WO2023233585A1 - トーションビーム - Google Patents

トーションビーム Download PDF

Info

Publication number
WO2023233585A1
WO2023233585A1 PCT/JP2022/022326 JP2022022326W WO2023233585A1 WO 2023233585 A1 WO2023233585 A1 WO 2023233585A1 JP 2022022326 W JP2022022326 W JP 2022022326W WO 2023233585 A1 WO2023233585 A1 WO 2023233585A1
Authority
WO
WIPO (PCT)
Prior art keywords
torsion beam
cross
section
sectional area
central portion
Prior art date
Application number
PCT/JP2022/022326
Other languages
English (en)
French (fr)
Inventor
敬之助 井口
雅彦 佐藤
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to PCT/JP2022/022326 priority Critical patent/WO2023233585A1/ja
Publication of WO2023233585A1 publication Critical patent/WO2023233585A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof

Definitions

  • the present invention relates to torsion beams.
  • Patent Document 1 a torsion beam described in Patent Document 1 below has been known.
  • This torsion beam has a closed cross section that is perpendicular to the longitudinal direction.
  • the longitudinal center portion of the steel pipe used as the material is deformed into a substantially V-shaped cross section (substantially inverted V-shaped cross section).
  • the present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a torsion beam that is prevented from becoming excessively heavy and has sufficient bending rigidity.
  • a torsion beam according to one aspect of the present invention is a tubular torsion beam extending in the longitudinal direction, including a central portion and end portions connected to both sides of the central portion, the torsion beam extending in the longitudinal direction of the torsion beam.
  • a cross-sectional area S1 including an internal space in a cross section that is a cross section perpendicular to the longitudinal direction in the central portion, an outer surface circumference L1 in the cross section, and a wall thickness of the torsion beam at the central portion in the longitudinal direction.
  • the ratio S1/(L1 ⁇ t1) defined by the average value t1 is 1.4 or more and less than 10. Note that the internal space in the cross section is a closed cross section.
  • the cross-sectional area S1 is related to the torsional stiffness of the torsion beam.
  • the outer surface circumference L1 and the average value t1 of the wall thickness (wall thickness) are related to the weight of the torsion beam. The longer the outer circumference L1 and the thicker the average wall thickness t1, the heavier the torsion beam becomes.
  • a low ratio S1/(L1 ⁇ t1) indicates that the weight of the torsion beam tends to be large relative to the torsional rigidity required of the torsion beam.
  • the average wall thickness t1 is calculated by determining the maximum and minimum values of the wall thickness in a cross section that is a cross section perpendicular to the longitudinal direction, and calculating the average value of both.
  • the cross-sectional area S1 is the sum of the wall cross-sectional area S1a and the space cross-sectional area S1b.
  • the wall cross-sectional area S1a is the cross-sectional area of a wall forming the tubular torsion beam.
  • the spatial cross-sectional area S1b is the cross-sectional area of the internal space.
  • the above-mentioned outer surface circumference L1 and average wall thickness t1 are also related to the wall cross-sectional area S1a. The longer the outer circumference L1 and the thicker the average wall thickness t1, the larger the wall cross-sectional area S1a of the torsion beam.
  • a high ratio S1/(L1 ⁇ t1) indicates that the ratio of the outer surface circumference L1 and the average wall thickness t1 to the cross-sectional area S1 is low.
  • a high ratio S1/(L1 ⁇ t1) indicates that the ratio of the wall cross-sectional area (cross-sectional area of the thick part) S1a to the cross-sectional area S1 is low and the ratio of the spatial cross-sectional area S1b is high.
  • the torsional rigidity is kept constant, when the ratio of the wall cross-sectional area S1a to the cross-sectional area S1 is low, the bending rigidity of the torsion beam becomes low. From the above, a high ratio S1/(L1 ⁇ t1) indicates that the bending rigidity of the torsion beam tends to be low relative to a constant (appropriate) torsional rigidity.
  • the ratio S1/(L1 ⁇ t1) is 1.4 or more and less than 10.
  • the bending rigidity of the torsion beam can be ensured without making the torsion beam excessively heavy. That is, if the ratio S1/(L1 ⁇ t1) is less than 1.4, the value of the ratio S1/(L1 ⁇ t1) may be too low and the torsion beam may become excessively heavy.
  • the ratio S1/(L1 ⁇ t1) is 10 or more, the value of the ratio S1/(L1 ⁇ t1) may be too high and the bending rigidity of the torsion beam may become excessively low.
  • the relationship between the average value t1 and the bending radius R is 1. 5t1 ⁇ R may also be satisfied. Note that the bending radius R is the bending radius on the inside of the torsion beam.
  • the bending radius R is the bending radius on the inside of the torsion beam.
  • the tensile strength of the material of the torsion beam may be 780 MPa or more.
  • the fatigue characteristics of the torsion beam can be improved and a lightweight design can be achieved.
  • the void in the internal space may be 1.0 mm or more in the cross section where the void is smallest.
  • the gap By setting the gap to 1.0 mm or more in the cross section where the gap in the internal space is the smallest, it is possible to suppress noise caused by rubbing or collision of the inner walls forming the torsion beam when using the torsion beam. .
  • the outer surface circumference L1 is less than the outer surface circumference L2 in a cross section that is a cross section perpendicular to the longitudinal direction of the end portion. There may be.
  • the cross-sectional area S1 at the center of the torsion beam is It may be necessary to make the cross-sectional area smaller than the end cross-sectional area S2.
  • the central part of the tube that is the material of the torsion beam is deformed so as to reduce the internal space (hereinafter referred to as volume reduction deformation), and is processed into a substantially V-shaped cross section.
  • volume reduction deformation the internal space
  • noise may be generated due to stress concentration when the torsion beam is used or the walls forming the torsion beam rub against each other or collide with each other.
  • the outer surface circumference L1 at the center of the torsion beam is less than the outer surface circumference L2 at the ends of the torsion beam. Therefore, for example, if the cross-sectional shape at the center of the torsion beam is similar to the cross-sectional shape at the end of the torsion beam, the cross-sectional area S1 at the center of the torsion beam is It is necessarily lower than the area S2.
  • the cross-sectional width (for example, diameter) of the cross section while maintaining the shape of the cross section at the center of the torsion beam, the cross-sectional area S1 at the center of the torsion beam can be changed to the shape of the cross section at the end of the torsion beam.
  • the torsional rigidity of the torsion beam can be lowered. This allows a lightweight torsion beam to be designed without the aforementioned problems while minimizing the amount of material used (no extra circumference).
  • the center part of the torsion beam should be processed to have a smaller diameter than the end parts in order to make the cross-sectional area S1 less than the cross-sectional area S2.
  • processing methods include (a) a method of expanding the diameter of the end portion of the tube, and (b) a method of reducing the diameter of the center portion of the tube.
  • the former (a) include so-called bulge processing (hydraulic bulge processing, rubber bulge processing) in which a pressure medium is supplied to the inside of a pipe to expand its diameter, so-called flaring processing using a press, and so-called stepped processing using a punch.
  • the latter (b) includes, for example, a so-called necking process in which the pipe is locally squeezed using rolls.
  • the average value t1 may be 2.5 mm or more.
  • the average thickness t1 of the center portion of the torsion beam is 2.5 mm or more. Therefore, the bending rigidity of the torsion beam can be reliably increased.
  • the wall thickness of the torsion beam in a cross section perpendicular to the longitudinal direction is -20% or more and 0% or less of the maximum value of the wall thickness. It may be.
  • the wall thickness is constant in the cross section perpendicular to the longitudinal direction. This is because if there is a thin part, stress will be concentrated and it may become a starting point for fatigue failure.
  • variations in wall thickness may occur in the circumferential direction. Even if there is this variation, the variation in wall thickness in the circumferential direction is within the tolerance (thickness If the thickness is within -20% or more and 0% or less (preferably -15% or more and 0% or less) of the maximum thickness, the adverse effects caused by stress concentration in the thin part can be ignored, and the This is because the wall thickness can be considered to be substantially constant.
  • the cross section at the central portion may not include a portion that is convex toward the internal space.
  • the cross section of the central portion of the torsion beam does not have a convex portion toward the interior space. Therefore, for example, there is no need to deform the tube that is the material of the torsion beam to reduce its volume. In this case, for example, the generation of residual stress can be suppressed.
  • specific shapes in the cross section of the central portion include, for example, circular shapes (for example, perfect circular shapes, elliptical shapes), polygonal shapes (rectangular shapes (square shapes, rectangular shapes), triangular shapes), etc. .
  • the ratio of the cross-sectional area S1 to the outer surface circumference L1, S1/L1 0.5 ⁇ R1 (where R1 is the radius of the outer surface at the center), and the geometric Scientifically required.
  • S1/L1 ⁇ 0.39 ⁇ R1' where R1' is the equivalent radius of the outer surface of the central part.
  • S1/L1 ⁇ 0.3 ⁇ R1' (where R1' is the equivalent radius of the outer surface of the central part).
  • the cross-sectional shape of the center part of the torsion beam is a perfect circle, and as a result of lowering the value of the cross-sectional area S1 in the process of adjusting the torsional rigidity, the bending rigidity becomes excessively low.
  • excessive reduction in bending rigidity can be suppressed by changing the cross-sectional shape to a square shape, an equilateral triangle shape, etc. instead of a circular shape.
  • the cross-sectional shape is approximately V-shaped so that the material is in close contact with the inner surface, a sufficient gap (1.0 mm or more, preferably 1.5 mm or more, more preferably 2 mm or more) is provided on the inner surface. Even if the cross-sectional shape is changed, excessive reduction in bending rigidity can be similarly suppressed.
  • the axis of the center portion in the longitudinal direction and the axis of the end portions in the longitudinal direction may be misaligned.
  • the axis line means a line connecting the centers of gravity of the cross sections.
  • the axis of the center of the torsion beam and the axis of the end of the torsion beam are misaligned. That is, the center portion and end portions of the torsion beam are not limited to being coaxial. Therefore, for example, the degree of freedom in the shape of the torsion beam can be increased. As a result, the layout can be diversified, for example, by designing to avoid other structures in the vehicle.
  • the axis of the central portion may be a curve.
  • the central axis of the torsion beam is a curve. That is, the central axis of the torsion beam is not limited to a straight line. Therefore, for example, the degree of freedom in the shape of the torsion beam can be increased. As a result, the layout can be diversified, such as by designing to avoid other structures in the vehicle.
  • the central axis is a curve, it is conceivable to manufacture the torsion beam by bending a tube that is the material of the torsion beam. This type of bending is often difficult when the cross section of the central portion of the torsion beam has a convex portion toward the interior space. In other words, if the cross section of the central portion of the torsion beam does not have a convex portion toward the internal space, this type of bending process is likely to occur.
  • the average value t1 may be different from the average value t2 of the wall thickness at the end portion.
  • the average thickness t1 of the center portion of the torsion beam is different from the average thickness t2 of the end portions. Therefore, an appropriate wall thickness can be adopted depending on the position in the longitudinal direction. As a result, the quality of the torsion beam can be improved. For example, from the viewpoint of attaching the end of the torsion beam to the trailing arm, it is considered that it is often preferable that t1 ⁇ t2.
  • a possible method for making t1 and t2 different is, for example, a method of manufacturing a tube that is a material for a torsion beam by UO forming a tailored blank made by joining a plurality of steel plates with different wall thicknesses.
