP2014232382A JP2014232382A JP2016094139A JP 2016094139 A JP2016094139 A JP 2016094139A JP 2014232382 A JP2014232382 A JP 2014232382A JP 2014232382 A JP2014232382 A JP 2014232382A JP 2016094139 A JP2016094139 A JP 2016094139A
Authority
JP
Japan
Prior art keywords
vehicle speed
vehicle
wheel
change amount
estimation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014232382A
Other languages
Japanese (ja)
Inventor
克敏 茂木
Katsutoshi Mogi
克敏 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2014232382A priority Critical patent/JP2016094139A/en
Publication of JP2016094139A publication Critical patent/JP2016094139A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle speed estimation device of a four-wheel drive vehicle which can accurately estimate a vehicle speed at not only direct advance but also a turn, and is simple in an estimation procedure of the vehicle speed.SOLUTION: Each-wheel vehicle speed equivalent amount calculation means 6 is arranged which calculates a vehicle speed equivalent amount Vbeing a speed which is equivalent to a vehicle speed from a wheel angle speed ω in each wheel 2 by using a yaw angle speed γ of a vehicle 1. Means 7 is arranged which acquires a first vehicle speed change amount α' being a vehicle speed change amount per unit time of the vehicle speed equivalent amount which becomes minimum or maximum out of the vehicle speed equivalent amount Vaccording to a positive value or a negative value of the fore-and-aft acceleration of the vehicle 1. Vehicle speed estimation means 8 is arranged which acquires the vehicle speed V corresponding to the presence or absence of a slip by comparing an absolute value |α-α'| of a difference between a second vehicle speed change amount αbeing acceleration in a vehicle fore-and-aft direction and the first vehicle speed change amount α' with a threshold δ.SELECTED DRAWING: Figure 1

Description

この発明は、四輪駆動車両の車両速度を推定する四輪駆動車両の車両速度推定装置、およびこれを用いた車両駆動制御装置に関する。   The present invention relates to a vehicle speed estimation device for a four-wheel drive vehicle for estimating the vehicle speed of a four-wheel drive vehicle, and a vehicle drive control device using the same.

車両速度を精度良く検出することは、トラクション制御(車両加速時にグリップを維持する制御)やABS制御(車両減速時にグリップを維持する制御)(ABS:アンチロックブレーキシステム)を車両に適用する際に必要となる。二輪駆動車両では従動輪の回転速度から車両速度を求めているが、四輪駆動車両では従動輪がないため、各車輪のグリップあるいはスリップを判断しながら、車両速度を推定する必要がある。   The vehicle speed is detected accurately when traction control (control for maintaining grip when the vehicle is accelerated) or ABS control (control for maintaining grip when the vehicle is decelerated) (ABS: antilock brake system) is applied to the vehicle. Necessary. In a two-wheel drive vehicle, the vehicle speed is obtained from the rotational speed of the driven wheel. However, in a four-wheel drive vehicle, there is no driven wheel, so it is necessary to estimate the vehicle speed while judging the grip or slip of each wheel.

従来、四輪駆動車両の車両速度を推定する手法として、以下に挙げる手法が提案されている。
特許文献1では、最低車輪速を用いて、単位時間当たりの第一の車速変化量を計算する。また、車載したGセンサにより第二の車速変化量である車両加速度を求める。第一の車速変化量と第二の車速変化量の差が小さい場合には、各輪はグリップしていると判断し、第一の車速変化量を用いて疑似車速を算出する。一方、第一の車速変化量と第二の車速変化量の差が大きい場合には、各輪はスリップしていると判断し、第二の車速変化量を用いて疑似車速を算出する。
Conventionally, the following methods have been proposed as methods for estimating the vehicle speed of a four-wheel drive vehicle.
In Patent Document 1, the first vehicle speed change amount per unit time is calculated using the minimum wheel speed. Moreover, the vehicle acceleration which is a 2nd vehicle speed variation | change_quantity is calculated | required with vehicle-mounted G sensor. If the difference between the first vehicle speed change amount and the second vehicle speed change amount is small, it is determined that each wheel is gripping, and the pseudo vehicle speed is calculated using the first vehicle speed change amount. On the other hand, when the difference between the first vehicle speed change amount and the second vehicle speed change amount is large, it is determined that each wheel is slipping, and the pseudo vehicle speed is calculated using the second vehicle speed change amount.

特許文献2では、第一上限加速度を与えて、車輪速度から第一車両速度を推定するとともに、第二上限加速度を与えて、最低車輪速度から第二車両速度を推定し、第一車両速度と第二車両速度の比較により車両速度を補正して推定する。   In Patent Document 2, a first upper limit acceleration is given to estimate the first vehicle speed from the wheel speed, a second upper limit acceleration is given to estimate the second vehicle speed from the minimum wheel speed, The vehicle speed is corrected and estimated by comparing the second vehicle speed.

特開平04−293651号公報Japanese Patent Laid-Open No. 04-293651 特開平01−314656号公報Japanese Patent Laid-Open No. 01-314656

特許文献1の提案技術は、車両が直進加減速しているときには精度良く車両速度を推定することができるが、車両が旋回しているときは精度良く推定できない。
特許文献2の提案技術は、車両速度の推定手順が複雑である。また、車両の前後加速度を用いていないため、精度良く車両速度を推定できない場合もあると考えられる。
The proposed technique of Patent Document 1 can accurately estimate the vehicle speed when the vehicle is moving straight ahead, but cannot accurately estimate the vehicle speed when the vehicle is turning.
In the proposed technique of Patent Document 2, the vehicle speed estimation procedure is complicated. Further, since the longitudinal acceleration of the vehicle is not used, it may be considered that the vehicle speed cannot be estimated with high accuracy.

この発明の目的は、直進時だけでなく旋回時でも車両速度を精度良く推定でき、かつ車両速度の推定手順が簡素な四輪駆動車両の車両速度推定装置を提供することである。
この発明の他の目的は、直進時だけでなく旋回時でも車両速度を精度良く、かつ簡素に推定できて、トラクション制御またはABS制御を適正に行える車両駆動制御装置を提供することである。
An object of the present invention is to provide a vehicle speed estimation device for a four-wheel drive vehicle that can accurately estimate the vehicle speed not only when going straight but also when turning, and having a simple procedure for estimating the vehicle speed.
Another object of the present invention is to provide a vehicle drive control device capable of accurately and simply estimating the vehicle speed not only when going straight but also when turning, and appropriately performing traction control or ABS control.

