WO2023233654A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2023233654A1
WO2023233654A1 PCT/JP2022/022624 JP2022022624W WO2023233654A1 WO 2023233654 A1 WO2023233654 A1 WO 2023233654A1 JP 2022022624 W JP2022022624 W JP 2022022624W WO 2023233654 A1 WO2023233654 A1 WO 2023233654A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
temperature
refrigeration cycle
outside air
base
Prior art date
Application number
PCT/JP2022/022624
Other languages
French (fr)
Japanese (ja)
Inventor
英希 大野
崇憲 八代
寛也 石原
啓三 福原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/022624 priority Critical patent/WO2023233654A1/en
Publication of WO2023233654A1 publication Critical patent/WO2023233654A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit

Definitions

  • This technology relates to refrigeration cycle devices such as refrigeration and air conditioners.
  • the present invention relates to a multi-component refrigeration cycle device in which a plurality of refrigeration cycle circuits are configured in multiple stages.
  • Refrigeration cycle equipment such as refrigeration and air conditioning equipment used for freezing, refrigeration, and air conditioning is used at distribution bases such as food processing factories, agricultural and fisheries processing plants, markets, and distribution warehouses, as well as retail stores such as supermarkets and convenience stores. It is used.
  • a refrigeration cycle (hereinafter referred to as a high source side refrigeration cycle circuit) that is a high source side (high stage side, primary side) and a refrigeration cycle that is a low source side (low stage side, secondary side) (hereinafter referred to as a high source side refrigeration cycle circuit)
  • a refrigeration cycle device that is configured in multiple stages by forming a refrigeration cycle circuit, a lower refrigeration cycle circuit, and a lower refrigeration cycle circuit, respectively.
  • the refrigeration cycle device has a two-stage configuration.
  • the low-source side refrigeration cycle circuit circulates CO2 as a refrigerant.
  • the high-end refrigeration cycle circuit circulates fluorocarbons, ammonia, hydrocarbons, or the like as a refrigerant (see, for example, Patent Document 1).
  • Such a multicomponent refrigeration cycle device uses the heat of evaporation (refrigeration capacity) due to evaporation of the refrigerant in the high-temperature side refrigeration cycle circuit and the condensation heat (condensation capacity) due to the condensation of the refrigerant in the low-temperature side refrigeration cycle circuit.
  • Heat is exchanged in the cascade condenser through which each refrigerant passes. Then, in the final stage, the low-end refrigeration cycle circuit, the evaporator exchanges heat with the object to be cooled.
  • the evaporation heat at a low temperature of several tens of degrees below zero is generated in the evaporator of the low-temperature side refrigeration cycle circuit. can be obtained efficiently.
  • the control device controls the driving frequency of the compressor in the high-source refrigeration cycle circuit based on the suction pressure of the compressor in the high-source refrigeration cycle circuit and the pressure in the low-source refrigeration cycle circuit. It's in control.
  • the control device controls the driving frequency of the compressor in the reduction side cycle circuit based on the suction pressure and load temperature of the compressor in the reduction side cycle circuit.
  • the control device controls the pressure on the high pressure side of the low source refrigeration cycle circuit (hereinafter referred to as , high pressure).
  • the high pressure in the low-base refrigeration cycle circuit increases.
  • the compressor in the lower cycle circuit is temporarily driven at a rate higher than the maximum processing capacity of the high cycle circuit.
  • the control device reduces the drive frequency of the compressor in the lower-side refrigeration cycle circuit by protection control. For this reason, hunting of high pressure and low pressure occurs in the low-source side refrigeration cycle circuit, making it difficult to perform stable control. Hunting is particularly likely to occur when the outside air temperature is high.
  • the objective is to obtain a refrigeration cycle device that can perform stable operation.
  • the refrigeration cycle device is a high-base refrigeration cycle in which a high-base compressor, a high-base condenser, a high-base throttle device, and a high-base evaporator are connected via piping to circulate a high-base refrigerant.
  • a low-side refrigeration cycle circuit that circulates low-side refrigerant by connecting the low-side compressor, low-side condenser, low-side throttle device, and low-side evaporator to the low-side refrigeration cycle circuit, and the high-side side
  • a cascade condenser that is composed of an evaporator and a low-source side condenser, and performs heat exchange between the high-source side refrigerant and the low-source side refrigerant, an outside air temperature sensor that measures the outside air temperature, and a cascade condenser that The combination of the high source side evaporation temperature sensor that measures the high source side evaporation temperature, the outside air temperature measured by the outside air temperature sensor, and the high source side evaporation temperature measured by the high source side evaporation temperature sensor is the low source side refrigeration cycle circuit.
  • a control device that performs processing to limit the maximum drive frequency of the low source compressor when it is determined that the outside air temperature is in the range where the high pressure exceeds the set pressure - the high
  • the control device determines that the combination of the outside air temperature and the high source side evaporation temperature is included in the outside air temperature - high source side evaporation temperature limit range, the control device controls the low source side compressor to a maximum Performs control to limit the drive frequency. Therefore, by lowering the high pressure in the low source side refrigeration cycle, the refrigeration cycle device can prevent hunting of the low source side compressor and perform stable operation, thereby stably cooling the object to be cooled. I can do it.
  • FIG. 1 is a diagram illustrating an example of a configuration of a refrigeration cycle device according to a first embodiment
  • FIG. FIG. 3 is a diagram illustrating control in the refrigeration cycle device according to the first embodiment.
  • FIG. 3 is a diagram illustrating a process for determining a limit on the maximum drive frequency of the low-end compressor 11 in the refrigeration cycle device according to the first embodiment.
  • FIG. 7 is a diagram illustrating control in the refrigeration cycle device according to the second embodiment.
  • FIG. 7 is a diagram illustrating a process for determining a limit on the maximum drive frequency of the low-end compressor 11 in the refrigeration cycle device according to the second embodiment.
  • FIG. 1 is a diagram illustrating an example of the configuration of a refrigeration cycle device according to a first embodiment.
  • FIG. 1 shows a binary refrigeration system as an example of a refrigeration cycle system.
  • the binary refrigeration system according to the first embodiment includes a low-temperature side refrigeration cycle circuit 10 and a high-temperature side refrigeration cycle circuit 20, each of which constitutes a refrigerant circuit that circulates refrigerant independently. do.
  • the binary refrigeration system is coupled so that heat exchange can be performed between the refrigerants passing through the high-temperature side evaporator 24 and the low-temperature side condenser 12, respectively. It has a cascade condenser C that serves as a refrigerant heat exchanger.
  • the binary refrigeration system also includes a control device 30 that controls the operation of the entire system.
  • the low-base refrigeration cycle circuit 10 includes a low-base compressor 11, an auxiliary heat exchanger 15, a low-base condenser 12, a low-base expansion valve 13, and a low-base evaporator 14 through refrigerant pipes in this order.
  • This is a refrigerant circulation circuit (hereinafter also referred to as a low-side refrigerant circuit) configured by connecting the two.
  • the high-temperature side refrigeration cycle circuit 20 is a refrigerant circulation configured by sequentially connecting a high-temperature side compressor 21, a high-temperature side condenser 22, a high-temperature side expansion valve 23, and a high-temperature side evaporator 24 through refrigerant piping. circuit (hereinafter also referred to as high-side refrigerant circuit).
  • the low end compressor 11 of the low end refrigeration cycle circuit 10 sucks in refrigerant, compresses it, makes it high temperature and high pressure, and discharges it.
  • the low-end compressor 11 is constituted by a type of compressor whose rotational speed is controlled by an inverter circuit or the like, and the amount of refrigerant discharged can be adjusted.
  • the auxiliary heat exchanger 15 functions as, for example, a gas cooler, and cools the gas refrigerant discharged by the low-end compressor 11 by heat exchange with outdoor air (outside air).
  • the binary refrigeration system in the first embodiment includes an auxiliary heat exchanger fan 16 that is a blower that promotes heat exchange between the outside air and the refrigerant in the auxiliary heat exchanger 15.
  • Auxiliary heat exchanger fan 16 creates a flow of air through auxiliary heat exchanger 15 .
  • the auxiliary heat exchanger fan 16 is constituted by a type of fan whose rotational speed is controlled by an inverter circuit or the like and whose air volume can be adjusted, for example.
  • the low-source condenser 12 exchanges heat with the refrigerant that has passed through the auxiliary heat exchanger 15, and condenses the refrigerant into a liquid refrigerant (condenses and liquefies it).
  • a heat transfer tube through which the low-base refrigerant flowing through the low-base refrigerant cycle circuit 10 passes becomes the low-base condenser 12
  • the high-base refrigerant flowing through the high-base refrigerant cycle circuit 20 serves as the low-base condenser 12. It is assumed that heat exchange with the refrigerant takes place.
  • the low-base expansion valve 13 which serves as a pressure reducing device or a throttle device, decompresses and expands the refrigerant flowing through the low-base refrigeration cycle circuit 10.
  • the low-side expansion valve 13 is composed of, for example, a flow rate control device such as an electronic expansion valve, a capillary tube, a refrigerant flow rate adjustment device such as a temperature-sensitive expansion valve, and the like.
  • the low-temperature side evaporator 14 evaporates the low-temperature side refrigerant flowing through the low-temperature side refrigeration cycle circuit 10 into a gaseous refrigerant by heat exchange with the object to be cooled, such as the air in the refrigerator room. (evaporates into gas).
  • the object to be cooled is directly or indirectly cooled by heat exchange with the low-source refrigerant.
  • the high-temperature side compressor 21 of the high-temperature side refrigeration cycle circuit 20 sucks in the high-temperature side refrigerant flowing through the high-temperature side refrigeration cycle circuit 20, compresses the refrigerant, and discharges it in a high temperature and high pressure state.
  • the high-end compressor 21 is configured of a type of compressor that includes, for example, an inverter circuit and can adjust the amount of refrigerant discharged.
  • the high end condenser 22 is a heat exchanger that exchanges heat between air, brine, etc. and the high end refrigerant flowing through the high end refrigeration cycle circuit 20, and condenses and liquefies the refrigerant.
  • the high source condenser 22 is assumed to exchange heat between the outside air and the refrigerant.
  • the high end refrigeration cycle circuit 20 is assumed to have a high end condenser fan 25 that promotes heat exchange.
  • the high-side condenser fan 25 in the first embodiment is configured of a type of fan whose air volume can be adjusted.
  • the high-end expansion valve 23 which serves as a pressure reducing device or a throttle device, decompresses and expands the high-end refrigerant flowing through the high-end refrigeration cycle circuit 20.
  • the high-end expansion valve 23 is composed of, for example, a flow rate control device such as the electronic expansion valve described above, a refrigerant flow rate adjustment device such as a capillary tube, and the like.
  • the high end evaporator 24 evaporates and gasifies the high end refrigerant flowing through the high end refrigeration cycle circuit 20 by heat exchange.
  • the heat exchanger tube through which the high-temperature side refrigerant flowing through the high-temperature side refrigeration cycle circuit 20 passes serves as the high-temperature side evaporator 24, and the low-temperature side refrigerant flowing through the low-temperature side refrigeration cycle circuit It is assumed that heat exchange with the refrigerant takes place.
  • the cascade condenser C has the functions of the above-mentioned high temperature side evaporator 24 and low temperature side condenser 12, and is an inter-refrigerant heat exchanger that enables heat exchange between the high temperature side refrigerant and the low temperature side refrigerant. It is.
  • the high-temperature side refrigeration cycle circuit 20 and the low-temperature side refrigeration cycle circuit 10 in a multi-stage configuration via the cascade capacitor C, and performing heat exchange between the refrigerants, independent refrigerant circuits can be linked. .
  • the outside air temperature sensor 41 is a temperature sensor that detects and measures outside air temperature.
  • the outside air temperature is assumed to be the temperature measured by the outside air temperature sensor 41.
  • the high source side evaporation temperature sensor 42 is a temperature sensor that detects and measures the high source side evaporation temperature of the refrigerant passing through the high source side evaporator 24 in the cascade condenser C.
  • the low-base evaporation temperature sensor 43 is a temperature sensor that detects and measures the low-base evaporation temperature of the refrigerant passing through the low-base evaporator 14 . Each sensor sends a signal containing detected and measured temperature data to the controller 30.
  • the control device 30 also includes a control processing section 31 and a storage section 32.
  • the control processing unit 31 of the control device 30 has a microcomputer as hardware.
  • a microcomputer includes, for example, a control processing unit such as a CPU (Central Processing Unit), an I/O port that manages input and output of various signals, and the like.
  • the control processing unit 31 executes processing based on a program, for example, to control devices.
  • the control processing unit 31 performs operation control of each device constituting the binary refrigeration system.
  • the control processing unit 31 in the first embodiment controls the low source compressor 11 based on the outside air temperature detected by the outside air temperature sensor 41 and the high source side evaporation temperature detected by the high source side evaporation temperature sensor 42. Performs controls such as lowering and limiting the set maximum drive frequency.
  • the storage unit 32 of the control device 30 stores various data necessary for the control processing unit 31 to perform processing.
  • the storage unit 32 particularly includes a limit range data storage unit 33, which stores limit range data in which a range for limiting the maximum drive frequency of the low-power compressor 11 is defined.
  • the limit range data storage unit 33 has outside air temperature-higher side evaporation temperature limit range data defined by the outside air temperature and the higher side evaporation temperature.
  • the range in which the maximum drive frequency of the low-side compressor 11 is limited varies depending on the performance of equipment in the refrigeration cycle apparatus, and is therefore defined, for example, according to the equipment configuration of the refrigeration cycle apparatus.
  • the storage unit 32 stores programs executed by the control processing unit 31.
  • the storage unit 32 includes, for example, a volatile storage device (not shown) such as a random access memory (RAM) that can temporarily store data, and a non-volatile auxiliary storage device (not shown) such as a flash memory. Have it as a wear.