  • FIG. 1 is a perspective view illustrating a schematic configuration of a torsion beam type rear suspension device according to an embodiment of the present invention. It is a figure explaining the schematic structure of the torsion beam assembly concerning the same embodiment, and is a perspective view seen from below. It is a perspective view explaining the schematic structure of the torsion beam concerning the same embodiment. It is a top view explaining the schematic structure of the torsion beam concerning the same embodiment.
  • 5 is a diagram showing a schematic configuration of a torsion beam according to the same embodiment, and is a closed cross-sectional view when viewed along arrow VV in FIG. 4.
  • FIG. 5 is a diagram illustrating a schematic configuration of a torsion beam according to the same embodiment, and is a closed sectional view taken along arrow VI-VI in FIG. 4.
  • FIG. 5 is a diagram illustrating a schematic configuration of a torsion beam according to the same embodiment, and is a closed sectional view taken along arrow VII-VII in FIG. 4.
  • FIG. 5 is a diagram showing a schematic configuration of a torsion beam according to a first modification of the present invention, and is a closed cross-sectional view corresponding to the view taken along arrow VV in FIG. 4.
  • FIG. 5 is a diagram showing a schematic configuration of a torsion beam according to a second modification of the present invention, and is a closed cross-sectional view corresponding to the view taken along the arrow VV in FIG. 4.
  • FIG. 5 is a diagram showing a schematic configuration of a torsion beam according to a third modification of the present invention, and is a closed cross-sectional view corresponding to the view taken along arrow VV in FIG. 4.
  • FIG. It is a perspective view which shows the schematic structure of the torsion beam based on the 4th modification of this invention. It is a perspective view showing the schematic structure of the torsion beam concerning the 5th modification of the present invention.
  • FIG. 5 is a diagram showing a schematic configuration of a torsion beam according to a comparative example of the present invention, and is a closed sectional view corresponding to the view taken along the arrow VV in FIG. 4.
  • FIG. 1 is a diagram showing a schematic configuration of a torsion beam rear suspension device (torsion beam suspension device) according to the present embodiment.
  • FIG. 1 shows a torsion beam type rear suspension device 1, a torsion beam assembly 2, and a torsion beam 10. Note that FIG. 1 shows the front FR and rear RE of a vehicle (not shown) on which this torsion beam type rear suspension device 1 is mounted.
  • the torsion beam type rear suspension device 1 includes a torsion beam assembly 2, and a spring 3 and an absorber 4 that connect the torsion beam assembly 2 and a vehicle body (not shown).
  • the torsion beam assembly 2 supports left and right wheels WL, WR by a pair of left and right trailing arms 5, and is connected to the vehicle body via pivot shafts JL, JR extending slightly toward the front center from the left and right sides of the vehicle body. ing.
  • the torsion beam assembly 2 is configured to be swingable relative to the vehicle body.
  • the torsion beam assembly 2 includes, for example, a pair of left and right trailing arms (arms) 5, a torsion beam 10 that connects these trailing arms 5, and a pair of left and right spring receivers that support the springs 3. It is equipped with 3A. Further, one end side of the absorber 4, which is a damping device, is connected to a buffer receiving portion (not shown).
  • the trailing arm 5 includes, for example, a trailing arm body 5A, a pivot mounting member 5F connected to the front end of the trailing arm body 5A and supported by the vehicle body via a pivot shaft J, and a trailing arm body 5A.
  • the wheel mounting member 5R is connected to the rear side end of the wheel 5A and supports the wheels WL and WR.
  • the spring receiving portion 3A is arranged on the opposite side of the pivot mounting member 5F with the torsion beam 10 in between, and one end side of the spring 3 is attached to the spring receiving portion 3A. Loads received from the road surface are transmitted to the vehicle via wheels WL, WR, trailing arm 5, and spring 3.
  • the torsion beam is required to have rigidity against bending around the vertical axis of the vehicle body for holding the tires. For example, this is the rigidity that allows the torsion beam to hold the tire in place when a lateral force is generated on the tire. At the same time, if there is a difference in the force applied from the ground to the left and right tires at a corner, etc., twisting will occur around the beam axis direction, so the rigidity must be appropriate (not too large or too small). ), a function to suppress the roll of the treadmill is required.
  • the torsion beam 10 according to this embodiment will be described below with reference to FIGS. 3 to 7.
  • the torsion beam 10 has a closed cross section that is perpendicular to the longitudinal direction.
  • the torsion beam 10 has a hollow tubular shape with an internal space.
  • the cross-sectional shape of the torsion beam 10 is a perfect circle over the entire length in the longitudinal direction.
  • the torsion beam 10 has a circular tubular shape.
  • the tensile strength of the material of the torsion beam 10 is preferably 780 MPa or more, more preferably 980 MPa or more.
  • the tensile strength of the material of the torsion beam 10 is preferably 1380 MPa or less, more preferably 1180 MPa or less.
  • the length of the torsion beam 10 is not particularly limited, but is, for example, 500 mm or more and 1800 mm or less.
  • the weight of the torsion beam 10 is not particularly limited, but is, for example, 2 kg or more and 20 kg or less.
  • the torsion beam 10 includes a central portion 11 and end portions 12 in the longitudinal direction, and a shape changing portion 13 that connects the central portion 11 and the end portions 12.
  • the center portion 11 has the same diameter regardless of its position along the longitudinal direction.
  • the end portion 12 has the same diameter regardless of its position along the longitudinal direction.
  • These central portion 11 and end portions 12 are tubular.
  • the center portion 11 has a smaller diameter than the end portions 12.
  • the cross section of the central portion 11 is similar to the cross section of the end portions 12. Both ends of the central portion 11 in the longitudinal direction are connected to each shape changing portion 13 .
  • the center portion 11 is longer than the end portions 12 in the longitudinal direction.
  • the length of the central portion 11 is greater than or equal to twice the length of the end portions 12 and less than or equal to 20 times. Note that in this embodiment, as described above, since the center portion 11 has a smaller diameter than the end portions 12, the outer surface circumference L1 in the cross section of the center portion 11 is equal to the outer surface circumference L2 in the cross section of the end portions 12.
  • L1 is the outer surface circumference of the central portion 11 in a cross section that is perpendicular to the longitudinal direction.
  • L2 is the outer surface circumference of the end portion 12 in a cross section that is perpendicular to the longitudinal direction.
  • the outer surface circumference L1 of the central portion 11 can be, for example, the average value of the outer surface circumferences at each of the four boundaries of each region when the central portion 11 is equally divided into five regions in the longitudinal direction.
  • the outer circumferential length L2 of the end portion 12 can also be defined in the same manner as the outer circumferential length L1 of the central portion 11.
  • the outer surface circumference L1 is not particularly limited, but is, for example, 90 mm or more and 300 mm or less.
  • the outer surface circumference L2 is not particularly limited, it is, for example, 150 mm or more and 600 mm or less.
  • the shape-changing portion 13 continuously increases in diameter from the center portion 11 toward the end portions 12.
  • the shape changing portion 13 has a truncated cone shape.
  • an edge near the center in the longitudinal direction of the torsion beam 10 is connected to the center section 11
  • an edge on the outer side in the longitudinal direction is connected to the end section 12 .
  • the central portion 11, end portions 12, and shape changing portions 13 are all formed into a straight tube shape.
  • the axes of the central portion 11, the end portions 12, and the shape-changing portions 13 extend linearly.
  • the respective axes are located on a common axis. That is, the central portion 11, the end portions 12, and the shape changing portions 13 are arranged coaxially.
  • the axis line means a line connecting the centers of gravity of the cross sections.
  • the cross-sectional shape of the torsion beam 10 is a perfect circle over the entire length in the longitudinal direction. In other words, regardless of the longitudinal position of the torsion beam 10, the cross section of the torsion beam 10 does not have a portion that is convex toward the internal space. That is, none of the cross sections of the central portion 11, the end portions 12, and the shape changing portion 13 have a portion that is convex toward the internal space.
  • the wall thickness (plate thickness) of the torsion beam 10 is substantially constant regardless of the position in the longitudinal direction or the position in the circumferential direction in the cross section.
  • the average thickness t1 of the central portion 11, the average thickness t2 of the end portions 12, and the average thickness t3 of the shape-changing portion 13 are the same (substantially constant).
  • the average wall thickness (plate thickness) of the torsion beam 10 is 2.5 mm or more.
  • the average value t1 of the wall thickness of the central portion 11 may be, for example, the average value of the wall thickness at each of the four boundaries of each region when the central portion 11 is equally divided into five regions in the longitudinal direction. can.
  • the wall thickness at each boundary is calculated by finding the maximum and minimum values of the wall thickness in a cross section that is perpendicular to the longitudinal direction, and finding the average value of both.
  • the wall thickness in each region is the average value of the maximum and minimum wall thicknesses in the cross section of that region.
  • the wall thickness t2 of the end portion 12 and the wall thickness t3 of the shape changing portion 13 can also be defined in the same manner as the average value t1 of the wall thickness of the central portion 11.
  • the wall thickness of the torsion beam in the cross section falls within -20% or more and 0% or less (preferably -15% or more and 0% or less) of the maximum wall thickness (that is, the variation in wall thickness in the circumferential direction is within the tolerance (-20% or more and 0% or less (preferably -15% or more and 0% or less) of the maximum wall thickness), then the wall thickness is substantially constant in the circumferential direction. It can be considered. That is, if the thickness of the torsion beam falls within 80% or more and 100% or less (preferably -15% or more and 0% or less) of the maximum value, the thickness can be considered to be substantially constant in the circumferential direction. Note that it is better that the wall thickness is constant in the cross section.
  • t1 to t3 are equivalent (substantially almost constant) not only when t1 to t3 completely match, but also when they are slightly different but are substantially the same. Cases are included.
  • a case where the difference is slightly different may be, for example, a case where the difference between the smallest value and the largest value among t1 to t3 is less than 5% of the largest value.
  • the ratio S1/(L1 ⁇ t1 ) is 1.4 or more and less than 10.
  • the cross-sectional area S1 is the sum of the wall cross-sectional area S1a and the spatial cross-sectional area S1b.
  • the wall cross-sectional area S1a is the cross-sectional area of a wall forming the torsion beam 10.
  • the spatial cross-sectional area S1b is the cross-sectional area of the internal space.
  • the wall cross-sectional area S1a of the central portion 11 can be, for example, the average value of the wall cross-sectional areas at each of the four boundaries of each region when the central portion 11 is equally divided into five regions in the longitudinal direction.
  • the spatial cross-sectional area S1b can also be defined in the same way as the wall cross-sectional area S1a.
  • the cross-sectional area S1 is not particularly limited, but is, for example, 650 mm 2 or more and 7000 mm 2 or less.
  • the wall cross-sectional area S1a is not particularly limited, it is, for example, 135 mm 2 or more and 1200 mm 2 or less.
  • the spatial cross-sectional area S1b is not particularly limited, it is, for example, 100 mm 2 or more and 6500 mm 2 or less.
  • the center portion 11 has a smaller diameter than the end portions 12, and the cross-sectional area S1 is smaller than the cross-sectional area S2 of the end portions 12.
