WO2023233499A1 - Methane production system - Google Patents

Methane production system Download PDF

Info

Publication number
WO2023233499A1
WO2023233499A1 PCT/JP2022/022036 JP2022022036W WO2023233499A1 WO 2023233499 A1 WO2023233499 A1 WO 2023233499A1 JP 2022022036 W JP2022022036 W JP 2022022036W WO 2023233499 A1 WO2023233499 A1 WO 2023233499A1
Authority
WO
WIPO (PCT)
Prior art keywords
methane
fluid
water
path
separator
Prior art date
Application number
PCT/JP2022/022036
Other languages
French (fr)
Japanese (ja)
Inventor
洋次 尾中
誠 谷島
俊雄 篠木
誠 川本
誠治 中島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023530167A priority Critical patent/JPWO2023233499A1/ja
Priority to PCT/JP2022/022036 priority patent/WO2023233499A1/en
Publication of WO2023233499A1 publication Critical patent/WO2023233499A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/04Methane
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas

Definitions

  • the present disclosure relates to methane production systems.
  • Patent Document 1 discloses an apparatus for producing methane using carbon dioxide and water. This device reduces water and carbon dioxide to obtain synthesis gas containing hydrogen and carbon monoxide. This device produces methane from synthesis gas.
  • the present disclosure aims to provide a methane generation system that can increase methane generation efficiency.
  • One aspect of the methane generation system includes a supply path for supplying carbon dioxide and water, an electrolysis device for obtaining carbon monoxide and hydrogen from the carbon dioxide and the water by electrolysis, and a supply path for supplying carbon monoxide and water.
  • a methane reactor for obtaining a product gas containing methane from the mixed gas containing hydrogen; and a first separation fluid containing water and a second separation fluid containing hydrogen from a return fluid that is a part of the product gas.
  • a first circulation path having a first separator for separating, a first return path that leads the first separated fluid to the electrolyzer, and a second return path that leads the second separated fluid to the methane reactor; , is provided.
  • FIG. 1 is a schematic diagram of a methane generation system according to Embodiment 1.
  • FIG. 2 is a schematic diagram of a methane generation system according to a second embodiment.
  • FIG. 3 is a schematic diagram of a methane generation system according to Embodiment 3.
  • FIG. 3 is a schematic diagram of a methane generation system according to a fourth embodiment.
  • FIG. 3 is a schematic diagram of a methane generation system according to a fifth embodiment.
  • FIG. 3 is a schematic diagram of a methane generation system according to a sixth embodiment.
  • FIG. 7 is a schematic diagram of a methane generation system according to Embodiment 7. It is a schematic diagram of the methane production system concerning Embodiment 8.
  • FIG. 1 is a schematic diagram showing a methane generation system in Embodiment 1.
  • the methane generation system 1 includes a supply route 10, a co-electrolyzer 20, a methane reactor 30, a first separator 40, and a first circulation route 50.
  • the supply path 10 guides carbon dioxide and water supplied from a supply source (not shown) to the co-electrolysis device 20.
  • the supply path 10 leads, for example, a mixed fluid of carbon dioxide and water to the co-electrolyzer 20 .
  • the supply route 10 may include a first supply route for introducing carbon dioxide and a second supply route for introducing water.
  • the supply path 10 may be provided with an evaporator (steam generator) that vaporizes water.
  • the co-electrolyzer 20 includes, for example, a solid oxide electrolytic cell having a cathode electrode and an anode electrode.
  • a solid oxide having oxygen ion conductivity is used in the solid oxide electrolytic cell.
  • the electrolyte zirconia-based oxide or the like is used.
  • the co-electrolyzer 20 is an example of an electrolyzer.
  • the co-electrolyzer 20 supplies carbon dioxide and water supplied from the supply path 10 to the cathode electrode of the solid oxide electrolytic cell.
  • the water used for co-electrolysis in the solid oxide electrolytic cell is desirably water vapor.
  • the co-electrolyzer 20 may include a heating device that heats the solid oxide electrolytic cell.
  • the heating device can adjust the temperature within the solid oxide electrolytic cell to a temperature suitable for the co-electrolytic reaction.
  • the ratio of carbon dioxide and water supplied to the solid oxide electrolysis cell can be determined depending on the ratio of the components (carbon monoxide, hydrogen) of the target mixed gas.
  • the co-electrolyzer 20 obtains a mixed gas containing carbon monoxide (CO) and hydrogen (H 2 ) from carbon dioxide (CO 2 ) and water (H 2 O) by co-electrolysis.
  • Co-electrolysis proceeds, for example, according to formula (I) shown below. This reaction is endothermic. CO2 + H2O ⁇ CO+ H2 + O2 ...(I)
  • co-electrolysis can be performed using electric power generated using renewable energy (for example, solar power generation, wind power generation, etc.).
  • renewable energy for example, solar power generation, wind power generation, etc.
  • Methane obtained using renewable energy can be considered a carbon-neutral fuel that does not contribute to global warming, as no additional carbon dioxide is generated when it is combusted.
  • a co-electrolyzer 20 that obtains carbon monoxide and hydrogen from carbon dioxide and water by co-electrolysis is used, but the device for obtaining carbon monoxide and hydrogen (H 2 ) is limited to the co-electrolyzer. do not have.
  • an electrolyzer that performs independently the step of electrolyzing carbon dioxide to obtain carbon monoxide and the step of electrolyzing water to obtain hydrogen (H 2 ).
  • the mixed gas obtained in the co-electrolyzer 20 contains not only carbon monoxide and hydrogen (H 2 ) but also unreacted carbon dioxide and water.
  • the inlet of the co-electrolyzer 20 is a location to which the supply path 10 is connected.
  • the outlet of the co-electrolyzer 20 is where the mixed gas is led out.
  • the methane reactor 30 obtains a product gas containing methane (CH 4 ) and water (H 2 O) from carbon monoxide (CO) and hydrogen (H 2 ) through a methanation reaction.
  • the methanation reaction proceeds, for example, according to formula (II) shown below. This reaction is exothermic. CO+ 3H2 ⁇ CH4 + H2O ...(II)
  • the methane reactor 30 includes a methanation catalyst with which the mixed gas contacts.
  • methanation catalysts include Ni catalysts and Ru catalysts.
  • Methanation catalysts promote methanation reactions.
  • the methane reactor 30 may generate methanol from a mixed gas, and may generate methane from methanol.
  • the product gas obtained in the methane reactor 30 includes not only methane and water, but also unreacted carbon monoxide, hydrogen (H 2 ), carbon dioxide, and the like.
  • the product gas is discharged out of the system through the discharge path 60.
  • the discharged product gas is sent to a gas production facility, for example, as a raw material for city gas or the like.
  • the inlet of the methane reactor 30 is where the mixed gas is introduced from the co-electrolyzer 20.
  • the outlet of the methane reactor 30 is where the discharge path 60 is connected.
  • the first separator 40 separates a first separated fluid F2 containing water and a second separated fluid F3 containing hydrogen (H 2 ) from the return fluid F1, which is a part of the product gas.
  • the first separator 40 employs a separation method such as adsorption separation, membrane separation, cooling separation, centrifugal separation, gravity separation, gas-liquid separation, or the like.
  • the first separator 40 may employ one of these separation methods, or may use a combination of two or more.
  • the first separator 40 using adsorption separation separates a specific component by adsorbing it onto an adsorbent, an adsorption liquid, or the like.
  • the adsorbent include silica gel, zeolite, and activated carbon. Specifically, by adsorbing a component containing water onto an adsorbent, this component can be separated from other components containing hydrogen (H 2 ).
  • the adsorbent may be granular, powdered, etc. The granules are, for example, bead-like (spherical), pellet-like (cylindrical), and the like.
  • the adsorbent may be supported on the surface of the base material.
  • the base material may have a honeycomb shape, for example.
  • the first separator 40 using adsorption separation has a function of separating the adsorbed material from the adsorbent.
  • the first separator 40 includes, for example, a heating device.
  • the heating device separates the adsorbed material from the adsorbent by heating the adsorbent.
  • the first separator 40 may include a pressure reduction device such as a pressure reduction pump.
  • the pressure reducing device separates the adsorbed material from the adsorbent by placing the adsorbent under reduced pressure.
  • the first separator 40 using membrane separation separates a specific component from other components using, for example, a permeable membrane through which low-molecular components can pass.
  • a component containing hydrogen (H 2 ) can be separated from a component containing water using a palladium permeable membrane.
  • the first separator 40 using cooling separation for example, liquefies a specific component by cooling and separates it from other components (gas).
  • a component containing water can be liquefied and separated from a gas containing hydrogen (H 2 ).
  • the first separator 40 using centrifugation for example, liquefies a specific component (component containing water) by cooling, and separates this component from other components (gas containing hydrogen (H 2 )) by centrifugal force. do.
  • the first separator 40 using gravity separation for example, liquefies a specific component (component containing water) by cooling, and separates this component from other components (gas containing hydrogen (H 2 )) by gravity.
  • the first separator 40 using gas-liquid separation for example, liquefies a specific component (component containing water) by cooling, and converts this component into other components (hydrogen ( H2 )) by gravity, centrifugal force, surface tension, etc. ).
  • the first circulation path 50 includes a lead-out path 51, a first return path 52, and a second return path 53.
  • the outlet path 51 connects the methane reactor 30 and the first separator 40.
  • a starting end (first end) of the outlet path 51 is connected to a position close to the outlet of the methane reactor 30.
  • a terminal end (second end) of the lead-out path 51 is connected to the first separator 40 .
  • the outlet path 51 takes out a part of the product gas from the methane reactor 30 as a return fluid F1.
  • the outlet path 51 leads the return fluid F1 to the first separator 40.
  • the first return path 52 connects the first separator 40 and the supply path 10.
  • a starting end (first end) of the first return path 52 is connected to the first separator 40 .
  • the terminal end (second end) of the third return path 552 is connected to the supply path 10.
  • the first return path 52 can lead the first separated fluid F2 to the co-electrolyzer 20 through the supply path 10. Note that the first return path 52 may connect the first separator 40 and the co-electrolyzer 20.
  • the second return path 53 connects the first separator 40 and the methane reactor 30.
  • a starting end (first end) of the second return path 53 is connected to the first separator 40 .
  • the terminal end (second end) of the second return path 53 is connected to a position close to the inlet of the methane reactor 30.
  • the terminal end (second end) of the second return path 53 is located closer to the inlet of the methane reactor 30 than the starting end (first end) of the outlet path 51 .
  • the second return path 53 leads the second separation fluid F3 to the methane reactor 30.
  • the exhaust path 60 may be provided with a separator for removing impurities from the product gas.
  • Impurities are, for example, components other than methane (carbon dioxide, water, hydrogen (H 2 ), etc.). Separation methods such as adsorption separation, membrane separation, cooling separation, centrifugal separation, gravity separation, and gas-liquid separation are employed in the separator.
  • the separator may employ one of these separation techniques, or may use a combination of two or more.
  • a separator using adsorption separation for example, separates carbon dioxide, water, etc. by adsorbing it on an adsorbent, an adsorption liquid, or the like.
  • the adsorbent include silica gel, zeolite, and activated carbon.
  • a separator using membrane separation uses, for example, a permeable membrane through which low-molecular components can pass through to separate specific components from other components. Specifically, low molecular weight components such as hydrogen (H 2 ) can be separated using a palladium permeable membrane.
  • a separator using cooling separation for example, liquefies a specific component by cooling and separates it from other components (gas).
  • a separator using centrifugation for example, liquefies a specific component by cooling and separates this component from other components (gas) by centrifugal force.
  • a separator using gravity separation for example, liquefies a specific component by cooling and separates this component from other components (gases) by gravity.
  • a separator using gas-liquid separation for example, liquefies a specific component by cooling and separates this component from other components (gas) by gravity, centrifugal force, surface tension, or the like.
  • the methane production method according to this embodiment includes a supply step, an electrolysis step, a methanation step, and a circulation step.
  • carbon dioxide (CO 2 ) and water (H 2 O) are introduced to the co-electrolyzer 20 through the supply path 10 .
  • a mixed gas containing carbon monoxide (CO) and hydrogen (H 2 ) is obtained from carbon dioxide and water by co-electrolysis in the co-electrolyzer 20 .
  • a product gas containing methane (CH 4 ) and water is obtained from carbon monoxide and hydrogen through a methanation reaction in the methane reactor 30 .