  • a volatile storage device such as a random access memory (RAM) that can temporarily store data
  • a non-volatile auxiliary storage device such as a flash memory. Have it as a wear.
  • a part of the equipment (for example, the low-side evaporator 14) of the low-side refrigeration cycle circuit 10 may be included in an indoor load device such as a supermarket showcase.
  • an indoor load device such as a supermarket showcase.
  • CO 2 carbon dioxide
  • the high-end refrigeration cycle circuit 20 is not replaced and is not opened.
  • the high temperature side refrigerant used in the high temperature side refrigeration cycle circuit 20 can be, for example, an HFC refrigerant with a high global warming potential. Still, it is desirable to use refrigerants that have a small impact on global warming, such as, for example, HFO (hydrofluoroolefin) refrigerants (HFO1234yf, HFO1234ze, etc.), HC refrigerants, CO2 , ammonia, water, and the like. Therefore, the binary refrigeration system of Embodiment 1 uses HFO refrigerant as the refrigerant that circulates in the high-end refrigerant circuit of the high-end refrigeration cycle circuit 20.
  • HFO hydrofluoroolefin
  • the lower refrigeration cycle circuit 10 uses CO 2 and the higher refrigeration cycle circuit 20 uses HFO refrigerant, so the refrigerating machine oil used in each refrigeration cycle circuit is different.
  • the low-base refrigeration cycle circuit 10 uses ether-based refrigeration oil
  • the high-base refrigeration cycle circuit 20 uses ester-based refrigeration oil.
  • the combination is not limited to such a combination, and the refrigerant of the low-temperature side refrigeration cycle circuit 10 and the high-temperature side refrigeration cycle circuit 20, the kinematic viscosity, pour point, Additives or acid value refrigerating machine oil can be selected as appropriate.
  • the operation of each component during the cooling operation of the binary refrigeration system as described above will be explained based on the flow of refrigerant circulating through each refrigeration cycle circuit.
  • the high-end compressor 21 takes in HFO refrigerant, compresses it, makes it high temperature and high pressure state, and discharges it.
  • the discharged refrigerant flows into the high-side condenser 22.
  • the high source condenser 22 exchanges heat between the outside air supplied from the high source condenser fan 25 and the HFO refrigerant, and condenses and liquefies the HFO refrigerant.
  • the condensed and liquefied refrigerant passes through the high-end expansion valve 23.
  • the high-end expansion valve 23 reduces the pressure of the condensed and liquefied refrigerant.
  • the depressurized refrigerant flows into the high-side evaporator 24 (cascade condenser C).
  • the high-source side evaporator 24 evaporates and gasifies the refrigerant through heat exchange with the refrigerant passing through the low-source condenser 12 .
  • the high-end compressor 21 sucks the evaporated HFO refrigerant.
  • the low-end compressor 11 takes in CO 2 refrigerant, compresses it, makes it high temperature and high pressure, and discharges it.
  • the discharged refrigerant is cooled by the auxiliary heat exchanger 15 and flows into the lower-end condenser 12 (cascade condenser C).
  • the low-base condenser 12 condenses and liquefies the refrigerant through heat exchange with the refrigerant passing through the high-base evaporator 24 .
  • the condensed and liquefied refrigerant passes through the low-end expansion valve 13 .
  • the low-base expansion valve 13 reduces the pressure of the condensed and liquefied refrigerant.
  • the depressurized refrigerant flows into the low-side evaporator 14 .
  • the low-source side evaporator 14 evaporates and gasifies the refrigerant through heat exchange with the object to be cooled.
  • the low-end compressor 11 sucks in the evaporated and gasified CO 2 refrigerant.
  • the control device 30 sets the low source side evaporation temperature to such a cooling capacity that the low source side evaporator 14 maintains the temperature of the object to be cooled, which is the load. At this time, the control device 30 adjusts the high pressure in the low source side refrigeration cycle circuit 10, and balances the evaporation capacity in the high source side evaporator 24 and the condensation amount in the low source side condenser 12 in the cascade condenser C. . For this reason, the control device 30 controls the drive of the low end compressor 11 so that the evaporation capacity in the high end evaporator 24 equals the condensing capacity in the low end condenser 12.
  • evaporation capacity in the high-temperature side evaporator 24 refrigerant circulation amount in the high-temperature side refrigeration cycle circuit 20 ⁇ (enthalpy of the refrigerant at the refrigerant outlet side of the high-temperature side evaporator 24 - enthalpy of the refrigerant at the refrigerant inlet side) ).
  • the refrigerant circulation amount of the high-end refrigeration cycle circuit 20 the driving frequency of the high-end compressor 21 x the suction refrigerant density x the displacement amount of the compressor x efficiency.
  • the control device 30 usually increases the high pressure in the low source side refrigeration cycle circuit 10, increases the condensation temperature in the low source side refrigeration cycle circuit 10, and increases the evaporation capacity in the high source side evaporator 24. balance.
  • the evaporation capacity is determined by the drive frequency of the compressor and the density of the refrigerant sucked into the compressor. Basically, as the evaporation temperature increases, the suction refrigerant density increases. Furthermore, when the outside air temperature becomes high, the refrigeration cycle device performs control to suppress the maximum drive frequency in order to suppress the current. Therefore, the maximum evaporation capacity in the refrigeration cycle becomes large when the evaporation temperature in the evaporator is high, the outside air temperature is not too high, and the drive frequency of the compressor is not suppressed. Therefore, the maximum evaporation capacity in the high source side evaporator 24 is determined by the outside air temperature and the high source side evaporation temperature.
  • the control device 30 does not increase the high pressure in the low source side refrigeration cycle circuit 10 to increase the evaporation capacity and balance it with the condensation amount. , the amount of condensation in the low-source condenser 12 is suppressed. For this reason, the control device 30 controls the maximum driving frequency, which is the maximum value of the drive frequency of the low source side compressor 11, so that the condensing capacity in the low source side condenser 12 does not exceed the maximum evaporation capacity in the high source side evaporator 24. Limit the frequency to be lower than the set drive frequency.
  • FIG. 2 is a diagram illustrating control in the refrigeration cycle device according to the first embodiment.
  • FIG. 2 illustrates the combination of the outside air temperature and the high source evaporation temperature, which define the range in which the maximum drive frequency in the low source compressor 11 is limited, as a region.
  • the range surrounded by connecting points ABCD is the range in which the binary refrigeration system is operated in relation to the outside air temperature and the high-side evaporation temperature.
  • point E determines whether or not the maximum drive frequency of the low source compressor 11 can be limited on the DA line, which is the lower limit of the high source evaporation temperature, in the range in which the binary refrigeration system is operated. It becomes a boundary point.
  • Point F is a boundary point for determining whether or not to limit the maximum drive frequency of the lower side compressor 11 on the CD line, which is the limit on the higher side of outside air temperature, in the range in which the binary refrigeration system is operated.
  • the boundary line is a line connecting point E and point F, and is a curved line convex in the direction of point B, which is the limit between the high source side evaporation temperature and the low outside air temperature.
  • the storage unit 32 of the control device 30 stores, for example, the combination of the outside air temperature and the high-side evaporation temperature related to the area illustrated in FIG. 2 as the outside air temperature-high-side evaporation temperature limit range data. , is stored in the limit range data storage unit 33 in table format.
  • the outside air temperature - high source side evaporation temperature limit range is a relationship between the outside air temperature and the high source side evaporation temperature, and when the control device 30 performs normal control, the high pressure of the low source side refrigeration cycle circuit 10 exceeds the set pressure. range.
  • the outside air temperature - high source side evaporation temperature limit range is, as shown in Figure 2, in the range where the binary refrigeration system is operated, the outside air temperature is a temperature equal to or higher than the set point E, and the high source side evaporation temperature is It is within the range where the temperature is below the set point F.
  • the region shown by the combination of the outside air temperature and the high-side evaporation temperature is an example.
  • the combination of the outside air temperature and the high source evaporation temperature that limit the maximum drive frequency in the low source compressor 11 changes depending on the environment of the site where the equipment is installed, the length of the piping, and the like. For example, a trial run of the high-end refrigeration cycle circuit 20 is performed at the site to obtain outside air temperature-high-end evaporation temperature limit range data.
  • FIG. 3 is a diagram illustrating a process for determining a limit on the maximum drive frequency of the low-end compressor 11 in the refrigeration cycle device according to the first embodiment.
  • the control device 30 receives signals sent from the outside air temperature sensor 41 and the high-side evaporation temperature sensor 42 (step S1).
  • the control device 30 acquires the outside air temperature and the high-side evaporation temperature as data based on the received signal (step S2).
  • the control device 30 determines whether the combination of the acquired outside air temperature and high-side evaporation temperature is included in the limit range defined by the outside air temperature - high-side evaporation temperature limit range data stored in the limit range data storage unit 33. is determined (step S3).
  • the control device 30 sets the maximum drive frequency of the low-source compressor 11 to a drive frequency (for example, a first maximum drive frequency) lower than a preset drive frequency (for example, a first maximum drive frequency). 2 maximum driving frequency) (step S4). Therefore, the second maximum drive frequency is less than the first maximum drive frequency.
  • the control device 30 lowers the high pressure of the low-source refrigeration cycle circuit 10 by limiting the maximum drive frequency. At this time, the control device 30 controls the drive frequency of the low source compressor 11 such that the amount of condensation in the low source condenser 12 matches the evaporation capacity of the high source evaporator 24. However, if the drive frequency of the low-source compressor 11 is below the limited maximum drive frequency, the control device 30 continues the same control.
  • the second maximum drive frequency may not be uniform.
  • the control device 30 limits the maximum drive frequency of the low source side compressor 11, the evaporation capacity in the low source side evaporator 14, which is the cooling capacity, becomes slightly lower, but the operation in the low source side refrigeration cycle circuit 10 is stable. do. Therefore, it is better for the control device 30 to limit the maximum drive frequency of the low-power side compressor 11 than to cause unstable operation in which the low-power side compressor 11 repeats hunting and repeats unstable driving. can be maintained.
  • control device 30 determines that it is not within the limit range, it does not limit the maximum drive frequency of the low-power side compressor 11 (step S5).
  • the control device 30 cancels the limitation and returns it to the set first maximum drive frequency. .
  • the control device 30 repeats the above restriction determination process.
  • the control device 30 includes the outside air temperature and the high source side evaporation temperature in the limit range in the outside air temperature - high source side evaporation temperature limit range data. If it is determined that the maximum driving frequency of the low-power side compressor 11 is limited, control is performed to limit the maximum driving frequency of the low-power side compressor 11. Therefore, the binary refrigeration system according to the first embodiment can suppress the rise in high pressure in the low-power side refrigeration cycle circuit 10, prevent hunting of the low-power side compressor 11, and perform stable operation. . Therefore, the object to be cooled can be cooled stably. In addition, the binary refrigeration system can save energy by performing stable operation. In addition, since the low-base compressor 11 is free from transient load fluctuations, it is possible to obtain durability of the parts.
  • the required condensation amount of the low-base refrigeration cycle circuit 10 may be large.
  • the refrigerant circulation amount increases and the required condensation amount increases.
  • the condensation capacity of the auxiliary heat exchanger 15 decreases, and the amount of condensation in the low-source condenser 12 increases.
  • the limit range data storage section 33 will be described as having outside air temperature-lower side evaporation temperature limit range data defined by the outside air temperature and the lower side evaporation temperature.
  • FIG. 4 is a diagram illustrating control in the refrigeration cycle device according to the second embodiment.
  • FIG. 4 illustrates a combination of the outside air temperature and the low source evaporation temperature that defines the range that limits the maximum drive frequency in the low source compressor 11 as a region.
  • the range connected and surrounded by points GHIJ is the range in which the binary refrigeration system is operated in relation to the outside air temperature and the low-side evaporation temperature.
  • point K determines whether or not the maximum drive frequency of the low source side compressor 11 can be limited on the IH line, which is the high limit of the low source side evaporation temperature, in the range in which the binary refrigeration system is operated. It becomes a boundary point.
  • Point L is a boundary point for determining whether or not to limit the maximum drive frequency of the lower side compressor 11 on the IJ line, which is the limit on the higher side of outside air temperature, in the range in which the binary refrigeration system is operated.
  • the boundary line is a line connecting points K and L, and is a curved line convex in the direction of point G, which is the limit of the lower side evaporation temperature and the lower outside air temperature.
  • the storage unit 32 of the control device 30 stores, for example, the combination of the outside air temperature and the low-side evaporation temperature related to the area illustrated in FIG. 4 as the outside air temperature-low-side evaporation temperature limit range data. , is stored in the limit range data storage unit 33 in table format.
  • the outside air temperature - low source side evaporation temperature limit range is a relationship between the outside air temperature and the low source side evaporation temperature, and when the control device 30 performs normal control, the high pressure of the low source side refrigeration cycle circuit 10 exceeds the set pressure. range.
  • the outside air temperature - low side evaporation temperature limit range is, as shown in Figure 4, within the range where the binary refrigeration system is operated, the outside air temperature is a temperature equal to or higher than the set point K, and the low side evaporation temperature is It is within the range where the temperature is equal to or higher than the set point L.
  • the area shown by the combination of the outside air temperature and the lower side evaporation temperature is an example.
  • the combination of the outside air temperature and the low source evaporation temperature that limit the maximum drive frequency in the low source compressor 11 changes depending on the environment of the site where the equipment is installed, the length of the piping, and the like. For example, a test run of the refrigeration cycle device is performed at the site to obtain outside air temperature-lower side evaporation temperature limit range data.
  • FIG. 5 is a diagram illustrating a process for determining a limit on the maximum drive frequency of the low-end compressor 11 in the refrigeration cycle device according to the second embodiment.
  • the control device 30 receives signals sent from the outside air temperature sensor 41 and the low-side evaporation temperature sensor 43 (step S11).
  • the control device 30 acquires the outside air temperature and the low-side evaporation temperature as data based on the signal (step S12).