  • the cross-sectional area S2 of the end portion 12 is not particularly limited, but is, for example, 800 mm 2 or more and 28000 mm 2 or less.
  • the torsion beam 10 can be manufactured from, for example, a steel pipe (not shown) that is the material of the torsion beam 10.
  • the steel pipe may be any steel pipe, such as a forge-welded steel pipe, an electric resistance welded steel pipe, a seamless steel pipe, or an arc-welded steel pipe (for example, a UOE steel pipe).
  • the center portion 11 of the torsion beam 10 is processed to have a smaller diameter than the end portions 12 in order to make the cross-sectional area S1 less than the cross-sectional area S2.
  • Possible processing methods include (a) a method of expanding the diameter of the end portion 12 of the steel pipe, and (b) a method of reducing the diameter of the central portion 11 of the steel pipe.
  • the former (a) includes, for example, so-called bulge processing (hydraulic bulge processing, rubber bulge processing) in which a pressure medium is supplied to the inside of a steel pipe to expand its diameter, so-called flaring processing using a press, and so-called stepped processing using a punch. Examples include. Examples of the latter (b) include so-called necking, in which the steel pipe is locally squeezed using rolls.
  • the cross-sectional area S1 is related to the torsional stiffness of the torsion beam 10. The larger the cross-sectional area S1, the higher the torsional rigidity. Therefore, when the torsional rigidity of the torsion beam 10 is kept within a predetermined range, the cross-sectional area S1 takes a value within a certain range depending on the torsional rigidity. Further, the outer surface circumference L1 and the average wall thickness t1 are related to the weight of the torsion beam 10. The longer the outer circumference L1 and the thicker the average wall thickness t1, the heavier the torsion beam 10 becomes. Therefore, a low ratio S1/(L1 ⁇ t1) indicates that the weight of the torsion beam 10 tends to be large relative to the torsional rigidity required of the torsion beam 10.
  • the above-mentioned outer surface circumference L1 and average wall thickness t1 are also related to the wall cross-sectional area S1a.
  • a high ratio S1/(L1 ⁇ t1) indicates that the ratio of the outer surface circumference L1 and the average thickness value t1 to the cross-sectional area S1 is low. That is, a high ratio S1/(L1 ⁇ t1) indicates that the ratio of the wall cross-sectional area S1a to the cross-sectional area S1 is low and the ratio of the spatial cross-sectional area S1b is high.
  • the ratio S1/(L1 ⁇ t1) is 1.4 or more and less than 10.
  • the bending rigidity of the torsion beam 10 can be ensured without making the torsion beam 10 excessively heavy. That is, if the ratio S1/(L1 ⁇ t1) is less than 1.4, the value of the ratio S1/(L1 ⁇ t1) may be too low and the torsion beam 10 may become excessively heavy.
  • the ratio S1/(L1 ⁇ t1) is 10 or more, the value of the ratio S1/(L1 ⁇ t1) may be too high and the bending rigidity of the torsion beam 10 may become excessively low.
  • the ratio S1/(L1 ⁇ t1) is preferably less than 5, more preferably less than 3.
  • the central portion 11 of the steel pipe that is the material of the torsion beam 100 is deformed so that the internal space is reduced (hereinafter referred to as volume reduction deformation), It is necessary to process it into a substantially V-shaped cross section so that the inner surface side is in close contact with each other.
  • volume reduction deformation It is necessary to process it into a substantially V-shaped cross section so that the inner surface side is in close contact with each other.
  • noise may be generated due to stress concentration when using a torsion beam or the walls that make up the torsion beam rub against each other or collide with each other. .
  • the outer surface circumference L1 at the center portion 11 of the torsion beam 10 is less than the outer surface circumference L2 at the end portions 12 of the torsion beam 10. Therefore, for example, when the cross-sectional shape of the central portion 11 of the torsion beam 10 is similar to the cross-sectional shape of the end portion 12 of the torsion beam 10, the cross-sectional area S1 of the central portion 11 of the torsion beam 10 is It is necessarily lower than the cross-sectional area S2 of the end portion 12 of the torsion beam 10.
  • the cross-sectional area S1 of the center portion 11 of the torsion beam 10 can be changed to As a result, the torsional rigidity of the torsion beam 10 can be reduced. As a result, the above-mentioned problems do not occur, and for example, the fatigue characteristics of the torsion beam 10 can be improved.
  • each modification example Next, each modification according to the present invention will be explained with reference to FIGS. 8 to 12.
  • the same reference numerals are attached to the same components as those in the embodiment described above, and the explanation thereof will be omitted, and only the different points will be explained.
  • Examples of such shapes that do not have a convex portion toward the internal space include a perfect circle, a regular triangle, an ellipse, a square, and a regular pentagon. That is, there are circular shapes including a perfect circle shape and an elliptical shape, regular polygonal shapes including an equilateral triangular shape, square shape, regular pentagonal shape, etc., and polygonal shapes including these regular polygonal shapes. Alternatively, it may be rectangular. Naturally, each corner and each side of the polygon may have a curvature that is concave toward the internal space.
  • specific shapes in the cross section of the central portion 11 include, for example, circular shapes (for example, perfect circular shapes, elliptical shapes), polygonal shapes (rectangular shapes (square shapes, rectangular shapes), triangular shapes), etc. be.
  • R1 is the radius of the outer surface of the central part 11.
  • the cross-sectional area S1 when the cross-sectional area S1 is set to a constant value, it can be said that the bending rigidity increases in the order of a perfect circle, a square, and an equilateral triangle. Therefore, for example, if the cross-sectional shape of the central portion 11 of the torsion beam 10A is a perfect circle, and as a result of lowering the value of the cross-sectional area S1 in the process of adjusting the torsional rigidity, the bending rigidity becomes excessively low. If it is stored away, excessive reduction in bending rigidity may be suppressed by changing the cross-sectional shape to a square, equilateral triangle, or the like instead of a circular shape.
  • the relationship between the average wall thickness t1 of the center portion 11 and the bending radius R is 1.5t1 ⁇ R It is.
  • 1.5t1 ⁇ R in the cross section of the triangular corner 20A where the bending radius R is the smallest, 1.5t1 ⁇ R.
  • the bending radius R is the inner bending radius of the triangular corner 20A.
  • torsion beam according to a further modification of the torsion beam 10A according to the first modification similar to the torsion beam 10A according to the first modification, although the cross section of the central portion 11 and the cross section of the end portions 12 are not similar in shape, Examples include a shape in which the cross section of the end portion 12 is not a perfect circle.
  • the cross section of the center portion 11 and the cross section of the end portions 12 are not similar in shape, similarly to the torsion beam 10A according to the first modification.
  • the cross section of the central portion 11 includes a portion that is convex toward the internal space.
  • the cross section of the central portion 11 is heart-shaped.
  • the cross section of the central portion 11 having the smallest circumferential bending radius R is a heart-shaped corner portion 20B, as shown in FIG.
  • the bending radius R is the inner bending radius of the heart-shaped corner 20B.
  • the relationship between the average wall thickness t1 of the center portion 11 and the bending radius R is 1.5t1 ⁇ R. This makes it possible to suppress a decrease in fatigue strength inside the torsion beam. More preferably, 1.7t1 ⁇ R in the cross section having the portion with the smallest bending radius R.
  • the cross section of the central portion 11 includes a portion that is convex toward the internal space.
  • the cross section of the central portion 11 is approximately V-shaped with a gap in the internal space.
  • the cross section where the void in the internal space is the smallest is the inside of the corner 20C.
  • the void can be maintained during torsional deformation and bending rigidity can be ensured.
  • the gap is 1.5 mm or more, and even more preferably 2 mm or more. Note that the gap in the internal space is defined as the closest distance between two opposing inner surfaces. Note that in FIG. 10, the voids in the internal space are exaggerated for ease of understanding.
  • the axis of the center portion 11 of the torsion beam 10D and the axis of the end portion 12 of the torsion beam 10 are misaligned. That is, the center portion 11 and end portions 12 of the torsion beam 10D are not limited to being coaxial. Therefore, for example, the degree of freedom in the shape of the torsion beam 10D can be increased. As a result, the layout can be diversified, for example, by designing to avoid other structures in the vehicle.
  • the axis of the central portion 11 is a curve. That is, the central portion 11 is curved.
  • This torsion beam 10E is formed by bending the torsion beam 10D according to the fourth modification.
  • the axis of the central portion 11 of the torsion beam 10E is a curve. That is, the axis of the central portion 11 of the torsion beam 10E is not limited to a straight line. Therefore, for example, the degree of freedom in the shape of the torsion beam 10E can be increased. As a result, the layout can be diversified, such as by designing to avoid other structures in the vehicle.
  • the axis of the central portion 11 is a curve, it is conceivable to manufacture the torsion beam 10E by bending a steel pipe that is the material of the torsion beam 10E.
  • the average thickness value t1 at the center portion 11 and the average thickness value t2 at the end portions 12 may be different.
  • an appropriate thickness average value can be adopted depending on the longitudinal position.
  • the quality of the torsion beam can be improved.
  • t1 ⁇ t2 from the viewpoint of attaching the end portion 12 of the torsion beam to the trailing arm, it is considered that it is often preferable that t1 ⁇ t2.
  • a possible method for making t1 and t2 different is, for example, a method of manufacturing a steel pipe that is a material for a torsion beam by UO forming a tailored blank made by joining a plurality of steel plates with different thicknesses.
  • a part of the torsion beam that is not the entire length in the longitudinal direction does not have to be an open cross section.
  • holes may be provided at one or more locations on the torsion beam as long as the performance of the torsion beam is not affected.
  • the material for the torsion beam does not have to be steel pipe.
  • Materials include steel, metals other than steel (aluminum alloy, titanium alloy, stainless steel, etc.), non-metals (carbon fiber reinforced resin, glass fiber reinforced resin, etc.), and composites of these materials (multilayer materials, etc.). You can also use it as
  • the shape of the tube serving as the raw material does not need to be uniform in cross-sectional size or shape, and may be a tapered tube or an irregular cross-section tube.
  • a plate-shaped material may be formed into the shape of a torsion beam, and then the joints of the plates may be joined to form a closed cross section.
  • the method of forming a plate-like material into the shape of a torsion beam is not particularly limited, but for example, the method shown in Japanese Patent No. 6477716 can be applied.
  • the method of joining the seams of the plates after forming the plate material into the shape of a torsion beam is not particularly limited, but examples include welding (arc welding, laser welding, seam welding, resistance welding, spot welding). ), pressure welding, brazing, adhesive bonding, etc. can be applied.
  • the “tube end outer surface circumference L2 (mm)” in Table 1 is the outer surface circumference L2 (mm) in a cross section that is a cross section perpendicular to the longitudinal direction of the end 12 of the torsion beam.
  • “Length of small diameter portion (mm)” in Table 1 is the length (mm) of the central portion 11 of the torsion beam in the longitudinal direction.
  • “The ratio (%) of the outer surface circumference of the center V-shaped cross section to the outer surface circumference of the tube end” in Table 1 is the ratio (%) of the outer surface circumference L1 of the V-shaped cross section of the center section 11 and the outer surface circumference L2 of the end 12. ).
  • Minimum R (mm) of the inner surface of the central portion in Table 1 is the R (mm) at which the circumferential bending radius of the central portion 11 is the smallest.
  • the “minimum value (mm) between the inner surfaces of the central part” in Table 1 is the value (mm) in which the gap in the internal space of the central part 11 is the smallest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