この発明の四輪駆動車両の車両速度推定装置は、四輪駆動の車両1における車両速度を推定する装置であって、
センサ4より取得した車両1のヨー角速度γを用いて各車輪2における回転速度(例えば車輪角速度ω)から車両速度に相当する速度である車両速度相当量V:1〜4)を計算する各車輪車両速度相当量計算手段6と、
前記センサ4または他のセンサから取得した車両の前後加速度の正負に応じて、加速時は前記各車輪2の車両速度相当量Vのうちの最小値となる車両速度相当量の単位時間当たりの車速変化量、減速時は前記各車輪2の車両速度相当量Vのうちの最大値となる車両速度相当量の単位時間当たりの車速変化量である第一の車速変化量α′を求める第一の車速変化量計算手段7と、
前記いずれかのセンサ4または他のセンサから取得した車両前後方向の加速度である第二の車速変化量αと前記第一の車速変化量α′との差の絶対値|α−α′|をしきい値δと比較し、しきい値δ未満の場合で、かつ前記車両1の前後加速度が加速時は前記車両速度相当量Vの前記最小値を、減速時は前記最大値を車両速度Vとして定め、前記差の絶対値|α−α′|が前記しきい値δ以上の場合は前記第二の車速変化量αを積分して車両速度Vを求める車両速度推定手段8、
とを備える。
前記しきい値δは、試験やシミュレーションの結果等に基づき、適宜に設定すれば良い。
A vehicle speed estimation device for a four-wheel drive vehicle according to the present invention is a device for estimating a vehicle speed in a four-wheel drive vehicle 1,
Using the yaw angular velocity γ of the vehicle 1 acquired from the sensor 4, a vehicle speed equivalent amount V i ( i : 1 to 4), which is a speed corresponding to the vehicle speed, is calculated from the rotational speed (for example, the wheel angular speed ω) at each wheel 2. Each wheel vehicle speed equivalent amount calculating means 6;
According to the sign of the longitudinal acceleration of the vehicle acquired from the sensor 4 or another sensor, the vehicle speed equivalent amount per unit time corresponding to the minimum value of the vehicle speed equivalent amounts V i of the wheels 2 at the time of acceleration. A first vehicle speed change amount α x ′ which is a vehicle speed change amount per unit time of a vehicle speed equivalent amount which is the maximum value of the vehicle speed equivalent amount V i of each wheel 2 at the time of vehicle speed change amount and deceleration is obtained. First vehicle speed change amount calculating means 7;
Absolute value | α x −α of the difference between the second vehicle speed change amount α x and the first vehicle speed change amount α x ′, which are accelerations in the vehicle longitudinal direction, acquired from any one of the sensors 4 or other sensors. x ′ | is compared with a threshold value δ. When the longitudinal acceleration of the vehicle 1 is less than the threshold value δ, the minimum value of the vehicle speed equivalent amount V i is obtained when the longitudinal acceleration of the vehicle 1 is accelerated, and The vehicle speed V is determined, and when the absolute value | α x −α x ′ | of the difference is equal to or larger than the threshold value δ, the vehicle speed V is obtained by integrating the second vehicle speed change amount α x. Speed estimation means 8,
With.
The threshold value δ may be appropriately set based on the results of tests and simulations.

この構成によると、車輪2の回転速度、車両1の前後加速度α、および車両1のヨー角速度γを用いて旋回を含めたあらゆる走行時における車輪2のグリップまたはスリップを判断し、この判断結果に基づき、グリップ時およびスリップ時に応じた計算方法を選択して車両速度Vを推定する。特に、車両1のヨー角速度γを考慮して各車輪2で車速変化量を計算するため、車両1が旋回していても車両速度を推定することができる。 According to this configuration, the grip or slip of the wheel 2 during any travel including turning is determined using the rotational speed of the wheel 2, the longitudinal acceleration α x of the vehicle 1, and the yaw angular velocity γ of the vehicle 1, and the determination result The vehicle speed V is estimated by selecting a calculation method according to the grip and the slip. In particular, since the amount of change in vehicle speed is calculated at each wheel 2 in consideration of the yaw angular velocity γ of the vehicle 1, the vehicle speed can be estimated even when the vehicle 1 is turning.

すなわち、各車輪車両速度相当量計算手段6は、車両1のヨー角速度γを用いて各車輪2における回転速度(車輪角速度ω)から車両速度に相当する速度である車両速度相当量Vを計算する。 第一の車速変化量計算手段7は、単位時間当たりの車速変化量である第一の車速変化量α′を求める。この場合に、車両の前後加速度の正負に応じ、加速時は前記各車輪2の車両速度相当量Vのうちの最小値となる車両速度相当量の単位時間当たりの車速変化量を、減速時は前記各車輪2の車両速度相当量Vのうちの最大値となる車両速度相当量の単位時間当たりの車速変化量を、第一の車速変化量α′とする。
車両速度推定手段8は、センサから取得した車両前後方向の加速度である第二の車速変化量αと前記第一の車速変化量α′との差の絶対値|α−α′|をしきい値δと比較することで車輪2のグリップまたはスリップを判断し、この判断結果に基づき、グリップ時およびスリップ時に応じた計算方法を選択して車両速度Vを推定する。
前記差の絶対値|α−α′|がしきい値δ未満の場合は、スリップしている状態と見做し、車両1の加速時は前記車両速度相当量Vの前記最小値を車両速度Vして求め、減速時は前記車両速度相当量Vの最大値を車両速度Vとして定める。スリップしている場合は、このように四輪の車両速度相当量Vのうち、最も実際の速度に近いと考えられる車両速度相当量Vを車両速度Vとして推定するため、簡単な計算方法で車両速度Vを計算できる。
また、前記差の絶対値|α−α′|がしきい値δ以上の場合は、グリップしている状態と見做せるから、前記第二の車速変化量αを積分して車両速度Vを求めることで、精度良く、かつ簡単に車両速度Vを推定できる。
このように、直進時だけでなく旋回時でも車両速度Vを精度良く推定でき、また車両速度Vの推定手順が簡素で済む。
That is, each wheel vehicle speed equivalent amount calculation means 6 uses the yaw angular speed γ of the vehicle 1 to calculate a vehicle speed equivalent amount V i that is a speed corresponding to the vehicle speed from the rotational speed (wheel angular speed ω) of each wheel 2. To do. The first vehicle speed change amount calculation means 7 obtains a first vehicle speed change amount α x ′ that is a vehicle speed change amount per unit time. In this case, depending on the sign of the longitudinal acceleration of the vehicle, during acceleration of the vehicle speed change amount per unit time of the vehicle speed corresponding amount as the minimum value of the vehicle speed corresponding amount V i of each wheel 2, during deceleration The vehicle speed change amount per unit time of the vehicle speed equivalent amount that is the maximum value among the vehicle speed equivalent amounts V i of the wheels 2 is defined as a first vehicle speed change amount α x ′.
Vehicle speed estimating means 8, the second vehicle speed change alpha x and the first vehicle speed change alpha x is a vehicle longitudinal acceleration obtained from the sensor 'absolute value of the difference between | α x x' By comparing | with the threshold value δ, the grip or slip of the wheel 2 is determined. Based on the determination result, the calculation method according to the grip and the slip is selected to estimate the vehicle speed V.
When the absolute value | α x −α x ′ | of the difference is less than the threshold value δ, it is considered that the vehicle is slipping, and the minimum value of the vehicle speed equivalent V i when the vehicle 1 is accelerated. the determined by the vehicle speed V, the deceleration determines the maximum value of the vehicle speed corresponding amount V i as the vehicle speed V. If you slip, thus out of the vehicle speed corresponding amount V i of a four-wheel, in order to estimate the most actual vehicle speed corresponding amount V i which are considered to be close to the speed of the vehicle speed V, a simple calculation method The vehicle speed V can be calculated with
Further, when the absolute value | α x −α x ′ | of the difference is equal to or larger than the threshold value δ, it can be considered that the vehicle is gripped. Therefore, the second vehicle speed change amount α x is integrated and the vehicle is integrated. By obtaining the speed V, the vehicle speed V can be estimated accurately and easily.
Thus, the vehicle speed V can be accurately estimated not only when traveling straight but also when turning, and the estimation procedure of the vehicle speed V can be simplified.