  • the control device 30 determines whether the acquired combination of the outside air temperature and the low-side evaporation temperature is included in the limit range in the outside-air temperature-low-side evaporation temperature limit range data stored in the limit range data storage unit 33. (Step S13).
  • the control device 30 changes the maximum drive frequency of the low-side compressor 11 to a second maximum drive frequency lower than the first maximum drive frequency set in advance, as in the first embodiment. Limit to frequency.
  • the control device 30 lowers the high pressure of the low-source refrigeration cycle circuit 10 by limiting the maximum drive frequency (step S15).
  • the control device 30 controls the drive frequency of the low source compressor 11 such that the amount of condensation in the low source condenser 12 matches the evaporation capacity of the high source evaporator 24.
  • the control device 30 continues the same control.
  • the second maximum drive frequency may not be uniform.
  • the amount of restriction may be changed depending on the amount.
  • control device 30 determines that it is not within the limit range, it does not limit the maximum drive frequency of the low-end compressor 11 (step S15).
  • the control device 30 cancels the limitation and returns it to the set first maximum drive frequency. .
  • the control device 30 repeats the above restriction determination process.
  • the control device 30 includes the outside air temperature and the low-side evaporation temperature in the limit range in the outside-air temperature - low-side evaporation temperature limit range data. If it is determined that the maximum driving frequency of the low-power side compressor 11 is limited, control is performed to limit the maximum driving frequency of the low-power side compressor 11. Therefore, the binary refrigeration system according to the second embodiment can suppress the rise in high pressure in the low-source side refrigeration cycle circuit 10, prevent hunting of the low-source side compressor 11, and perform stable operation. . Therefore, the object to be cooled can be cooled stably. In addition, the binary refrigeration system can save energy by performing stable operation. In addition, since the low-base compressor 11 is free from transient load fluctuations, it is possible to obtain durability of the parts.
  • Embodiment 3 In the binary refrigeration system according to the first embodiment described above, the control device 30 performed a restriction determination process to limit the maximum drive frequency of the low source side compressor 11 based on the outside air temperature and the high source side evaporation temperature. Furthermore, in the binary refrigeration system according to the second embodiment, the control device 30 performed a restriction determination process to limit the maximum drive frequency of the low source compressor 11 based on the outside air temperature and the low source side evaporation temperature. For example, the control device 30 in the third embodiment performs a restriction determination process that is a combination of these restriction determination processes. The contents of each restriction determination process are the same as those described above. The control device 30 can perform stable operation of the binary refrigeration system by performing both the restriction determination processes described in the first embodiment and the second embodiment.
  • the storage unit 32 of the control device 30 stores the outside air temperature-high side evaporation temperature limit range data and the outside air temperature-low side evaporation temperature limit range data as limit range data. 33 is stored. Then, the control device 30 determines that the combination of the acquired outside air temperature and high-side evaporation temperature and the outside air temperature and low-side evaporation temperature are included in one or both of the areas shown in FIGS. 2 and 4 described above. If it is determined that the maximum driving frequency of the low-power side compressor 11 is determined to be high, the maximum driving frequency of the low-power side compressor 11 is limited.
  • Embodiment 4 In the binary refrigeration systems of Embodiments 1 to 3, as shown in FIGS. 2 and 4, the boundary between the restricted range area and the non-restricted area is distinguished by a line, and the low element based on the maximum driving frequency is Although the control of the side compressor 11 is switched, the present invention is not limited to this.
  • the boundary may not be a line, but may be an area with width, such as a transition area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The present invention is provided with: a high-stage-side refrigeration cycle circuit which connects a high-stage-side compressor, a high-stage-side condenser, a high-stage-side throttle device, and a high-stage-side evaporator to each other through piping to circulate a high-stage-side refrigerant therethrough; a low-stage-side refrigeration cycle circuit which connects a low-stage-side compressor, a low-stage-side condenser, a low-stage-side throttle device, and a low-stage-side evaporator to each other through piping to circulate a low-stage-side refrigerant therethrough; a cascade condenser which is formed of the high-stage-side condenser and the low-stage-side condenser and executes heat exchange between the high-stage-side refrigerant and the low-stage-side refrigerant; an external air temperature sensor which measures an external air temperature; a high-stage-side evaporation temperature sensor which measures a high-stage-side evaporation temperature; and a control device which executes processing of restricting the maximum drive frequency of the low-stage-side compressor when a combination of the external air temperature and the high-stage-side evaporation temperature is determined to be within an external air temperature-high-stage-side evaporation temperature restriction range in which a pressure in the low-stage-side refrigeration cycle circuit reaches a high pressure and exceeds a set pressure.

Description

冷凍サイクル装置Refrigeration cycle equipment
 この技術は、冷凍空調装置などの冷凍サイクル装置に関するものである。特に、複数の冷凍サイクル回路を多段構成した多元の冷凍サイクル装置に関するものである。 This technology relates to refrigeration cycle devices such as refrigeration and air conditioners. In particular, the present invention relates to a multi-component refrigeration cycle device in which a plurality of refrigeration cycle circuits are configured in multiple stages.
 食品加工工場、農水物加工工場、市場および物流倉庫などの物流拠点並びにスーパーマーケットおよびコンビニエンスストアなどの小売店舗などでは、冷凍、冷蔵および空気調和などの用途に利用する冷凍空調装置などの冷凍サイクル装置が使用されている。 Refrigeration cycle equipment such as refrigeration and air conditioning equipment used for freezing, refrigeration, and air conditioning is used at distribution bases such as food processing factories, agricultural and fisheries processing plants, markets, and distribution warehouses, as well as retail stores such as supermarkets and convenience stores. It is used.
 ここで、たとえば、高元側(高段側、一次側)となる冷凍サイクル(以下、高元側冷凍サイクル回路という)と低元側(低段側、二次側)となる冷凍サイクル(以下、低元側冷凍サイクル回路という)とをそれぞれ形成して多段で構成した冷凍サイクル装置がある。ここでは、二段構成の冷凍サイクル装置とする。ここで、低元側冷凍サイクル回路は、COを冷媒として用いて循環させる。また、高元側冷凍サイクル回路は、フロン、アンモニアまたは炭化水素などを冷媒として用いて循環させる(たとえば、特許文献1参照)。 Here, for example, a refrigeration cycle (hereinafter referred to as a high source side refrigeration cycle circuit) that is a high source side (high stage side, primary side) and a refrigeration cycle that is a low source side (low stage side, secondary side) (hereinafter referred to as a high source side refrigeration cycle circuit) There is a refrigeration cycle device that is configured in multiple stages by forming a refrigeration cycle circuit, a lower refrigeration cycle circuit, and a lower refrigeration cycle circuit, respectively. Here, it is assumed that the refrigeration cycle device has a two-stage configuration. Here, the low-source side refrigeration cycle circuit circulates CO2 as a refrigerant. Further, the high-end refrigeration cycle circuit circulates fluorocarbons, ammonia, hydrocarbons, or the like as a refrigerant (see, for example, Patent Document 1).
 このような多元の冷凍サイクル装置は、たとえば、高元側冷凍サイクル回路における冷媒の蒸発による蒸発熱(冷凍能力)と低元側冷凍サイクル回路における冷媒の凝縮による凝縮熱(凝縮能力)とを、それぞれの冷媒が通過するカスケードコンデンサで熱交換していく。そして、最終段となる低元側冷凍サイクル回路において、蒸発器が冷却対象などとの熱交換を行う。高元側冷凍サイクル回路と低元側冷凍サイクル回路とが連携して冷凍運転(冷却運転)を行うことにより、低元側冷凍サイクル回路の蒸発器において、マイナス数十度の低温度の蒸発熱を効率よく得ることができる。 Such a multicomponent refrigeration cycle device, for example, uses the heat of evaporation (refrigeration capacity) due to evaporation of the refrigerant in the high-temperature side refrigeration cycle circuit and the condensation heat (condensation capacity) due to the condensation of the refrigerant in the low-temperature side refrigeration cycle circuit. Heat is exchanged in the cascade condenser through which each refrigerant passes. Then, in the final stage, the low-end refrigeration cycle circuit, the evaporator exchanges heat with the object to be cooled. By performing refrigeration operation (cooling operation) in cooperation with the high-temperature side refrigeration cycle circuit and the low-temperature side refrigeration cycle circuit, the evaporation heat at a low temperature of several tens of degrees below zero is generated in the evaporator of the low-temperature side refrigeration cycle circuit. can be obtained efficiently.
特開2004-190917号公報Japanese Patent Application Publication No. 2004-190917
 多元の冷凍サイクル装置では、制御装置は、高元側冷凍サイクル回路における圧縮機の吸入圧力および低元側冷凍サイクル回路の圧力などに基づいて、高元側冷凍サイクル回路における圧縮機の駆動周波数を制御している。一方、制御装置は、低減側サイクル回路における圧縮機の吸入圧力および負荷温度などに基づいて、低減側サイクル回路における圧縮機の駆動周波数を制御している。このとき、制御装置は、カスケードコンデンサにおける高元側冷凍サイクル回路の冷凍能力と低元側冷凍サイクル回路の凝縮能力とが均衡するように低元側冷凍サイクル回路において高圧となる側の圧力(以下、高圧圧力という)を決定する。 In a multi-component refrigeration cycle device, the control device controls the driving frequency of the compressor in the high-source refrigeration cycle circuit based on the suction pressure of the compressor in the high-source refrigeration cycle circuit and the pressure in the low-source refrigeration cycle circuit. It's in control. On the other hand, the control device controls the driving frequency of the compressor in the reduction side cycle circuit based on the suction pressure and load temperature of the compressor in the reduction side cycle circuit. At this time, the control device controls the pressure on the high pressure side of the low source refrigeration cycle circuit (hereinafter referred to as , high pressure).
 ここで、低元側冷凍サイクル回路における必要凝縮能力と高元側冷凍サイクル回路における蒸発能力とが均衡しなくなると、低元側冷凍サイクル回路における高圧圧力が上昇する。定時制御および保護制御によって、低減側サイクル回路における圧縮機の駆動周波数を高くすることで、高元側冷凍サイクル回路の最大処理能力以上に、一時的に低元側冷凍サイクル回路における圧縮機の駆動周波数が増加すると、低減側サイクル回路の高圧圧力が上昇する。そこで、制御装置は、保護制御による低元側冷凍サイクル回路における圧縮機の駆動周波数を低減する。このため、低元側冷凍サイクル回路では高圧圧力および低圧圧力のハンチングが発生し、安定的な制御を行うことが難しかった。特に、外気の温度が高いと、ハンチングが発生しやすくなる。 Here, when the necessary condensation capacity in the low-base refrigeration cycle circuit and the evaporation capacity in the high-base refrigeration cycle circuit are no longer balanced, the high pressure in the low-base refrigeration cycle circuit increases. By increasing the drive frequency of the compressor in the lower cycle circuit through regular control and protection control, the compressor in the lower cycle circuit is temporarily driven at a rate higher than the maximum processing capacity of the high cycle circuit. As the frequency increases, the high pressure in the reducing side cycle circuit increases. Therefore, the control device reduces the drive frequency of the compressor in the lower-side refrigeration cycle circuit by protection control. For this reason, hunting of high pressure and low pressure occurs in the low-source side refrigeration cycle circuit, making it difficult to perform stable control. Hunting is particularly likely to occur when the outside air temperature is high.
 以上のことを鑑みて、安定した運転を行うことができる冷凍サイクル装置を得ることを目的とする。 In view of the above, the objective is to obtain a refrigeration cycle device that can perform stable operation.
 この開示に係る冷凍サイクル装置は、高元側圧縮機、高元側凝縮器、高元側絞り装置および高元側蒸発器を配管接続して、高元側冷媒を循環させる高元側冷凍サイクル回路と、低元側圧縮機、低元側凝縮器、低元側絞り装置および低元側蒸発器を配管接続して、低元側冷媒を循環させる低元側冷凍サイクル回路と、高元側蒸発器と低元側凝縮器とにより構成し、高元側冷媒と低元側冷媒との間の熱交換を行うカスケードコンデンサと、外気温度を測定する外気温度センサーと、高元側蒸発器における高元側蒸発温度を測定する高元側蒸発温度センサーと、外気温度センサーが測定した外気温度と高元側蒸発温度センサーが測定した高元側蒸発温度との組み合わせが、低元側冷凍サイクル回路において高圧となる圧力が設定圧力を超える範囲となる外気温度-高元側蒸発温度制限範囲にあると判定すると、低元側圧縮機の最大駆動周波数を制限する処理を行う制御装置とを備えるものである。 The refrigeration cycle device according to this disclosure is a high-base refrigeration cycle in which a high-base compressor, a high-base condenser, a high-base throttle device, and a high-base evaporator are connected via piping to circulate a high-base refrigerant. A low-side refrigeration cycle circuit that circulates low-side refrigerant by connecting the low-side compressor, low-side condenser, low-side throttle device, and low-side evaporator to the low-side refrigeration cycle circuit, and the high-side side A cascade condenser that is composed of an evaporator and a low-source side condenser, and performs heat exchange between the high-source side refrigerant and the low-source side refrigerant, an outside air temperature sensor that measures the outside air temperature, and a cascade condenser that The combination of the high source side evaporation temperature sensor that measures the high source side evaporation temperature, the outside air temperature measured by the outside air temperature sensor, and the high source side evaporation temperature measured by the high source side evaporation temperature sensor is the low source side refrigeration cycle circuit. A control device that performs processing to limit the maximum drive frequency of the low source compressor when it is determined that the outside air temperature is in the range where the high pressure exceeds the set pressure - the high source side evaporation temperature limit range. It is.