このトーションビーム(10)は、中央部(11)と、中央部(11)の両側と接続する端部(12)と、を備え、長手方向に延びる管状のトーションビーム(10)であって、トーションビーム(10)の長手方向の中央部(11)における横断面において内部空間を含む断面積(S1)と、横断面における外面周長(L1)と、トーションビーム(10)の長手方向の中央部(11)における肉厚の平均値t1と、によって定められる比S1/(L1×t1)が、1.4以上10未満である。

Description

トーションビーム
 本発明は、トーションビームに関する。
 従来から、下記特許文献1に記載のトーションビームが知られている。このトーションビームは、長手方向に直交する断面である横断面が閉断面である。このトーションビームでは、ねじり剛性を所定の範囲に調整するため、素材となる鋼管の長手方向の中央部を断面略V字状(断面略逆V字状)に変形させている。
日本国特開2019-26012号公報
 この種のトーションビームでは、曲げ剛性を確保しつつ、高重量化を抑制することが望まれている。
 本発明は、前述した事情に鑑みてなされたものであって、過度に重くなることが抑制されつつ、曲げ剛性が確保されたトーションビームを提供することを目的とする。
 前記課題を解決するために、本発明は以下の手段を提案している。
(1)本発明の一態様に係るトーションビームは、中央部と、前記中央部の両側と接続する端部と、を備え、長手方向に延びる管状のトーションビームであって、前記トーションビームの前記長手方向の前記中央部における、前記長手方向に直交する断面である横断面において内部空間を含む断面積S1と、前記横断面における外面周長L1と、前記トーションビームの前記長手方向の前記中央部における肉厚の平均値t1と、によって定められる比S1/(L1×t1)が、1.4以上10未満である。なお、横断面における内部空間は、閉断面である。
 断面積S1は、トーションビームのねじり剛性と関連する。断面積S1が大きいほど、ねじり剛性が高くなる。そのため、トーションビームのねじり剛性を所定の範囲に収めるとき、断面積S1は、ねじり剛性に応じた一定の範囲内の値となる。
 また、外面周長L1および肉厚(壁の厚さ)の平均値t1は、トーションビームの重量と関連する。外面周長L1が長いほど、また、肉厚の平均値t1が厚いほど、トーションビームが重くなる。
 そのため、比S1/(L1×t1)が低いことは、トーションビームに求められるねじり剛性に対してトーションビームの重量が大きい傾向にあることを示す。
 なお、肉厚の平均値t1は、前記長手方向に直交する断面である横断面において、肉厚の最大値及び最小値を求め、両者の平均値を求めることにより算出される。
 ここで断面積S1は、壁断面積S1aと、空間断面積S1bと、の和である。壁断面積S1aは、管状のトーションビームを構成する壁の断面積である。空間断面積S1bは、内部空間の断面積である。
 前述の外面周長L1および肉厚の平均値t1は、壁断面積S1aとも関連する。外面周長L1が長いほど、また、肉厚の平均値t1が厚いほど、トーションビームの壁断面積S1aが大きくなる。
 比S1/(L1×t1)が高いことは、断面積S1に対する外面周長L1および肉厚の平均値t1の割合が低いことを示している。すなわち、比S1/(L1×t1)が高いことは、断面積S1に対する壁断面積(肉厚部分の断面積)S1aの割合が低く、かつ、空間断面積S1bの割合が高いことを示している。そして、ねじり剛性を一定に保つとすれば、断面積S1に対する壁断面積S1aの割合が低い場合、トーションビームの曲げ剛性が低くなる。
 以上から、比S1/(L1×t1)が高いことは、一定の(適切な)ねじり剛性に対して、トーションビームの曲げ剛性が低い傾向にあることを示す。
 前記トーションビームでは、比S1/(L1×t1)が1.4以上10未満である。比S1/(L1×t1)が適切な範囲内に設定されることにより、トーションビームが過度に重くなることなく、トーションビームの曲げ剛性を確保することができる。すなわち、比S1/(L1×t1)が1.4未満の場合、比S1/(L1×t1)の値が低すぎてトーションビームが過度に重くなるおそれがある。一方、比S1/(L1×t1)が10以上である場合、比S1/(L1×t1)の値が高すぎてトーションビームの曲げ剛性が過度に低くなるおそれがある。
(2)上記(1)に係るトーションビームでは、前記中央部の周方向の曲げ半経Rが最も小さい部分を有する前記横断面において、前記平均値t1と前記曲げ半径Rとの関係が、1.5t1<Rであってもよい。なお、曲げ半径Rは、トーションビームの曲げ内側の曲げ半径である。
 中央部の周方向の曲げ半径Rが最も小さい部分を有する横断面において、1.5t1<Rである。これにより、曲げによってトーションビームの曲げ内側の疲労強度低下を抑制することができる。なお、曲げ半径Rは、トーションビームの曲げ内側の曲げ半径である。
(3)上記(1)または(2)に係るトーションビームでは、トーションビームの材料の引張強度は780MPa以上であってもよい。
 トーションビームの材料の引張強度を780MPa以上とすることで、トーションビームの疲労特性を高め、軽量な設計とすることができる。
(4)上記(1)から(3)のいずれか1項に係るトーションビームでは、前記内部空間の空隙が最も小さい前記横断面において、前記空隙が1.0mm以上であってもよい。
 内部空間の空隙が最も小さい前記横断面において、空隙を1.0mm以上とすることで、トーションビーム使用時に、トーションビームを構成する内面壁同士が擦れたり衝突したりすることによる騒音を抑制することができる。
(5)上記(1)から(4)のいずれか1項に係るトーションビームでは、前記外面周長L1が、前記端部の前記長手方向に直交する断面である横断面における外面周長L2未満であってもよい。
 この種のトーションビームでは、トーションビームとその両端に接続されるトレーリングアームとの接続強度を保ちつつ、トーションビームのねじり剛性を適切に低下させることを目的として、トーションビームの中央部の断面積S1を、トーションビームの端部の断面積S2よりも低くする必要が生じることがある。
 このような場合、前記従来技術のようなトーションビームでは、トーションビームの素材となる管における中央部を、内部空間が減ずるように変形(以下、減容変形という)させ、断面略V字形状に加工する必要がある。
 しかしながら、前述の素材の中央部を減容変形させると、トーションビーム使用時の応力集中や、トーションビームを構成する壁同士が擦れたり衝突したりすることによる騒音が生じる場合がある。
 これに対して、このトーションビームでは、トーションビームの中央部における外面周長L1が、トーションビームの端部における外面周長L2未満である。そのため、例えば、トーションビームの中央部における横断面の形状が、トーションビームの端部における横断面の形状と相似している場合などには、トーションビームの中央部の断面積S1が、トーションビームの端部の断面積S2よりも必然的に低くなる。よってこの場合、例えば、トーションビームの中央部の横断面の形状を維持しながら、前記横断面の断面幅(例えば直径)を短くすることで、トーションビームの中央部の断面積S1を、トーションビームの端部の断面積S2よりも低くし、その結果、トーションビームのねじり剛性を低下させることができる。これにより、材料の使用量を最小にしながら(余分な周長がないようにしながら)、前述のような問題が生じることがなく、軽量なトーションビームを設計することができる。
 なお、トーションビームの素材となる管が、長手方向の全長にわたって一定の直径を備えている場合、断面積S1を断面積S2未満にするため、トーションビームの中央部を端部よりも小径に加工することが考えられる。このような加工方法としては、(a)管の端部を拡径させる加工方法や、(b)管の中央部を縮径させる加工方法、などが考えられる。前者(a)としては、例えば、管の内部に圧力媒体を供給して拡径させるいわゆるバルジ加工(液圧バルジ加工、ゴムバルジ加工)や、プレスによるいわゆるフレア加工、パンチを用いたいわゆる段付き加工などが挙げられる。後者(b)としては、例えば、ロールを利用して管を局所的に絞るいわゆるネッキング加工などが挙げられる。
(6)上記(1)から(5)のいずれか1項に係るトーションビームでは、前記平均値t1が2.5mm以上であってもよい。
 トーションビームの中央部の肉厚の平均値t1が2.5mm以上である。よって、トーションビームの曲げ剛性を確実に高めることができる。
(7)上記(1)から(6)のいずれか1項に係るトーションビームでは、前記長手方向に直交する断面において、前記トーションビームの肉厚が該肉厚の最大値の-20%以上0%以下であってもよい。
 長手方向に垂直な断面において、肉厚は一定である方が良い。その肉厚が薄い部分があれば、応力が集中し、疲労破壊の起点になりうるからである。しかし、実際には工業的に周方向で肉厚の変動が生じうる。この変動があっても、周方向で肉厚の最大値の-20%以上0%以下、望ましくは-15%以上0%以下(すなわち、肉厚の周方向でのばらつきが、公差内(肉厚の最大値の-20%以上0%以下(望ましくは-15%以上0%以下))に収まっていれば、肉厚が薄い部分における応力集中による弊害を無視することができ、周方向で肉厚が実質的に一定であるとみなせるためである。
(8)上記(1)から(7)のいずれか1つに係るトーションビームでは、前記中央部における前記横断面は、前記内部空間に向けて凸となる部分を備えていなくてもよい。
 トーションビームの中央部の横断面は、内部空間に向けて凸となる部分を備えていない。よって、例えば、トーションビームの素材となる管を減容変形させる必要がない。この場合、例えば、残留応力の発生を抑えること等ができる。