この発明において、前記ヨー角速度γおよび前記車両1の前後加速度は姿勢センサ4から取得し、前記車輪2の回転速度(車輪角速度ω)は前記各車輪2に設けた車輪2の回転センサ(例えば回転角センサ)9から取得するようにしても良い。
姿勢センサ4は、車両1の各種の制御のために用いられることが多く、その姿勢センサ4をこの車両速度推定装置に利用することができる。また、車輪2の回転センサ9はABS制御等のために設けられることが多く、そのセンサをこの車両速度推定装置に用いることができる。
In the present invention, the yaw angular velocity γ and the longitudinal acceleration of the vehicle 1 are acquired from the attitude sensor 4, and the rotational speed of the wheels 2 (wheel angular velocity ω) is a rotational sensor (for example, rotational) of the wheels 2 provided on the wheels 2. It may be acquired from the (angle sensor) 9.
The attitude sensor 4 is often used for various controls of the vehicle 1, and the attitude sensor 4 can be used for this vehicle speed estimation device. Further, the rotation sensor 9 for the wheel 2 is often provided for ABS control or the like, and the sensor can be used for this vehicle speed estimation device.

この発明において、前記車両1の前記各車輪2を駆動する走行駆動手段5がインホイールモータ駆動装置であっても良い。
インホイールモータ駆動装置の場合、モータにより制駆動トルクを高精度に制御可能であるため、この発明の車両速度推定装置を適用することで、四輪駆動でありながら、旋回時でも車両速度を精度良く推定できるという効果が、トラクション制御やABS制御においてより一層効果的に発揮される。
In the present invention, the traveling drive means 5 for driving the wheels 2 of the vehicle 1 may be an in-wheel motor drive device.
In the case of an in-wheel motor drive device, the braking / driving torque can be controlled with high accuracy by the motor. Therefore, by applying the vehicle speed estimation device of the present invention, the vehicle speed can be accurately adjusted even when turning while being four-wheel drive. The effect of being able to estimate well is exhibited more effectively in traction control and ABS control.

この発明の車両駆動制御装置は、車両1の走行駆動源5を制御する装置であって、この発明の上記いずれかの構成の四輪駆動車両の車両速度推定装置10と、この車両速度推定装置で推定した車両速度を用いてトラクション制御を行うトラクション制御手段12とを有する。
この発明の車両速度推定装置10は上記のように直進時だけでなく旋回時でも車両速度Vを精度良く推定でき、かつ車両速度Vの推定手順が簡素であるため、この発明の車両速度推定装置10をトラクション制御に用いることで、四輪駆動でありながら、トラクション制御が精度良く効果的に行える。
The vehicle drive control device of the present invention is a device for controlling the travel drive source 5 of the vehicle 1, and is a vehicle speed estimation device 10 for a four-wheel drive vehicle having any one of the above configurations of the present invention, and this vehicle speed estimation device. And traction control means 12 for performing traction control using the vehicle speed estimated in (1).
Since the vehicle speed estimation device 10 of the present invention can accurately estimate the vehicle speed V not only when traveling straight but also when turning as described above, and the estimation procedure of the vehicle speed V is simple, the vehicle speed estimation device of the present invention. By using 10 for the traction control, the traction control can be performed with high accuracy and efficiency while being four-wheel drive.

この発明の他の車両駆動制御装置は、車両1を制御する車両駆動制御装置であって、この発明の上記いずれかの構成の四輪駆動車両の車両速度推定装置10と、この車両速度推定装置10で推定した車両速度Vを用いてABS制御を行うABS制御手段13とを有する。
この発明の車両速度推定装置10は上記のように直進時だけでなく旋回時でも車両速度を精度良く推定でき、かつ車両速度の推定手順が簡素であるため、この発明の車両速度推定装置10をABS制御に用いることで、四輪駆動でありながら、ABS制御が精度良く効果的に行える。
Another vehicle drive control device of the present invention is a vehicle drive control device that controls the vehicle 1, and is a vehicle speed estimation device 10 for a four-wheel drive vehicle having any one of the above configurations of the present invention, and this vehicle speed estimation device. And ABS control means 13 for performing ABS control using the vehicle speed V estimated at 10.
Since the vehicle speed estimation device 10 of the present invention can accurately estimate the vehicle speed not only when traveling straight but also when turning as described above, and the vehicle speed estimation procedure is simple, the vehicle speed estimation device 10 of the present invention is By using it for the ABS control, the ABS control can be effectively performed with high accuracy while being four-wheel drive.

この発明の四輪駆動車両の車両速度推定装置は、四輪駆動車両における車両速度を推定する装置であって、センサより取得した車両のヨー角速度を用いて各車輪に設けた回転速度から車両速度に相当する速度である車両速度相当量を計算する各車輪車両速度相当量計算手段と、前記センサまたは他のセンサから取得した車両の前後加速度の正負に応じて、加速時は前記各車輪の車両速度相当量のうちの最小値となる車両速度相当量の単位時間当たりの車速変化量、減速時は前記各車輪の車両速度相当量のうちの最大値となる車両速度相当量の単位時間当たりの車速変化量である第一の車速変化量を求める第一の車速変化量計算手段と、前記いずれかのセンサまたは他のセンサから取得した車両前後方向の加速度である第二の車速変化量と前記第一の車速変化量との差の絶対値をしきい値と比較し、しきい値未満の場合で、かつ前記車両の前後加速度が加速時は前記車両速度相当量の前記最小値を、減速時は前記最大値を車両速度として定め、前記差の絶対値が前記しきい値以上の場合は前記第二の車速変化量を積分して車両速度を求める車両速度推定手段とを備えるため、直進時だけでなく旋回時でも車両速度を精度良く推定でき、かつ車両速度の推定手順が簡素な四輪駆動車両の車両速度推定装置を提供することである。   A vehicle speed estimation device for a four-wheel drive vehicle according to the present invention is a device for estimating a vehicle speed in a four-wheel drive vehicle, and uses the vehicle yaw angular velocity obtained from a sensor to determine the vehicle speed from the rotation speed provided on each wheel. Vehicle speed equivalent amount calculating means for calculating a vehicle speed equivalent amount that is a speed corresponding to the vehicle speed, and the vehicle of each wheel during acceleration according to the sign of the longitudinal acceleration of the vehicle acquired from the sensor or another sensor. The vehicle speed change amount per unit time of the vehicle speed equivalent amount that is the minimum value of the speed equivalent amount, and at the time of deceleration, the vehicle speed equivalent amount that is the maximum value of the vehicle speed equivalent amount of each wheel per unit time A first vehicle speed change amount calculating means for obtaining a first vehicle speed change amount that is a vehicle speed change amount; a second vehicle speed change amount that is an acceleration in the vehicle longitudinal direction acquired from any one of the sensors or other sensors; and When the absolute value of the difference from one vehicle speed change amount is compared with a threshold value and is less than the threshold value, and the longitudinal acceleration of the vehicle is accelerated, the minimum value of the vehicle speed equivalent amount is Includes a vehicle speed estimating means for determining the maximum value as a vehicle speed and, when the absolute value of the difference is equal to or greater than the threshold value, integrating the second vehicle speed change amount to obtain a vehicle speed, In addition to providing a vehicle speed estimation device for a four-wheel drive vehicle, the vehicle speed can be accurately estimated even when turning, and the vehicle speed estimation procedure is simple.

