WO2023233840A1 - Component inspection device - Google Patents
Component inspection device Download PDFInfo
- Publication number
- WO2023233840A1 WO2023233840A1 PCT/JP2023/015154 JP2023015154W WO2023233840A1 WO 2023233840 A1 WO2023233840 A1 WO 2023233840A1 JP 2023015154 W JP2023015154 W JP 2023015154W WO 2023233840 A1 WO2023233840 A1 WO 2023233840A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- inspection
- vibration
- turntable
- linear feeder
- Prior art date
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 108
- 230000032258 transport Effects 0.000 claims description 10
- 238000013459 approach Methods 0.000 claims description 7
- 230000007423 decrease Effects 0.000 abstract description 13
- 238000012545 processing Methods 0.000 abstract description 3
- 230000007246 mechanism Effects 0.000 description 24
- 238000003384 imaging method Methods 0.000 description 20
- 238000011179 visual inspection Methods 0.000 description 12
- 230000002950 deficient Effects 0.000 description 11
- 239000000919 ceramic Substances 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000003985 ceramic capacitor Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G27/00—Jigging conveyors
- B65G27/10—Applications of devices for generating or transmitting jigging movements
- B65G27/32—Applications of devices for generating or transmitting jigging movements with means for controlling direction, frequency or amplitude of vibration or shaking movement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G13/00—Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
Definitions
- the present invention relates to a component inspection device.
- Patent Document 1 discloses an appearance inspection device as such a component inspection device.
- the appearance inspection device disclosed in Patent Document 1 includes a linear feeder that conveys electronic components, a turntable that rotationally conveys the electronic components conveyed by the linear feeder, and a plurality of devices that image six sides of the electronic components on the turntable. It is equipped with an imaging device and conducts visual inspections on six sides of electronic components while transporting them.
- the visual inspection device disclosed in Patent Document 1 charges the electronic components by transporting the electronic components using vibration in a linear feeder, and electrostatically attracts the electronic components using static electricity on the turntable and rotationally transports the electronic components.
- the conveyance speed of the turntable is faster than the conveyance speed of the linear feeder. Thereby, it is possible to leave a space between the electronic components on the turntable, and it is possible to visually inspect the end face of the electronic component in the transport direction.
- the spacing between electronic components on the turntable may vary due to some factors such as variations in the conveyance speed of the turntable or component clogging in the linear feeder.
- the distance between electronic components becomes narrow, for example, it becomes impossible to image the end face of the electronic component using an imaging device, and the accuracy of visual inspection of the electronic component decreases.
- the throughput of visual inspection of electronic components decreases.
- An object of the present invention is to provide a component inspection device that suppresses a decrease in the accuracy of component inspection and a decrease in the throughput of component inspection.
- a component inspection device is a component inspection device that inspects a component while conveying the component, and includes a linear feeder that conveys the component by vibration of a first frequency, and a component inspection device that inspects the component while conveying the component.
- the device includes a turntable for transporting parts, an inspection controller for inspecting the parts on the turntable, and a first sensor for detecting the parts on the turntable.
- the inspection controller adjusts the first frequency of vibration of the linear feeder based on the interval between the parts on the turntable detected by the first sensor.
- the component inspection device may further include a first piezoelectric element that supplies vibration of the first frequency to the linear feeder, and the inspection controller controls the voltage of the first piezoelectric element.
- the first frequency of vibration of the linear feeder may be adjusted by adjusting.
- the inspection controller controls the vibration of the linear feeder so that the interval between the components on the turntable approaches a first target value. 1 frequency may be adjusted.
- the inspection controller calculates a plurality of inter-component distances for a plurality of the components on the turntable;
- the first frequency of the vibration of the linear feeder may be adjusted so that a median value of the distances between the plurality of parts is calculated, and the calculated median value approaches a first target value.
- the component inspection device includes a ball feeder that conveys the component to the linear feeder by vibration at a second frequency, and a ball feeder that conveys the component to the linear feeder by vibration at a second frequency.
- the inspection controller may further include a second sensor that detects the vibration of the ball feeder based on the occupation ratio of the component on the linear feeder detected by the second sensor. The frequency may be adjusted.
- the component inspection device may further include a second piezoelectric element that supplies the second frequency of vibration to the ball feeder, and the inspection controller controls the voltage of the second piezoelectric element.
- the second frequency of vibration of the ball feeder may be adjusted by adjusting.
- the inspection controller controls the vibration of the ball feeder so that the occupation rate of the component on the linear feeder is equal to or higher than a second target value.
- the second frequency may be adjusted.
- the second target value may be 95%.
- FIG. 1 is a schematic plan view of an example of the component inspection device according to the present embodiment, viewed from above.
- FIG. 2 is an enlarged schematic plan view of portion II in the component inspection apparatus shown in FIG. 1.
- FIG. FIG. 2 is a schematic side view of the component inspection device shown in FIG. 1 viewed from the side, and is an enlarged schematic side view of portion II.
- FIG. 3 is a schematic perspective view of the external appearance of the component.
- FIG. 1 is a schematic plan view of an example of the component inspection device according to the present embodiment, viewed from above
- FIG. 2 is an enlarged schematic plan view of part II of the component inspection device shown in FIG. 1
- FIG. FIG. 2 is a schematic side view of the component inspection apparatus shown in FIG. 1 viewed from the side, with portion II being enlarged. Note that an XY orthogonal coordinate system is shown in FIGS. 1 to 3.
- the component inspection device 1 shown in FIGS. 1 to 3 is a device that inspects a plurality of electronic components 3 while sequentially conveying them and selects non-defective products.
- the component inspection device 1 includes a ball feeder 10, a linear feeder 20, a turntable 30, a plurality of imaging devices 40, a discharge mechanism 50, a first sensor 61, a second sensor 62, and a third sensor 63. , and an inspection sorting controller 70.
- the electronic component 3 is a surface-mounted electronic component (also referred to as a chip component) such as a multilayer ceramic capacitor.
- the electronic component 3 is arranged on a laminate 3a in which a plurality of dielectric layers made of a ceramic material and one or more conductor layers are laminated, and on each of two end faces of the laminate 3a. and two external electrodes 3b.
- the laminate 3a that is, the electronic component 3, has a rectangular parallelepiped shape, and has two main surfaces TS1 and TS2 facing each other in the stacking direction, two side surfaces WS1 and WS2 facing each other in the width direction crossing the stacking direction, and two main surfaces TS1 and TS2 facing each other in the stacking direction. It has two end faces LS1 and LS2 that are opposite to each other in the length direction and intersect with the width direction.
- the dimensions of the electronic component 3 are not particularly limited, but for example, the length direction dimension is 3.2 mm or more and 0.1 mm or less, the width direction dimension is 1.6 mm or more and 0.05 mm or less, and the lamination direction dimension is may be 1.6 mm or more and 0.05 mm or less. Note that these dimensions may vary due to intersections.
- the electronic component 3 is not limited to the above-mentioned multilayer ceramic capacitor using dielectric ceramic, but may include various electronic components such as piezoelectric components using piezoelectric ceramic, thermistor using semiconductor ceramic, and inductor using magnetic ceramic. It may be.
- the ball feeder 10 aligns and conveys a plurality of electronic components 3 supplied by, for example, a hopper.
- the hopper is a device that detects a shortage in the number of electronic components 3 in the ball feeder 10, automatically replenishes the electronic components 3 to the ball feeder 10, and maintains the number of electronic components 3 in the ball feeder 10 at a constant level. It is.
- a sensor may be provided to detect the amount of electronic components 3 supplied to the ball feeder 10. As such a sensor, a third sensor 63 that detects the electronic component 3 on the ball feeder 10, which will be described later, may be used.
- the ball feeder 10 is provided with a vibration mechanism 12 that supplies vibrations at a second frequency to the ball feeder 10.
- a vibration mechanism 12 for example, a piezoelectric element (second piezoelectric element) that generates vibration at a frequency depending on a voltage can be used.
- the outer shape of the ball feeder 10 is circular. The ball feeder 10 moves the electronic components 3 in a circular motion outward from the center of the circular shape by vibration at the second frequency, and conveys the electronic components 3 in a spirally aligned manner.
- the linear feeder 20 sequentially linearly transports the plurality of electronic components 3 that are aligned and transported by the ball feeder 10.
- the linear feeder 20 is provided with a vibration mechanism 22 that supplies vibrations of a first frequency to the linear feeder 20.
- a vibration mechanism 22 for example, a piezoelectric element (first piezoelectric element) that generates vibration at a frequency corresponding to a voltage can be used.
- the linear feeder 20 is inclined with respect to the horizontal plane.
- the linear feeder 20 transports the electronic component 3 by vibration at the first frequency.
- the linear feeder 20 is preferably made of a material such as SUS. Thereby, in the linear feeder 20, when the electronic component 3 is conveyed by vibration, the electronic component 3 can be charged.
- the turntable 30 sequentially rotates and transports the plurality of electronic components 3 transported by the linear feeder 20. As shown in FIGS. 1 and 2, the turntable 30 has a guide mechanism 32 on the upstream side, and the guide mechanism 32 guides the electronic component 3 from the linear feeder 20 to a rotational conveyance trajectory 31. The turntable 30 transports the electronic component 3 along a rotational transport trajectory 31 .
