WO2023233674A1 - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
WO2023233674A1
WO2023233674A1 PCT/JP2022/024844 JP2022024844W WO2023233674A1 WO 2023233674 A1 WO2023233674 A1 WO 2023233674A1 JP 2022024844 W JP2022024844 W JP 2022024844W WO 2023233674 A1 WO2023233674 A1 WO 2023233674A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground improvement
soil
improvement body
light source
ground
Prior art date
Application number
PCT/JP2022/024844
Other languages
French (fr)
Japanese (ja)
Inventor
碓井博文
Original Assignee
株式会社テノックス九州
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テノックス九州 filed Critical 株式会社テノックス九州
Publication of WO2023233674A1 publication Critical patent/WO2023233674A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil

Definitions

  • the present invention relates to a soil improvement method that checks the stirring and mixing status of a soil improvement body when creating the soil improvement body in the ground.
  • a ground improvement method there is a deep mixing method that creates a ground improvement body in the ground by discharging cement slurry into the ground and mixing it with mechanical agitation.
  • this construction method in order to ensure the quality of the soil improvement body, it is necessary that cement is evenly distributed throughout the soil improvement body, and it is necessary to ensure that cement is evenly distributed throughout the soil improvement body. It is necessary to confirm.
  • the amount of cement used in on-site construction is determined by the results of mixing tests conducted in the laboratory, and it is necessary to confirm that the cement is evenly distributed in this test as well.
  • both soil and cement slurry have the same color (almost gray) and cannot be distinguished.
  • Patent Document 1 Japanese Patent No. 6944605 discloses methods for (1) comparing the brightness of images taken before the improvement with images taken after the improvement, or (2) comparing the state of the ground taken in the past. We propose a method to check the condition of ground improvement bodies by comparing with known images.
  • Patent Document 2 Japanese Patent No. 4886921 discloses a method of injecting a colored hardening agent and checking the degree of mixing in a ground improvement body based on the distribution of the hardening agent.
  • Non-Patent Document 1 Japanese Building Center "2018 Edition Improvement Ground Design and Quality Control Guidelines for Buildings" states that by spraying a phenolphthalein solution during a stirring condition test, an alkaline reaction (red-purple ) is described.
  • the discoloration of phenolphthalein is caused by alkaline conditions of pH > 10.0, and is based on the fact that phenolphthalein discolors in areas where cement is present, and indicates the state of cement mixing.
  • confirmation using phenolphthalein is performed by utilizing the phenomenon in which the area containing cement, which is an alkaline component, changes color to reddish-purple.
  • an object of the present invention is to provide a ground improvement method that can clearly distinguish between areas where cement slurry is contained and areas where it is not.
  • the ground improvement method according to the first invention is a ground improvement method in which a cement slurry to which a water-soluble fluorescent dye of a predetermined concentration is added is mixed with soil to construct a ground improvement body, and the ground improvement body is black from a light source.
  • a first step of irradiating light a second step of measuring the ground improvement body irradiated with black light by a light source using a measuring device, and comparing a calculated value based on data output by the measuring device with a predetermined threshold value.
  • a third step of determining whether or not the cement slurry is in a mixed state is a ground improvement method in which a cement slurry to which a water-soluble fluorescent dye of a predetermined concentration is added.
  • the ground improvement body is irradiated with black light, which is different from visible light, and by using a measuring instrument to measure the ground improvement body irradiated with black light by the light source, it is possible to identify the location where the cement slurry is contained. It becomes possible to clearly distinguish the parts that are not included. Furthermore, whether or not the cement slurry is in a mixed state is determined based on a clear standard of comparing a calculated value based on data output by the measuring device with a predetermined threshold value.
  • the water-soluble fluorescent dye illuminated with black light will smoothly emit light, allowing accurate recognition of the condition. Furthermore, the results will not become unstable due to complicated processing or disturbance elements.
  • the measuring instrument may be a sensor that captures reflected light from the soil improvement body, or a camera that captures an image of the soil improvement body.
  • the wavelength of the black light is preferably 365 to 405 nanometers. In this way, a light source can be easily secured.
  • the soil is soil at a construction site, and the first, second, and third steps are performed while the ground improvement body is not yet solidified.
  • the soil is soil prepared in a laboratory
  • the first step, the second step, and the third step are performed in the laboratory
  • the third step is to determine the appropriate amount of cement addition. It is carried out for the purpose of
  • the amount of cement to be added when determining the appropriate amount of cement to be added in the laboratory, the amount of cement to be added can be accurately determined while clearly distinguishing between areas that contain cement slurry and areas that do not. be able to.
  • the present invention based on a clear standard that clearly distinguishes between areas where cement slurry is present and areas where it is not, and comparing a calculated value based on data output by a measuring device with a predetermined threshold value, It is possible to determine whether the cement slurry is in a mixed state. Therefore, it is possible to make a determination that will not be adversely affected by the shooting conditions, the color of the soil, the level of lighting, etc.
  • FIG. 1(a) is a side view of the soil improvement device in Embodiment 1 of the present invention
  • FIG. 1(b) is a partial view showing how to replace the stirring head
  • FIG. 2(a) is the same soil improvement device.
  • FIG. 2(b) is a side view showing a state in which the mixing state is examined
  • FIG. 2(b) is a partially enlarged cross-sectional view of the inspection head of the soil improvement device.
  • Embodiment 1 relates to a case where a columnar ground improvement body made of soil S is constructed in a relatively deep location using the ground improvement device (column construction machine) shown in FIG.
  • this ground improvement device includes a base machine 1 that runs on the ground G, a leader 2 that stands up vertically, and a leader 2 that is movable up and down.
  • a drive unit 10 that is supported and includes an actuator such as a motor, a rotation shaft 3 that is given rotational force by the drive unit 10 and rotates horizontally about a vertical axis underground, and is attached to the lower end of the rotation shaft 3.
  • a stirring head 4 is provided.
  • the stirring head 4 attached to the tip of the rotating shaft 3 is equipped with the following elements.
  • the stirring head 4 is provided with a stirring blade 12 and a co-rotation prevention blade 11 above the excavation blade 5, but these are not essential and may be omitted. .
  • the type of cement can be selected as usual.
  • a water-soluble fluorescent dye is added to the cement slurry.
  • Water-soluble fluorescent dyes include strontium fluoroborate (SrB4O7F:Eu2+, peak wavelength is 368-371 nm) with a trace amount of europium added, and barium silicide (BaSi2O5:Pb+, peak wavelength is 350-371 nm) with a trace amount of lead added. 353 nanometers), florescen, quinine sulfate, etc. can be suitably used.
  • fluorescent leakage testing agent for example, Super Glow Fluorescent Leakage Testing Agent DF-300 (trademark) manufactured by Marktec Co., Ltd.
  • concentration may be 0.05 to 20 (%). Note that there is usually no need to change the water-soluble fluorescent dye depending on the type of cement.
  • the agitation head 4 of the excavation agitation device is set at an initial position close to the ground G, the drive unit 10 is started to operate, and the rotating shaft 3 is rotated. In this way, the excavating blade 5 is brought to the initial depth H1.
  • the slurry is discharged from the root of the excavation blade 5, and excavation mixing is performed by the stirring head 4.
  • the water-soluble fluorescent dye will be mixed in the ground improvement body to be constructed as well. This state continues until the target depth H2 (the lowest part of the soil improvement body to be constructed) is reached.
  • the stirring head 4 is rotated and raised (raised) until it reaches the ground, thereby constructing a cylindrical ground improvement body using the soil S at the site underground.
  • the stirring head 4 is replaced with the inspection head 14 and installed in the apparatus.
  • FIG. 2(b) is a sectional view of the lower part of the inspection head 14.
  • a portion of the lower part and side of the inspection head 14 is recessed to form a storage chamber 14a.
  • a pair of a light source 6 and a measuring instrument 7 are housed, each facing laterally outward.
  • the storage chamber 14a may be configured to open downward.
  • the light source 6 may be any type of fluorescent lamp, incandescent lamp, mercury lamp, or LED that irradiates the ground improvement body with black light (wavelength: 365 to 405 nanometers) underground, but LEDs are small and easy to use.
  • the measuring device 7 may be a sensor such as a fluorometer or a camera equipped with an image sensor, which measures the ground improvement body irradiated with black light by the light source 6, but in the first embodiment, it is a sensor. . Note that details of the luminescence rate will be described later with reference to FIG. 6.
  • a transparent or translucent protective cover 14b to the opening of the storage chamber 14a, the storage chamber 14a is sealed, and the light source 6 and the measuring instrument 7 are protected from surrounding dirt, slurry, etc. be protected as such.
  • the protective cover 8 can be suitably constructed from a resin plate such as acrylic or a tempered glass plate. Therefore, the light source 6 and the measuring instrument 7 move up and down integrally with the rotating shaft 3.
  • the inspection head 14 is pivotally attached to the rotating shaft 3, but the rotating shaft 3 may or may not be rotated when moving the inspection head 14 up and down.
  • the test attachment disclosed in Japanese Patent No. 6742633 can also be applied.
  • FIG. 3 is a side view of the soil improvement device in Embodiment 2 of the present invention, FIG. FIG. 3 is a partially enlarged sectional view of the inspection head of the improved device.
  • Embodiment 2 relates to the case where a flat ground improvement body made of soil S at the site is constructed in a relatively shallow place using the ground improvement device (vertical construction machine) shown in FIG.
  • this ground improvement device includes a main body 21 that runs on the ground G, and an operating section 20 that rotates vertically within a vertical plane and discharges cement slurry and stirs it with the soil S. .
  • Embodiment 1 The preparation of cement and the water-soluble fluorescent dye added thereto are the same as in Embodiment 1. Further, after constructing the ground improvement body, a similar inspection head 14 in Embodiment 1 as shown in FIG. 4(b) is attached to the tip of the operating section 20 to inspect the mixing state of cement. Note that details of the luminescence rate will be described later with reference to FIG. 6.
  • FIGS. 5(a) to 5(d) show each step of the method in Embodiment 3 of the present invention.
  • Embodiment 3 is carried out for the purpose of constructing a simulated ground improvement body using soil S prepared in a laboratory and determining an appropriate amount of cement to be added.
  • the preparation of cement and the water-soluble fluorescent dye added thereto are the same as in the first embodiment.
  • a water-soluble fluorescent dye as described above is added to the cement slurry in the beaker 25, and this is further added to the soil S to obtain a mixture.
  • the mixture is placed in a container 27 and mixed and stirred using a mixer 28.
  • the agitated soil 30 is placed in a vat 29 having a predetermined volume to the full extent.
  • the bat 29 prepared as described above is placed in the dark room 31.
  • a light source 6 that emits black light and a camera 7a serving as a measuring device that photographs the stirred soil 30 in the vat 29 that is irradiated with the black light from the light source 6 are arranged.
  • FIG. 7 shows that in the state of FIG. 5(d), visible light (a fluorescent lamp or the like or sunlight itself may be used) without using the light source 6 that irradiates a black light.
  • This is an example of a photo taken using .
  • This photo may be in full color or in grayscale.
  • a characteristic feature of the screen is that there is almost no difference in shading throughout the screen, making it difficult to distinguish between light and dark.
  • FIG. 8 is a photograph taken of the same object as in FIG. 7, using black light (wavelength: 365 to 405 nanometers) irradiated by the light source 6 instead of visible light.
  • This photo may be in full color or in grayscale. What can be said characteristically is that the difference in shading appears more clearly than in FIG. 7 over the entire screen, making it easier to distinguish between light and dark.
  • this numerical value is only an example, and it should be understood that even if a higher or lower threshold value is used, it still falls within the protection scope of the present invention. Therefore, in the above numerical example, the luminescence rate is insufficient and the mixed state is denied. In other words, the amount of solution in the beaker 25 relative to the soil S should be increased. On the other hand, if the luminescence rate is 80 (%) or more, the mixed state is confirmed.
  • the wavelength of the black light emitted by the light source 6 is 365 to 405 nanometers.
  • the soil S is soil at a construction site, and the first, second, and third steps are performed while the ground improvement body has not yet solidified.
  • the soil S is soil prepared in a laboratory
  • the first step, the second step, and the third step are carried out in the laboratory
  • the third step is performed by adding appropriate cement. It is carried out for the purpose of determining the amount.
  • FIG. 6 is a functional block diagram of an information processing apparatus in Embodiments 1 to 3 of the present invention.
  • the light source 6, measuring device 7, etc. are as already described.
  • the storage unit 40 consists of a storage such as a memory or a hard disk for storing control programs (including well-known processes for image processing) and various data to be temporarily stored.
  • the control unit 41 includes a processor and the like, and executes a control program stored in the storage unit 40 to control peripheral elements.
  • the monitor 42 is a display that displays the operating status to the user.
  • the interface 43 is controlled by the control unit main body 21 to turn on/off the light source 6 and input a measurement value (measurement signal) from the measuring device 7.
  • Luminescence rate (%) (A/B) * 100 (%) (1) And it is sufficient.
  • the measuring instrument 7 moves linearly, so distance may be used.
  • Luminous rate (l/L) * 100 (%) (2) And it is sufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