 なおこの場合、中央部の横断面における具体的な形状としては、例えば、円形状(例えば真円形状、楕円形状)、多角形状(矩形状(正方形状、長方形状)、三角形状)などがある。ここで、横断面の形状が真円である場合、断面積S1と外面周長L1との比であるS1/L1=0.5・R1(ただし、R1は中央部の外面の半径)と幾何学的に求められる。一方、横断面の形状が正方形である場合、S1/L1≒0.39・R1’(ただし、R1’は中央部の外面の相当半径)と求められる。横断面の形状が正三角形である場合、S1/L1≒0.3・R1’(ただし、R1’は中央部の外面の相当半径)と求められる。そのため、S1/L1およびこれを元に算出される比S1/(L1×t1)を一定の値とした場合、真円、正方形、正三角形の順に半径(相当半径)が大きくなる。言い換えると、断面積S1を一定の値とした場合、真円、正方形、正三角形の順に外面周長L1が長くなると言える。ここで外面周長L1は、前述したように曲げ剛性と関連している。よって、断面積S1を一定の値とした場合、曲げ剛性は、真円、正方形、正三角形の順に高くなると言える。
 そのため、例えば、トーションビームの中央部の横断面の形状が真円である場合であって、ねじり剛性を調整する過程で断面積S1の値を低くした結果、曲げ剛性が過度に低くなってしまう場合は、横断面の形状を、円形状に代えて正方形状や正三角形状などとすることで、曲げ剛性の過度な低下を抑えることができる場合がある。
 また横断面の形状を素材が内面で密着するような略V字形状とするのにたいして内面で十分な空隙(1.0mm以上、望ましくは1.5mm上、より望ましくは2mm以上)を持たせるような断面形状としても同様に曲げ剛性の過度な低下を抑えることができる。
(9)上記(1)から(8)のいずれか1項に係るトーションビームでは、前記長手方向の前記中央部の軸線と、前記長手方向の前記端部の軸線と、がずれていてもよい。なお軸線とは、横断面の重心を結んだ線を意味する。
 トーションビームの中央部の軸線と、トーションビームの端部の軸線と、がずれている。すなわち、トーションビームの中央部と端部とが同軸に限定されない。よって、例えば、トーションビームの形状の自由度を高めることができる。その結果、例えば、車両における他の構造物を回避するように設計するなど、レイアウトの多様化を図ることができる。
(10)上記(9)に係るトーションビームでは、前記中央部の前記軸線が曲線であってもよい。
 トーションビームの中央部の軸線が曲線である。すなわち、トーションビームの中央部の軸線が直線に限定されない。よって、例えば、トーションビームの形状の自由度を高めることができる。その結果、車両における他の構造物を回避するように設計するなど、レイアウトの多様化を図ることができる。
 中央部の軸線が曲線である場合、トーションビームの素材となる管を曲げ加工してトーションビームを製造することが考えられる。この種の曲げ加工は、トーションビームの中央部の横断面が内部空間に向けて凸となる部分を備えている場合、困難な場合が多い。言い換えると、トーションビームの中央部の横断面が内部空間に向けて凸となる部分を備えていない場合、この種の曲げ加工をしやすい。
(11)上記(1)から(10)のいずれか1項に係るトーションビームでは、前記平均値t1と、前記端部における肉厚の平均値t2と、が異なっていてもよい。
 トーションビームの中央部の肉厚の平均値t1と端部の肉厚の平均値t2とが異なっている。よって、長手方向の位置に応じて適切な肉厚を採用することができる。結果として、トーションビームの品質の向上を図ることができる。なお例えば、トーションビームの端部をトレーリングアームに取り付けるという観点から、t1<t2であることが好ましい場合が多いと考えらえる。
 t1とt2とを異ならせる方法としては、例えば、肉厚が異なる複数枚の鋼板を接合したテーラードブランクをUO成形することで、トーションビームの素材となる管を製造する方法などが考えられる。
 本発明によれば、過度に重くなることが抑制されつつ、曲げ剛性が確保されたトーションビームを提供することができる。
本発明の一実施形態に係るトーションビーム式リアサスペンション装置の概略構成を説明する斜視図である。 同実施形態に係るトーションビームアッセンブリの概略構成を説明する図であって、下方より見た斜視図である。 同実施形態に係るトーションビームの概略構成を説明する斜視図である。 同実施形態に係るトーションビームの概略構成を説明する平面図である。 同実施形態に係るトーションビームの概略構成を示す図であって、図4の矢視V-Vで見た場合の閉断面図である。 同実施形態に係るトーションビームの概略構成を示す図であって、図4の矢視VI-VIで見た場合の閉断面図である。 同実施形態に係るトーションビームの概略構成を示す図であって、図4の矢視VII-VIIで見た場合の閉断面図である。 本発明の第1変形例に係るトーションビームの概略構成を示す図であって、図4の矢視V-Vで見た場合に相当する閉断面図である。 本発明の第2変形例に係るトーションビームの概略構成を示す図であって、図4の矢視V-Vで見た場合に相当する閉断面図である。 本発明の第3変形例に係るトーションビームの概略構成を示す図であって、図4の矢視V-Vで見た場合に相当する閉断面図である。 本発明の第4変形例に係るトーションビームの概略構成を示す斜視図である。 本発明の第5変形例に係るトーションビームの概略構成を示す斜視図である。 本発明の比較例に係るトーションビームの概略構成を示す図であって、図4の矢視V-Vで見た場合に相当する閉断面図である。
 以下、図1から図7を参照して、本発明の一実施形態について説明する。
 図1は、本実施形態に係るトーションビーム式リアサスペンション装置(トーションビーム式サスペンション装置)の概略構成を示す図である。図1には、トーションビーム式リアサスペンション装置1、トーションビームアッセンブリ2、トーションビーム10が示されている。なお、図1には、このトーションビーム式リアサスペンション装置1が搭載される車両(不図示)の前方FR、後方REが示されている。
(トーションビーム式リアサスペンション装置)
 トーションビーム式リアサスペンション装置1は、図1に示すように、トーションビームアッセンブリ2と、トーションビームアッセンブリ2及び車体(不図示)間を連結するスプリング3及びアブソーバと4と、を備えている。
 トーションビームアッセンブリ2は、左右の車輪WL、WRを左右一対のトレーリングアーム5によって支持するとともに、前記車体の左右から少し前方中央側に向かって伸びるピボット軸JL、JRを介して前記車体と連結されている。そして、トーションビームアッセンブリ2は、前記車体に対して揺動可能に構成されている。
 トーションビームアッセンブリ2は、図2に示すように、例えば、左右一対のトレーリングアーム(アーム)5と、これらトレーリングアーム5間を連結するトーションビーム10と、スプリング3を支持する左右一対のスプリング受部3Aとを備えている。また、減衰装置であるアブソーバ4の一端側が、図示しない緩衝受部に接続されている。
 トレーリングアーム5は、例えば、トレーリングアーム本体5Aと、トレーリングアーム本体5Aのフロント側端に接続されてピボット軸Jを介して前記車体に支持されるピボット取付部材5Fと、トレーリングアーム本体5Aのリア側端に連結されて車輪WL、WRを支持する車輪取付部材5Rとを備えている。
 スプリング受部3Aは、トーションビーム10を間に挟んでピボット取付部材5Fの反対側に配置されており、スプリング3の一端側が取付けられる。路面から受けた荷重は、車輪WL、WR、トレーリングアーム5、及びスプリング3を介して前記車両に伝達する。
(トーションビーム)
 トーションビームは、タイヤを保持するための車体上下方向軸を回転中心とする曲げに対する剛性が要求される。例えばこれはタイヤに横力が発生したときにトーションビームが踏ん張ってタイヤを保持するための剛性となる。また同時にコーナーなどで左右のタイヤに地面から加わる力に違いがある場合に、ビーム軸方向を中心としたねじりが発生するためこれに対して適正な剛性(大きすぎても、小さすぎてもいけない)をもって踏ん張り車のロールを抑制する機能が要求される。
 以下、図3~図7を参照して、本実施形態に係るトーションビーム10について説明する。
 トーションビーム10は、長手方向に直交する断面である横断面が閉断面である。トーションビーム10は、内部空間を有する中空の管状である。本実施形態では、トーションビーム10の横断面の形状は、長手方向の全長にわたって真円形状である。トーションビーム10は、円管状である。
 トーションビーム10の材料の引張強度は、780MPa以上が好ましく、より好ましくは980MPa以上である。トーションビーム10の材料の引張強度は、1380MPa以下が好ましく、より好ましくは1180MPa以下である。トーションビーム10の長さは、特に限定されるものではないが、例えば、500mm以上1800mm以下である。トーションビーム10の重量は、特に限定されるものではないが、例えば、2kg以上20kg以下である。
 トーションビーム10は、図3、図4に示すように、長手方向の中央部11および端部12と、中央部11と端部12とを接続する形状変化部13と、を備えている。
 中央部11は長手方向に沿った位置によらず同径である。端部12は長手方向に沿った位置によらず同径である。これらの中央部11および端部12は、円管状である。
 中央部11は、端部12に比べて小径である。中央部11の横断面は、端部12の横断面と相似している。中央部11の長手方向の両端は、各形状変化部13と接続されている。中央部11は、端部12に比べて長手方向に長い。中央部11の長さは、端部12の長さの2倍以上20倍以下である。
 なお本実施形態では、前述のように中央部11が端部12に比べて小径であることにより、中央部11の横断面における外面周長L1が、端部12の横断面における外面周長L2未満となっている。なお、L1は、長手方向に直交する断面である横断面における中央部11の外面周長である。L2は、長手方向に直交する断面である横断面における端部12の外面周長である。
 ここで中央部11の外面周長L1は、例えば、中央部11を長手方向に5つの領域に等分した場合における、各領域の境界4つそれぞれにおける外面周長の平均値とすることができる。端部12の外面周長L2も、中央部11の外面周長L1と同様に定義することができる。
