JP4794511B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4794511B2
JP4794511B2 JP2007176627A JP2007176627A JP4794511B2 JP 4794511 B2 JP4794511 B2 JP 4794511B2 JP 2007176627 A JP2007176627 A JP 2007176627A JP 2007176627 A JP2007176627 A JP 2007176627A JP 4794511 B2 JP4794511 B2 JP 4794511B2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration
heat exchanger
refrigeration cycle
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007176627A
Other languages
Japanese (ja)
Other versions
JP2009014271A (en
Inventor
智 赤木
浩司 山下
航祐 田中
哲也 山下
洋一 安西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007176627A priority Critical patent/JP4794511B2/en
Publication of JP2009014271A publication Critical patent/JP2009014271A/en
Application granted granted Critical
Publication of JP4794511B2 publication Critical patent/JP4794511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷凍サイクル装置に関するものであり、特にスーパーやコンビニエンスストア等の店舗等に使用される空調・冷蔵・冷凍装置において、省エネ性を向上させる技術に関するものである。   The present invention relates to a refrigeration cycle apparatus, and more particularly to a technology for improving energy saving in an air conditioning / refrigeration / refrigeration apparatus used in a store such as a supermarket or a convenience store.

スーパーやコンビニエンスストアのように、空調負荷と冷凍負荷のように、温度範囲の異なる複数の熱負荷を賄うことを要求される場合において、1つの冷凍サイクルに圧縮機を複数設け、同じ冷媒を循環させて複数の熱負荷を賄う冷凍サイクル装置が提案されている(例えば、特許文献1参照)。   When it is required to cover multiple heat loads with different temperature ranges, such as air conditioning loads and refrigeration loads, such as supermarkets and convenience stores, multiple compressors are installed in one refrigeration cycle, and the same refrigerant is circulated. A refrigeration cycle apparatus that can cover a plurality of heat loads has been proposed (see, for example, Patent Document 1).

また、それぞれの熱負荷を賄う独立した複数の冷凍サイクルによって構成され、それぞれの冷凍サイクルを循環する独立した複数の冷媒が互いに熱交換を行い、高段側の冷凍サイクルが低段側の冷凍サイクルの排熱を回収するように冷媒冷媒熱交換器を配置することにより、低段側の冷凍サイクルの過冷却度を増加させ、冷凍能力を増加させ、システム全体として省エネを図る冷凍サイクル装置が提案されている(例えば、特許文献2および特許文献3参照)。   In addition, it is composed of a plurality of independent refrigeration cycles that cover each heat load, and a plurality of independent refrigerants circulating through each refrigeration cycle exchange heat with each other, so that the high-stage refrigeration cycle is the low-stage refrigeration cycle. Proposed a refrigeration cycle system that increases the subcooling degree of the refrigeration cycle on the lower stage, increases the refrigeration capacity, and saves energy for the entire system by arranging the refrigerant / refrigerant heat exchanger to recover the exhaust heat (For example, see Patent Document 2 and Patent Document 3).

特開2002−357367号公報(図1、段落0016〜0039)JP 2002-357367 A (FIG. 1, paragraphs 0016 to 0039) 特開2003−4321号公報(図1〜4、段落0016〜0031)JP 2003-4321 A (FIGS. 1-4, paragraphs 0016-0031) 特開2004−170001号公報(図1、段落0043〜0056)JP 2004-170001 A (FIG. 1, paragraphs 0043-0056)

しかしながら、特許文献1に示す冷凍サイクル装置では、複数の熱負荷が1つの冷凍サイクルで構成されているので、外気温などの周囲環境や空調負荷などの変化時に全体の熱量のバランスをとるために、頻繁なモード切替を行わなければならず、モード切替に伴い無駄なエネルギー損失が発生し、省エネにならないという問題があった。   However, in the refrigeration cycle apparatus shown in Patent Document 1, since a plurality of heat loads are configured by one refrigeration cycle, in order to balance the total amount of heat at the time of changes in the surrounding environment such as outside air temperature or air conditioning load, etc. Therefore, frequent mode switching has to be performed, and there is a problem in that useless energy loss occurs with mode switching and energy saving is not achieved.

また、同一の冷媒を熱源側の熱交換器一つに循環させているため、暖房をフルに運転している特定の時期のみ効率が良くなるという効果が得られるが、それ以外の運転モードでは無駄な損失が大きく、省エネにならないという問題があった。   In addition, since the same refrigerant is circulated to one heat exchanger on the heat source side, the effect of improving the efficiency only at a specific time when heating is fully operated can be obtained. There was a problem that wasteful loss was large and energy was not saved.

また、特許文献2や特許文献3に記載の冷凍サイクル装置では、複数の熱負荷に対する冷凍サイクルが独立に運転可能であるため、特許文献1の冷凍サイクル装置のような問題点はないが、高段側の冷凍サイクルの熱負荷が小さい場合、過剰運転を回避するために高段側の冷凍サイクルが定期的あるいは不定期にサーモオフ、若しくは運転停止を行う必要があり、この時、低段側の冷凍サイクルの冷凍能力やCOPが、単独で運転した時と同程度の値まで低下するので、省エネにならないという問題があった。   Further, in the refrigeration cycle apparatuses described in Patent Document 2 and Patent Document 3, since the refrigeration cycle for a plurality of heat loads can be operated independently, there is no problem like the refrigeration cycle apparatus of Patent Document 1, When the heat load of the stage-side refrigeration cycle is small, the high-stage refrigeration cycle needs to be thermo-off or shutdown periodically or irregularly to avoid excessive operation. Since the refrigeration capacity and COP of the refrigeration cycle are reduced to the same level as when operating alone, there is a problem that energy is not saved.

また、特許文献2や特許文献3に記載の冷凍サイクル装置では、外気温度が高い場合において、冷媒冷媒熱交換器に流れる高段側の冷媒の温度が高くなり、低段側の冷凍サイクルに対して大きな過冷却度を付けられなくなり、冷凍機側の冷凍能力とCOPが低下し、省エネにならないという問題があった。   Further, in the refrigeration cycle apparatuses described in Patent Document 2 and Patent Document 3, when the outside air temperature is high, the temperature of the high-stage refrigerant flowing through the refrigerant-refrigerant heat exchanger increases, Therefore, there is a problem that a large degree of supercooling cannot be applied, the refrigerating capacity and the COP on the refrigerator side are reduced, and energy is not saved.

本発明は、従来技術における上記問題を解決するためになされたもので、複数の熱負荷を賄う場合において、高い冷凍能力と高いCOPを維持し、熱交換を行わない従来の冷凍サイクル装置と比較して常に省エネになる冷凍サイクル装置を得ることを目的とする。   The present invention has been made to solve the above-described problems in the prior art, and compared with a conventional refrigeration cycle apparatus that maintains a high refrigeration capacity and a high COP and does not perform heat exchange when a plurality of heat loads are covered. The object is to obtain a refrigeration cycle apparatus that always saves energy.

また、本発明は、複数の熱負荷を賄う場合において、空調機や冷凍機に対する開発投資を抑え、既設の空調機や冷凍機に対しても導入可能な、高い冷凍能力と高いCOPを維持し、熱交換を行わない従来の冷凍サイクル装置と比較して常に省エネになる冷凍サイクル装置を得ることを目的とする。   In addition, the present invention suppresses development investment for air conditioners and refrigerators in the case of providing multiple heat loads, and maintains a high refrigeration capacity and high COP that can be introduced to existing air conditioners and refrigerators. An object of the present invention is to obtain a refrigeration cycle apparatus that always saves energy compared to a conventional refrigeration cycle apparatus that does not perform heat exchange.

本発明の冷凍サイクル装置は、第一の冷媒が循環し、第一の圧縮機と、四方弁と、空調用室外熱交換器と、空調用室内熱交換器と、前記空調用室外熱交換器と前記空調用室内熱交換器との間に設けられ前記第一の冷媒が直列に流れるように複数個配置された第一の空調用絞り手段と、を有する第一の冷凍サイクルと、第二の冷媒が循環し、第二の圧縮機と、物品冷却用室外熱交換器と、物品冷却用絞り手段と、物品冷却用室内熱交換器と、を有する第二の冷凍サイクルと、第三の冷媒が循環し、第三の圧縮機と、過冷却用室外熱交換器と、前記第一の冷媒と前記第三の冷媒とが熱交換を行う第一の冷媒冷媒熱交換器と、第一の過冷却用絞り手段と、前記第二の冷媒と前記第三の冷媒とが熱交換を行う第二の冷媒冷媒熱交換器と、を有する第三の冷凍サイクルと、
一端が前記第一の冷凍サイクルに複数個設けられた前記第一の空調用絞り手段との間の流路に接続され、他端が前記第一の空調用絞り手段と前記空調用室外熱交換器との間に接続され、第二の空調用絞り手段を有する迂回用の回路と、を備え、前記第一の冷媒冷媒熱交換器は前記迂回用の回路の第二の空調用絞り手段より前記空調用室外熱交換器側に挿入されるとともに前記過冷却用室外熱交換器の出側と前記第一の過冷却用絞り手段の入側との間に挿入され、前記第二の冷媒冷媒熱交換器は前記物品冷却用室外熱交換器の出側と前記物品冷却用絞り手段の入側との間に挿入されるとともに、前記第一の過冷却用絞り手段の出側と前記第三の圧縮機の入側との間に挿入されることを特徴とする。
In the refrigeration cycle apparatus of the present invention, the first refrigerant circulates, the first compressor, the four-way valve, the outdoor heat exchanger for air conditioning, the indoor heat exchanger for air conditioning, and the outdoor heat exchanger for air conditioning. A first refrigeration cycle having a plurality of first air-conditioning throttle means disposed between the air-conditioning indoor heat exchanger and the first refrigerant flowing in series; A second refrigeration cycle comprising a second compressor, an article cooling outdoor heat exchanger, an article cooling throttling means, and an article cooling indoor heat exchanger, A refrigerant that circulates, a third compressor, a subcooling outdoor heat exchanger, a first refrigerant refrigerant heat exchanger that exchanges heat between the first refrigerant and the third refrigerant; And a second refrigerant refrigerant heat exchanger for exchanging heat between the second refrigerant and the third refrigerant. And the refrigeration cycle,
One end is connected to a flow path between the first air conditioning throttle means provided in the first refrigeration cycle, and the other end is connected to the first air conditioning throttle means and the outdoor air exchange for air conditioning. And a bypass circuit having a second air conditioning throttle means connected between the first and second air conditioners, wherein the first refrigerant refrigerant heat exchanger is more than the second air conditioning throttle means of the bypass circuit. The second refrigerant refrigerant inserted into the air-conditioning outdoor heat exchanger side and inserted between the outlet side of the subcooling outdoor heat exchanger and the inlet side of the first subcooling throttling means. The heat exchanger is inserted between the outlet side of the outdoor cooling heat exchanger for article cooling and the inlet side of the throttle means for cooling the article, and the outlet side of the first supercooling throttle means and the third side It is inserted between the inlet side of the compressor.

また、本発明の冷凍サイクル装置は、第一の冷媒が循環し、第一の圧縮機と、四方弁と、空調用室外熱交換器と、空調用室内熱交換器と、前記空調用室外熱交換器と前記空調用室内熱交換器との間に設けられ前記第一の冷媒が直列に流れるように複数個配置された第一の空調用絞り手段と、を有する第一の冷凍サイクルと、第二の冷媒が循環し、第二の圧縮機と、物品冷却用室外熱交換器と、前記第一の冷媒と前記第二の冷媒とが熱交換を行う第一の冷媒冷媒熱交換器と、第一の物品冷却用絞り手段と、物品冷却用室内熱交換器と、を有する第二の冷凍サイクルと、第三の冷媒が循環し、第三の圧縮機と、過冷却用室外熱交換器と、第一の過冷却用絞り手段と、前記第二の冷媒と前記第三の冷媒とが熱交換を行う第二の冷媒冷媒熱交換器と、を有する第三の冷凍サイクルと、一端が前記第一の冷凍サイクルに複数個設けられた前記第一の空調用絞り手段との間の流路に接続され、他端が前記第一の空調用絞り手段と前記空調用室外熱交換器との間に接続され、第二の空調用絞り手段を有する迂回用の回路と、を備え、前記第一の冷媒冷媒熱交換器は前記迂回用の回路の第二の空調用絞り手段より前記空調用室外熱交換器側に挿入されるとともに前記物品冷却用室外熱交換器と前記第一の物品冷却用絞り手段との間に挿入され、前記第二の冷媒冷媒熱交換器は前記物品冷却用室外熱交換器の出側と前記第一の物品冷却用絞り手段の入側との間に挿入されるとともに、前記第一の過冷却用絞り手段の出側と前記第三の圧縮機の入側との間に挿入されることを特徴とする。   In the refrigeration cycle apparatus of the present invention, the first refrigerant circulates, the first compressor, the four-way valve, the outdoor heat exchanger for air conditioning, the indoor heat exchanger for air conditioning, and the outdoor heat for air conditioning. A first refrigeration cycle having a first air-conditioning throttle means provided between the exchanger and the air-conditioning indoor heat exchanger, wherein a plurality of the first refrigerants are arranged to flow in series, A second refrigerant circulating, a second compressor, an article cooling outdoor heat exchanger, a first refrigerant refrigerant heat exchanger in which the first refrigerant and the second refrigerant exchange heat. A second refrigeration cycle having a first article cooling throttling means and an article cooling indoor heat exchanger, a third refrigerant circulates, a third compressor, and an outdoor cooling heat exchange A second refrigerant refrigerant heat exchanger for exchanging heat between the second refrigerant and the third refrigerant; A third refrigeration cycle having one end connected to a flow path between the first refrigeration cycle and the first air conditioning throttle means provided in the first refrigeration cycle, and the other end connected to the first air conditioning throttle. And a bypass circuit having a second air conditioning throttle means connected between the air conditioning outdoor heat exchanger and the first refrigerant refrigerant heat exchanger of the bypass circuit Inserted between the air conditioning outdoor heat exchanger side from the second air conditioning throttling means and inserted between the article cooling outdoor heat exchanger and the first article cooling throttling means, The refrigerant / refrigerant heat exchanger is inserted between the outlet side of the outdoor heat exchanger for cooling the article and the inlet side of the first cooling means for cooling the article, and the outlet of the first supercooling throttle means. It is inserted between the side and the entrance side of the third compressor.

また、本発明の冷凍サイクル装置は、第一の冷媒が循環し、第一の圧縮機と、第一の物品冷却用室外熱交換器と、第一の物品冷却用絞り手段と、第一の物品冷却用室内熱交換器と、を有する第一の冷凍サイクルと、第二の冷媒が循環し、第二の圧縮機と、第二の物品冷却用室外熱交換器と、第二の物品冷却用絞り手段と、第二の物品冷却用室内熱交換器と、を有する第二の冷凍サイクルと、第三の冷媒が循環し、第三の圧縮機と、過冷却用室外熱交換器と、前記第一の冷媒と前記第三の冷媒とが熱交換を行う第一の冷媒冷媒熱交換器と、過冷却用絞り手段と、前記第二の冷媒と前記第三の冷媒とが熱交換を行う第二の冷媒冷媒熱交換器と、を有する第三の冷凍サイクルと、を備え、一端が前記第一の物品冷却用室外熱交換器の出側と前記第一の物品冷却用絞り手段の入側との間の流路に接続され、他端が前記第一の物品冷却用室内熱交換器の出側と前記第一の圧縮機の入側との間に接続され、第三の物品冷却用絞り手段を有する迂回用の回路と、を備え、前記第一の冷媒冷媒熱交換器は前記迂回用の回路の前記第三の物品冷却用絞り手段の下流に挿入されるとともに前記過冷却用室外熱交換器の出側と前記過冷却用絞り手段の入側との間に挿入され、前記第二の冷媒冷媒熱交換器は前記第二の物品冷却用室外熱交換器の出側と前記第二の物品冷却用絞り手段の入側との間に挿入されるとともに、前記過冷却用絞り手段の出側と前記第三の圧縮機の入側との間に挿入されることを特徴とする。   In the refrigeration cycle apparatus of the present invention, the first refrigerant circulates, the first compressor, the first article cooling outdoor heat exchanger, the first article cooling throttle means, A first refrigeration cycle having an article cooling indoor heat exchanger, a second refrigerant circulates, a second compressor, a second article cooling outdoor heat exchanger, and a second article cooling. A second refrigeration cycle having a squeezing means and a second article cooling indoor heat exchanger, a third refrigerant is circulated, a third compressor, an overcooling outdoor heat exchanger, The first refrigerant and the third refrigerant exchange heat, the supercooling throttle means, the second refrigerant and the third refrigerant exchange heat. A third refrigeration cycle having a second refrigerant / refrigerant heat exchanger to perform, one end of the first refrigerant cooling outdoor heat exchanger and the first The other end is connected between the outlet side of the first article cooling indoor heat exchanger and the inlet side of the first compressor. And a bypass circuit having a third article cooling throttle means, wherein the first refrigerant refrigerant heat exchanger is inserted downstream of the third article cooling throttle means in the bypass circuit. And the second refrigerant refrigerant heat exchanger is inserted between the outlet side of the subcooling outdoor heat exchanger and the inlet side of the subcooling throttle means, and the second refrigerant cooling heat exchanger Inserted between the outlet side of the exchanger and the inlet side of the second article cooling throttle means, and between the outlet side of the supercooling throttle means and the inlet side of the third compressor It is inserted.

また、本発明の冷凍サイクル装置は、第一の冷媒が循環し、第一の圧縮機と、四方弁と、空調用室外熱交換器と、空調用室内熱交換器と、前記空調用室外熱交換器と前記空調用室内熱交換器との間に設けられ前記第一の冷媒が直列に流れるように複数個配置された第一の空調用絞り手段と、を有する第一の冷凍サイクルと、第二の冷媒が循環し、第二の圧縮機と、物品冷却用室外熱交換器と、物品冷却用絞り手段と、物品冷却用室内熱交換器と、を有する第二の冷凍サイクルと、第三の冷媒が循環し、第三の圧縮機と、過冷却用室外熱交換器と、前記第一の冷媒と前記第三の冷媒とが熱交換を行う第一の冷媒冷媒熱交換器と、第一の過冷却用絞り手段と、前記第二の冷媒と前記第三の冷媒とが熱交換を行う第二の冷媒冷媒熱交換器と、を有する第三の冷凍サイクルと、を備え、前記第一の冷媒冷媒熱交換器は前記第一の冷凍サイクルに複数個設けられた前記第一の空調用絞り手段の間の流路に接続されるとともに前記過冷却用室外熱交換器の出側と前記第一の過冷却用絞り手段の入側との間に接続され、前記第二の冷媒冷媒熱交換器は前記物品冷却用室外熱交換器の出側と前記物品冷却用絞り手段の入側との間に接続されるとともに、前記第一の過冷却用絞り手段の出側と前記第三の圧縮機の入側との間に接続されることを特徴とする。
In the refrigeration cycle apparatus of the present invention, the first refrigerant circulates, the first compressor, the four-way valve, the outdoor heat exchanger for air conditioning, the indoor heat exchanger for air conditioning, and the outdoor heat for air conditioning. A first refrigeration cycle having a first air-conditioning throttle means provided between the exchanger and the air-conditioning indoor heat exchanger, wherein a plurality of the first refrigerants are arranged to flow in series , second refrigerant circulates, the second refrigerant cycle having a second compressor, and stuff products cooling outdoor heat exchanger, and means diaphragm goods product cooling, and stuff products cooling indoor heat exchanger, the And the third refrigerant circulates, the third compressor, the subcooling outdoor heat exchanger, the first refrigerant and the third refrigerant exchange heat with each other. Yusuke and vessels, a first supercooling throttle means, and a second refrigerant-refrigerant heat exchanger and the second refrigerant and the third refrigerant performs heat exchange, the A third refrigeration cycle, comprising a front Symbol first refrigerant-refrigerant heat exchanger is connected to a flow path between said first said first provided plurality in a refrigeration cycle of the air conditioning throttle means which is connected between the outlet side of the supercooling outdoor heat exchanger and the entry side of the first supercooling throttle means, said second refrigerant-refrigerant heat exchanger before SL product article cooled outdoor heat with is connected between the input side of the output side and the front SL product article cooling throttle means of exchangers, the entrance side of the exit side of the third compressor of the first supercooling throttle means It is connected between them.

本発明によれば、複数の熱負荷を賄う場合において、熱交換を行わない従来の冷凍サイクル装置と比較して常に高い冷凍能力と高いCOPを維持し、以って省エネを実現する冷凍サイクル装置を得られる。   According to the present invention, when a plurality of heat loads are provided, a refrigeration cycle apparatus that always maintains a high refrigeration capacity and a high COP as compared with a conventional refrigeration cycle apparatus that does not perform heat exchange, thereby realizing energy saving. Can be obtained.

本発明によれば、複数の熱負荷を賄う場合において、汎用の空調機や冷凍機を用いて、熱交換を行わない従来の冷凍サイクル装置と比較して常に高い冷凍能力と高いCOPを維持し、以って省エネを実現する冷凍サイクル装置を得られる。   According to the present invention, when a plurality of heat loads are provided, a general-purpose air conditioner or refrigerator is used to constantly maintain a high refrigerating capacity and a high COP compared to a conventional refrigeration cycle apparatus that does not perform heat exchange. Thus, a refrigeration cycle apparatus that achieves energy saving can be obtained.

実施の形態1.
図1と図3から図7は本発明の実施の形態1を示す冷凍サイクル装置を示している。まずは図1を用いて、冷凍サイクルの構成および動作について説明する。図1に示すように、冷凍サイクル装置は、空調用冷凍サイクル1と、冷蔵用または冷凍用冷凍サイクル2と、過冷却用冷凍サイクル3とから構成されており、空調用冷凍サイクル1と過冷却用冷凍サイクル3とは冷媒冷媒熱交換器41aで、冷蔵用または冷凍用冷凍サイクル2と過冷却用冷凍サイクル3とは冷媒冷媒熱交換器51で、双方の冷媒が混じることなく熱交換を行うように構成されている。
Embodiment 1 FIG.
1 and 3 to 7 show a refrigeration cycle apparatus showing Embodiment 1 of the present invention. First, the configuration and operation of the refrigeration cycle will be described with reference to FIG. As shown in FIG. 1, the refrigeration cycle apparatus includes an air conditioning refrigeration cycle 1, a refrigeration or refrigeration cycle 2, and a supercooling refrigeration cycle 3. The air conditioning refrigeration cycle 1 and the supercooling The refrigeration cycle 3 is a refrigerant refrigerant heat exchanger 41a, and the refrigeration or refrigeration cycle 2 and the supercooling refrigeration cycle 3 are refrigerant refrigerant heat exchangers 51, which exchange heat without mixing the two refrigerants. It is configured as follows.

空調用冷媒が循環する空調用冷凍サイクル1は、室内空調を行う主回路と、過冷却用冷凍サイクル3と熱交換を行う分岐回路によって構成し、室内空調を行う主回路は、空調用圧縮機11と、空調用室外熱交換器12と、空調用受液器14と、空調用絞り手段15a、15b、15cと、空調用室内熱交換器17a、17bと、を空調用冷媒配管10で接続することにより構成し、過冷却用冷凍サイクル3と熱交換を行う分岐回路は、冷媒冷媒熱交換器41aと、空調用絞り手段19a、19b、19cと、を空調用冷媒配管10a、10b、10cによって接続することにより構成されている。   The air-conditioning refrigeration cycle 1 in which the air-conditioning refrigerant circulates is constituted by a main circuit that performs indoor air-conditioning and a branch circuit that performs heat exchange with the supercooling refrigeration cycle 3, and the main circuit that performs indoor air-conditioning is an air-conditioning compressor. 11, an air conditioning outdoor heat exchanger 12, an air conditioning liquid receiver 14, an air conditioning throttle means 15 a, 15 b, 15 c and an air conditioning indoor heat exchanger 17 a, 17 b are connected by an air conditioning refrigerant pipe 10. The branch circuit configured to perform heat exchange with the supercooling refrigeration cycle 3 includes the refrigerant refrigerant heat exchanger 41a and the air conditioning throttle means 19a, 19b, 19c, and the air conditioning refrigerant pipes 10a, 10b, 10c. It is comprised by connecting by.

空調用冷凍サイクルが冷房モードの場合、空調用圧縮機11を出た空調用冷媒は、四方弁18から空調用室外熱交換器12に向かい、当該空調用室外熱交換器12にて空調用室外送風機13の作用によって室外空気に放熱し、空調用絞り手段15cにて膨張して中間圧冷媒となり、更に空調用絞り手段15a、15bにて膨張して低温低圧冷媒となり、空調用室内送風機16a、16bの作用によって空調用室内熱交換器17a、17bにて吸熱し室内に冷熱を供給する。一方、空調用絞り手段15cを出た空調用冷媒の一部が空調用冷媒配管10aから分岐し、空調用絞り手段19aによって低温低圧冷媒となり、冷媒冷媒熱交換器41aにて過冷却用冷凍サイクル3を流れる高温の過冷却用冷媒と熱交換をして蒸発し、空調用冷媒配管10cを通って空調用圧縮機11へ戻る。この時、空調用絞り手段19bは閉じ、空調用絞り手段19cは開いており、分岐回路への流量は空調用絞り手段19aの開度によって調節している。   When the air-conditioning refrigeration cycle is in the cooling mode, the air-conditioning refrigerant that has exited the air-conditioning compressor 11 is directed from the four-way valve 18 to the air-conditioning outdoor heat exchanger 12, and the air-conditioning outdoor heat exchanger 12 is outside the air-conditioning outdoor. The fan 13 radiates heat to the outdoor air, expands in the air conditioning throttle means 15c and becomes an intermediate pressure refrigerant, and further expands in the air conditioning throttle means 15a and 15b to become a low-temperature and low-pressure refrigerant. By the action of 16b, heat is absorbed by the indoor heat exchangers 17a and 17b for air conditioning and cold is supplied into the room. On the other hand, a part of the air-conditioning refrigerant exiting the air-conditioning throttle means 15c branches off from the air-conditioning refrigerant pipe 10a, becomes a low-temperature and low-pressure refrigerant by the air-conditioning throttle means 19a, and is subcooled by the refrigerant refrigerant heat exchanger 41a. 3 and evaporates by exchanging heat with the high-temperature supercooling refrigerant flowing through 3, and returns to the air conditioning compressor 11 through the air conditioning refrigerant pipe 10c. At this time, the air conditioning throttle means 19b is closed, the air conditioning throttle means 19c is open, and the flow rate to the branch circuit is adjusted by the opening degree of the air conditioning throttle means 19a.