The present method is a ground improvement method in which a ground improvement body 30 is constructed by mixing cement slurry 26 to which a water-soluble fluorescent dye at a predetermined concentration is added and soil S, the method comprising: a first step of irradiating the ground improvement body 30 with black light from a light source 6; a second step of measuring the ground improvement body 30 irradiated with the black light by the light source 6 using a camera 7a; and a third step of comparing a calculated value based on the data output by the camera 7a with a predetermined threshold value and determining whether or not the cement slurry is in a mixed state.

Description

地盤改良方法Ground improvement method
 本発明は、地盤中に地盤改良体を造成する際に地盤改良体の撹拌混合状況を確認する地盤改良方法に関するものである。 The present invention relates to a soil improvement method that checks the stirring and mixing status of a soil improvement body when creating the soil improvement body in the ground.
 地盤改良工法として、地盤中にセメントスラリーを吐出して機械撹拌にて撹拌混合し、地盤中に地盤改良体を造成する深層混合処理工法などが知られている。このような工法において、地盤改良体の品質を確保するためには、地盤改良体に万遍なくセメントが行き渡っている必要があるし、また地盤改良体に万遍なくセメントが行き渡っていることを確認することが必要となる。 As a ground improvement method, there is a deep mixing method that creates a ground improvement body in the ground by discharging cement slurry into the ground and mixing it with mechanical agitation. In this construction method, in order to ensure the quality of the soil improvement body, it is necessary that cement is evenly distributed throughout the soil improvement body, and it is necessary to ensure that cement is evenly distributed throughout the soil improvement body. It is necessary to confirm.
 現場施工で使用されるセメントの量は、実験室内で実施される配合試験の結果により決定されるが、この試験においても、セメントが同様に万遍なく行き渡っていることを確認する必要がある。 The amount of cement used in on-site construction is determined by the results of mixing tests conducted in the laboratory, and it is necessary to confirm that the cement is evenly distributed in this test as well.
 ところが、土壌とセメントスラリーとを混合すると、図7を参照して後述するように、土壌もセメントスラリーもいずれも同系の色(ほぼ灰色)であり、これらは区別できない。 However, when soil and cement slurry are mixed, as will be described later with reference to FIG. 7, both soil and cement slurry have the same color (almost gray) and cannot be distinguished.
 したがって、蛍光灯等のような通常の光源であって、可視光線を発するもので混合物を照らし、目視あるいはカメラ等の機器を使用して観察しても、混合ムラがあるかどうか、あるいは、混合状態の良否を判定することは、きわめて難しい。 Therefore, even if a mixture is illuminated with a normal light source such as a fluorescent light that emits visible light and observed visually or using equipment such as a camera, it is possible to determine whether there is any unevenness in the mixture or whether the mixture is uneven or not. It is extremely difficult to judge whether the condition is good or bad.
 特許文献1(特許第6944605号公報)は、(1)改良前の地盤に改良前に撮影した映像と改良後に撮影した画像明度を比較する、もしくは、(2)過去に撮影した地盤の様子の既知の画像と比較することで、地盤改良体の状態を確認する方法を提案する。 Patent Document 1 (Japanese Patent No. 6944605) discloses methods for (1) comparing the brightness of images taken before the improvement with images taken after the improvement, or (2) comparing the state of the ground taken in the past. We propose a method to check the condition of ground improvement bodies by comparing with known images.
 しかしながら、黒い色調の土壌と、灰色のセメントとを混合することになるため、明度の差が小さく互いを識別するのが困難となる。また、地中深くにおいて、照明が必要となり、混合状態を正確に判断するのが困難となる。 However, since the black soil and gray cement are mixed, the difference in brightness is small and it is difficult to distinguish them from each other. In addition, lighting is required deep underground, making it difficult to accurately judge the mixing state.
 また、特許文献2(特許第4886921号公報)は、着色された硬化剤を噴射し、硬化剤の分布により、地盤改良体内の混合度合いを確認する手法を開示する。 Further, Patent Document 2 (Japanese Patent No. 4886921) discloses a method of injecting a colored hardening agent and checking the degree of mixing in a ground improvement body based on the distribution of the hardening agent.
 しかしながら、このように黒い色調の土壌に着色硬化剤を噴射しても、上述と同様に、ほぼ黒のまま変化せず、明度の差が不十分であって、互いを識別するのが困難となる。また、地中深くにおいて、照明が必要となり、混合状態を正確に判断するのが困難となる。 However, even when a colored hardener is sprayed onto black-toned soil, as mentioned above, it remains almost black and the difference in brightness is insufficient, making it difficult to distinguish one from the other. Become. In addition, lighting is required deep underground, making it difficult to accurately judge the mixing state.
 更には、非特許文献1(日本建築センター「2018年版建築物のための改良地盤の設計及び品質管理指針」)には、撹拌状況検査においてフェノールフタレイン溶液を噴霧することでアルカリ反応(赤紫色)を観察する手法が記載されている。 Furthermore, Non-Patent Document 1 (Japan Building Center "2018 Edition Improvement Ground Design and Quality Control Guidelines for Buildings") states that by spraying a phenolphthalein solution during a stirring condition test, an alkaline reaction (red-purple ) is described.
 フェノールフタレインの変色は、pH>10.0のアルカリ性の条件からなり、セメントが入っている箇所において、フェノールフタレインが変色する点を原理として、セメントの混合状態を示すものである。 The discoloration of phenolphthalein is caused by alkaline conditions of pH > 10.0, and is based on the fact that phenolphthalein discolors in areas where cement is present, and indicates the state of cement mixing.
 ここで、フェノールフタレインによる確認は、アルカリ成分であるセメントが入っている箇所が、赤紫色に変色する現象を利用して行われる。 Here, confirmation using phenolphthalein is performed by utilizing the phenomenon in which the area containing cement, which is an alkaline component, changes color to reddish-purple.
 しかしながら実際には、フェノールフタレイン溶液が、周囲に滲み出たり、液だれすることにより、本来変色すべきでない箇所まで変色してしまいやすい。結果として、セメントが入っている箇所とセメントが入っていない箇所との境界が不明瞭となり、混合状態を適切に判定できないという問題がある。
特許第6944605号公報 特許第4886921号公報 日本建築センター「2018年版建築物のための改良地盤の設計及び品質管理指針」
However, in reality, the phenolphthalein solution oozes or drips into the surrounding area, which tends to discolor areas that should not originally be discolored. As a result, there is a problem in that the boundary between areas containing cement and areas not containing cement becomes unclear, making it impossible to appropriately determine the mixing state.
Patent No. 6944605 Patent No. 4886921 Japan Building Center "2018 Edition Design and Quality Control Guidelines for Improved Ground for Buildings"
 そこで本発明は、セメントスラリーが入っている箇所と入っていない箇所を明確に区別できる、地盤改良方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a ground improvement method that can clearly distinguish between areas where cement slurry is contained and areas where it is not.