この発明の車両駆動制御装置によると、直進時だけでなく旋回時でも車両速度を精度良く、かつ簡素に推定できて、トラクション制御またはABS制御を適正に行うことができる。   According to the vehicle drive control device of the present invention, the vehicle speed can be estimated accurately and simply not only when traveling straight but also when turning, and traction control or ABS control can be appropriately performed.

この発明の一実施形態に係る四輪駆動車両の車両速度推定装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the vehicle speed estimation apparatus of the four-wheel drive vehicle which concerns on one Embodiment of this invention. 同車両速度推定装置で用いる各方向の説明図である。It is explanatory drawing of each direction used with the vehicle speed estimation apparatus. 同車両速度推定装置の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the vehicle speed estimation apparatus. 同車両速度推定装置による車両速度の推定結果と車両速度の実測値とを対比して示すグラフである4 is a graph showing a comparison between a vehicle speed estimation result obtained by the vehicle speed estimation device and an actual measurement value of the vehicle speed. 同車両速度推定装置で推定した車両速度を用いるトラクション制御およびABS制御を示すブロック線図である。It is a block diagram which shows the traction control and ABS control which use the vehicle speed estimated with the vehicle speed estimation apparatus. 図5のトラクション制御手段およびABS制御手段を用いた車両駆動制御装置の概念構成の一例を示すブロック図である。It is a block diagram which shows an example of a conceptual structure of the vehicle drive control apparatus using the traction control means and ABS control means of FIG. 図6の制御対象となる車両における走行駆動手段であるインホイールモータ駆動装置の一例を示す断面図である。It is sectional drawing which shows an example of the in-wheel motor drive device which is the driving means for driving | running | working in the vehicle used as the control object of FIG.

この発明の一実施形態を図面と共に説明する。図1において、この実施形態の車両速度推定装置10を適用する車両1は、前輪および後輪となる各車輪2に対して個別に走行駆動手段5が設けられた四輪駆動車両である。走行駆動手段5は、例えば、後述のようなインホイールモータ駆動装置であっても、また車台上に設けられたモータや、内燃機関であっても良い。この車両速度推定装置10は、同図の例では車両1の全体の協調制御、統括制御等を行うECU3の一部として設けられる。   An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, a vehicle 1 to which the vehicle speed estimation device 10 of this embodiment is applied is a four-wheel drive vehicle in which travel drive means 5 is individually provided for each wheel 2 as a front wheel and a rear wheel. The travel drive means 5 may be, for example, an in-wheel motor drive device as described later, or a motor provided on a chassis or an internal combustion engine. The vehicle speed estimation device 10 is provided as a part of the ECU 3 that performs overall cooperative control, overall control, and the like of the vehicle 1 in the example of FIG.

この車両速度推定装置10は、各車輪車両速度相当量計算手段6、第一の車速変化量計算手段7、および車両速度推定手段8により構成される。また、センサ類として、姿勢センサ4および回転角センサ9が設けられている。前記姿勢センサ4は、車両1のヨー角速度γを検出するセンサであるが、ここでは車両1のヨー角速度γおよび前後加速度αの両方の検出も可能なジャイロセンサ等の加速度センサが使用されている。前記回転角センサ9は、個々の車輪2の回転角速度αを検出するセンサであり、車輪2や車輪用軸受等に対して設けられてものであっても良く、また走行駆動手段5としてモータを備える場合は、そのモータの回転角速度を検出するセンサであっても良い。例えば、レゾルバである。 The vehicle speed estimation device 10 is constituted by each wheel vehicle speed equivalent amount calculation means 6, first vehicle speed change amount calculation means 7, and vehicle speed estimation means 8. In addition, a posture sensor 4 and a rotation angle sensor 9 are provided as sensors. The attitude sensor 4 is a sensor that detects the yaw angular velocity γ of the vehicle 1. Here, an acceleration sensor such as a gyro sensor that can detect both the yaw angular velocity γ and the longitudinal acceleration α x of the vehicle 1 is used. Yes. The rotation angle sensor 9 is a sensor for detecting the rotation angular velocity α x of each wheel 2, and may be provided for the wheel 2, wheel bearing or the like. May be a sensor that detects the rotational angular velocity of the motor. For example, a resolver.

前記各車輪車両速度相当量計算手段6は、姿勢センサ4より取得した車両1のヨー角速度γを用いて、各車輪2における車輪角速度ωから車両速度に相当する速度である車両速度相当量V:1〜4)を計算する。車輪角速度ωは回転角センサ9から取得する。 Each wheel vehicle speed equivalent amount calculation means 6 uses the yaw angular velocity γ of the vehicle 1 acquired from the attitude sensor 4, and a vehicle speed equivalent amount V i that is a speed corresponding to the vehicle speed from the wheel angular speed ω in each wheel 2. ( I : 1 to 4) is calculated. The wheel angular velocity ω is acquired from the rotation angle sensor 9.

前記第一の車速変化量計算手段7は、前記姿勢センサ4から取得した車両1の前後加速度αの正負に応じて、加速時は前記各車輪2の車両速度相当量Vのうちの最小値となる車両速度相当量の単位時間当たりの車速変化量、減速時は前記各車輪2の車両速度相当量Vのうちの最大値となる車両速度相当量の単位時間当たりの車速変化量である第一の車速変化量α′を求める。 The first vehicle speed change amount calculation means 7 determines the minimum of the vehicle speed equivalent amounts V i of the wheels 2 during acceleration according to the sign of the longitudinal acceleration α x of the vehicle 1 acquired from the attitude sensor 4. vehicle speed change amount per unit time of the vehicle speed corresponding amount as a value, during deceleration the vehicle speed variation per unit of time the vehicle speed corresponding amount as the maximum value of the vehicle speed corresponding amount V i of each wheel 2 A first vehicle speed change amount α x ′ is obtained.

前記車両速度推定手段8は、前記姿勢センサ4から取得した車両前後方向の加速度である第二の車速変化量αと前記第一の車速変化量α′との差の絶対値|α−α′|をしきい値δと比較し、しきい値δ未満の場合で、かつ前記車両1の前後加速度が加速時は前記車両速度相当量Vの前記最小値を、減速時は前記最大値を車両速度Vとして定め、前記差の絶対値|α−α′|が前記しきい値δ以上の場合は前記第二の車速変化量αを積分して車両速度Vを求める。前記しきい値δは、試験やシミュレーションの結果等に基づき、適宜に設定する。
なお、前記第一の車速変化量計算手段7および車両速度推定手段8において、前記車両1の前後加速度(α)は、前記ヨー角速度γを検出する姿勢センサ4とは別に設けられた加速度センサ(図示せず)から取得するようにしても良い。
The vehicle speed estimator 8 calculates the absolute value | α x of the difference between the second vehicle speed change amount α x that is the acceleration in the vehicle longitudinal direction acquired from the attitude sensor 4 and the first vehicle speed change amount α x ′. −α x ′ | is compared with a threshold value δ. When the longitudinal acceleration of the vehicle 1 is accelerated, the minimum value of the vehicle speed equivalent V i is reduced when the vehicle 1 is accelerated. The maximum value is determined as the vehicle speed V. When the absolute value | α x −α x ′ | of the difference is equal to or larger than the threshold value δ, the second vehicle speed change amount α x is integrated to obtain the vehicle speed V. Ask. The threshold value δ is appropriately set based on the results of tests and simulations.
In the first vehicle speed variation calculation means 7 and the vehicle speed estimation means 8, the longitudinal acceleration (α x ) of the vehicle 1 is an acceleration sensor provided separately from the attitude sensor 4 that detects the yaw angular velocity γ. You may make it acquire from (not shown).