  • the product gas includes methane and water as well as unreacted carbon monoxide, hydrogen (H 2 ), carbon dioxide, and the like.
  • the product gas is discharged out of the system through the discharge path 60.
  • the first separator 40 separates the return fluid F1 into a first separated fluid F2 containing water (for example, water vapor) and a second separated fluid F3 containing hydrogen (H 2 ).
  • the concentration of water (eg, water vapor) in the first separation fluid F2 is higher than the concentration of water (eg, water vapor) in the return fluid F1.
  • the concentration of hydrogen (H 2 ) in the second separation fluid F3 is higher than the concentration of hydrogen (H 2 ) in the return fluid F1.
  • the first separation fluid F2 is led to the co-electrolyzer 20 through the first return path 52 and the supply path 10.
  • the second separation fluid F3 is led to the methane reactor 30 through the second return path 53.
  • the methane generation system 1 includes a first return path 52 that leads the first separated fluid F2 to the co-electrolyzer 20, and a second return path 53 that leads the second separated fluid F3 to the methane reactor 30.
  • the second separation fluid F3 containing hydrogen (H 2 ) which is an unreacted product, is returned to the methane reactor 30, so that the efficiency of the methanation reaction in the methane reactor 30 can be increased. can. Therefore, methane production efficiency can be increased.
  • the first separation fluid F2 containing unreacted water for example, water vapor
  • the efficiency of the electrolytic reaction in the co-electrolyzer 20 can be increased. Since the first separation fluid F2 is returned to the co-electrolyzer 20, the heat generated in the methane reactor 30 can be used in the co-electrolyzer 20. Therefore, energy efficiency can be improved. In the methane generation system 1, since water (for example, water vapor) is discharged from the methane reactor 30, the efficiency of the methanation reaction in the methane reactor 30 can be increased.
  • Embodiment 2 Next, a methane generation system according to Embodiment 2 will be explained. Since the basic configuration of the methane generation system according to this embodiment is the same as that of Embodiment 1, the differences from Embodiment 1 will mainly be explained. Components that are the same as those in other embodiments are designated by the same reference numerals and description thereof will be omitted.
  • FIG. 2 is a schematic diagram of a methane generation system according to a second embodiment.
  • the methane generation system 101 includes a cooler 70 in the second return path 53.
  • Cooler 70 may be a heat exchanger.
  • the cooler 70 may be a water-cooled type, an air-cooled type, or the like.
  • the cooler 70 cools the second separation fluid F3 flowing through the second return path 53.
  • the temperature in the methane reactor 30 can be set to a temperature suitable for the methanation reaction. Therefore, the methane production efficiency in the methane reactor 30 can be increased.
  • Embodiment 3 Next, a methane generation system according to Embodiment 3 will be explained. Components that are the same as those in other embodiments are designated by the same reference numerals and description thereof will be omitted.
  • FIG. 3 is a schematic diagram of a methane generation system according to Embodiment 3.
  • the methane generation system 201 includes a supply route 210 instead of the supply route 10 (see FIG. 1).
  • the supply route 210 includes a first supply route 211 and a second supply route 212.
  • the first supply path 211 leads carbon dioxide to the co-electrolyzer 20 .
  • the second supply path 212 leads water to the first supply path 211 . Therefore, the second supply path 212 can lead water to the co-electrolysis device 20 via the first supply path 211.
  • the methane generation system 201 includes a heat exchanger 270.
  • the heat exchanger 270 is provided across the second supply path 212 and the outlet path 51.
  • the heat exchanger 270 can cool the return fluid F1 by exchanging heat with the water flowing through the second supply path 212. When the return fluid F1 is cooled, specific components (components containing water) are liquefied.
  • the methane generation system 201 includes a gas-liquid separator 240 instead of the first separator 40 (see FIG. 1).
  • the gas-liquid separator 240 separates liquid and gas by, for example, gravity, centrifugal force, surface tension, or the like.
  • Gas-liquid separator 240 is an example of a first separator.
  • the liquid obtained by the gas-liquid separator 240 becomes a first separated fluid F2 containing water.
  • the first separated fluid F2 is guided to the co-electrolyzer 20 through the first return path 52 and the first supply path 211.
  • the gas obtained by the gas-liquid separator 240 becomes a second separated fluid F3 containing hydrogen (H 2 ).
  • the second separation fluid F3 is led to the methane reactor 30 through the second return path 53.
  • the methane generation system 201 includes the heat exchanger 270, the return fluid F1 can be cooled using the water supplied by the second supply path 212. Therefore, the energy efficiency in the gas-liquid separator 240 can be improved.
  • the temperature-adjusted second separated fluid F3 is obtained by the heat exchanger 270, so that the temperature in the methane reactor 30 can be set to a temperature suitable for the methanation reaction. Therefore, the methane production efficiency in the methane reactor 30 can be increased.
  • Embodiment 4 Next, a methane generation system according to Embodiment 4 will be explained. Components that are the same as those in other embodiments are designated by the same reference numerals and description thereof will be omitted.
  • FIG. 4 is a schematic diagram of a methane generation system according to Embodiment 4.
  • the methane generation system 301 includes a supply path 310 instead of the supply path 10 (see FIG. 1).
  • the supply path 310 leads the mixed fluid of carbon dioxide and water to the co-electrolyzer 20 .
  • Most carbon dioxide is a gas.
  • Most water is liquid. Therefore, the mixed fluid flowing through the supply path 310 is a gas-liquid two-phase fluid.
  • the methane generation system 301 includes a heat exchanger 370.
  • the heat exchanger 370 is provided across the supply path 310 and the outlet path 51.
  • the heat exchanger 370 can cool the return fluid F1 by exchanging heat with the mixed fluid flowing through the supply path 310.
  • specific components components containing water
  • the return fluid F1 can be cooled using the mixed fluid supplied from the supply path 310. Therefore, the energy efficiency in the gas-liquid separator 240 can be improved.
  • the temperature-adjusted second separated fluid F3 is obtained by the heat exchanger 370, so that the temperature in the methane reactor 30 can be set to a temperature suitable for the methanation reaction. Therefore, the methane production efficiency in the methane reactor 30 can be increased.
  • the methane generation system 301 uses a mixed fluid, which is a gas-liquid two-phase fluid, as a heat medium, so heat transfer performance is improved. Therefore, the return fluid F1 can be efficiently cooled in the heat exchanger 370.
  • Embodiment 5 Next, a methane generation system according to Embodiment 5 will be described. Components that are the same as those in other embodiments are designated by the same reference numerals and description thereof will be omitted.
  • FIG. 5 is a schematic diagram of a methane generation system according to Embodiment 5.
  • the methane generation system 401 includes a supply path 410 instead of the supply path 10 (see FIG. 1).
  • the supply path 410 includes a first supply path 411 , a second supply path 412 , and a merging channel 413 .
  • the first supply path 411 introduces carbon dioxide.
  • the second supply path 412 introduces water.
  • the merging channel 413 merges carbon dioxide from the first supply channel 411 and water from the second supply channel 412 and guides them to the co-electrolyzer 20 .
  • the methane generation system 401 includes a heat exchanger 470.
  • the heat exchanger 470 is provided across the first supply path 411 , the second supply path 412 , and the outlet path 51 .
  • the heat exchanger 470 can cool the return fluid F1 by heat exchange with carbon dioxide and water flowing through the supply paths 411 and 412. When the return fluid F1 is cooled, specific components (components containing water) are liquefied.
  • the return fluid F1 can be cooled using carbon dioxide and water supplied from the supply paths 411 and 412. Therefore, the energy efficiency in the gas-liquid separator 240 can be improved.
  • the temperature-adjusted second separated fluid F3 is obtained by the heat exchanger 470, so that the temperature in the methane reactor 30 can be set to a temperature suitable for the methanation reaction. Therefore, the methane production efficiency in the methane reactor 30 can be increased.
  • the supply path 410 includes a first supply path 411 that leads to carbon dioxide, and a second supply path 412 that leads to water. Carbon dioxide and water may have different pressures, etc., but in the methane generation system 401, appropriate conditions can be set for each fluid.
  • Embodiment 6 Next, a methane generation system according to Embodiment 6 will be described. Components that are the same as those in other embodiments are designated by the same reference numerals and description thereof will be omitted.
  • FIG. 6 is a schematic diagram of a methane generation system according to Embodiment 6.
  • the methane generation system 501 includes a supply route 10, a co-electrolyzer 20, a methane reactor 530, a first separator 40, a first circulation route 50, and a second separator 540. , a second circulation path 550.
  • the methane reactor 530 includes a first methane reaction section 531 and a second methane reaction section 532.
  • the first methane reaction section 531 generates methane from the mixed gas from the co-electrolyzer 20 through a methanation reaction to obtain an intermediate gas.
  • the second methane reaction section 532 generates methane from the intermediate gas through a methanation reaction to obtain a product gas.
  • the methane reactor 530 obtains product gas through a two-step methanation reaction.
  • the first circulation path 50 includes a lead-out path 51, a first return path 52, and a second return path 53.
  • the outlet path 51 connects the second methane reaction section 532 and the first separator 40.
  • a starting end (first end) of the outlet path 51 is connected to a position close to the outlet of the second methane reaction section 532.
  • a terminal end (second end) of the lead-out path 51 is connected to the first separator 40 .
  • the outlet path 51 takes out a part of the product gas from the second methane reaction section 532 as a return fluid F1.
  • the outlet path 51 leads the return fluid F1 to the first separator 40.
  • the first return path 52 connects the first separator 40 and the supply path 10.
  • the first return path 52 can lead the first separated fluid F2 to the co-electrolyzer 20 through the supply path 10. Note that the first return path 52 may connect the first separator 40 and the co-electrolyzer 20.
  • the second return path 53 connects the first separator 40 and the second methane reaction section 532.
  • a starting end (first end) of the second return path 53 is connected to the first separator 40 .
  • the terminal end (second end) of the second return path 53 is connected to a position close to the inlet of the second methane reaction section 532.
  • the terminal end (second end) of the second return path 53 is located closer to the inlet of the second methane reaction section 532 than the starting end (first end) of the outlet path 51 .
  • the second return path 53 guides the second separation fluid F3 to the second methane reaction section 532.
  • the second separator 540 employs separation techniques such as adsorption separation, membrane separation, cooling separation, centrifugal separation, gravity separation, and gas-liquid separation.
  • the second circulation path 550 includes a lead-out path 551, a third return path 552, and a fourth return path 553.
  • the outlet path 551 connects the first methane reaction section 531 and the second separator 540.
  • a starting end (first end) of the outlet path 551 is connected to a position close to the outlet of the first methane reaction section 531.
  • a terminal end (second end) of the lead-out path 551 is connected to the second separator 540.
  • the outlet path 551 takes out a part of the intermediate gas from the first methane reaction section 531 as a return fluid F4.
  • the outlet path 551 leads the return fluid F4 to the second separator 540.
  • the third return path 552 connects the second separator 540 and the supply path 10.
  • a starting end (first end) of the third return path 552 is connected to the second separator 540.
  • the terminal end (second end) of the third return path 552 is connected to the supply path 10.
  • the third return path 552 can lead the third separated fluid F5 to the co-electrolyzer 20 through the supply path 10. Note that the third return path 552 may connect the second separator 540 and the co-electrolyzer 20.
  • the fourth return path 553 connects the second separator 540 and the first methane reaction section 531.
  • a starting end (first end) of the fourth return path 553 is connected to the second separator 540.
  • the terminal end (second end) of the fourth return path 553 is connected to a position close to the inlet of the first methane reaction section 531.
  • the terminal end (second end) of the fourth return path 553 is located closer to the inlet of the first methane reaction section 531 than the starting end (first end) of the outlet path 551.
  • the fourth return path 553 guides the fourth separation fluid F6 to the first methane reaction section 531.
  • a portion of the intermediate gas is taken out from the first methane reaction section 531 through the outlet path 551 and guided to the second separator 540 as a return fluid F4.
  • the second separator 540 separates the return fluid F4 into a third separated fluid F5 containing water (for example, water vapor) and a fourth separated fluid F6 containing hydrogen (H 2 ).
  • the concentration of water (eg, water vapor) in the third separation fluid F5 is higher than the concentration of water (eg, water vapor) in the return fluid F4.
  • the concentration of hydrogen (H 2 ) in the fourth separation fluid F6 is higher than the concentration of hydrogen (H 2 ) in the return fluid F4.