 第1の発明に係る地盤改良方法は、所定濃度の水溶性蛍光染料を添加したセメントスラリーと土壌とを混合して地盤改良体を構築する地盤改良方法であって、地盤改良体に光源からブラックライトを照射する第1工程と、計測器を用いて光源によりブラックライトを照射される地盤改良体を計測する第2工程と、計測器が出力するデータに基づく演算値と所定閾値とを比較し、セメントスラリーの混合状態の可否を判定する第3工程とを含む。 The ground improvement method according to the first invention is a ground improvement method in which a cement slurry to which a water-soluble fluorescent dye of a predetermined concentration is added is mixed with soil to construct a ground improvement body, and the ground improvement body is black from a light source. A first step of irradiating light, a second step of measuring the ground improvement body irradiated with black light by a light source using a measuring device, and comparing a calculated value based on data output by the measuring device with a predetermined threshold value. , and a third step of determining whether or not the cement slurry is in a mixed state.
 ここで、可視光線とは異なる、ブラックライトが地盤改良体に照射され、計測器を用いて光源によりブラックライトを照射される地盤改良体を計測することにより、セメントスラリーが入っている箇所と、入っていない箇所を明瞭に区別することが可能となる。さらに、計測器が出力するデータに基づく演算値と所定閾値とを比較するという、明確な基準に基づき、セメントスラリーの混合状態の可否を判定される。ここで、地中であっても、ブラックライトが照射された水溶性蛍光染料は円滑に発光し、状態を正しく認識できる。更には、複雑な処理や、外乱要素により、結果が不安定になることもない。 Here, the ground improvement body is irradiated with black light, which is different from visible light, and by using a measuring instrument to measure the ground improvement body irradiated with black light by the light source, it is possible to identify the location where the cement slurry is contained. It becomes possible to clearly distinguish the parts that are not included. Furthermore, whether or not the cement slurry is in a mixed state is determined based on a clear standard of comparing a calculated value based on data output by the measuring device with a predetermined threshold value. Here, even if underground, the water-soluble fluorescent dye illuminated with black light will smoothly emit light, allowing accurate recognition of the condition. Furthermore, the results will not become unstable due to complicated processing or disturbance elements.
 ここで、計測器は、地盤改良体からの反射光を捉えるセンサであっても良いし、地盤改良体の画像を撮影するカメラであっても良い。 Here, the measuring instrument may be a sensor that captures reflected light from the soil improvement body, or a camera that captures an image of the soil improvement body.
 ブラックライトの波長は、365乃至405ナノメートルであることが好ましい。こうすれば、光源を容易に確保できる。 The wavelength of the black light is preferably 365 to 405 nanometers. In this way, a light source can be easily secured.
 好ましくは、土壌は、工事現場の土壌であり、第1工程、第2工程及び第3工程は、地盤改良体が未だ固化していない状態で実施される。 Preferably, the soil is soil at a construction site, and the first, second, and third steps are performed while the ground improvement body is not yet solidified.
 この構成によれば、現場で地盤改良を実施しつつ、それと平行して、セメントスラリーの混合状態の可否を判定することができる。 According to this configuration, while carrying out ground improvement on site, it is possible to determine whether or not the cement slurry is in a mixed state in parallel.
 好ましくは、土壌は、実験室内に用意された土壌であり、第1工程、第2工程及び第3工程は、実験室内で実施され、且つ、第3工程は、適切なセメント添加量を決定することを目的として実施される。 Preferably, the soil is soil prepared in a laboratory, the first step, the second step, and the third step are performed in the laboratory, and the third step is to determine the appropriate amount of cement addition. It is carried out for the purpose of
 この構成によれば、実験室内で、適切なセメント添加量を決定する際にも、セメントスラリーが入っている箇所と、入っていない箇所を明瞭に区別しつつ、セメント添加量を正確に決定することができる。 According to this configuration, when determining the appropriate amount of cement to be added in the laboratory, the amount of cement to be added can be accurately determined while clearly distinguishing between areas that contain cement slurry and areas that do not. be able to.
 本発明によれば、セメントスラリーが入っている箇所と、入っていない箇所を明瞭に区別して、計測器が出力するデータに基づく演算値と所定閾値とを比較するという、明確な基準に基づき、セメントスラリーの混合状態の可否を判定できる。したがって、撮影状況の如何や、土の色、照明の度合い等による、悪影響を受けない判定が可能となる。 According to the present invention, based on a clear standard that clearly distinguishes between areas where cement slurry is present and areas where it is not, and comparing a calculated value based on data output by a measuring device with a predetermined threshold value, It is possible to determine whether the cement slurry is in a mixed state. Therefore, it is possible to make a determination that will not be adversely affected by the shooting conditions, the color of the soil, the level of lighting, etc.
 (実施の形態1)
 以下図面を参照しながら、本発明の実施の形態を説明する。図1(a)は、本発明の実施の形態1における地盤改良装置の側面図、図1(b)は、攪拌ヘッドの交換要領を示す部分図、図2(a)は、同地盤改良装置が混合状態を調べる状態を示す側面図、図2(b)は、同地盤改良装置の検査ヘッドの一部拡大断面図である。
(Embodiment 1)
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1(a) is a side view of the soil improvement device in Embodiment 1 of the present invention, FIG. 1(b) is a partial view showing how to replace the stirring head, and FIG. 2(a) is the same soil improvement device. FIG. 2(b) is a side view showing a state in which the mixing state is examined, and FIG. 2(b) is a partially enlarged cross-sectional view of the inspection head of the soil improvement device.
 実施の形態1は、図1に示す地盤改良装置(コラム施工機)により、比較的深い箇所に、土壌Sによる円柱状の地盤改良体を構築する場合に関する。 Embodiment 1 relates to a case where a columnar ground improvement body made of soil S is constructed in a relatively deep location using the ground improvement device (column construction machine) shown in FIG.
 図1に示すように、この地盤改良装置は、地面G上を走行するベースマシン1と、ベースマシン1の前方に配置され、作動時には、垂直に起立するリーダ2と、リーダ2に昇降自在に支持される、モータなどのアクチュエータを備える駆動部10と、駆動部10により回転力を付与され、地中において鉛直軸を中心に水平回転する回転軸3と、回転軸3の下端部に取り付けられる撹拌ヘッド4とを備える。 As shown in Fig. 1, this ground improvement device includes a base machine 1 that runs on the ground G, a leader 2 that stands up vertically, and a leader 2 that is movable up and down. A drive unit 10 that is supported and includes an actuator such as a motor, a rotation shaft 3 that is given rotational force by the drive unit 10 and rotates horizontally about a vertical axis underground, and is attached to the lower end of the rotation shaft 3. A stirring head 4 is provided.
 回転軸3の先端部に取り付けられる撹拌ヘッド4には、次の要素が備えられる。まず、撹拌ヘッド4の下端部には、地中を掘削する爪を有し、土砂を掘削する掘削翼5が設けられ、この掘削翼5は、回転軸3に軸着される。図1(b)に示すように、撹拌ヘッド4には、掘削翼5の上方に、撹拌翼12や供回り防止翼11を設けるのが望ましいが、これらは必須ではなく、省略してもよい。 The stirring head 4 attached to the tip of the rotating shaft 3 is equipped with the following elements. First, at the lower end of the agitation head 4, there is provided an excavation blade 5 which has claws for excavating underground and excavates earth and sand, and this excavation blade 5 is pivotally attached to the rotating shaft 3. As shown in FIG. 1(b), it is desirable that the stirring head 4 is provided with a stirring blade 12 and a co-rotation prevention blade 11 above the excavation blade 5, but these are not essential and may be omitted. .