- an electrostatic adsorption mechanism 34 is provided on the lower side of the turntable 30. Thereby, the electrically charged electronic components 3 can be electrostatically attracted and transported in the linear feeder 20 .
- the conveyance speed of the turntable 30 is faster than the conveyance speed of the linear feeder 20. Thereby, as shown in FIGS. 2 and 3, the electronic components 3 can be spaced apart, and the appearance of the end surface side of the electronic components 3 can be inspected.
- the turntable 30 is made of a material such as glass or resin, and has transparency. This makes it possible to inspect the appearance of the back side of the electronic component 3.
- the imaging device 40 is, for example, a camera.
- Six imaging devices 40 are provided along the rotational conveyance trajectory 31 of the turntable 30.
- the six imaging devices 40 image six outer surfaces of the electronic component 3 on the turntable 30, namely, two main surfaces TS1 and TS2, two side surfaces WS1 and WS2, and two end surfaces LS1 and LS2, respectively.
- Each of the imaging devices 40 may be provided with a lighting device that illuminates the imaging surface of the electronic component 3.
- the ejection mechanism 50 ejects non-defective products that have been selected by an inspection and selection controller 70 (described later) based on the results of the visual inspection from the turntable 30 and stores them in a case or the like.
- the method for discharging non-defective products by the discharging mechanism 50 is not particularly limited, and examples include air blowing, air suction, physical contact extrusion, and the like.
- the discharge mechanism 50 discharges the non-defective product from the turntable 30 and stores it in a case or the like by blowing air onto the non-defective product on the turntable 30 in accordance with a command from the inspection and sorting controller 70. do.
- the first sensor 61 is provided on the turntable 30 and detects the electronic component 3 on the turntable 30.
- the first sensor 61 is not particularly limited, but since the turntable 30 is transparent as described above, for example, a transmission type laser sensor can be used. Thereby, the first sensor 61 can detect the interval between the electronic components 3 that are transported at a constant speed by the turntable 30.
- the second sensor 62 is provided on the linear feeder 20 and detects the electronic component 3 on the linear feeder 20.
- the second sensor 62 is not particularly limited, but includes, for example, a laser displacement meter or a surface photoelectric sensor.
- a laser displacement meter When the size of the electronic component 3 is relatively large, for example, when the dimension in the width direction or the dimension in the stacking direction is 0.8 mm or more, it is preferable to use a laser displacement meter. According to the laser displacement meter, by detecting the height of the electronic component, it is also possible to detect the orientation of the workpiece.
- the size of the electronic component 3 is relatively small, for example, when the dimension in the width direction or the dimension in the stacking direction is less than 0.8 mm, it is preferable to use a surface photoelectric sensor. According to the surface photoelectric sensor, erroneous detection due to miniaturization of the electronic component 3 can be prevented.
- the second sensor 62 detects the presence or absence of the electronic component 3 on the linear feeder 20 at predetermined intervals. In this way, the second sensor 62 can detect the occupation rate of the electronic components 3 on the linear feeder 20.
- the third sensor 63 is provided on the ball feeder 10 and detects the electronic component 3 on the ball feeder 10.
- the third sensor 63 is not particularly limited, similar to the second sensor 62, for example, a laser displacement meter or a surface photoelectric sensor can be used.
- the inspection and sorting controller 70 controls the entire component inspection apparatus 1. Specifically, the inspection and sorting controller 70 performs a visual inspection of the electronic components 3 on the turntable 30 based on the imaging results from the imaging device 40, and sorts non-defective products and defective products based on the results of the visual inspection. .
- the inspection and sorting controller 70 controls the discharge of non-defective products by the discharge mechanism 50.
- the inspection and sorting controller 70 selects non-defective items from the discharge mechanism 50 based on information such as the conveyance speed (or rotational speed and rotational conveyance locus length or radius) of the turntable 30 and the position of the imaging device 40 on the turntable 30.
- the timing for ejecting is calculated and the ejecting mechanism 50 is commanded.
- the inspection and sorting controller 70 adjusts the first frequency of vibration of the linear feeder 20 based on the interval between the electronic components 3 on the turntable 30 detected by the first sensor 61. For example, the inspection sorting controller 70 adjusts the voltage of the first piezoelectric element in the vibration mechanism 22 of the linear feeder 20.
- the inspection and sorting controller 70 adjusts the first frequency of the vibration of the linear feeder 20 so that the detected interval between the electronic components 3 on the turntable 30 approaches the first target value. More specifically, the inspection and sorting controller 70 calculates a plurality of inter-component distances (for example, 99 pieces) among the plurality of detected electronic parts 3 (for example, 100 pieces) on the turntable 30, and Calculate the median value. The inspection sorting controller 70 adjusts the first frequency of vibration of the linear feeder 20 so that the calculated median value approaches the first target value.
- the median value of the distances between multiple parts is used as the adjustment parameter instead of the average value of the distances between multiple parts. This allows the spacing of electronic components to be adjusted without relying on extremely deviant values.
- the first target value for the spacing between the electronic components 3 on the turntable 30 is based on the dimensions of the electronic components 3, the conveyance speed of the turntable 30, the imaging speed capability of the imaging device 40, the discharge processing capability of the discharge mechanism 50, etc. It is sufficient if the decision is made based on the following.
- the inspection and sorting controller 70 adjusts the first frequency of the vibration of the linear feeder 20. Make it smaller. As a result, the vibration of the linear feeder 20 becomes smaller, and the amount of feed from the linear feeder 20 to the turntable 30 becomes lower. As a result, the spacing between the electronic components 3 on the turntable 30, for example, the median of the distances between the plurality of components, increases and is maintained close to the first target value.
- the inspection and sorting controller 70 controls the vibration of the linear feeder 20. Increase frequency. This increases the vibration of the linear feeder 20 and increases the amount of feed from the linear feeder 20 to the turntable 30. As a result, the interval between the electronic components 3 on the turntable 30, for example, the median distance between the plurality of components, becomes smaller and is maintained closer to the first target value.
- the inspection and sorting controller 70 adjusts the second frequency of the vibration of the ball feeder 10 based on the occupancy rate of the electronic components 3 on the linear feeder 20 detected by the second sensor 62. For example, the inspection and sorting controller 70 adjusts the voltage of the second piezoelectric element in the vibration mechanism 12 of the ball feeder 10.
- the inspection and sorting controller 70 calculates the occupation ratio of the electronic components 3 on the linear feeder 20 with respect to the detected overall dimension of the linear feeder 20 in the transport direction.
- the inspection and sorting controller 70 adjusts the second frequency of the vibration of the ball feeder 10 so that the calculated occupancy ratio remains equal to or higher than the second target value.
- the second target value for the occupation rate of the electronic components 3 on the linear feeder 20 is, for example, 95%.
- the inspection and sorting controller 70 increases the second frequency of the vibration of the ball feeder 10. This increases the vibration of the ball feeder 10 and increases the amount of feed from the ball feeder 10 to the linear feeder 20. As a result, the occupation ratio of the electronic components 3 on the linear feeder 20 increases and is maintained at the second target value or higher.
- the inspection and sorting controller 70 stops supplying the electronic components 3 from the hopper and transfers the electronic components 3 to the ball feeder 20. Since it is predicted that there is no electronic component 3 on the ball feeder 10, the vibration of the ball feeder 10 may be stopped.
- the inspection and sorting controller 70 detects electronic components 3 on the ball feeder 10 for a predetermined period of time (for example, 1 second) or more, in other words, if the electronic components are not supplied from the hopper. When the vibration is finished, the vibration of the ball feeder 10 may be stopped.
- the inspection and selection controller 70 is composed of an arithmetic processor such as a PLC (Programmable Logic Controller), a DSP (Digital Signal Processor), and an FPGA (Field-Programmable Gate Array).
- Various functions of the inspection sorting controller 70 are realized, for example, by executing predetermined software (programs) stored in a storage unit.
- Various functions of the inspection sorting controller 70 may be realized by cooperation between hardware and software, or may be realized only by hardware (electronic circuit).
- the storage unit in the inspection and selection controller 70 is, for example, a rewritable memory such as an EEPROM.
- the storage unit stores predetermined software (programs) for executing various functions of the sorting controller. Further, the storage unit stores various setting values inputted from the outside, for example.
- the various setting values include information regarding the conveyance speed of the linear feeder 20, the conveyance speed of the turntable 30 (or the rotational speed, and the length or radius of the rotational conveyance trajectory), the position of the imaging device 40, and the position of the ejection mechanism 50; and criteria for determining good/defective products.
- the interval between the electronic components 3 on the turntable 30 may change due to some factors such as a change in the conveyance speed of the turntable 30 or a component clogging in the linear feeder 20. If the distance between the electronic components 3 becomes narrow, for example, the imaging device 40 will not be able to image the end face of the electronic component 3, and the accuracy of visual inspection of the electronic component 3 will decrease. On the other hand, if the distance between the electronic components 3 increases, the throughput of visual inspection of the electronic components 3 will decrease, for example.