  • a part of the product gas is taken out from the second methane reaction section 532 through the outlet path 51 and guided to the first separator 40 as a return fluid F1.
  • the first separator 40 separates the return fluid F1 into a first separated fluid F2 containing water (for example, water vapor) and a second separated fluid F3 containing hydrogen (H 2 ).
  • the concentration of water (eg, water vapor) in the first separation fluid F2 is higher than the concentration of water (eg, water vapor) in the return fluid F1.
  • the concentration of hydrogen (H 2 ) in the second separation fluid F3 is higher than the concentration of hydrogen (H 2 ) in the return fluid F1.
  • the methane generation system 501 not only the first separated fluid F2 containing water is returned to the co-electrolyzer 20 through the first circulation path 50, but also the third separated fluid F5 containing water is returned through the second circulation path 550. It is returned to the co-electrolyzer 20.
  • water is discharged from the methane reactor 530 at multiple locations, so water can be effectively removed. Therefore, the efficiency of the methanation reaction in the methane reactor 530 can be increased.
  • Embodiment 7 Next, a methane generation system according to Embodiment 7 will be described. Components that are the same as those in other embodiments are designated by the same reference numerals and description thereof will be omitted.
  • FIG. 7 is a schematic diagram of a methane generation system according to Embodiment 7.
  • the methane generation system 601 includes a supply route 10, a co-electrolyzer 20, a methane reactor 530, a first separator 40, a first circulation route 50, and a second separator 540. , a second circulation path 550, and an ejector 680.
  • Methane generation system 601 differs from methane generation system 501 (see FIG. 6) in that it includes an ejector 680.
  • the ejector 680 has an inflow port 681, a first suction port 682, a second suction port 683, and an outflow port 684.
  • Ejector 680 is provided in supply path 10 .
  • Carbon dioxide and water flowing through the supply path 10 flow into the ejector 680 from an inlet 681 and exit from an outlet 684.
  • Carbon dioxide and water become the driving fluids.
  • the water serving as the driving fluid may be gas (steam) or liquid.
  • the first suction port 682 is connected to the terminal end (second end) of the first return path 52.
  • the first separation fluid F2 flows into the ejector 680 from the first suction port 682 as a suction fluid.
  • the second suction port 683 is connected to the terminal end (second end) of the third return path 552.
  • the second suction port 683 is located downstream of the first suction port 682 in the flow direction. “Flow direction” is the direction of carbon dioxide and water flowing from inlet 681 to outlet 684.
  • the third separation fluid F5 flows into the ejector 680 from the second suction port 683 as a suction fluid.
  • a nozzle for ejecting driving fluid is provided inside the ejector 680.
  • the ejector 680 sucks the first separated fluid F2 and the third separated fluid F5 into the ejector 680 using carbon dioxide and water that have flowed in from the inlet 681 as driving fluids.
  • the first separation fluid F2 and the third separation fluid F5 flow out of the ejector 680 through the outlet 684 together with the driving fluids carbon dioxide and water, and are supplied to the co-electrolyzer 20 through the supply path 10.
  • the first return path 52 and the third return path 552 may be provided with a pump or the like for sending the first separated fluid F2 and the third separated fluid F5 to the supply path 10.
  • the methane generation system 601 includes the ejector 680, the first separation fluid F2 and the third separation fluid F5 can be guided to the supply path 10 by the ejector 680. Therefore, compared to, for example, the case where the first separated fluid F2 and the third separated fluid F5 are guided to the supply path 10 using only a pump, energy saving is possible.
  • the methane generation system 601 uses the ejector 680 having multiple suction ports, the number of ejectors can be reduced. Therefore, it is advantageous in terms of downsizing and cost reduction of the device.
  • Embodiment 8 Next, a methane generation system according to Embodiment 8 will be described. Components that are the same as those in other embodiments are designated by the same reference numerals and description thereof will be omitted.
  • FIG. 8 is a schematic diagram of a methane generation system according to Embodiment 8.
  • the methane generation system 701 includes a supply route 10, a co-electrolyzer 20, a methane reactor 530, a first separator 40, a first circulation route 50, and a second separator 540. , a second circulation path 550, and an ejector 780.
  • the methane generation system 701 differs from the methane generation system 601 (see FIG. 7) in that it includes an ejector 780 instead of the ejector 680.
  • Ejector 780 includes a first ejector section 781 and a second ejector section 782.
  • the first ejector section 781 has an inlet 783, a suction port 784, and an outlet 785.
  • the first ejector section 781 is provided in the supply path 10. Carbon dioxide and water flowing through the supply path 10 flow into the first ejector section 781 from the inlet 783 and exit from the outlet 785. Carbon dioxide and water become the driving fluids.
  • the water serving as the driving fluid may be gas (steam) or liquid.
  • a nozzle for ejecting driving fluid is provided inside the first ejector section 781.
  • the suction port 784 is connected to the terminal end (second end) of the first return path 52.
  • the first separation fluid F2 flows into the first ejector section 781 from the suction port 784 as a suction fluid.
  • the first ejector section 781 sucks the first separation fluid F2 using carbon dioxide and water that have flowed in from the inlet 783 as driving fluids.
  • the first separation fluid F2 flows out from the first ejector section 781 through the outlet 785 together with carbon dioxide and water, which are driving fluids.
  • the second ejector section 782 has an inlet 786, a suction port 787, and an outlet 788.
  • the second ejector section 782 is provided in the supply path 10.
  • the second ejector section 782 is provided on the downstream side of the first ejector section 781 in the flow direction of carbon dioxide and water in the supply path 10 .
  • Carbon dioxide and water flowing through the supply path 10 flow into the second ejector section 782 from the inlet 786 and exit from the outlet 788.
  • Carbon dioxide and water become the driving fluids.
  • the water serving as the driving fluid may be gas (steam) or liquid.
  • a nozzle for ejecting driving fluid is provided inside the second ejector section 782.
  • the second ejector section 782 is separate from the first ejector section 781.
  • the suction port 787 is connected to the terminal end (second end) of the third return path 552.
  • the third separation fluid F5 flows into the second ejector section 782 from the suction port 787 as a suction fluid.
  • the second ejector section 782 sucks the third separated fluid F5 using the carbon dioxide, water, and the first separated fluid F2 that have flowed in from the inlet 786 as driving fluids.
  • the third separation fluid F5 flows out from the second ejector section 782 through the outlet 788 together with the driving fluids carbon dioxide, water, and the first separation fluid F2.
  • Carbon dioxide, water, the first separated fluid F2, and the third separated fluid F5 are supplied to the co-electrolyzer 20 through the supply path 10.
  • the methane generation system 701 includes the ejector 780, the first separation fluid F2 and the third separation fluid F5 can be guided to the supply path 10 by the ejector 780. Therefore, compared to, for example, the case where the separation fluids F2 and F5 are guided to the supply path 10 using only pumps, energy saving is possible.
  • an ejector 780 includes a first ejector section 781 that sucks the first separated fluid F2, and a second ejector section 782 that sucks the third separated fluid F5.
  • Operating conditions for the first ejector section 781 and the second ejector section 782 can be set independently of each other. Therefore, even if conditions such as flow rates differ between the first separated fluid F2 and the third separated fluid F5, the first ejector section 781 and the second ejector section 782 can be operated appropriately.
  • the methane reactor 530 includes two methane reaction sections 531 and 532, but the number of methane reaction sections is not particularly limited.
  • the number of methane reaction parts may be any number greater than or equal to 2.
  • the methane generation system 501 includes two circulation paths 50 and 550 because the number of methane reaction sections is two, but the number of circulation paths may be any number greater than or equal to two.
  • the methane generation system 601 sucks the first separation fluid F2 and the third separation fluid F5 using carbon dioxide and water flowing through the supply path 10 as driving fluids, but the driving fluids are carbon dioxide and water. It may be at least one of them.
  • the ejector 780 includes two first ejector sections 781 and 782, but the number of ejector sections may be any number greater than or equal to two.
  • Methane generation system 10,210,310,410... Supply route 20... Co-electrolyzer (electrolyzer) 30,530... Methane reactor 40... First separation Container 50... First circulation path 51... Outlet path 52... First return path 53... Second return path 70... Cooler 240... Gas-liquid separator 270, 370... Heat exchanger 411... First supply path 412...
  • Second Supply path 531 First methane reaction section 532...Second methane reaction section 540...Second separator 550...Second circulation path 551...Outlet path 552...Third return path 553...Fourth return path 680, 780...Ejector 781 ...First ejector part 782...Second ejector part F1...Return fluid F2...First separated fluid F3...Second separated fluid F5...Third separated fluid F6...Fourth separated fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A methane production system according to the present disclosure is provided with: a supply pathway for supplying carbon dioxide and water; an electrolytic apparatus for obtaining carbon monoxide and hydrogen from the carbon dioxide and the water through electrolysis; a methane reactor for obtaining a product gas containing methane from a gas mixture containing the carbon monoxide and the hydrogen; a first separator for separating, from a returned fluid that is one portion of the product gas, a first separated fluid containing water and a second separated fluid containing hydrogen; and a first circulation pathway. The first circulation pathway includes a first return path for guiding the first separated fluid to the electrolytic apparatus, and a second return path for guiding the second separated fluid to the methane reactor.

Description

メタン生成システムMethane generation system
 本開示は、メタン生成システムに関する。 The present disclosure relates to methane production systems.
 特許文献1は、二酸化炭素と水を用いてメタンを製造する装置を開示する。この装置は、水と二酸化炭素とを還元して、水素と一酸化炭素とを含む合成ガスを得る。この装置は、合成ガスからメタンを生成させる。 Patent Document 1 discloses an apparatus for producing methane using carbon dioxide and water. This device reduces water and carbon dioxide to obtain synthesis gas containing hydrogen and carbon monoxide. This device produces methane from synthesis gas.
特開2022-22978号公報JP2022-22978A
 前記技術では、メタンの生成効率が低くなる可能性があった。 With the above technology, there was a possibility that the methane production efficiency would be low.
 本開示は、上記の事情に鑑みて、メタンの生成効率を高めることができるメタン生成システムを提供することを目的とする。 In view of the above circumstances, the present disclosure aims to provide a methane generation system that can increase methane generation efficiency.
 本開示に係るメタン生成システムの一つの態様は、二酸化炭素および水を供給する供給経路と、前記二酸化炭素と前記水から電気分解によって一酸化炭素と水素を得る電解装置と、前記一酸化炭素と前記水素を含む混合ガスからメタンを含む生成物ガスを得るメタン反応器と、前記生成物ガスの一部である返送流体から、水を含む第1分離流体と水素を含む第2分離流体とを分離する第1分離器と、前記第1分離流体を前記電解装置に導く第1返送路、および、前記第2分離流体を前記メタン反応器に導く第2返送路、を有する第1循環経路と、を備える。 One aspect of the methane generation system according to the present disclosure includes a supply path for supplying carbon dioxide and water, an electrolysis device for obtaining carbon monoxide and hydrogen from the carbon dioxide and the water by electrolysis, and a supply path for supplying carbon monoxide and water. a methane reactor for obtaining a product gas containing methane from the mixed gas containing hydrogen; and a first separation fluid containing water and a second separation fluid containing hydrogen from a return fluid that is a part of the product gas. a first circulation path having a first separator for separating, a first return path that leads the first separated fluid to the electrolyzer, and a second return path that leads the second separated fluid to the methane reactor; , is provided.
 本開示によれば、メタンの生成効率を高めることができるメタン生成システムを提供できる。 According to the present disclosure, it is possible to provide a methane production system that can increase methane production efficiency.
実施の形態1に係るメタン生成システムの模式図である。1 is a schematic diagram of a methane generation system according to Embodiment 1. FIG. 実施の形態2に係るメタン生成システムの模式図である。FIG. 2 is a schematic diagram of a methane generation system according to a second embodiment. 実施の形態3に係るメタン生成システムの模式図である。FIG. 3 is a schematic diagram of a methane generation system according to Embodiment 3. 実施の形態4に係るメタン生成システムの模式図である。FIG. 3 is a schematic diagram of a methane generation system according to a fourth embodiment. 実施の形態5に係るメタン生成システムの模式図である。FIG. 3 is a schematic diagram of a methane generation system according to a fifth embodiment. 実施の形態6に係るメタン生成システムの模式図である。FIG. 3 is a schematic diagram of a methane generation system according to a sixth embodiment. 実施の形態7に係るメタン生成システムの模式図である。FIG. 7 is a schematic diagram of a methane generation system according to Embodiment 7. 実施の形態8に係るメタン生成システムの模式図である。It is a schematic diagram of the methane production system concerning Embodiment 8.