空調用冷凍サイクルが暖房モードの場合、空調用圧縮機11を出た空調用冷媒は、四方弁18から空調用室内熱交換器17a、17bに向かい、当該空調用室内熱交換器17a、17bにて空調用室内送風機16a、16bの作用によって室内に温熱を供給し、空調用絞り手段15a、15bにて膨張して中間圧冷媒となり、更に空調用絞り手段15cにて低温低圧冷媒となり、空調用室外送風機13の作用によって空調用室外熱交換器12にて吸熱して蒸発する。一方、空調用絞り手段15a、15bを出た空調用冷媒の一部が空調用冷媒配管10aから分岐し、空調用絞り手段19aによって低温低圧冷媒となり、冷媒冷媒熱交換器41aにて過冷却用冷凍サイクル3を流れる高温の過冷却用冷媒と熱交換をして蒸発し、空調用冷媒配管10bを通って空調用絞り手段15cを通過した空調用冷媒と合流する。この時、空調用絞り手段19cは閉じ、空調用絞り手段19bは開いており、分岐回路への流量は空調用絞り手段19aの開度によって調節されている。   When the air-conditioning refrigeration cycle is in the heating mode, the air-conditioning refrigerant exiting the air-conditioning compressor 11 is directed from the four-way valve 18 to the air-conditioning indoor heat exchangers 17a and 17b and to the air-conditioning indoor heat exchangers 17a and 17b. Then, the indoor air blowers 16a and 16b for air conditioning supply warm heat into the room, expands in the air conditioning throttle means 15a and 15b to become an intermediate pressure refrigerant, and further becomes a low-temperature and low-pressure refrigerant in the air conditioning throttle means 15c. The outdoor fan 13 absorbs heat and evaporates in the outdoor heat exchanger 12 for air conditioning. On the other hand, part of the air-conditioning refrigerant exiting the air-conditioning throttle means 15a, 15b branches off from the air-conditioning refrigerant pipe 10a, becomes a low-temperature low-pressure refrigerant by the air-conditioning throttle means 19a, and is used for supercooling by the refrigerant-refrigerant heat exchanger 41a. Heat exchange with the high-temperature supercooling refrigerant flowing in the refrigeration cycle 3 evaporates and merges with the air conditioning refrigerant that has passed through the air conditioning throttle means 15c through the air conditioning refrigerant pipe 10b. At this time, the air conditioning throttle means 19c is closed, the air conditioning throttle means 19b is open, and the flow rate to the branch circuit is adjusted by the opening degree of the air conditioning throttle means 19a.

冷蔵用または冷凍用冷媒が循環する冷蔵用または冷凍用冷凍サイクル2は、冷蔵用または冷凍用圧縮機21と、冷蔵用または冷凍用室外熱交換器22と、冷蔵用または冷凍用受液器24と、冷媒冷媒熱交換器51と、冷蔵用または冷凍用絞り手段25a、25bと、冷蔵用または冷凍用室内熱交換器27a、27bと、を冷蔵用または冷凍用冷媒配管20で接続することにより構成している。   The refrigeration or refrigeration refrigeration cycle 2 in which the refrigeration or refrigeration refrigerant circulates includes a refrigeration or refrigeration compressor 21, a refrigeration or refrigeration outdoor heat exchanger 22, and a refrigeration or refrigeration receiver 24. And refrigerant refrigerant heat exchanger 51, refrigeration or refrigeration throttling means 25a, 25b, and refrigeration or refrigeration indoor heat exchangers 27a, 27b are connected by refrigeration or refrigeration refrigerant piping 20. It is composed.

冷蔵用または冷凍用圧縮機21を出た冷蔵用または冷凍用冷媒は、冷蔵用または冷凍用室外熱交換器22にて冷蔵用または冷凍用室外送風機23の作用によって室外空気に放熱し、冷媒冷媒熱交換器51にて過冷却用冷凍サイクル3を流れる低温の過冷却用冷媒と熱交換をして過冷却度を増加させ、冷蔵用または冷凍用絞り手段25a、25bにて膨張して低温低圧冷媒となり、冷蔵用または冷凍用室内送風機26a、26bの作用によって冷蔵用または冷凍用室内熱交換器27a、27bにて吸熱し室内に冷熱を供給する。   The refrigeration or refrigeration refrigerant exiting the refrigeration or refrigeration compressor 21 radiates heat to the outdoor air by the refrigeration or refrigeration outdoor heat exchanger 22 and acts as a refrigerant refrigerant. The heat exchanger 51 exchanges heat with the low-temperature supercooling refrigerant flowing in the supercooling refrigeration cycle 3 to increase the degree of supercooling, and expands in the refrigeration or freezing squeezing means 25a and 25b to cause low-temperature and low-pressure. It becomes a refrigerant, absorbs heat in the refrigeration or refrigeration indoor heat exchangers 27a and 27b by the action of the refrigeration or refrigeration indoor fans 26a and 26b, and supplies cold heat to the room.

過冷却用冷媒が循環する過冷却用冷凍サイクル3は、過冷却用圧縮機31と、過冷却用室外熱交換器32と、過冷却用受液器34と、冷媒冷媒熱交換器41aと、過冷却用絞り手段35と、冷媒冷媒熱交換器51と、を過冷却用冷媒配管30で接続することにより構成している。   The supercooling refrigeration cycle 3 in which the supercooling refrigerant circulates includes a supercooling compressor 31, a supercooling outdoor heat exchanger 32, a supercooling liquid receiver 34, a refrigerant refrigerant heat exchanger 41a, The subcooling throttling means 35 and the refrigerant refrigerant heat exchanger 51 are connected by a supercooling refrigerant pipe 30.

過冷却用圧縮機31を出た過冷却用冷媒は、過冷却用室外熱交換器32にて過冷却用室外送風機33の作用によって室外空気に放熱し、冷媒冷媒熱交換器41aにて空調用冷凍サイクル1を流れる低温の空調用冷媒と熱交換をして過冷却度を増加させ、過冷却用絞り手段35にて膨張して低温低圧冷媒となり、冷媒冷媒熱交換器51にて冷蔵用または冷凍用冷凍サイクル2を流れる高温の冷蔵用または冷凍用冷媒と熱交換をして蒸発し、過冷却用圧縮機31へ戻る。   The supercooling refrigerant that has exited the supercooling compressor 31 is radiated to the outdoor air by the supercooling outdoor heat exchanger 32 by the action of the supercooling outdoor blower 33, and the refrigerant refrigerant heat exchanger 41a is used for air conditioning. Heat exchange with the low-temperature air-conditioning refrigerant flowing in the refrigeration cycle 1 increases the degree of supercooling, expands in the subcooling throttling means 35 to become a low-temperature low-pressure refrigerant, and refrigerates in the refrigerant refrigerant heat exchanger 51 Heat exchanges with the high-temperature refrigeration or refrigeration refrigerant flowing through the refrigeration cycle 2 evaporates and returns to the supercooling compressor 31.

なお、図1において、空調用絞り手段19b、19cは、空調用冷媒配管10b、10cの流路切替手段として用いているので、より安価な流路切替手段を用いても省エネは大きく悪化はしないので、電磁弁や逆止弁を用いて構成してもよい。また、暖房時に空調用絞り手段15a、15bを出た空調用冷媒の一部が空調用冷媒配管10aから分岐するとしたが、空調用絞り手段15cを全閉にすることで空調用冷媒の全部を空調用冷媒配管10aに流してもよい。また空調用絞り手段15a、15b、15c、19a、冷蔵用または冷凍用絞り手段25a、25b、過冷却用絞り手段35は、毛細管等の安価な冷媒流量調節手段、あるいは電子膨張弁による緻密な流量制御手段のいずれを使用してもよい。   In FIG. 1, the air conditioning throttle means 19b and 19c are used as the flow path switching means of the air conditioning refrigerant pipes 10b and 10c, so that energy saving is not greatly deteriorated even if a cheaper flow path switching means is used. Therefore, you may comprise using a solenoid valve or a check valve. In addition, a part of the air-conditioning refrigerant exiting the air-conditioning throttle means 15a and 15b during the heating is branched from the air-conditioning refrigerant pipe 10a. However, by fully closing the air-conditioning throttle means 15c, all of the air-conditioning refrigerant is removed. You may flow through the refrigerant piping 10a for air conditioning. The air conditioning throttle means 15a, 15b, 15c, 19a, the refrigeration or refrigeration throttle means 25a, 25b, and the supercooling throttle means 35 are low-cost refrigerant flow rate adjusting means such as capillaries, or precise flow rates by electronic expansion valves. Any of the control means may be used.

また、空調用圧縮機11、冷蔵用または冷凍用圧縮機21、過冷却用圧縮機31は、レシプロ、ロータリー、スクロール、スクリューなどの各種タイプのいずれのものを用いてもよく、回転数可変可能のものでも、回転数固定のものでも構わない。   The air-conditioning compressor 11, the refrigeration or refrigeration compressor 21, and the supercooling compressor 31 may be any of various types such as reciprocating, rotary, scroll, and screw, and the number of rotations can be varied. Or a fixed number of revolutions.

また、空調用冷凍サイクル1と冷蔵用または冷凍用冷凍サイクル2と過冷却用冷凍サイクル3の内部を流れる冷媒はどんなものでもよく、二酸化炭素、炭化水素、ヘリウム、のような自然冷媒、HFC410A、HFC407C、HFC404Aなどの代替冷媒など塩素を含まない冷媒、もしくは既存の製品に使用されているR22、R134aなどのフロン系冷媒のいずれでもよい。   The refrigerant flowing in the air-conditioning refrigeration cycle 1, the refrigeration or refrigeration refrigeration cycle 2, and the supercooling refrigeration cycle 3 may be any refrigerant, such as natural refrigerants such as carbon dioxide, hydrocarbons, helium, HFC410A, Any of refrigerants that do not contain chlorine, such as alternative refrigerants such as HFC407C and HFC404A, or fluorocarbon refrigerants such as R22 and R134a that are used in existing products may be used.

また、空調用冷凍サイクル1と冷蔵用または冷凍用冷凍サイクル2と過冷却用冷凍サイクル3、とはそれぞれ独立した冷媒回路になっており、内部を流れる冷媒は同じ種類のものでもよいし、別の種類のものでも構わないが、それぞれ混ざることなく冷媒冷媒熱交換器41a、51にて互いに熱交換をして流れている。   In addition, the air-conditioning refrigeration cycle 1, the refrigeration or refrigeration refrigeration cycle 2, and the supercooling refrigeration cycle 3 are independent refrigerant circuits, and the refrigerants flowing through them may be of the same type or different. However, the refrigerant refrigerant heat exchangers 41a and 51 exchange heat with each other without being mixed with each other.

また、空調用室外熱交換器12、冷蔵用または冷凍用室外熱交換器22、過冷却用室外熱交換器32においてそれぞれの冷媒が空気から吸熱する場合を示しているが、これに限るものではなく、水、冷媒、ブライン等から吸熱するように構成してもよい。また、空調用室外送風機13、冷蔵用または冷凍用室外送風機23、過冷却用室外送風機33はポンプ等でもよい。また、図1は空調用室内熱交換器と、冷蔵用または冷凍用室内熱交換器とがそれぞれ2台の場合の構成例であるが3台以上の複数でもあるいは1台でもよくそれぞれの台数が異なってもよく、またそれぞれの室内機の容量が大から小まで異なっていても、全てが同一容量でもよい。また、空調用冷凍サイクル1、冷蔵用または冷凍用冷凍サイクル2、過冷却用冷凍サイクル3において余剰冷媒をそれぞれ受液器によって貯蔵する場合を示したが、これに限るものではなく、冷凍サイクルにおいて放熱器となる熱交換器にて貯蔵することとして受液器を取り除いてもよい。   Moreover, although the case where each refrigerant | coolant absorbs heat from air in the outdoor heat exchanger 12 for an air conditioning, the outdoor heat exchanger 22 for refrigeration or freezing, and the outdoor heat exchanger 32 for supercooling is shown, it does not restrict to this Alternatively, heat may be absorbed from water, refrigerant, brine, or the like. Further, the outdoor air blower 13 for air conditioning, the outdoor blower 23 for refrigeration or freezing, and the outdoor blower 33 for supercooling may be a pump or the like. FIG. 1 shows an example of a configuration in which there are two indoor heat exchangers for air conditioning and two indoor heat exchangers for refrigeration or refrigeration. However, the number of units may be three or more or one. They may be different, or the capacity of each indoor unit may vary from large to small, or all of them may have the same capacity. Moreover, although the case where the excess refrigerant | coolant was each stored with a liquid receiver in the refrigerating cycle 1 for air conditioning, the refrigerating cycle 2 for freezing or freezing, and the refrigerating cycle 3 for supercooling was shown, it is not restricted to this, You may remove a liquid receiver as storing in the heat exchanger used as a heat radiator.

空調用冷凍サイクル1、冷蔵用または冷凍用冷凍サイクル2、過冷却用冷凍サイクル3を、P−h線図中に示したものを図2に示す。図2(a)は冷房モードのP−h線図、図2(b)は暖房モードのP−h線図を表す。図2において、本発明による冷凍サイクル装置のP−h線図を実線で示し、冷蔵用または冷凍用冷凍サイクル2が過冷却用冷凍サイクル3と熱交換しない場合のP−h線図を点線で、過冷却用冷凍サイクル3が冷蔵用または冷凍用冷凍サイクル2とは熱交換を行うが、空調用冷凍サイクル1と熱交換しない場合のP−h線図を一点鎖線で、空調用冷凍サイクル1が過冷却用冷凍サイクル3と熱交換しない場合のP−h線図を二点鎖線で示す。   FIG. 2 shows the refrigeration cycle 1 for air conditioning, the refrigeration cycle 2 for refrigeration or refrigeration 2 and the refrigeration cycle 3 for supercooling shown in the Ph diagram. FIG. 2A shows a Ph diagram in the cooling mode, and FIG. 2B shows a Ph diagram in the heating mode. In FIG. 2, the Ph diagram of the refrigeration cycle apparatus according to the present invention is indicated by a solid line, and the Ph diagram when the refrigeration or refrigeration cycle 2 does not exchange heat with the supercooling refrigeration cycle 3 is indicated by a dotted line. When the subcooling refrigeration cycle 3 exchanges heat with the refrigeration or refrigeration refrigeration cycle 2 but does not exchange heat with the air conditioning refrigeration cycle 1, the Ph diagram in the case of the air conditioning refrigeration cycle 1 Shows a Ph diagram when the heat is not exchanged with the supercooling refrigeration cycle 3 by a two-dot chain line.

図2からわかるように、本発明による冷凍サイクル装置において、冷蔵用または冷凍用絞り手段25a、25b入口の冷媒の温度が、熱交換を行わずに単独で運転した場合よりもΔTc2だけ低下し、冷蔵用または冷凍用室内熱交換器27a、27bの入口側と出口側ではこの温度差分だけ冷媒のエンタルピー差Δhが増加し、冷蔵用または冷凍用室内熱交換器27a、27bにおける単位冷媒流量あたりの冷媒の吸熱量、いわゆる冷凍効果、が増加し、冷蔵用または冷凍用冷凍サイクル2の冷凍能力が増加する。   As can be seen from FIG. 2, in the refrigeration cycle apparatus according to the present invention, the temperature of the refrigerant at the inlet of the refrigeration or freezing throttling means 25a, 25b is lower by ΔTc2 than when operating alone without performing heat exchange, The enthalpy difference Δh of the refrigerant increases by this temperature difference between the inlet side and the outlet side of the refrigeration or refrigeration indoor heat exchangers 27a and 27b, and the per unit refrigerant flow rate in the refrigeration or refrigeration indoor heat exchangers 27a and 27b increases. The amount of heat absorbed by the refrigerant, the so-called refrigeration effect, increases, and the refrigeration capacity of the refrigeration cycle 2 for refrigeration or refrigeration increases.

また、この時、同じ冷蔵用または冷凍用熱負荷に対する冷蔵用または冷凍用冷媒の循環量が低減され、冷蔵用または冷凍用冷媒の循環に用いられる動力が少なくて済むので、冷蔵用または冷凍用冷凍サイクル2のCOPが、熱交換を行わずに単独で運転する場合よりも高くなり、省エネとなる。また、冷媒循環量が減ることにより配管での圧損が減るため、冷蔵用または冷凍用冷凍サイクル2の配管サイズを小さくすることができ施工性が向上するとともに、配管での熱損失が低減され省エネとなる。   At this time, the circulation amount of the refrigeration or freezing refrigerant with respect to the same refrigeration or freezing heat load is reduced, and less power is required for circulation of the refrigeration or freezing refrigerant. The COP of the refrigeration cycle 2 becomes higher than when operating alone without performing heat exchange, thus saving energy. In addition, since the pressure loss in the piping is reduced by reducing the refrigerant circulation amount, the piping size of the refrigeration cycle 2 for refrigeration or freezing can be reduced, the workability is improved, and the heat loss in the piping is reduced to save energy. It becomes.

また、過冷却用冷凍サイクル3は、空調用冷凍サイクル1との熱交換により、熱交換が無い場合よりも過冷却度が増加し、冷凍能力を増加させることが出来るので、空調用冷凍サイクル1との熱交換がない場合よりも省エネとなる。   Further, the supercooling refrigeration cycle 3 can increase the degree of supercooling and increase the refrigeration capacity by heat exchange with the air conditioning refrigeration cycle 1 compared with the case where there is no heat exchange. It saves energy compared to the case where there is no heat exchange.

また、過冷却用冷凍サイクル3は、冷蔵用または冷凍用絞り手段25a、25bの出口が二相となるように運転するために通常、蒸発温度Te3が冷蔵用または冷凍用冷凍サイクル2の蒸発温度Te2よりも高くなる。また図1のように過冷却用冷凍サイクル3、冷蔵用または冷凍用冷凍サイクル2ともに外気による空冷熱交換器により放熱器を構成した場合、凝縮温度は同程度となるので、過冷却用冷凍サイクル3のCOPは、冷蔵用または冷凍用冷凍サイクルが熱交換を行わずに単体で運転する場合のCOPよりも高くなる。   Further, since the supercooling refrigeration cycle 3 is operated so that the outlets of the refrigeration or refrigeration throttling means 25a, 25b are two-phased, the evaporation temperature Te3 is usually the evaporation temperature of the refrigeration or refrigeration cycle 2 for refrigeration. It becomes higher than Te2. Further, as shown in FIG. 1, when the radiator is configured by an air-cooled heat exchanger using outside air for both the supercooling refrigeration cycle 3 and the refrigeration or refrigeration cycle 2, the condensing temperature is approximately the same. The COP of No. 3 is higher than the COP when the refrigeration or refrigeration cycle is operated alone without performing heat exchange.

また、空調用冷凍サイクル1は、冷房モードの場合は、蒸発温度Te1は最低でも0℃以上で使用されることが多く、物品冷却用で使用される冷蔵用または冷凍用冷凍サイクル2の蒸発温度Te2は、冷蔵用途で−10℃程度、冷凍用途で−40℃程度、で使用されることが多いため、蒸発温度は空調用冷凍サイクル1の方が冷蔵用または冷凍用冷凍サイクル2よりも高くなる。また、図1のように空調用冷凍サイクル1、冷蔵用または冷凍用冷凍サイクル2ともに外気による空冷熱交換器により放熱器を構成した場合、凝縮温度は同程度となるので、空調用冷凍サイクル1のCOPは、冷蔵用または冷凍用冷凍サイクルが熱交換を行わずに単独で運転する場合のCOPよりも高くなる。   Further, when the air-conditioning refrigeration cycle 1 is in the cooling mode, the evaporation temperature Te1 is often used at least at 0 ° C. or higher, and the evaporation temperature of the refrigeration or freezing refrigeration cycle 2 used for article cooling is used. Since Te2 is often used at about -10 ° C for refrigeration applications and about -40 ° C for refrigeration applications, the evaporation temperature is higher in the refrigeration cycle 1 for air conditioning than in the refrigeration cycle 2 for refrigeration or freezing. Become. Further, as shown in FIG. 1, when the radiator is configured by an air-cooled heat exchanger using outside air for both the air-conditioning refrigeration cycle 1 and the refrigeration or refrigeration cycle 2, the condensing temperature is approximately the same. The COP of the refrigeration or the refrigeration cycle for refrigeration is higher than that when the refrigeration cycle for refrigeration is operated alone without performing heat exchange.

また、空調用冷凍サイクル1が過冷却用冷凍サイクル3の過冷却度を増加させるときに受け取る温熱は、空調用冷凍サイクル1が冷房モードの場合は冷熱負荷となって空調用圧縮機における機械入力を要するが、暖房モードの場合は蒸発器の熱源となるので、蒸発温度の上昇、若しくは蒸発器用送風機入力の低減へと繋がるので、空調用冷凍サイクル1、過冷却用冷凍サイクル3ともに、熱交換を行わない場合よりもCOPが高くなる。   The heat received when the air-conditioning refrigeration cycle 1 increases the degree of supercooling of the sub-cooling refrigeration cycle 3 becomes a cooling load when the air-conditioning refrigeration cycle 1 is in the cooling mode, and the mechanical input in the air-conditioning compressor. However, in the heating mode, it becomes a heat source of the evaporator, leading to an increase in the evaporation temperature or a reduction in the input of the blower for the evaporator. Therefore, both the air-conditioning refrigeration cycle 1 and the supercooling refrigeration cycle 3 exchange heat. The COP is higher than when no operation is performed.

従って、本発明による冷凍サイクル装置のCOPは、空調用冷凍サイクルが冷房モードであるか暖房モードであるかによらず、空調用冷凍サイクルと冷蔵用または冷凍用冷凍サイクルが熱交換を行わずにそれぞれ単独で運転する場合のCOPよりも高くなり、省エネとなる。
また、空調用冷凍サイクル1が電源OFFやサーモオフ、または冷媒や油を交換するリプレースや機器の交換や修理を行うメンテナンスなどにより運転を停止している場合においても、過冷却用冷凍サイクル3との熱交換によって、冷蔵用または冷凍用冷凍サイクル2の過冷却度を増加させることができるので、冷蔵用または冷凍用冷凍サイクル2が熱交換を行わずに単独で運転する場合よりも冷凍効果、COPともに大きい運転を維持することが出来、省エネとなる。
Therefore, the COP of the refrigeration cycle apparatus according to the present invention does not perform heat exchange between the air-conditioning refrigeration cycle and the refrigeration or refrigeration cycle regardless of whether the air-conditioning refrigeration cycle is in the cooling mode or the heating mode. It becomes higher than the COP in the case of operating independently each, and it becomes energy saving.
Even when the air-conditioning refrigeration cycle 1 is stopped due to power-off, thermo-off, replacement for replacing refrigerant or oil, maintenance for replacing or repairing equipment, etc., Since the degree of supercooling of the refrigeration or freezing refrigeration cycle 2 can be increased by heat exchange, the refrigeration effect or COP is higher than when the refrigeration or freezing refrigeration cycle 2 operates alone without heat exchange. Both can maintain large operation and save energy.

また、外気温度が高く、空調負荷も高い場合であって、空調用冷凍サイクル1の蒸発温度が高い場合、従来の空調用冷凍サイクルと冷蔵用または冷凍用冷凍サイクルのみにより構成される冷凍サイクル装置においては冷蔵用または冷凍用冷凍サイクルの過冷却度を充分に増加させることが出来なかったが、本発明による冷凍サイクル装置では、過冷却用冷凍サイクル3との熱交換によって、冷蔵用または冷凍用冷凍サイクル2の過冷却度を増加させることが出来るので、冷蔵用または冷凍用冷凍サイクルが熱交換を行わずに単独で運転する場合よりも省エネとなる。   Further, when the outside air temperature is high and the air conditioning load is high, and the evaporation temperature of the air conditioning refrigeration cycle 1 is high, a refrigeration cycle apparatus configured only by a conventional air conditioning refrigeration cycle and a refrigeration or refrigeration cycle. In the refrigeration cycle apparatus according to the present invention, the degree of supercooling of the refrigeration cycle for refrigeration or freezing could not be increased sufficiently. Since the degree of supercooling of the refrigeration cycle 2 can be increased, energy can be saved more than when the refrigeration or refrigeration cycle is operated alone without heat exchange.

図3は、図1に示す冷凍サイクル装置に加えて、過冷却用室外熱交換器32を迂回するように並列に配置される過冷却用冷媒配管30aと、過冷却用冷媒配管30aと過冷却用室外熱交換器32に流れる過冷却用冷媒の分配を制御する過冷却用絞り手段39a、39bと、過冷却用受液器34の上流で過冷却用室外熱交換器32を迂回した過冷却用冷媒の放熱器として機能するように配置された空調用冷媒と過冷却用冷媒が熱交換を行う冷媒冷媒熱交換器41bと、を備えることを特徴とする冷凍サイクル装置を示している。   FIG. 3 shows, in addition to the refrigeration cycle apparatus shown in FIG. 1, a supercooling refrigerant pipe 30a arranged in parallel so as to bypass the supercooling outdoor heat exchanger 32, and the supercooling refrigerant pipe 30a and the supercooling. Supercooling throttling means 39a and 39b for controlling distribution of the supercooling refrigerant flowing to the outdoor heat exchanger 32, and supercooling bypassing the supercooling outdoor heat exchanger 32 upstream of the supercooling receiver 34 1 shows a refrigeration cycle apparatus comprising an air conditioning refrigerant and a refrigerant refrigerant heat exchanger 41b that exchange heat with a supercooling refrigerant arranged to function as a refrigerant radiator.

図3において、過冷却用絞り手段39bを開き、過冷却用絞り手段39aを閉じた状態での空調用冷凍サイクル1、冷蔵用または冷凍用冷凍サイクル2、過冷却用冷凍サイクル3との基本的な動作は図1と同様なので説明を省略する。   In FIG. 3, the basics of the air-conditioning refrigeration cycle 1, the refrigeration or freezing refrigeration cycle 2, and the supercooling refrigeration cycle 3 with the supercooling throttling means 39b opened and the supercooling throttling means 39a closed. Since the operation is the same as that of FIG.