- the inspection sorting controller 70 controls the vibration of the linear feeder 20 based on the interval between the electronic components 3 on the turntable 30 detected by the first sensor 61. Adjust the first frequency. Specifically, the inspection and sorting controller 70 controls the first frequency of the vibration of the linear feeder so that the interval between the electronic components 3 on the turntable 30 approaches the first target value, that is, is maintained at the target value. adjust. Thereby, it is possible to suppress the distance between the electronic components 3 from being narrowed and, for example, the imaging device 40 is unable to image the end face of the electronic component 3, and it is possible to suppress a decrease in accuracy of the external appearance inspection of the electronic component 3. In addition, it is possible to suppress a decrease in the throughput of visual inspection of the electronic components 3, for example, due to an increase in the distance between the electronic components 3.
- the conveyance speed of the turntable 30 it is necessary to consider various parameters such as the imaging speed capability of the imaging device 40 and the discharge processing capacity of the discharge mechanism 50, and the possible adjustment range of the conveyance speed of the turntable 30 is substantially small, and it is substantially difficult to adjust the conveyance speed of the turntable 30.
- the first frequency of the vibration of the linear feeder 20 is adjusted, that is, the vibration of the linear feeder 20 is adjusted, and the electronic components 3 are supplied from the linear feeder 20 to the turntable 30. It is useful to maintain the spacing of the electronic components 3 on the turntable 30 at a target value by adjusting the amount.
- the vibration of the linear feeder 20 is adjusted to increase the amount of electronic components 3 supplied from the linear feeder 20 to the turntable 30, the electronic components on the linear feeder 20 Part 3 may be in short supply.
- the inspection sorting controller 70 controls the vibration of the ball feeder 10 based on the occupation ratio of the electronic components 3 on the linear feeder 20 detected by the second sensor 62. Adjust the second frequency of. Specifically, the inspection and sorting controller 70 adjusts the second frequency of the vibration of the ball feeder 10 so that the occupation rate of the electronic components 3 on the linear feeder 20 is maintained at a second target value or higher (for example, 95% or higher). Adjust. Thereby, even if the amount of electronic components 3 supplied from the linear feeder 20 to the turntable 30 is increased, the shortage of electronic components 3 on the linear feeder 20 can be suppressed.
- a second target value or higher for example, 95% or higher
- the component inspection apparatus 1 that performs the visual inspection of electronic components is illustrated.
- the features of the present invention are not limited thereto, and can be applied to component inspection apparatuses that perform various inspections of electronic components.
- the component inspection apparatus 1 may include at least one inspection device 40 instead of the plurality of imaging devices 40.
- the inspection device 40 include various inspection devices that acquire feature amounts of the electronic component 3 on the turntable 30.
- the inspection device 40 may include a probe that measures the electrical characteristics (features) of the electronic component 3.
- the inspection and sorting controller 70 may inspect and sort the electronic components 3 based on the feature amount acquired by the inspection device 40.
- Component inspection device 3 Electronic component 10 Ball feeder 12 Vibration mechanism 20 Linear feeder 22 Vibration mechanism 30 Turntable 31 Rotary conveyance trajectory 32 Guide mechanism 34 Electrostatic adsorption mechanism 40 Imaging device (inspection device) 50 Discharge mechanism 61 First sensor 62 Second sensor 63 Third sensor 70 Inspection sorting controller (inspection controller)
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Feeding Of Articles To Conveyors (AREA)
Abstract
Provided is a component inspection device that suppresses a decrease in the accuracy of component inspection and a decrease in the processing amount of component inspection. A component inspection device 1 inspects components while conveying the components and comprises: a linear feeder 20 that conveys components by using vibration at a first frequency; a turntable 30 that conveys the components conveyed by the linear feeder 20; an inspection controller 70 that inspects components on the turntable 30; and a first sensor 61 that detects components on the turntable 30. The inspection controller 70 adjusts the first frequency of vibration of the linear feeder 20 on the basis of the interval between components on the turntable 30, the components detected by the first sensor 61.
Description
本発明は、部品検査装置に関する。
The present invention relates to a component inspection device.
積層セラミックコンデンサ等の表面実装型の電子部品(チップ部品ともいう。)の外観検査を行う装置がある。特許文献1には、このような部品検査装置として外観検査装置が開示されている。特許文献1に開示の外観検査装置は、電子部品を搬送するリニアフィーダと、リニアフィーダによって搬送された電子部品を回転搬送するターンテーブルと、ターンテーブル上の電子部品の6面を撮像する複数の撮像デバイスとを備え、電子部品を搬送しながら電子部品の6面の外観検査を行う。
There is equipment that performs visual inspections of surface-mounted electronic components (also called chip components) such as multilayer ceramic capacitors. Patent Document 1 discloses an appearance inspection device as such a component inspection device. The appearance inspection device disclosed in Patent Document 1 includes a linear feeder that conveys electronic components, a turntable that rotationally conveys the electronic components conveyed by the linear feeder, and a plurality of devices that image six sides of the electronic components on the turntable. It is equipped with an imaging device and conducts visual inspections on six sides of electronic components while transporting them.
特許文献1に開示の外観検査装置は、リニアフィーダにおいて、振動により電子部品を搬送することによって、電子部品を帯電させ、ターンテーブルにおいて、静電気により電子部品を静電吸着して回転搬送する。ターンテーブルの搬送速度は、リニアフィーダの搬送速度よりも速い。これにより、ターンテーブルにおいて電子部品の間隔を空けることができ、電子部品の搬送方向の端面の外観検査が可能となる。
The visual inspection device disclosed in Patent Document 1 charges the electronic components by transporting the electronic components using vibration in a linear feeder, and electrostatically attracts the electronic components using static electricity on the turntable and rotationally transports the electronic components. The conveyance speed of the turntable is faster than the conveyance speed of the linear feeder. Thereby, it is possible to leave a space between the electronic components on the turntable, and it is possible to visually inspect the end face of the electronic component in the transport direction.
このような部品検査装置では、ターンテーブルの搬送速度の変動、リニアフィーダの部品詰まり等の何らかの要因により、ターンテーブルにおける電子部品の間隔が変動することがある。電子部品の間隔が狭くなると、例えば撮像デバイスにより電子部品の端面の撮像ができなくなり、電子部品の外観検査の精度が低下してしまう。一方、電子部品の間隔が広くなると、例えば電子部品の外観検査の処理量が低下してしまう。
In such a component inspection device, the spacing between electronic components on the turntable may vary due to some factors such as variations in the conveyance speed of the turntable or component clogging in the linear feeder. When the distance between electronic components becomes narrow, for example, it becomes impossible to image the end face of the electronic component using an imaging device, and the accuracy of visual inspection of the electronic component decreases. On the other hand, when the distance between electronic components increases, the throughput of visual inspection of electronic components, for example, decreases.
本発明は、部品検査の精度の低下および部品検査の処理量の低下を抑制する部品検査装置を提供することを目的とする。
An object of the present invention is to provide a component inspection device that suppresses a decrease in the accuracy of component inspection and a decrease in the throughput of component inspection.
(1) 本発明に係る部品検査装置は、部品を搬送しながら検査する部品検査装置であって、前記部品を、第1周波数の振動により搬送するリニアフィーダと、前記リニアフィーダによって搬送された前記部品を搬送するターンテーブルと、前記ターンテーブル上の前記部品の検査を行う検査コントローラと、前記ターンテーブル上の前記部品を検出する第1センサとを備える。前記検査コントローラは、前記第1センサによって検出された前記ターンテーブル上の前記部品の間隔に基づいて、前記リニアフィーダの振動の前記第1周波数を調整する。
(1) A component inspection device according to the present invention is a component inspection device that inspects a component while conveying the component, and includes a linear feeder that conveys the component by vibration of a first frequency, and a component inspection device that inspects the component while conveying the component. The device includes a turntable for transporting parts, an inspection controller for inspecting the parts on the turntable, and a first sensor for detecting the parts on the turntable. The inspection controller adjusts the first frequency of vibration of the linear feeder based on the interval between the parts on the turntable detected by the first sensor.
(2) (1)に記載の部品検査装置は、前記リニアフィーダに前記第1周波数の振動を供給する第1圧電素子を更に備えてもよく、前記検査コントローラは、前記第1圧電素子の電圧を調整することにより、前記リニアフィーダの振動の前記第1周波数を調整してもよい。
(2) The component inspection device according to (1) may further include a first piezoelectric element that supplies vibration of the first frequency to the linear feeder, and the inspection controller controls the voltage of the first piezoelectric element. The first frequency of vibration of the linear feeder may be adjusted by adjusting.
(3) (1)または(2)に記載の部品検査装置において、前記検査コントローラは、前記ターンテーブル上の前記部品の間隔が第1目標値に近づくように、前記リニアフィーダの振動の前記第1周波数を調整してもよい。
(3) In the component inspection device according to (1) or (2), the inspection controller controls the vibration of the linear feeder so that the interval between the components on the turntable approaches a first target value. 1 frequency may be adjusted.
(4) (1)から(3)のいずれか1つに記載の部品検査装置において、前記検査コントローラは、前記ターンテーブル上の複数の前記部品において複数の前記部品間距離を算出し、算出した複数の前記部品間距離の中央値を算出し、算出した前記中央値が第1目標値に近づくように、前記リニアフィーダの振動の前記第1周波数を調整してもよい。
(4) In the component inspection device according to any one of (1) to (3), the inspection controller calculates a plurality of inter-component distances for a plurality of the components on the turntable; The first frequency of the vibration of the linear feeder may be adjusted so that a median value of the distances between the plurality of parts is calculated, and the calculated median value approaches a first target value.