 以下、図面を参照しながら、本開示の実施の形態について説明する。なお、本開示の範囲は、以下の実施の形態に限定されず、本開示の技術的思想の範囲内で任意に変更可能である。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that the scope of the present disclosure is not limited to the following embodiments, and can be arbitrarily modified within the scope of the technical idea of the present disclosure.
 実施の形態1.
 図1は、実施の形態1におけるメタン生成システムを示す模式図である。
 図1に示すように、メタン生成システム1は、供給経路10と、共電解装置20と、メタン反応器30と、第1分離器40と、第1循環経路50と、を備える。
Embodiment 1.
FIG. 1 is a schematic diagram showing a methane generation system in Embodiment 1.
As shown in FIG. 1, the methane generation system 1 includes a supply route 10, a co-electrolyzer 20, a methane reactor 30, a first separator 40, and a first circulation route 50.
 供給経路10は、図示しない供給源から供給された二酸化炭素および水を共電解装置20に導く。供給経路10は、例えば、二酸化炭素と水との混合流体を共電解装置20に導く。供給経路10は、二酸化炭素を導く第1供給路と、水を導く第2供給路とを備えていてもよい。供給経路10には、水を気化させる蒸発器(水蒸気生成部)が設けられていてもよい。 The supply path 10 guides carbon dioxide and water supplied from a supply source (not shown) to the co-electrolysis device 20. The supply path 10 leads, for example, a mixed fluid of carbon dioxide and water to the co-electrolyzer 20 . The supply route 10 may include a first supply route for introducing carbon dioxide and a second supply route for introducing water. The supply path 10 may be provided with an evaporator (steam generator) that vaporizes water.
 共電解装置20は、例えば、カソード電極およびアノード電極を有する固体酸化物形電解セルを備える。固体酸化物形電解セルには、例えば、酸素イオン伝導性を有する固体酸化物が用いられる。電解質としては、ジルコニア系酸化物などが用いられる。共電解装置20は、電解装置の一例である。 The co-electrolyzer 20 includes, for example, a solid oxide electrolytic cell having a cathode electrode and an anode electrode. For example, a solid oxide having oxygen ion conductivity is used in the solid oxide electrolytic cell. As the electrolyte, zirconia-based oxide or the like is used. The co-electrolyzer 20 is an example of an electrolyzer.
 共電解装置20は、供給経路10から供給された二酸化炭素および水を固体酸化物形電解セルのカソード電極に供給する。固体酸化物形電解セルにおける共電解に用いられる水は、水蒸気であることが望ましい。 The co-electrolyzer 20 supplies carbon dioxide and water supplied from the supply path 10 to the cathode electrode of the solid oxide electrolytic cell. The water used for co-electrolysis in the solid oxide electrolytic cell is desirably water vapor.
 共電解装置20は、固体酸化物形電解セルを加熱する加熱装置を備えていてもよい。加熱装置は、固体酸化物形電解セル内の温度を共電解反応に適した温度に調整することができる。
 固体酸化物形電解セルに供給される二酸化炭素と水との比率は、目的とする混合ガスの成分(一酸化炭素、水素)の比率に応じて定めることができる。
The co-electrolyzer 20 may include a heating device that heats the solid oxide electrolytic cell. The heating device can adjust the temperature within the solid oxide electrolytic cell to a temperature suitable for the co-electrolytic reaction.
The ratio of carbon dioxide and water supplied to the solid oxide electrolysis cell can be determined depending on the ratio of the components (carbon monoxide, hydrogen) of the target mixed gas.
 共電解装置20は、二酸化炭素(CO)および水(HO)から、共電解によって一酸化炭素(CO)および水素(H)を含む混合ガスを得る。共電解は、例えば、以下に示す式(I)に従って進行する。この反応は、吸熱反応である。
 CO+HO→CO+H+O ・・・(I)
The co-electrolyzer 20 obtains a mixed gas containing carbon monoxide (CO) and hydrogen (H 2 ) from carbon dioxide (CO 2 ) and water (H 2 O) by co-electrolysis. Co-electrolysis proceeds, for example, according to formula (I) shown below. This reaction is endothermic.
CO2 + H2O →CO+ H2 + O2 ...(I)
 共電解装置20では、例えば、再生可能エネルギー(例えば、太陽光発電、風力発電等)を用いて生成された電力を用いて共電解を行うことができる。再生可能エネルギーを用いて得られたメタンは、燃焼利用しても追加的な二酸化炭素の発生がないことから、地球温暖化に影響しないカーボンニュートラル燃料と考えることができる。 In the co-electrolysis device 20, for example, co-electrolysis can be performed using electric power generated using renewable energy (for example, solar power generation, wind power generation, etc.). Methane obtained using renewable energy can be considered a carbon-neutral fuel that does not contribute to global warming, as no additional carbon dioxide is generated when it is combusted.
 本実施の形態では、二酸化炭素および水から共電解によって一酸化炭素および水素を得る共電解装置20が用いられるが、一酸化炭素および水素(H)を得るための装置は共電解装置に限らない。例えば、二酸化炭素を電気分解して一酸化炭素を得る工程と、水を電気分解して水素(H)を得る工程とを独立に行う電解装置を用いることもできる。 In this embodiment, a co-electrolyzer 20 that obtains carbon monoxide and hydrogen from carbon dioxide and water by co-electrolysis is used, but the device for obtaining carbon monoxide and hydrogen (H 2 ) is limited to the co-electrolyzer. do not have. For example, it is also possible to use an electrolyzer that performs independently the step of electrolyzing carbon dioxide to obtain carbon monoxide and the step of electrolyzing water to obtain hydrogen (H 2 ).
 共電解装置20で得られる混合ガスは、一酸化炭素および水素(H)だけでなく、未反応の二酸化炭素および水を含む。
 共電解装置20の入口は、供給経路10が接続された箇所である。共電解装置20の出口は、混合ガスが導出される箇所である。
The mixed gas obtained in the co-electrolyzer 20 contains not only carbon monoxide and hydrogen (H 2 ) but also unreacted carbon dioxide and water.
The inlet of the co-electrolyzer 20 is a location to which the supply path 10 is connected. The outlet of the co-electrolyzer 20 is where the mixed gas is led out.
 メタン反応器30は、一酸化炭素(CO)および水素(H)から、メタン化反応によって、メタン(CH)および水(HO)を含む生成物ガスを得る。メタン化反応は、例えば、以下に示す式(II)に従って進行する。この反応は、発熱反応である。
 CO+3H→CH+HO ・・・(II)
The methane reactor 30 obtains a product gas containing methane (CH 4 ) and water (H 2 O) from carbon monoxide (CO) and hydrogen (H 2 ) through a methanation reaction. The methanation reaction proceeds, for example, according to formula (II) shown below. This reaction is exothermic.
CO+ 3H2CH4 + H2O ...(II)
 メタン反応器30は、混合ガスが接触するメタン化触媒を備えることが好ましい。メタン化触媒としては、Ni触媒、Ru触媒などが挙げられる。メタン化触媒は、メタン化反応を促進する。
 メタン反応器30は、混合ガスからメタノールを生成させ、メタノールからメタンを生成させてもよい。
Preferably, the methane reactor 30 includes a methanation catalyst with which the mixed gas contacts. Examples of methanation catalysts include Ni catalysts and Ru catalysts. Methanation catalysts promote methanation reactions.
The methane reactor 30 may generate methanol from a mixed gas, and may generate methane from methanol.
 メタン反応器30で得られる生成物ガスは、メタンおよび水だけでなく、未反応の一酸化炭素、水素(H)、二酸化炭素などを含む。
 生成物ガスは、排出経路60を通して系外に排出される。排出された生成物ガスは、例えば、都市ガスなどの原料として、ガス製造設備などに送られる。
 メタン反応器30の入口は、共電解装置20から混合ガスが導入される箇所である。メタン反応器30の出口は、排出経路60が接続された箇所である。
The product gas obtained in the methane reactor 30 includes not only methane and water, but also unreacted carbon monoxide, hydrogen (H 2 ), carbon dioxide, and the like.
The product gas is discharged out of the system through the discharge path 60. The discharged product gas is sent to a gas production facility, for example, as a raw material for city gas or the like.
The inlet of the methane reactor 30 is where the mixed gas is introduced from the co-electrolyzer 20. The outlet of the methane reactor 30 is where the discharge path 60 is connected.
 第1分離器40は、生成物ガスの一部である返送流体F1から、水を含む第1分離流体F2と、水素(H)を含む第2分離流体F3とを分離する。
 第1分離器40には、例えば、吸着分離、膜分離、冷却分離、遠心分離、重力分離、気液分離などの分離手法が採用される。第1分離器40には、これらの分離手法のうち1つを採用してもよいし、2以上を組み合わせてもよい。
The first separator 40 separates a first separated fluid F2 containing water and a second separated fluid F3 containing hydrogen (H 2 ) from the return fluid F1, which is a part of the product gas.
The first separator 40 employs a separation method such as adsorption separation, membrane separation, cooling separation, centrifugal separation, gravity separation, gas-liquid separation, or the like. The first separator 40 may employ one of these separation methods, or may use a combination of two or more.
 吸着分離を用いた第1分離器40は、例えば、特定の成分を吸着剤、吸着液などに吸着させて分離する。吸着剤としては、シリカゲル、ゼオライト、活性炭などが挙げられる。具体的には、水を含む成分を吸着剤に吸着させることによって、この成分を、水素(H)を含む他の成分と分離することができる。吸着剤は、粒状、粉状などであってよい。粒状は、例えば、ビーズ状(球形)、ペレット状(円柱形)などである。粉状の吸着剤を用いる場合、吸着剤は基材の表面に担持させてもよい。基材は、例えば、ハニカム形状であってもよい。 The first separator 40 using adsorption separation, for example, separates a specific component by adsorbing it onto an adsorbent, an adsorption liquid, or the like. Examples of the adsorbent include silica gel, zeolite, and activated carbon. Specifically, by adsorbing a component containing water onto an adsorbent, this component can be separated from other components containing hydrogen (H 2 ). The adsorbent may be granular, powdered, etc. The granules are, for example, bead-like (spherical), pellet-like (cylindrical), and the like. When using a powdered adsorbent, the adsorbent may be supported on the surface of the base material. The base material may have a honeycomb shape, for example.
 吸着分離を用いた第1分離器40は、吸着剤から被吸着物を分離する機能を有する。第1分離器40は、例えば、加熱装置を備える。加熱装置は、吸着剤を加熱することによって吸着剤から被吸着物を分離させる。第1分離器40は、減圧ポンプなどの減圧装置を備えていてもよい。減圧装置は、吸着剤を減圧下に置くことで、吸着剤から被吸着物を分離させる。 The first separator 40 using adsorption separation has a function of separating the adsorbed material from the adsorbent. The first separator 40 includes, for example, a heating device. The heating device separates the adsorbed material from the adsorbent by heating the adsorbent. The first separator 40 may include a pressure reduction device such as a pressure reduction pump. The pressure reducing device separates the adsorbed material from the adsorbent by placing the adsorbent under reduced pressure.
 膜分離を用いた第1分離器40は、例えば、低分子成分が透過できる透過膜を用いて特定の成分を他の成分から分離する。具体的には、例えば、水素(H)を含む成分を、パラジウム透過膜を用いて、水を含む成分から分離することができる。
 冷却分離を用いた第1分離器40は、例えば、冷却により特定の成分を液化させて他の成分(気体)から分離する。具体的には、例えば、水を含む成分を液化させ、水素(H)を含む気体と分離することができる。
The first separator 40 using membrane separation separates a specific component from other components using, for example, a permeable membrane through which low-molecular components can pass. Specifically, for example, a component containing hydrogen (H 2 ) can be separated from a component containing water using a palladium permeable membrane.
The first separator 40 using cooling separation, for example, liquefies a specific component by cooling and separates it from other components (gas). Specifically, for example, a component containing water can be liquefied and separated from a gas containing hydrogen (H 2 ).