 なお外面周長L1は、特に限定されるものではないが、例えば、90mm以上300mm以下である。外面周長L2は、特に限定されるものではないが、例えば、150mm以上600mm以下である。
 形状変化部13は、中央部11から端部12に向かうに従い連続的に拡径している。形状変化部13は、円錐台状である。形状変化部13では、トーションビーム10の長手方向中央寄りの端縁が中央部11に接続され、長手方向外方の端縁が端部12に接続されている。
 なお中央部11、端部12および形状変化部13は、いずれも直管状に形成されている。言い換えると、中央部11、端部12および形状変化部13の各軸線が、直線状に延びている。前記各軸線は、共通軸上に位置している。すなわち、中央部11、端部12および形状変化部13は、同軸に配置されている。なお軸線とは、横断面の重心を結んだ線を意味する。
 前述したように、トーションビーム10の横断面の形状は、長手方向の全長にわたって真円形状である。言い換えると、トーションビーム10の長手方向の位置によらず、トーションビーム10の横断面は、内部空間に向けて凸となる部分を備えていない。すなわち、中央部11、端部12および形状変化部13の横断面のいずれもが、内部空間に向けて凸となる部分を備えていない。
 トーションビーム10の肉厚(板厚)は、長手方向の位置や、横断面における周方向の位置などによらず実質的にほぼ一定である。言い換えると、中央部11の肉厚の平均値t1、端部12の肉厚の平均値t2、形状変化部13の肉厚の平均値t3は、同等(実質的にほぼ一定)である。
 本実施形態では、トーションビーム10の肉厚(板厚)平均値は、2.5mm以上である。
 なお、中央部11の肉厚の平均値t1は、例えば、中央部11を長手方向に5つの領域に等分した場合における、各領域の境界4つそれぞれにおける肉厚の平均値とすることができる。各境界における肉厚とは、長手方向に直交する断面である横断面において、肉厚の最大値及び最小値を求め、両者の平均値を求めることにより算出される。本実施形態では、各領域における肉厚とは、その領域の横断面における、肉厚の最大値と最小値との平均値である。端部12の肉厚t2、形状変化部13の肉厚t3も、中央部11の肉厚の平均値t1と同様に定義することができる。
 ここで、横断面において、トーションビームの肉厚が肉厚の最大値の-20%以上0%以下(望ましくは-15%以上0%以下)に収まれば(すなわち、肉厚の周方向でのばらつきが、公差内(肉厚の最大値の-20%以上0%以下(望ましくは-15%以上0%以下))に収まれば)、その肉厚は周方向で実質的にほぼ一定であるとみなせる。すなわち、トーションビームの肉厚が、最大値の80%以上100%以下(望ましくは-15%以上0%以下)に収まれば、その肉厚は周方向で実質的にほぼ一定であるとみなせる。なお、横断面において、肉厚は一定である方が良い。その肉厚が薄い部分があれば、応力が集中し、疲労破壊の起点になりうるからである。しかし、実際には工業的に周方向で肉厚の変動が生じうる。この変動があっても、周方向で該肉厚の最大値の-20%以上0%以下、望ましくは-15%以上0%以下に収まっていれば、肉厚が薄い部分における応力集中による弊害を無視することができ、周方向で肉厚が実質的に一定であるとみなせるためである。
 また、t1~t3が同等(実質的にほぼ一定)であることは、t1~t3が完全に一致している場合だけでなく、わずかに異なっている場合であって実質的に一致している場合が含まれる。わずかに異なっている場合とは、例えば、t1~t3のうち、最も小さい値と最も大きい値との差異が、最も大きい値の5%に満たない場合とすることができる。
 そして本実施形態では、中央部11の横断面において内部空間を含む断面積S1と、外面周長L1と、中央部11の肉厚の平均値t1と、によって定められる比S1/(L1×t1)が、1.4以上10未満である。
 断面積S1は、壁断面積S1aと、空間断面積S1bと、の和である。壁断面積S1aは、トーションビーム10を構成する壁の断面積である。空間断面積S1bは、内部空間の断面積である。
 ここで中央部11の壁断面積S1aは、例えば、中央部11を長手方向に5つの領域に等分した場合における、各領域の境界4つそれぞれにおける壁断面積の平均値とすることができる。空間断面積S1bも、壁断面積S1aと同様に定義することができる。
 なお断面積S1は、特に限定されるものではないが、例えば、650mm以上7000mm以下である。壁断面積S1aは、特に限定されるものではないが、例えば、135mm以上1200mm以下である。空間断面積S1bは、特に限定されるものではないが、例えば、100mm以上6500mm以下である。
 また、中央部11は端部12よりも小径であり、断面積S1は端部12の断面積S2よりも小さい。端部12の断面積S2は、特に限定されるものではないが、例えば、800mm以上28000mm以下である。
(トーションビームの製造方法)
 上記トーションビーム10は、例えば、トーションビーム10となる素材となる図示しない鋼管から製造することができる。なお鋼管は、鍛接鋼管、電縫鋼管、シームレス鋼管、アーク溶接鋼管(例えばUOE鋼管)など、いずれの鋼管であってもよい。
 ここで前記鋼管が、長手方向の全長にわたって一定の直径を備えている場合、断面積S1を断面積S2未満にするため、トーションビーム10の中央部11を端部12よりも小径にする加工をすることが考えられる。このような加工方法としては、(a)鋼管の端部12を拡径させる加工方法や、(b)鋼管の中央部11を縮径させる加工方法、などが考えられる。前者(a)としては、例えば、鋼管の内部に圧力媒体を供給して拡径させるいわゆるバルジ加工(液圧バルジ加工、ゴムバルジ加工)や、プレスによるいわゆるフレア加工、パンチを用いたいわゆる段付き加工などが挙げられる。後者(b)としては、例えば、ロールを利用して鋼管を局所的に絞るいわゆるネッキング加工などが挙げられる。
(比S1/(L1×t1)に関する作用効果)
 断面積S1は、トーションビーム10のねじり剛性と関連する。断面積S1が大きいほど、ねじり剛性が高くなる。そのため、トーションビーム10のねじり剛性を所定の範囲に収めるとき、断面積S1は、ねじり剛性に応じた一定の範囲内の値となる。
 また、外面周長L1および肉厚の平均値t1は、トーションビーム10の重量と関連する。外面周長L1が長いほど、また、肉厚の平均値t1が厚いほど、トーションビーム10が重くなる。
 そのため、比S1/(L1×t1)が低いことは、トーションビーム10に求められるねじり剛性に対してトーションビーム10の重量が大きい傾向にあることを示す。
 前述の外面周長L1および肉厚の平均値t1は、壁断面積S1aとも関連する。外面周長L1が長いほど、また、肉厚の平均値t1が厚いほど、トーションビーム10の壁断面積S1aが大きくなる。
 比S1/(L1×t1)が高いことは、断面積S1に対する外面周長L1および厚さ平均値t1の割合が低いことを示している。すなわち、比S1/(L1×t1)が高いことは、断面積S1に対する壁断面積S1aの割合が低く、かつ、空間断面積S1bの割合が高いことを示している。そして、ねじり剛性を一定に保つとすれば、断面積S1に対する壁断面積S1aの割合が低い場合、トーションビーム10の曲げ剛性が低くなる。
 以上から、比S1/(L1×t1)が高いことは、一定の(適切な)ねじり剛性に対して、トーションビーム10の曲げ剛性が低い傾向にあることを示す。
 前記トーションビーム10では、比S1/(L1×t1)が1.4以上10未満である。比S1/(L1×t1)が適切な範囲内に設定されることにより、トーションビーム10が過度に重くなることなく、トーションビーム10の曲げ剛性を確保することができる。すなわち、比S1/(L1×t1)が1.4未満の場合、比S1/(L1×t1)の値が低すぎてトーションビーム10が過度に重くなるおそれがある。一方、比S1/(L1×t1)が10以上である場合、比S1/(L1×t1)の値が高すぎてトーションビーム10の曲げ剛性が過度に低くなるおそれがある。
 比S1/(L1×t1)は、5未満が好ましく、3未満がより好ましい。
(外面周長L1、L2に関する作用効果)
 ところで、この種のトーションビーム10では、トーションビーム10とその両端に接続されるトレーリングアーム5との接続強度を保ちつつ、トーションビーム10のねじり剛性を適切に低下させることを目的として、トーションビーム10の中央部11の断面積S1を、トーションビーム10の端部12の断面積S2よりも低くする必要が生じることがある。
 このような場合、前記従来技術(図13参照)のようなトーションビーム100では、トーションビーム100の素材となる鋼管における中央部11を、内部空間が減ずるように変形(以下、減容変形という)させ、内面側が密着するような断面略V字形状に加工する必要がある。
 しかしながら、前述の素材の中央部11を減容変形させ密着に近い形状とすると、トーションビーム使用時の応力集中や、トーションビームを構成する壁同士が擦れたり衝突したりすることによる騒音が生じる場合がある。
 これに対して、本実施形態に係るトーションビーム10では、トーションビーム10の中央部11における外面周長L1が、トーションビーム10の端部12における外面周長L2未満である。そのため、例えば、トーションビーム10の中央部11における横断面の形状が、トーションビーム10の端部12における横断面の形状と相似している場合などには、トーションビーム10の中央部11の断面積S1が、トーションビーム10の端部12の断面積S2よりも必然的に低くなる。よってこの場合、例えば、トーションビーム10の中央部11の横断面の形状を維持しながら、前記横断面の断面幅(直径)を短くすることで、トーションビーム10の中央部11の断面積S1を、トーションビーム10の端部12の断面積S2よりも低くし、その結果、トーションビーム10のねじり剛性を低下させることができる。これにより、前述のような問題が生じることがなく、例えば、トーションビーム10の疲労特性を向上させること等ができる。