(5) (1)から(4)のいずれか1つに記載の部品検査装置は、前記部品を前記リニアフィーダへ、第2周波数の振動により搬送するボールフィーダと、前記リニアフィーダ上の前記部品を検出する第2センサとを更に備えてもよく、前記検査コントローラは、前記第2センサによって検出された前記リニアフィーダ上の前記部品の占有割合に基づいて、前記ボールフィーダの振動の前記第2周波数を調整してもよい。
(5) The component inspection device according to any one of (1) to (4) includes a ball feeder that conveys the component to the linear feeder by vibration at a second frequency, and a ball feeder that conveys the component to the linear feeder by vibration at a second frequency. The inspection controller may further include a second sensor that detects the vibration of the ball feeder based on the occupation ratio of the component on the linear feeder detected by the second sensor. The frequency may be adjusted.
(6) (5)に記載の部品検査装置は、前記ボールフィーダに前記第2周波数の振動を供給する第2圧電素子を更に備えてもよく、前記検査コントローラは、前記第2圧電素子の電圧を調整することにより、前記ボールフィーダの振動の前記第2周波数を調整してもよい。
(6) The component inspection device according to (5) may further include a second piezoelectric element that supplies the second frequency of vibration to the ball feeder, and the inspection controller controls the voltage of the second piezoelectric element. The second frequency of vibration of the ball feeder may be adjusted by adjusting.
(7) (5)または(6)に記載の部品検査装置において、前記検査コントローラは、前記リニアフィーダ上の前記部品の占有割合が第2目標値以上となるように、前記ボールフィーダの振動の前記第2周波数を調整してもよい。
(7) In the component inspection device according to (5) or (6), the inspection controller controls the vibration of the ball feeder so that the occupation rate of the component on the linear feeder is equal to or higher than a second target value. The second frequency may be adjusted.
(8) (7)に記載の部品検査装置において、前記第2目標値は95%であってもよい。
(8) In the component inspection device according to (7), the second target value may be 95%.
本発明によれば、部品検査の精度の低下および部品検査の処理量の低下を抑制することができる。
According to the present invention, it is possible to suppress a decrease in the accuracy of component inspection and a decrease in the throughput of component inspection.
以下、添付の図面を参照して本発明の実施形態の一例について説明する。なお、各図面において同一または相当の部分に対しては同一の符号を附すこととする。
Hereinafter, an example of an embodiment of the present invention will be described with reference to the accompanying drawings. In addition, the same reference numerals are given to the same or corresponding parts in each drawing.
図1は、本実施形態に係る部品検査装置の一例を上方からみた概略平面図であり、図2は、図1に示す部品検査装置におけるII部分を拡大した概略平面図であり、図3は、図1に示す部品検査装置を側方からみた概略側面図であって、II部分を拡大した概略側面図である。なお、図1~図3には、XY直交座標系が示されている。
FIG. 1 is a schematic plan view of an example of the component inspection device according to the present embodiment, viewed from above, FIG. 2 is an enlarged schematic plan view of part II of the component inspection device shown in FIG. 1, and FIG. FIG. 2 is a schematic side view of the component inspection apparatus shown in FIG. 1 viewed from the side, with portion II being enlarged. Note that an XY orthogonal coordinate system is shown in FIGS. 1 to 3.
図1~図3に示す部品検査装置1は、複数の電子部品3を順次に搬送しながら検査し、良品を選別する装置である。部品検査装置1は、ボールフィーダ10と、リニアフィーダ20と、ターンテーブル30と、複数の撮像デバイス40と、排出機構50と、第1センサ61と、第2センサ62と、第3センサ63と、検査選別コントローラ70とを備える。
The component inspection device 1 shown in FIGS. 1 to 3 is a device that inspects a plurality of electronic components 3 while sequentially conveying them and selects non-defective products. The component inspection device 1 includes a ball feeder 10, a linear feeder 20, a turntable 30, a plurality of imaging devices 40, a discharge mechanism 50, a first sensor 61, a second sensor 62, and a third sensor 63. , and an inspection sorting controller 70.
電子部品3は、積層セラミックコンデンサ等の表面実装型の電子部品(チップ部品ともいう。)である。電子部品3は、例えば図4に示すように、セラミック材料からなる複数の誘電体層と1または複数の導体層とが積層された積層体3aと、積層体3aの2つの端面の各々に配置された2つの外部電極3bとを備える。積層体3a、すなわち電子部品3は、直方体形状であり、積層方向に相対する2つの主面TS1およびTS2と、積層方向に交差する幅方向に相対する2つの側面WS1およびWS2と、積層方向および幅方向に交差する長さ方向に相対する2つの端面LS1およびLS2とを有する。
The electronic component 3 is a surface-mounted electronic component (also referred to as a chip component) such as a multilayer ceramic capacitor. For example, as shown in FIG. 4, the electronic component 3 is arranged on a laminate 3a in which a plurality of dielectric layers made of a ceramic material and one or more conductor layers are laminated, and on each of two end faces of the laminate 3a. and two external electrodes 3b. The laminate 3a, that is, the electronic component 3, has a rectangular parallelepiped shape, and has two main surfaces TS1 and TS2 facing each other in the stacking direction, two side surfaces WS1 and WS2 facing each other in the width direction crossing the stacking direction, and two main surfaces TS1 and TS2 facing each other in the stacking direction. It has two end faces LS1 and LS2 that are opposite to each other in the length direction and intersect with the width direction.
電子部品3の寸法は特に限定されないが、例えば、長さ方向の寸法が3.2mm以上0.1mm以下であり、幅方向の寸法が1.6mm以上0.05mm以下であり、積層方向の寸法が1.6mm以上0.05mm以下であってもよい。なお、これらの寸法は、交差により変動し得る。
The dimensions of the electronic component 3 are not particularly limited, but for example, the length direction dimension is 3.2 mm or more and 0.1 mm or less, the width direction dimension is 1.6 mm or more and 0.05 mm or less, and the lamination direction dimension is may be 1.6 mm or more and 0.05 mm or less. Note that these dimensions may vary due to intersections.
電子部品3は、上述した誘電体セラミックを用いた積層セラミックコンデンサに限定されず、圧電体セラミックを用いた圧電部品、半導体セラミックを用いたサーミスタ、磁性体セラミックを用いたインダクタ等の種々の電子部品であってもよい。
The electronic component 3 is not limited to the above-mentioned multilayer ceramic capacitor using dielectric ceramic, but may include various electronic components such as piezoelectric components using piezoelectric ceramic, thermistor using semiconductor ceramic, and inductor using magnetic ceramic. It may be.
図1~図3に示すように、ボールフィーダ10は、例えばホッパーによって供給された複数の電子部品3を整列させて搬送する。ホッパーは、ボールフィーダ10内の電子部品3の数の不足を検知して、ボールフィーダ10に電子部品3を自動的に補充し、ボールフィーダ10内の電子部品3の数を一定量に保つ装置である。なお、ボールフィーダ10への電子部品3の供給量を検知するセンサが設けられてもよい。このようなセンサとして、後述するボールフィーダ10上の電子部品3を検出する第3センサ63が用いられてもよい。
As shown in FIGS. 1 to 3, the ball feeder 10 aligns and conveys a plurality of electronic components 3 supplied by, for example, a hopper. The hopper is a device that detects a shortage in the number of electronic components 3 in the ball feeder 10, automatically replenishes the electronic components 3 to the ball feeder 10, and maintains the number of electronic components 3 in the ball feeder 10 at a constant level. It is. Note that a sensor may be provided to detect the amount of electronic components 3 supplied to the ball feeder 10. As such a sensor, a third sensor 63 that detects the electronic component 3 on the ball feeder 10, which will be described later, may be used.
ボールフィーダ10には、第2周波数の振動をボールフィーダ10に供給する振動機構12が設けられている。振動機構12としては、例えば電圧に応じた周波数の振動を発生する圧電素子(第2圧電素子)が挙げられる。ボールフィーダ10の外形形状は円形状である。ボールフィーダ10は、第2周波数の振動により、円形状の中央部から外側へ向けて、電子部品3を円運動させながら、スパイラル状に整列させて搬送する。
The ball feeder 10 is provided with a vibration mechanism 12 that supplies vibrations at a second frequency to the ball feeder 10. As the vibration mechanism 12, for example, a piezoelectric element (second piezoelectric element) that generates vibration at a frequency depending on a voltage can be used. The outer shape of the ball feeder 10 is circular. The ball feeder 10 moves the electronic components 3 in a circular motion outward from the center of the circular shape by vibration at the second frequency, and conveys the electronic components 3 in a spirally aligned manner.
リニアフィーダ20は、ボールフィーダ10によって整列搬送された複数の電子部品3を順次に直線的に搬送する。リニアフィーダ20には、第1周波数の振動をリニアフィーダ20に供給する振動機構22が設けられている。振動機構22としては、例えば電圧に応じた周波数の振動を発生する圧電素子(第1圧電素子)が挙げられる。リニアフィーダ20は水平面に対して傾斜していると好ましい。リニアフィーダ20は、第1周波数の振動により、電子部品3を搬送する。
The linear feeder 20 sequentially linearly transports the plurality of electronic components 3 that are aligned and transported by the ball feeder 10. The linear feeder 20 is provided with a vibration mechanism 22 that supplies vibrations of a first frequency to the linear feeder 20. As the vibration mechanism 22, for example, a piezoelectric element (first piezoelectric element) that generates vibration at a frequency corresponding to a voltage can be used. Preferably, the linear feeder 20 is inclined with respect to the horizontal plane. The linear feeder 20 transports the electronic component 3 by vibration at the first frequency.