図3において、空調用冷凍サイクル1が暖房運転を行う場合であって、過冷却用冷凍サイクル3の過冷却用絞り手段39bを閉じ、過冷却用絞り手段39aを開いた場合、図1の冷凍サイクル装置では過冷却用室外熱交換器32において外気に放熱していた温熱を放熱しないで全て、冷媒冷媒熱交換器41bを介して空調用冷凍サイクル1の蒸発熱源として利用できるので、図1に示す冷凍サイクル装置よりも更に、空調用冷凍サイクル1の蒸発温度の上昇、若しくは蒸発器用送風機入力の低減を実現でき、以ってCOPが向上し、省エネが実現できる。   In FIG. 3, when the air-conditioning refrigeration cycle 1 performs a heating operation, when the supercooling throttle means 39b of the supercooling refrigeration cycle 3 is closed and the supercooling throttle means 39a is opened, the refrigeration shown in FIG. In the cycle device, all the heat that has been radiated to the outside air in the subcooling outdoor heat exchanger 32 can be used as the evaporation heat source of the air-conditioning refrigeration cycle 1 via the refrigerant refrigerant heat exchanger 41b. In addition to the refrigeration cycle apparatus shown, it is possible to increase the evaporation temperature of the air-conditioning refrigeration cycle 1 or to reduce the input of the blower for the evaporator, thereby improving the COP and realizing energy saving.

図4は、図3に示す冷凍サイクル装置から、過冷却用受液器34と冷媒冷媒熱交換器41bとを取り除いた冷凍サイクル装置を示している。   FIG. 4 shows a refrigeration cycle apparatus in which the supercooling receiver 34 and the refrigerant / refrigerant heat exchanger 41b are removed from the refrigeration cycle apparatus shown in FIG.

図4において、過冷却用絞り手段39bを開き、過冷却用絞り手段39aを閉じた状態での空調用冷凍サイクル1、冷蔵用または冷凍用冷凍サイクル2、過冷却用冷凍サイクル3の基本的な動作は、余剰冷媒を受液器ではなく放熱器に貯蔵する点以外は、図1と同様なので説明を省略する。   In FIG. 4, the basics of the air-conditioning refrigeration cycle 1, the refrigeration or refrigeration cycle 2, and the supercooling refrigeration cycle 3 with the supercooling throttling means 39b opened and the supercooling throttling means 39a closed. Since the operation is the same as in FIG. 1 except that the excess refrigerant is stored in the radiator instead of the liquid receiver, the description is omitted.

図4において、空調用冷凍サイクル1が暖房運転を行う場合であって、過冷却用冷凍サイクル3の過冷却用絞り手段39bを閉じ、過冷却用絞り手段39aを開いた場合、図1の冷凍サイクル装置では過冷却用室外熱交換器32において外気に放熱していた温熱を放熱しないで全て、冷媒冷媒熱交換器41aを介して空調用冷凍サイクル1の蒸発熱源として利用できるので、図1に示す冷凍サイクル装置よりも更に、空調用冷凍サイクル1の蒸発温度の上昇、若しくは蒸発器用送風機入力の低減を実現でき、以ってCOPが向上し、省エネが実現できる。   In FIG. 4, when the air-conditioning refrigeration cycle 1 performs a heating operation, when the supercooling throttle means 39b of the supercooling refrigeration cycle 3 is closed and the supercooling throttle means 39a is opened, the refrigeration shown in FIG. In the cycle device, all the heat that has been radiated to the outside air in the subcooling outdoor heat exchanger 32 can be used as the evaporation heat source of the air-conditioning refrigeration cycle 1 via the refrigerant refrigerant heat exchanger 41a. In addition to the refrigeration cycle apparatus shown, it is possible to increase the evaporation temperature of the air-conditioning refrigeration cycle 1 or to reduce the input of the blower for the evaporator, thereby improving the COP and realizing energy saving.

また、図4においては、図3のような受液器がないため、受液器の上流に放熱器としての冷媒冷媒熱交換器と、受液器の下流に過冷却度を増加させるための冷媒冷媒熱交換器と、を配置するような構成にする必要がないため、冷媒冷媒熱交換器の数を減ずることが出来るので、より安価に省エネを実現することが出来る。   Further, in FIG. 4, since there is no liquid receiver as in FIG. 3, a refrigerant refrigerant heat exchanger as a radiator is disposed upstream of the liquid receiver, and a degree of supercooling is increased downstream of the liquid receiver. Since it is not necessary to use a configuration in which the refrigerant / refrigerant heat exchanger is arranged, the number of refrigerant / refrigerant heat exchangers can be reduced, so that energy saving can be realized at a lower cost.

図5は、図1に示す冷凍サイクル装置に加えて、空調用室外熱交換器12を迂回するように並列に配置される空調用冷媒配管10dと、空調用冷媒配管10dと空調用室外熱交換器12に流れる冷媒の分配を制御する空調用絞り手段19d、19eと、を備えることを特徴とする冷凍サイクル装置を示している。   5 shows, in addition to the refrigeration cycle apparatus shown in FIG. 1, an air conditioning refrigerant pipe 10d arranged in parallel so as to bypass the air conditioning outdoor heat exchanger 12, an air conditioning refrigerant pipe 10d, and an air conditioning outdoor heat exchange. 1 shows a refrigeration cycle apparatus comprising air conditioning throttle means 19d, 19e for controlling the distribution of refrigerant flowing into the vessel 12.

図5において、空調用絞り手段19eを開き、空調用絞り手段19dを閉じた状態での基本的な動作は、図1に示す冷凍サイクル装置と実質的に同一なので、説明を省略する。   In FIG. 5, the basic operation in a state where the air conditioning throttle means 19e is opened and the air conditioning throttle means 19d is closed is substantially the same as that of the refrigeration cycle apparatus shown in FIG.

図5に示す空調用冷凍サイクル1が、空調用絞り手段19eを開き、空調用絞り手段19dを閉じた状態で、暖房運転を行う場合、冷媒冷媒熱交換器41aにおける熱交換量が空調用冷凍サイクル1の必要とする蒸発熱量以下ならば、空調用室外熱交換器12が蒸発器として機能しなくてはならないので、蒸発温度が外気の温度よりも低い必要があるが、逆に冷媒冷媒熱交換器41aにおける熱交換量が空調用冷凍サイクル1の必要とする蒸発熱量以上ならば、空調用室外熱交換器12が蒸発器として機能する必要がないため、蒸発温度を外気温度よりも高くすることが出来る。
しかしこの場合、空調用室外熱交換器12が放熱器として機能してしまい、蒸発温度増加を阻害する方向に働く。
このような場合、図5において、空調用冷凍サイクル1の空調用絞り手段19eを閉じ、空調用絞り手段19dを開いた場合、空調用冷媒が空調用室外熱交換器12にて外気と熱交換を行うことがないため、図1に示す冷凍サイクル装置よりも更に、空調用冷凍サイクル1の蒸発温度の上昇、若しくは蒸発器用送風機入力の低減を実現でき、以ってCOPが向上し、省エネが実現できる。
When the air-conditioning refrigeration cycle 1 shown in FIG. 5 performs the heating operation with the air-conditioning throttle means 19e opened and the air-conditioning throttle means 19d closed, the heat exchange amount in the refrigerant refrigerant heat exchanger 41a is the air-conditioning refrigeration. If it is less than the amount of heat of evaporation required by cycle 1, the air-conditioning outdoor heat exchanger 12 must function as an evaporator, so the evaporation temperature needs to be lower than the temperature of the outside air. If the amount of heat exchange in the exchanger 41a is equal to or greater than the amount of heat of evaporation required by the air-conditioning refrigeration cycle 1, the air-conditioning outdoor heat exchanger 12 does not need to function as an evaporator, so the evaporation temperature is set higher than the outside air temperature. I can do it.
However, in this case, the air-conditioning outdoor heat exchanger 12 functions as a radiator and acts in a direction that hinders increase in the evaporation temperature.
In such a case, in FIG. 5, when the air conditioning throttle means 19 e of the air conditioning refrigeration cycle 1 is closed and the air conditioning throttle means 19 d is opened, the air conditioning refrigerant exchanges heat with the outside air in the air conditioning outdoor heat exchanger 12. Therefore, the evaporating temperature of the air-conditioning refrigeration cycle 1 can be increased or the evaporator fan input can be reduced more than the refrigeration cycle apparatus shown in FIG. realizable.

なお、図5は、図1に示す冷凍サイクル装置に加えて、空調用室外熱交換器12を迂回するように並列に配置される空調用冷媒配管10dと、空調用冷媒配管10dと空調用室外熱交換器12に流れる空調用冷媒の分配を制御する空調用絞り手段19d、19eと、を備えたものであるが、図3や図4に示す冷凍サイクル装置に対して、同様に空調用室外熱交換器12を迂回する回路を加えてもよく、この場合も同様の効果が期待できるのは当然である。   5 shows, in addition to the refrigeration cycle apparatus shown in FIG. 1, an air conditioning refrigerant pipe 10d arranged in parallel so as to bypass the air conditioning outdoor heat exchanger 12, an air conditioning refrigerant pipe 10d, and the air conditioning outdoor unit. Air-conditioning throttling means 19d and 19e for controlling the distribution of the air-conditioning refrigerant flowing to the heat exchanger 12, but with respect to the refrigeration cycle apparatus shown in FIGS. A circuit that bypasses the heat exchanger 12 may be added, and in this case, the same effect can naturally be expected.

また、空調用冷凍サイクル1を制御すると、冷蔵用または冷凍用冷凍サイクル2を制御する制御装置(制御手段)と、過冷却用冷凍サイクル3を制御する制御装置とが、それぞれ通信手段を備えて有線または無線による通信により、相互の情報をやりとりすることができれば、連携して制御を行うことが可能となるため、より高度な、より安定性の増した、省エネシステムが構築できる。   Further, when the air-conditioning refrigeration cycle 1 is controlled, a control device (control means) for controlling the refrigeration or refrigeration cycle 2 and a control device for controlling the supercooling refrigeration cycle 3 each have communication means. If mutual information can be exchanged by wired or wireless communication, control can be performed in cooperation, so that a more advanced and more stable energy saving system can be constructed.

例えば、図1と図3から図5に示す冷凍サイクル装置において、冷蔵用または冷凍用冷凍サイクル2の運転状態が冷蔵用または冷凍用冷凍サイクル2の制御装置から過冷却用冷凍サイクル3の制御装置に送信されるようにシステムを構成すれば、冷蔵用または冷凍用冷凍サイクル2のON/OFFに合わせて過冷却用冷凍サイクル3のON/OFFタイミングを制御でき、無駄な運転が無くなり、省エネとなる。   For example, in the refrigeration cycle apparatus shown in FIGS. 1 and 3 to 5, the operating state of the refrigeration or refrigeration cycle 2 is changed from the control apparatus for the refrigeration or refrigeration cycle 2 to the control apparatus for the supercooling refrigeration cycle 3. If the system is configured so that the refrigeration cycle 2 for refrigeration or refrigeration for refrigeration 2 is turned on / off, the ON / OFF timing of the refrigeration cycle 3 for supercooling can be controlled, eliminating unnecessary operation and saving energy. Become.

また、図3または図4に示す冷凍サイクル装置において、空調用冷凍サイクル1の運転状態が空調用冷凍サイクル1の制御装置から過冷却用冷凍サイクル3の制御装置に送信されるようにシステムを構成すれば、空調用冷凍サイクル1が暖房モードとなった時に、過冷却用絞り手段39bを閉じ、過冷却用絞り手段39aを開くことによって、過冷却用圧縮機から吐出された高温の過冷却用冷媒をバイパスさせることで、適切なタイミングで確実に過冷却用冷凍サイクル3で排熱されることなく、この熱を全て空調用冷凍サイクル1の蒸発熱源に利用するように動作を制御することができ、省エネとなる。   Further, in the refrigeration cycle apparatus shown in FIG. 3 or FIG. 4, the system is configured such that the operating state of the air conditioning refrigeration cycle 1 is transmitted from the control apparatus of the air conditioning refrigeration cycle 1 to the control apparatus of the supercooling refrigeration cycle 3. Then, when the air-conditioning refrigeration cycle 1 is in the heating mode, the supercooling throttle means 39b is closed and the supercooling throttle means 39a is opened, so that the high-temperature supercooling discharged from the supercooling compressor is opened. By bypassing the refrigerant, the operation can be controlled so that all of this heat is used as the evaporation heat source of the air-conditioning refrigeration cycle 1 without being exhausted by the subcooling refrigeration cycle 3 at an appropriate timing. It becomes energy saving.

なお、通常、空調用冷凍サイクル1の蒸発温度は、暖房モード運転中は外気温度より数度程度低い温度となり、冷房モード運転中は20℃以上の差が生じ、運転停止中は外気温度と同程度の温度となる。従って、冷媒冷媒熱交換器41aまたは41bに空調用冷媒の蒸発温度検出手段を設け、その検出値と、外気温度と、を過冷却用冷凍サイクル3の制御装置に送信されるようにシステムを構成すれば、空調用冷凍サイクル1の制御装置と通信することなく、空調用冷凍サイクル1の運転状態を推定することが出来るので、より安価に省エネを実現することが出来る。   Normally, the evaporation temperature of the air-conditioning refrigeration cycle 1 is about several degrees lower than the outside air temperature during the heating mode operation, has a difference of 20 ° C. or more during the cooling mode operation, and is the same as the outside temperature during the operation stop. The temperature is about. Therefore, the refrigerant refrigerant heat exchanger 41a or 41b is provided with an evaporating temperature detecting means for the air conditioning refrigerant, and the system is configured so that the detected value and the outside air temperature are transmitted to the control device of the supercooling refrigeration cycle 3. By doing so, the operating state of the air-conditioning refrigeration cycle 1 can be estimated without communicating with the control device for the air-conditioning refrigeration cycle 1, so that energy saving can be realized at a lower cost.

図6は、図1に示す冷凍サイクル装置から、空調用冷媒配管10cと、空調用絞り手段19cとを取り除いた冷凍サイクル装置を示しており、この冷凍サイクル装置においても本発明による省エネ効果を得ることが出来る。   FIG. 6 shows a refrigeration cycle apparatus in which the air conditioning refrigerant pipe 10c and the air conditioning throttle means 19c are removed from the refrigeration cycle apparatus shown in FIG. 1. Also in this refrigeration cycle apparatus, the energy saving effect according to the present invention is obtained. I can do it.

空調用冷凍サイクル1が暖房モードの場合、図1、図6ともに冷媒冷媒熱交換器41aを流れる冷媒が空調用絞り手段19aから空調用絞り手段19bの方向に向かって流れるが、空調用冷凍サイクル1が冷房モードの場合、図1においては暖房モードと同じく空調用絞り手段19aから空調用絞り手段19bの方向に向かって流れるのに対し、図6においては反対に空調用絞り手段19bから空調用絞り手段19aの方向に向かって流れる。   When the air-conditioning refrigeration cycle 1 is in the heating mode, the refrigerant flowing through the refrigerant-refrigerant heat exchanger 41a flows from the air-conditioning throttle means 19a toward the air-conditioning throttle means 19b in both FIG. 1 and FIG. When 1 is in the cooling mode, in FIG. 1, it flows from the air conditioning throttle means 19a toward the air conditioning throttle means 19b as in the heating mode, whereas in FIG. It flows in the direction of the throttle means 19a.

図6に示す冷凍サイクル装置では空調用冷媒配管10cと空調用絞り手段19cを除く分だけ原材料費低減を図ることが出来、また空調用冷凍サイクルと接続する配管施工工事の工程が減少し、工事コスト低減も図ることが出来るので、より安価に省エネを実現することが出来る。   In the refrigeration cycle apparatus shown in FIG. 6, the raw material cost can be reduced by the amount excluding the air conditioning refrigerant pipe 10c and the air conditioning throttle means 19c, and the number of piping construction work steps connected to the air conditioning refrigeration cycle is reduced. Since the cost can be reduced, energy saving can be realized at a lower cost.

図7は図6に示す冷凍サイクル装置から、空調用冷媒配管10の内、空調用絞り手段15cを通り、空調用冷媒配管10a、10bと並列に配置される部分と、空調用絞り手段15cと、を取り除いた冷凍サイクルを示しており、この冷凍サイクル装置においても図6と同様の効果を得ることが出来る。   FIG. 7 shows a portion of the air-conditioning refrigerant pipe 10 that passes through the air-conditioning throttle means 15c and is arranged in parallel with the air-conditioning refrigerant pipes 10a and 10b, and the air-conditioning throttle means 15c from the refrigeration cycle apparatus shown in FIG. The refrigeration cycle in which, is removed is shown, and this refrigeration cycle apparatus can also achieve the same effects as in FIG.

空調用冷凍サイクル1が暖房モードの場合、図6においては空調用絞り手段19aと空調用絞り手段15cとを調節することで空調用冷媒配管10aを循環する冷媒循環量を調節することが出来るが、図7においては、全ての冷媒が空調用冷媒配管10aを循環することになる。   When the air-conditioning refrigeration cycle 1 is in the heating mode, the refrigerant circulation amount circulating through the air-conditioning refrigerant pipe 10a can be adjusted by adjusting the air-conditioning throttle means 19a and the air-conditioning throttle means 15c in FIG. In FIG. 7, all the refrigerant circulates through the air conditioning refrigerant pipe 10a.

図7に示す冷凍サイクル装置では、空調用絞り手段15cを削減することが出来るので、より安価に省エネを実現することが出来る。   In the refrigeration cycle apparatus shown in FIG. 7, since the air conditioning throttle means 15c can be reduced, energy saving can be realized at a lower cost.

実施の形態2.
図8と図10から図14は本発明の実施の形態2を示す冷凍サイクル装置を示している。まずは図8を用いて、冷凍サイクルの構成および動作について説明する。図8に示すように、冷凍サイクル装置は、空調用冷凍サイクル1と、冷蔵用または冷凍用冷凍サイクル2と、過冷却用冷凍サイクル3とから構成されており、空調用冷凍サイクル1と冷蔵用または冷凍用冷凍サイクル2とは冷媒冷媒熱交換器41aで、冷蔵用または冷凍用冷凍サイクル2と過冷却用冷凍サイクル3とは冷媒冷媒熱交換器51で、双方の冷媒が混じることなく熱交換を行うように構成している。
Embodiment 2. FIG.
8 and 10 to 14 show a refrigeration cycle apparatus showing Embodiment 2 of the present invention. First, the configuration and operation of the refrigeration cycle will be described with reference to FIG. As shown in FIG. 8, the refrigeration cycle apparatus includes an air conditioning refrigeration cycle 1, a refrigeration or refrigeration cycle 2, and a supercooling refrigeration cycle 3. The air conditioning refrigeration cycle 1 and refrigeration cycle Alternatively, the refrigeration cycle 2 is a refrigerant / refrigerant heat exchanger 41a, and the refrigeration or refrigeration cycle 2 and the supercooling refrigeration cycle 3 are refrigerant / refrigerant heat exchangers 51, which exchange heat without mixing the two refrigerants. Is configured to do.

空調用冷媒が循環する空調用冷凍サイクル1は、室内空調を行う主回路と、冷蔵用または冷凍用冷凍サイクル2と熱交換を行う分岐回路によって構成し、室内空調を行う主回路は、空調用圧縮機11と、空調用室外熱交換器12と、空調用受液器14と、空調用絞り手段15a、15b、15cと、空調用室内熱交換器17a、17bと、を空調用冷媒配管10で接続することにより構成し、冷蔵用または冷凍用冷凍サイクル2と熱交換を行う分岐回路は、冷媒冷媒熱交換器41aと、空調用絞り手段19a、19b、19cと、を空調用冷媒配管10a、10b、10cによって接続することにより構成している。   The air-conditioning refrigeration cycle 1 in which the air-conditioning refrigerant circulates includes a main circuit that performs indoor air-conditioning and a branch circuit that performs heat exchange with the refrigeration or refrigeration cycle 2 and the main circuit that performs indoor air-conditioning is used for air-conditioning. The compressor 11, the air conditioning outdoor heat exchanger 12, the air conditioning receiver 14, the air conditioning throttling means 15 a, 15 b, 15 c, and the air conditioning indoor heat exchangers 17 a, 17 b are connected to the air conditioning refrigerant pipe 10. The branch circuit configured to be connected to each other and exchanging heat with the refrigeration or refrigeration refrigeration cycle 2 includes the refrigerant refrigerant heat exchanger 41a and the air conditioning throttle means 19a, 19b, 19c, and the air conditioning refrigerant pipe 10a. 10b and 10c are used for connection.

空調用冷凍サイクルが冷房モード場合、空調用圧縮機11を出た空調用冷媒は、四方弁18から空調用室外熱交換器12に向かい、当該空調用室外熱交換器12にて空調用室外送風機13の作用によって室外空気に放熱し、空調用絞り手段15cにて膨張して中間圧冷媒となり、更に空調用絞り手段15a、15bにて膨張して低温低圧冷媒となり、空調用室内送風機16a、16bの作用によって空調用室内熱交換器17a、17bにて吸熱し室内に冷熱を供給するとともに、空調用絞り手段15cを出た空調用冷媒の一部が空調用冷媒配管10aから分岐し、空調用絞り手段19aによって低温低圧冷媒となり、冷媒冷媒熱交換器41aにて冷蔵用または冷凍用冷凍サイクル2を流れる高温の冷蔵用または冷凍用冷媒と熱交換をして蒸発し、空調用冷媒配管10cを通って空調用圧縮機11へ戻る。この時、空調用絞り手段19bは閉じ、空調用絞り手段19cは開いており、分岐回路への流量は空調用絞り手段19aの開度によって調節している。   When the air-conditioning refrigeration cycle is in the cooling mode, the air-conditioning refrigerant exiting the air-conditioning compressor 11 is directed from the four-way valve 18 to the air-conditioning outdoor heat exchanger 12, and the air-conditioning outdoor heat exchanger 12 uses the air-conditioning outdoor fan. 13 radiates heat to the outdoor air, expands in the air conditioning throttle means 15c and becomes an intermediate pressure refrigerant, further expands in the air conditioning throttle means 15a and 15b and becomes a low-temperature and low-pressure refrigerant, and the air conditioner indoor fans 16a and 16b. As a result, the air-conditioning indoor heat exchangers 17a and 17b absorb heat and supply cold air to the room, and a part of the air-conditioning refrigerant exiting the air-conditioning throttle means 15c branches off from the air-conditioning refrigerant pipe 10a. The squeezing means 19a becomes a low-temperature and low-pressure refrigerant, and the refrigerant refrigerant heat exchanger 41a evaporates by exchanging heat with the high-temperature refrigeration or refrigeration refrigerant flowing in the refrigeration or refrigeration cycle 2. , Back through the air conditioning refrigerant pipe 10c to the air conditioning compressor 11. At this time, the air conditioning throttle means 19b is closed, the air conditioning throttle means 19c is open, and the flow rate to the branch circuit is adjusted by the opening degree of the air conditioning throttle means 19a.

空調用冷凍サイクルが暖房モードの場合、空調用圧縮機11を出た空調用冷媒は、四方弁18から空調用室内熱交換器17a、17bに向かい、当該空調用室内熱交換器17a、17bにて空調用室内送風機16a、16bの作用によって室内に温熱を供給し、空調用絞り手段15a、15bにて膨張して中間圧冷媒となり、更に空調用絞り手段15cにて低温低圧冷媒となり、空調用室外送風機13の作用によって空調用室外熱交換器12にて吸熱して蒸発するとともに、空調用絞り手段15a、15bを出た空調用冷媒の一部が空調用冷媒配管10aから分岐し、空調用絞り手段19aによって低温低圧冷媒となり、冷媒冷媒熱交換器41aにて冷蔵用または冷凍用冷凍サイクル2を流れる高温の冷蔵用または冷凍用冷媒と熱交換をして蒸発し、空調用冷媒配管10bを通って空調用絞り手段15cを通過した空調用冷媒と合流する。この時、空調用絞り手段19cは閉じ、空調用絞り手段19bは開いており、分岐回路への流量は空調用絞り手段19aの開度によって調節している。   When the air-conditioning refrigeration cycle is in the heating mode, the air-conditioning refrigerant exiting the air-conditioning compressor 11 is directed from the four-way valve 18 to the air-conditioning indoor heat exchangers 17a and 17b and to the air-conditioning indoor heat exchangers 17a and 17b. Then, the indoor air blowers 16a and 16b for air conditioning supply warm heat into the room, expands in the air conditioning throttle means 15a and 15b to become an intermediate pressure refrigerant, and further becomes a low-temperature and low-pressure refrigerant in the air conditioning throttle means 15c. The outdoor fan 13 absorbs heat and evaporates in the air-conditioning outdoor heat exchanger 12, and a part of the air-conditioning refrigerant exiting the air-conditioning throttle means 15a and 15b branches off from the air-conditioning refrigerant pipe 10a. The squeezing means 19a becomes a low-temperature and low-pressure refrigerant, and the refrigerant refrigerant heat exchanger 41a exchanges heat with the high-temperature refrigeration or refrigeration refrigerant flowing in the refrigeration or refrigeration cycle 2 for steaming. The air-conditioning refrigerant that has passed through the air-conditioning refrigerant pipe 10b and passed through the air-conditioning throttle means 15c joins. At this time, the air conditioning throttle means 19c is closed, the air conditioning throttle means 19b is open, and the flow rate to the branch circuit is adjusted by the opening degree of the air conditioning throttle means 19a.

冷蔵用または冷凍用冷媒が循環する冷蔵用または冷凍用冷凍サイクル2は、冷蔵用または冷凍用圧縮機21と、冷蔵用または冷凍用室外熱交換器22と、冷蔵用または冷凍用受液器24と、冷媒冷媒熱交換器41aと、冷媒冷媒熱交換器51と、冷蔵用または冷凍用絞り手段25a、25bと、冷蔵用または冷凍用室内熱交換器27a、27bと、を冷蔵用または冷凍用冷媒配管20で接続することにより構成している。   The refrigeration or refrigeration refrigeration cycle 2 in which the refrigeration or refrigeration refrigerant circulates includes a refrigeration or refrigeration compressor 21, a refrigeration or refrigeration outdoor heat exchanger 22, and a refrigeration or refrigeration receiver 24. The refrigerant refrigerant heat exchanger 41a, the refrigerant refrigerant heat exchanger 51, the refrigeration or refrigeration throttle means 25a, 25b, and the refrigeration or refrigeration indoor heat exchangers 27a, 27b. The refrigerant pipe 20 is used for connection.