 セメントの種類は、通常通り選択して差し支えない。次に、セメントスラリーに水溶性蛍光染料を添加する。水溶性蛍光染料としては、ユウロピウムを微量添加したフッ化ホウ素酸ストロンチウム(SrB4O7F:Eu2+、ピーク波長は368-371ナノメートル)、鉛を微量添加したケイ化バリウム(BaSi2O5:Pb+、ピーク波長は350-353ナノメートル)、フローレッセン、硫酸キニーネ等が、好適に使用できる。 The type of cement can be selected as usual. Next, a water-soluble fluorescent dye is added to the cement slurry. Water-soluble fluorescent dyes include strontium fluoroborate (SrB4O7F:Eu2+, peak wavelength is 368-371 nm) with a trace amount of europium added, and barium silicide (BaSi2O5:Pb+, peak wavelength is 350-371 nm) with a trace amount of lead added. 353 nanometers), florescen, quinine sulfate, etc. can be suitably used.
 より具体的には、蛍光漏洩検査剤として市販されているもの(例えば、マークテック株式会社製、スーパーグロー蛍光漏洩検査剤DF-300(商標)等)を使用すれば足り、水に対する蛍光染料の濃度は、0.05~20(%)とすればよい。なお、セメントの種類によって、水溶性蛍光染料を変更する必要は、通常ない。 More specifically, it is sufficient to use a commercially available fluorescent leakage testing agent (for example, Super Glow Fluorescent Leakage Testing Agent DF-300 (trademark) manufactured by Marktec Co., Ltd.), and it is sufficient to use fluorescent dyes against water. The concentration may be 0.05 to 20 (%). Note that there is usually no need to change the water-soluble fluorescent dye depending on the type of cement.
 次に、図1(a)に示すように、掘削撹拌装置の撹拌ヘッド4を地面Gに近い、初期位置にセットし、駆動部10の作動を開始し、回転軸3を回転させる。こうして、初期深さH1まで掘削翼5を至らせる。 Next, as shown in FIG. 1(a), the agitation head 4 of the excavation agitation device is set at an initial position close to the ground G, the drive unit 10 is started to operate, and the rotating shaft 3 is rotated. In this way, the excavating blade 5 is brought to the initial depth H1.
 次に、初期深さH1から下方において、スラリーを掘削翼5の根元から吐出すると共に、撹拌ヘッド4による、掘削混合を行う。ここで、上述したように、通常と異なり、スラリーには、水溶性蛍光染料が添加されているから、構築される地盤改良体にも、同様に、水溶性蛍光染料が混合することとなる。この状態を、目的深さH2(構築すべき地盤改良体の最低部)に至るまで、継続する。 Next, below the initial depth H1, the slurry is discharged from the root of the excavation blade 5, and excavation mixing is performed by the stirring head 4. Here, as mentioned above, unlike usual, since a water-soluble fluorescent dye is added to the slurry, the water-soluble fluorescent dye will be mixed in the ground improvement body to be constructed as well. This state continues until the target depth H2 (the lowest part of the soil improvement body to be constructed) is reached.
 その後、攪拌ヘッド4を回転させつつ上昇させ(引き上げ)、地上まで至ることにより、地中に現場の土壌Sによる、円柱状の地盤改良体を構築する。 Thereafter, the stirring head 4 is rotated and raised (raised) until it reaches the ground, thereby constructing a cylindrical ground improvement body using the soil S at the site underground.
 地盤改良体を構築したら、これが未固化のうちに、攪拌ヘッド4を検査ヘッド14と交換して装置に装着する。 After constructing the soil improvement body, while it is still unsolidified, the stirring head 4 is replaced with the inspection head 14 and installed in the apparatus.
 図2(b)は、検査ヘッド14の下部の断面図である。検査ヘッド14の下部且つ側方は、一部凹設され収納室14aとなっている。収容室14aの内部には、それぞれ横側外向きに、光源6と計測器7とのペアが収納される。なお、収納室14aは、下向きに開口するように構成しても良い。光源6は、地中において地盤改良体にブラックライト(波長:365乃至405ナノメートル)を照射する蛍光灯、白熱電球、水銀灯、LEDのいずれのタイプでも良いが、LEDが小型で使用しやすい。計測器7は、光源6によりブラックライトが照射される地盤改良体を計測する、蛍光光度計などのセンサ又は撮像素子を備えるカメラのいずれであっても良いが、実施の形態1ではセンサとする。なお、発光率の詳細については、図6を参照しながら、後述する。 FIG. 2(b) is a sectional view of the lower part of the inspection head 14. A portion of the lower part and side of the inspection head 14 is recessed to form a storage chamber 14a. Inside the accommodation chamber 14a, a pair of a light source 6 and a measuring instrument 7 are housed, each facing laterally outward. Note that the storage chamber 14a may be configured to open downward. The light source 6 may be any type of fluorescent lamp, incandescent lamp, mercury lamp, or LED that irradiates the ground improvement body with black light (wavelength: 365 to 405 nanometers) underground, but LEDs are small and easy to use. The measuring device 7 may be a sensor such as a fluorometer or a camera equipped with an image sensor, which measures the ground improvement body irradiated with black light by the light source 6, but in the first embodiment, it is a sensor. . Note that details of the luminescence rate will be described later with reference to FIG. 6.
 更に、収容室14aの開口部には、透明又は半透明の保護カバー14bが取り付けられることにより、収納室14aは封止され、光源6及び計測器7は、周囲の土砂やスラリーなどが付着しないように保護される。保護カバー8は、アクリル等の樹脂板又は強化ガラスの板により好適に構成できる。したがって、光源6と計測器7とは、回転軸3と一体的に昇降する。検査ヘッド14は、回転軸3に軸着されるが、検査ヘッド14を昇降させる際に、回転軸3を回転させてもよいし、させなくてもよい。また、特許第6742633号の試験用アタッチメントを応用することもできる。 Further, by attaching a transparent or translucent protective cover 14b to the opening of the storage chamber 14a, the storage chamber 14a is sealed, and the light source 6 and the measuring instrument 7 are protected from surrounding dirt, slurry, etc. be protected as such. The protective cover 8 can be suitably constructed from a resin plate such as acrylic or a tempered glass plate. Therefore, the light source 6 and the measuring instrument 7 move up and down integrally with the rotating shaft 3. The inspection head 14 is pivotally attached to the rotating shaft 3, but the rotating shaft 3 may or may not be rotated when moving the inspection head 14 up and down. Furthermore, the test attachment disclosed in Japanese Patent No. 6742633 can also be applied.
 (実施の形態2)
 図3は、本発明の実施の形態2における地盤改良装置の側面図、図4(a)は、同地盤改良装置が混合状態を調べる状態を示す側面図、図4(b)は、同地盤改良装置の検査ヘッドの一部拡大断面図である。
(Embodiment 2)
FIG. 3 is a side view of the soil improvement device in Embodiment 2 of the present invention, FIG. FIG. 3 is a partially enlarged sectional view of the inspection head of the improved device.
 実施の形態2は、図2に示す地盤改良装置(縦型施工機)により、比較的浅い箇所に平たい地盤改良体であって、現場の土壌Sによるものを構築する場合に関する。 Embodiment 2 relates to the case where a flat ground improvement body made of soil S at the site is constructed in a relatively shallow place using the ground improvement device (vertical construction machine) shown in FIG.
 図3に示すように、この地盤改良装置は、地面G上を走行する本体21と、鉛直平面内で縦回転し、セメントスラリーの吐出及び土壌Sとの攪拌を行う、作動部20とを備える。 As shown in FIG. 3, this ground improvement device includes a main body 21 that runs on the ground G, and an operating section 20 that rotates vertically within a vertical plane and discharges cement slurry and stirs it with the soil S. .