リニアフィーダ20は、SUS等の材料からなると好ましい。これにより、リニアフィーダ20において、振動によって電子部品3を搬送する際に、電子部品3を帯電させることができる。
The linear feeder 20 is preferably made of a material such as SUS. Thereby, in the linear feeder 20, when the electronic component 3 is conveyed by vibration, the electronic component 3 can be charged.
ターンテーブル30は、リニアフィーダ20によって搬送された複数の電子部品3を順次に回転搬送する。図1および図2に示すように、ターンテーブル30は、上流側にガイド機構32を有し、ガイド機構32によって、リニアフィーダ20からの電子部品3を、回転搬送軌跡31に導く。ターンテーブル30は、回転搬送軌跡31に沿って電子部品3を搬送する。
The turntable 30 sequentially rotates and transports the plurality of electronic components 3 transported by the linear feeder 20. As shown in FIGS. 1 and 2, the turntable 30 has a guide mechanism 32 on the upstream side, and the guide mechanism 32 guides the electronic component 3 from the linear feeder 20 to a rotational conveyance trajectory 31. The turntable 30 transports the electronic component 3 along a rotational transport trajectory 31 .
図3に示すように、ターンテーブル30の下側には、静電吸着機構34が設けられていると好ましい。これにより、リニアフィーダ20において帯電した電子部品3を静電吸着して搬送することができる。
As shown in FIG. 3, it is preferable that an electrostatic adsorption mechanism 34 is provided on the lower side of the turntable 30. Thereby, the electrically charged electronic components 3 can be electrostatically attracted and transported in the linear feeder 20 .
ターンテーブル30の搬送速度は、リニアフィーダ20の搬送速度よりも速い。これにより、図2および図3に示すように、電子部品3の間隔を空けることができ、電子部品3の端面側の外観検査が可能となる。
The conveyance speed of the turntable 30 is faster than the conveyance speed of the linear feeder 20. Thereby, as shown in FIGS. 2 and 3, the electronic components 3 can be spaced apart, and the appearance of the end surface side of the electronic components 3 can be inspected.
ターンテーブル30は、ガラスまたは樹脂等の材料からなり、透明性を有する。これにより、電子部品3の裏面側の外観検査が可能となる。
The turntable 30 is made of a material such as glass or resin, and has transparency. This makes it possible to inspect the appearance of the back side of the electronic component 3.
図1に示すように、撮像デバイス40は、例えばカメラである。ターンテーブル30の回転搬送軌跡31に沿って、6個の撮像デバイス40が設けられている。6個の撮像デバイス40は、ターンテーブル30上の電子部品3の6個の外面、すなわち2つの主面TS1およびTS2、2つの側面WS1およびWS2、および2つの端面LS1およびLS2、をそれぞれ撮像する。撮像デバイス40の各々には、電子部品3の撮像面を照らす照明デバイスが設けられてもよい。
As shown in FIG. 1, the imaging device 40 is, for example, a camera. Six imaging devices 40 are provided along the rotational conveyance trajectory 31 of the turntable 30. The six imaging devices 40 image six outer surfaces of the electronic component 3 on the turntable 30, namely, two main surfaces TS1 and TS2, two side surfaces WS1 and WS2, and two end surfaces LS1 and LS2, respectively. . Each of the imaging devices 40 may be provided with a lighting device that illuminates the imaging surface of the electronic component 3.
図1に示すように、排出機構50は、後述する検査選別コントローラ70によって外観検査の結果に基づいて選別された良品を、ターンテーブル30から排出してケース等に収容する。排出機構50による良品の排出方法は、特に限定されないが、エアー吹付、エアー吸引、物理的接触押出、等が挙げられる。例えば、排出機構50は、良品が搬送されてきた場合、検査選別コントローラ70からの指令に従って、ターンテーブル30上の良品にエアーを吹き付けることにより、良品をターンテーブル30から排出してケース等に収容する。
As shown in FIG. 1, the ejection mechanism 50 ejects non-defective products that have been selected by an inspection and selection controller 70 (described later) based on the results of the visual inspection from the turntable 30 and stores them in a case or the like. The method for discharging non-defective products by the discharging mechanism 50 is not particularly limited, and examples include air blowing, air suction, physical contact extrusion, and the like. For example, when a non-defective product is transported, the discharge mechanism 50 discharges the non-defective product from the turntable 30 and stores it in a case or the like by blowing air onto the non-defective product on the turntable 30 in accordance with a command from the inspection and sorting controller 70. do.
第1センサ61は、ターンテーブル30に設けられており、ターンテーブル30上の電子部品3を検出する。第1センサ61としては、特に限定されないが、上述したようにターンテーブル30が透明性を有するため、例えば透過型のレーザセンサが挙げられる。これにより、第1センサ61は、ターンテーブル30によって一定の速度で搬送される電子部品3の間隔を検出することができる。
The first sensor 61 is provided on the turntable 30 and detects the electronic component 3 on the turntable 30. The first sensor 61 is not particularly limited, but since the turntable 30 is transparent as described above, for example, a transmission type laser sensor can be used. Thereby, the first sensor 61 can detect the interval between the electronic components 3 that are transported at a constant speed by the turntable 30.
第2センサ62は、リニアフィーダ20に設けられており、リニアフィーダ20上の電子部品3を検出する。第2センサ62としては、特に限定されないが、例えばレーザ変位計または面光電センサが挙げられる。電子部品3の大きさが比較的に大きい場合、例えば幅方向寸法または積層方向寸法が0.8mm以上である場合、レーザ変位計が用いられると好ましい。レーザ変位計によれば、電子部品の高さを検出することにより、ワークの向きなども併せて検出できる。一方、電子部品3の大きさが比較的に小さい場合、例えば幅方向寸法または積層方向寸法が0.8mm未満である場合、面光電センサが用いられると好ましい。面光電センサによれば、電子部品3のサイズの小型化による誤検出を防止できる。第2センサ62は、リニアフィーダ20上の電子部品3の有無を所定時間ごとに検出する。このようにして、第2センサ62は、リニアフィーダ20上の電子部品3の占有割合を検出することができる。
The second sensor 62 is provided on the linear feeder 20 and detects the electronic component 3 on the linear feeder 20. The second sensor 62 is not particularly limited, but includes, for example, a laser displacement meter or a surface photoelectric sensor. When the size of the electronic component 3 is relatively large, for example, when the dimension in the width direction or the dimension in the stacking direction is 0.8 mm or more, it is preferable to use a laser displacement meter. According to the laser displacement meter, by detecting the height of the electronic component, it is also possible to detect the orientation of the workpiece. On the other hand, when the size of the electronic component 3 is relatively small, for example, when the dimension in the width direction or the dimension in the stacking direction is less than 0.8 mm, it is preferable to use a surface photoelectric sensor. According to the surface photoelectric sensor, erroneous detection due to miniaturization of the electronic component 3 can be prevented. The second sensor 62 detects the presence or absence of the electronic component 3 on the linear feeder 20 at predetermined intervals. In this way, the second sensor 62 can detect the occupation rate of the electronic components 3 on the linear feeder 20.
第3センサ63は、ボールフィーダ10に設けられており、ボールフィーダ10上の電子部品3を検出する。第3センサ63としては、特に限定されないが、第2センサ62と同様に、例えばレーザ変位計または面光電センサが挙げられる。
The third sensor 63 is provided on the ball feeder 10 and detects the electronic component 3 on the ball feeder 10. Although the third sensor 63 is not particularly limited, similar to the second sensor 62, for example, a laser displacement meter or a surface photoelectric sensor can be used.
検査選別コントローラ70は、部品検査装置1全体を制御する。具体的には、検査選別コントローラ70は、撮像デバイス40からの撮像結果に基づいて、ターンテーブル30上の電子部品3の外観検査を行い、外観検査の結果に基づいて良品および不良品を選別する。
The inspection and sorting controller 70 controls the entire component inspection apparatus 1. Specifically, the inspection and sorting controller 70 performs a visual inspection of the electronic components 3 on the turntable 30 based on the imaging results from the imaging device 40, and sorts non-defective products and defective products based on the results of the visual inspection. .
また、検査選別コントローラ70は、排出機構50による良品の排出を制御する。例えば、検査選別コントローラ70は、ターンテーブル30の搬送速度(或いは、回転速度、および、回転搬送軌跡長さまたは半径)、ターンテーブル30における撮像デバイス40の位置等の情報から、良品を排出機構50から排出するタイミングを算出して、排出機構50に指令する。
Furthermore, the inspection and sorting controller 70 controls the discharge of non-defective products by the discharge mechanism 50. For example, the inspection and sorting controller 70 selects non-defective items from the discharge mechanism 50 based on information such as the conveyance speed (or rotational speed and rotational conveyance locus length or radius) of the turntable 30 and the position of the imaging device 40 on the turntable 30. The timing for ejecting is calculated and the ejecting mechanism 50 is commanded.