(各変形例)
 次に、本発明に係る各変形例を、図8から図12を参照して説明する。
 なお、各変形例においては、前記実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。
(第1変形例)
 図8に示すように、第1変形例に係るトーションビーム10Aでは、中央部11の横断面と端部12の横断面とが相似形状でない。すなわち、端部12の横断面が、前記実施形態と同様に真円形状であるのに対して、中央部11の横断面が、三角形状である。ただし、本変形例に係るトーションビーム10Aにおいても、前記実施形態に係るトーションビーム10と同様に、中央部11、端部12および形状変化部13の横断面のいずれもが、内部空間に向けて凸となる部分を備えていない。
 このような、内部空間に向けて凸となる部分を備えていない形状としては、真円形状、正三角形状の他、楕円形状、正方形状、正五角形状などがある。すなわち、真円形状や楕円形状などを含む円形状や、正三角形状、正方形状、正五角形状などを含む正多角形状、この正多角形状を含む多角形状がある。あるいは、矩形状であってもよい。当然ながら、多角形状の各角部や各辺部が、内部空間に向けて凹となる曲率を有してもよい。
 このように、中央部11の横断面における具体的な形状としては、例えば、円形状(例えば真円形状、楕円形状)、多角形状(矩形状(正方形状、長方形状)、三角形状)などがある。ここで、横断面の形状が真円である場合、断面積S1と外面周長L1との比であるS1/L1=0.5・R1(ただし、R1は中央部11の外面の半径)と幾何学的に求められる。一方、横断面の形状が正方形である場合、S1/L1≒0.39・R1’(ただし、R1’は中央部11の外面の相当半径)と求められる。横断面の形状が正三角形である場合、S1/L1≒0.3・R1’(ただし、R1’は中央部11の外面の相当半径)と求められる。そのため、S1/L1およびこれを元に算出される比S1/(L1×t1)を一定の値とした場合、真円、正方形、正三角形の順に半径(相当半径)が大きくなる。言い換えると、断面積S1を一定の値とした場合、真円、正方形、正三角形の順に外面周長L1が長くなると言える。ここで外面周長L1は、前述したように曲げ剛性と関連している。よって、断面積S1を一定の値とした場合、曲げ剛性は、真円、正方形、正三角形の順に高くなると言える。
 そのため、例えば、トーションビーム10Aの中央部11の横断面の形状が真円である場合であって、ねじり剛性を調整する過程で断面積S1の値を低くした結果、曲げ剛性が過度に低くなってしまう場合は、横断面の形状を、円形状に代えて正方形状や正三角形状などとすることで、曲げ剛性の過度な低下を抑えることができる場合がある。
 第1変形例において、中央部11の周方向の曲げ半径Rが最も小さい部分を有する横断面において、中央部11の肉厚の平均値t1と曲げ半径Rとの関係が、1.5t1<Rである。図8に示すように、曲げ半径Rが最も小さい三角形状の角部20Aの横断面において、1.5t1<Rである。これにより、曲げによってトーションビーム内側の疲労強度低下を抑制することができる。より好ましくは、曲げ半径Rが最も小さい部分を有する横断面において、1.7t1<Rである。なお、曲げ半径Rは、三角形状の角部20Aの内側の曲げ半径である。
 第1変形例に係るトーションビーム10Aの更なる変形例に係るトーションビームとして、第1変形例に係るトーションビーム10Aと同様に、中央部11の横断面と端部12の横断面とが相似形状でないものの、端部12の横断面が真円形状でない形状が挙げられる。
(第2変形例)
 図9に示すように、第2変形例に係るトーションビーム10Bでは、第1変形例に係るトーションビーム10Aと同様に、中央部11の横断面と端部12の横断面とが相似形状でない。ただし、本変形例に係るトーションビーム10Bでは、中央部11の横断面が、内部空間に向けて凸となる部分を備えている。中央部11の横断面は、ハート形状である。
 第2変形例において、中央部11の周方向の曲げ半径Rが最も小さい部分を有する横断面は、図9に示すように、ハート形状の角部20Bである。なお、曲げ半径Rは、ハート形状の角部20Bの内側の曲げ半径である。中央部11の周方向の曲げ半径Rが最も小さい部分を有する横断面において、中央部11の肉厚の平均値t1と曲げ半径Rとの関係が、1.5t1<Rとすることで、曲げによってトーションビーム内側の疲労強度低下を抑制することができる。より好ましくは、曲げ半径Rが最も小さい部分を有する横断面において、1.7t1<Rである。
(第3変形例)
 図10に示すように、第3変形例に係るトーションビーム10Cでは、中央部11の横断面が、内部空間に向けて凸となる部分を備えている。中央部11の横断面は、略V字形状で内部空間に隙間が空いている形状となる。
 内部空間の空隙が最も小さい前記横断面は、角部20Cの内側である。内部空間の空隙が最も小さい前記横断面において、空隙を1.0mm以上とすることで、ねじり変形時に空隙が維持され、曲げ剛性を確保することができる。また、トーションビーム使用時に、トーションビームを構成する壁同士が擦れたり衝突したりすることによる騒音を抑制することができる。より好ましくは、該空隙は1.5mm以上、さらに好ましくは2mm以上である。なお、内部空間の空隙は、対向する2つの内面の、最も近い距離を「空隙」とする。なお、図10においては、理解容易にするために内部空間の空隙は誇張して示されている。
(第4変形例)
 図11に示すように、第4変形例に係るトーションビーム10Dでは、トーションビームの中央部11の軸線と、端部12の軸線と、がずれている。2つの端部12は、同軸に配置されている。
 トーションビーム10Dの中央部11の軸線と、トーションビーム10の端部12の軸線と、がずれている。すなわち、トーションビーム10Dの中央部11と端部12とが同軸に限定されない。よって、例えば、トーションビーム10Dの形状の自由度を高めることができる。その結果、例えば、車両における他の構造物を回避するように設計するなど、レイアウトの多様化を図ることができる。
(第5変形例)
 図12に示すように、第5変形例に係るトーションビーム10Eでは、中央部11の軸線が曲線である。すなわち、中央部11が湾曲している。このトーションビーム10Eは、第4変形例に係るトーションビーム10Dを曲げ加工することにより形成されている。
 トーションビーム10Eの中央部11の軸線が曲線である。すなわち、トーションビーム10Eの中央部11の軸線が直線に限定されない。よって、例えば、トーションビーム10Eの形状の自由度を高めることができる。その結果、車両における他の構造物を回避するように設計するなど、レイアウトの多様化を図ることができる。
 中央部11の軸線が曲線である場合、トーションビーム10Eの素材となる鋼管を曲げ加工してトーションビーム10Eを製造することが考えられる。
 なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 中央部11における肉厚の平均値t1と、端部12における厚さ平均値t2と、が異なっていてもよい。この場合、長手方向の位置に応じて適切な厚さ平均値を採用することができる。結果として、トーションビームの品質の向上を図ることができる。なお例えば、トーションビームの端部12をトレーリングアームに取り付けるという観点から、t1<t2であることが好ましい場合が多いと考えらえる。
 t1とt2とを異ならせる方法としては、例えば、厚さが異なる複数枚の鋼板を接合したテーラードブランクをUO成形することで、トーションビームの素材となる鋼管を製造する方法などが考えられる。
 トーションビームの長手方向の全域ではない一部が開断面となっていなくてもよい。例えば、トーションビームの性能に影響のない範囲において、トーションビームの一か所もしくは複数個所に、穴が設けられていてもよい。
 トーションビームの素材としては、鋼管でなくともよい。鋼や、鋼ではない金属(アルミニウム合金、チタン合金、ステンレスなど)、非金属(炭素繊維強化樹脂、ガラス繊維強化樹脂など)、および、それらを複合させたもの(複層材など)などを素材としてもよい。素材となる管の形状は、断面の寸法や形状が均一でなくともよく、テーパー管や異形断面管などでもよい。また、管状の素材を経ずに、板状の素材をトーションビームの形状に成形し、その後に板の継ぎ目を接合して、閉断面としてもよい。板状の素材をトーションビームの形状に成形する方法としては、特に限定されるものではないが、例えば、特許第6477716号に示される方法などを適用できる。板状の素材をトーションビームの形状に成形した後に、板の継ぎ目を接合する方法としては、特に限定されるものではないが、例えば、溶接(アーク溶接、レーザ溶接、シーム溶接、抵抗溶接、スポット溶接など)や圧接、ろう付け、接着剤による接着などが適用できる。
 その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。
(実施例)
 次に、前記作用効果についての検証試験を説明する。
 この検証試験では、比較例1、実施例1の2種類のトーションビームを準備した。比較例1および実施例1ともに、トーションビームには鋼管を用い、その引張強度は800MPa、肉厚は2.9mm、直径は94mmとした。トーションビームの肉厚は、成形後に超音波測定器および切断サンプルの断面をノギスにより測定した。
 実施例1のトーションビームの形状は、図10に示す第3変形例に係るトーションビーム10Cの形状である。比較例1のトーションビームの形状は、図13に示す比較例に係るトーションビーム100の形状である。
 この検証実験において、各トーションビームの重量(kg)から軽量化率を計算し、ねじり剛性や曲げ剛性といった性能を検証した。検証試験の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
                    