 セメントの調整や、それに添加する水溶性蛍光染料については、実施の形態1と同様である。また、地盤改良体を構築したら、図4(b)に示すような実施の形態1における検査ヘッド14と同様のものを、作動部20の先端に装着して、セメントの混合状態を検査する。なお、発光率の詳細については、図6を参照しながら、後述する。 The preparation of cement and the water-soluble fluorescent dye added thereto are the same as in Embodiment 1. Further, after constructing the ground improvement body, a similar inspection head 14 in Embodiment 1 as shown in FIG. 4(b) is attached to the tip of the operating section 20 to inspect the mixing state of cement. Note that details of the luminescence rate will be described later with reference to FIG. 6.
 (実施の形態3)
 図5(a)~図5(d)は、本発明の実施の形態3における方法の各工程を示す。
(Embodiment 3)
FIGS. 5(a) to 5(d) show each step of the method in Embodiment 3 of the present invention.
 実施の形態3は、実験室内に用意された土壌Sによる、模擬的な地盤改良体を構築し、適切なセメント添加量を決定することを目的として実施される。セメントの調整や、それに添加する水溶性蛍光染料については、実施の形態1と同様である。 Embodiment 3 is carried out for the purpose of constructing a simulated ground improvement body using soil S prepared in a laboratory and determining an appropriate amount of cement to be added. The preparation of cement and the water-soluble fluorescent dye added thereto are the same as in the first embodiment.
 まず、図5(a)に示すように、ビーカー25内において、セメントスラリーに上記のような水溶性蛍光染料を添加し、さらにこれを、土壌Sに加えて混合物を得る。 First, as shown in FIG. 5(a), a water-soluble fluorescent dye as described above is added to the cement slurry in the beaker 25, and this is further added to the soil S to obtain a mixture.
 次に、図5(b)に示すように、混合物を容器27に入れ、ミキサー28を用いて、混合攪拌する。良く混合攪拌したら、図5(c)に示すように、所定の容積を有するバット29に、攪拌済み土壌30を擦り切り一杯に収納する。 Next, as shown in FIG. 5(b), the mixture is placed in a container 27 and mixed and stirred using a mixer 28. After thorough mixing and agitation, as shown in FIG. 5(c), the agitated soil 30 is placed in a vat 29 having a predetermined volume to the full extent.
 次に、図5(d)に示すように、以上のように用意したバット29を、暗室31内に載置する。暗室31には、ブラックライトを照射する光源6と、光源6からブラックライトを照射されたバット29内の、攪拌済み土壌30を撮影する計測器としての、カメラ7aが配置されている。 Next, as shown in FIG. 5(d), the bat 29 prepared as described above is placed in the dark room 31. In the dark room 31, a light source 6 that emits black light and a camera 7a serving as a measuring device that photographs the stirred soil 30 in the vat 29 that is irradiated with the black light from the light source 6 are arranged.
 次に、図7~図10を参照しながら、実際に撮影した例を解説する。図7は、図5(d)の状態において、ブラックライトを照射する光源6を用いずに、可視光線(蛍光灯等を使用してもよいし、太陽光そのものを使用してもよい。)を利用して撮影した写真の例である。この写真は、フルカラーであってもよいし、グレースケールであってもよい。特徴的にいえることは、画面全体において、濃淡の差がほとんどなく、明暗の区別がつきにくいという点である。 Next, examples of actual photography will be explained with reference to FIGS. 7 to 10. FIG. 7 shows that in the state of FIG. 5(d), visible light (a fluorescent lamp or the like or sunlight itself may be used) without using the light source 6 that irradiates a black light. This is an example of a photo taken using . This photo may be in full color or in grayscale. A characteristic feature of the screen is that there is almost no difference in shading throughout the screen, making it difficult to distinguish between light and dark.
 一方、図8は、図7と全く同じ対象について、可視光線ではなく、光源6が照射するブラックライト(波長:365乃至405ナノメートル)を用いて、同様に撮影した写真である。この写真は、フルカラーであってもよいし、グレースケールであってもよい。特徴的にいえることは、画面全体において、図7よりも、濃淡の差がはっきり現れており、明暗の区別がつきやすくなっているという点である。 On the other hand, FIG. 8 is a photograph taken of the same object as in FIG. 7, using black light (wavelength: 365 to 405 nanometers) irradiated by the light source 6 instead of visible light. This photo may be in full color or in grayscale. What can be said characteristically is that the difference in shading appears more clearly than in FIG. 7 over the entire screen, making it easier to distinguish between light and dark.
 そして、図7の画像(ここでは、フルカラーとする)をグレースケール化すると、図9に示すようになり、さらに、これを白黒二値化すると、図10に示すようになる。減色するには、近似色、パターン、誤差拡散法等、周知の手法を用いて差し支えない。 When the image in FIG. 7 (here, full color) is converted to grayscale, it becomes as shown in FIG. 9, and when it is further converted into black and white, it becomes as shown in FIG. 10. To reduce colors, well-known techniques such as approximate colors, patterns, error diffusion methods, etc. may be used.
 カメラ画像を用いる場合には、通常2次元平面のデータが得られるため、発光率(%)は、ピクセル単位で計算するのが望ましい。すなわち、図10の例では、全体の画素数Aが236672ピクセルであり、白い部分の画素数Bが1641778ピクセルであったので、発光率(%)=(A/B)*100=(1641778/2336672)*100=70(%)となる。 When using a camera image, data on a two-dimensional plane is usually obtained, so it is desirable to calculate the luminescence rate (%) on a pixel-by-pixel basis. In other words, in the example of FIG. 10, the total number of pixels A is 236672 pixels, and the number B of pixels in the white part is 1641778 pixels, so luminous rate (%) = (A/B) * 100 = (1641778/ 2336672)*100=70(%).
 実施の形態3では、発光率(%)の良否を決定する閾値として、TH=80(%)を採用する。言うまでもなく、この数値は、単なる例にすぎず、より高い閾値やより低い閾値を用いる場合であっても、本願発明の保護範囲に属する点が理解されねばならない。したがって、上記数値例では、発光率が不足で混合状態は否定される結果となる。つまり、土壌Sに対するビーカー25内の溶液の量を増やすべきであるということになる。一方、発光率が80(%)以上であれば、混合状態は肯定される結果となる。 In the third embodiment, TH=80(%) is adopted as the threshold value for determining the quality of the luminescence rate (%). Needless to say, this numerical value is only an example, and it should be understood that even if a higher or lower threshold value is used, it still falls within the protection scope of the present invention. Therefore, in the above numerical example, the luminescence rate is insufficient and the mixed state is denied. In other words, the amount of solution in the beaker 25 relative to the soil S should be increased. On the other hand, if the luminescence rate is 80 (%) or more, the mixed state is confirmed.
 以上述べたように、実施の形態1~3について共通するのは、次の点である。 As described above, the following points are common to Embodiments 1 to 3.
 実施の形態3に即して言うと、所定濃度の水溶性蛍光染料を添加したセメントスラリーと土壌Sとを混合して地盤改良体30を構築するにあたり、地盤改良体30に光源6からブラックライトを照射する第1工程と、計測器7aを用いて光源6によりブラックライトを照射される地盤改良体30を計測する第2工程と、計測器7aが出力するデータに基づく演算値と所定閾値とを比較し、セメントスラリーの混合状態の可否を判定する第3工程とを含む点。 In accordance with Embodiment 3, when constructing the soil improvement body 30 by mixing cement slurry with a predetermined concentration of water-soluble fluorescent dye added and soil S, black light is applied to the soil improvement body 30 from the light source 6. A second step of measuring the ground improvement body 30 irradiated with black light by the light source 6 using the measuring device 7a, and calculating a calculated value based on the data outputted by the measuring device 7a and a predetermined threshold value. and a third step of comparing the above and determining whether or not the cement slurry is in a mixed state.