また、検査選別コントローラ70は、第1センサ61によって検出されたターンテーブル30上の電子部品3の間隔に基づいて、リニアフィーダ20の振動の第1周波数を調整する。例えば、検査選別コントローラ70は、リニアフィーダ20の振動機構22における第1圧電素子の電圧を調整する。
Furthermore, the inspection and sorting controller 70 adjusts the first frequency of vibration of the linear feeder 20 based on the interval between the electronic components 3 on the turntable 30 detected by the first sensor 61. For example, the inspection sorting controller 70 adjusts the voltage of the first piezoelectric element in the vibration mechanism 22 of the linear feeder 20.
例えば、検査選別コントローラ70は、検出されたターンテーブル30上の電子部品3の間隔が第1目標値に近づくように、リニアフィーダ20の振動の第1周波数を調整する。より具体的には、検査選別コントローラ70は、検出されたターンテーブル30上の複数の電子部品3(例えば100個)において複数の部品間距離(例えば99個)を算出し、算出した複数の距離の中央値を算出する。検査選別コントローラ70は、算出した中央値が第1目標値に近づくように、リニアフィーダ20の振動の第1周波数を調整する。
For example, the inspection and sorting controller 70 adjusts the first frequency of the vibration of the linear feeder 20 so that the detected interval between the electronic components 3 on the turntable 30 approaches the first target value. More specifically, the inspection and sorting controller 70 calculates a plurality of inter-component distances (for example, 99 pieces) among the plurality of detected electronic parts 3 (for example, 100 pieces) on the turntable 30, and Calculate the median value. The inspection sorting controller 70 adjusts the first frequency of vibration of the linear feeder 20 so that the calculated median value approaches the first target value.
このように、調整パラメータとして、複数の部品間距離の平均値ではなく、複数の部品間距離の中央値を用いる。これにより、極端に外れた値に依存することなく、電子部品の間隔を調整することができる。
In this way, the median value of the distances between multiple parts is used as the adjustment parameter instead of the average value of the distances between multiple parts. This allows the spacing of electronic components to be adjusted without relying on extremely deviant values.
ターンテーブル30上の電子部品3の間隔のための第1目標値は、電子部品3の寸法、ターンテーブル30の搬送速度、撮像デバイス40の撮像速度能力、排出機構50の排出処理能力等に基づいて決定されればよい。
The first target value for the spacing between the electronic components 3 on the turntable 30 is based on the dimensions of the electronic components 3, the conveyance speed of the turntable 30, the imaging speed capability of the imaging device 40, the discharge processing capability of the discharge mechanism 50, etc. It is sufficient if the decision is made based on the following.
ターンテーブル30上の電子部品3の間隔、例えば複数の部品間距離の中央値、が第1目標値よりも小さい場合の調整では、検査選別コントローラ70は、リニアフィーダ20の振動の第1周波数を小さくする。これにより、リニアフィーダ20の振動が小さくなり、リニアフィーダ20からターンテーブル30への供給量が低くなる。その結果、ターンテーブル30上の電子部品3の間隔、例えば複数の部品間距離の中央値、が大きくなり、第1目標値に近づき保持される。
In adjustment when the interval between the electronic components 3 on the turntable 30, for example, the median distance between multiple components, is smaller than the first target value, the inspection and sorting controller 70 adjusts the first frequency of the vibration of the linear feeder 20. Make it smaller. As a result, the vibration of the linear feeder 20 becomes smaller, and the amount of feed from the linear feeder 20 to the turntable 30 becomes lower. As a result, the spacing between the electronic components 3 on the turntable 30, for example, the median of the distances between the plurality of components, increases and is maintained close to the first target value.
一方、ターンテーブル30上の電子部品3の間隔、例えば複数の部品間距離の中央値、が第1目標値よりも大きい場合の調整では、検査選別コントローラ70は、リニアフィーダ20の振動の第1周波数を大きくする。これにより、リニアフィーダ20の振動が大きくなり、リニアフィーダ20からターンテーブル30への供給量が高くなる。その結果、ターンテーブル30上の電子部品3の間隔、例えば複数の部品間距離の中央値、が小さくなり、第1目標値に近づき保持される。
On the other hand, in adjustment when the interval between the electronic components 3 on the turntable 30, for example, the median of the distances between a plurality of components, is larger than the first target value, the inspection and sorting controller 70 controls the vibration of the linear feeder 20. Increase frequency. This increases the vibration of the linear feeder 20 and increases the amount of feed from the linear feeder 20 to the turntable 30. As a result, the interval between the electronic components 3 on the turntable 30, for example, the median distance between the plurality of components, becomes smaller and is maintained closer to the first target value.
また、検査選別コントローラ70は、第2センサ62によって検出されたリニアフィーダ20上の電子部品3の占有割合に基づいて、ボールフィーダ10の振動の第2周波数を調整する。例えば、検査選別コントローラ70は、ボールフィーダ10の振動機構12における第2圧電素子の電圧を調整する。
Furthermore, the inspection and sorting controller 70 adjusts the second frequency of the vibration of the ball feeder 10 based on the occupancy rate of the electronic components 3 on the linear feeder 20 detected by the second sensor 62. For example, the inspection and sorting controller 70 adjusts the voltage of the second piezoelectric element in the vibration mechanism 12 of the ball feeder 10.
例えば、検査選別コントローラ70は、検出されたリニアフィーダ20の搬送方向の全体寸法に対する、リニアフィーダ20上の電子部品3の占有割合を算出する。検査選別コントローラ70は、算出した占有割合が第2目標値以上となる状態を保持するように、ボールフィーダ10の振動の第2周波数を調整する。リニアフィーダ20上の電子部品3の占有割合のための第2目標値は、例えば95%である。
For example, the inspection and sorting controller 70 calculates the occupation ratio of the electronic components 3 on the linear feeder 20 with respect to the detected overall dimension of the linear feeder 20 in the transport direction. The inspection and sorting controller 70 adjusts the second frequency of the vibration of the ball feeder 10 so that the calculated occupancy ratio remains equal to or higher than the second target value. The second target value for the occupation rate of the electronic components 3 on the linear feeder 20 is, for example, 95%.
リニアフィーダ20上の電子部品3の占有割合が第2目標値よりも小さい場合の調整では、検査選別コントローラ70は、ボールフィーダ10の振動の第2周波数を大きくする。これにより、ボールフィーダ10の振動が大きくなり、ボールフィーダ10からリニアフィーダ20への供給量が高くなる。その結果、リニアフィーダ20上の電子部品3の占有割合が大きくなり、第2目標値以上に保持される。
In the adjustment when the occupation ratio of the electronic components 3 on the linear feeder 20 is smaller than the second target value, the inspection and sorting controller 70 increases the second frequency of the vibration of the ball feeder 10. This increases the vibration of the ball feeder 10 and increases the amount of feed from the ball feeder 10 to the linear feeder 20. As a result, the occupation ratio of the electronic components 3 on the linear feeder 20 increases and is maintained at the second target value or higher.
ただし、ホッパーからの電子部品3の供給が十分になされない状態では、ボールフィーダ10の振動を過剰に強めてしまう可能性がある。そこで、検査選別コントローラ70は、リニアフィーダ20上の電子部品3の占有割合が所定値未満(例えば80%未満)に低下する場合には、ホッパーからの電子部品3の供給が終了し、ボールフィーダ10上の電子部品3もない状態と予測されるため、ボールフィーダ10の振動を停止してもよい。
However, if the electronic components 3 are not sufficiently supplied from the hopper, there is a possibility that the vibration of the ball feeder 10 will be excessively strengthened. Therefore, when the occupation rate of the electronic components 3 on the linear feeder 20 decreases to less than a predetermined value (for example, less than 80%), the inspection and sorting controller 70 stops supplying the electronic components 3 from the hopper and transfers the electronic components 3 to the ball feeder 20. Since it is predicted that there is no electronic component 3 on the ball feeder 10, the vibration of the ball feeder 10 may be stopped.
或いは、検査選別コントローラ70は、第3センサ63の検出結果に基づいて、所定時間(例えば1秒)以上ボールフィーダ10上の電子部品3を検出しない場合、すなわち、ホッパーからの電子部品の供給が終了した場合、ボールフィーダ10の振動を停止してもよい。
Alternatively, based on the detection result of the third sensor 63, the inspection and sorting controller 70 detects electronic components 3 on the ball feeder 10 for a predetermined period of time (for example, 1 second) or more, in other words, if the electronic components are not supplied from the hopper. When the vibration is finished, the vibration of the ball feeder 10 may be stopped.
検査選別コントローラ70は、例えば、PLC(Programmable Logic Controller)、DSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)等の演算プロセッサで構成される。検査選別コントローラ70の各種機能は、例えば記憶部に格納された所定のソフトウェア(プログラム)を実行することで実現される。検査選別コントローラ70の各種機能は、ハードウェアとソフトウェアとの協働で実現されてもよいし、ハードウェア(電子回路)のみで実現されてもよい。
The inspection and selection controller 70 is composed of an arithmetic processor such as a PLC (Programmable Logic Controller), a DSP (Digital Signal Processor), and an FPGA (Field-Programmable Gate Array). Various functions of the inspection sorting controller 70 are realized, for example, by executing predetermined software (programs) stored in a storage unit. Various functions of the inspection sorting controller 70 may be realized by cooperation between hardware and software, or may be realized only by hardware (electronic circuit).