 遠心分離を用いた第1分離器40は、例えば、冷却により特定の成分(水を含む成分)を液化させ、この成分を遠心力によって他の成分(水素(H)を含む気体)から分離する。重力分離を用いた第1分離器40は、例えば、冷却により特定の成分(水を含む成分)を液化させ、この成分を重力によって他の成分(水素(H)を含む気体)から分離する。気液分離を用いた第1分離器40は、例えば、冷却により特定の成分(水を含む成分)を液化させ、この成分を重力、遠心力、表面張力などによって他の成分(水素(H)を含む気体)から分離する。 The first separator 40 using centrifugation, for example, liquefies a specific component (component containing water) by cooling, and separates this component from other components (gas containing hydrogen (H 2 )) by centrifugal force. do. The first separator 40 using gravity separation, for example, liquefies a specific component (component containing water) by cooling, and separates this component from other components (gas containing hydrogen (H 2 )) by gravity. . The first separator 40 using gas-liquid separation, for example, liquefies a specific component (component containing water) by cooling, and converts this component into other components (hydrogen ( H2 )) by gravity, centrifugal force, surface tension, etc. ).
 第1循環経路50は、導出路51と、第1返送路52と、第2返送路53と、を備える。
 導出路51は、メタン反応器30と第1分離器40とを接続する。導出路51の始端(第1端)はメタン反応器30の出口に近い位置に接続される。導出路51の終端(第2端)は第1分離器40に接続される。導出路51は、メタン反応器30から、生成物ガスの一部を返送流体F1として取り出す。導出路51は、返送流体F1を第1分離器40に導く。
The first circulation path 50 includes a lead-out path 51, a first return path 52, and a second return path 53.
The outlet path 51 connects the methane reactor 30 and the first separator 40. A starting end (first end) of the outlet path 51 is connected to a position close to the outlet of the methane reactor 30. A terminal end (second end) of the lead-out path 51 is connected to the first separator 40 . The outlet path 51 takes out a part of the product gas from the methane reactor 30 as a return fluid F1. The outlet path 51 leads the return fluid F1 to the first separator 40.
 第1返送路52は、第1分離器40と供給経路10とを接続する。第1返送路52の始端(第1端)は第1分離器40に接続される。第3返送路552の終端(第2端)は供給経路10に接続される。第1返送路52は、第1分離流体F2を、供給経路10を通して共電解装置20に導くことができる。なお、第1返送路52は、第1分離器40と共電解装置20とを接続していてもよい。 The first return path 52 connects the first separator 40 and the supply path 10. A starting end (first end) of the first return path 52 is connected to the first separator 40 . The terminal end (second end) of the third return path 552 is connected to the supply path 10. The first return path 52 can lead the first separated fluid F2 to the co-electrolyzer 20 through the supply path 10. Note that the first return path 52 may connect the first separator 40 and the co-electrolyzer 20.
 第2返送路53は、第1分離器40とメタン反応器30とを接続する。第2返送路53の始端(第1端)は第1分離器40に接続される。第2返送路53の終端(第2端)はメタン反応器30の入口に近い位置に接続される。第2返送路53の終端(第2端)は、導出路51の始端(第1端)に比べてメタン反応器30の入口に近い位置にある。第2返送路53は、第2分離流体F3をメタン反応器30に導く。 The second return path 53 connects the first separator 40 and the methane reactor 30. A starting end (first end) of the second return path 53 is connected to the first separator 40 . The terminal end (second end) of the second return path 53 is connected to a position close to the inlet of the methane reactor 30. The terminal end (second end) of the second return path 53 is located closer to the inlet of the methane reactor 30 than the starting end (first end) of the outlet path 51 . The second return path 53 leads the second separation fluid F3 to the methane reactor 30.
 排出経路60には、生成物ガスから不純物を除去する分離器が設けられていてもよい。不純物は、例えば、メタン以外の成分(二酸化炭素、水、水素(H)など)である。分離器には、例えば、吸着分離、膜分離、冷却分離、遠心分離、重力分離、気液分離などの分離手法が採用される。分離器には、これらの分離手法のうち1つを採用してもよいし、2以上を組み合わせてもよい。 The exhaust path 60 may be provided with a separator for removing impurities from the product gas. Impurities are, for example, components other than methane (carbon dioxide, water, hydrogen (H 2 ), etc.). Separation methods such as adsorption separation, membrane separation, cooling separation, centrifugal separation, gravity separation, and gas-liquid separation are employed in the separator. The separator may employ one of these separation techniques, or may use a combination of two or more.
 吸着分離を用いた分離器は、例えば、二酸化炭素、水などを吸着剤、吸着液などに吸着させて分離する。吸着剤としては、シリカゲル、ゼオライト、活性炭などが挙げられる。
 膜分離を用いた分離器は、例えば、低分子成分が透過できる透過膜を用いて特定の成分を他の成分から分離する。具体的には、水素(H)などの低分子成分を、パラジウム透過膜を用いて分離することができる。
 冷却分離を用いた分離器は、例えば、冷却により特定の成分を液化させて他の成分(気体)から分離する。
A separator using adsorption separation, for example, separates carbon dioxide, water, etc. by adsorbing it on an adsorbent, an adsorption liquid, or the like. Examples of the adsorbent include silica gel, zeolite, and activated carbon.
A separator using membrane separation uses, for example, a permeable membrane through which low-molecular components can pass through to separate specific components from other components. Specifically, low molecular weight components such as hydrogen (H 2 ) can be separated using a palladium permeable membrane.
A separator using cooling separation, for example, liquefies a specific component by cooling and separates it from other components (gas).
 遠心分離を用いた分離器は、例えば、冷却により特定の成分を液化させ、この成分を遠心力によって他の成分(気体)から分離する。重力分離を用いた分離器は、例えば、冷却により特定の成分を液化させ、この成分を重力によって他の成分(気体)から分離する。気液分離を用いた分離器は、例えば、冷却により特定の成分を液化させ、この成分を重力、遠心力、表面張力などによって他の成分(気体)から分離する。 A separator using centrifugation, for example, liquefies a specific component by cooling and separates this component from other components (gas) by centrifugal force. A separator using gravity separation, for example, liquefies a specific component by cooling and separates this component from other components (gases) by gravity. A separator using gas-liquid separation, for example, liquefies a specific component by cooling and separates this component from other components (gas) by gravity, centrifugal force, surface tension, or the like.
 次に、メタン生成システム1を用いたメタン製造方法の例について説明する。
 本実施の形態に係るメタン製造方法は、供給工程と、電解工程と、メタン化工程と、循環工程と、を有する。
Next, an example of a methane production method using the methane production system 1 will be described.
The methane production method according to this embodiment includes a supply step, an electrolysis step, a methanation step, and a circulation step.
 供給工程では、供給経路10によって、二酸化炭素(CO)および水(HO)を共電解装置20に導く。
 電解工程では、共電解装置20において、二酸化炭素および水から、共電解によって一酸化炭素(CO)および水素(H)を含む混合ガスを得る。
In the supply process, carbon dioxide (CO 2 ) and water (H 2 O) are introduced to the co-electrolyzer 20 through the supply path 10 .
In the electrolysis process, a mixed gas containing carbon monoxide (CO) and hydrogen (H 2 ) is obtained from carbon dioxide and water by co-electrolysis in the co-electrolyzer 20 .
 メタン化工程では、メタン反応器30において、一酸化炭素および水素から、メタン化反応によって、メタン(CH)および水を含む生成物ガスを得る。生成物ガスは、メタンおよび水だけでなく、未反応の一酸化炭素、水素(H)、二酸化炭素などを含む。生成物ガスは、排出経路60を通して系外に排出される。 In the methanation step, a product gas containing methane (CH 4 ) and water is obtained from carbon monoxide and hydrogen through a methanation reaction in the methane reactor 30 . The product gas includes methane and water as well as unreacted carbon monoxide, hydrogen (H 2 ), carbon dioxide, and the like. The product gas is discharged out of the system through the discharge path 60.
 循環工程では、導出路51を通して、生成物ガスの一部をメタン反応器30から取り出し、返送流体F1として第1分離器40に導く。第1分離器40では、返送流体F1から、水(例えば、水蒸気)を含む第1分離流体F2と、水素(H)を含む第2分離流体F3とを分離する。第1分離流体F2における水(例えば、水蒸気)の濃度は、返送流体F1の水(例えば、水蒸気)の濃度より高い。第2分離流体F3における水素(H)の濃度は、返送流体F1の水素(H)の濃度より高い。 In the circulation process, a part of the product gas is taken out of the methane reactor 30 through the outlet 51 and led to the first separator 40 as a return fluid F1. The first separator 40 separates the return fluid F1 into a first separated fluid F2 containing water (for example, water vapor) and a second separated fluid F3 containing hydrogen (H 2 ). The concentration of water (eg, water vapor) in the first separation fluid F2 is higher than the concentration of water (eg, water vapor) in the return fluid F1. The concentration of hydrogen (H 2 ) in the second separation fluid F3 is higher than the concentration of hydrogen (H 2 ) in the return fluid F1.
 第1分離流体F2は、第1返送路52および供給経路10を通して共電解装置20に導かれる。第2分離流体F3は、第2返送路53を通してメタン反応器30に導かれる。 The first separation fluid F2 is led to the co-electrolyzer 20 through the first return path 52 and the supply path 10. The second separation fluid F3 is led to the methane reactor 30 through the second return path 53.
 メタン生成システム1は、第1分離流体F2を共電解装置20に導く第1返送路52と、第2分離流体F3をメタン反応器30に導く第2返送路53とを備える。
 メタン生成システム1によれば、未反応物である水素(H)を含む第2分離流体F3がメタン反応器30に返送されるため、メタン反応器30におけるメタン化反応の効率を高めることができる。よって、メタン生成効率を高めることができる。
 メタン生成システム1によれば、未反応物である水(例えば、水蒸気)を含む第1分離流体F2が共電解装置20に返送される。そのため、共電解装置20における電解反応の効率を高めることができる。第1分離流体F2は共電解装置20に返送されるため、メタン反応器30で発生した熱を共電解装置20で利用することができる。したがって、エネルギー効率を高めることができる。
 メタン生成システム1では、水(例えば、水蒸気)をメタン反応器30から排出するため、メタン反応器30におけるメタン化反応の効率を高めることができる。
The methane generation system 1 includes a first return path 52 that leads the first separated fluid F2 to the co-electrolyzer 20, and a second return path 53 that leads the second separated fluid F3 to the methane reactor 30.
According to the methane generation system 1, the second separation fluid F3 containing hydrogen (H 2 ), which is an unreacted product, is returned to the methane reactor 30, so that the efficiency of the methanation reaction in the methane reactor 30 can be increased. can. Therefore, methane production efficiency can be increased.
According to the methane generation system 1, the first separation fluid F2 containing unreacted water (for example, water vapor) is returned to the co-electrolyzer 20. Therefore, the efficiency of the electrolytic reaction in the co-electrolyzer 20 can be increased. Since the first separation fluid F2 is returned to the co-electrolyzer 20, the heat generated in the methane reactor 30 can be used in the co-electrolyzer 20. Therefore, energy efficiency can be improved.
In the methane generation system 1, since water (for example, water vapor) is discharged from the methane reactor 30, the efficiency of the methanation reaction in the methane reactor 30 can be increased.
 実施の形態2.
 次に、実施の形態2に係るメタン生成システムについて説明する。本実施の形態に係るメタン生成システムは、基本的な構成が実施の形態1と同様であるため、主に、実施の形態1と異なる点を説明する。他の実施の形態と同じ構成については、同じ符号を付して説明を省略する。
Embodiment 2.
Next, a methane generation system according to Embodiment 2 will be explained. Since the basic configuration of the methane generation system according to this embodiment is the same as that of Embodiment 1, the differences from Embodiment 1 will mainly be explained. Components that are the same as those in other embodiments are designated by the same reference numerals and description thereof will be omitted.
 図2は、実施の形態2に係るメタン生成システムの模式図である。
 図2に示すように、メタン生成システム101は、第2返送路53に冷却器70を備える。冷却器70は、熱交換器であってよい。冷却器70は、水冷式、空冷式などの冷却器であってもよい。冷却器70は、第2返送路53を流れる第2分離流体F3を冷却する。
FIG. 2 is a schematic diagram of a methane generation system according to a second embodiment.
As shown in FIG. 2, the methane generation system 101 includes a cooler 70 in the second return path 53. Cooler 70 may be a heat exchanger. The cooler 70 may be a water-cooled type, an air-cooled type, or the like. The cooler 70 cools the second separation fluid F3 flowing through the second return path 53.