冷蔵用または冷凍用圧縮機21を出た冷蔵用または冷凍用冷媒は、冷蔵用または冷凍用室外熱交換器22にて冷蔵用または冷凍用室外送風機23の作用によって室外空気に放熱し、冷媒冷媒熱交換器41aにて空調用冷凍サイクル1を流れる低温の空調用冷媒と熱交換をして過冷却度を増加させ、更に冷媒冷媒熱交換器51にて過冷却用冷凍サイクル3を流れる低温の過冷却用冷媒と熱交換をして過冷却度を増加させ、冷蔵用または冷凍用絞り手段25a、25bにて膨張して低温低圧冷媒となり、冷蔵用または冷凍用室内送風機26a、26bの作用によって冷蔵用または冷凍用室内熱交換器27a、27bにて吸熱し室内に冷熱を供給する。   The refrigeration or refrigeration refrigerant exiting the refrigeration or refrigeration compressor 21 radiates heat to the outdoor air by the refrigeration or refrigeration outdoor heat exchanger 22 and acts as a refrigerant refrigerant. The heat exchanger 41a exchanges heat with the low-temperature air-conditioning refrigerant flowing through the air-conditioning refrigeration cycle 1 to increase the degree of supercooling, and the refrigerant-refrigerant heat exchanger 51 further reduces the low-temperature air flowing through the subcooling refrigeration cycle 3. Exchanges heat with the supercooling refrigerant to increase the degree of supercooling, expands in the refrigeration or refrigeration throttle means 25a, 25b to become a low-temperature and low-pressure refrigerant, and by the action of the refrigeration or refrigeration indoor fans 26a, 26b Heat is absorbed by the indoor heat exchangers 27a and 27b for refrigeration or freezing, and cold is supplied into the room.

過冷却用冷媒が循環する過冷却用冷凍サイクル3は、過冷却用圧縮機31と、過冷却用室外熱交換器32と、過冷却用受液器34と、過冷却用絞り手段35と、冷媒冷媒熱交換器51と、を過冷却用冷媒配管30で接続することにより構成している。   The supercooling refrigeration cycle 3 in which the supercooling refrigerant circulates includes a supercooling compressor 31, a supercooling outdoor heat exchanger 32, a supercooling receiver 34, a supercooling throttling means 35, The refrigerant refrigerant heat exchanger 51 is connected by a supercooling refrigerant pipe 30.

過冷却用圧縮機31を出た過冷却用冷媒は、過冷却用室外熱交換器32にて過冷却用室外送風機33の作用によって室外空気に放熱し、過冷却用絞り手段35にて膨張して低温低圧冷媒となり、冷媒冷媒熱交換器51にて冷蔵用または冷凍用冷凍サイクル2を流れる高温の冷蔵用または冷凍用冷媒と熱交換をして蒸発し、過冷却用圧縮機31へ戻る。   The supercooling refrigerant that has exited the supercooling compressor 31 radiates heat to the outdoor air by the action of the supercooling outdoor fan 33 in the supercooling outdoor heat exchanger 32, and expands in the supercooling throttle means 35. The refrigerant becomes a low-temperature and low-pressure refrigerant, evaporates by exchanging heat with the high-temperature refrigeration or refrigeration refrigerant flowing through the refrigeration or refrigeration cycle 2 in the refrigerant refrigerant heat exchanger 51, and returns to the supercooling compressor 31.

なお、図8においては、空調用絞り手段19b、19cは、空調用冷媒配管10b、10cの流路切替手段として用いているので、より安価な流路切替手段を用いても省エネは大きく悪化はしないので、電磁弁や逆止弁を用いて構成してもよい。また、暖房時に空調用絞り手段15a、15bを出た空調用冷媒の一部が空調用冷媒配管10aから分岐するとしたが、空調用絞り手段15cを全閉にすることで空調用冷媒の全部を空調用冷媒配管10aに流してもよい。また空調用絞り手段15a、15b、15c、19a、冷蔵用または冷凍用絞り手段25a、25b、過冷却用絞り手段35は、毛細管等の安価な冷媒流量調節手段、あるいは電子膨張弁による緻密な流量制御手段のいずれを使用してもよい。   In FIG. 8, the air conditioning throttle means 19b and 19c are used as the flow path switching means of the air conditioning refrigerant pipes 10b and 10c. Therefore, even if a cheaper flow path switching means is used, the energy saving is greatly deteriorated. Therefore, a solenoid valve or a check valve may be used. In addition, a part of the air-conditioning refrigerant exiting the air-conditioning throttle means 15a and 15b during the heating is branched from the air-conditioning refrigerant pipe 10a. However, by fully closing the air-conditioning throttle means 15c, all of the air-conditioning refrigerant is removed. You may flow through the refrigerant piping 10a for air conditioning. The air conditioning throttle means 15a, 15b, 15c, 19a, the refrigeration or refrigeration throttle means 25a, 25b, and the supercooling throttle means 35 are low-cost refrigerant flow rate adjusting means such as capillaries, or precise flow rates by electronic expansion valves. Any of the control means may be used.

また、空調用圧縮機11、冷蔵用または冷凍用圧縮機21、過冷却用圧縮機31は、レシプロ、ロータリー、スクロール、スクリューなどの各種タイプのいずれのものを用いてもよく、回転数可変可能のものでも、回転数固定のものでも構わない。   The air-conditioning compressor 11, the refrigeration or refrigeration compressor 21, and the supercooling compressor 31 may be any of various types such as reciprocating, rotary, scroll, and screw, and the number of rotations can be varied. Or a fixed number of revolutions.

また、空調用冷凍サイクル1と冷蔵用または冷凍用冷凍サイクル2と過冷却用冷凍サイクル3の内部を流れる冷媒はどんなものでもよく、二酸化炭素、炭化水素、ヘリウム、のような自然冷媒、HFC410A、HFC407C、HFC404Aなどの代替冷媒など塩素を含まない冷媒、もしくは既存の製品に使用されているR22、R134aなどのフロン系冷媒のいずれでもよい。   The refrigerant flowing in the air-conditioning refrigeration cycle 1, the refrigeration or refrigeration refrigeration cycle 2, and the supercooling refrigeration cycle 3 may be any refrigerant, such as natural refrigerants such as carbon dioxide, hydrocarbons, helium, HFC410A, Any of refrigerants that do not contain chlorine, such as alternative refrigerants such as HFC407C and HFC404A, or fluorocarbon refrigerants such as R22 and R134a that are used in existing products may be used.

また、空調用冷凍サイクル1と冷蔵用または冷凍用冷凍サイクル2と過冷却用冷凍サイクル3、とはそれぞれ独立した冷媒回路になっており、内部を流れる冷媒は同じ種類のものでもよいし、別の種類のものでも構わないが、それぞれ混ざることなく冷媒冷媒熱交換器41a、51にて互いに熱交換をして流れている。   In addition, the air-conditioning refrigeration cycle 1, the refrigeration or refrigeration refrigeration cycle 2, and the supercooling refrigeration cycle 3 are independent refrigerant circuits, and the refrigerants flowing through them may be of the same type or different. However, the refrigerant refrigerant heat exchangers 41a and 51 exchange heat with each other without being mixed with each other.

また、空調用室外熱交換器12、冷蔵用または冷凍用室外熱交換器22、過冷却用室外熱交換器32においてそれぞれの冷媒が空気から吸熱する場合を示しているが、これに限るものではなく、水、冷媒、ブライン等から吸熱するように構成してもよい。また、空調用室外送風機13、冷蔵用または冷凍用室外送風機23、過冷却用室外送風機33はポンプ等でもよい。また、図8は空調用室内熱交換器と、冷蔵用または冷凍用室内熱交換器とがそれぞれ2台の場合の構成例であるが3台以上の複数でもあるいは1台でもよくそれぞれの台数が異なってもよく、またそれぞれの室内機の容量が大から小まで異なっていても、全てが同一容量でもよい。また、空調用冷凍サイクル1、冷蔵用または冷凍用冷凍サイクル2、過冷却用冷凍サイクル3において余剰冷媒をそれぞれ受液器によって貯蔵する場合を示したが、これに限るものではなく、それぞれの冷凍サイクルにおいて放熱器となる熱交換器にて貯蔵してもよい。   Moreover, although the case where each refrigerant | coolant absorbs heat from air in the outdoor heat exchanger 12 for an air conditioning, the outdoor heat exchanger 22 for refrigeration or freezing, and the outdoor heat exchanger 32 for supercooling is shown, it does not restrict to this Alternatively, heat may be absorbed from water, refrigerant, brine, or the like. Further, the outdoor air blower 13 for air conditioning, the outdoor blower 23 for refrigeration or freezing, and the outdoor blower 33 for supercooling may be a pump or the like. FIG. 8 shows an example of the configuration in which there are two indoor heat exchangers for air conditioning and two indoor heat exchangers for refrigeration or freezing. However, the number of units may be three or more or one. They may be different, or the capacity of each indoor unit may vary from large to small, or all of them may have the same capacity. Moreover, although the case where the excess refrigerant | coolant was each stored by a liquid receiver in the refrigerating cycle 1 for air-conditioning, the refrigerating cycle 2 for refrigeration or freezing, and the refrigerating cycle 3 for supercooling was shown, it does not restrict to this but each refrigeration You may store with the heat exchanger used as a heat radiator in a cycle.

空調用冷凍サイクル1、冷蔵用または冷凍用冷凍サイクル2、過冷却用冷凍サイクル3を、P−h線図中に示したものを図9に示す。図9(a)は冷房モードのP−h線図、図9(b)は暖房モードのP−h線図を表す。図9において、本発明による冷凍サイクル装置のP−h線図を実線で示し、冷蔵用または冷凍用冷凍サイクルが空調用冷凍サイクルとも過冷却用冷凍サイクルとも熱交換しない場合のP−h線図を点線で、空調機が冷蔵用または冷凍用冷凍サイクルと熱交換しない場合のP−h線図を二点鎖線で示す。   FIG. 9 shows the refrigeration cycle 1 for air conditioning, the refrigeration cycle 2 for refrigerating or refrigeration 2, and the refrigeration cycle 3 for supercooling shown in the Ph diagram. FIG. 9A shows a Ph diagram in the cooling mode, and FIG. 9B shows a Ph diagram in the heating mode. In FIG. 9, the Ph diagram of the refrigeration cycle apparatus according to the present invention is shown by a solid line, and the Ph diagram when the refrigeration or refrigeration cycle does not exchange heat with the air conditioning refrigeration cycle or the supercooling refrigeration cycle. Is a dotted line, and a Ph diagram when the air conditioner does not exchange heat with the refrigeration or refrigeration cycle is indicated by a two-dot chain line.

図9からわかるように、本発明による冷凍サイクル装置において、冷蔵用または冷凍用絞り手段25a、25b入口の冷媒の温度が、熱交換を行わずに単独で運転した場合よりもΔTc2だけ低下し、冷蔵用または冷凍用室内熱交換器26a、26bの入口側と出口側ではこの温度差分だけ冷媒のエンタルピー差Δhが増加し、冷蔵用または冷凍用室内熱交換器26a、26bにおける単位冷媒流量あたりの冷媒の吸熱量、いわゆる冷凍効果、が増加し、冷蔵用または冷凍用冷凍サイクル2の冷凍能力が増加する。   As can be seen from FIG. 9, in the refrigeration cycle apparatus according to the present invention, the temperature of the refrigerant at the inlet of the refrigeration or freezing throttling means 25a, 25b is lower by ΔTc2 than when operating alone without performing heat exchange, The enthalpy difference Δh of the refrigerant increases by this temperature difference between the inlet side and the outlet side of the refrigeration or refrigeration indoor heat exchangers 26a and 26b, and per unit refrigerant flow rate in the refrigeration or refrigeration indoor heat exchangers 26a and 26b. The amount of heat absorbed by the refrigerant, the so-called refrigeration effect, increases, and the refrigeration capacity of the refrigeration cycle 2 for refrigeration or refrigeration increases.

また、この時、同じ冷蔵用または冷凍用熱負荷に対する冷蔵用または冷凍用冷媒の循環量が低減され、冷蔵用または冷凍用冷媒の循環に用いられる動力が少なくて済むので、冷蔵用または冷凍用冷凍サイクル2のCOPが、熱交換を行わずに単独で運転する場合よりも高くなり、省エネとなる。また、冷媒循環量が減ることにより配管での圧損が減るため、冷蔵用または冷凍用冷凍サイクル2の配管サイズを小さくすることができ施工性が向上するとともに、配管での熱損失が低減され省エネとなる。   At this time, the circulation amount of the refrigeration or freezing refrigerant with respect to the same refrigeration or freezing heat load is reduced, and less power is required for circulation of the refrigeration or freezing refrigerant. The COP of the refrigeration cycle 2 becomes higher than when operating alone without performing heat exchange, thus saving energy. In addition, since the pressure loss in the piping is reduced by reducing the refrigerant circulation amount, the piping size of the refrigeration cycle 2 for refrigeration or freezing can be reduced, the workability is improved, and the heat loss in the piping is reduced to save energy. It becomes.

また、過冷却用冷凍サイクル3は、冷蔵用または冷凍用絞り手段25a、25bの出口が二相となるように運転するために通常、蒸発温度が冷蔵用または冷凍用冷凍サイクル2の蒸発温度よりも高くなる。また図8のように過冷却用冷凍サイクル3、冷蔵用または冷凍用冷凍サイクル2ともに外気による空冷熱交換器により放熱器を構成した場合、凝縮温度は同程度となるので、過冷却用冷凍サイクル3のCOPは、冷蔵用または冷凍用冷凍サイクルが熱交換を行わずに単独で運転する場合のCOPよりも高くなる。   Further, since the supercooling refrigeration cycle 3 is operated so that the outlets of the refrigeration or freezing squeezing means 25a and 25b have two phases, the evaporation temperature is usually higher than the evaporation temperature of the refrigeration or refrigeration cycle 2 for refrigeration. Also gets higher. Further, as shown in FIG. 8, when the radiator is constituted by the air-cooled heat exchanger using the outside air for both the supercooling refrigeration cycle 3 and the refrigeration or freezing refrigeration cycle 2, the condensation temperature becomes approximately the same. The COP of No. 3 is higher than the COP when the refrigeration or refrigeration cycle operates alone without performing heat exchange.

また、空調用冷凍サイクル1は、冷房モードの場合は、蒸発温度は最低でも0℃以上で使用されることが多く、物品冷却用で使用される冷蔵用または冷凍用冷凍サイクル2の蒸発温度は、冷蔵用途で−10℃程度、冷凍用途で−40℃程度、で使用されることが多いため、蒸発温度は空調用冷凍サイクル1の方が冷蔵用または冷凍用冷凍サイクル2よりも高くなる。また、図8のように空調用冷凍サイクル1、冷蔵用または冷凍用冷凍サイクル2ともに外気による空冷熱交換器により放熱器を構成した場合、凝縮温度は同程度となるので、空調用冷凍サイクル1のCOPは、冷蔵用または冷凍用冷凍サイクルが熱交換を行わずに単独で運転する場合のCOPよりも高くなる。   In the cooling mode, the air-conditioning refrigeration cycle 1 is often used with an evaporation temperature of at least 0 ° C. or more, and the refrigeration or freezing refrigeration cycle 2 used for article cooling has an evaporation temperature of The evaporating temperature is higher in the air-conditioning refrigeration cycle 1 than in the refrigeration or freezing refrigeration cycle 2 because it is often used at about −10 ° C. for refrigeration and about −40 ° C. for refrigeration. Further, as shown in FIG. 8, when the radiator is configured by an air-cooled heat exchanger using outside air for both the air-conditioning refrigeration cycle 1 and the refrigeration or refrigeration cycle 2, the condensing temperature is approximately the same. The COP of the refrigeration or the refrigeration cycle for refrigeration is higher than that when the refrigeration cycle for refrigeration is operated alone without performing heat exchange.

また、空調用冷凍サイクル1が冷蔵用または冷凍用冷凍サイクル2の過冷却度を増加させるときに受け取る温熱は、空調用冷凍サイクル1が冷房モードの場合は冷熱負荷となって空調用圧縮機における機械入力を要するが、暖房モードの場合は蒸発器の熱源となるので、蒸発温度の上昇、若しくは蒸発器用送風機入力の低減へと繋がるので、空調用冷凍サイクル1、冷蔵用または冷凍用冷凍サイクル2ともに、熱交換を行わない場合よりもCOPが高くなる。   Further, the heat received when the air-conditioning refrigeration cycle 1 increases the degree of supercooling of the refrigeration or refrigeration cycle 2 becomes a cooling load when the air-conditioning refrigeration cycle 1 is in the cooling mode. Although mechanical input is required, it becomes a heat source for the evaporator in the heating mode, leading to an increase in the evaporation temperature or a reduction in the input to the blower for the evaporator. Therefore, the refrigeration cycle 1 for air conditioning, the refrigeration cycle 2 for refrigeration, or refrigeration In both cases, the COP is higher than when heat exchange is not performed.

従って、本発明による冷凍サイクル装置のCOPは、空調用冷凍サイクルが冷房モードであるか暖房モードであるかによらず、空調用冷凍サイクルと冷蔵用または冷凍用冷凍サイクルが熱交換を行わずにそれぞれ単独で運転する場合のCOPよりも高くなり、省エネとなる。
また、空調用冷凍サイクル1が電源OFFやサーモオフ、または冷媒や油を交換するリプレースや機器の交換や修理を行うメンテナンスなどにより運転を停止している場合においても、過冷却用冷凍サイクル3との熱交換によって、冷蔵用または冷凍用冷凍サイクル2の過冷却度を増加させることができるので、冷蔵用または冷凍用冷凍サイクル2が熱交換を行わずに単独で運転する場合よりも冷凍効果、COPともに大きい運転を維持することが出来、省エネとなる。
Therefore, the COP of the refrigeration cycle apparatus according to the present invention does not perform heat exchange between the air-conditioning refrigeration cycle and the refrigeration or refrigeration cycle regardless of whether the air-conditioning refrigeration cycle is in the cooling mode or the heating mode. It becomes higher than the COP in the case of operating independently each, and it becomes energy saving.
Even when the air-conditioning refrigeration cycle 1 is stopped due to power-off, thermo-off, replacement for replacing refrigerant or oil, maintenance for replacing or repairing equipment, etc., Since the degree of supercooling of the refrigeration or freezing refrigeration cycle 2 can be increased by heat exchange, the refrigeration effect or COP is higher than when the refrigeration or freezing refrigeration cycle 2 operates alone without heat exchange. Both can maintain large operation and save energy.

また、外気温度が高く、空調負荷も高い場合であって、空調用冷凍サイクル1の蒸発温度が高い場合、従来の空調用冷凍サイクルと冷蔵用または冷凍用冷凍サイクルのみにより構成される冷凍サイクル装置においては冷蔵用または冷凍用冷凍サイクルの過冷却度を充分に増加させることが出来なかったが、本発明による冷凍サイクル装置では、過冷却用冷凍サイクル3との熱交換によって、冷蔵用または冷凍用冷凍サイクル2の過冷却度を増加させることが出来るので、冷蔵用または冷凍用冷凍サイクルが熱交換を行わずに単独で運転する場合よりも省エネとなる。   Further, when the outside air temperature is high and the air conditioning load is high, and the evaporation temperature of the air conditioning refrigeration cycle 1 is high, a refrigeration cycle apparatus configured only by a conventional air conditioning refrigeration cycle and a refrigeration or refrigeration cycle. In the refrigeration cycle apparatus according to the present invention, the degree of supercooling of the refrigeration cycle for refrigeration or freezing could not be increased sufficiently. Since the degree of supercooling of the refrigeration cycle 2 can be increased, energy can be saved more than when the refrigeration or refrigeration cycle is operated alone without heat exchange.

図10は、図8に示す冷凍サイクル装置に加えて、冷蔵用または冷凍用室外熱交換器22を迂回するように並列に配置される冷蔵用または冷凍用冷媒配管20aと、冷蔵用または冷凍用冷媒配管20aと冷蔵用または冷凍用室外熱交換器22に流れる冷蔵用または冷凍用冷媒の分配を制御する冷蔵用または冷凍用絞り手段29a、29bと、冷蔵用または冷凍用受液器24の上流で冷蔵用または冷凍用室外熱交換器22を迂回した冷蔵用または冷凍用冷媒の放熱器として機能するように配置された空調用冷媒と冷蔵用または冷凍用冷媒が熱交換を行う冷媒冷媒熱交換器41bと、を備えることを特徴とする冷凍サイクル装置を示している。   10 shows, in addition to the refrigeration cycle apparatus shown in FIG. 8, a refrigeration or freezing refrigerant pipe 20a arranged in parallel so as to bypass the refrigeration or freezing outdoor heat exchanger 22, and a refrigeration or freezing Refrigerating or refrigeration throttling means 29a and 29b for controlling distribution of the refrigeration or refrigeration refrigerant flowing to the refrigerant pipe 20a, the refrigeration or refrigeration outdoor heat exchanger 22, and the upstream of the refrigeration or refrigeration receiver 24. The refrigerant / refrigerant heat exchange in which the air-conditioning refrigerant and the refrigeration / refrigeration refrigerant exchange heat with the refrigerant for refrigeration / refrigeration refrigerant that bypasses the refrigeration / refrigeration outdoor heat exchanger 22. The refrigerating cycle apparatus characterized by including the vessel 41b.

図10において、冷蔵用または冷凍用絞り手段29bを開き、冷蔵用または冷凍用絞り手段29aを閉じた状態での空調用冷凍サイクル1、冷蔵用または冷凍用冷凍サイクル2、過冷却用冷凍サイクル3との基本的な動作は図8と同様なので省略する。   In FIG. 10, the air-conditioning refrigeration cycle 1, the refrigeration or refrigeration cycle 2 and the supercooling refrigeration cycle 3 with the refrigeration or refrigeration throttling means 29b opened and the refrigeration or refrigeration throttling means 29a closed. The basic operation is the same as in FIG.

図10において、空調用冷凍サイクル1が暖房運転を行う場合であって、冷蔵用または冷凍用冷凍サイクル2の冷蔵用または冷凍用絞り手段29bを閉じ、冷蔵用または冷凍用絞り手段29aを開いた場合、図8の冷凍サイクル装置では冷蔵用または冷凍用室外熱交換器22において外気に放熱していた温熱を放熱しないで全て、冷媒冷媒熱交換器41bを介して空調用冷凍サイクル1の蒸発熱源として利用できるので、図8に示す冷凍サイクル装置よりも更に、空調用冷凍サイクル1の蒸発温度の上昇、若しくは蒸発器用送風機入力の低減を実現でき、以ってCOPが向上し、省エネが実現できる。   In FIG. 10, when the air-conditioning refrigeration cycle 1 performs heating operation, the refrigeration or refrigeration throttle means 29b of the refrigeration or refrigeration refrigeration cycle 2 is closed, and the refrigeration or refrigeration throttle means 29a is opened. In this case, in the refrigeration cycle apparatus of FIG. 8, all the heat that has been radiated to the outside air in the refrigeration or refrigeration outdoor heat exchanger 22 is not radiated, and the evaporation heat source of the air-conditioning refrigeration cycle 1 via the refrigerant refrigerant heat exchanger 41b. Therefore, the evaporating temperature of the air-conditioning refrigeration cycle 1 can be increased or the input of the evaporator fan can be reduced more than in the refrigeration cycle apparatus shown in FIG. 8, thereby improving the COP and realizing energy saving. .

図11は、図10に示す冷凍サイクル装置から、冷蔵用または冷凍用受液器24と冷媒冷媒熱交換器41bとを取り除いた冷凍サイクル装置を示している。   FIG. 11 shows a refrigeration cycle apparatus in which the refrigeration or refrigeration receiver 24 and the refrigerant / refrigerant heat exchanger 41b are removed from the refrigeration cycle apparatus shown in FIG.

図11において、冷蔵用または冷凍用絞り手段29bを開き、冷蔵用または冷凍用絞り手段29aを閉じた状態での空調用冷凍サイクル1、冷蔵用または冷凍用冷凍サイクル2、過冷却用冷凍サイクル3の基本的な動作は、余剰冷媒を受液器ではなく放熱器に貯蔵する点以外は、図8と同様なので省略する。   In FIG. 11, the air-conditioning refrigeration cycle 1, the refrigeration or refrigeration refrigeration cycle 2, and the supercooling refrigeration cycle 3 with the refrigeration or refrigeration throttling means 29b opened and the refrigeration or refrigeration throttling means 29a closed. The basic operation is the same as in FIG. 8 except that the surplus refrigerant is stored in the heat radiator rather than the liquid receiver, and is therefore omitted.

図11において、空調用冷凍サイクル1が暖房運転を行う場合であって、冷蔵用または冷凍用冷凍サイクル2の冷蔵用または冷凍用絞り手段29bを閉じ、冷蔵用または冷凍用絞り手段29aを開いた場合、図8の冷凍サイクル装置では冷蔵用または冷凍用室外熱交換器22において外気に放熱していた温熱を、冷媒冷媒熱交換器41aを介して空調用冷凍サイクル1の蒸発熱源として利用できるので、図8に示す冷凍サイクル装置よりも更に、空調用冷凍サイクル1の蒸発温度の上昇、若しくは蒸発器用送風機入力の低減を実現でき、以ってCOPが向上し、省エネが実現できる。   In FIG. 11, when the air-conditioning refrigeration cycle 1 performs heating operation, the refrigeration or refrigeration throttle means 29b of the refrigeration or refrigeration cycle 2 is closed, and the refrigeration or refrigeration throttle means 29a is opened. In this case, in the refrigeration cycle apparatus of FIG. 8, the heat that has been radiated to the outside air in the refrigeration or refrigeration outdoor heat exchanger 22 can be used as the evaporation heat source of the air-conditioning refrigeration cycle 1 via the refrigerant refrigerant heat exchanger 41a. Further, the evaporating temperature of the air-conditioning refrigeration cycle 1 can be increased or the evaporator blower input can be reduced more than in the refrigeration cycle apparatus shown in FIG. 8, thereby improving the COP and realizing energy saving.