 開示に係る冷凍サイクル装置においては、制御装置は、外気温度および高元側蒸発温度の組み合わせが外気温度-高元側蒸発温度制限範囲に含まれると判定すると、低元側圧縮機に対して最大駆動周波数を制限する制御を行う。このため、冷凍サイクル装置は、低元側冷凍サイクルにおける高圧を下げることで、低元側圧縮機のハンチングを防止し、安定した運転を行うことができ、冷却対象の冷却を安定して行うことができる。 In the disclosed refrigeration cycle device, when the control device determines that the combination of the outside air temperature and the high source side evaporation temperature is included in the outside air temperature - high source side evaporation temperature limit range, the control device controls the low source side compressor to a maximum Performs control to limit the drive frequency. Therefore, by lowering the high pressure in the low source side refrigeration cycle, the refrigeration cycle device can prevent hunting of the low source side compressor and perform stable operation, thereby stably cooling the object to be cooled. I can do it.
実施の形態1に係る冷凍サイクル装置における構成の一例を示す図である。1 is a diagram illustrating an example of a configuration of a refrigeration cycle device according to a first embodiment; FIG. 実施の形態1に係る冷凍サイクル装置における制御について説明する図である。FIG. 3 is a diagram illustrating control in the refrigeration cycle device according to the first embodiment. 実施の形態1に係る冷凍サイクル装置における低元側圧縮機11の最大駆動周波数の制限判定処理について説明する図である。FIG. 3 is a diagram illustrating a process for determining a limit on the maximum drive frequency of the low-end compressor 11 in the refrigeration cycle device according to the first embodiment. 実施の形態2に係る冷凍サイクル装置における制御について説明する図である。FIG. 7 is a diagram illustrating control in the refrigeration cycle device according to the second embodiment. 実施の形態2に係る冷凍サイクル装置における低元側圧縮機11の最大駆動周波数の制限判定処理について説明する図である。FIG. 7 is a diagram illustrating a process for determining a limit on the maximum drive frequency of the low-end compressor 11 in the refrigeration cycle device according to the second embodiment.
 以下、実施の形態に係る冷凍サイクル装置について、図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、明細書全文に表されている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に、構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、圧力および温度の高低については、特に絶対的な値との関係で高低が定まっているものではなく、装置などにおける状態、動作などにおいて相対的に定まるものとする。また、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。 Hereinafter, a refrigeration cycle device according to an embodiment will be described with reference to drawings and the like. In the following drawings, the same reference numerals are the same or equivalent, and are common throughout the entire embodiment described below. Further, in the drawings, the size relationship of each component may differ from the actual one. The forms of the constituent elements shown in the entire specification are merely examples, and are not limited to the forms described in the specification. In particular, the combinations of components are not limited to those in each embodiment, and components described in other embodiments can be applied to other embodiments. In addition, the height of pressure and temperature is not determined particularly in relation to absolute values, but is determined relatively depending on the state and operation of the device etc. Additionally, if there is no need to distinguish or specify multiple devices of the same type that are distinguished by subscripts, the subscripts may be omitted from the description.
実施の形態1.
 図1は、実施の形態1に係る冷凍サイクル装置における構成の一例を示す図である。図1は、冷凍サイクル装置の一例として二元冷凍装置を示している。図1に示すように、実施の形態1における二元冷凍装置は、低元側冷凍サイクル回路10と高元側冷凍サイクル20回路とを有し、それぞれ独立して冷媒を循環させる冷媒回路を構成する。そして、二元冷凍装置は、2つの冷媒回路を多段構成するために、高元側蒸発器24と低元側凝縮器12とをそれぞれ通過する冷媒間での熱交換を行えるように結合させて構成した冷媒間熱交換器となるカスケードコンデンサCを有する。また、二元冷凍装置は、装置全体の運転制御を行う制御装置30を有する。
Embodiment 1.
FIG. 1 is a diagram illustrating an example of the configuration of a refrigeration cycle device according to a first embodiment. FIG. 1 shows a binary refrigeration system as an example of a refrigeration cycle system. As shown in FIG. 1, the binary refrigeration system according to the first embodiment includes a low-temperature side refrigeration cycle circuit 10 and a high-temperature side refrigeration cycle circuit 20, each of which constitutes a refrigerant circuit that circulates refrigerant independently. do. In order to configure the two refrigerant circuits in multiple stages, the binary refrigeration system is coupled so that heat exchange can be performed between the refrigerants passing through the high-temperature side evaporator 24 and the low-temperature side condenser 12, respectively. It has a cascade condenser C that serves as a refrigerant heat exchanger. The binary refrigeration system also includes a control device 30 that controls the operation of the entire system.
 図1において、低元側冷凍サイクル回路10は、低元側圧縮機11、補助熱交換器15、低元側凝縮器12、低元側膨張弁13および低元側蒸発器14を順に冷媒配管で接続して構成した冷媒循環回路(以下、低元側冷媒回路ともいう)である。一方、高元側冷凍サイクル回路20は、高元側圧縮機21、高元側凝縮器22、高元側膨張弁23および高元側蒸発器24を順に冷媒配管で接続して構成した冷媒循環回路(以下、高元側冷媒回路ともいう)を有する。 In FIG. 1, the low-base refrigeration cycle circuit 10 includes a low-base compressor 11, an auxiliary heat exchanger 15, a low-base condenser 12, a low-base expansion valve 13, and a low-base evaporator 14 through refrigerant pipes in this order. This is a refrigerant circulation circuit (hereinafter also referred to as a low-side refrigerant circuit) configured by connecting the two. On the other hand, the high-temperature side refrigeration cycle circuit 20 is a refrigerant circulation configured by sequentially connecting a high-temperature side compressor 21, a high-temperature side condenser 22, a high-temperature side expansion valve 23, and a high-temperature side evaporator 24 through refrigerant piping. circuit (hereinafter also referred to as high-side refrigerant circuit).
 低元側冷凍サイクル回路10の低元側圧縮機11は、冷媒を吸入し、圧縮して高温および高圧の状態にして吐出する。ここでは、低元側圧縮機11は、たとえば、インバータ回路などにより回転数を制御し、冷媒の吐出量を調整できるタイプの圧縮機で構成する。 The low end compressor 11 of the low end refrigeration cycle circuit 10 sucks in refrigerant, compresses it, makes it high temperature and high pressure, and discharges it. Here, the low-end compressor 11 is constituted by a type of compressor whose rotational speed is controlled by an inverter circuit or the like, and the amount of refrigerant discharged can be adjusted.
 補助熱交換器15は、たとえば、ガスクーラなどとして機能し、屋外の空気(外気)との熱交換により低元側圧縮機11が吐出したガス冷媒を冷却する。ここで、実施の形態1における二元冷凍装置は、補助熱交換器15における外気と冷媒との熱交換を促す送風機である補助熱交換器ファン16を有しているものとする。補助熱交換器ファン16は、補助熱交換器15に空気を通過させる流れを形成する。補助熱交換器ファン16は、たとえば、インバータ回路などにより回転数を制御し、風量を調整できるタイプのファンで構成する。 The auxiliary heat exchanger 15 functions as, for example, a gas cooler, and cools the gas refrigerant discharged by the low-end compressor 11 by heat exchange with outdoor air (outside air). Here, it is assumed that the binary refrigeration system in the first embodiment includes an auxiliary heat exchanger fan 16 that is a blower that promotes heat exchange between the outside air and the refrigerant in the auxiliary heat exchanger 15. Auxiliary heat exchanger fan 16 creates a flow of air through auxiliary heat exchanger 15 . The auxiliary heat exchanger fan 16 is constituted by a type of fan whose rotational speed is controlled by an inverter circuit or the like and whose air volume can be adjusted, for example.
 また、低元側凝縮器12は、補助熱交換器15を通過した冷媒との間で熱交換を行い、冷媒を凝縮させて液状の冷媒にする(凝縮液化させる)ものである。たとえば、ここではカスケードコンデンサCにおいて低元側冷凍サイクル回路10を流れる低元側冷媒が通過する伝熱管などが低元側凝縮器12となって、高元側冷凍サイクル回路20を流れる高元側冷媒との熱交換が行われるものとする。 Furthermore, the low-source condenser 12 exchanges heat with the refrigerant that has passed through the auxiliary heat exchanger 15, and condenses the refrigerant into a liquid refrigerant (condenses and liquefies it). For example, here, in the cascade condenser C, a heat transfer tube through which the low-base refrigerant flowing through the low-base refrigerant cycle circuit 10 passes becomes the low-base condenser 12, and the high-base refrigerant flowing through the high-base refrigerant cycle circuit 20 serves as the low-base condenser 12. It is assumed that heat exchange with the refrigerant takes place.
 減圧装置または絞り装置などとなる低元側膨張弁13は、低元側冷凍サイクル回路10を流れる冷媒を減圧して膨張させるものである。低元側膨張弁13は、たとえば、電子式膨張弁などの流量制御装置、毛細管(キャピラリ)、感温式膨張弁などの冷媒流量調節機器などで構成する。低元側蒸発器14は、たとえば、冷蔵室内の空気などの冷却対象との熱交換により低元側冷凍サイクル回路10を流れる低元側冷媒を蒸発させて気体(ガス)状の冷媒にする(蒸発ガス化させる)ものである。冷却対象は、低元側冷媒との熱交換により、直接または間接に冷却されることになる。 The low-base expansion valve 13, which serves as a pressure reducing device or a throttle device, decompresses and expands the refrigerant flowing through the low-base refrigeration cycle circuit 10. The low-side expansion valve 13 is composed of, for example, a flow rate control device such as an electronic expansion valve, a capillary tube, a refrigerant flow rate adjustment device such as a temperature-sensitive expansion valve, and the like. The low-temperature side evaporator 14 evaporates the low-temperature side refrigerant flowing through the low-temperature side refrigeration cycle circuit 10 into a gaseous refrigerant by heat exchange with the object to be cooled, such as the air in the refrigerator room. (evaporates into gas). The object to be cooled is directly or indirectly cooled by heat exchange with the low-source refrigerant.
 一方、高元側冷凍サイクル回路20の高元側圧縮機21は、高元側冷凍サイクル回路20を流れる高元側冷媒を吸入し、その冷媒を圧縮して高温および高圧の状態にして吐出する。高元側圧縮機21は、低元側圧縮機11と同様に、たとえば、インバータ回路などを有し、冷媒の吐出量を調整できるタイプの圧縮機で構成する。高元側凝縮器22は、たとえば、空気、ブラインなどと高元側冷凍サイクル回路20を流れる高元側冷媒との間で熱交換を行い、冷媒を凝縮液化させる熱交換器である。ここで、実施の形態1では、高元側凝縮器22は、外気と冷媒との熱交換を行うものとする。このため、高元側冷凍サイクル回路20は、熱交換を促す高元側凝縮器ファン25を有するものとする。実施の形態1における高元側凝縮器ファン25は、補助熱交換器ファン16と同様に、風量を調整できるタイプのファンで構成する。 On the other hand, the high-temperature side compressor 21 of the high-temperature side refrigeration cycle circuit 20 sucks in the high-temperature side refrigerant flowing through the high-temperature side refrigeration cycle circuit 20, compresses the refrigerant, and discharges it in a high temperature and high pressure state. . Like the low-end compressor 11, the high-end compressor 21 is configured of a type of compressor that includes, for example, an inverter circuit and can adjust the amount of refrigerant discharged. The high end condenser 22 is a heat exchanger that exchanges heat between air, brine, etc. and the high end refrigerant flowing through the high end refrigeration cycle circuit 20, and condenses and liquefies the refrigerant. Here, in the first embodiment, the high source condenser 22 is assumed to exchange heat between the outside air and the refrigerant. For this reason, the high end refrigeration cycle circuit 20 is assumed to have a high end condenser fan 25 that promotes heat exchange. Like the auxiliary heat exchanger fan 16, the high-side condenser fan 25 in the first embodiment is configured of a type of fan whose air volume can be adjusted.
 減圧装置または絞り装置などとなる高元側膨張弁23は、高元側冷凍サイクル回路20を流れる高元側冷媒を減圧して膨張させる。高元側膨張弁23は、たとえば、前述した電子式膨張弁などの流量制御装置、毛細管などの冷媒流量調節機器などで構成する。高元側蒸発器24は、熱交換により高元側冷凍サイクル回路20を流れる高元側冷媒を蒸発ガス化する。たとえば、ここではカスケードコンデンサCにおいて高元側冷凍サイクル回路20を流れる高元側冷媒が通過する伝熱管などが高元側蒸発器24となって、低元側冷凍サイクル回路10を流れる低元側冷媒との熱交換が行われるものとする。 The high-end expansion valve 23, which serves as a pressure reducing device or a throttle device, decompresses and expands the high-end refrigerant flowing through the high-end refrigeration cycle circuit 20. The high-end expansion valve 23 is composed of, for example, a flow rate control device such as the electronic expansion valve described above, a refrigerant flow rate adjustment device such as a capillary tube, and the like. The high end evaporator 24 evaporates and gasifies the high end refrigerant flowing through the high end refrigeration cycle circuit 20 by heat exchange. For example, here, in the cascade condenser C, the heat exchanger tube through which the high-temperature side refrigerant flowing through the high-temperature side refrigeration cycle circuit 20 passes serves as the high-temperature side evaporator 24, and the low-temperature side refrigerant flowing through the low-temperature side refrigeration cycle circuit It is assumed that heat exchange with the refrigerant takes place.
 また、カスケードコンデンサCは、前述した高元側蒸発器24と低元側凝縮器12との機能を有し、高元側冷媒と低元側冷媒とを熱交換可能にする冷媒間熱交換器である。カスケードコンデンサCを介して高元側冷凍サイクル回路20と低元側冷凍サイクル回路10とを多段構成にし、冷媒間の熱交換を行うようにすることで、独立した冷媒回路を連携させることができる。 In addition, the cascade condenser C has the functions of the above-mentioned high temperature side evaporator 24 and low temperature side condenser 12, and is an inter-refrigerant heat exchanger that enables heat exchange between the high temperature side refrigerant and the low temperature side refrigerant. It is. By configuring the high-temperature side refrigeration cycle circuit 20 and the low-temperature side refrigeration cycle circuit 10 in a multi-stage configuration via the cascade capacitor C, and performing heat exchange between the refrigerants, independent refrigerant circuits can be linked. .