 メタン生成システム101は、冷却器70によって第2分離流体F3を冷却するため、メタン反応器30における温度を、メタン化反応に適した温度とすることができる。よって、メタン反応器30におけるメタン生成効率を高めることができる。 Since the methane generation system 101 cools the second separation fluid F3 using the cooler 70, the temperature in the methane reactor 30 can be set to a temperature suitable for the methanation reaction. Therefore, the methane production efficiency in the methane reactor 30 can be increased.
 実施の形態3.
 次に、実施の形態3に係るメタン生成システムについて説明する。他の実施の形態と同じ構成については、同じ符号を付して説明を省略する。
Embodiment 3.
Next, a methane generation system according to Embodiment 3 will be explained. Components that are the same as those in other embodiments are designated by the same reference numerals and description thereof will be omitted.
 図3は、実施の形態3に係るメタン生成システムの模式図である。
 図3に示すように、メタン生成システム201は、供給経路10(図1参照)に代えて供給経路210を備える。供給経路210は、第1供給路211と、第2供給路212と、を備える。第1供給路211は、二酸化炭素を共電解装置20に導く。第2供給路212は、水を第1供給路211に導く。そのため、第2供給路212は、水を、第1供給路211を介して共電解装置20に導くことができる。
FIG. 3 is a schematic diagram of a methane generation system according to Embodiment 3.
As shown in FIG. 3, the methane generation system 201 includes a supply route 210 instead of the supply route 10 (see FIG. 1). The supply route 210 includes a first supply route 211 and a second supply route 212. The first supply path 211 leads carbon dioxide to the co-electrolyzer 20 . The second supply path 212 leads water to the first supply path 211 . Therefore, the second supply path 212 can lead water to the co-electrolysis device 20 via the first supply path 211.
 メタン生成システム201は、熱交換器270を備える。熱交換器270は、第2供給路212と導出路51とに跨って設けられている。熱交換器270は、第2供給路212を流れる水との熱交換によって、返送流体F1を冷却することができる。返送流体F1は、冷却されることにより、特定の成分(水を含む成分)が液化する。 The methane generation system 201 includes a heat exchanger 270. The heat exchanger 270 is provided across the second supply path 212 and the outlet path 51. The heat exchanger 270 can cool the return fluid F1 by exchanging heat with the water flowing through the second supply path 212. When the return fluid F1 is cooled, specific components (components containing water) are liquefied.
 メタン生成システム201は、第1分離器40(図1参照)に代えて気液分離器240を備える。気液分離器240は、例えば、液体と気体とを、重力、遠心力、表面張力などによって分離する。気液分離器240は、第1分離器の一例である。
 気液分離器240で得られた液体は、水を含む第1分離流体F2となる。第1分離流体F2は、第1返送路52および第1供給路211を通して共電解装置20に導かれる。気液分離器240で得られた気体は、水素(H)を含む第2分離流体F3となる。第2分離流体F3は、第2返送路53を通してメタン反応器30に導かれる。
The methane generation system 201 includes a gas-liquid separator 240 instead of the first separator 40 (see FIG. 1). The gas-liquid separator 240 separates liquid and gas by, for example, gravity, centrifugal force, surface tension, or the like. Gas-liquid separator 240 is an example of a first separator.
The liquid obtained by the gas-liquid separator 240 becomes a first separated fluid F2 containing water. The first separated fluid F2 is guided to the co-electrolyzer 20 through the first return path 52 and the first supply path 211. The gas obtained by the gas-liquid separator 240 becomes a second separated fluid F3 containing hydrogen (H 2 ). The second separation fluid F3 is led to the methane reactor 30 through the second return path 53.
 メタン生成システム201では、熱交換器270を備えるため、第2供給路212によって供給される水を利用して返送流体F1を冷却することができる。そのため、気液分離器240におけるエネルギー効率を高めることができる。メタン生成システム201は、熱交換器270によって、温度が調整された第2分離流体F3が得られるため、メタン反応器30における温度を、メタン化反応に適した温度とすることができる。よって、メタン反応器30におけるメタン生成効率を高めることができる。 Since the methane generation system 201 includes the heat exchanger 270, the return fluid F1 can be cooled using the water supplied by the second supply path 212. Therefore, the energy efficiency in the gas-liquid separator 240 can be improved. In the methane generation system 201, the temperature-adjusted second separated fluid F3 is obtained by the heat exchanger 270, so that the temperature in the methane reactor 30 can be set to a temperature suitable for the methanation reaction. Therefore, the methane production efficiency in the methane reactor 30 can be increased.
 実施の形態4.
 次に、実施の形態4に係るメタン生成システムについて説明する。他の実施の形態と同じ構成については、同じ符号を付して説明を省略する。
Embodiment 4.
Next, a methane generation system according to Embodiment 4 will be explained. Components that are the same as those in other embodiments are designated by the same reference numerals and description thereof will be omitted.
 図4は、実施の形態4に係るメタン生成システムの模式図である。
 図4に示すように、メタン生成システム301は、供給経路10(図1参照)に代えて供給経路310を備える。供給経路310は、二酸化炭素と水との混合流体を共電解装置20に導く。二酸化炭素の大部分は気体である。水の大部分は液体である。そのため、供給経路310を流れる混合流体は気液二相流体である。
FIG. 4 is a schematic diagram of a methane generation system according to Embodiment 4.
As shown in FIG. 4, the methane generation system 301 includes a supply path 310 instead of the supply path 10 (see FIG. 1). The supply path 310 leads the mixed fluid of carbon dioxide and water to the co-electrolyzer 20 . Most carbon dioxide is a gas. Most water is liquid. Therefore, the mixed fluid flowing through the supply path 310 is a gas-liquid two-phase fluid.
 メタン生成システム301は、熱交換器370を備える。熱交換器370は、供給経路310と導出路51に跨って設けられている。熱交換器370は、供給経路310を流れる混合流体との熱交換によって、返送流体F1を冷却することができる。返送流体F1は、冷却されることにより、特定の成分(水を含む成分)が液化する。 The methane generation system 301 includes a heat exchanger 370. The heat exchanger 370 is provided across the supply path 310 and the outlet path 51. The heat exchanger 370 can cool the return fluid F1 by exchanging heat with the mixed fluid flowing through the supply path 310. When the return fluid F1 is cooled, specific components (components containing water) are liquefied.
 メタン生成システム301では、熱交換器370を備えるため、供給経路310から供給される混合流体を利用して返送流体F1を冷却することができる。そのため、気液分離器240におけるエネルギー効率を高めることができる。メタン生成システム301は、熱交換器370によって、温度が調整された第2分離流体F3が得られるため、メタン反応器30における温度を、メタン化反応に適した温度とすることができる。よって、メタン反応器30におけるメタン生成効率を高めることができる。 Since the methane generation system 301 includes the heat exchanger 370, the return fluid F1 can be cooled using the mixed fluid supplied from the supply path 310. Therefore, the energy efficiency in the gas-liquid separator 240 can be improved. In the methane generation system 301, the temperature-adjusted second separated fluid F3 is obtained by the heat exchanger 370, so that the temperature in the methane reactor 30 can be set to a temperature suitable for the methanation reaction. Therefore, the methane production efficiency in the methane reactor 30 can be increased.
 メタン生成システム301では、気液二相流体である混合流体を熱媒体として使用するため、伝熱性能が高められる。よって、熱交換器370において返送流体F1を効率よく冷却することができる。 The methane generation system 301 uses a mixed fluid, which is a gas-liquid two-phase fluid, as a heat medium, so heat transfer performance is improved. Therefore, the return fluid F1 can be efficiently cooled in the heat exchanger 370.
 実施の形態5.
 次に、実施の形態5に係るメタン生成システムについて説明する。他の実施の形態と同じ構成については、同じ符号を付して説明を省略する。
Embodiment 5.
Next, a methane generation system according to Embodiment 5 will be described. Components that are the same as those in other embodiments are designated by the same reference numerals and description thereof will be omitted.
 図5は、実施の形態5に係るメタン生成システムの模式図である。
 図5に示すように、メタン生成システム401は、供給経路10(図1参照)に代えて供給経路410を備える。供給経路410は、第1供給路411と、第2供給路412と、合流流路413と、を備える。第1供給路411は二酸化炭素を導く。第2供給路412は水を導く。合流流路413は、第1供給路411からの二酸化炭素と、第2供給路412からの水とを合流させて共電解装置20に導く。
FIG. 5 is a schematic diagram of a methane generation system according to Embodiment 5.
As shown in FIG. 5, the methane generation system 401 includes a supply path 410 instead of the supply path 10 (see FIG. 1). The supply path 410 includes a first supply path 411 , a second supply path 412 , and a merging channel 413 . The first supply path 411 introduces carbon dioxide. The second supply path 412 introduces water. The merging channel 413 merges carbon dioxide from the first supply channel 411 and water from the second supply channel 412 and guides them to the co-electrolyzer 20 .
 メタン生成システム401は、熱交換器470を備える。熱交換器470は、第1供給路411と第2供給路412と導出路51に跨って設けられている。熱交換器470は、供給路411,412を流れる二酸化炭素および水との熱交換によって、返送流体F1を冷却することができる。返送流体F1は、冷却されることにより、特定の成分(水を含む成分)が液化する。 The methane generation system 401 includes a heat exchanger 470. The heat exchanger 470 is provided across the first supply path 411 , the second supply path 412 , and the outlet path 51 . The heat exchanger 470 can cool the return fluid F1 by heat exchange with carbon dioxide and water flowing through the supply paths 411 and 412. When the return fluid F1 is cooled, specific components (components containing water) are liquefied.
 メタン生成システム401では、熱交換器470を備えるため、供給路411,412から供給される二酸化炭素および水を利用して返送流体F1を冷却することができる。そのため、気液分離器240におけるエネルギー効率を高めることができる。メタン生成システム401は、熱交換器470によって、温度が調整された第2分離流体F3が得られるため、メタン反応器30における温度を、メタン化反応に適した温度とすることができる。よって、メタン反応器30におけるメタン生成効率を高めることができる。 Since the methane generation system 401 includes the heat exchanger 470, the return fluid F1 can be cooled using carbon dioxide and water supplied from the supply paths 411 and 412. Therefore, the energy efficiency in the gas-liquid separator 240 can be improved. In the methane generation system 401, the temperature-adjusted second separated fluid F3 is obtained by the heat exchanger 470, so that the temperature in the methane reactor 30 can be set to a temperature suitable for the methanation reaction. Therefore, the methane production efficiency in the methane reactor 30 can be increased.
 供給経路410は、二酸化炭素を導く第1供給路411と、水を導く第2供給路412とを備える。二酸化炭素と水とは圧力などが互いに異なる場合があるが、メタン生成システム401では、それぞれの流体に適切な条件を設定できる。 The supply path 410 includes a first supply path 411 that leads to carbon dioxide, and a second supply path 412 that leads to water. Carbon dioxide and water may have different pressures, etc., but in the methane generation system 401, appropriate conditions can be set for each fluid.
 実施の形態6.
 次に、実施の形態6に係るメタン生成システムについて説明する。他の実施の形態と同じ構成については、同じ符号を付して説明を省略する。
Embodiment 6.
Next, a methane generation system according to Embodiment 6 will be described. Components that are the same as those in other embodiments are designated by the same reference numerals and description thereof will be omitted.
 図6は、実施の形態6に係るメタン生成システムの模式図である。
 図6に示すように、メタン生成システム501は、供給経路10と、共電解装置20と、メタン反応器530と、第1分離器40と、第1循環経路50と、第2分離器540と、第2循環経路550と、を備える。
FIG. 6 is a schematic diagram of a methane generation system according to Embodiment 6.
As shown in FIG. 6, the methane generation system 501 includes a supply route 10, a co-electrolyzer 20, a methane reactor 530, a first separator 40, a first circulation route 50, and a second separator 540. , a second circulation path 550.
 メタン反応器530は、第1メタン反応部531と、第2メタン反応部532と、を備える。
 第1メタン反応部531は、共電解装置20からの混合ガスから、メタン化反応によってメタンを生成させて中間ガスを得る。第2メタン反応部532は、中間ガスから、メタン化反応によってメタンを生成させて生成物ガスを得る。このように、メタン反応器530は、2段階のメタン化反応によって生成物ガスを得る。
The methane reactor 530 includes a first methane reaction section 531 and a second methane reaction section 532.
The first methane reaction section 531 generates methane from the mixed gas from the co-electrolyzer 20 through a methanation reaction to obtain an intermediate gas. The second methane reaction section 532 generates methane from the intermediate gas through a methanation reaction to obtain a product gas. Thus, the methane reactor 530 obtains product gas through a two-step methanation reaction.