また、図11においては、図10のような受液器がないため、受液器の上流に放熱器としての冷媒冷媒熱交換器と、受液器の下流に過冷却度を増加させるための冷媒冷媒熱交換器と、を配置するような構成にする必要がないため、冷媒冷媒熱交換器の数を減ずることが出来るので、より安価に省エネを実現することが出来る。   Moreover, in FIG. 11, since there is no liquid receiver like FIG. 10, the refrigerant | coolant refrigerant | coolant heat exchanger as a heat sink is upstream of a liquid receiver, and the degree of supercooling is increased downstream of a liquid receiver. Since it is not necessary to use a configuration in which the refrigerant / refrigerant heat exchanger is arranged, the number of refrigerant / refrigerant heat exchangers can be reduced, so that energy saving can be realized at a lower cost.

図12は、図8に示す冷凍サイクル装置に加えて、空調用室外熱交換器12を迂回するように並列に配置される空調用冷媒配管10dと、空調用冷媒配管10dと空調用室外熱交換器12に流れる空調用冷媒の分配を制御する空調用絞り手段19d、19eと、を備えることを特徴とする冷凍サイクル装置を示している。   FIG. 12 shows, in addition to the refrigeration cycle apparatus shown in FIG. 8, an air conditioning refrigerant pipe 10d arranged in parallel so as to bypass the air conditioning outdoor heat exchanger 12, an air conditioning refrigerant pipe 10d, and an air conditioning outdoor heat exchange. 1 shows a refrigeration cycle apparatus comprising air conditioning throttling means 19d, 19e for controlling the distribution of air conditioning refrigerant flowing into the vessel 12.

図12において、空調用絞り手段19eを開き、空調用絞り手段19dを閉じた状態は、図8に示す冷凍サイクル装置と実質的に同一なので、基本的な動作の説明は省略する。   In FIG. 12, the state in which the air conditioning throttle means 19e is opened and the air conditioning throttle means 19d is closed is substantially the same as in the refrigeration cycle apparatus shown in FIG.

図12に示す空調用冷凍サイクル1が、空調用絞り手段19eを開き、空調用絞り手段19dを閉じた状態で、暖房運転を行う場合、冷媒冷媒熱交換器41aにおける熱交換量が空調用冷凍サイクル1の必要とする蒸発熱量以下ならば、空調用室外熱交換器12が蒸発器として機能しなくてはならないので、蒸発温度が外気の温度よりも低い必要があるが、逆に冷媒冷媒熱交換器41aにおける熱交換量が空調用冷凍サイクル1の必要とする蒸発熱量以上ならば、空調用室外熱交換器12が蒸発器として機能する必要がないため、蒸発温度を外気温度よりも高くすることが出来る。
しかし、この場合、空調用室外熱交換器12が放熱器として機能してしまい、蒸発温度増加を阻害する方向に働く。
このような場合、図12において、空調用冷凍サイクル1の空調用絞り手段19eを閉じ、空調用絞り手段19dを開いた場合、空調用冷媒が空調用室外熱交換器12にて外気と熱交換を行うことがないため、図8に示す冷凍サイクル装置よりも更に、空調用冷凍サイクル1の蒸発温度の上昇、若しくは蒸発器用送風機入力の低減を実現でき、以ってCOPが向上し、省エネが実現できる。
When the air-conditioning refrigeration cycle 1 shown in FIG. 12 performs heating operation with the air-conditioning throttle means 19e opened and the air-conditioning throttle means 19d closed, the amount of heat exchange in the refrigerant refrigerant heat exchanger 41a is refrigeration for air-conditioning. If it is less than the amount of heat of evaporation required by cycle 1, the air-conditioning outdoor heat exchanger 12 must function as an evaporator, so the evaporation temperature needs to be lower than the temperature of the outside air. If the amount of heat exchange in the exchanger 41a is equal to or greater than the amount of heat of evaporation required by the air-conditioning refrigeration cycle 1, the air-conditioning outdoor heat exchanger 12 does not need to function as an evaporator, so the evaporation temperature is set higher than the outside air temperature. I can do it.
However, in this case, the air-conditioning outdoor heat exchanger 12 functions as a radiator and acts in a direction that hinders increase in evaporation temperature.
In such a case, in FIG. 12, when the air conditioning throttle means 19e of the air conditioning refrigeration cycle 1 is closed and the air conditioning throttle means 19d is opened, the air conditioning refrigerant exchanges heat with the outside air in the air conditioning outdoor heat exchanger 12. Therefore, the evaporating temperature of the air-conditioning refrigeration cycle 1 can be increased or the evaporator blower input can be reduced more than the refrigeration cycle apparatus shown in FIG. realizable.

なお、図12は、図8に示す冷凍サイクル装置に加えて、空調用室外熱交換器12を迂回するように並列に配置される空調用冷媒配管10dと、空調用冷媒配管10dと空調用室外熱交換器12に流れる空調用冷媒の分配を制御する空調用絞り手段19d、19eと、を備えたものであるが、図10や図11に示す冷凍サイクル装置に対して、同様に空調用室外熱交換器12を迂回する回路を加えてもよく、この場合も同様の効果が期待できるのは当然である。   In addition to the refrigeration cycle apparatus shown in FIG. 8, FIG. 12 shows an air conditioning refrigerant pipe 10d arranged in parallel so as to bypass the air conditioning outdoor heat exchanger 12, an air conditioning refrigerant pipe 10d, and the air conditioning outdoor. Air-conditioning throttling means 19d and 19e for controlling the distribution of the air-conditioning refrigerant flowing to the heat exchanger 12, but for the refrigeration cycle apparatus shown in FIGS. A circuit that bypasses the heat exchanger 12 may be added, and in this case, the same effect can naturally be expected.

また、図8と図10から図14においては冷媒冷媒熱交換器41aを冷媒冷媒熱交換器51の上流側に配置したが、下流側に配置しても同様の効果が得られ、冷蔵用または冷凍用室外熱交換器を出た冷蔵用または冷凍用冷媒が、過冷却用冷凍サイクル3により冷却されて、冷蔵用または冷凍用冷凍サイクル2の過冷却度が増加し、空調用冷凍サイクル1により更に冷蔵用または冷凍用冷凍サイクル2の過冷却度が増加して、冷蔵用または冷凍用冷凍サイクルの冷凍効果が増加する。この時、同じ冷蔵用または冷凍用熱負荷に対する冷蔵用または冷凍用冷媒の循環量が低減され、冷蔵用または冷凍用冷媒の循環に用いられる動力が少なくて済むので、冷蔵用または冷凍用冷凍サイクル2のCOPが、熱交換を行わずに単独で運転する場合よりも高くなり、省エネとなる。また、冷媒循環量が減ることにより配管での圧損が減るため、冷蔵用または冷凍用冷凍サイクル2の配管サイズを小さくすることができ施工性が向上するとともに、配管での熱損失が低減され省エネとなる。   8 and 10 to 14, the refrigerant / refrigerant heat exchanger 41a is arranged on the upstream side of the refrigerant / refrigerant heat exchanger 51, but the same effect can be obtained even if arranged on the downstream side. The refrigeration or refrigeration refrigerant exiting the refrigeration outdoor heat exchanger is cooled by the supercooling refrigeration cycle 3, and the degree of supercooling of the refrigeration or refrigeration cycle 2 is increased. Furthermore, the degree of supercooling of the refrigeration or freezing refrigeration cycle 2 increases, and the refrigeration effect of the refrigeration or freezing refrigeration cycle increases. At this time, the amount of refrigeration or refrigeration refrigerant circulated for the same refrigeration or refrigeration heat load is reduced, and less power is required to circulate the refrigeration or refrigeration refrigerant. The COP of 2 becomes higher than the case of operating alone without performing heat exchange, thus saving energy. In addition, since the pressure loss in the piping is reduced by reducing the refrigerant circulation amount, the piping size of the refrigeration cycle 2 for refrigeration or freezing can be reduced, the workability is improved, and the heat loss in the piping is reduced to save energy. It becomes.

なお、冷媒冷媒熱交換器41aと冷媒冷媒熱交換器51の内、上流側の冷媒冷媒熱交換器で冷蔵用または冷凍用冷媒を冷却し過ぎ、下流側の冷媒冷媒熱交換器の蒸発温度よりも下がった場合、本発明の目的とは逆に冷蔵用または冷凍用冷媒の方に温熱が流れ込んでしまい、省エネに反する結果となるので、より蒸発温度の低い冷媒と熱交換する冷媒冷媒熱交換器を下流側に配置する方が確実に省エネとなる。   Of the refrigerant / refrigerant heat exchanger 41a and the refrigerant / refrigerant heat exchanger 51, the refrigerant refrigerant heat exchanger on the upstream side overcools the refrigeration or refrigeration refrigerant, and the evaporation temperature of the refrigerant refrigerant heat exchanger on the downstream side If the temperature decreases, the heat flows into the refrigerant for refrigeration or freezing, contrary to the purpose of the present invention, which results in counteracting energy saving. Therefore, refrigerant refrigerant heat exchange that exchanges heat with a refrigerant having a lower evaporation temperature. It is certainly energy saving to arrange the vessel downstream.

また、空調用冷凍サイクル1が外気温度や空調負荷によって蒸発温度の下限値に制約が加えられ、一般的に0℃以下になることは少ないのに対し、過冷却用冷凍サイクル3は、冷蔵用または冷凍用冷凍サイクル2の有する冷蔵用または冷凍用絞り手段25a、25bの出口が二相であれば何度まで下げても良いので、過冷却用冷凍サイクル3の蒸発温度の方が空調用冷凍サイクル1の蒸発温度よりも低くすることができる。   In addition, the air-conditioning refrigeration cycle 1 is constrained by the lower limit of the evaporating temperature depending on the outside air temperature and the air-conditioning load, and is generally less than 0 ° C., whereas the supercooling refrigeration cycle 3 is used for refrigeration. Alternatively, if the outlet of the refrigeration or freezing throttling means 25a, 25b of the freezing refrigeration cycle 2 is two-phase, it can be lowered to any number of times. It can be made lower than the evaporation temperature of cycle 1.

従って、過冷却用冷凍サイクル3と熱交換を行う冷媒冷媒熱交換器41aの方を空調用冷凍サイクル1と熱交換を行う冷媒冷媒熱交換器51の下流側に配置する方が、より確実に省エネになる。   Therefore, the refrigerant refrigerant heat exchanger 41a that exchanges heat with the subcooling refrigeration cycle 3 is more reliably disposed downstream of the refrigerant refrigerant heat exchanger 51 that exchanges heat with the air conditioning refrigeration cycle 1. It becomes energy saving.

また、空調用冷凍サイクル1を制御する制御装置と、冷蔵用または冷凍用冷凍サイクル2を制御する制御装置と、過冷却用冷凍サイクル3を制御する制御装置とが、それぞれ通信手段を備えて有線または無線による通信により、相互の情報をやりとりすることができれば、連携して制御を行うことが可能となるため、より高度な、より安定性の増した、省エネシステムが構築できる。   In addition, a control device that controls the refrigeration cycle 1 for air conditioning, a control device that controls the refrigeration cycle 2 for refrigeration or refrigeration, and a control device that controls the refrigeration cycle 3 for supercooling are each provided with communication means and wired. Alternatively, if mutual information can be exchanged by wireless communication, control can be performed in cooperation with each other, so that a more advanced and more stable energy saving system can be constructed.

例えば、図8と図10から図12に示す冷凍サイクル装置において、冷蔵用または冷凍用冷凍サイクル2の運転状態が冷蔵用または冷凍用冷凍サイクル2の制御装置から過冷却用冷凍サイクル3の制御装置に送信されるようにシステムを構成すれば、冷蔵用または冷凍用冷凍サイクル2のON/OFFに合わせて過冷却用冷凍サイクル3のON/OFFタイミングを制御でき、無駄な運転が無くなり、省エネとなる。   For example, in the refrigeration cycle apparatus shown in FIGS. 8 and 10 to 12, the operating state of the refrigeration or refrigeration cycle 2 is changed from the control apparatus for the refrigeration or refrigeration cycle 2 to the control apparatus for the supercooling refrigeration cycle 3. If the system is configured so that the refrigeration cycle 2 for refrigeration or refrigeration for refrigeration 2 is turned on / off, the ON / OFF timing of the refrigeration cycle 3 for supercooling can be controlled, eliminating unnecessary operation and saving energy. Become.

また、図8と図10から図12に示す冷凍サイクル装置において、例えば外気温度が低い場合、空調用冷凍サイクル1が暖房モードで稼働中に、過冷却用冷凍サイクル3を稼動すると、過冷却用冷凍サイクル3の蒸発温度が大幅に低下し、過冷却用冷凍サイクル3のCOPが低下し、システム全体のCOPも低下する場合がある。また、冷媒冷媒熱交換器41aを冷媒冷媒熱交換器51の下流側に配置した場合において、空調用冷凍サイクル1が暖房モードで稼働中、過冷却用冷凍サイクル3を稼動すると、冷蔵用または冷凍用冷凍サイクル2の排熱を空調用冷凍サイクル1の上流側で過冷却用冷凍サイクル3が回収し外気に放熱するので、システムCOPが低下する。   Further, in the refrigeration cycle apparatus shown in FIG. 8 and FIGS. 10 to 12, for example, when the outside air temperature is low, if the supercooling refrigeration cycle 3 is operated while the air conditioning refrigeration cycle 1 is operating in the heating mode, In some cases, the evaporation temperature of the refrigeration cycle 3 is significantly lowered, the COP of the subcooling refrigeration cycle 3 is lowered, and the COP of the entire system is also lowered. When the refrigerant / refrigerant heat exchanger 41a is arranged on the downstream side of the refrigerant / refrigerant heat exchanger 51, if the air-cooling refrigeration cycle 1 is operating in the heating mode and the supercooling refrigeration cycle 3 is operated, the refrigeration or refrigeration is performed. Since the subcooling refrigeration cycle 3 collects the exhaust heat of the refrigeration cycle 2 upstream of the air conditioning refrigeration cycle 1 and dissipates heat to the outside air, the system COP decreases.

このような場合、空調用冷凍サイクル1の運転状態が空調用冷凍サイクル1の制御装置から過冷却用冷凍サイクル3の制御装置に送信されるようにシステムを構成すれば、空調用冷凍サイクル1が暖房モードとなった時に、過冷却用冷凍サイクル3の運転を、適切なタイミングで確実に停止させることが出来、省エネとなる。   In such a case, if the system is configured such that the operating state of the air conditioning refrigeration cycle 1 is transmitted from the control device of the air conditioning refrigeration cycle 1 to the control device of the supercooling refrigeration cycle 3, the air conditioning refrigeration cycle 1 is When the heating mode is entered, the operation of the supercooling refrigeration cycle 3 can be reliably stopped at an appropriate timing, thereby saving energy.

なお、冷媒冷媒熱交換器41aまたは41bに空調用冷媒の蒸発温度検出手段を設けその検出値と、外気温度と、を過冷却用冷凍サイクル3の制御装置に送信されるようにシステムを構成すれば、空調用冷凍サイクル1の制御装置と通信することなく、空調用冷凍サイクル1の運転状態を推定することが出来、より安価に省エネを実現することが出来ることは前述と同様である。   The refrigerant refrigerant heat exchanger 41a or 41b is provided with an evaporating temperature detecting means for the air conditioning refrigerant so that the detected value and the outside air temperature are transmitted to the control device of the supercooling refrigeration cycle 3. For example, the operating state of the air-conditioning refrigeration cycle 1 can be estimated without communicating with the control device of the air-conditioning refrigeration cycle 1, and energy saving can be realized at a lower cost as described above.

また、図10または図11に示す冷凍サイクル装置において、空調用冷凍サイクル1の運転モードが冷蔵用または冷凍用冷凍サイクル2の制御装置に送信されるようにシステムを構成すれば、空調用冷凍サイクル1が暖房モードとなった時に、冷蔵用または冷凍用絞り手段29bを閉じ、冷蔵用または冷凍用絞り手段29aを開くことによって、冷蔵用または冷凍用圧縮機から吐出された高温の冷蔵用または冷凍用冷媒をバイパスさせることで、適切なタイミングで確実に冷蔵用または冷凍用冷凍サイクル2で排熱されることなく、この熱を全て空調用冷凍サイクル1の蒸発熱源に利用するように動作を制御することが出来、省エネとなる。   Further, in the refrigeration cycle apparatus shown in FIG. 10 or FIG. 11, if the system is configured such that the operation mode of the air-conditioning refrigeration cycle 1 is transmitted to the control device of the refrigeration or refrigeration cycle 2, the air-conditioning refrigeration cycle When the refrigeration or refrigeration throttling means 29b is closed and the refrigeration or refrigeration throttling means 29a is opened when 1 enters the heating mode, the high temperature refrigeration or refrigeration discharged from the refrigeration or refrigeration compressor is opened. By bypassing the refrigerant for operation, the operation is controlled so that all of this heat is used as the evaporation heat source of the air-conditioning refrigeration cycle 1 without being exhausted by the refrigeration or refrigeration cycle 2 reliably at an appropriate timing. Can save energy.

なお、冷媒冷媒熱交換器41aまたは41bに空調用冷媒の蒸発温度検出手段を設け、その検出値と、外気温度と、を冷蔵用または冷凍用冷凍サイクル2の制御装置に送信されるようにシステムを構成すれば、空調用冷凍サイクル1の制御装置と通信することなく、空調用冷凍サイクル1の運転状態を推定することが出来るので、より安価に省エネを実現することが出来ることは前述と同様である。   The refrigerant refrigerant heat exchanger 41a or 41b is provided with an evaporating temperature detecting means for the air conditioning refrigerant, and the detected value and the outside air temperature are transmitted to the control device of the refrigeration or freezing refrigeration cycle 2. Since the operation state of the air-conditioning refrigeration cycle 1 can be estimated without communicating with the control device for the air-conditioning refrigeration cycle 1, it is possible to realize energy saving at a lower cost as described above. It is.

図13は、図8に示す冷凍サイクル装置から、空調用冷媒配管10cと、空調用絞り手段19cとを取り除いた冷凍サイクル装置を示しており、この冷凍サイクル装置においても図8と同様の効果を得ることが出来る。   FIG. 13 shows a refrigeration cycle apparatus in which the air conditioning refrigerant pipe 10c and the air conditioning throttle means 19c are removed from the refrigeration cycle apparatus shown in FIG. 8, and this refrigeration cycle apparatus also has the same effect as FIG. Can be obtained.

空調用冷凍サイクル1が暖房モードの場合、図8、図13ともに冷媒冷媒熱交換器41aを流れる冷媒が空調用絞り手段19aから空調用絞り手段19bの方向に向かって流れるが、空調用冷凍サイクル1が冷房モードの場合、図8においては暖房モードと同じく空調用絞り手段19aから空調用絞り手段19bの方向に向かって流れるのに対し、図13においては反対に空調用絞り手段19bから空調用絞り手段19aの方向に向かって流れる。   When the air conditioning refrigeration cycle 1 is in the heating mode, the refrigerant flowing through the refrigerant refrigerant heat exchanger 41a flows from the air conditioning throttle means 19a toward the air conditioning throttle means 19b in both FIGS. When 1 is in the cooling mode, in FIG. 8, as in the heating mode, it flows from the air conditioning throttle means 19a toward the air conditioning throttle means 19b, whereas in FIG. It flows in the direction of the throttle means 19a.

図6に示す冷凍サイクル装置では空調用冷媒配管10cと空調用絞り手段19cを除く分だけ原材料費低減を図ることが出来、また空調用冷凍サイクルと接続する配管施工工事の工程が減少し、工事コスト低減も図ることが出来るので、より安価に省エネを実現することが出来る。   In the refrigeration cycle apparatus shown in FIG. 6, the raw material cost can be reduced by the amount excluding the air conditioning refrigerant pipe 10c and the air conditioning throttle means 19c, and the number of piping construction work steps connected to the air conditioning refrigeration cycle is reduced. Since the cost can be reduced, energy saving can be realized at a lower cost.

図14は図13に示す冷凍サイクル装置から、空調用冷媒配管10の内、空調用絞り手段15cを通り、空調用冷媒配管10a、10bと並列に配置される部分と、空調用絞り手段15cと、を取り除いた冷凍サイクルを示しており、この冷凍サイクル装置においても図13と同様の効果を得ることが出来る。   FIG. 14 shows a part of the air-conditioning refrigerant pipe 10 that passes through the air-conditioning throttle means 15c and is arranged in parallel with the air-conditioning refrigerant pipes 10a and 10b, and the air-conditioning throttle means 15c from the refrigeration cycle apparatus shown in FIG. The refrigeration cycle in which, is removed is shown, and in this refrigeration cycle apparatus, the same effect as in FIG. 13 can be obtained.

空調用冷凍サイクル1が暖房モードの場合、図13においては空調用絞り手段19aと空調用絞り手段15cとを調節することで空調用冷媒配管10aを循環する冷媒循環量を調節することが出来るが、図14においては、全ての冷媒が空調用冷媒配管10aを循環することになる。   When the air-conditioning refrigeration cycle 1 is in the heating mode, the amount of refrigerant circulating in the air-conditioning refrigerant pipe 10a can be adjusted by adjusting the air-conditioning throttle means 19a and the air-conditioning throttle means 15c in FIG. In FIG. 14, all the refrigerant circulates through the air conditioning refrigerant pipe 10a.

図14に示す冷凍サイクル装置では、空調用絞り手段15cを削減することが出来るので、より安価に省エネを実現することが出来る。   In the refrigeration cycle apparatus shown in FIG. 14, since the air conditioning throttle means 15c can be reduced, energy saving can be realized at a lower cost.

実施の形態3.
図15は本発明の実施の形態3を示す冷凍サイクル装置を示している。図15は、高段側の冷凍サイクルが空調用冷凍サイクルから冷蔵用または冷凍用冷凍サイクルに変更されている点で、図1と異なっている。図15において、冷凍サイクルの構成および動作について説明する。図15に示すように、冷凍サイクル装置は、第一の冷蔵用または冷凍用冷凍サイクル8と、第二の冷蔵用または冷凍用冷凍サイクル9と、過冷却用冷凍サイクル3とから構成されており、第一の冷蔵用または冷凍用冷凍サイクル8と過冷却用冷凍サイクル3とは冷媒冷媒熱交換器41aで、第二の冷蔵用または冷凍用冷凍サイクル9と過冷却用冷凍サイクル3とは冷媒冷媒熱交換器51で、双方の冷媒が混じることなく熱交換を行うように構成している。
Embodiment 3 FIG.
FIG. 15 shows a refrigeration cycle apparatus showing Embodiment 3 of the present invention. FIG. 15 is different from FIG. 1 in that the refrigeration cycle on the higher stage side is changed from the air-conditioning refrigeration cycle to the refrigeration or refrigeration cycle. In FIG. 15, the configuration and operation of the refrigeration cycle will be described. As shown in FIG. 15, the refrigeration cycle apparatus includes a first refrigeration or refrigeration cycle 8, a second refrigeration or refrigeration cycle 9, and a supercooling refrigeration cycle 3. The first refrigeration or freezing refrigeration cycle 8 and the supercooling refrigeration cycle 3 are refrigerant refrigerant heat exchangers 41a, and the second refrigeration or freezing refrigeration cycle 9 and the supercooling refrigeration cycle 3 are refrigerants. The refrigerant heat exchanger 51 is configured to perform heat exchange without mixing both refrigerants.

第一の冷蔵用または冷凍用冷媒が循環する第一の冷蔵用または冷凍用冷凍サイクル8は、第一の冷蔵用または冷凍用圧縮機81と、第一の冷蔵用または冷凍用室外熱交換器82と、第一の冷蔵用または冷凍用受液器84と、冷媒冷媒熱交換器41aと、第一の冷蔵用または冷凍用絞り手段85a、85bと、第一の冷蔵用または冷凍用室内熱交換器87a、87bと、を第一の冷蔵用または冷凍用冷媒配管80で接続することにより構成している。   The first refrigeration or refrigeration cycle 8 in which the first refrigeration or refrigeration refrigerant circulates includes a first refrigeration or refrigeration compressor 81, and a first refrigeration or refrigeration outdoor heat exchanger. 82, first refrigeration or refrigeration receiver 84, refrigerant refrigerant heat exchanger 41a, first refrigeration or refrigeration squeezing means 85a, 85b, and first refrigeration or refrigeration indoor heat. The exchangers 87a and 87b are connected by a first refrigeration or freezing refrigerant pipe 80.

第一の冷蔵用または冷凍用圧縮機81を出た第一の冷蔵用または冷凍用冷媒は、第一の冷蔵用または冷凍用室外熱交換器82にて第一の冷蔵用または冷凍用室外送風機83の作用によって室外空気に放熱し、第一の冷蔵用または冷凍用絞り手段85a、85bにて膨張して低温低圧冷媒となり、第一の冷蔵用または冷凍用室内送風機86a、86bの作用によって第一の冷蔵用または冷凍用室内熱交換器87a、87bにて吸熱し室内に冷熱を供給する。一方、第一の冷蔵用または冷凍用室外熱交換器82を出た第一の冷蔵用または冷凍用冷媒の一部は分岐し、第一の冷蔵用または冷凍用絞り手段89aによって低温低圧になり、冷媒冷媒熱交換器41aにて過冷却用冷凍サイクル3を流れる高温の過冷却用冷媒と熱交換をして蒸発し、第一の冷蔵用または冷凍用冷媒配管80bを通って、第一の冷蔵用または冷凍用室内熱交換器87a、87bを通過した第一の冷蔵用または冷凍用冷媒と合流する。この時、分岐回路への流量は第一の冷蔵用または冷凍用絞り手段89aの開度によって調節している。   The first refrigeration or refrigeration refrigerant exiting the first refrigeration or refrigeration compressor 81 is used as the first refrigeration or refrigeration outdoor blower in the first refrigeration or refrigeration outdoor heat exchanger 82. 83 radiates heat to the outdoor air, expands in the first refrigeration or refrigeration throttling means 85a and 85b, and becomes a low-temperature and low-pressure refrigerant. The first refrigeration or refrigeration indoor fans 86a and 86b One refrigeration or freezing indoor heat exchangers 87a and 87b absorb heat and supply cold heat into the room. On the other hand, a part of the first refrigeration or refrigeration refrigerant exiting the first refrigeration or refrigeration outdoor heat exchanger 82 branches and becomes low temperature and low pressure by the first refrigeration or refrigeration throttle means 89a. The refrigerant refrigerant heat exchanger 41a evaporates by exchanging heat with the high-temperature supercooling refrigerant flowing in the supercooling refrigeration cycle 3, passing through the first refrigeration or refrigeration refrigerant pipe 80b, The refrigeration or freezing indoor heat exchangers 87a and 87b merge with the first refrigeration or freezing refrigerant. At this time, the flow rate to the branch circuit is adjusted by the opening degree of the first refrigeration or freezing throttling means 89a.