次に、図3の流れ図を用いて、この車両速度推定装置10が行う車両速度推定手順を説明する。
ステップS1では、車両1の各車輪角速度ω、および車両1のヨー角速度γから、車両速度に相当する量である各車輪の車速相当速度V:1〜4)を、各車輪車両速度相当量計算手段6により次式に従って計算する。
Next, a vehicle speed estimation procedure performed by the vehicle speed estimation device 10 will be described using the flowchart of FIG.
In step S1, a vehicle speed equivalent speed V i ( i : 1 to 4) of each wheel, which is an amount corresponding to the vehicle speed, is calculated from each wheel angular speed ω of the vehicle 1 and yaw angular speed γ of the vehicle 1 to each wheel vehicle speed. The equivalent amount calculation means 6 calculates according to the following formula.

Figure 2016094139
Figure 2016094139

Rは車輪半径、dはトレッドを表す。図2に示すように、鉛直上向きに軸をとり、この軸回りに反時計回りに回転するときのヨー角速度の向きを正とする。また、式(1)の複号は、左輪では正、右輪では負とする。添え字iは車輪2の番号を表す。車輪2の角速度ωは車輪2の前記回転角センサ9を使って求める。車両1のヨー角速度γは車載した前記姿勢センサ4から取得する。   R represents a wheel radius and d represents a tread. As shown in FIG. 2, the axis is vertically upward, and the direction of the yaw angular velocity when rotating counterclockwise around this axis is positive. In addition, the double sign in equation (1) is positive for the left wheel and negative for the right wheel. The subscript i represents the wheel 2 number. The angular velocity ω of the wheel 2 is obtained using the rotation angle sensor 9 of the wheel 2. The yaw angular velocity γ of the vehicle 1 is obtained from the attitude sensor 4 mounted on the vehicle.

次に、ステップS2では、前記第一の車速変化量計算手段7により、姿勢センサ4から得られる車両1の前後加速度αの正負(加速あるいは減速)に応じて、単位時間当たりの車速変化に相当する量α′(第一の車速変化量)を次式により計算する。すなわち、車速相当量の最小値または最大値を微分した値をα′として採用する(ステップS3,ステップS4)。 Next, in step S2, by the first vehicle speed change calculating means 7, depending on the sign of the longitudinal acceleration alpha x of the vehicle 1 obtained from the orientation sensor 4 (acceleration or deceleration), the vehicle speed change per unit time The corresponding amount α x ′ (first vehicle speed change amount) is calculated by the following equation. That is, a value obtained by differentiating the minimum value or the maximum value of the vehicle speed equivalent amount is adopted as α x ′ (step S3, step S4).

Figure 2016094139
Figure 2016094139

以下、車両速度推定手段8により、次の各処理を行う。
ステップS5では、姿勢センサ4から得られる前後加速度αを第二の車速変化量とし、第一の車速変化量α′と第二の車速変化量αとを比較する。次式の通り、その差の絶対値|α−α′|がしきい値δ未満であれば、最低でも一輪はグリップしているものと判断し、しきい値δ以上であれば、全輪スリップしているものと判断する。
Thereafter, the following processes are performed by the vehicle speed estimation means 8.
In step S5, the longitudinal acceleration α x obtained from the attitude sensor 4 is set as the second vehicle speed change amount, and the first vehicle speed change amount α x ′ and the second vehicle speed change amount α x are compared. If the absolute value | α x −α x ′ | of the difference is less than the threshold value δ as in the following equation, it is determined that at least one wheel is gripping, and if it is equal to or greater than the threshold value δ, Judge that all wheels are slipping.

Figure 2016094139
一輪以上スリップしていると判断したときは、第二の車速変化量αの正負に基づき(ステップS6)、車両速度Vを次式で推定する。すなわち、車両1が加速しているときは車速相当量Vの最小値を(ステップS7)、車両1が減速しているときは車速相当量Vの最大値を車両速度Vとする(ステップS8)。
Figure 2016094139
When it is determined that one or more wheels are slipping, the vehicle speed V is estimated by the following equation based on the sign of the second vehicle speed change amount α x (step S6). That is, the minimum value of the vehicle speed corresponding amount V i when the vehicle 1 is accelerating (step S7), and the maximum value of the vehicle speed corresponding amount V i and the vehicle speed V when the vehicle 1 is decelerating (Step S8).

Figure 2016094139
全輪スリップしていると判断したときは、次式の通り、第二の車速変化量αを積分して車両速度Vを推定する(ステップS9)。車両速度の初期値V0には、|α−α′|となる直前に、式(4)から求められる車両速度を用いる。
Figure 2016094139
When it is determined that all wheels are slipping, the vehicle speed V is estimated by integrating the second vehicle speed change amount α x as shown in the following equation (step S9). As the initial value V0 of the vehicle speed, the vehicle speed obtained from the equation (4) is used immediately before | α x −α x ′ |.

Figure 2016094139
Figure 2016094139

このように、車両1のヨー角速度γを考慮して各輪2で車速変化量を計算することにより、車両1が旋回していても車両速度Vを推定することができる。   In this way, by calculating the vehicle speed change amount for each wheel 2 in consideration of the yaw angular velocity γ of the vehicle 1, the vehicle speed V can be estimated even when the vehicle 1 is turning.

図4(B)に、この車両速度推定装置10による推定方法を用いて、減速スラローム中の車両速度を推定した結果を示す。同図(A)は実測値である。推定した車両速度は実測したそれとよく一致していることが確認できる。   FIG. 4B shows a result of estimating the vehicle speed in the deceleration slalom using the estimation method by the vehicle speed estimation device 10. FIG. 6A shows actual measurement values. It can be confirmed that the estimated vehicle speed is in good agreement with the actually measured one.

以上は、傾斜のない路面を想定したときの推定方法であるが、傾斜がある路面でも姿勢センサ4の出力信号として取得されるピッチ角や上下加速度を使って前後加速度を補正した上で、上記と同様にして車両速度を推定すれば、精度良く車両速度を推定することができる。
上記のように車両速度を精度良く推定することによって、トラクション制御やABS制御を効果的に車両に適用することができる。
The above is an estimation method when a road surface with no inclination is assumed, but the longitudinal acceleration is corrected using the pitch angle and the vertical acceleration acquired as the output signal of the attitude sensor 4 even on the road surface with an inclination. If the vehicle speed is estimated in the same manner as described above, the vehicle speed can be estimated with high accuracy.
By accurately estimating the vehicle speed as described above, traction control and ABS control can be effectively applied to the vehicle.