検査選別コントローラ70における記憶部は、例えばEEPROM等の書き換え可能なメモリである。記憶部は、選別コントローラの各種機能を実行するための所定のソフトウェア(プログラム)を格納する。また、記憶部は、例えば外部から入力された各種設定値を格納する。各種設定値は、リニアフィーダ20の搬送速度、ターンテーブル30の搬送速度(或いは、回転速度、および、回転搬送軌跡長さまたは半径)、撮像デバイス40の位置、および排出機構50の位置に関する情報、および良品/不良品の判定基準、等を含む。
The storage unit in the inspection and selection controller 70 is, for example, a rewritable memory such as an EEPROM. The storage unit stores predetermined software (programs) for executing various functions of the sorting controller. Further, the storage unit stores various setting values inputted from the outside, for example. The various setting values include information regarding the conveyance speed of the linear feeder 20, the conveyance speed of the turntable 30 (or the rotational speed, and the length or radius of the rotational conveyance trajectory), the position of the imaging device 40, and the position of the ejection mechanism 50; and criteria for determining good/defective products.
ここで、このような部品検査装置1では、ターンテーブル30の搬送速度の変動、リニアフィーダ20の部品詰まり等の何らかの要因により、ターンテーブル30における電子部品3の間隔が変動することがある。電子部品3の間隔が狭くなると、例えば撮像デバイス40により電子部品3の端面の撮像ができなくなり、電子部品3の外観検査の精度が低下してしまう。一方、電子部品3の間隔が広くなると、例えば電子部品3の外観検査の処理量が低下してしまう。
Here, in such a component inspection apparatus 1, the interval between the electronic components 3 on the turntable 30 may change due to some factors such as a change in the conveyance speed of the turntable 30 or a component clogging in the linear feeder 20. If the distance between the electronic components 3 becomes narrow, for example, the imaging device 40 will not be able to image the end face of the electronic component 3, and the accuracy of visual inspection of the electronic component 3 will decrease. On the other hand, if the distance between the electronic components 3 increases, the throughput of visual inspection of the electronic components 3 will decrease, for example.
この点に関し、本実施形態の部品検査装置1によれば、検査選別コントローラ70が、第1センサ61によって検出されたターンテーブル30上の電子部品3の間隔に基づいて、リニアフィーダ20の振動の第1周波数を調整する。具体的には、検査選別コントローラ70は、ターンテーブル30上の電子部品3の間隔が第1目標値に近づくように、すなわち目標値に保持されるように、リニアフィーダの振動の第1周波数を調整する。これにより、電子部品3の間隔が狭くなり、例えば撮像デバイス40により電子部品3の端面の撮像ができなくなることを抑制でき、電子部品3の外観検査の精度の低下を抑制することができる。また、電子部品3の間隔が広くなり、例えば電子部品3の外観検査の処理量が低下することを抑制することができる。
Regarding this point, according to the component inspection apparatus 1 of the present embodiment, the inspection sorting controller 70 controls the vibration of the linear feeder 20 based on the interval between the electronic components 3 on the turntable 30 detected by the first sensor 61. Adjust the first frequency. Specifically, the inspection and sorting controller 70 controls the first frequency of the vibration of the linear feeder so that the interval between the electronic components 3 on the turntable 30 approaches the first target value, that is, is maintained at the target value. adjust. Thereby, it is possible to suppress the distance between the electronic components 3 from being narrowed and, for example, the imaging device 40 is unable to image the end face of the electronic component 3, and it is possible to suppress a decrease in accuracy of the external appearance inspection of the electronic component 3. In addition, it is possible to suppress a decrease in the throughput of visual inspection of the electronic components 3, for example, due to an increase in the distance between the electronic components 3.
なお、ターンテーブル30における電子部品3の間隔の変動を抑制するためには、ターンテーブル30の搬送速度を調整することも考えられる。しかし、ターンテーブル30の搬送速度の決定では、撮像デバイス40の撮像速度能力、排出機構50の排出処理能力等の様々なパラメータを考慮する必要があり、ターンテーブル30の搬送速度の可能な調整範囲は実質的に小さく、ターンテーブル30の搬送速度の調整は実質的に難しい。このような観点から、本実施形態のように、リニアフィーダ20の振動の第1周波数を調整し、すなわちリニアフィーダ20の振動を調整し、リニアフィーダ20からターンテーブル30への電子部品3の供給量を調整することにより、ターンテーブル30上の電子部品3の間隔を目標値に保持することは、有用である。
Note that in order to suppress fluctuations in the spacing between the electronic components 3 on the turntable 30, it is also possible to adjust the conveyance speed of the turntable 30. However, in determining the conveyance speed of the turntable 30, it is necessary to consider various parameters such as the imaging speed capability of the imaging device 40 and the discharge processing capacity of the discharge mechanism 50, and the possible adjustment range of the conveyance speed of the turntable 30 is substantially small, and it is substantially difficult to adjust the conveyance speed of the turntable 30. From this point of view, as in the present embodiment, the first frequency of the vibration of the linear feeder 20 is adjusted, that is, the vibration of the linear feeder 20 is adjusted, and the electronic components 3 are supplied from the linear feeder 20 to the turntable 30. It is useful to maintain the spacing of the electronic components 3 on the turntable 30 at a target value by adjusting the amount.
ところで、リニアフィーダ20の振動の第1周波数を調整し、すなわちリニアフィーダ20の振動を調整し、リニアフィーダ20からターンテーブル30への電子部品3の供給量を高めると、リニアフィーダ20上の電子部品3が不足する可能性がある。
By the way, when the first frequency of the vibration of the linear feeder 20 is adjusted, that is, the vibration of the linear feeder 20 is adjusted to increase the amount of electronic components 3 supplied from the linear feeder 20 to the turntable 30, the electronic components on the linear feeder 20 Part 3 may be in short supply.
この点に関し、本実施形態の部品検査装置1によれば、検査選別コントローラ70が、第2センサ62によって検出されたリニアフィーダ20上の電子部品3の占有割合に基づいて、ボールフィーダ10の振動の第2周波数を調整する。具体的には、検査選別コントローラ70は、リニアフィーダ20上の電子部品3の占有割合が第2目標値以上(例えば95%以上)に保持されるように、ボールフィーダ10の振動の第2周波数を調整する。これにより、リニアフィーダ20からターンテーブル30への電子部品3の供給量を高めても、リニアフィーダ20上の電子部品3の不足を抑制することができる。
Regarding this point, according to the component inspection apparatus 1 of the present embodiment, the inspection sorting controller 70 controls the vibration of the ball feeder 10 based on the occupation ratio of the electronic components 3 on the linear feeder 20 detected by the second sensor 62. Adjust the second frequency of. Specifically, the inspection and sorting controller 70 adjusts the second frequency of the vibration of the ball feeder 10 so that the occupation rate of the electronic components 3 on the linear feeder 20 is maintained at a second target value or higher (for example, 95% or higher). Adjust. Thereby, even if the amount of electronic components 3 supplied from the linear feeder 20 to the turntable 30 is increased, the shortage of electronic components 3 on the linear feeder 20 can be suppressed.
以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更および変形が可能である。上述した実施形態では、電子部品の外観検査を行う部品検査装置1を例示した。しかし、本発明の特徴はこれに限定されず、電子部品の種々の検査を行う部品検査装置に適用可能である。この場合、例えば、部品検査装置1は、複数の撮像デバイス40に代えて、少なくとも1つの検査デバイス40を備えてもよい。検査デバイス40としては、ターンテーブル30上の電子部品3の特徴量を取得する種々の検査デバイスが挙げられる。例えば、検査デバイス40としては、電子部品3の電気特性(特徴量)を測定するプローブ等が挙げられる。この場合、検査選別コントローラ70は、検査デバイス40によって取得された特徴量に基づいて、電子部品3の検査および選別を行えばよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments described above, and various changes and modifications can be made. In the embodiment described above, the component inspection apparatus 1 that performs the visual inspection of electronic components is illustrated. However, the features of the present invention are not limited thereto, and can be applied to component inspection apparatuses that perform various inspections of electronic components. In this case, for example, the component inspection apparatus 1 may include at least one inspection device 40 instead of the plurality of imaging devices 40. Examples of the inspection device 40 include various inspection devices that acquire feature amounts of the electronic component 3 on the turntable 30. For example, the inspection device 40 may include a probe that measures the electrical characteristics (features) of the electronic component 3. In this case, the inspection and sorting controller 70 may inspect and sort the electronic components 3 based on the feature amount acquired by the inspection device 40.