第二の冷蔵用または冷凍用冷媒が循環する第二の冷蔵用または冷凍用冷凍サイクル9は、第二の冷蔵用または冷凍用圧縮機91と、第二の冷蔵用または冷凍用室外熱交換器92と、第二の冷蔵用または冷凍用受液器94と、冷媒冷媒熱交換器51と、第二の冷蔵用または冷凍用絞り手段95a、95bと、第二の冷蔵用または冷凍用室内熱交換器97a、97bと、を第二の冷蔵用または冷凍用冷媒配管90で接続することにより構成している。   The second refrigeration or refrigeration refrigeration cycle 9 in which the second refrigeration or refrigeration refrigerant circulates includes a second refrigeration or refrigeration compressor 91 and a second refrigeration or refrigeration outdoor heat exchanger. 92, a second refrigeration or refrigeration receiver 94, a refrigerant refrigerant heat exchanger 51, second refrigeration or refrigeration throttle means 95a, 95b, and second refrigeration or refrigeration indoor heat. The exchangers 97 a and 97 b are connected by a second refrigeration or freezing refrigerant pipe 90.

第二の冷蔵用または冷凍用圧縮機91を出た第二の冷蔵用または冷凍用冷媒は、第二の冷蔵用または冷凍用室外熱交換器92にて第二の冷蔵用または冷凍用室外送風機93の作用によって室外空気に放熱し、冷媒冷媒熱交換器51にて過冷却用冷凍サイクル3を流れる低温の過冷却用冷媒と熱交換をして過冷却度を増加させ、第二の冷蔵用または冷凍用絞り手段95a、95bにて膨張して低温低圧冷媒となり、第二の冷蔵用または冷凍用室内送風機96a、96bの作用によって第二の冷蔵用または冷凍用室内熱交換器97a、97bにて吸熱し室内に冷熱を供給する。   The second refrigeration or refrigeration refrigerant exiting the second refrigeration or refrigeration compressor 91 is supplied to the second refrigeration or refrigeration outdoor heat exchanger 92 by the second refrigeration or refrigeration outdoor heat exchanger 92. 93 radiates heat to the outdoor air by the action of the refrigerant 93, heat-exchanges with the low-temperature supercooling refrigerant flowing through the supercooling refrigeration cycle 3 in the refrigerant refrigerant heat exchanger 51 to increase the degree of supercooling, and for the second refrigeration Alternatively, the refrigerant is expanded by the refrigeration throttle means 95a and 95b to become a low-temperature and low-pressure refrigerant, and the second refrigeration or refrigeration indoor fans 96a and 96b act to the second refrigeration or refrigeration indoor heat exchangers 97a and 97b. The heat is absorbed and cold is supplied to the room.

過冷却用冷媒が循環する過冷却用冷凍サイクル3は、過冷却用圧縮機31と、過冷却用室外熱交換器32と、過冷却用受液器34と、冷媒冷媒熱交換器41aと、過冷却用絞り手段35と、冷媒冷媒熱交換器51と、を過冷却用冷媒配管30で接続することにより構成している。   The supercooling refrigeration cycle 3 in which the supercooling refrigerant circulates includes a supercooling compressor 31, a supercooling outdoor heat exchanger 32, a supercooling liquid receiver 34, a refrigerant refrigerant heat exchanger 41a, The subcooling throttling means 35 and the refrigerant refrigerant heat exchanger 51 are connected by a supercooling refrigerant pipe 30.

過冷却用圧縮機31を出た過冷却用冷媒は、過冷却用室外熱交換器32にて過冷却用室外送風機33の作用によって室外空気に放熱し、冷媒冷媒熱交換器41aにて第一の冷蔵用または冷凍用冷凍サイクル8を流れる低温の第一の冷蔵用または冷凍用冷媒と熱交換をして過冷却度を増加させ、過冷却用絞り手段35にて膨張して低温低圧冷媒となり、冷媒冷媒熱交換器51にて第二の冷蔵用または冷凍用冷凍サイクル9を流れる高温の第二の冷蔵用または冷凍用冷媒と熱交換をして蒸発し、過冷却用圧縮機31へ戻る。   The supercooling refrigerant that has exited the supercooling compressor 31 radiates heat to the outdoor air by the action of the supercooling outdoor fan 33 in the supercooling outdoor heat exchanger 32, and the first refrigerant refrigerant heat exchanger 41a Heat is exchanged with the first low-temperature refrigeration or refrigeration refrigerant flowing through the refrigeration or refrigeration cycle 8 to increase the degree of supercooling, and expands in the subcooling throttling means 35 to become a low-temperature and low-pressure refrigerant. The refrigerant refrigerant heat exchanger 51 evaporates by exchanging heat with the high-temperature second refrigeration or refrigeration refrigerant flowing through the second refrigeration or refrigeration refrigeration cycle 9, and returns to the supercooling compressor 31. .

なお、第一の冷蔵用または冷凍用絞り手段85a、85b、89a、第二の冷蔵用または冷凍用絞り手段95a、95b、過冷却用絞り手段35は、毛細管等の安価な冷媒流量調節手段、あるいは電子膨張弁による緻密な流量制御手段のいずれを使用してもよい。   The first refrigeration or refrigeration squeezing means 85a, 85b, 89a, the second refrigeration or refrigeration squeezing means 95a, 95b, and the supercooling squeezing means 35 are inexpensive refrigerant flow rate adjusting means such as capillaries, Alternatively, any precise flow rate control means using an electronic expansion valve may be used.

また、第一の冷蔵用または冷凍用圧縮機81、第二の冷蔵用または冷凍用圧縮機91、過冷却用圧縮機31は、レシプロ、ロータリー、スクロール、スクリューなどの各種タイプのいずれのものを用いてもよく、回転数可変可能のものでも、回転数固定のものでも構わない。   The first refrigeration or refrigeration compressor 81, the second refrigeration or refrigeration compressor 91, and the supercooling compressor 31 may be any of various types such as reciprocating, rotary, scroll, and screw. It may be used, and may be variable in number of rotations or fixed in number.

また、第一の冷蔵用または冷凍用冷凍サイクル8と第二の冷蔵用または冷凍用冷凍サイクル9と過冷却用冷凍サイクル3の内部を流れる冷媒はどんなものでもよく、二酸化炭素、炭化水素、ヘリウム、のような自然冷媒、HFC410A、HFC407C、HFC404Aなどの代替冷媒など塩素を含まない冷媒、もしくは既存の製品に使用されているR22、R134aなどのフロン系冷媒のいずれでもよい。   Further, any refrigerant may flow in the first refrigeration or refrigeration cycle 8, the second refrigeration or refrigeration cycle 9, and the supercooling refrigeration cycle 3, such as carbon dioxide, hydrocarbon, helium. , Natural refrigerants such as HFC410A, HFC407C, HFC404A, and other refrigerants that do not contain chlorine, or chlorofluorocarbon refrigerants such as R22 and R134a that are used in existing products.

また、第一の冷蔵用または冷凍用冷凍サイクル8と第二の冷蔵用または冷凍用冷凍サイクル9と過冷却用冷凍サイクル3、とはそれぞれ独立した冷媒回路になっており、内部を流れる冷媒は同じ種類のものでもよいし、別の種類のものでも構わないが、それぞれ混ざることなく冷媒冷媒熱交換器41a、51にて互いに熱交換をして流れている。   In addition, the first refrigeration or refrigeration cycle 8, the second refrigeration or refrigeration cycle 9 and the supercooling refrigeration cycle 3 are independent refrigerant circuits, and the refrigerant flowing inside The same type or different types may be used, but the refrigerant refrigerant heat exchangers 41a and 51 exchange heat with each other without mixing.

また、図15においては、第一の冷蔵用または冷凍用室外熱交換器82、第二の冷蔵用または冷凍用室外熱交換器92、過冷却用室外熱交換器32においてそれぞれの冷媒が空気から吸熱する場合を示しているが、これに限るものではなく、水、冷媒、ブライン等から吸熱するように構成してもよい。また、第一の冷蔵用または冷凍用室外送風機83、第二の冷蔵用または冷凍用室外送風機93、過冷却用室外送風機33はポンプ等でもよい。また、図15は第一の冷蔵用または冷凍用室内熱交換器と、第二の冷蔵用または冷凍用室内熱交換器とがそれぞれ2台の場合の構成例であるが3台以上の複数でもあるいは1台でもよくそれぞれの台数が異なってもよく、またそれぞれの室内機の容量が大から小まで異なっていても、全てが同一容量でもよい。また、第一の冷蔵用または冷凍用冷凍サイクル8、第二の冷蔵用または冷凍用冷凍サイクル9、過冷却用冷凍サイクル3において余剰冷媒をそれぞれ受液器によって貯蔵する場合を示したが、これに限るものではなく、冷凍サイクルにおいて放熱器となる熱交換器にて貯蔵することとして受液器を取り除いてもよい。   In FIG. 15, in the first refrigeration or refrigeration outdoor heat exchanger 82, the second refrigeration or refrigeration outdoor heat exchanger 92, and the supercooling outdoor heat exchanger 32, each refrigerant is converted from air. Although the case where heat is absorbed is shown, the present invention is not limited to this, and the heat may be absorbed from water, refrigerant, brine, or the like. The first refrigeration or refrigeration outdoor blower 83, the second refrigeration or refrigeration outdoor blower 93, and the supercooling outdoor blower 33 may be a pump or the like. FIG. 15 shows a configuration example in which there are two first refrigeration or refrigeration indoor heat exchangers and two second refrigeration or refrigeration indoor heat exchangers. Alternatively, the number of units may be one, the number of units may be different, or the capacity of each indoor unit may vary from large to small, or all may have the same capacity. In addition, in the first refrigeration or refrigeration cycle 8, the second refrigeration or refrigeration cycle 9, and the supercooling refrigeration cycle 3, the case where excess refrigerant is stored by the liquid receiver is shown. It is not restricted to this, You may remove a liquid receiver as storing in the heat exchanger used as a heat radiator in a refrigerating cycle.

本発明による冷凍サイクル装置において、それぞれの冷凍サイクルが以上のように動作することで、第二の冷蔵用または冷凍用冷凍サイクル9の過冷却度が増加し、冷凍効果が増加することにより、冷凍能力を増加させることが出来る。またこの時、同じ第二の冷蔵用または冷凍用熱負荷に対する第二の冷蔵用または冷凍用冷媒の循環量が低減されるので第二の冷蔵用または冷凍用冷媒の循環に用いられる動力が少なくて済む。このため、第二の冷蔵用または冷凍用冷凍サイクル9のCOPが、熱交換を行わずに単独で運転する場合よりも高くなり、省エネとなる。また、冷媒循環量が減ることにより配管での圧損が減るため、第二の冷蔵用または冷凍用冷凍サイクル9の配管サイズを小さくすることができ施工性が向上するとともに、配管での熱損失が低減され省エネとなる。   In the refrigeration cycle apparatus according to the present invention, the operation of each refrigeration cycle as described above increases the degree of supercooling of the second refrigeration or refrigeration cycle 9 and increases the refrigeration effect. You can increase your ability. At this time, since the circulation amount of the second refrigeration or freezing refrigerant with respect to the same second refrigeration or freezing heat load is reduced, less power is used to circulate the second refrigeration or freezing refrigerant. I'll do it. For this reason, the COP of the second refrigeration or freezing refrigeration cycle 9 is higher than that when operating alone without performing heat exchange, thus saving energy. Further, since the pressure loss in the piping is reduced by reducing the refrigerant circulation amount, the piping size of the second refrigeration or freezing refrigeration cycle 9 can be reduced, the workability is improved, and the heat loss in the piping is reduced. Reduced and energy saving.

また、過冷却用冷凍サイクル3は、第一の冷蔵用または冷凍用冷凍サイクル8との熱交換により、熱交換が無い場合よりも過冷却度が増加し、冷凍能力を増加させることが出来るので、第一の冷蔵用または冷凍用冷凍サイクル8との熱交換がない場合よりも省エネとなる。   In addition, the supercooling refrigeration cycle 3 can increase the degree of supercooling and increase the refrigeration capacity by heat exchange with the first refrigeration or refrigeration refrigeration cycle 8 than when there is no heat exchange. The energy is saved compared to the case where there is no heat exchange with the first refrigeration or refrigeration cycle 8.

また、過冷却用冷凍サイクル3は、第二の冷蔵用または冷凍用絞り手段95a、95bの出口が二相となるように運転するために通常、蒸発温度が第二の冷蔵用または冷凍用冷凍サイクル9の蒸発温度よりも高くなる。また図15のように過冷却用冷凍サイクル3、第二の冷蔵用または冷凍用冷凍サイクル9ともに外気による空冷熱交換器により放熱器を構成した場合、凝縮温度は同程度となるので、過冷却用冷凍サイクル3のCOPは、第二の冷蔵用または冷凍用冷凍サイクルが熱交換を行わずに単独で運転する場合のCOPよりも高くなる。   In addition, since the supercooling refrigeration cycle 3 is operated so that the outlets of the second refrigeration or freezing squeezing means 95a, 95b are two-phase, the evaporation temperature is usually the second refrigeration or freezing refrigeration. It becomes higher than the evaporation temperature of cycle 9. Further, as shown in FIG. 15, when the radiator is constituted by the air-cooling heat exchanger using the outside air in both the subcooling refrigeration cycle 3 and the second refrigeration cycle or the refrigeration cycle 9, the condensation temperature becomes approximately the same. The COP of the refrigeration cycle 3 is higher than the COP when the second refrigeration or refrigeration cycle is operated alone without performing heat exchange.

また、図15のように第一の冷蔵用または冷凍用冷凍サイクル8、第二の冷蔵用または冷凍用冷凍サイクル9ともに外気による空冷熱交換器により放熱器を構成した場合、凝縮温度は同程度となるので、第一の冷蔵用または冷凍用冷凍サイクル8の蒸発温度が第二の冷蔵用または冷凍用冷凍サイクル9よりも高いように構成した場合、第一の冷蔵用または冷凍用冷凍サイクル8のCOPは、第二の冷蔵用または冷凍用冷凍サイクル9が熱交換を行わずに単体で運転する場合のCOPよりも高くなる。   Further, when the radiator is constituted by an air-cooled heat exchanger using outside air in both the first refrigeration or refrigeration cycle 8 and the second refrigeration or refrigeration cycle 9 as shown in FIG. Therefore, when the evaporating temperature of the first refrigeration or refrigeration cycle 8 is higher than that of the second refrigeration or refrigeration cycle 9, the first refrigeration or refrigeration cycle 8 The COP becomes higher than the COP when the second refrigeration or refrigeration cycle 9 is operated alone without performing heat exchange.

従って、本発明による冷凍サイクル装置のCOPは、第一の冷蔵用または冷凍用冷凍サイクルと第二の冷蔵用または冷凍用冷凍サイクルが熱交換を行わずにそれぞれ単独で運転する場合のCOPよりも高くなり、省エネとなる。   Therefore, the COP of the refrigeration cycle apparatus according to the present invention is more than the COP in the case where the first refrigeration or refrigeration cycle and the second refrigeration or refrigeration cycle operate independently without performing heat exchange. Higher and energy saving.

また、第一の冷蔵用または冷凍用冷凍サイクル8が電源OFFやサーモオフ、または冷媒や油を交換するリプレースや機器の交換や修理を行うメンテナンスなどにより運転を停止している場合においても、過冷却用冷凍サイクル3との熱交換によって、第二の冷蔵用または冷凍用冷凍サイクル9の過冷却度を増加させることができるので、第二の冷蔵用または冷凍用冷凍サイクル9が熱交換を行わずに単独で運転する場合よりも冷凍効果、COPともに大きい運転を維持することが出来、省エネとなる。   Even when the operation of the first refrigeration or refrigeration cycle 8 is stopped due to power-off, thermo-off, replacement to replace refrigerant or oil, or maintenance to perform equipment replacement or repair, etc. Since the degree of supercooling of the second refrigeration or freezing refrigeration cycle 9 can be increased by heat exchange with the refrigeration cycle 3 for refrigeration, the second refrigeration or freezing refrigeration cycle 9 does not perform heat exchange. In addition, both the refrigeration effect and the COP can be maintained larger than when operating alone, thereby saving energy.

実施の形態4.
図16は本発明の実施の形態4を示す冷凍サイクル装置を示している。図16は、高段側の冷凍サイクルが空調用冷凍サイクルから冷蔵用または冷凍用冷凍サイクルに変更されている点で、図8と異なっている。図16において、冷凍サイクルの構成および動作について説明する。図16に示すように、冷凍サイクル装置は、第一の冷蔵用または冷凍用冷凍サイクル8と、第二の冷蔵用または冷凍用冷凍サイクル9と、過冷却用冷凍サイクル3とから構成されており、第一の冷蔵用または冷凍用冷凍サイクル8と第二の冷蔵用または冷凍用冷凍サイクル9とは冷媒冷媒熱交換器41aで、第二の冷蔵用または冷凍用冷凍サイクル9と過冷却用冷凍サイクル3とは冷媒冷媒熱交換器51で、双方の冷媒が混じることなく熱交換を行うように構成している。
Embodiment 4 FIG.
FIG. 16 shows a refrigeration cycle apparatus showing Embodiment 4 of the present invention. FIG. 16 is different from FIG. 8 in that the refrigeration cycle on the higher stage side is changed from the air-conditioning refrigeration cycle to the refrigeration or refrigeration cycle. In FIG. 16, the configuration and operation of the refrigeration cycle will be described. As shown in FIG. 16, the refrigeration cycle apparatus includes a first refrigeration or refrigeration cycle 8, a second refrigeration or refrigeration cycle 9, and a supercooling refrigeration cycle 3. The first refrigeration or freezing refrigeration cycle 8 and the second refrigeration or freezing refrigeration cycle 9 are refrigerant refrigerant heat exchangers 41a, and the second refrigeration or freezing refrigeration cycle 9 and supercooling refrigeration. The cycle 3 is a refrigerant / refrigerant heat exchanger 51, and is configured to perform heat exchange without mixing both refrigerants.

第一の冷蔵用または冷凍用冷媒が循環する第一の冷蔵用または冷凍用冷凍サイクル8は、第一の冷蔵用または冷凍用圧縮機81と、第一の冷蔵用または冷凍用室外熱交換器82と、第一の冷蔵用または冷凍用受液器84と、冷媒冷媒熱交換器41aと、第一の冷蔵用または冷凍用絞り手段85a、85bと、第一の冷蔵用または冷凍用室内熱交換器87a、87bと、を第一の冷蔵用または冷凍用冷媒配管80で接続することにより構成している。   The first refrigeration or refrigeration cycle 8 in which the first refrigeration or refrigeration refrigerant circulates includes a first refrigeration or refrigeration compressor 81, and a first refrigeration or refrigeration outdoor heat exchanger. 82, first refrigeration or refrigeration receiver 84, refrigerant refrigerant heat exchanger 41a, first refrigeration or refrigeration squeezing means 85a, 85b, and first refrigeration or refrigeration indoor heat. The exchangers 87a and 87b are connected by a first refrigeration or freezing refrigerant pipe 80.

第一の冷蔵用または冷凍用圧縮機81を出た第一の冷蔵用または冷凍用冷媒は、第一の冷蔵用または冷凍用室外熱交換器82にて第一の冷蔵用または冷凍用室外送風機83の作用によって室外空気に放熱し、第一の冷蔵用または冷凍用絞り手段85a、85bにて膨張して低温低圧冷媒となり、第一の冷蔵用または冷凍用室内送風機86a、86bの作用によって第一の冷蔵用または冷凍用室内熱交換器87a、87bにて吸熱し室内に冷熱を供給する。一方、第一の冷蔵用または冷凍用室外熱交換器82を出た第一の冷蔵用または冷凍用冷媒の一部は分岐し、第一の冷蔵用または冷凍用絞り手段89aによって低温低圧冷媒となり、冷媒冷媒熱交換器41aにて第二の冷蔵用または冷凍用冷凍サイクル9を流れる高温の第二の冷蔵用または冷凍用冷媒と熱交換をして蒸発し、第一の冷蔵用または冷凍用冷媒配管80bを通って第一の冷蔵用または冷凍用室内熱交換器87a、87bを通過した第一の冷蔵用または冷凍用冷媒と合流する。この時、分岐回路への流量は第一の冷蔵用または冷凍用絞り手段89aの開度によって調節している。   The first refrigeration or refrigeration refrigerant exiting the first refrigeration or refrigeration compressor 81 is used as the first refrigeration or refrigeration outdoor blower in the first refrigeration or refrigeration outdoor heat exchanger 82. 83 radiates heat to the outdoor air, expands in the first refrigeration or refrigeration throttling means 85a and 85b, and becomes a low-temperature and low-pressure refrigerant. The first refrigeration or refrigeration indoor fans 86a and 86b One refrigeration or freezing indoor heat exchangers 87a and 87b absorb heat and supply cold heat into the room. On the other hand, a part of the first refrigeration or refrigeration refrigerant exiting the first refrigeration or refrigeration outdoor heat exchanger 82 branches and becomes a low-temperature and low-pressure refrigerant by the first refrigeration or refrigeration throttle means 89a. The refrigerant refrigerant heat exchanger 41a evaporates by exchanging heat with the high-temperature second refrigeration or refrigeration refrigerant flowing through the second refrigeration or refrigeration refrigeration cycle 9, and the first refrigeration or refrigeration It merges with the first refrigeration or freezing refrigerant that has passed through the first refrigeration or freezing indoor heat exchangers 87a and 87b through the refrigerant pipe 80b. At this time, the flow rate to the branch circuit is adjusted by the opening degree of the first refrigeration or freezing throttling means 89a.

第二の冷蔵用または冷凍用冷媒が循環する第二の冷蔵用または冷凍用冷凍サイクル9は、第二の冷蔵用または冷凍用圧縮機91と、第二の冷蔵用または冷凍用室外熱交換器92と、第二の冷蔵用または冷凍用受液器94と、冷媒冷媒熱交換器41aと、冷媒冷媒熱交換器51と、第二の冷蔵用または冷凍用絞り手段95a、95bと、第二の冷蔵用または冷凍用室内熱交換器97a、97bと、を第二の冷蔵用または冷凍用冷媒配管90で接続することにより構成している。   The second refrigeration or refrigeration refrigeration cycle 9 in which the second refrigeration or refrigeration refrigerant circulates includes a second refrigeration or refrigeration compressor 91 and a second refrigeration or refrigeration outdoor heat exchanger. 92, second refrigeration or refrigeration receiver 94, refrigerant refrigerant heat exchanger 41a, refrigerant refrigerant heat exchanger 51, second refrigeration or refrigeration throttling means 95a, 95b, second Are connected by a second refrigeration or refrigeration refrigerant pipe 90 to the refrigeration or freezing indoor heat exchangers 97a and 97b.

第二の冷蔵用または冷凍用圧縮機91を出た第二の冷蔵用または冷凍用冷媒は、第二の冷蔵用または冷凍用室外熱交換器92にて第二の冷蔵用または冷凍用室外送風機93の作用によって室外空気に放熱し、冷媒冷媒熱交換器41aにて第一の冷蔵用または冷凍用冷凍サイクル8を流れる低温の第一の冷蔵用または冷凍用冷媒と熱交換をして過冷却度を増加させ、更に冷媒冷媒熱交換器51にて過冷却用冷凍サイクル3を流れる低温の過冷却用冷媒と熱交換をして過冷却度を増加させ、第二の冷蔵用または冷凍用絞り手段95a、95bにて膨張して低温低圧冷媒となり、第二の冷蔵用または冷凍用室内送風機96a、96bの作用によって第二の冷蔵用または冷凍用室内熱交換器97a、97bにて吸熱し室内に冷熱を供給する。   The second refrigeration or refrigeration refrigerant exiting the second refrigeration or refrigeration compressor 91 is supplied to the second refrigeration or refrigeration outdoor heat exchanger 92 by the second refrigeration or refrigeration outdoor heat exchanger 92. Heat is dissipated to the outdoor air by the action of 93, and is supercooled by exchanging heat with the low-temperature first refrigeration or refrigeration refrigerant flowing through the first refrigeration or refrigeration cycle 8 in the refrigerant refrigerant heat exchanger 41a. In addition, the refrigerant refrigerant heat exchanger 51 exchanges heat with the low-temperature supercooling refrigerant flowing in the supercooling refrigeration cycle 3 to increase the supercooling degree, and the second refrigeration or refrigeration throttle The refrigerant expands in the means 95a and 95b to become a low-temperature and low-pressure refrigerant, and absorbs heat in the second refrigeration or freezing indoor heat exchangers 97a and 97b by the action of the second refrigeration or freezing indoor fans 96a and 96b. To supply cold energy.

過冷却用冷媒が循環する過冷却用冷凍サイクル3は、過冷却用圧縮機31と、過冷却用室外熱交換器32と、過冷却用受液器34と、過冷却用絞り手段35と、冷媒冷媒熱交換器51と、を過冷却用冷媒配管30で接続することにより構成している。   The supercooling refrigeration cycle 3 in which the supercooling refrigerant circulates includes a supercooling compressor 31, a supercooling outdoor heat exchanger 32, a supercooling receiver 34, a supercooling throttling means 35, The refrigerant refrigerant heat exchanger 51 is connected by a supercooling refrigerant pipe 30.