つぎに、上記実施形態の車両速度推定装置10を用いたトラクション制御の例を、図
5〜図7と共に説明する。図5は、トラクション制御手段12のブロック線図である。このトラクション制御手段12は、各車輪2に設けられる。このトラクション制御手段12は、目標スリップ率λを目標スリップ率設定手段14に設定しておき、実際のスリップ率λとの差(λ−λ)を比較部16で求めて、上位の制御手段から与えられた制駆動トルクTaに従い、制御器17により前記スリップ率の差(λ−λ)に応じた制御量となる制駆動トルクTを生成する。制御器17は、前記スリップ率の差(λ−λ)が零であれば、与えられた制駆動トルクTaをそのまま制駆動トルクTとして出力し、差が零でない場合は、定められた制御規則に従って入力の制駆動トルクTaと前記差(λ−λ)とから出力する制駆動トルクTを演算する。
Next, an example of traction control using the vehicle speed estimation device 10 of the above embodiment will be described with reference to FIGS. FIG. 5 is a block diagram of the traction control means 12. The traction control means 12 is provided on each wheel 2. The traction control means 12 sets the target slip ratio λ * in the target slip ratio setting means 14, obtains the difference (λ * −λ) from the actual slip ratio λ by the comparison unit 16, and controls the upper control. In accordance with the braking / driving torque Ta given from the means, the controller 17 generates a braking / driving torque T having a control amount corresponding to the difference (λ * −λ) in the slip ratio. If the difference (λ * −λ) in the slip ratio is zero, the controller 17 outputs the given braking / driving torque Ta as the braking / driving torque T as it is, and if the difference is not zero, a predetermined control is performed. The braking / driving torque T output from the input braking / driving torque Ta and the difference (λ * −λ) is calculated according to a rule.

前記実際のスリップ率λは、スリップ率計算手段15により、車輪速度Vと車両速度Vとから定められた式、例えば次式に従って計算する。上記の車両速度Vとして、図1〜図3と共に説明した前記車両速度推定装置10で求めた車両速度Vを用いる。

Figure 2016094139
The actual slip ratio lambda, the slip ratio calculating unit 15 calculates equations defined from the wheel speed V i and the vehicle speed V, for example, in accordance with the following equation. As said vehicle speed V, the vehicle speed V calculated | required with the said vehicle speed estimation apparatus 10 demonstrated with FIGS. 1-3 was used.
Figure 2016094139

なお、図5はトラクション制御手段12として説明したが、図1の走行駆動手段5がモータ駆動される形式である場合における、回生制御によるABS制御手段13である場合も同じ構成となる。ただし、目標スリップ率設定手段14に設定する目標スリップ率λは、トラクション制御では場合は0.1〜0.2程度に、ABS制御では−0.2〜−0.1程度に設定する。また、入力される制駆動トルクTaは、トラクション制御の場合は正の値、ABS制御の場合は負の値となる。 Although FIG. 5 has been described as the traction control means 12, the same configuration is applied to the ABS control means 13 by regenerative control when the travel drive means 5 of FIG. However, the target slip ratio λ * set in the target slip ratio setting means 14 is set to about 0.1 to 0.2 in the case of traction control, and is set to about −0.2 to −0.1 in the ABS control. The braking / driving torque Ta that is input is a positive value in the case of traction control, and a negative value in the case of ABS control.

図5のトラクション制御手段12は、目標スリップ率設定手段14に目標スリップ率λとしてトラクション制御用とABS制御用との2種類の値を設定しておき、入力される制駆動トルクTaの正負に応じて目標スリップ率設定手段14から出力する目標スリップ率λを切り換えるようにすれば、トラクション制御とABS制御とを兼用する制御手段とすることができる。制御器17の制御内容も、入力される制駆動トルクTaの正負に応じた演算を行うようにしておく。
トラクション制御手段12とABS制御手段13とを別個にして並設する場合は、入力される制駆動トルクTaの正負に応じて使い分けられることになる。
The traction control means 12 in FIG. 5 sets two types of values for traction control and ABS control as the target slip ratio λ * in the target slip ratio setting means 14 and determines whether the braking / driving torque Ta input is positive or negative. If the target slip ratio λ * output from the target slip ratio setting means 14 is switched in accordance with the control, the control means can be used for both traction control and ABS control. The control contents of the controller 17 are also calculated according to the positive / negative of the input braking / driving torque Ta.
When the traction control means 12 and the ABS control means 13 are separately provided in parallel, they are properly used according to the positive / negative of the input braking / driving torque Ta.

このように、図1〜図3の実施形態に係る車両速度推定装置10を用いて車両速度Vを推定し、スリップ率の計算に用いることで、旋回時でも車両速度Vを精度良く推定できて、トラクション制御およびABS制御を適正に行うことができる。   Thus, by estimating the vehicle speed V using the vehicle speed estimation device 10 according to the embodiment of FIGS. 1 to 3 and calculating the slip ratio, the vehicle speed V can be accurately estimated even when turning. Thus, traction control and ABS control can be appropriately performed.

図6は、図5のトラクション制御手段12を備えた車両駆動制御装置の概念構成を示す。同図の例は、基本的には図1に示した例と同様であり、図1につき説明した事項と重複する事項の説明は省略する。図6において、各車輪2の走行駆動装置5はインホイールモータ駆動装置であり、その具体例を図7と共に説明する。   FIG. 6 shows a conceptual configuration of a vehicle drive control device provided with the traction control means 12 of FIG. The example in the figure is basically the same as the example shown in FIG. 1, and the description of matters overlapping with those described with reference to FIG. 1 is omitted. In FIG. 6, the travel drive device 5 for each wheel 2 is an in-wheel motor drive device, and a specific example thereof will be described with reference to FIG.

同図のインホイールモータ装置である走行駆動装置5は、車輪2を支持する車輪用軸受26と、モータ25と、このモータ25の回転を減速して前記車輪用軸受26のハブ兼用の回転輪である内輪26bに伝達する減速機27とを備え、一部が車輪2の内部に位置している。車輪用軸受26は、固定輪である外輪26aと前記内輪26bとの間に転動体26cを介在させた転がり軸受である。回転輪である内輪26bには、車輪2と共に、ブレーキ装置23のブレーキロータ23aが取付けられている。固定輪である外輪26aは、モータ25および減速機27の共通のハウジング28に取付けられている。モータ25は、例えば埋め込み磁石型の同期モータであり、前記ハウジング28に固定したステータ29と、ハウジング28に軸受を介して回転自在に支持されたロータ30とを有し、ステータ29にはステータコイル(図示せず)が、ロータ30には永久磁石(図示せず)が設けられている。   The traveling drive device 5 that is the in-wheel motor device of FIG. 1 includes a wheel bearing 26 that supports the wheel 2, a motor 25, and a rotating wheel that also serves as a hub for the wheel bearing 26 by decelerating the rotation of the motor 25. And a reduction gear 27 that transmits to the inner ring 26b, and a part thereof is located inside the wheel 2. The wheel bearing 26 is a rolling bearing in which a rolling element 26c is interposed between an outer ring 26a which is a fixed ring and the inner ring 26b. A brake rotor 23a of the brake device 23 is attached to the inner ring 26b, which is a rotating wheel, together with the wheel 2. An outer ring 26 a that is a fixed ring is attached to a common housing 28 of the motor 25 and the speed reducer 27. The motor 25 is, for example, an embedded magnet type synchronous motor, and includes a stator 29 fixed to the housing 28 and a rotor 30 rotatably supported on the housing 28 via a bearing. The stator 29 includes a stator coil. The rotor 30 is provided with a permanent magnet (not shown).