 光源6が照射するブラックライトの波長は、365乃至405ナノメートルである。 The wavelength of the black light emitted by the light source 6 is 365 to 405 nanometers.
 実施の形態1、2では、土壌Sは、工事現場の土壌であり、第1工程、第2工程及び第3工程は、地盤改良体が未だ固化していない状態で実施される。 In Embodiments 1 and 2, the soil S is soil at a construction site, and the first, second, and third steps are performed while the ground improvement body has not yet solidified.
 実施の形態3では、土壌Sは、実験室内に用意された土壌であり、第1工程、第2工程及び第3工程は、実験室内で実施され、且つ、第3工程は、適切なセメント添加量を決定することを目的として実施される。 In Embodiment 3, the soil S is soil prepared in a laboratory, the first step, the second step, and the third step are carried out in the laboratory, and the third step is performed by adding appropriate cement. It is carried out for the purpose of determining the amount.
 図6を参照しながら、実施の形態1~3の設備における、情報処理装置の構成を説明する。図6は、本発明の実施の形態1~3における情報処理装置の機能ブロック図である。まず、光源6、計測器7等については、既に述べたとおりである。 With reference to FIG. 6, the configuration of the information processing device in the equipment of Embodiments 1 to 3 will be described. FIG. 6 is a functional block diagram of an information processing apparatus in Embodiments 1 to 3 of the present invention. First, the light source 6, measuring device 7, etc. are as already described.
 本装置のうち、記憶部40は、(画像処理用の周知プロセスを含む)制御プログラムや、一時的に記憶すべき各データを保存するためのメモリやハードディスク等のストレージからなる。 Of this device, the storage unit 40 consists of a storage such as a memory or a hard disk for storing control programs (including well-known processes for image processing) and various data to be temporarily stored.
 制御部41は、プロセッサ等からなり、記憶部40に記憶された制御プログラムを実行し、周辺要素を制御する。 The control unit 41 includes a processor and the like, and executes a control program stored in the storage unit 40 to control peripheral elements.
 モニタ42は、動作状態をユーザに表示するディスプレイである。 The monitor 42 is a display that displays the operating status to the user.
 インターフェイス43は、制御部本体21に制御されて、光源6を点灯/消灯させ、計測器7から計測値(計測信号)を入力する。 The interface 43 is controlled by the control unit main body 21 to turn on/off the light source 6 and input a measurement value (measurement signal) from the measuring device 7.
 次に、発光率演算部44が演算する発光率について説明する。 Next, the luminescence rate calculated by the luminescence rate calculation unit 44 will be explained.
 実施の形態3については、既に、図10を参照しながら、説明したように、全体の画素数A、白い部分の画素数Bであるとき、
 発光率(%)=(A/B)*100(%)   (1)
とすればよい。
Regarding the third embodiment, as already explained with reference to FIG. 10, when the total number of pixels is A and the number of pixels in the white part is B,
Luminescence rate (%) = (A/B) * 100 (%) (1)
And it is sufficient.
 実施の形態1、2においては、計測器7は、リニアに移動するので、距離を用いるとよい。 In the first and second embodiments, the measuring instrument 7 moves linearly, so distance may be used.
 検査ヘッド14が移動する距離Lに対して、計測器7が反射光を捉えた距離をlとすると、
 発光率=(l/L)*100(%)      (2)
とすればよい。
If the distance L that the inspection head 14 moves and the distance that the measuring instrument 7 captures the reflected light is l, then
Luminous rate = (l/L) * 100 (%) (2)
And it is sufficient.
 もちろん、以上の式は、単なる例示に過ぎず、本願発明の趣旨を変更しない限りにおいて、種々の異なる式や等価な式を使用できることは言うまでもない。 Of course, the above formula is merely an example, and it goes without saying that various different formulas or equivalent formulas can be used as long as the gist of the present invention is not changed.
(a)本発明の実施の形態1における地盤改良装置の側面図 (b)本発明の実施の形態1における攪拌ヘッドの交換要領を示す部分図(a) Side view of the soil improvement device in Embodiment 1 of the present invention (b) Partial view showing how to replace the stirring head in Embodiment 1 of the present invention (a)本発明の実施の形態1における掘削撹拌装置が混合状態を調べる状態を示す側面図 (b)本発明の実施の形態1における掘削撹拌装置の検査ヘッドの一部拡大断面図(a) Side view showing a state in which the excavation agitation device in Embodiment 1 of the present invention examines the mixing state (b) A partially enlarged sectional view of the inspection head of the excavation agitation device in Embodiment 1 of the present invention 本発明の実施の形態2における地盤改良装置の側面図Side view of the ground improvement device in Embodiment 2 of the present invention (a)本発明の実施の形態2における掘削撹拌装置が混合状態を調べる状態を示す側面図 (b)本発明の実施の形態2における掘削撹拌装置の検査ヘッドの一部拡大断面図(a) Side view showing a state in which the excavation agitation device according to Embodiment 2 of the present invention examines the mixing state (b) A partially enlarged sectional view of the inspection head of the excavation agitation device according to Embodiment 2 of the present invention (a)本発明の実施の形態3における各工程の説明図 (b)本発明の実施の形態3における各工程の説明図 (c)本発明の実施の形態3における各工程の説明図 (d)本発明の実施の形態3における各工程の説明図(a) An explanatory diagram of each process in Embodiment 3 of the present invention (b) An explanatory diagram of each process in Embodiment 3 of the present invention (c) An explanatory diagram of each process in Embodiment 3 of the present invention (d ) Explanatory diagram of each process in Embodiment 3 of the present invention 本発明の実施の形態1~3における情報処理装置の機能ブロック図Functional block diagram of information processing apparatus in Embodiments 1 to 3 of the present invention 本発明の実施の形態3における自然光による土壌表面を撮影した写真Photograph taken of the soil surface under natural light in Embodiment 3 of the present invention 本発明の実施の形態3におけるブラックライトによる土壌表面を撮影した写真A photograph taken of the soil surface using a black light in Embodiment 3 of the present invention 図8をグレースケール化した画像を示す図Diagram showing a grayscale image of Figure 8 図9を白黒二値化した画像を示す図A diagram showing an image obtained by converting FIG. 9 into black and white
1 ベースマシン
2 リーダ
3 回転軸
4 撹拌ヘッド
5 掘削翼
6 光源
7 計測器
7a カメラ
10 駆動部
11 供回り防止翼
12 撹拌翼
14 検査ヘッド
14a 収容室
14b 保護カバー
20 作動部
21 本体
25 ビーカー
26 溶液
27 容器
28 ミキサー
29 バット
30 攪拌済み土壌
31 暗室
40 記憶部
41 制御部
42 モニタ
43 インターフェイス
44 発光率演算部
G 地面
S 土壌
H1 初期深さ
H2 目的深さ
1 Base machine 2 Reader 3 Rotating shaft 4 Stirring head 5 Excavation blade 6 Light source 7 Measuring device 7a Camera 10 Drive unit 11 Co-rotation prevention blade 12 Stirring blade 14 Inspection head 14a Accommodation chamber 14b Protective cover 20 Operating unit 21 Main body 25 Beaker 26 Solution 27 Container 28 Mixer 29 Vat 30 Mixed soil 31 Dark room 40 Storage unit 41 Control unit 42 Monitor 43 Interface 44 Luminous rate calculation unit G Ground S Soil H1 Initial depth H2 Target depth