過冷却用圧縮機31を出た過冷却用冷媒は、過冷却用室外熱交換器32にて過冷却用室外送風機33の作用によって室外空気に放熱し、過冷却用絞り手段35にて膨張して低温低圧冷媒となり、冷媒冷媒熱交換器51にて第二の冷蔵用または冷凍用冷凍サイクル9を流れる高温の第二の冷蔵用または冷凍用冷媒と熱交換をして蒸発し、過冷却用圧縮機31へ戻る。   The supercooling refrigerant that has exited the supercooling compressor 31 radiates heat to the outdoor air by the action of the supercooling outdoor fan 33 in the supercooling outdoor heat exchanger 32, and expands in the supercooling throttle means 35. The refrigerant becomes a low-temperature and low-pressure refrigerant, evaporates by exchanging heat with the high-temperature second refrigeration or refrigeration refrigerant flowing in the second refrigeration or refrigeration cycle 9 in the refrigerant refrigerant heat exchanger 51, for supercooling Return to the compressor 31.

なお、第一の冷蔵用または冷凍用絞り手段85a、85b、89a、第二の冷蔵用または冷凍用絞り手段95a、95b、過冷却用絞り手段35は、毛細管等の安価な冷媒流量調節手段、あるいは電子膨張弁による緻密な流量制御手段のいずれを使用してもよい。   The first refrigeration or refrigeration squeezing means 85a, 85b, 89a, the second refrigeration or refrigeration squeezing means 95a, 95b, and the supercooling squeezing means 35 are inexpensive refrigerant flow rate adjusting means such as capillaries, Alternatively, any precise flow rate control means using an electronic expansion valve may be used.

また、第一の冷蔵用または冷凍用圧縮機81、第二の冷蔵用または冷凍用圧縮機91、過冷却用圧縮機31は、レシプロ、ロータリー、スクロール、スクリューなどの各種タイプのいずれのものを用いてもよく、回転数可変可能のものでも、回転数固定のものでも構わない。   The first refrigeration or refrigeration compressor 81, the second refrigeration or refrigeration compressor 91, and the supercooling compressor 31 may be any of various types such as reciprocating, rotary, scroll, and screw. It may be used, and may be variable in number of rotations or fixed in number.

また、第一の冷蔵用または冷凍用冷凍サイクル8と第二の冷蔵用または冷凍用冷凍サイクル9と過冷却用冷凍サイクル3の内部を流れる冷媒はどんなものでもよく、二酸化炭素、炭化水素、ヘリウム、のような自然冷媒、HFC410A、HFC407C、HFC404Aなどの代替冷媒など塩素を含まない冷媒、もしくは既存の製品に使用されているR22、R134aなどのフロン系冷媒のいずれでもよい。   Further, any refrigerant may flow in the first refrigeration or refrigeration cycle 8, the second refrigeration or refrigeration cycle 9, and the supercooling refrigeration cycle 3, such as carbon dioxide, hydrocarbon, helium. , Natural refrigerants such as HFC410A, HFC407C, HFC404A, and other refrigerants that do not contain chlorine, or chlorofluorocarbon refrigerants such as R22 and R134a that are used in existing products.

また、第一の冷蔵用または冷凍用冷凍サイクル8と第二の冷蔵用または冷凍用冷凍サイクル9と過冷却用冷凍サイクル3、とはそれぞれ独立した冷媒回路になっており、内部を流れる冷媒は同じ種類のものでもよいし、別の種類のものでも構わないが、それぞれ混ざることなく冷媒冷媒熱交換器41a、51にて互いに熱交換をして流れている。   In addition, the first refrigeration or refrigeration cycle 8, the second refrigeration or refrigeration cycle 9 and the supercooling refrigeration cycle 3 are independent refrigerant circuits, and the refrigerant flowing inside The same type or different types may be used, but the refrigerant refrigerant heat exchangers 41a and 51 exchange heat with each other without mixing.

なお、図16においては、第一の冷蔵用または冷凍用室外熱交換器82、第二の冷蔵用または冷凍用室外熱交換器92、過冷却用室外熱交換器32においてそれぞれの冷媒が空気から吸熱する場合を示しているが、これに限るものではなく、水、冷媒、ブライン等から吸熱するように構成してもよい。また、第一の冷蔵用または冷凍用室外送風機83、第二の冷蔵用または冷凍用室外送風機93、過冷却用室外送風機33はポンプ等でもよい。また、図16は第一の冷蔵用または冷凍用室内熱交換器と、第二の冷蔵用または冷凍用室内熱交換器とがそれぞれ2台の場合の構成例であるが3台以上の複数でもあるいは1台でもよくそれぞれの台数が異なってもよく、またそれぞれの室内機の容量が大から小まで異なっていても、全てが同一容量でもよい。また、第一の冷蔵用または冷凍用冷凍サイクル8、第二の冷蔵用または冷凍用冷凍サイクル9、過冷却用冷凍サイクル3において余剰冷媒をそれぞれ受液器によって貯蔵する場合を示したが、これに限るものではなく、冷凍サイクルにおいて放熱器となる熱交換器にて貯蔵することとして受液器を取り除いてもよい。   In FIG. 16, in the first refrigeration or refrigeration outdoor heat exchanger 82, the second refrigeration or refrigeration outdoor heat exchanger 92, and the supercooling outdoor heat exchanger 32, each refrigerant is converted from air. Although the case where heat is absorbed is shown, the present invention is not limited to this, and the heat may be absorbed from water, refrigerant, brine, or the like. The first refrigeration or refrigeration outdoor blower 83, the second refrigeration or refrigeration outdoor blower 93, and the supercooling outdoor blower 33 may be a pump or the like. FIG. 16 shows a configuration example in which there are two first refrigeration or refrigeration indoor heat exchangers and two second refrigeration or refrigeration indoor heat exchangers. Alternatively, the number of units may be one, the number of units may be different, or the capacity of each indoor unit may vary from large to small, or all may have the same capacity. In addition, in the first refrigeration or refrigeration cycle 8, the second refrigeration or refrigeration cycle 9, and the supercooling refrigeration cycle 3, the case where excess refrigerant is stored by the liquid receiver is shown. It is not restricted to this, You may remove a liquid receiver as storing in the heat exchanger used as a heat radiator in a refrigerating cycle.

本発明による冷凍サイクル装置において、それぞれの冷凍サイクルが以上のように動作することで、第二の冷蔵用または冷凍用冷凍サイクル9の過冷却度が増加し、冷凍効果が増加することにより、冷凍能力を増加させることが出来る。またこの時、同じ第二の冷蔵用または冷凍用熱負荷に対する第二の冷蔵用または冷凍用冷媒の循環量が低減されるので第二の冷蔵用または冷凍用冷媒の循環に用いられる動力が少なくて済む。このため、第二の冷蔵用または冷凍用冷凍サイクル9のCOPが、熱交換を行わずに単独で運転する場合よりも高くなり、省エネとなる。また、冷媒循環量が減ることにより配管での圧損が減るため、第二の冷蔵用または冷凍用冷凍サイクル9の配管サイズを小さくすることができ施工性が向上する。また、配管サイズを小さくすることができ施工性が向上するとともに、配管での熱損失が低減され省エネとなる。   In the refrigeration cycle apparatus according to the present invention, the operation of each refrigeration cycle as described above increases the degree of supercooling of the second refrigeration or refrigeration cycle 9 and increases the refrigeration effect. You can increase your ability. At this time, since the circulation amount of the second refrigeration or freezing refrigerant with respect to the same second refrigeration or freezing heat load is reduced, less power is used to circulate the second refrigeration or freezing refrigerant. I'll do it. For this reason, the COP of the second refrigeration or freezing refrigeration cycle 9 is higher than that when operating alone without performing heat exchange, thus saving energy. Further, since the pressure loss in the piping is reduced by reducing the refrigerant circulation amount, the piping size of the second refrigeration or freezing refrigeration cycle 9 can be reduced, and workability is improved. In addition, the pipe size can be reduced, the workability is improved, and heat loss in the pipe is reduced, resulting in energy saving.

また、過冷却用冷凍サイクル3は、第二の冷蔵用または冷凍用絞り手段95a、95bの出口が二相となるように運転するために通常、蒸発温度が第二の冷蔵用または冷凍用冷凍サイクル9の蒸発温度よりも高くなる。また図16のように過冷却用冷凍サイクル3、第二の冷蔵用または冷凍用冷凍サイクル9ともに外気による空冷熱交換器により放熱器を構成した場合、凝縮温度は同程度となるので、過冷却用冷凍サイクル3のCOPは、第二の冷蔵用または冷凍用冷凍サイクルが熱交換を行わずに単体で運転する場合のCOPよりも高くなる。   In addition, since the supercooling refrigeration cycle 3 is operated so that the outlets of the second refrigeration or freezing squeezing means 95a, 95b are two-phase, the evaporation temperature is usually the second refrigeration or freezing refrigeration. It becomes higher than the evaporation temperature of cycle 9. Further, as shown in FIG. 16, when the radiator is constituted by the air-cooled heat exchanger using the outside air in both the subcooling refrigeration cycle 3 and the second refrigeration cycle or the refrigeration cycle 9, the condensation temperature becomes approximately the same. The COP of the refrigerating cycle 3 is higher than the COP when the second refrigeration or refrigerating cycle is operated alone without heat exchange.

また、図16のように第一の冷蔵用または冷凍用冷凍サイクル8、第二の冷蔵用または冷凍用冷凍サイクル9ともに外気による空冷熱交換器により放熱器を構成した場合、凝縮温度は同程度となるので、第一の冷蔵用または冷凍用冷凍サイクル8の蒸発温度が第二の冷蔵用または冷凍用冷凍サイクル9よりも高いように構成した場合、第一の冷蔵用または冷凍用冷凍サイクル8のCOPは、第二の冷蔵用または冷凍用冷凍サイクル9が熱交換を行わずに単体で運転する場合のCOPよりも高くなる。   In addition, when the radiator is constituted by an air-cooled heat exchanger using outside air in both the first refrigeration or refrigeration cycle 8 and the second refrigeration or refrigeration cycle 9 as shown in FIG. Therefore, when the evaporating temperature of the first refrigeration or refrigeration cycle 8 is higher than that of the second refrigeration or refrigeration cycle 9, the first refrigeration or refrigeration cycle 8 The COP becomes higher than the COP when the second refrigeration or refrigeration cycle 9 is operated alone without performing heat exchange.

従って、本発明による冷凍サイクル装置のCOPは、第一の冷蔵用または冷凍用冷凍サイクルと第二の冷蔵用または冷凍用冷凍サイクルが熱交換を行わずにそれぞれ単独で運転する場合のCOPよりも高くなり、省エネとなる。   Therefore, the COP of the refrigeration cycle apparatus according to the present invention is more than the COP in the case where the first refrigeration or refrigeration cycle and the second refrigeration or refrigeration cycle operate independently without performing heat exchange. Higher and energy saving.

また、第一の冷蔵用または冷凍用冷凍サイクル8が電源OFFやサーモオフ、または冷媒や油を交換するリプレースや機器の交換や修理を行うメンテナンスなどにより運転を停止している場合においても、過冷却用冷凍サイクル3との熱交換によって、第二の冷蔵用または冷凍用冷凍サイクル9の過冷却度を増加させることができるので、第二の冷蔵用または冷凍用冷凍サイクル9が熱交換を行わずに単独で運転する場合よりも冷凍効果、COPともに大きい運転を維持することが出来、省エネとなる。   Even when the operation of the first refrigeration or refrigeration cycle 8 is stopped due to power-off, thermo-off, replacement to replace refrigerant or oil, or maintenance to perform equipment replacement or repair, etc. Since the degree of supercooling of the second refrigeration or freezing refrigeration cycle 9 can be increased by heat exchange with the refrigeration cycle 3 for refrigeration, the second refrigeration or freezing refrigeration cycle 9 does not perform heat exchange. In addition, both the refrigeration effect and the COP can be maintained larger than when operating alone, thereby saving energy.

また、図16においては冷媒冷媒熱交換器41aを冷媒冷媒熱交換器51の上流側に配置したが、下流側に配置しても同様の効果が期待できる。また、実施の形態2で示した通り、より蒸発温度の低い冷媒と熱交換を行う冷媒冷媒熱交換器を下流に配置することにより確実に省エネを実現することが出来る。   In FIG. 16, the refrigerant / refrigerant heat exchanger 41a is arranged on the upstream side of the refrigerant / refrigerant heat exchanger 51, but the same effect can be expected even if arranged on the downstream side. Further, as shown in the second embodiment, energy can be reliably realized by disposing a refrigerant refrigerant heat exchanger that performs heat exchange with a refrigerant having a lower evaporation temperature downstream.

実施の形態5.
図17は、本発明の実施の形態5を示す冷凍サイクル装置を示している。過冷却用冷凍サイクル筐体300は、図17の二点鎖線で囲まれた領域内の各機器を同一の筐体内に収納する部分を示している。過冷却用冷凍サイクル筐体300をこのように構成することにより、汎用の空調用冷凍サイクル1と汎用の冷蔵用または冷凍用冷凍サイクル9とを用いて本発明による冷凍サイクル装置を構成することが出来、専用の空調用冷凍サイクルや冷蔵用または冷凍用冷凍サイクルに対する開発投資を抑止できると共に、既設の空調用冷凍サイクルと冷蔵用または冷凍用冷凍サイクルとを用いて本発明による冷凍サイクル装置を構成することが出来、省エネを実現することが出来る。
Embodiment 5 FIG.
FIG. 17 shows a refrigeration cycle apparatus showing Embodiment 5 of the present invention. The subcooling refrigeration cycle casing 300 shows a part that houses each device in the region surrounded by a two-dot chain line in FIG. 17 in the same casing. By configuring the supercooling refrigeration cycle housing 300 in this manner, the refrigeration cycle apparatus according to the present invention can be configured using the general-purpose air-conditioning refrigeration cycle 1 and the general-purpose refrigeration or refrigeration cycle 9. It is possible to suppress development investment for a dedicated air-conditioning refrigeration cycle, refrigeration or refrigeration refrigeration cycle, and the existing refrigeration cycle and refrigeration or refrigeration cycle constitute the refrigeration cycle apparatus according to the present invention. Can save energy.

実施の形態6.
図18は、本発明の実施の形態6を示す冷凍サイクル装置を示している。過冷却用冷凍サイクル筐体300は、図18の二点鎖線で囲まれた領域内の各機器を同一の筐体内に収納する部分を示している。過冷却用冷凍サイクル筐体300をこのように構成することにより、汎用の空調用冷凍サイクル1と汎用の冷蔵用または冷凍用冷凍サイクル9とを用いて本発明による冷凍サイクル装置を構成することが出来、専用の空調用冷凍サイクルや冷蔵用または冷凍用冷凍サイクルに対する開発投資を抑止できると共に、既設の空調用冷凍サイクルと冷蔵用または冷凍用冷凍サイクルとを用いて本発明による冷凍サイクル装置を構成することが出来、省エネを実現することが出来る。
Embodiment 6 FIG.
FIG. 18 shows a refrigeration cycle apparatus showing Embodiment 6 of the present invention. The supercooling refrigeration cycle housing 300 shows a portion in which each device in the region surrounded by a two-dot chain line in FIG. 18 is housed in the same housing. By configuring the supercooling refrigeration cycle housing 300 in this manner, the refrigeration cycle apparatus according to the present invention can be configured using the general-purpose air-conditioning refrigeration cycle 1 and the general-purpose refrigeration or refrigeration cycle 9. It is possible to suppress development investment for a dedicated air-conditioning refrigeration cycle, refrigeration or refrigeration refrigeration cycle, and the existing refrigeration cycle and refrigeration or refrigeration cycle constitute the refrigeration cycle apparatus according to the present invention. Can save energy.

実施の形態1を示す冷凍サイクル装置の冷媒回路図である。1 is a refrigerant circuit diagram of a refrigeration cycle apparatus showing a first embodiment. 実施の形態1に係る冷凍空調装置の動作を示すP−h線図である。It is a Ph diagram which shows operation | movement of the refrigeration air conditioning apparatus which concerns on Embodiment 1. FIG. 実施の形態1を示す別の冷凍サイクル装置の冷媒回路図である。FIG. 4 is a refrigerant circuit diagram of another refrigeration cycle apparatus showing the first embodiment. 実施の形態1を示す別の冷凍サイクル装置の冷媒回路図である。FIG. 4 is a refrigerant circuit diagram of another refrigeration cycle apparatus showing the first embodiment. 実施の形態1を示す別の冷凍サイクル装置の冷媒回路図である。FIG. 4 is a refrigerant circuit diagram of another refrigeration cycle apparatus showing the first embodiment. 実施の形態1を示す別の冷凍サイクル装置の冷媒回路図である。FIG. 4 is a refrigerant circuit diagram of another refrigeration cycle apparatus showing the first embodiment. 実施の形態1を示す別の冷凍サイクル装置の冷媒回路図である。FIG. 4 is a refrigerant circuit diagram of another refrigeration cycle apparatus showing the first embodiment. 実施の形態2を示す冷凍サイクル装置の冷媒回路図である。6 is a refrigerant circuit diagram of a refrigeration cycle apparatus showing Embodiment 2. FIG. 実施の形態2に係る冷凍空調装置の動作を示すP−h線図である。It is a Ph diagram which shows operation | movement of the refrigeration air conditioning apparatus which concerns on Embodiment 2. FIG. 実施の形態2を示す別の冷凍サイクル装置の冷媒回路図である。FIG. 6 is a refrigerant circuit diagram of another refrigeration cycle apparatus showing Embodiment 2. 実施の形態2を示す別の冷凍サイクル装置の冷媒回路図である。FIG. 6 is a refrigerant circuit diagram of another refrigeration cycle apparatus showing Embodiment 2. 実施の形態2を示す別の冷凍サイクル装置の冷媒回路図である。FIG. 6 is a refrigerant circuit diagram of another refrigeration cycle apparatus showing Embodiment 2. 実施の形態2を示す別の冷凍サイクル装置の冷媒回路図である。FIG. 6 is a refrigerant circuit diagram of another refrigeration cycle apparatus showing Embodiment 2. 実施の形態2を示す別の冷凍サイクル装置の冷媒回路図である。FIG. 6 is a refrigerant circuit diagram of another refrigeration cycle apparatus showing Embodiment 2. 実施の形態3を示す冷凍サイクル装置の冷媒回路図である。FIG. 6 is a refrigerant circuit diagram of a refrigeration cycle apparatus showing a third embodiment. 実施の形態4を示す冷凍サイクル装置の冷媒回路図である。6 is a refrigerant circuit diagram of a refrigeration cycle apparatus showing a fourth embodiment. FIG. 実施の形態5を示す冷凍サイクル装置の冷媒回路図である。FIG. 10 is a refrigerant circuit diagram of a refrigeration cycle apparatus showing a fifth embodiment. 実施の形態6を示す冷凍サイクル装置の冷媒回路図である。FIG. 10 is a refrigerant circuit diagram of a refrigeration cycle apparatus showing a sixth embodiment.

符号の説明Explanation of symbols

1 空調用冷凍サイクル、2 冷蔵用または冷凍用冷凍サイクル、3 過冷却用冷凍サイクル、8 第一の冷蔵用または冷凍用冷凍サイクル、9 第二の冷蔵用または冷凍用冷凍サイクル、10 空調用冷媒配管、10a 空調用冷媒配管、10b 空調用冷媒配管、10c 空調用冷媒配管、10d 空調用冷媒配管、11 空調用圧縮機、12 空調用室外熱交換器、13 空調用室外送風機、14 空調用受液器、15a 空調用絞り手段、15b 空調用絞り手段、15c 空調用絞り手段、16a 空調用室内送風機、16b 空調用室内送風機、17a 空調用室内熱交換器、17b 空調用室内熱交換器、18 空調用四方弁、19a 空調用絞り手段 19b 空調用絞り手段、19c 空調用絞り手段、19d 空調用絞り手段、19e 空調用絞り手段、20 冷蔵用または冷凍用冷媒配管、20a 冷蔵用または冷凍用冷媒配管、21 冷蔵用または冷凍用圧縮機、22 冷蔵用または冷凍用室外熱交換器、23 冷蔵用または冷凍用室外送風機、24 冷蔵用または冷凍用受液器、25a 冷蔵用または冷凍用絞り手段、25b 冷蔵用または冷凍用絞り手段、26a 冷蔵用または冷凍用室内送風機、26b 冷蔵用または冷凍用室内送風機、27a 冷蔵用または冷凍用室内熱交換器、27b 冷蔵用または冷凍用室内熱交換器、29a 冷蔵用または冷凍用絞り手段、29b 冷蔵用または冷凍用絞り手段、30 過冷却用冷媒配管、30a 過冷却用冷媒配管、31 過冷却用圧縮機、32 過冷却用室外熱交換器、33 過冷却用室外送風機、34 過冷却用受液器、35 過冷却用絞り手段、39a 過冷却用絞り手段、39b 過冷却用絞り手段、41a 冷媒冷媒熱交換器、41b 冷媒冷媒熱交換器、51 冷媒冷媒熱交換器、80 第一の冷蔵用または冷凍用冷媒配管、80a 第一の冷蔵用または冷凍用冷媒配管、80b 第一の冷蔵用または冷凍用冷媒配管、81 第一の冷蔵用または冷凍用圧縮機、82 第一の冷蔵用または冷凍用室外熱交換器、83 第一の冷蔵用または冷凍用室外送風機、84 第一の冷蔵用または冷凍用受液器、85a 第一の冷蔵用または冷凍用絞り手段、85b 第一の冷蔵用または冷凍用絞り手段、86a 第一の冷蔵用または冷凍用室内送風機、86b 第一の冷蔵用または冷凍用室内送風機、87a 第一の冷蔵用または冷凍用室内熱交換器、87b 第一の冷蔵用または冷凍用室内熱交換器、89a 第一の冷蔵用または冷凍用絞り手段、90 第二の冷蔵用または冷凍用冷媒配管、90a 第二の冷蔵用または冷凍用冷媒配管、90b 第二の冷蔵用または冷凍用冷媒配管、91 第二の冷蔵用または冷凍用圧縮機、92 第二の冷蔵用または冷凍用室外熱交換器、93 第二の冷蔵用または冷凍用室外送風機、94 第二の冷蔵用または冷凍用受液器、95a 第二の冷蔵用または冷凍用絞り手段、95b 第二の冷蔵用または冷凍用絞り手段、96a 第二の冷蔵用または冷凍用室内送風機、96b 第二の冷蔵用または冷凍用室内送風機、97a 第二の冷蔵用または冷凍用室内熱交換器、97b 第二の冷蔵用または冷凍用室内熱交換器、99a 第二の冷蔵用または冷凍用絞り手段、300 過冷却用冷凍サイクル筐体、601 接続用バルブ、602 接続用バルブ、603 接続用バルブ、604 接続用バルブ、605 接続用バルブ、606 接続用バルブ、607 接続用バルブ、608 接続用バルブ、609 接続用バルブ、610 接続用バルブ、611 接続用バルブ、612 接続用バルブ。   1 Refrigeration cycle for air conditioning, 2 refrigeration cycle for refrigeration or refrigeration, 3 refrigeration cycle for supercooling, 8 refrigeration cycle for first refrigeration or freezing, 9 refrigeration cycle for second refrigeration or freezing, 10 refrigerant for air conditioning Piping, 10a Air conditioning refrigerant piping, 10b Air conditioning refrigerant piping, 10c Air conditioning refrigerant piping, 10d Air conditioning refrigerant piping, 11 Air conditioning compressor, 12 Air conditioning outdoor heat exchanger, 13 Air conditioning outdoor fan, 14 Air conditioning receiver Liquid unit, 15a Air-conditioning throttle means, 15b Air-conditioning throttle means, 15c Air-conditioning throttle means, 16a Air-conditioning indoor fan, 16b Air-conditioning indoor fan, 17a Air-conditioning indoor heat exchanger, 17b Air-conditioning indoor heat exchanger, 18 Air-conditioning four-way valve, 19a Air-conditioning throttling means 19b Air-conditioning throttling means, 19c Air-conditioning throttling means, 19d Air-conditioning throttling means, 19e Empty Squeezing means, 20 refrigeration or refrigeration refrigerant piping, 20a refrigeration or refrigeration refrigerant piping, 21 refrigeration or refrigeration compressor, 22 refrigeration or refrigeration outdoor heat exchanger, 23 refrigeration or refrigeration outdoor blower 24 Refrigeration or refrigeration receiver, 25a Refrigeration or refrigeration throttle means, 25b Refrigeration or refrigeration throttle means, 26a Refrigeration or refrigeration indoor fan, 26b Refrigeration or refrigeration indoor fan, 27a Or refrigeration indoor heat exchanger, 27b refrigeration or refrigeration indoor heat exchanger, 29a refrigeration or refrigeration throttling means, 29b refrigeration or refrigeration throttling means, 30 supercooling refrigerant piping, 30a supercooling refrigerant piping 31 Supercooling compressor 32 Supercooling outdoor heat exchanger 33 Supercooling outdoor fan 34 Supercooling receiver 35 Supercooling Throttle means 39a supercooling throttle means 39b supercooling throttle means 41a refrigerant refrigerant heat exchanger 41b refrigerant refrigerant heat exchanger 51 refrigerant refrigerant heat exchanger 80 first refrigerant refrigerant pipe for refrigeration or refrigeration 80a First refrigeration or refrigeration refrigerant piping, 80b First refrigeration or refrigeration refrigerant piping, 81 First refrigeration or refrigeration compressor, 82 First refrigeration or refrigeration outdoor heat exchanger 83 First refrigeration or refrigeration outdoor fan, 84 First refrigeration or refrigeration receiver, 85a First refrigeration or refrigeration squeezing means, 85b First refrigeration or refrigeration squeezing means, 86a First refrigeration or freezing indoor blower, 86b First refrigeration or freezing indoor blower, 87a First refrigeration or freezing indoor heat exchanger, 87b First refrigeration or freezing room Heat exchanger, 89a first refrigeration or refrigeration throttling means, 90 second refrigeration or refrigeration refrigerant piping, 90a second refrigeration or refrigeration refrigerant piping, 90b second refrigeration or refrigeration refrigerant Piping, 91 Second refrigeration or refrigeration compressor, 92 Second refrigeration or refrigeration outdoor heat exchanger, 93 Second refrigeration or refrigeration outdoor fan, 94 Second refrigeration or refrigeration receiver 95a Second refrigeration or freezing squeezing means, 95b Second refrigeration or freezing squeezing means, 96a Second refrigeration or freezing indoor blower, 96b Second refrigeration or freezing indoor blower 97a Second refrigeration or refrigeration indoor heat exchanger, 97b Second refrigeration or refrigeration indoor heat exchanger, 99a Second refrigeration or refrigeration throttle means, 300 Supercooling refrigeration cycle housing , 601 connection valve, 602 connection valve, 603 connection valve, 604 connection valve, 605 connection valve, 606 connection valve, 607 connection valve, 608 connection valve, 609 connection valve, 610 connection valve , 611 connection valve, 612 connection valve.