 外気温度センサー41は、外気温度を検出して計測する温度センサーである。以下、外気温度は、外気温度センサー41の計測に係る温度であるものとする。また、高元側蒸発温度センサー42は、カスケードコンデンサCにおける高元側蒸発器24を通過する冷媒の高元側蒸発温度を検出して計測する温度センサーである。そして、低元側蒸発温度センサー43は、低元側蒸発器14を通過する冷媒の低元側蒸発温度を検出して計測する温度センサーである。各センサーは、検出して計測した温度のデータを含む信号を制御装置30に送る。 The outside air temperature sensor 41 is a temperature sensor that detects and measures outside air temperature. Hereinafter, the outside air temperature is assumed to be the temperature measured by the outside air temperature sensor 41. Further, the high source side evaporation temperature sensor 42 is a temperature sensor that detects and measures the high source side evaporation temperature of the refrigerant passing through the high source side evaporator 24 in the cascade condenser C. The low-base evaporation temperature sensor 43 is a temperature sensor that detects and measures the low-base evaporation temperature of the refrigerant passing through the low-base evaporator 14 . Each sensor sends a signal containing detected and measured temperature data to the controller 30.
 また、制御装置30は、制御処理部31および記憶部32を有する。制御装置30の制御処理部31は、マイクロコンピュータをハードウェアとして有する。マイクロコンピュータは、たとえば、CPU(Central Processing Unit)などの制御演算処理装置および各種信号の入出力を管理するI/Oポートなどを有する。制御処理部31が、たとえば、プログラムに基づく処理を実行して、機器の制御などを実現する。制御処理部31は、二元冷凍装置を構成する各機器の動作制御などを行う。実施の形態1における制御処理部31は、特に、外気温度センサー41が検出した外気温度と高元側蒸発温度センサー42が検出した高元側蒸発温度とに基づいて、低元側圧縮機11に設定されている最大駆動周波数を下げて制限をするなどの制御を行う。 The control device 30 also includes a control processing section 31 and a storage section 32. The control processing unit 31 of the control device 30 has a microcomputer as hardware. A microcomputer includes, for example, a control processing unit such as a CPU (Central Processing Unit), an I/O port that manages input and output of various signals, and the like. The control processing unit 31 executes processing based on a program, for example, to control devices. The control processing unit 31 performs operation control of each device constituting the binary refrigeration system. In particular, the control processing unit 31 in the first embodiment controls the low source compressor 11 based on the outside air temperature detected by the outside air temperature sensor 41 and the high source side evaporation temperature detected by the high source side evaporation temperature sensor 42. Performs controls such as lowering and limiting the set maximum drive frequency.
 また、制御装置30の記憶部32は、制御処理部31が処理を行うために必要となる各種データを記憶する。ここで、記憶部32は、特に、制限範囲データ記憶部33を有し、低元側圧縮機11の最大駆動周波数を制限する範囲が規定された制限範囲データを記憶する。実施の形態1においては、制限範囲データ記憶部33は、外気温度および高元側蒸発温度により規定される外気温度-高元側蒸発温度制限範囲データを有する。ここで、低元側圧縮機11の最大駆動周波数を制限する範囲については、冷凍サイクル装置内の機器などの性能により異なるため、たとえば、冷凍サイクル装置の機器構成に応じて規定される。また、記憶部32は、制御処理部31が実行するプログラムを記憶する。記憶部32は、たとえば、データを一時的に記憶できるランダムアクセスメモリ(RAM)などの揮発性記憶装置(図示せず)およびフラッシュメモリなどの不揮発性の補助記憶装置(図示せず)を、ハードウェアとして有する。 Furthermore, the storage unit 32 of the control device 30 stores various data necessary for the control processing unit 31 to perform processing. Here, the storage unit 32 particularly includes a limit range data storage unit 33, which stores limit range data in which a range for limiting the maximum drive frequency of the low-power compressor 11 is defined. In the first embodiment, the limit range data storage unit 33 has outside air temperature-higher side evaporation temperature limit range data defined by the outside air temperature and the higher side evaporation temperature. Here, the range in which the maximum drive frequency of the low-side compressor 11 is limited varies depending on the performance of equipment in the refrigeration cycle apparatus, and is therefore defined, for example, according to the equipment configuration of the refrigeration cycle apparatus. Furthermore, the storage unit 32 stores programs executed by the control processing unit 31. The storage unit 32 includes, for example, a volatile storage device (not shown) such as a random access memory (RAM) that can temporarily store data, and a non-volatile auxiliary storage device (not shown) such as a flash memory. Have it as a wear.
 二元冷凍装置においては、低元側冷凍サイクル回路10の一部の機器(たとえば、低元側蒸発器14)を、たとえば、スーパーマーケットのショーケースなどの室内の負荷装置が有することがある。たとえば、ショーケースを配置換えなどして配管の接続変更などを行って低元側冷凍サイクル回路10において回路が開放状態になると、冷媒漏れが発生する可能性が多くなる。そこで、ここでは、低元側冷凍サイクル回路10を循環させる低元側冷媒は、冷媒漏れを考慮し、地球温暖化に対する影響が小さいCO(二酸化炭素)を用いる。一方、高元側冷凍サイクル回路20は、取り替えなどが行われず、回路が開放されない。このため、高元側冷凍サイクル回路20に用いる高温側冷媒は、たとえば、地球温暖化係数の高いHFC冷媒などを用いることができる。それでも、たとえば、HFO(ハイドロフルオロオレフィン)冷媒(HFO1234yf、HFO1234zeなど)、HC冷媒、CO、アンモニア、水などの地球温暖化に対する影響が小さい冷媒を用いることが望ましい。そこで、実施の形態1の二元冷凍装置は、高元側冷凍サイクル回路20の高元側冷媒回路を循環させる冷媒としてHFO冷媒を用いる。 In a binary refrigeration system, a part of the equipment (for example, the low-side evaporator 14) of the low-side refrigeration cycle circuit 10 may be included in an indoor load device such as a supermarket showcase. For example, if the showcase is rearranged or the piping connections are changed and the circuit becomes open in the low-end refrigeration cycle circuit 10, there is a high possibility that refrigerant leakage will occur. Therefore, in consideration of refrigerant leakage, CO 2 (carbon dioxide), which has a small effect on global warming, is used as the low-base refrigerant to be circulated in the low-base refrigerating cycle circuit 10. On the other hand, the high-end refrigeration cycle circuit 20 is not replaced and is not opened. Therefore, the high temperature side refrigerant used in the high temperature side refrigeration cycle circuit 20 can be, for example, an HFC refrigerant with a high global warming potential. Still, it is desirable to use refrigerants that have a small impact on global warming, such as, for example, HFO (hydrofluoroolefin) refrigerants (HFO1234yf, HFO1234ze, etc.), HC refrigerants, CO2 , ammonia, water, and the like. Therefore, the binary refrigeration system of Embodiment 1 uses HFO refrigerant as the refrigerant that circulates in the high-end refrigerant circuit of the high-end refrigeration cycle circuit 20.
 また、実施の形態1の二元冷凍装置は、低元側冷凍サイクル回路10ではCOを用い、高元側冷凍サイクル回路20ではHFO冷媒を用いるため、それぞれの冷凍サイクル回路で用いる冷凍機油が異なる。たとえば、低元側冷凍サイクル回路10は、エーテル系の冷凍機油を用い、高元側冷凍サイクル回路20は、エステル系の冷凍機油を用いる。ただし、このような組み合わせに限らず、低元側冷凍サイクル回路10および高元側冷凍サイクル回路20の冷媒、低元側圧縮機11または高元側圧縮機21に合わせた動粘度、流動点、添加剤または酸価の冷凍機油を適宜選択することができる。 Furthermore, in the binary refrigeration system of Embodiment 1, the lower refrigeration cycle circuit 10 uses CO 2 and the higher refrigeration cycle circuit 20 uses HFO refrigerant, so the refrigerating machine oil used in each refrigeration cycle circuit is different. For example, the low-base refrigeration cycle circuit 10 uses ether-based refrigeration oil, and the high-base refrigeration cycle circuit 20 uses ester-based refrigeration oil. However, the combination is not limited to such a combination, and the refrigerant of the low-temperature side refrigeration cycle circuit 10 and the high-temperature side refrigeration cycle circuit 20, the kinematic viscosity, pour point, Additives or acid value refrigerating machine oil can be selected as appropriate.
 以上のような二元冷凍装置の冷却運転における各構成機器の動作などを、各冷凍サイクル回路を循環する冷媒の流れに基づいて説明する。まず、高元側冷凍サイクル回路20の動作について説明する。高元側圧縮機21は、HFO冷媒を吸入し、圧縮して高温および高圧の状態にして吐出する。吐出した冷媒は高元側凝縮器22へ流入する。高元側凝縮器22は、高元側凝縮器ファン25から供給される外気とHFO冷媒との間で熱交換を行い、HFO冷媒を凝縮液化する。凝縮液化した冷媒は高元側膨張弁23を通過する。高元側膨張弁23は凝縮液化した冷媒を減圧する。減圧した冷媒は高元側蒸発器24(カスケードコンデンサC)に流入する。高元側蒸発器24は、低元側凝縮器12を通過する冷媒との熱交換により冷媒を蒸発ガス化する。蒸発ガス化したHFO冷媒を高元側圧縮機21が吸入する。 The operation of each component during the cooling operation of the binary refrigeration system as described above will be explained based on the flow of refrigerant circulating through each refrigeration cycle circuit. First, the operation of the high-end refrigeration cycle circuit 20 will be explained. The high-end compressor 21 takes in HFO refrigerant, compresses it, makes it high temperature and high pressure state, and discharges it. The discharged refrigerant flows into the high-side condenser 22. The high source condenser 22 exchanges heat between the outside air supplied from the high source condenser fan 25 and the HFO refrigerant, and condenses and liquefies the HFO refrigerant. The condensed and liquefied refrigerant passes through the high-end expansion valve 23. The high-end expansion valve 23 reduces the pressure of the condensed and liquefied refrigerant. The depressurized refrigerant flows into the high-side evaporator 24 (cascade condenser C). The high-source side evaporator 24 evaporates and gasifies the refrigerant through heat exchange with the refrigerant passing through the low-source condenser 12 . The high-end compressor 21 sucks the evaporated HFO refrigerant.
 次に、低元側冷凍サイクル回路10の動作について説明する。低元側圧縮機11は、CO冷媒を吸入し、圧縮して高温および高圧の状態にして吐出する。吐出した冷媒は補助熱交換器15で冷却されて低元側凝縮器12(カスケードコンデンサC)へ流入する。低元側凝縮器12は、高元側蒸発器24を通過する冷媒との熱交換により冷媒を凝縮液化する。凝縮液化した冷媒は低元側膨張弁13を通過する。低元側膨張弁13は凝縮液化した冷媒を減圧する。減圧した冷媒は低元側蒸発器14に流入する。低元側蒸発器14は冷却対象との熱交換により冷媒を蒸発ガス化する。蒸発ガス化したCO冷媒を低元側圧縮機11が吸入する。 Next, the operation of the low-temperature side refrigeration cycle circuit 10 will be explained. The low-end compressor 11 takes in CO 2 refrigerant, compresses it, makes it high temperature and high pressure, and discharges it. The discharged refrigerant is cooled by the auxiliary heat exchanger 15 and flows into the lower-end condenser 12 (cascade condenser C). The low-base condenser 12 condenses and liquefies the refrigerant through heat exchange with the refrigerant passing through the high-base evaporator 24 . The condensed and liquefied refrigerant passes through the low-end expansion valve 13 . The low-base expansion valve 13 reduces the pressure of the condensed and liquefied refrigerant. The depressurized refrigerant flows into the low-side evaporator 14 . The low-source side evaporator 14 evaporates and gasifies the refrigerant through heat exchange with the object to be cooled. The low-end compressor 11 sucks in the evaporated and gasified CO 2 refrigerant.
 二元冷凍装置の冷却運転において、たとえば、制御装置30は、低元側蒸発器14が負荷となる冷却対象の温度を保つような冷却能力となる低元側蒸発温度にする。このとき、制御装置30は、低元側冷凍サイクル回路10における高圧圧力を調整し、カスケードコンデンサCにおいて、高元側蒸発器24における蒸発能力と低元側凝縮器12における凝縮量とを均衡させる。このため、制御装置30は、高元側蒸発器24における蒸発能力=低元側凝縮器12における凝縮能力となるように、低元側圧縮機11の駆動を制御する。 In the cooling operation of the binary refrigeration system, for example, the control device 30 sets the low source side evaporation temperature to such a cooling capacity that the low source side evaporator 14 maintains the temperature of the object to be cooled, which is the load. At this time, the control device 30 adjusts the high pressure in the low source side refrigeration cycle circuit 10, and balances the evaporation capacity in the high source side evaporator 24 and the condensation amount in the low source side condenser 12 in the cascade condenser C. . For this reason, the control device 30 controls the drive of the low end compressor 11 so that the evaporation capacity in the high end evaporator 24 equals the condensing capacity in the low end condenser 12.
 ここで、高元側蒸発器24における蒸発能力=高元側冷凍サイクル回路20の冷媒循環量×(高元側蒸発器24の冷媒流出口側における冷媒のエンタルピ-冷媒流入口側における冷媒のエンタルピ)となる。また、高元側冷凍サイクル回路20の冷媒循環量=高元側圧縮機21の駆動周波数×吸入冷媒密度×圧縮機押しのけ量×効率である。 Here, evaporation capacity in the high-temperature side evaporator 24 = refrigerant circulation amount in the high-temperature side refrigeration cycle circuit 20 × (enthalpy of the refrigerant at the refrigerant outlet side of the high-temperature side evaporator 24 - enthalpy of the refrigerant at the refrigerant inlet side) ). Further, the refrigerant circulation amount of the high-end refrigeration cycle circuit 20 = the driving frequency of the high-end compressor 21 x the suction refrigerant density x the displacement amount of the compressor x efficiency.