図6において、ECU3は図1と共に前述したように車両全体の統括制御等を行う手段であり、このECU3に、トルク分配手段19と前記車両速度推定装置10とが設けられている。トルク分配手段19は、アクセルペダル等のアクセル操作手段21およびブレーキペダル等のブレーキ操作手段22の操作量に従って車両全体の制駆動トルクを求め、各インホイールモータ装置からなる走行駆動装置5のモータ25を制御するインバータ装置18へ制駆動トルクTaを分配する。   In FIG. 6, the ECU 3 is a means for performing overall control of the entire vehicle as described above with reference to FIG. 1, and the ECU 3 is provided with a torque distribution means 19 and the vehicle speed estimation device 10. The torque distribution means 19 obtains the braking / driving torque of the entire vehicle according to the operation amounts of the accelerator operation means 21 such as an accelerator pedal and the brake operation means 22 such as a brake pedal, and the motor 25 of the travel drive apparatus 5 including each in-wheel motor apparatus. The braking / driving torque Ta is distributed to the inverter device 18 that controls.

インバータ装置18は、パワー回路部18aと、このパワー回路部18aを制御するモータコントロール部18bとからなる。パワー回路部18aは、バッテリ(図示せず)の直流電力をモータ25の駆動用の交流電力に変換するインバータ20と、モータコントロール部18bからの電流指令に従ってインバータ20をPWM制御等で制御する制御回路部(図示せず)とで構成される。   The inverter device 18 includes a power circuit unit 18a and a motor control unit 18b that controls the power circuit unit 18a. The power circuit unit 18a converts the DC power of a battery (not shown) into AC power for driving the motor 25, and control for controlling the inverter 20 by PWM control or the like in accordance with a current command from the motor control unit 18b. And a circuit unit (not shown).

モータコントロール部18bは、上位の制御手段であるECU3のトルク分配手段19から指令された制駆動トルクTaに従い、モータ25をベトクル制御等でトルク制御するトルク制御手段32を有し、このトルク制御手段32で生成した電流指令を前記パワー回路部18aに出力する。このようなモータコントロール部18bにおいて、トルク制御手段32の上段に、図5と共に前述したトラクション制御手段12およびABS制御手段13が設けられている。これらトラクション制御手段12およびABS制御手段13は、ECU3のトルク分配手段19から指令された制駆動トルクTaに対して、図5の例のように処理を行い、制駆動トルクTを生成する。   The motor control unit 18b has torque control means 32 for controlling the torque of the motor 25 by vehicle control or the like in accordance with the braking / driving torque Ta commanded from the torque distribution means 19 of the ECU 3, which is the upper control means. The current command generated in 32 is output to the power circuit unit 18a. In such a motor control unit 18b, the traction control means 12 and the ABS control means 13 described above with reference to FIG. The traction control means 12 and the ABS control means 13 perform the processing as shown in the example of FIG. 5 on the braking / driving torque Ta commanded from the torque distributing means 19 of the ECU 3 to generate the braking / driving torque T.

図6において、各車輪2に対して設けられた各ブレーキ23は、ブレーキ制御手段31によって制御される。このブレーキ制御手段31は、図ではECU3の外部に記載したが、一部または全体がECU3に設けられる。同図のブレーキ制御手段31は、前記ブレーキ操作手段21から入力された操作量による制動指令に従い、ECU3で得た種々の走行状況などの情報から、各ブレーキ23による制動、および各モータ5による回生制動の分配を行う分配手段、並びに分配された各ブレーキ23の制御指令に従って各ブレーキ23を制御する個別ブレーキ制御手段を纏めて示している。前記ブレーキが電動ブレーキであってABS制御が可能なものである場合、そのABS制御は、図5の制御ブロック図で示される制御と同様な制御を行う。ただし、その場合、制御器17に入力されるトルクTaおよび出力するトルクTは、分配されたブレーキ力に対応するトルク指令およびそのトルク指令を処理したトルク指令である。
この場合も、スリップ率の計算に前記実施形態に係る車両速度推定装置10により演算した車両速度Vを用いるため、直進時だけでなく旋回時でも車両速度を精度良く推定できて、ABS制御を適正に行うことができる。
In FIG. 6, each brake 23 provided for each wheel 2 is controlled by a brake control means 31. Although the brake control means 31 is described outside the ECU 3 in the drawing, a part or the whole of the brake control means 31 is provided in the ECU 3. The brake control means 31 shown in FIG. 1 performs braking by each brake 23 and regeneration by each motor 5 from information such as various traveling conditions obtained by the ECU 3 in accordance with a braking command based on an operation amount input from the brake operating means 21. The distribution means for distributing the brakes and the individual brake control means for controlling the brakes 23 in accordance with the control commands for the distributed brakes 23 are collectively shown. When the brake is an electric brake and ABS control is possible, the ABS control performs the same control as the control shown in the control block diagram of FIG. In this case, however, the torque Ta input to the controller 17 and the output torque T are a torque command corresponding to the distributed braking force and a torque command obtained by processing the torque command.
Also in this case, since the vehicle speed V calculated by the vehicle speed estimation device 10 according to the embodiment is used for the calculation of the slip ratio, the vehicle speed can be accurately estimated not only when traveling straight but also when turning, and the ABS control is appropriately performed. Can be done.

以上、実施例に基づいて本発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。   As mentioned above, although the form for implementing this invention based on the Example was demonstrated, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1…車両
2…車輪
3…ECU
4…姿勢センサ
5…走行駆動装置(インホイールモータ駆動装置)
6…各車輪車両速度相当量計算手段
7…車速変化量計算手段
8…車両速度推定手段
9…回転角センサ(回転センサ)
12…トラクション制御手段
13…ABS制御手段
18…インバータ装置
25…モータ
α′…第一の車速変化量
…車両速度相当量
γ…ヨー角速度
δ…しきい値
1 ... Vehicle 2 ... Wheel 3 ... ECU
4 ... Attitude sensor 5 ... Travel drive device (in-wheel motor drive device)
6 ... Each wheel vehicle speed equivalent amount calculation means 7 ... Vehicle speed change amount calculation means 8 ... Vehicle speed estimation means 9 ... Rotation angle sensor (rotation sensor)
12 ... Traction control means 13 ... ABS control means 18 ... Inverter device 25 ... Motor α x '... First vehicle speed change amount V i ... Vehicle speed equivalent amount γ ... Yaw angular velocity δ ... Threshold value

Claims (5)