 表1の「管端部外面周長L2(mm)」は、トーションビームの端部12の長手方向に直交する断面である横断面における外面周長L2(mm)である。表1の「径小部長さ(mm)」は、トーションビームの中央部11の長手方向の長さ(mm)である。表1の「中央部V字断面外面周長と管端部外面周長の比率(%)」は、中央部11のV字断面外面周長L1と端部12外面周長L2の比率(%)である。表1の「中央部内面の最小R(mm)」は、中央部11の周方向の曲げ半径が最も小さいR(mm)である。表1の「中央部内面間の最小値(mm)」は、中央部11の内部空間の空隙が最も小さい値(mm)である。
 本発明によれば、過度に重くなることが抑制されつつ、曲げ剛性が確保されたトーションビームを提供することができる。
10、10A、10B、10C、10D、10E トーションビーム
11 中央部
12 端部

Claims (12)

  1.  中央部と、前記中央部の両側と接続する端部と、を備え、長手方向に延びる管状のトーションビームであって、
     前記トーションビームの前記長手方向の前記中央部における、前記長手方向に直交する断面である横断面において内部空間を含む断面積S1と、前記横断面における外面周長L1と、前記トーションビームの前記長手方向の前記中央部における肉厚の平均値t1と、によって定められる比S1/(L1×t1)が、1.4以上10未満であるトーションビーム。
  2.  前記中央部の周方向の曲げ半径Rが最も小さい部分を有する前記横断面において、前記平均値t1と前記曲げ半径Rとの関係が、1.5t1<Rである請求項1に記載のトーションビーム。
  3.  前記トーションビームの材料の引張強度が780MPa以上である請求項1または2に記載のトーションビーム。
  4.  前記内部空間の空隙が最も小さい前記横断面において、前記空隙が1.0mm以上である請求項1または2に記載のトーションビーム。
  5.  前記外面周長L1が、前記端部の前記長手方向に直交する断面である横断面における外面周長L2未満である請求項1または2に記載のトーションビーム。
  6.  前記平均値t1が2.5mm以上である請求項1または2に記載のトーションビーム。
  7.  前記長手方向に直交する断面において、前記トーションビームの肉厚が該肉厚の最大値の-20%以上0%以下である請求項1または2に記載のトーションビーム。
  8.  前記中央部における前記横断面は、前記内部空間に向けて凸となる部分を備えていない請求項1または2に記載のトーションビーム。
  9.  前記長手方向の前記中央部の軸線と、前記長手方向の前記端部の軸線と、がずれている請求項1または2に記載のトーションビーム。
  10.  前記中央部の前記軸線が曲線である請求項9に記載のトーションビーム。
  11.  前記平均値t1と、前記端部における肉厚の平均値t2と、が異なっている請求項1または2に記載のトーションビーム。
  12.  前記内部空間の空隙が最も小さい前記横断面において、前記空隙が1.0mm以上である請求項3に記載のトーションビーム。
PCT/JP2022/022326 2022-06-01 2022-06-01 トーションビーム WO2023233585A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022326 WO2023233585A1 (ja) 2022-06-01 2022-06-01 トーションビーム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022326 WO2023233585A1 (ja) 2022-06-01 2022-06-01 トーションビーム

Publications (1)

Publication Number Publication Date
WO2023233585A1 true WO2023233585A1 (ja) 2023-12-07

Family

ID=89026076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022326 WO2023233585A1 (ja) 2022-06-01 2022-06-01 トーションビーム

Country Status (1)

Country Link
WO (1) WO2023233585A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004314649A (ja) * 2003-04-10 2004-11-11 Toyota Motor Corp アクスルビーム
JP2011046232A (ja) * 2009-08-25 2011-03-10 Waitekku:Kk トーションビーム式サスペンション装置
JP2016179765A (ja) * 2015-03-24 2016-10-13 日本発條株式会社 中空スタビライザ
JP6213705B1 (ja) * 2016-05-10 2017-10-18 新日鐵住金株式会社 トーションビーム製造方法、トーションビーム製造装置、及びトーションビーム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004314649A (ja) * 2003-04-10 2004-11-11 Toyota Motor Corp アクスルビーム
JP2011046232A (ja) * 2009-08-25 2011-03-10 Waitekku:Kk トーションビーム式サスペンション装置
JP2016179765A (ja) * 2015-03-24 2016-10-13 日本発條株式会社 中空スタビライザ
JP6213705B1 (ja) * 2016-05-10 2017-10-18 新日鐵住金株式会社 トーションビーム製造方法、トーションビーム製造装置、及びトーションビーム

Similar Documents

Publication Publication Date Title
US7967308B2 (en) Stress reducing inner sleeve for twist beam and associated method
US6799781B2 (en) Frames for all-terrain vehicles
US8205898B2 (en) Twist beam with interlock
JP2014196102A (ja) 自動車用のトーションビーム式後ろ車軸懸架装置の横部材およびその製造方法
JP3994168B2 (ja) トレーリングアームを一体に具備したリジッドアクスル
US10377203B2 (en) Vehicle twist axle assembly
US6533300B1 (en) Trailing twist axle and method of manufacture
JP2005532228A5 (ja)
CA2909707A1 (en) Twist beam with joined inner and outer parts
KR102119176B1 (ko) 컨트롤 아암
JPH07186654A (ja) トーションビーム式サスペンションとその製造方法
KR100902837B1 (ko) 이종강관을 이용한 자동차의 후륜 현가장치용 튜브형 토션빔
WO2023233585A1 (ja) トーションビーム
EP2075146B1 (en) Twist-beam rear axle and method for producing a cross member
US11148497B2 (en) Damper stilt with two half-shells
US9132471B2 (en) Stress reducing inner sleeve for twist beam and associated method
JP6468043B2 (ja) トーションビーム、トーションビームAssy及びトーションビーム式サスペンション装置
JP5022143B2 (ja) トーションビーム式サスペンション
KR20130006096A (ko) 커플드 토션 빔 액슬 타입의 리어 현가장치
KR20120043572A (ko) 하이드로포밍을 이용한 일체형의 커플드 토션빔 액슬 및 그 제조방법
JP2016190573A (ja) トーションビーム式サスペンション
JP2020183181A (ja) 車両用サスペンションリンク
WO2021071452A2 (en) Control arm used in independent suspension
CN114131294A (zh) 后扭梁悬架的制造方法
JPH0737719U (ja) トーションビーム式サスペンション

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944870

Country of ref document: EP

Kind code of ref document: A1