 一方、低元側凝縮器12における凝縮量=低元側冷凍サイクル回路10の冷媒循環量×(低元側凝縮器12の冷媒流入口側における冷媒のエンタルピ-冷媒流出口側における冷媒のエンタルピ)となる。また、低元側冷凍サイクル回路10の冷媒循環量=低元側圧縮機11の駆動周波数×吸入冷媒密度×圧縮機押しのけ量×効率である。 On the other hand, the amount of condensation in the low-base condenser 12 = the amount of refrigerant circulated in the low-base refrigeration cycle circuit 10 x (enthalpy of refrigerant at the refrigerant inlet side of the low-base condenser 12 - enthalpy of refrigerant at the refrigerant outlet side) becomes. Further, the amount of refrigerant circulated in the low source side refrigeration cycle circuit 10 = the driving frequency of the low source side compressor 11 x the suction refrigerant density x the displacement amount of the compressor x efficiency.
 たとえば、低元側凝縮器12のある低元側凝縮温度において、低元側冷凍サイクル回路10が必要とする必要凝縮量に対して、高元側蒸発器24における蒸発能力が不足する。このとき、制御装置30は、通常、低元側冷凍サイクル回路10における高圧圧力を上昇させ、低元側冷凍サイクル回路10における凝縮温度を上げて、高元側蒸発器24における蒸発能力を増大させて均衡させる。 For example, at a certain low temperature side condensation temperature of the low temperature side condenser 12, the evaporation capacity in the high temperature side evaporator 24 is insufficient for the required condensation amount required by the low temperature side refrigeration cycle circuit 10. At this time, the control device 30 usually increases the high pressure in the low source side refrigeration cycle circuit 10, increases the condensation temperature in the low source side refrigeration cycle circuit 10, and increases the evaporation capacity in the high source side evaporator 24. balance.
 一般的に、蒸発能力は、圧縮機の駆動周波数と圧縮機が吸入する冷媒の吸入冷媒密度によって決まる。基本的には、蒸発温度が高くなると、吸入冷媒密度が大きくなる。また、外気温度が高くなると、冷凍サイクル装置では、電流を抑制するために最大駆動周波数を抑制する制御を行う。このため、冷凍サイクル回路における最大蒸発能力は、蒸発器における蒸発温度が高く、外気温度が高すぎず、圧縮機の駆動周波数が抑制されないときに大きくなる。したがって、高元側蒸発器24における最大蒸発能力は、外気温度と高元側蒸発温度とによって決まることになる。 Generally, the evaporation capacity is determined by the drive frequency of the compressor and the density of the refrigerant sucked into the compressor. Basically, as the evaporation temperature increases, the suction refrigerant density increases. Furthermore, when the outside air temperature becomes high, the refrigeration cycle device performs control to suppress the maximum drive frequency in order to suppress the current. Therefore, the maximum evaporation capacity in the refrigeration cycle becomes large when the evaporation temperature in the evaporator is high, the outside air temperature is not too high, and the drive frequency of the compressor is not suppressed. Therefore, the maximum evaporation capacity in the high source side evaporator 24 is determined by the outside air temperature and the high source side evaporation temperature.
 そこで、制御装置30は、高元側蒸発器24における最大蒸発能力が小さいときに、低元側冷凍サイクル回路10における高圧圧力を上昇させて蒸発能力を増大させて凝縮量と均衡させるのではなく、低元側凝縮器12における凝縮量を抑えるようにする。このため、制御装置30は、低元側凝縮器12における凝縮能力が高元側蒸発器24における最大蒸発能力を超えないように、低元側圧縮機11の駆動周波数の最大値である最大駆動周波数を、設定された駆動周波数より低くなるように制限する。 Therefore, when the maximum evaporation capacity in the high source side evaporator 24 is small, the control device 30 does not increase the high pressure in the low source side refrigeration cycle circuit 10 to increase the evaporation capacity and balance it with the condensation amount. , the amount of condensation in the low-source condenser 12 is suppressed. For this reason, the control device 30 controls the maximum driving frequency, which is the maximum value of the drive frequency of the low source side compressor 11, so that the condensing capacity in the low source side condenser 12 does not exceed the maximum evaporation capacity in the high source side evaporator 24. Limit the frequency to be lower than the set drive frequency.
 図2は、実施の形態1に係る冷凍サイクル装置における制御について説明する図である。図2は、低元側圧縮機11における最大駆動周波数を制限する範囲を規定した外気温度および高元側蒸発温度の組み合わせを領域として図示したものである。図2において、点ABCDを結んで囲まれる範囲は、外気温度および高元側蒸発温度の関係において、二元冷凍装置の運転が行われる範囲である。また、点Eは、二元冷凍装置の運転が行われる範囲について、高元側蒸発温度の低い側の限界となるDA線上における、低元側圧縮機11の最大駆動周波数の制限の可否を判定する境界点となる。点Fは、二元冷凍装置の運転が行われる範囲について、外気温度の高い側の限界となるCD線上における、低元側圧縮機11の最大駆動周波数の制限の可否を判定する境界点となる。境界線は、点Eと点Fとを結ぶ線であり、高元側蒸発温度の高い側および外気温度が低い側の限界となる点Bの方向に凸となる曲線である。 FIG. 2 is a diagram illustrating control in the refrigeration cycle device according to the first embodiment. FIG. 2 illustrates the combination of the outside air temperature and the high source evaporation temperature, which define the range in which the maximum drive frequency in the low source compressor 11 is limited, as a region. In FIG. 2, the range surrounded by connecting points ABCD is the range in which the binary refrigeration system is operated in relation to the outside air temperature and the high-side evaporation temperature. In addition, point E determines whether or not the maximum drive frequency of the low source compressor 11 can be limited on the DA line, which is the lower limit of the high source evaporation temperature, in the range in which the binary refrigeration system is operated. It becomes a boundary point. Point F is a boundary point for determining whether or not to limit the maximum drive frequency of the lower side compressor 11 on the CD line, which is the limit on the higher side of outside air temperature, in the range in which the binary refrigeration system is operated. . The boundary line is a line connecting point E and point F, and is a curved line convex in the direction of point B, which is the limit between the high source side evaporation temperature and the low outside air temperature.
 ここで、制御装置30の記憶部32は、たとえば、図2で図示された領域に係る外気温度および高元側蒸発温度との組み合わせを、上述した外気温度-高元側蒸発温度制限範囲データとして、テーブル形式で制限範囲データ記憶部33に記憶する。外気温度-高元側蒸発温度制限範囲は、外気温度および高元側蒸発温度との関係で、制御装置30が通常の制御を行うと低元側冷凍サイクル回路10の高圧圧力が設定圧力を超える範囲となる。外気温度-高元側蒸発温度制限範囲は、図2に示すように、二元冷凍装置の運転が行われる範囲において、外気温度は設定された点E以上の温度で、高元側蒸発温度は設定された点F以下の温度となる範囲内にある。図2において、外気温度と高元側蒸発温度との組み合わせで示す領域は、一例である。設備が設置される現場の環境および配管長などによって、低元側圧縮機11における最大駆動周波数を制限する外気温度および高元側蒸発温度の組み合わせが変わる。たとえば、現場において、高元側冷凍サイクル回路20の試運転などを行って、外気温度-高元側蒸発温度制限範囲データを取得する。 Here, the storage unit 32 of the control device 30 stores, for example, the combination of the outside air temperature and the high-side evaporation temperature related to the area illustrated in FIG. 2 as the outside air temperature-high-side evaporation temperature limit range data. , is stored in the limit range data storage unit 33 in table format. The outside air temperature - high source side evaporation temperature limit range is a relationship between the outside air temperature and the high source side evaporation temperature, and when the control device 30 performs normal control, the high pressure of the low source side refrigeration cycle circuit 10 exceeds the set pressure. range. The outside air temperature - high source side evaporation temperature limit range is, as shown in Figure 2, in the range where the binary refrigeration system is operated, the outside air temperature is a temperature equal to or higher than the set point E, and the high source side evaporation temperature is It is within the range where the temperature is below the set point F. In FIG. 2, the region shown by the combination of the outside air temperature and the high-side evaporation temperature is an example. The combination of the outside air temperature and the high source evaporation temperature that limit the maximum drive frequency in the low source compressor 11 changes depending on the environment of the site where the equipment is installed, the length of the piping, and the like. For example, a trial run of the high-end refrigeration cycle circuit 20 is performed at the site to obtain outside air temperature-high-end evaporation temperature limit range data.
 図3は、実施の形態1に係る冷凍サイクル装置における低元側圧縮機11の最大駆動周波数の制限判定処理について説明する図である。制御装置30は、外気温度センサー41および高元側蒸発温度センサー42から送られる信号を受信する(ステップS1)。制御装置30は、受信した信号に基づいて、外気温度と高元側蒸発温度とをデータとして取得する(ステップS2)。 FIG. 3 is a diagram illustrating a process for determining a limit on the maximum drive frequency of the low-end compressor 11 in the refrigeration cycle device according to the first embodiment. The control device 30 receives signals sent from the outside air temperature sensor 41 and the high-side evaporation temperature sensor 42 (step S1). The control device 30 acquires the outside air temperature and the high-side evaporation temperature as data based on the received signal (step S2).
 制御装置30は、取得した外気温度および高元側蒸発温度の組み合わせが、制限範囲データ記憶部33が記憶する外気温度-高元側蒸発温度制限範囲データで規定される制限範囲に含まれるかどうかを判定する(ステップS3)。 The control device 30 determines whether the combination of the acquired outside air temperature and high-side evaporation temperature is included in the limit range defined by the outside air temperature - high-side evaporation temperature limit range data stored in the limit range data storage unit 33. is determined (step S3).
 制御装置30は、制限範囲に含まれると判定すると、低元側圧縮機11の最大駆動周波数を、あらかじめ設定された駆動周波数(たとえば、第1最大駆動周波数)よりも低い駆動周波数(たとえば、第2最大駆動周波数)に制限する(ステップS4)。したがって、第2最大駆動周波数<第1最大駆動周波数となる。制御装置30は、最大駆動周波数を制限することで、低元側冷凍サイクル回路10の高圧圧力を下げるようにする。このとき、制御装置30は、高元側蒸発器24における蒸発能力に合わせた低元側凝縮器12における凝縮量となるような低元側圧縮機11の駆動周波数に制御する。ただ、低元側圧縮機11の駆動周波数が制限した最大駆動周波数以下である場合には、制御装置30は、同じ制御を継続する。 If it is determined that the control device 30 falls within the limit range, the control device 30 sets the maximum drive frequency of the low-source compressor 11 to a drive frequency (for example, a first maximum drive frequency) lower than a preset drive frequency (for example, a first maximum drive frequency). 2 maximum driving frequency) (step S4). Therefore, the second maximum drive frequency is less than the first maximum drive frequency. The control device 30 lowers the high pressure of the low-source refrigeration cycle circuit 10 by limiting the maximum drive frequency. At this time, the control device 30 controls the drive frequency of the low source compressor 11 such that the amount of condensation in the low source condenser 12 matches the evaporation capacity of the high source evaporator 24. However, if the drive frequency of the low-source compressor 11 is below the limited maximum drive frequency, the control device 30 continues the same control.
 ここで、第2最大駆動周波数が一律ではなくてもよい。たとえば、外気温度が高く、高元側蒸発温度が低い(図2においては左上方向)ほど、制御装置30は第2最大駆動周波数を低く設定するなど、外気温度と高元側蒸発温度とに基づいて制限量が変化してもよい。制御装置30が低元側圧縮機11の最大駆動周波数を制限することで、冷却能力となる低元側蒸発器14における蒸発能力は少し低くなるが、低元側冷凍サイクル回路10における運転は安定する。したがって、制御装置30が低元側圧縮機11の最大駆動周波数を制限する方が、低元側圧縮機11がハンチングを繰り返して不安定な駆動を繰り返す不安定な運転よりも、冷却対象の冷却を維持することができる。 Here, the second maximum drive frequency may not be uniform. For example, the higher the outside air temperature and the lower the high-side evaporation temperature (in the upper left direction in FIG. 2), the lower the second maximum drive frequency is set by the control device 30, based on the outside air temperature and the high-side evaporation temperature. The amount of restriction may be changed depending on the amount. Since the control device 30 limits the maximum drive frequency of the low source side compressor 11, the evaporation capacity in the low source side evaporator 14, which is the cooling capacity, becomes slightly lower, but the operation in the low source side refrigeration cycle circuit 10 is stable. do. Therefore, it is better for the control device 30 to limit the maximum drive frequency of the low-power side compressor 11 than to cause unstable operation in which the low-power side compressor 11 repeats hunting and repeats unstable driving. can be maintained.
 一方、制御装置30は、制限範囲に含まれないと判定すると、低元側圧縮機11の最大駆動周波数を制限しない(ステップS5)。ここで、たとえば、制御装置30は、低元側圧縮機11の最大駆動周波数を第2最大駆動周波数に制限している場合は、制限を解除して、設定された第1最大駆動周波数に戻す。制御装置30は、以上の制限判定処理を繰り返す。 On the other hand, if the control device 30 determines that it is not within the limit range, it does not limit the maximum drive frequency of the low-power side compressor 11 (step S5). Here, for example, if the maximum drive frequency of the low source compressor 11 is limited to the second maximum drive frequency, the control device 30 cancels the limitation and returns it to the set first maximum drive frequency. . The control device 30 repeats the above restriction determination process.