1 部品検査装置
3 電子部品
10 ボールフィーダ
12 振動機構
20 リニアフィーダ
22 振動機構
30 ターンテーブル
31 回転搬送軌跡
32 ガイド機構
34 静電吸着機構
40 撮像デバイス(検査デバイス)
50 排出機構
61 第1センサ
62 第2センサ
63 第3センサ
70 検査選別コントローラ(検査コントローラ) 1Component inspection device 3 Electronic component 10 Ball feeder 12 Vibration mechanism 20 Linear feeder 22 Vibration mechanism 30 Turntable 31 Rotary conveyance trajectory 32 Guide mechanism 34 Electrostatic adsorption mechanism 40 Imaging device (inspection device)
50Discharge mechanism 61 First sensor 62 Second sensor 63 Third sensor 70 Inspection sorting controller (inspection controller)
3 電子部品
10 ボールフィーダ
12 振動機構
20 リニアフィーダ
22 振動機構
30 ターンテーブル
31 回転搬送軌跡
32 ガイド機構
34 静電吸着機構
40 撮像デバイス(検査デバイス)
50 排出機構
61 第1センサ
62 第2センサ
63 第3センサ
70 検査選別コントローラ(検査コントローラ) 1
50
Claims (8)
- 部品を搬送しながら検査する部品検査装置であって、
前記部品を、第1周波数の振動により搬送するリニアフィーダと、
前記リニアフィーダによって搬送された前記部品を搬送するターンテーブルと、
前記ターンテーブル上の前記部品の検査を行う検査コントローラと、
前記ターンテーブル上の前記部品を検出する第1センサと、
を備え、
前記検査コントローラは、前記第1センサによって検出された前記ターンテーブル上の前記部品の間隔に基づいて、前記リニアフィーダの振動の前記第1周波数を調整する、
部品検査装置。 A parts inspection device that inspects parts while transporting them,
a linear feeder that transports the parts by vibration at a first frequency;
a turntable that transports the parts transported by the linear feeder;
an inspection controller that inspects the parts on the turntable;
a first sensor that detects the component on the turntable;
Equipped with
The inspection controller adjusts the first frequency of vibration of the linear feeder based on the interval between the parts on the turntable detected by the first sensor.
Parts inspection equipment. - 前記リニアフィーダに前記第1周波数の振動を供給する第1圧電素子を更に備え、
前記検査コントローラは、前記第1圧電素子の電圧を調整することにより、前記リニアフィーダの振動の前記第1周波数を調整する、
請求項1に記載の部品検査装置。 further comprising a first piezoelectric element that supplies vibration of the first frequency to the linear feeder,
The inspection controller adjusts the first frequency of vibration of the linear feeder by adjusting the voltage of the first piezoelectric element.
The component inspection device according to claim 1. - 前記検査コントローラは、前記ターンテーブル上の前記部品の間隔が第1目標値に近づくように、前記リニアフィーダの振動の前記第1周波数を調整する、請求項1または2に記載の部品検査装置。 The component inspection device according to claim 1 or 2, wherein the inspection controller adjusts the first frequency of vibration of the linear feeder so that the interval between the components on the turntable approaches a first target value.
- 前記検査コントローラは、
前記ターンテーブル上の複数の前記部品において複数の前記部品間距離を算出し、算出した複数の前記部品間距離の中央値を算出し、
算出した前記中央値が第1目標値に近づくように、前記リニアフィーダの振動の前記第1周波数を調整する、
請求項1~3のいずれか1項に記載の部品検査装置。 The inspection controller includes:
calculating a plurality of distances between the plurality of parts on the turntable, and calculating a median value of the calculated distances between the plurality of parts;
adjusting the first frequency of vibration of the linear feeder so that the calculated median value approaches a first target value;
A component inspection device according to any one of claims 1 to 3. - 前記部品を前記リニアフィーダへ、第2周波数の振動により搬送するボールフィーダと、
前記リニアフィーダ上の前記部品を検出する第2センサと、
を更に備え、
前記検査コントローラは、前記第2センサによって検出された前記リニアフィーダ上の前記部品の占有割合に基づいて、前記ボールフィーダの振動の前記第2周波数を調整する、
請求項1~4のいずれか1項に記載の部品検査装置。 a ball feeder that conveys the component to the linear feeder by vibration at a second frequency;
a second sensor that detects the component on the linear feeder;
further comprising;
The inspection controller adjusts the second frequency of vibration of the ball feeder based on the occupancy rate of the component on the linear feeder detected by the second sensor.
A component inspection device according to any one of claims 1 to 4. - 前記ボールフィーダに前記第2周波数の振動を供給する第2圧電素子を更に備え、
前記検査コントローラは、前記第2圧電素子の電圧を調整することにより、前記ボールフィーダの振動の前記第2周波数を調整する、
請求項5に記載の部品検査装置。 further comprising a second piezoelectric element that supplies vibration of the second frequency to the ball feeder,
The inspection controller adjusts the second frequency of vibration of the ball feeder by adjusting the voltage of the second piezoelectric element.
The component inspection device according to claim 5. - 前記検査コントローラは、前記リニアフィーダ上の前記部品の占有割合が第2目標値以上となるように、前記ボールフィーダの振動の前記第2周波数を調整する、請求項5または6に記載の部品検査装置。 7. The component inspection according to claim 5, wherein the inspection controller adjusts the second frequency of vibration of the ball feeder so that the occupation rate of the component on the linear feeder is equal to or higher than a second target value. Device.
- 前記第2目標値は95%である、請求項7に記載の部品検査装置。 The component inspection device according to claim 7, wherein the second target value is 95%.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380024617.4A CN118804884A (en) | 2022-05-31 | 2023-04-14 | Component inspection apparatus |
JP2024524224A JPWO2023233840A1 (en) | 2022-05-31 | 2023-04-14 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022088626 | 2022-05-31 | ||
JP2022-088626 | 2022-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023233840A1 true WO2023233840A1 (en) | 2023-12-07 |
Family
ID=89026252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/015154 WO2023233840A1 (en) | 2022-05-31 | 2023-04-14 | Component inspection device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023233840A1 (en) |
CN (1) | CN118804884A (en) |
WO (1) | WO2023233840A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004230208A (en) * | 2003-01-28 | 2004-08-19 | Matsushita Electric Works Ltd | Method and apparatus for inspecting appearance of electronic part |
JP2005022769A (en) * | 2003-06-30 | 2005-01-27 | Murata Mfg Co Ltd | Handling device for chip electronic component and handling method for chip electronic component |
JP2010019731A (en) * | 2008-07-11 | 2010-01-28 | Okano Denki Kk | Visual observation device |
JP2017039604A (en) * | 2015-08-21 | 2017-02-23 | シンフォニアテクノロジー株式会社 | Parts feeder |
JP2020093908A (en) * | 2018-12-14 | 2020-06-18 | シンフォニアテクノロジー株式会社 | Component supply device |
JP2021195202A (en) * | 2020-06-11 | 2021-12-27 | シンフォニアテクノロジー株式会社 | Chute and vibratory feeder |
-
2023
- 2023-04-14 CN CN202380024617.4A patent/CN118804884A/en active Pending
- 2023-04-14 WO PCT/JP2023/015154 patent/WO2023233840A1/en active Application Filing
- 2023-04-14 JP JP2024524224A patent/JPWO2023233840A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004230208A (en) * | 2003-01-28 | 2004-08-19 | Matsushita Electric Works Ltd | Method and apparatus for inspecting appearance of electronic part |
JP2005022769A (en) * | 2003-06-30 | 2005-01-27 | Murata Mfg Co Ltd | Handling device for chip electronic component and handling method for chip electronic component |
JP2010019731A (en) * | 2008-07-11 | 2010-01-28 | Okano Denki Kk | Visual observation device |
JP2017039604A (en) * | 2015-08-21 | 2017-02-23 | シンフォニアテクノロジー株式会社 | Parts feeder |
JP2020093908A (en) * | 2018-12-14 | 2020-06-18 | シンフォニアテクノロジー株式会社 | Component supply device |
JP2021195202A (en) * | 2020-06-11 | 2021-12-27 | シンフォニアテクノロジー株式会社 | Chute and vibratory feeder |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023233840A1 (en) | 2023-12-07 |
CN118804884A (en) | 2024-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180339865A1 (en) | Vision based conveyor package density management system | |
US20050010328A1 (en) | Electronic component conveying device | |
JP2001199541A (en) | Device and method of handling parts | |
US20210292100A1 (en) | Range sensing conveyor package management system for measuring and controlling density of parcels on a conveyor | |
CN114341032B (en) | Range sensing conveyor package management system for measuring and controlling density of parcel on a conveyor | |
WO2023233840A1 (en) | Component inspection device | |
JP2004315227A (en) | Handling device and handling method for chip-type electronic component | |
US9926145B2 (en) | Conveyance apparatus for electronic components | |
JP2008024401A (en) | Conveying device with positioning means | |
US4819783A (en) | Automated inspection system and method | |
JP2006160476A (en) | Distribution device | |
KR20240152375A (en) | Parts Inspection Device | |
JP2011206710A (en) | Article inspection apparatus | |
JP2024017625A (en) | Part sorting device | |
WO2020050374A1 (en) | Packaging inspection device, production system, control method, and control program | |
WO2023127316A1 (en) | Component sorting device | |
JP3922850B2 (en) | Micro parts alignment supply device | |
JP2018073965A (en) | Component supply device and component supply system and component supply method | |
JP2024008004A (en) | Component sorting device | |
WO2023127315A1 (en) | Component sorting device | |
KR100664555B1 (en) | Miniature part feeder by using of vibration | |
KR101713088B1 (en) | Method of identifying direction of multilayer ceramic capacitor, apparatus identifying direction of multilayer ceramic capacitor, and method of manufacturing multilayer ceramic capacitor | |
JP2021130517A (en) | Feeding device | |
JP2011105436A (en) | Conveyor system | |
WO2023058446A1 (en) | Package conveying device and package supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23815601 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024524224 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247031463 Country of ref document: KR |