Claims (6)

  1. 所定濃度の水溶性蛍光染料を添加したセメントスラリーと土壌とを混合して地盤改良体を構築する地盤改良方法であって、
     前記地盤改良体に光源からブラックライトを照射する第1工程と、
     計測器を用いて前記光源によりブラックライトを照射される地盤改良体を計測する第2工程と、
     前記計測器が出力するデータに基づく演算値と所定閾値とを比較し、前記セメントスラリーの混合状態の可否を判定する第3工程とを含む地盤改良方法。
    A ground improvement method in which a soil improvement body is constructed by mixing cement slurry with a predetermined concentration of water-soluble fluorescent dye added and soil, the method comprising:
    A first step of irradiating the ground improvement body with black light from a light source;
    a second step of measuring the ground improvement body irradiated with black light by the light source using a measuring instrument;
    A ground improvement method comprising: a third step of comparing a calculated value based on data output by the measuring device with a predetermined threshold value to determine whether or not the cement slurry is in a mixed state.
  2. 前記計測器は、前記地盤改良体からの反射光を捉えるセンサである請求項1記載の地盤改良方法。 The ground improvement method according to claim 1, wherein the measuring device is a sensor that captures reflected light from the ground improvement body.
  3. 前記計測器は、前記地盤改良体の画像を撮影するカメラである請求項1記載の地盤改良方法。 The ground improvement method according to claim 1, wherein the measuring device is a camera that takes an image of the ground improvement body.
  4. 前記ブラックライトの波長は、365乃至405ナノメートルである請求項1に記載の地盤改良方法。 The ground improvement method according to claim 1, wherein the wavelength of the black light is 365 to 405 nanometers.
  5. 前記土壌は、工事現場の土壌であり、前記第1工程、前記第2工程及び前記第3工程は、前記地盤改良体が未だ固化していない状態で実施される請求項1に記載の地盤改良方法。 The soil improvement according to claim 1, wherein the soil is soil at a construction site, and the first step, the second step, and the third step are performed while the ground improvement body is not yet solidified. Method.
  6. 前記土壌は、実験室内に用意された土壌であり、前記第1工程、前記第2工程及び前記第3工程は、前記実験室内で実施され、且つ、前記第3工程は、適切なセメント添加量を決定することを目的として実施される請求項1に記載の地盤改良方法。 The soil is soil prepared in a laboratory, the first step, the second step, and the third step are performed in the laboratory, and the third step is performed by adding an appropriate amount of cement. The ground improvement method according to claim 1, which is carried out for the purpose of determining.
PCT/JP2022/024844 2022-06-02 2022-06-22 Ground improvement method WO2023233674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-090309 2022-06-02
JP2022090309A JP7464299B2 (en) 2022-06-02 2022-06-02 Ground improvement methods