 以上のように、実施の形態1に係る二元冷凍装置によれば、制御装置30は、外気温度および高元側蒸発温度が、外気温度-高元側蒸発温度制限範囲データにおける制限範囲に含まれると判定すると、低元側圧縮機11の最大駆動周波数を制限する制御を行う。このため、実施の形態1に係る二元冷凍装置は、低元側冷凍サイクル回路10内における高圧の上昇を抑え、低元側圧縮機11のハンチングを防止し、安定した運転を行うことができる。したがって、冷却対象の冷却を安定して行うことができる。また、二元冷凍装置は、安定した運転を行うことで、省エネルギをはかることができる。そして、低元側圧縮機11は、過渡的な負荷変動がなくなるため、部品の耐久性を得ることができる。 As described above, according to the binary refrigeration system according to the first embodiment, the control device 30 includes the outside air temperature and the high source side evaporation temperature in the limit range in the outside air temperature - high source side evaporation temperature limit range data. If it is determined that the maximum driving frequency of the low-power side compressor 11 is limited, control is performed to limit the maximum driving frequency of the low-power side compressor 11. Therefore, the binary refrigeration system according to the first embodiment can suppress the rise in high pressure in the low-power side refrigeration cycle circuit 10, prevent hunting of the low-power side compressor 11, and perform stable operation. . Therefore, the object to be cooled can be cooled stably. In addition, the binary refrigeration system can save energy by performing stable operation. In addition, since the low-base compressor 11 is free from transient load fluctuations, it is possible to obtain durability of the parts.
実施の形態2.
 上述したように、冷凍サイクル装置における運転において、制御装置30は、高元側蒸発器24における蒸発能力=低元側凝縮器12における凝縮量となるように、低元側圧縮機11の駆動を制御する。このとき、実施の形態1では、制御装置30は、外気温度と高元側蒸発温度とに基づき、低元側冷凍サイクル回路10の必要凝縮量に対して高元側蒸発器24における最大蒸発能力が小さいときに、低元側圧縮機11の最大駆動周波数を制限した。
Embodiment 2.
As described above, in the operation of the refrigeration cycle device, the control device 30 controls the drive of the low-temperature side compressor 11 so that the evaporation capacity in the high-temperature side evaporator 24 = the condensation amount in the low-temperature side condenser 12. Control. At this time, in the first embodiment, the control device 30 controls the maximum evaporation capacity of the high source side evaporator 24 for the required condensation amount of the low source side refrigeration cycle circuit 10 based on the outside air temperature and the high source side evaporation temperature. is small, the maximum drive frequency of the low-power side compressor 11 is limited.
 ここで、低元側蒸発器14における低元側蒸発温度の関係で、低元側冷凍サイクル回路10の必要凝縮量が大きい場合もある。たとえば、低元側蒸発器14における低元側蒸発温度が高くなると、冷媒循環量が増加して必要凝縮量が増加する。また、外気温度が高くなると、補助熱交換器15の凝縮能力が低下することで、低元側凝縮器12における凝縮量が増加する。 Here, depending on the low-base evaporation temperature of the low-base evaporator 14, the required condensation amount of the low-base refrigeration cycle circuit 10 may be large. For example, when the low-side evaporation temperature in the low-side evaporator 14 becomes high, the refrigerant circulation amount increases and the required condensation amount increases. Moreover, when the outside air temperature becomes high, the condensation capacity of the auxiliary heat exchanger 15 decreases, and the amount of condensation in the low-source condenser 12 increases.
 そこで、実施の形態2の冷凍サイクル装置は、低元側蒸発温度によって、高元側蒸発器24における蒸発能力に対して低元側冷凍サイクル回路10の必要凝縮量が大きいときに、低元側圧縮機11の最大駆動周波数を制限する場合について説明する。ここで、実施の形態2においては、制限範囲データ記憶部33は、外気温度および低元側蒸発温度により規定される外気温度-低元側蒸発温度制限範囲データを有するものとして説明する。 Therefore, in the refrigeration cycle device of the second embodiment, when the required condensation amount of the low source side refrigeration cycle circuit 10 is large with respect to the evaporation capacity of the high source side evaporator 24 due to the low source side evaporation temperature, the low source side evaporation temperature A case will be described in which the maximum driving frequency of the compressor 11 is limited. Here, in the second embodiment, the limit range data storage section 33 will be described as having outside air temperature-lower side evaporation temperature limit range data defined by the outside air temperature and the lower side evaporation temperature.
 図4は、実施の形態2に係る冷凍サイクル装置における制御について説明する図である。図4は、低元側圧縮機11における最大駆動周波数を制限する範囲を規定した外気温度および低元側蒸発温度の組み合わせを領域として図示したものである。図4において、点GHIJを結んで囲まれる範囲は、外気温度および低元側蒸発温度の関係において、二元冷凍装置の運転が行われる範囲である。また、点Kは、二元冷凍装置の運転が行われる範囲について、低元側蒸発温度の高い側の限界となるIH線上における、低元側圧縮機11の最大駆動周波数の制限の可否を判定する境界点となる。点Lは、二元冷凍装置の運転が行われる範囲について、外気温度の高い側の限界となるIJ線上における、低元側圧縮機11の最大駆動周波数の制限の可否を判定する境界点となる。境界線は、点Kと点Lとを結ぶ線であり、低元側蒸発温度の低い側および外気温度が低い側の限界となる点Gの方向に凸となる曲線である。 FIG. 4 is a diagram illustrating control in the refrigeration cycle device according to the second embodiment. FIG. 4 illustrates a combination of the outside air temperature and the low source evaporation temperature that defines the range that limits the maximum drive frequency in the low source compressor 11 as a region. In FIG. 4, the range connected and surrounded by points GHIJ is the range in which the binary refrigeration system is operated in relation to the outside air temperature and the low-side evaporation temperature. In addition, point K determines whether or not the maximum drive frequency of the low source side compressor 11 can be limited on the IH line, which is the high limit of the low source side evaporation temperature, in the range in which the binary refrigeration system is operated. It becomes a boundary point. Point L is a boundary point for determining whether or not to limit the maximum drive frequency of the lower side compressor 11 on the IJ line, which is the limit on the higher side of outside air temperature, in the range in which the binary refrigeration system is operated. . The boundary line is a line connecting points K and L, and is a curved line convex in the direction of point G, which is the limit of the lower side evaporation temperature and the lower outside air temperature.
 ここで、制御装置30の記憶部32は、たとえば、図4で図示された領域に係る外気温度および低元側蒸発温度との組み合わせを、上述した外気温度-低元側蒸発温度制限範囲データとして、テーブル形式で制限範囲データ記憶部33に記憶する。外気温度-低元側蒸発温度制限範囲は、外気温度および低元側蒸発温度との関係で、制御装置30が通常の制御を行うと低元側冷凍サイクル回路10の高圧圧力が設定圧力を超える範囲となる。外気温度-低元側蒸発温度制限範囲は、図4に示すように、二元冷凍装置の運転が行われる範囲において、外気温度は設定された点K以上の温度で、低元側蒸発温度は設定された点L以上の温度となる範囲内にある。図4において、外気温度と低元側蒸発温度との組み合わせで示す領域は、一例である。設備が設置される現場の環境および配管長などによって、低元側圧縮機11における最大駆動周波数を制限する外気温度および低元側蒸発温度の組み合わせが変わる。たとえば、現場において、冷凍サイクル装置の試運転などを行って、外気温度-低元側蒸発温度制限範囲データを取得する。 Here, the storage unit 32 of the control device 30 stores, for example, the combination of the outside air temperature and the low-side evaporation temperature related to the area illustrated in FIG. 4 as the outside air temperature-low-side evaporation temperature limit range data. , is stored in the limit range data storage unit 33 in table format. The outside air temperature - low source side evaporation temperature limit range is a relationship between the outside air temperature and the low source side evaporation temperature, and when the control device 30 performs normal control, the high pressure of the low source side refrigeration cycle circuit 10 exceeds the set pressure. range. The outside air temperature - low side evaporation temperature limit range is, as shown in Figure 4, within the range where the binary refrigeration system is operated, the outside air temperature is a temperature equal to or higher than the set point K, and the low side evaporation temperature is It is within the range where the temperature is equal to or higher than the set point L. In FIG. 4, the area shown by the combination of the outside air temperature and the lower side evaporation temperature is an example. The combination of the outside air temperature and the low source evaporation temperature that limit the maximum drive frequency in the low source compressor 11 changes depending on the environment of the site where the equipment is installed, the length of the piping, and the like. For example, a test run of the refrigeration cycle device is performed at the site to obtain outside air temperature-lower side evaporation temperature limit range data.
 図5は、実施の形態2に係る冷凍サイクル装置における低元側圧縮機11の最大駆動周波数の制限判定処理について説明する図である。制御装置30は、外気温度センサー41および低元側蒸発温度センサー43から送られる信号を受信する(ステップS11)。制御装置30は、信号に基づいて、外気温度と低元側蒸発温度とをデータとして取得する(ステップS12)。 FIG. 5 is a diagram illustrating a process for determining a limit on the maximum drive frequency of the low-end compressor 11 in the refrigeration cycle device according to the second embodiment. The control device 30 receives signals sent from the outside air temperature sensor 41 and the low-side evaporation temperature sensor 43 (step S11). The control device 30 acquires the outside air temperature and the low-side evaporation temperature as data based on the signal (step S12).
 制御装置30は、取得した外気温度および低元側蒸発温度の組み合わせが、制限範囲データ記憶部33が記憶する外気温度-低元側蒸発温度制限範囲データにおける制限範囲に含まれるかどうかを判定する(ステップS13)。 The control device 30 determines whether the acquired combination of the outside air temperature and the low-side evaporation temperature is included in the limit range in the outside-air temperature-low-side evaporation temperature limit range data stored in the limit range data storage unit 33. (Step S13).
 制御装置30は、制限範囲に含まれると判定すると、実施の形態1と同様に、低元側圧縮機11の最大駆動周波数を、あらかじめ設定された第1最大駆動周波数よりも低い第2最大駆動周波数に制限する。制御装置30は、最大駆動周波数を制限することで、低元側冷凍サイクル回路10の高圧圧力を下げるようにする(ステップS15)。このとき、制御装置30は、高元側蒸発器24における蒸発能力に合わせた低元側凝縮器12における凝縮量となるような低元側圧縮機11の駆動周波数に制御する。ここで、実施の形態1と同様に、低元側圧縮機11の駆動周波数が制限した最大駆動周波数以下である場合には、制御装置30は、同じ制御を継続する。 If it is determined that the control device 30 falls within the limit range, the control device 30 changes the maximum drive frequency of the low-side compressor 11 to a second maximum drive frequency lower than the first maximum drive frequency set in advance, as in the first embodiment. Limit to frequency. The control device 30 lowers the high pressure of the low-source refrigeration cycle circuit 10 by limiting the maximum drive frequency (step S15). At this time, the control device 30 controls the drive frequency of the low source compressor 11 such that the amount of condensation in the low source condenser 12 matches the evaporation capacity of the high source evaporator 24. Here, similarly to Embodiment 1, if the drive frequency of the low-end compressor 11 is equal to or lower than the limited maximum drive frequency, the control device 30 continues the same control.
 ここで、第2最大駆動周波数が一律ではなくてもよい。たとえば、外気温度が高く、低元側蒸発温度が高い(図4においては右上方向)ほど、制御装置30は第2最大駆動周波数を低く設定するなど、外気温度と高元側蒸発温度とに基づいて制限量が変化してもよい。 Here, the second maximum drive frequency may not be uniform. For example, the higher the outside air temperature and the higher the low source evaporation temperature (in the upper right direction in FIG. 4), the lower the second maximum drive frequency is set by the control device 30. The amount of restriction may be changed depending on the amount.
 一方、制御装置30は、制限範囲に含まれないと判定すると、低元側圧縮機11の最大駆動周波数を制限しない(ステップS15)。ここで、たとえば、制御装置30は、低元側圧縮機11の最大駆動周波数を第2最大駆動周波数に制限している場合は、制限を解除して、設定された第1最大駆動周波数に戻す。制御装置30は、以上の制限判定処理を繰り返す。 On the other hand, if the control device 30 determines that it is not within the limit range, it does not limit the maximum drive frequency of the low-end compressor 11 (step S15). Here, for example, if the maximum drive frequency of the low source compressor 11 is limited to the second maximum drive frequency, the control device 30 cancels the limitation and returns it to the set first maximum drive frequency. . The control device 30 repeats the above restriction determination process.
 以上のように、実施の形態2に係る二元冷凍装置によれば、制御装置30は、外気温度および低元側蒸発温度が、外気温度-低元側蒸発温度制限範囲データにおける制限範囲に含まれると判定すると、低元側圧縮機11の最大駆動周波数を制限する制御を行う。このため、実施の形態2に係る二元冷凍装置は、低元側冷凍サイクル回路10内の高圧の上昇を抑え、低元側圧縮機11のハンチングを防止し、安定した運転を行うことができる。したがって、冷却対象の冷却を安定して行うことができる。また、二元冷凍装置は、安定した運転を行うことで、省エネルギをはかることができる。そして、低元側圧縮機11は、過渡的な負荷変動がなくなるため、部品の耐久性を得ることができる。 As described above, according to the binary refrigeration system according to the second embodiment, the control device 30 includes the outside air temperature and the low-side evaporation temperature in the limit range in the outside-air temperature - low-side evaporation temperature limit range data. If it is determined that the maximum driving frequency of the low-power side compressor 11 is limited, control is performed to limit the maximum driving frequency of the low-power side compressor 11. Therefore, the binary refrigeration system according to the second embodiment can suppress the rise in high pressure in the low-source side refrigeration cycle circuit 10, prevent hunting of the low-source side compressor 11, and perform stable operation. . Therefore, the object to be cooled can be cooled stably. In addition, the binary refrigeration system can save energy by performing stable operation. In addition, since the low-base compressor 11 is free from transient load fluctuations, it is possible to obtain durability of the parts.
実施の形態3.