 第1循環経路50は、導出路51と、第1返送路52と、第2返送路53と、を備える。
 導出路51は、第2メタン反応部532と第1分離器40とを接続する。導出路51の始端(第1端)は第2メタン反応部532の出口に近い位置に接続される。導出路51の終端(第2端)は第1分離器40に接続される。導出路51は、第2メタン反応部532から、生成物ガスの一部を返送流体F1として取り出す。導出路51は、返送流体F1を第1分離器40に導く。
The first circulation path 50 includes a lead-out path 51, a first return path 52, and a second return path 53.
The outlet path 51 connects the second methane reaction section 532 and the first separator 40. A starting end (first end) of the outlet path 51 is connected to a position close to the outlet of the second methane reaction section 532. A terminal end (second end) of the lead-out path 51 is connected to the first separator 40 . The outlet path 51 takes out a part of the product gas from the second methane reaction section 532 as a return fluid F1. The outlet path 51 leads the return fluid F1 to the first separator 40.
 第1返送路52は、第1分離器40と供給経路10とを接続する。第1返送路52は、第1分離流体F2を、供給経路10を通して共電解装置20に導くことができる。なお、第1返送路52は、第1分離器40と共電解装置20とを接続していてもよい。 The first return path 52 connects the first separator 40 and the supply path 10. The first return path 52 can lead the first separated fluid F2 to the co-electrolyzer 20 through the supply path 10. Note that the first return path 52 may connect the first separator 40 and the co-electrolyzer 20.
 第2返送路53は、第1分離器40と第2メタン反応部532とを接続する。第2返送路53の始端(第1端)は第1分離器40に接続される。第2返送路53の終端(第2端)は第2メタン反応部532の入口に近い位置に接続される。第2返送路53の終端(第2端)は、導出路51の始端(第1端)に比べて第2メタン反応部532の入口に近い位置にある。第2返送路53は、第2分離流体F3を第2メタン反応部532に導く。 The second return path 53 connects the first separator 40 and the second methane reaction section 532. A starting end (first end) of the second return path 53 is connected to the first separator 40 . The terminal end (second end) of the second return path 53 is connected to a position close to the inlet of the second methane reaction section 532. The terminal end (second end) of the second return path 53 is located closer to the inlet of the second methane reaction section 532 than the starting end (first end) of the outlet path 51 . The second return path 53 guides the second separation fluid F3 to the second methane reaction section 532.
 第2分離器540は、第1分離器40と同様に、例えば、吸着分離、膜分離、冷却分離、遠心分離、重力分離、気液分離などの分離手法が採用される。 Similarly to the first separator 40, the second separator 540 employs separation techniques such as adsorption separation, membrane separation, cooling separation, centrifugal separation, gravity separation, and gas-liquid separation.
 第2循環経路550は、導出路551と、第3返送路552と、第4返送路553と、を備える。
 導出路551は、第1メタン反応部531と第2分離器540とを接続する。導出路551の始端(第1端)は第1メタン反応部531の出口に近い位置に接続される。導出路551の終端(第2端)は第2分離器540に接続される。導出路551は、第1メタン反応部531から、中間ガスの一部を返送流体F4として取り出す。導出路551は、返送流体F4を第2分離器540に導く。
The second circulation path 550 includes a lead-out path 551, a third return path 552, and a fourth return path 553.
The outlet path 551 connects the first methane reaction section 531 and the second separator 540. A starting end (first end) of the outlet path 551 is connected to a position close to the outlet of the first methane reaction section 531. A terminal end (second end) of the lead-out path 551 is connected to the second separator 540. The outlet path 551 takes out a part of the intermediate gas from the first methane reaction section 531 as a return fluid F4. The outlet path 551 leads the return fluid F4 to the second separator 540.
 第3返送路552は、第2分離器540と供給経路10とを接続する。第3返送路552の始端(第1端)は第2分離器540に接続される。第3返送路552の終端(第2端)は供給経路10に接続される。第3返送路552は、第3分離流体F5を、供給経路10を通して共電解装置20に導くことができる。なお、第3返送路552は、第2分離器540と共電解装置20とを接続していてもよい。 The third return path 552 connects the second separator 540 and the supply path 10. A starting end (first end) of the third return path 552 is connected to the second separator 540. The terminal end (second end) of the third return path 552 is connected to the supply path 10. The third return path 552 can lead the third separated fluid F5 to the co-electrolyzer 20 through the supply path 10. Note that the third return path 552 may connect the second separator 540 and the co-electrolyzer 20.
 第4返送路553は、第2分離器540と第1メタン反応部531とを接続する。第4返送路553の始端(第1端)は第2分離器540に接続される。第4返送路553の終端(第2端)は第1メタン反応部531の入口に近い位置に接続される。第4返送路553の終端(第2端)は、導出路551の始端(第1端)に比べて第1メタン反応部531の入口に近い位置にある。第4返送路553は、第4分離流体F6を第1メタン反応部531に導く。 The fourth return path 553 connects the second separator 540 and the first methane reaction section 531. A starting end (first end) of the fourth return path 553 is connected to the second separator 540. The terminal end (second end) of the fourth return path 553 is connected to a position close to the inlet of the first methane reaction section 531. The terminal end (second end) of the fourth return path 553 is located closer to the inlet of the first methane reaction section 531 than the starting end (first end) of the outlet path 551. The fourth return path 553 guides the fourth separation fluid F6 to the first methane reaction section 531.
 メタン生成システム501では、導出路551を通して、中間ガスの一部を第1メタン反応部531から取り出し、返送流体F4として第2分離器540に導く。第2分離器540では、返送流体F4から、水(例えば、水蒸気)を含む第3分離流体F5と、水素(H)を含む第4分離流体F6とを分離する。第3分離流体F5における水(例えば、水蒸気)の濃度は、返送流体F4の水(例えば、水蒸気)の濃度より高い。第4分離流体F6における水素(H)の濃度は、返送流体F4の水素(H)の濃度より高い。 In the methane generation system 501, a portion of the intermediate gas is taken out from the first methane reaction section 531 through the outlet path 551 and guided to the second separator 540 as a return fluid F4. The second separator 540 separates the return fluid F4 into a third separated fluid F5 containing water (for example, water vapor) and a fourth separated fluid F6 containing hydrogen (H 2 ). The concentration of water (eg, water vapor) in the third separation fluid F5 is higher than the concentration of water (eg, water vapor) in the return fluid F4. The concentration of hydrogen (H 2 ) in the fourth separation fluid F6 is higher than the concentration of hydrogen (H 2 ) in the return fluid F4.
 メタン生成システム501では、導出路51を通して、生成物ガスの一部を第2メタン反応部532から取り出し、返送流体F1として第1分離器40に導く。第1分離器40では、返送流体F1から、水(例えば、水蒸気)を含む第1分離流体F2と、水素(H)を含む第2分離流体F3とを分離する。第1分離流体F2における水(例えば、水蒸気)の濃度は、返送流体F1の水(例えば、水蒸気)の濃度より高い。第2分離流体F3における水素(H)の濃度は、返送流体F1の水素(H)の濃度より高い。 In the methane generation system 501, a part of the product gas is taken out from the second methane reaction section 532 through the outlet path 51 and guided to the first separator 40 as a return fluid F1. The first separator 40 separates the return fluid F1 into a first separated fluid F2 containing water (for example, water vapor) and a second separated fluid F3 containing hydrogen (H 2 ). The concentration of water (eg, water vapor) in the first separation fluid F2 is higher than the concentration of water (eg, water vapor) in the return fluid F1. The concentration of hydrogen (H 2 ) in the second separation fluid F3 is higher than the concentration of hydrogen (H 2 ) in the return fluid F1.
 メタン生成システム501は、第1循環経路50によって、水を含む第1分離流体F2が共電解装置20に返送されるだけでなく、第2循環経路550によって、水を含む第3分離流体F5が共電解装置20に返送される。メタン生成システム501では、水をメタン反応器530から複数箇所で排出するため、水を効果的に除去することができる。よって、メタン反応器530におけるメタン化反応の効率を高めることができる。 In the methane generation system 501, not only the first separated fluid F2 containing water is returned to the co-electrolyzer 20 through the first circulation path 50, but also the third separated fluid F5 containing water is returned through the second circulation path 550. It is returned to the co-electrolyzer 20. In the methane generation system 501, water is discharged from the methane reactor 530 at multiple locations, so water can be effectively removed. Therefore, the efficiency of the methanation reaction in the methane reactor 530 can be increased.
 実施の形態7.
 次に、実施の形態7に係るメタン生成システムについて説明する。他の実施の形態と同じ構成については、同じ符号を付して説明を省略する。
Embodiment 7.
Next, a methane generation system according to Embodiment 7 will be described. Components that are the same as those in other embodiments are designated by the same reference numerals and description thereof will be omitted.
 図7は、実施の形態7に係るメタン生成システムの模式図である。
 図7に示すように、メタン生成システム601は、供給経路10と、共電解装置20と、メタン反応器530と、第1分離器40と、第1循環経路50と、第2分離器540と、第2循環経路550と、エジェクタ680を備える。メタン生成システム601は、エジェクタ680を備える点で、メタン生成システム501(図6参照)と異なる。
FIG. 7 is a schematic diagram of a methane generation system according to Embodiment 7.
As shown in FIG. 7, the methane generation system 601 includes a supply route 10, a co-electrolyzer 20, a methane reactor 530, a first separator 40, a first circulation route 50, and a second separator 540. , a second circulation path 550, and an ejector 680. Methane generation system 601 differs from methane generation system 501 (see FIG. 6) in that it includes an ejector 680.
 エジェクタ680は、流入口681と、第1吸引口682と、第2吸引口683と、流出口684と、を有する。エジェクタ680は、供給経路10に設けられている。供給経路10を流れる二酸化炭素および水は、流入口681からエジェクタ680に流入し、流出口684から流出する。二酸化炭素および水は駆動流体となる。駆動流体となる水は、気体(水蒸気)であってもよいし、液体であってもよい。 The ejector 680 has an inflow port 681, a first suction port 682, a second suction port 683, and an outflow port 684. Ejector 680 is provided in supply path 10 . Carbon dioxide and water flowing through the supply path 10 flow into the ejector 680 from an inlet 681 and exit from an outlet 684. Carbon dioxide and water become the driving fluids. The water serving as the driving fluid may be gas (steam) or liquid.
 第1吸引口682は、第1返送路52の終端(第2端)に接続されている。第1分離流体F2は、吸引流体として第1吸引口682からエジェクタ680に流入する。第2吸引口683は、第3返送路552の終端(第2端)に接続されている。第2吸引口683は、第1吸引口682に対して、流れ方向の下流側にある。「流れ方向」は、流入口681から流出口684に向けて流れる二酸化炭素および水の方向である。第3分離流体F5は、吸引流体として第2吸引口683からエジェクタ680に流入する。エジェクタ680の内部には、駆動流体を噴出するノズルが設けられている。 The first suction port 682 is connected to the terminal end (second end) of the first return path 52. The first separation fluid F2 flows into the ejector 680 from the first suction port 682 as a suction fluid. The second suction port 683 is connected to the terminal end (second end) of the third return path 552. The second suction port 683 is located downstream of the first suction port 682 in the flow direction. “Flow direction” is the direction of carbon dioxide and water flowing from inlet 681 to outlet 684. The third separation fluid F5 flows into the ejector 680 from the second suction port 683 as a suction fluid. A nozzle for ejecting driving fluid is provided inside the ejector 680.
  エジェクタ680は、流入口681から流入した二酸化炭素および水を駆動流体として、第1分離流体F2および第3分離流体F5をエジェクタ680内に吸引する。第1分離流体F2および第3分離流体F5は、駆動流体である二酸化炭素および水とともに、流出口684を通してエジェクタ680から流出し、供給経路10を通って共電解装置20に供給される。 The ejector 680 sucks the first separated fluid F2 and the third separated fluid F5 into the ejector 680 using carbon dioxide and water that have flowed in from the inlet 681 as driving fluids. The first separation fluid F2 and the third separation fluid F5 flow out of the ejector 680 through the outlet 684 together with the driving fluids carbon dioxide and water, and are supplied to the co-electrolyzer 20 through the supply path 10.