Publications (1)

Publication Number Publication Date
WO2023233674A1 true WO2023233674A1 (en) 2023-12-07

Family

ID=89026228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024844 WO2023233674A1 (en) 2022-06-02 2022-06-22 Ground improvement method

Country Status (2)

Country Link
JP (1) JP7464299B2 (en)
WO (1) WO2023233674A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337747A (en) * 2004-05-24 2005-12-08 Kunimine Industries Co Ltd Bentonite for composite soil and method for discriminating bentonite composite soil using same
JP2007009512A (en) * 2005-06-30 2007-01-18 Nittoc Constr Co Ltd Method of determining grout filling state in cavity in rock structure
JP2012127913A (en) * 2010-12-17 2012-07-05 Kajima Corp Survey method
JP2021134524A (en) * 2020-02-26 2021-09-13 東亜建設工業株式会社 Strength estimation method of cement improvement soil
JP2021143262A (en) * 2020-03-11 2021-09-24 株式会社安藤・間 Fabrication method of improved ground and insolubilizing agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337747A (en) * 2004-05-24 2005-12-08 Kunimine Industries Co Ltd Bentonite for composite soil and method for discriminating bentonite composite soil using same
JP2007009512A (en) * 2005-06-30 2007-01-18 Nittoc Constr Co Ltd Method of determining grout filling state in cavity in rock structure
JP2012127913A (en) * 2010-12-17 2012-07-05 Kajima Corp Survey method
JP2021134524A (en) * 2020-02-26 2021-09-13 東亜建設工業株式会社 Strength estimation method of cement improvement soil
JP2021143262A (en) * 2020-03-11 2021-09-24 株式会社安藤・間 Fabrication method of improved ground and insolubilizing agent

Also Published As

Publication number Publication date
JP7464299B2 (en) 2024-04-09
JP2023177571A (en) 2023-12-14

Similar Documents

Publication Publication Date Title
EP2096404A2 (en) Target and three-dimensional-shape measurement device using the same
CN104825127A (en) Dynamic visual acuity detecting method
WO2023233674A1 (en) Ground improvement method
JPH03501059A (en) How to determine the color of objects such as dental prostheses
KR20070028421A (en) Hardened concrete bubble measuring method and bubble measuring instrument
CN207964631U (en) A kind of solid solubility measuring device
AU2009201609B2 (en) Microtube reader device for the analysis of blood samples
JP2017113363A (en) Golf ball and resin composition for cover or top coat thereof
JP4822363B2 (en) Groundwater flow and turbidity measurement device
JP2006080517A (en) Electronic assembly and method of locating errors in component mounting
JP2005291881A (en) Apparatus and method for detecting degradation of concrete structure
JP7474522B2 (en) How to check the mixed condition of ground improvement material
WO2023218677A1 (en) Excavation and agitation device and excavation and agitation method
CN101506616A (en) Inspection method and inspection device
KR100932549B1 (en) Inclination surface test method and inclination surface test apparatus for test workpiece of electron parts using the same
KR102533401B1 (en) Method and device for simulating visibility of paint applied to a surface for a LiDAR sensor
DE102005025009A1 (en) Characterization and quality control of at least partially optically translucent and internally optically scattering products
JP3309891B2 (en) Grout evaluation method
JP2001201497A (en) Hardness-measuring method
KR20140071016A (en) Panel Inspection Method
JP2020190431A (en) Stress light emission data processor, stress light emission data processing method, stress light emission measurement device and stress light emission test system
JP6721939B2 (en) Fluorescence image analyzer
CN106290153A (en) Automatic analysing apparatus and image capture method
JP2008523521A (en) Method and apparatus for analyzing surface appearance characteristics
Berns et al. Mitochondrial fluorescence patterns in rhodamine 6G-stained myocardial cells in vitro: Analysis by real-time computer video microscopy and laser microspot excitation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944950

Country of ref document: EP

Kind code of ref document: A1