 上述した実施の形態1における二元冷凍装置では、制御装置30は、外気温度と高元側蒸発温度とに基づき、低元側圧縮機11の最大駆動周波数を制限する制限判定処理を行った。また、実施の形態2における二元冷凍装置では、制御装置30は、外気温度と低元側蒸発温度とに基づき、低元側圧縮機11の最大駆動周波数を制限する制限判定処理を行った。実施の形態3における制御装置30は、たとえば、制御装置30は、これらの制限判定処理を組み合わせた制限判定処理を行う。それぞれの制限判定処理の内容については、前述したものと同じである。制御装置30は、実施の形態1および実施の形態2で説明した制限判定処理を両方行うことで、安定した二元冷凍装置の運転を行うことができる。
Embodiment 3.
In the binary refrigeration system according to the first embodiment described above, the control device 30 performed a restriction determination process to limit the maximum drive frequency of the low source side compressor 11 based on the outside air temperature and the high source side evaporation temperature. Furthermore, in the binary refrigeration system according to the second embodiment, the control device 30 performed a restriction determination process to limit the maximum drive frequency of the low source compressor 11 based on the outside air temperature and the low source side evaporation temperature. For example, the control device 30 in the third embodiment performs a restriction determination process that is a combination of these restriction determination processes. The contents of each restriction determination process are the same as those described above. The control device 30 can perform stable operation of the binary refrigeration system by performing both the restriction determination processes described in the first embodiment and the second embodiment.
 実施の形態3における二元冷凍装置では、たとえば、制御装置30の記憶部32は、外気温度-高元側蒸発温度制限範囲データおよび外気温度-低元側蒸発温度制限範囲データを制限範囲データ記憶部33を記憶する。そして、制御装置30は、取得した外気温度および高元側蒸発温度並びに外気温度および低元側蒸発温度の組み合わせが、上述した図2および図4に示す領域のいずれか一方または両方の領域に含まれると判定すると、低元側圧縮機11の最大駆動周波数を制限する。 In the binary refrigeration system according to the third embodiment, for example, the storage unit 32 of the control device 30 stores the outside air temperature-high side evaporation temperature limit range data and the outside air temperature-low side evaporation temperature limit range data as limit range data. 33 is stored. Then, the control device 30 determines that the combination of the acquired outside air temperature and high-side evaporation temperature and the outside air temperature and low-side evaporation temperature are included in one or both of the areas shown in FIGS. 2 and 4 described above. If it is determined that the maximum driving frequency of the low-power side compressor 11 is determined to be high, the maximum driving frequency of the low-power side compressor 11 is limited.
実施の形態4.
 実施の形態1~実施の形態3の二元冷凍装置では、図2および図4に示すように、制限範囲の領域と制限範囲でない領域との境界を線で区別して最大駆動周波数に基づく低元側圧縮機11の制御の切り替えを行っているが、これに限定するものではない。境界は線ではなく、推移領域のように幅を持たせた領域としてもよい。
Embodiment 4.
In the binary refrigeration systems of Embodiments 1 to 3, as shown in FIGS. 2 and 4, the boundary between the restricted range area and the non-restricted area is distinguished by a line, and the low element based on the maximum driving frequency is Although the control of the side compressor 11 is switched, the present invention is not limited to this. The boundary may not be a line, but may be an area with width, such as a transition area.
 10 低元側冷凍サイクル回路、11 低元側圧縮機、12 低元側凝縮器、13 低元側膨張弁、14 低元側蒸発器、15 補助熱交換器、16 補助熱交換器ファン、20 高元側冷凍サイクル回路、21 高元側圧縮機、22 高元側凝縮器、23 高元側膨張弁、24 高元側蒸発器、25 高元側凝縮器ファン、30 制御装置、31 制御処理部、32 記憶部、33 制限範囲データ記憶部、41 外気温度センサー、42 高元側蒸発温度センサー、43 低元側蒸発温度センサー、C カスケードコンデンサ。 10 Low source side refrigeration cycle circuit, 11 Low source side compressor, 12 Low source side condenser, 13 Low source side expansion valve, 14 Low source side evaporator, 15 Auxiliary heat exchanger, 16 Auxiliary heat exchanger fan, 20 High source side refrigeration cycle circuit, 21 High source side compressor, 22 High source side condenser, 23 High source side expansion valve, 24 High source side evaporator, 25 High source side condenser fan, 30 Control device, 31 Control processing part, 32 storage part, 33 limit range data storage part, 41 outside air temperature sensor, 42 high source side evaporation temperature sensor, 43 low source side evaporation temperature sensor, C cascade capacitor.

Claims (5)

  1.  高元側圧縮機、高元側凝縮器、高元側絞り装置および高元側蒸発器を配管接続して、高元側冷媒を循環させる高元側冷凍サイクル回路と、
     低元側圧縮機、低元側凝縮器、低元側絞り装置および低元側蒸発器を配管接続して、低元側冷媒を循環させる低元側冷凍サイクル回路と、
     前記高元側蒸発器と前記低元側凝縮器とにより構成し、高元側冷媒と低元側冷媒との間の熱交換を行うカスケードコンデンサと、
     外気温度を測定する外気温度センサーと、
     前記高元側蒸発器における高元側蒸発温度を測定する高元側蒸発温度センサーと、
     前記外気温度センサーが測定した前記外気温度と前記高元側蒸発温度センサーが測定した前記高元側蒸発温度との組み合わせが、前記低元側冷凍サイクル回路において高圧となる圧力が設定圧力を超える範囲となる外気温度-高元側蒸発温度制限範囲にあると判定すると、前記低元側圧縮機の最大駆動周波数を制限する処理を行う制御装置と
    を備える冷凍サイクル装置。
    a high-temperature side refrigeration cycle circuit in which a high-temperature side compressor, a high-temperature side condenser, a high-temperature side throttle device, and a high-temperature side evaporator are connected via piping to circulate a high-temperature side refrigerant;
    a low-base refrigeration cycle circuit in which a low-base compressor, a low-base condenser, a low-base throttle device, and a low-base evaporator are connected via piping to circulate a low-base refrigerant;
    a cascade condenser configured with the high-base evaporator and the low-base condenser, and performs heat exchange between the high-base refrigerant and the low-base refrigerant;
    an outside air temperature sensor that measures outside air temperature;
    a high source side evaporation temperature sensor that measures a high source side evaporation temperature in the high source side evaporator;
    A range in which the combination of the outside air temperature measured by the outside air temperature sensor and the high-side evaporation temperature measured by the high-side evaporation temperature sensor causes a pressure at which high pressure in the low-side refrigeration cycle circuit exceeds a set pressure. A refrigeration cycle device comprising: a control device that performs processing to limit a maximum drive frequency of the low source compressor when it is determined that the outside air temperature is within the high source side evaporation temperature limit range.
  2.  前記外気温度-高元側蒸発温度制限範囲は、運転が行われる範囲において、設定された前記外気温度以上で、設定された前記高元側蒸発温度以下となる範囲にある請求項1に記載の冷凍サイクル装置。 2. The outside air temperature - high source side evaporation temperature limit range is a range that is greater than or equal to the set outside air temperature and less than or equal to the set high source side evaporation temperature in the range where the operation is performed. Refrigeration cycle equipment.
  3.  前記低元側蒸発器における低元側蒸発温度を測定する低元側蒸発温度センサーを備え、
     前記制御装置は、
     前記外気温度センサーが測定した前記外気温度と前記低元側蒸発温度センサーが測定した前記低元側蒸発温度との組み合わせが、前記低元側冷凍サイクル回路において高圧となる圧力が設定圧力を超える範囲となる外気温度-低元側蒸発温度制限範囲にあると判定したときも、前記低元側圧縮機の最大駆動周波数を制限する処理を行う請求項1または請求項2に記載の冷凍サイクル装置。
    a low source side evaporation temperature sensor that measures a low source side evaporation temperature in the low source side evaporator;
    The control device includes:
    A range in which the combination of the outside air temperature measured by the outside air temperature sensor and the low-side evaporation temperature measured by the low-side evaporation temperature sensor causes a pressure at which high pressure in the low-side refrigeration cycle circuit exceeds a set pressure. 3. The refrigeration cycle apparatus according to claim 1, wherein the maximum driving frequency of the low source compressor is limited even when it is determined that the outside air temperature is within the low source side evaporation temperature limit range.
  4.  高元側圧縮機、高元側凝縮器、高元側絞り装置および高元側蒸発器を配管接続して、高元側冷媒を循環させる高元側冷凍サイクル回路と、
     低元側圧縮機、低元側凝縮器、低元側絞り装置および低元側蒸発器を配管接続して、低元側冷媒を循環させる低元側冷凍サイクル回路と、
     前記高元側蒸発器と前記低元側凝縮器とにより構成し、高元側冷媒と低元側冷媒との間の熱交換を行うカスケードコンデンサと、
     外気温度を測定する外気温度センサーと、
     前記低元側蒸発器における低元側蒸発温度を測定する低元側蒸発温度センサーと、
     前記外気温度センサーが測定した前記外気温度と前記低元側蒸発温度センサーが測定した前記低元側蒸発温度との組み合わせが、前記低元側冷凍サイクル回路において高圧となる圧力が設定圧力を超える範囲となる外気温度-低元側蒸発温度制限範囲にあると判定すると、前記低元側圧縮機の最大駆動周波数を制限する処理を行う制御装置と
    を備える冷凍サイクル装置。
    a high-temperature side refrigeration cycle circuit in which a high-temperature side compressor, a high-temperature side condenser, a high-temperature side throttle device, and a high-temperature side evaporator are connected via piping to circulate a high-temperature side refrigerant;
    a low-base refrigeration cycle circuit in which a low-base compressor, a low-base condenser, a low-base throttle device, and a low-base evaporator are connected via piping to circulate a low-base refrigerant;
    a cascade condenser configured with the high-base evaporator and the low-base condenser, and performs heat exchange between the high-base refrigerant and the low-base refrigerant;
    an outside air temperature sensor that measures outside air temperature;
    a low source side evaporation temperature sensor that measures a low source side evaporation temperature in the low source side evaporator;
    A range in which the combination of the outside air temperature measured by the outside air temperature sensor and the low-side evaporation temperature measured by the low-side evaporation temperature sensor causes a pressure at which high pressure in the low-side refrigeration cycle circuit exceeds a set pressure. A refrigeration cycle device comprising: a control device that performs processing to limit a maximum drive frequency of the low source compressor when it is determined that the outside air temperature is within the low source side evaporation temperature limit range.
  5.  前記外気温度-低元側蒸発温度制限範囲は、運転が行われる範囲において、設定された前記外気温度以上で、設定された前記低元側蒸発温度以上となる範囲にある請求項3または請求項4に記載の冷凍サイクル装置。 3. The outside air temperature-lower side evaporation temperature limit range is a range in which the outside air temperature is equal to or higher than the set lower side evaporation temperature within the range where the operation is performed. 4. The refrigeration cycle device according to 4.
PCT/JP2022/022624 2022-06-03 2022-06-03 Refrigeration cycle device WO2023233654A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022624 WO2023233654A1 (en) 2022-06-03 2022-06-03 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022624 WO2023233654A1 (en) 2022-06-03 2022-06-03 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023233654A1 true WO2023233654A1 (en) 2023-12-07

Family

ID=89026180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022624 WO2023233654A1 (en) 2022-06-03 2022-06-03 Refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2023233654A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190917A (en) * 2002-12-10 2004-07-08 Sanyo Electric Co Ltd Refrigeration device
JP2013113534A (en) * 2011-11-30 2013-06-10 Samsung Yokohama Research Institute Co Ltd Heat pump system
WO2015118580A1 (en) * 2014-02-10 2015-08-13 三菱電機株式会社 Heat pump hot water supply device
JP2018132224A (en) * 2017-02-14 2018-08-23 パナソニックIpマネジメント株式会社 Binary refrigeration system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190917A (en) * 2002-12-10 2004-07-08 Sanyo Electric Co Ltd Refrigeration device
JP2013113534A (en) * 2011-11-30 2013-06-10 Samsung Yokohama Research Institute Co Ltd Heat pump system
WO2015118580A1 (en) * 2014-02-10 2015-08-13 三菱電機株式会社 Heat pump hot water supply device
JP2018132224A (en) * 2017-02-14 2018-08-23 パナソニックIpマネジメント株式会社 Binary refrigeration system

Similar Documents

Publication Publication Date Title
JP6125000B2 (en) Dual refrigeration equipment
KR100585991B1 (en) Air conditioner and method for controlling thereof
DK2504641T3 (en) PROTECTION FROM LOW SUCTION PRESSURE IN COOLING STEAM COMPRESSION SYSTEM
DK2147264T3 (en) Refrigerant vapor compression system
JP4651627B2 (en) Refrigeration air conditioner
WO2009157320A1 (en) Refrigerating cycle apparatus, and air conditioning apparatus
JP4794511B2 (en) Refrigeration cycle equipment
US20140150483A1 (en) Air-conditioning apparatus
WO2017221382A1 (en) Binary refrigeration device
KR101901540B1 (en) Air conditioning device
WO2020071299A1 (en) Refrigeration cycle device
WO2016208042A1 (en) Air-conditioning device
CN109312961B (en) Heat source unit of refrigerating device
JP6712766B2 (en) Dual refrigeration system
JPWO2017130319A1 (en) Refrigeration cycle equipment
EP3933300A1 (en) Air-conditioning device
JP6161787B2 (en) Refrigeration cycle equipment
GB2561096A (en) Air conditioner
JP4999531B2 (en) Air conditioner
JP5409747B2 (en) Dual refrigeration equipment
JP6509047B2 (en) Air conditioner
JP5506638B2 (en) Refrigeration equipment
WO2023233654A1 (en) Refrigeration cycle device
JP6091567B2 (en) Refrigerator and refrigeration equipment
JP2020046157A (en) Refrigeration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024524133

Country of ref document: JP

Kind code of ref document: A