四輪駆動車両における車両速度を推定する装置であって、
センサより取得した車両のヨー角速度を用いて各車輪における回転速度から車両速度に相当する速度である車両速度相当量を計算する各車輪車両速度相当量計算手段と、
前記センサまたは他のセンサから取得した車両の前後加速度の正負に応じて、加速時は前記各車輪の車両速度相当量のうちの最小値となる車両速度相当量の単位時間当たりの車速変化量、減速時は前記各車輪の車両速度相当量のうちの最大値となる車両速度相当量の単位時間当たりの車速変化量である第一の車速変化量を求める第一の車速変化量計算手段と、
前記いずれかのセンサまたは他のセンサから取得した車両前後方向の加速度である第二の車速変化量と前記第一の車速変化量との差の絶対値をしきい値と比較し、しきい値未満の場合で、かつ前記車両の前後加速度が加速時は前記車両速度相当量の前記最小値を、減速時は前記最大値を車両速度として定め、前記差の絶対値が前記しきい値以上の場合は前記第二の車速変化量を積分して車両速度を求める車両速度推定手段、
とを備えることを特徴とする四輪駆動車両の車両速度推定装置。
An apparatus for estimating a vehicle speed in a four-wheel drive vehicle,
Each wheel vehicle speed equivalent amount calculating means for calculating a vehicle speed equivalent amount that is a speed corresponding to the vehicle speed from the rotational speed of each wheel using the yaw angular velocity of the vehicle acquired from the sensor;
According to the sign of the longitudinal acceleration of the vehicle acquired from the sensor or another sensor, the vehicle speed change amount per unit time of the vehicle speed equivalent amount that becomes the minimum value of the vehicle speed equivalent amount of the wheels during acceleration, First vehicle speed change amount calculating means for obtaining a first vehicle speed change amount that is a vehicle speed change amount per unit time of the vehicle speed equivalent amount that is the maximum value of the vehicle speed equivalent amount of each wheel during deceleration;
The absolute value of the difference between the second vehicle speed change amount and the first vehicle speed change amount, which is the acceleration in the vehicle longitudinal direction obtained from any one of the sensors or other sensors, is compared with a threshold value. The minimum value of the vehicle speed equivalent amount is determined as the vehicle speed when the longitudinal acceleration of the vehicle is accelerated, and the maximum value is determined as the vehicle speed when the vehicle is decelerated, and the absolute value of the difference is equal to or greater than the threshold value. In this case, vehicle speed estimation means for integrating the second vehicle speed change amount to obtain the vehicle speed,
A vehicle speed estimation device for a four-wheel drive vehicle.
請求項1に記載の四輪駆動車両の車両速度推定装置において、前記ヨー角速度および前記車両の前後加速度は姿勢センサから取得し、前記車輪の回転速度は前記各車輪に設けた車輪の回転センサから取得する四輪駆動車両の車両速度推定装置。   2. The vehicle speed estimation device for a four-wheel drive vehicle according to claim 1, wherein the yaw angular velocity and the longitudinal acceleration of the vehicle are acquired from an attitude sensor, and the rotation speed of the wheel is determined from a rotation sensor of a wheel provided on each wheel. A vehicle speed estimation device for a four-wheel drive vehicle to be acquired. 請求項1または請求項2に記載の四輪駆動車両の車両速度推定装置において、前記車両の前記各車輪を駆動する走行駆動手段がインホイールモータ駆動装置である四輪駆動車両の車両速度推定装置。   The vehicle speed estimation device for a four-wheel drive vehicle according to claim 1 or 2, wherein the traveling drive means for driving each wheel of the vehicle is an in-wheel motor drive device. . 請求項1ないし請求項3のいずれか1項に記載の四輪駆動車両の車両速度推定装置と、この車両速度推定装置で推定した車両速度を用いてトラクション制御を行うトラクション制御手段とを有し車両の走行駆動手段を制御する車両駆動制御装置。   A vehicle speed estimation device for a four-wheel drive vehicle according to any one of claims 1 to 3, and a traction control means for performing traction control using the vehicle speed estimated by the vehicle speed estimation device. A vehicle drive control device for controlling a vehicle travel drive means. 請求項1ないし請求項3のいずれか1項に記載の四輪駆動車両の車両速度推定装置と、この車両速度推定装置で推定した車両速度を用いてABS制御を行うABS制御手段とを有し車両を制御する車両駆動制御装置。   A vehicle speed estimation device for a four-wheel drive vehicle according to any one of claims 1 to 3, and an ABS control means for performing ABS control using the vehicle speed estimated by the vehicle speed estimation device. A vehicle drive control device for controlling a vehicle.
JP2014232382A 2014-11-17 2014-11-17 Vehicle speed estimation device of four-wheel drive vehicle and control device Pending JP2016094139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014232382A JP2016094139A (en) 2014-11-17 2014-11-17 Vehicle speed estimation device of four-wheel drive vehicle and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014232382A JP2016094139A (en) 2014-11-17 2014-11-17 Vehicle speed estimation device of four-wheel drive vehicle and control device

Publications (1)

Publication Number Publication Date
JP2016094139A true JP2016094139A (en) 2016-05-26

Family

ID=56069774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014232382A Pending JP2016094139A (en) 2014-11-17 2014-11-17 Vehicle speed estimation device of four-wheel drive vehicle and control device

Country Status (1)

Country Link
JP (1) JP2016094139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113195318A (en) * 2018-12-18 2021-07-30 日产自动车株式会社 Method and device for estimating vehicle body speed of 4-wheel drive vehicle
WO2023233903A1 (en) * 2022-05-31 2023-12-07 株式会社デンソー Moving body control device and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113195318A (en) * 2018-12-18 2021-07-30 日产自动车株式会社 Method and device for estimating vehicle body speed of 4-wheel drive vehicle
US11932258B2 (en) 2018-12-18 2024-03-19 Nissan Motor Co., Ltd. Vehicle speed estimation method and vehicle speed estimation device for four-wheel drive vehicle
CN113195318B (en) * 2018-12-18 2024-04-16 日产自动车株式会社 Vehicle body speed estimation method and vehicle body speed estimation device for 4-wheel drive vehicle
WO2023233903A1 (en) * 2022-05-31 2023-12-07 株式会社デンソー Moving body control device and program

Similar Documents

Publication Publication Date Title
JP6472626B2 (en) Vehicle skid prevention control device
JP6333917B2 (en) Vehicle turning control device
JP4867369B2 (en) Driving force control device for electric vehicle, automobile and driving force control method for electric vehicle
JP6223717B2 (en) Electric vehicle slip control device
JP6502074B2 (en) Vehicle braking / driving force control device
JP6440971B2 (en) Drive control device with traction control function for left and right independent drive vehicles
JP6616158B2 (en) Slip control device
JP2015035943A (en) Slip controller of electric vehicle
JP2009055703A (en) Friction coefficient estimation device for road surface
JP6396188B2 (en) Vehicle body speed estimation device
JP2022509057A (en) Method and control unit for determining the coefficient of friction potential of the road surface
JP2008087724A (en) Tire lateral force arithmetic unit
KR20210014821A (en) Wheel slip control method for vehicle
JP4725431B2 (en) Driving force estimation device for electric vehicle, automobile and driving force estimation method for electric vehicle
JP5527081B2 (en) Driving force estimation device for electric vehicle
US11912136B2 (en) Control method for electric vehicle and control device for electric vehicle
JP2016094139A (en) Vehicle speed estimation device of four-wheel drive vehicle and control device
JP6506196B2 (en) Wheel controller
JP2014223822A (en) Vehicle control device
CN103303317B (en) The speed predictor method of vehicle
JP2016015834A (en) Hill assist control device for electric vehicles
CN115675112A (en) Vehicle control unit, motor controller and related equipment
JP4835198B2 (en) Vehicle behavior control device
JP5927933B2 (en) Vehicle driving support device
JP6679348B2 (en) Vehicle front-rear speed estimation device