Claims (15)

第一の冷媒が循環し、第一の圧縮機と、四方弁と、空調用室外熱交換器と、空調用室内熱交換器と、前記空調用室外熱交換器と前記空調用室内熱交換器との間に設けられ前記第一の冷媒が直列に流れるように複数個配置された第一の空調用絞り手段と、を有する第一の冷凍サイクルと、
第二の冷媒が循環し、第二の圧縮機と、物品冷却用室外熱交換器と、物品冷却用絞り手段と、物品冷却用室内熱交換器と、を有する第二の冷凍サイクルと、
第三の冷媒が循環し、第三の圧縮機と、過冷却用室外熱交換器と、前記第一の冷媒と前記第三の冷媒とが熱交換を行う第一の冷媒冷媒熱交換器と、第一の過冷却用絞り手段と、前記第二の冷媒と前記第三の冷媒とが熱交換を行う第二の冷媒冷媒熱交換器と、を有する第三の冷凍サイクルと、
一端が前記第一の冷凍サイクルに複数個設けられた前記第一の空調用絞り手段の間の流路に接続され、他端が前記第一の空調用絞り手段と前記空調用室外熱交換器との間に接続され、第二の空調用絞り手段を有する迂回用の回路と、を備え、
前記第一の冷媒冷媒熱交換器は前記迂回用の回路の第二の空調用絞り手段より前記空調用室外熱交換器側に接続されるとともに前記過冷却用室外熱交換器の出側と前記第一の過冷却用絞り手段の入側との間に接続され、
前記第二の冷媒冷媒熱交換器は前記物品冷却用室外熱交換器の出側と前記物品冷却用絞り手段の入側との間に接続されるとともに、前記第一の過冷却用絞り手段の出側と前記第三の圧縮機の入側との間に接続されることを特徴とする冷凍サイクル装置。
The first refrigerant circulates, the first compressor, the four-way valve, the outdoor heat exchanger for air conditioning, the indoor heat exchanger for air conditioning, the outdoor heat exchanger for air conditioning, and the indoor heat exchanger for air conditioning. A first refrigeration cycle having a plurality of first air conditioning throttle means disposed between the first refrigerant and the first refrigerant so as to flow in series.
A second refrigeration cycle in which the second refrigerant circulates, and has a second compressor, an outdoor cooling heat exchanger for cooling articles, a throttle means for cooling the cooling articles, and an indoor heat exchanger for cooling the cooling articles,
A third refrigerant that circulates, a third compressor, a subcooling outdoor heat exchanger, a first refrigerant refrigerant heat exchanger that exchanges heat between the first refrigerant and the third refrigerant; A third refrigeration cycle having a first supercooling throttle means, and a second refrigerant refrigerant heat exchanger that exchanges heat between the second refrigerant and the third refrigerant,
One end connected to the flow path between the first refrigeration cycle plurality provided said first air conditioning throttle hand stage, the outdoor heat exchanger for the air conditioner and the other end the first air conditioning throttle means A bypass circuit having a second air conditioning throttle means connected to the air conditioner,
The first refrigerant / refrigerant heat exchanger is connected to the air-conditioning outdoor heat exchanger side from the second air-conditioning throttling means of the bypass circuit and the outlet side of the subcooling outdoor heat exchanger and the Connected between the inlet side of the first subcooling throttle means,
The second refrigerant / refrigerant heat exchanger is connected between an outlet side of the article cooling outdoor heat exchanger and an inlet side of the article cooling throttle means, and A refrigeration cycle apparatus connected between an outlet side and an inlet side of the third compressor.
前記第三の圧縮機と前記過冷却用室外熱交換器との間に設けられる第二の過冷却用絞り手段と、前記第三の圧縮機と前記第二の過冷却用絞り手段との間と、前記過冷却用室外熱交換器と前記第一の冷媒冷媒熱交換器との間とを接続し、前記過冷却用室外熱交換器を迂回するように配置される配管と、当該配管に設けられる第三の過冷却用絞り手段と、を備えることを特徴とする請求項1に記載の冷凍サイクル装置。   A second subcooling throttle means provided between the third compressor and the subcooling outdoor heat exchanger; and between the third compressor and the second subcooling throttle means. And between the subcooling outdoor heat exchanger and the first refrigerant refrigerant heat exchanger, and a pipe arranged to bypass the subcooling outdoor heat exchanger, and the pipe The refrigeration cycle apparatus according to claim 1, further comprising a third subcooling throttle means provided. 第一の冷媒が循環し、第一の圧縮機と、四方弁と、空調用室外熱交換器と、空調用室内熱交換器と、前記空調用室外熱交換器と前記空調用室内熱交換器との間に設けられ前記第一の冷媒が直列に流れるように複数個配置された第一の空調用絞り手段と、を有する第一の冷凍サイクルと、
第二の冷媒が循環し、第二の圧縮機と、物品冷却用室外熱交換器と、前記第一の冷媒と前記第二の冷媒とが熱交換を行う第一の冷媒冷媒熱交換器と、第一の物品冷却用絞り手段と、物品冷却用室内熱交換器と、を有する第二の冷凍サイクルと、
第三の冷媒が循環し、第三の圧縮機と、過冷却用室外熱交換器と、第一の過冷却用絞り手段と、前記第二の冷媒と前記第三の冷媒とが熱交換を行う第二の冷媒冷媒熱交換器と、を有する第三の冷凍サイクルと、
一端が前記第一の冷凍サイクルに複数個設けられた前記第一の空調用絞り手段の間の流路に接続され、他端が前記第一の空調用絞り手段と前記空調用室外熱交換器との間に接続され、第二の空調用絞り手段を有する迂回用の回路と、を備え、
前記第一の冷媒冷媒熱交換器は前記迂回用の回路の第二の空調用絞り手段より前記空調用室外熱交換器側に接続されるとともに前記物品冷却用室外熱交換器と前記第一の物品冷却用絞り手段との間に接続され、前記第二の冷媒冷媒熱交換器は前記物品冷却用室外熱交換器の出側と前記第一の物品冷却用絞り手段の入側との間に接続されるとともに、前記第一の過冷却用絞り手段の出側と前記第三の圧縮機の入側との間に接続されることを特徴とする冷凍サイクル装置。
The first refrigerant circulates, the first compressor, the four-way valve, the outdoor heat exchanger for air conditioning, the indoor heat exchanger for air conditioning, the outdoor heat exchanger for air conditioning, and the indoor heat exchanger for air conditioning. A first refrigeration cycle having a plurality of first air conditioning throttle means disposed between the first refrigerant and the first refrigerant so as to flow in series.
A second refrigerant circulating, a second compressor, an article cooling outdoor heat exchanger, a first refrigerant refrigerant heat exchanger in which the first refrigerant and the second refrigerant exchange heat. A second refrigeration cycle having a first article cooling squeezing means and an article cooling indoor heat exchanger;
The third refrigerant circulates, and the third compressor, the subcooling outdoor heat exchanger, the first subcooling throttle means, the second refrigerant, and the third refrigerant exchange heat. A second refrigerant refrigerant heat exchanger to perform, a third refrigeration cycle having,
One end connected to the flow path between the first refrigeration cycle plurality provided said first air conditioning throttle hand stage, the outdoor heat exchanger for the air conditioner and the other end the first air conditioning throttle means A bypass circuit having a second air conditioning throttle means connected to the air conditioner,
The first refrigerant / refrigerant heat exchanger is connected to the air-conditioning outdoor heat exchanger side from the second air-conditioning throttle means of the bypass circuit and the article cooling outdoor heat exchanger and the first The second refrigerant refrigerant heat exchanger is connected between the outlet side of the article cooling outdoor heat exchanger and the inlet side of the first article cooling throttle means. is connected, the refrigeration cycle apparatus characterized by being connected between the entrance side of the exit side of the third compressor of the first supercooling throttle means.
前記第二の冷媒冷媒熱交換器を、前記第一の冷媒冷媒熱交換器の下流側に接続したことを特徴とする請求項3に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 3, wherein the second refrigerant refrigerant heat exchanger is connected to a downstream side of the first refrigerant refrigerant heat exchanger. 前記第二の圧縮機と前記物品冷却用室外熱交換器との間に設けられる第二の物品冷却用絞り手段と、前記第二の圧縮機と前記第二の物品冷却用絞り手段との間と、前記物品冷却用室外熱交換器と前記第一の冷媒冷媒熱交換器との間とを接続し、前記物品冷却用室外熱交換器を迂回するように配置される配管と、当該配管に設けられる第三の物品冷却用絞り手段と、を備えることを特徴とする請求項3または請求項4に記載の冷凍サイクル装置。   Between the second compressor and the second article cooling squeezing means provided between the second compressor and the article cooling outdoor heat exchanger, and between the second compressor and the second article cooling squeezing means. Between the outdoor cooling heat exchanger for cooling the article and the first refrigerant refrigerant heat exchanger, and a pipe disposed so as to bypass the outdoor cooling heat exchanger for cooling the article. The refrigeration cycle apparatus according to claim 3, further comprising a third article cooling squeezing unit provided. 第二の空調用絞り手段を備え、前記第二の空調用絞り手段を、前記第一の空調用絞り手段と並列に冷媒が流れるように接続したことを特徴とする請求項1から請求項5の何れかに記載の冷凍サイクル装置。   The second air conditioning throttle means is provided, and the second air conditioning throttle means is connected so that the refrigerant flows in parallel with the first air conditioning throttle means. The refrigeration cycle apparatus according to any one of the above. 前記迂回用の回路の第二の空調用絞り手段より前記空調用室外熱交換器側に接続される第三の空調用絞り手段と、一端が前記迂回用の回路の、前記第二の空調用絞り手段と前記第三の空調用絞り手段との間に接続され、他端が前記四方弁と前記空調用室内熱交換器との間に接続された配管と、この配管に設けられた第四の空調用絞り手段とを備えたことを特徴とする請求項1から請求項6の何れかに記載の冷凍サイクル装置。 Third air conditioning throttle means connected to the air conditioning outdoor heat exchanger side from the second air conditioning throttle means of the bypass circuit, and the second air conditioning one end of the bypass circuit A pipe connected between the throttle means and the third air conditioning throttle means, the other end connected between the four-way valve and the air conditioning indoor heat exchanger, and a fourth provided in the pipe. The refrigeration cycle apparatus according to any one of claims 1 to 6, further comprising an air conditioning throttle means. 第一の冷媒が循環し、第一の圧縮機と、第一の物品冷却用室外熱交換器と、第一の物品冷却用絞り手段と、第一の物品冷却用室内熱交換器と、を有する第一の冷凍サイクルと、
第二の冷媒が循環し、第二の圧縮機と、第二の物品冷却用室外熱交換器と、第二の物品冷却用絞り手段と、第二の物品冷却用室内熱交換器と、を有する第二の冷凍サイクルと、
第三の冷媒が循環し、第三の圧縮機と、過冷却用室外熱交換器と、前記第一の冷媒と前記第三の冷媒とが熱交換を行う第一の冷媒冷媒熱交換器と、過冷却用絞り手段と、前記第二の冷媒と前記第三の冷媒とが熱交換を行う第二の冷媒冷媒熱交換器と、を有する第三の冷凍サイクルと、を備え、
一端が前記第一の物品冷却用室外熱交換器の出側と前記第一の物品冷却用絞り手段の入側との間の流路に接続され、他端が前記第一の物品冷却用室内熱交換器の出側と前記第一の圧縮機の入側との間に接続され、第三の物品冷却用絞り手段を有する迂回用の回路と、を備え、
前記第一の冷媒冷媒熱交換器は前記迂回用の回路の前記第三の物品冷却用絞り手段の下流に接続されるとともに前記過冷却用室外熱交換器の出側と前記過冷却用絞り手段の入側との間に接続され、
前記第二の冷媒冷媒熱交換器は前記第二の物品冷却用室外熱交換器の出側と前記第二の物品冷却用絞り手段の入側との間に接続されるとともに、前記過冷却用絞り手段の出側と前記第三の圧縮機の入側との間に接続されることを特徴とする冷凍サイクル装置。
The first refrigerant circulates, and includes a first compressor, a first article cooling outdoor heat exchanger, a first article cooling throttle means, and a first article cooling indoor heat exchanger. A first refrigeration cycle having
A second refrigerant circulates, and a second compressor, a second article cooling outdoor heat exchanger, a second article cooling throttle means, and a second article cooling indoor heat exchanger, A second refrigeration cycle having;
A third refrigerant that circulates, a third compressor, a subcooling outdoor heat exchanger, a first refrigerant refrigerant heat exchanger that exchanges heat between the first refrigerant and the third refrigerant; A third refrigeration cycle having supercooling throttle means, and a second refrigerant refrigerant heat exchanger that exchanges heat between the second refrigerant and the third refrigerant,
One end is connected to the flow path between the outlet side of the first article cooling outdoor heat exchanger and the inlet side of the first article cooling throttle means, and the other end is the first article cooling chamber. A detour circuit connected between the outlet side of the heat exchanger and the inlet side of the first compressor and having a third article cooling throttling means,
The first refrigerant / refrigerant heat exchanger is connected downstream of the third article cooling squeezing means in the bypass circuit, and the outlet side of the supercooling outdoor heat exchanger and the supercooling squeezing means. Connected to the entrance side of
The second refrigerant / refrigerant heat exchanger is connected between the outlet side of the second article cooling outdoor heat exchanger and the inlet side of the second article cooling throttle means, and is used for the supercooling. A refrigeration cycle apparatus connected between the outlet side of the throttle means and the inlet side of the third compressor.
第一の冷媒が循環し、第一の圧縮機と、四方弁と、空調用室外熱交換器と、空調用室内熱交換器と、前記空調用室外熱交換器と前記空調用室内熱交換器との間に設けられ前記第一の冷媒が直列に流れるように複数個配置された第一の空調用絞り手段と、を有する第一の冷凍サイクルと、
第二の冷媒が循環し、第二の圧縮機と、物品冷却用室外熱交換器と、物品冷却用絞り手段と、物品冷却用室内熱交換器と、を有する第二の冷凍サイクルと、
第三の冷媒が循環し、第三の圧縮機と、過冷却用室外熱交換器と、前記第一の冷媒と前記第三の冷媒とが熱交換を行う第一の冷媒冷媒熱交換器と、第一の過冷却用絞り手段と、前記第二の冷媒と前記第三の冷媒とが熱交換を行う第二の冷媒冷媒熱交換器と、を有する第三の冷凍サイクルと、を備え、
前記第一の冷媒冷媒熱交換器は前記第一の冷凍サイクルに複数個設けられた前記第一の空調用絞り手段の間の流路に接続されるとともに前記過冷却用室外熱交換器の出側と前記第一の過冷却用絞り手段の入側との間に接続され、
前記第二の冷媒冷媒熱交換器は前記物品冷却用室外熱交換器の出側と前記物品冷却用絞り手段の入側との間に接続されるとともに、前記第一の過冷却用絞り手段の出側と前記第三の圧縮機の入側との間に接続されることを特徴とする冷凍サイクル装置。
The first refrigerant circulates, the first compressor, the four-way valve, the outdoor heat exchanger for air conditioning, the indoor heat exchanger for air conditioning, the outdoor heat exchanger for air conditioning, and the indoor heat exchanger for air conditioning. A first refrigeration cycle having a plurality of first air conditioning throttle means disposed between the first refrigerant and the first refrigerant so as to flow in series.
A second refrigeration cycle in which the second refrigerant circulates, and has a second compressor, an outdoor cooling heat exchanger for cooling articles, a throttle means for cooling the cooling articles, and an indoor heat exchanger for cooling the cooling articles,
A third refrigerant that circulates, a third compressor, a subcooling outdoor heat exchanger, a first refrigerant refrigerant heat exchanger that exchanges heat between the first refrigerant and the third refrigerant; A third refrigeration cycle having a first supercooling throttle means, and a second refrigerant refrigerant heat exchanger that exchanges heat between the second refrigerant and the third refrigerant,
The first refrigerant / refrigerant heat exchanger is connected to a flow path between the first air-conditioning throttle means provided in the first refrigeration cycle, and is connected to the subcooling outdoor heat exchanger. Connected to the inlet side of the first supercooling throttle means,
The second refrigerant / refrigerant heat exchanger is connected between an outlet side of the article cooling outdoor heat exchanger and an inlet side of the article cooling throttle means, and A refrigeration cycle apparatus connected between an outlet side and an inlet side of the third compressor .
前記第一の冷凍サイクルに複数個設けられた前記第一の空調用絞り手段と前記空調用室外熱交換器との間に設けられる第三の空調用絞り手段と、前記第一の空調用絞り手段と前記第三の空調用絞り手段との間と、前記第一の圧縮機と前記空調用室外熱交換器との間とを接続し、前記空調用室外熱交換器を迂回するように配置される配管と、当該配管に設けられる第四の空調用絞り手段と、を備えることを特徴とする請求項1、2、9に記載の冷凍サイクル装置。 A plurality of first air conditioning throttle means provided between the first air conditioning throttle means and the air conditioning outdoor heat exchanger provided in the first refrigeration cycle; and the first air conditioning throttle. And the third air-conditioning throttle means, and the first compressor and the air-conditioning outdoor heat exchanger are connected so as to bypass the air-conditioning outdoor heat exchanger. The refrigeration cycle apparatus according to claim 1, 2 or 9, further comprising: a pipe to be provided; and a fourth air conditioning throttle means provided in the pipe . 前記第一の冷凍サイクルは、この第一の冷凍サイクルの運転状態を示す情報を有し、第一の通信手段を有する第一の制御手段を備え、
前記第三の冷凍サイクルは、前記第一の制御手段と通信する第二の通信手段を有する第二の制御手段を備え、
前記第一の制御手段は、前記第一の冷凍サイクルの運転状態を示す情報を前記第一の通信手段を介して前記第二の制御手段へ送信し、前記第二の制御手段は、前記第二の通信手段を介して前記第一の制御手段から受信した情報に基づいて前記第三の冷凍サイクルの動作を制御することを特徴とする請求項1から請求項10の何れかに記載の冷凍サイクル装置。
The first refrigeration cycle has information indicating an operation state of the first refrigeration cycle, and includes first control means having first communication means,
The third refrigeration cycle includes second control means having second communication means for communicating with the first control means,
The first control means transmits information indicating an operating state of the first refrigeration cycle to the second control means via the first communication means, and the second control means The refrigeration according to any one of claims 1 to 10, wherein an operation of the third refrigeration cycle is controlled based on information received from the first control means via a second communication means. Cycle equipment.
前記第一の冷凍サイクルは、この第一の冷凍サイクルの運転状態を示す情報を有し、第一の通信手段を有する第一の制御手段を備え、
前記第二の冷凍サイクルは、前記第一の制御手段と通信する第二の通信手段を有する第二の制御手段を備え、
前記第一の制御手段は、前記第一の冷凍サイクルの運転状態を示す情報を前記第一の通信手段を介して前記第二の制御手段へ送信し、前記第二の制御手段は、前記第二の通信手段を介して前記第一の制御手段から受信した情報に基づいて前記第二の冷凍サイクルの動作を制御することを特徴とする請求項1から請求項10の何れかに記載の冷凍サイクル装置。
The first refrigeration cycle has information indicating an operation state of the first refrigeration cycle, and includes first control means having first communication means,
The second refrigeration cycle includes second control means having second communication means for communicating with the first control means,
The first control means transmits information indicating an operating state of the first refrigeration cycle to the second control means via the first communication means, and the second control means The operation of the second refrigeration cycle is controlled based on information received from the first control means via two communication means. The refrigeration according to any one of claims 1 to 10, Cycle equipment.
外気温度を検出する第一の温度検知手段と、前記第一の冷媒冷媒熱交換器を流通する前記第一の冷媒の温度を検出する第二の温度検知手段とを備え、
前記第三の冷凍サイクルの運転を制御する第一の制御手段は、前記第一の温度検知手段の出力と前記第二の温度検知手段の出力とに基づいて、前記第一の冷凍サイクルの運転状態を推定することを特徴とする、請求項1から請求項10の何れかに記載の冷凍サイクル装置。
First temperature detection means for detecting the outside air temperature, and second temperature detection means for detecting the temperature of the first refrigerant flowing through the first refrigerant refrigerant heat exchanger,
The first control means for controlling the operation of the third refrigeration cycle is configured to operate the first refrigeration cycle based on the output of the first temperature detection means and the output of the second temperature detection means. The refrigeration cycle apparatus according to any one of claims 1 to 10, wherein the state is estimated.
外気温度を検出する第一の温度検知手段と、前記第一の冷媒冷媒熱交換器を流通する前記第一の冷媒の温度を検出する第二の温度検知手段とを備え、
前記第二の冷凍サイクルの運転を制御する第一の制御手段は、前記第一の温度検知手段の出力と前記第二の温度検知手段の出力とに基づいて、前記第一の冷凍サイクルの運転状態を推定することを特徴とする、請求項1から請求項10の何れかに記載の冷凍サイクル装置。
First temperature detection means for detecting the outside air temperature, and second temperature detection means for detecting the temperature of the first refrigerant flowing through the first refrigerant refrigerant heat exchanger,
The first control means for controlling the operation of the second refrigeration cycle is configured to operate the first refrigeration cycle based on the output of the first temperature detection means and the output of the second temperature detection means. The refrigeration cycle apparatus according to any one of claims 1 to 10, wherein the state is estimated.
前記第三の冷凍サイクルと、前記第一の冷媒冷媒熱交換器と、前記第二の冷媒冷媒熱交換器と、を同一の筐体に収容することを特徴とする請求項1から請求項14の何れかに記載の冷凍サイクル装置。   The third refrigeration cycle, the first refrigerant refrigerant heat exchanger, and the second refrigerant refrigerant heat exchanger are housed in the same casing. The refrigeration cycle apparatus according to any one of the above.
JP2007176627A 2007-07-04 2007-07-04 Refrigeration cycle equipment Active JP4794511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007176627A JP4794511B2 (en) 2007-07-04 2007-07-04 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007176627A JP4794511B2 (en) 2007-07-04 2007-07-04 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2009014271A JP2009014271A (en) 2009-01-22
JP4794511B2 true JP4794511B2 (en) 2011-10-19

Family

ID=40355385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007176627A Active JP4794511B2 (en) 2007-07-04 2007-07-04 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4794511B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021806A (en) * 2009-07-15 2011-02-03 Fujitsu General Ltd Water-cooled heat pump heat source device
KR101639814B1 (en) 2009-11-20 2016-07-22 엘지전자 주식회사 Refrigerating and freezing combine air conditioning system
KR101173736B1 (en) 2009-12-24 2012-08-13 엘지전자 주식회사 Refrigerating and freezing combine air conditioning system
US9599395B2 (en) 2010-11-15 2017-03-21 Mitsubishi Electric Corporation Refrigerating apparatus
KR101973204B1 (en) * 2012-01-09 2019-04-26 엘지전자 주식회사 A combined refrigerating and freezing system and a control method the same
KR101859232B1 (en) 2012-01-09 2018-05-17 엘지전자 주식회사 A combined refrigerating and air conditioning system
KR101860950B1 (en) 2012-01-26 2018-05-24 엘지전자 주식회사 A combined refrigerating and freezing system and a control method the same
KR101370940B1 (en) 2012-02-29 2014-03-25 고등기술연구원연구조합 Multi Stage Refrigerating System And Operating Method Thereof
JP6347427B2 (en) * 2014-07-02 2018-06-27 パナソニックIpマネジメント株式会社 Refrigeration system
GB201719885D0 (en) * 2017-11-29 2018-01-10 Jtl Systems Ltd A condenser device for a refrigeration system and method of controlling thereof
IL260159B (en) * 2018-06-19 2022-02-01 N A M Tech Ltd Multi cascade cooling system
CN115289703B (en) * 2022-06-23 2023-10-13 北京京仪自动化装备技术股份有限公司 Temperature control method
CN115289704B (en) * 2022-06-23 2023-10-13 北京京仪自动化装备技术股份有限公司 Temperature control device and temperature control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170001A (en) * 2002-11-20 2004-06-17 Sanyo Electric Co Ltd Refrigerating system
JP2005233559A (en) * 2004-02-20 2005-09-02 Mitsubishi Heavy Ind Ltd Air conditioning/refrigerating/freezing equipment and its operation method

Also Published As

Publication number Publication date
JP2009014271A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP4794511B2 (en) Refrigeration cycle equipment
EP2615392B1 (en) Cascade heat pump
JP4001171B2 (en) Refrigeration equipment
JP5183804B2 (en) Refrigeration cycle equipment, air conditioning equipment
JP2010276230A (en) Refrigerating device
JP5689079B2 (en) Refrigeration cycle equipment
WO2018008053A1 (en) Refrigeration cycle system
EP2584285B1 (en) Refrigerating air-conditioning device
JP6522162B2 (en) Air conditioner
US20060168997A1 (en) Refrigerating device and refrigerator
JP2010078164A (en) Refrigeration and air conditioning device
JP4258363B2 (en) Refrigeration air conditioner, operation method of refrigeration air conditioner
JP4651452B2 (en) Refrigeration air conditioner
JP2006189237A (en) Refrigerating air conditioner, operating method and manufacturing method of the same, refrigerating device, and manufacturing method of refrigerating device
JPWO2010109619A1 (en) Load-side relay unit and combined air conditioning and hot water supply system
JP2021055961A (en) Air conditioner
KR101166655B1 (en) Refrigerant circulation apparatus
CN114127479B (en) Refrigerating device
JP6238935B2 (en) Refrigeration cycle equipment
KR102014457B1 (en) A combined refrigerating and air conditioning system
KR100524719B1 (en) By-pass device with variable flow rate of multi air-conditioner system
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
KR101146783B1 (en) Refrigerant system
JP4104519B2 (en) Refrigeration system
JP2006057869A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R150 Certificate of patent or registration of utility model

Ref document number: 4794511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250