 第1返送路52および第3返送路552には、第1分離流体F2および第3分離流体F5を供給経路10に送るためのポンプ等を設けてもよい。 The first return path 52 and the third return path 552 may be provided with a pump or the like for sending the first separated fluid F2 and the third separated fluid F5 to the supply path 10.
 メタン生成システム601は、エジェクタ680を備えるため、エジェクタ680によって第1分離流体F2および第3分離流体F5を供給経路10に導くことができる。そのため、例えば、ポンプのみを用いて第1分離流体F2および第3分離流体F5を供給経路10に導く場合と比較して、省エネルギー化が可能である。 Since the methane generation system 601 includes the ejector 680, the first separation fluid F2 and the third separation fluid F5 can be guided to the supply path 10 by the ejector 680. Therefore, compared to, for example, the case where the first separated fluid F2 and the third separated fluid F5 are guided to the supply path 10 using only a pump, energy saving is possible.
 メタン生成システム601は、複数の吸引口を有するエジェクタ680を用いるため、エジェクタの数を少なくできる。そのため、装置の小型化、低コスト化の点で有利となる。 Since the methane generation system 601 uses the ejector 680 having multiple suction ports, the number of ejectors can be reduced. Therefore, it is advantageous in terms of downsizing and cost reduction of the device.
 実施の形態8.
 次に、実施の形態8に係るメタン生成システムについて説明する。他の実施の形態と同じ構成については、同じ符号を付して説明を省略する。
Embodiment 8.
Next, a methane generation system according to Embodiment 8 will be described. Components that are the same as those in other embodiments are designated by the same reference numerals and description thereof will be omitted.
 図8は、実施の形態8に係るメタン生成システムの模式図である。
 図8に示すように、メタン生成システム701は、供給経路10と、共電解装置20と、メタン反応器530と、第1分離器40と、第1循環経路50と、第2分離器540と、第2循環経路550と、エジェクタ780を備える。メタン生成システム701は、エジェクタ680に代えてエジェクタ780を備える点で、メタン生成システム601(図7参照)と異なる。
FIG. 8 is a schematic diagram of a methane generation system according to Embodiment 8.
As shown in FIG. 8, the methane generation system 701 includes a supply route 10, a co-electrolyzer 20, a methane reactor 530, a first separator 40, a first circulation route 50, and a second separator 540. , a second circulation path 550, and an ejector 780. The methane generation system 701 differs from the methane generation system 601 (see FIG. 7) in that it includes an ejector 780 instead of the ejector 680.
 エジェクタ780は、第1エジェクタ部781と、第2エジェクタ部782と、を備える。
 第1エジェクタ部781は、流入口783と、吸引口784と、流出口785と、を有する。第1エジェクタ部781は、供給経路10に設けられている。供給経路10を流れる二酸化炭素および水は、流入口783から第1エジェクタ部781に流入し、流出口785から流出する。二酸化炭素および水は駆動流体となる。駆動流体となる水は、気体(水蒸気)であってもよいし、液体であってもよい。第1エジェクタ部781の内部には、駆動流体を噴出するノズルが設けられている。
Ejector 780 includes a first ejector section 781 and a second ejector section 782.
The first ejector section 781 has an inlet 783, a suction port 784, and an outlet 785. The first ejector section 781 is provided in the supply path 10. Carbon dioxide and water flowing through the supply path 10 flow into the first ejector section 781 from the inlet 783 and exit from the outlet 785. Carbon dioxide and water become the driving fluids. The water serving as the driving fluid may be gas (steam) or liquid. A nozzle for ejecting driving fluid is provided inside the first ejector section 781.
 吸引口784は、第1返送路52の終端(第2端)に接続されている。第1分離流体F2は、吸引流体として吸引口784から第1エジェクタ部781に流入する。 The suction port 784 is connected to the terminal end (second end) of the first return path 52. The first separation fluid F2 flows into the first ejector section 781 from the suction port 784 as a suction fluid.
 第1エジェクタ部781は、流入口783から流入した二酸化炭素および水を駆動流体として、第1分離流体F2を吸引する。第1分離流体F2は、駆動流体である二酸化炭素および水とともに、流出口785を通して第1エジェクタ部781から流出する。 The first ejector section 781 sucks the first separation fluid F2 using carbon dioxide and water that have flowed in from the inlet 783 as driving fluids. The first separation fluid F2 flows out from the first ejector section 781 through the outlet 785 together with carbon dioxide and water, which are driving fluids.
 第2エジェクタ部782は、流入口786と、吸引口787と、流出口788と、を有する。第2エジェクタ部782は、供給経路10に設けられている。第2エジェクタ部782は、第1エジェクタ部781に対して、供給経路10における二酸化炭素および水の流れ方向の下流側に設けられている。供給経路10を流れる二酸化炭素および水は、流入口786から第2エジェクタ部782に流入し、流出口788から流出する。二酸化炭素および水は駆動流体となる。駆動流体となる水は、気体(水蒸気)であってもよいし、液体であってもよい。第2エジェクタ部782の内部には、駆動流体を噴出するノズルが設けられている。第2エジェクタ部782は、第1エジェクタ部781とは別体である。 The second ejector section 782 has an inlet 786, a suction port 787, and an outlet 788. The second ejector section 782 is provided in the supply path 10. The second ejector section 782 is provided on the downstream side of the first ejector section 781 in the flow direction of carbon dioxide and water in the supply path 10 . Carbon dioxide and water flowing through the supply path 10 flow into the second ejector section 782 from the inlet 786 and exit from the outlet 788. Carbon dioxide and water become the driving fluids. The water serving as the driving fluid may be gas (steam) or liquid. A nozzle for ejecting driving fluid is provided inside the second ejector section 782. The second ejector section 782 is separate from the first ejector section 781.
 吸引口787は、第3返送路552の終端(第2端)に接続されている。第3分離流体F5は、吸引流体として吸引口787から第2エジェクタ部782に流入する。 The suction port 787 is connected to the terminal end (second end) of the third return path 552. The third separation fluid F5 flows into the second ejector section 782 from the suction port 787 as a suction fluid.
 第2エジェクタ部782は、流入口786から流入した二酸化炭素、水および第1分離流体F2を駆動流体として、第3分離流体F5を吸引する。第3分離流体F5は、駆動流体である二酸化炭素、水および第1分離流体F2とともに、流出口788を通して第2エジェクタ部782から流出する。二酸化炭素、水、第1分離流体F2および第3分離流体F5は、供給経路10を通って共電解装置20に供給される。 The second ejector section 782 sucks the third separated fluid F5 using the carbon dioxide, water, and the first separated fluid F2 that have flowed in from the inlet 786 as driving fluids. The third separation fluid F5 flows out from the second ejector section 782 through the outlet 788 together with the driving fluids carbon dioxide, water, and the first separation fluid F2. Carbon dioxide, water, the first separated fluid F2, and the third separated fluid F5 are supplied to the co-electrolyzer 20 through the supply path 10.
 メタン生成システム701は、エジェクタ780を備えるため、エジェクタ780によって第1分離流体F2および第3分離流体F5を供給経路10に導くことができる。そのため、例えば、ポンプのみを用いて分離流体F2,F5を供給経路10に導く場合と比較して、省エネルギー化が可能である。 Since the methane generation system 701 includes the ejector 780, the first separation fluid F2 and the third separation fluid F5 can be guided to the supply path 10 by the ejector 780. Therefore, compared to, for example, the case where the separation fluids F2 and F5 are guided to the supply path 10 using only pumps, energy saving is possible.
 メタン生成システム701は、エジェクタ780が、第1分離流体F2を吸引する第1エジェクタ部781と、第3分離流体F5を吸引する第2エジェクタ部782とを備える。第1エジェクタ部781と第2エジェクタ部782とは、互いに独立に運転条件を設定できる。よって、第1分離流体F2と第3分離流体F5との間で流量等の条件が異なる場合でも、第1エジェクタ部781と第2エジェクタ部782とを適切に稼働させることができる。 In the methane generation system 701, an ejector 780 includes a first ejector section 781 that sucks the first separated fluid F2, and a second ejector section 782 that sucks the third separated fluid F5. Operating conditions for the first ejector section 781 and the second ejector section 782 can be set independently of each other. Therefore, even if conditions such as flow rates differ between the first separated fluid F2 and the third separated fluid F5, the first ejector section 781 and the second ejector section 782 can be operated appropriately.
 なお、本開示の技術的範囲は前記実施の形態に限定されず、本開示の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、実施の形態6では、メタン反応器530が2つのメタン反応部531,532を備えるが、メタン反応部の数は特に限定されない。メタン反応部の数は2以上の任意の数であってよい。メタン生成システム501は、メタン反応部の数が2つであるため2つの循環経路50,550を備えるが、循環経路の数は2以上の任意の数であってもよい。
Note that the technical scope of the present disclosure is not limited to the embodiments described above, and various changes can be made without departing from the spirit of the present disclosure.
For example, in the sixth embodiment, the methane reactor 530 includes two methane reaction sections 531 and 532, but the number of methane reaction sections is not particularly limited. The number of methane reaction parts may be any number greater than or equal to 2. The methane generation system 501 includes two circulation paths 50 and 550 because the number of methane reaction sections is two, but the number of circulation paths may be any number greater than or equal to two.
 実施の形態7では、メタン生成システム601は、供給経路10を流れる二酸化炭素および水を駆動流体として第1分離流体F2および第3分離流体F5を吸引するが、駆動流体は、二酸化炭素と水のうち少なくとも一方であってよい。
 実施の形態8では、エジェクタ780は、2つの第1エジェクタ部781,782を備えるが、エジェクタ部の数は2以上の任意の数であってよい。
In Embodiment 7, the methane generation system 601 sucks the first separation fluid F2 and the third separation fluid F5 using carbon dioxide and water flowing through the supply path 10 as driving fluids, but the driving fluids are carbon dioxide and water. It may be at least one of them.
In the eighth embodiment, the ejector 780 includes two first ejector sections 781 and 782, but the number of ejector sections may be any number greater than or equal to two.
 1,101,201,301,401,501,601,701…メタン生成システム 10,210,310,410…供給経路 20…共電解装置(電解装置) 30,530…メタン反応器 40…第1分離器 50…第1循環経路 51…導出路 52…第1返送路 53…第2返送路 70…冷却器 240…気液分離器 270,370…熱交換器 411…第1供給路 412…第2供給路 531…第1メタン反応部 532…第2メタン反応部 540…第2分離器 550…第2循環経路 551…導出路 552…第3返送路 553…第4返送路 680,780…エジェクタ 781…第1エジェクタ部 782…第2エジェクタ部 F1…返送流体 F2…第1分離流体 F3…第2分離流体 F5…第3分離流体 F6…第4分離流体 1,101,201,301,401,501,601,701... Methane generation system 10,210,310,410... Supply route 20... Co-electrolyzer (electrolyzer) 30,530... Methane reactor 40... First separation Container 50... First circulation path 51... Outlet path 52... First return path 53... Second return path 70... Cooler 240... Gas- liquid separator 270, 370... Heat exchanger 411... First supply path 412... Second Supply path 531...First methane reaction section 532...Second methane reaction section 540...Second separator 550...Second circulation path 551...Outlet path 552...Third return path 553... Fourth return path 680, 780...Ejector 781 ...First ejector part 782...Second ejector part F1...Return fluid F2...First separated fluid F3...Second separated fluid F5...Third separated fluid F6...Fourth separated fluid

Claims (8)

  1.  二酸化炭素および水を供給する供給経路と、
     前記二酸化炭素と前記水から電気分解によって一酸化炭素と水素を得る電解装置と、
     前記一酸化炭素と前記水素を含む混合ガスからメタンを含む生成物ガスを得るメタン反応器と、
     前記生成物ガスの一部である返送流体から、水を含む第1分離流体と水素を含む第2分離流体とを分離する第1分離器と、
     前記第1分離流体を前記電解装置に導く第1返送路、および、前記第2分離流体を前記メタン反応器に導く第2返送路、を有する第1循環経路と、を備える、
     メタン生成システム。
    a supply route for supplying carbon dioxide and water;
    an electrolysis device for obtaining carbon monoxide and hydrogen from the carbon dioxide and the water by electrolysis;
    a methane reactor for obtaining a product gas containing methane from the mixed gas containing the carbon monoxide and the hydrogen;
    a first separator that separates a first separated fluid containing water and a second separated fluid containing hydrogen from a return fluid that is a part of the product gas;
    a first circulation path having a first return path that leads the first separation fluid to the electrolyzer, and a second return path that leads the second separation fluid to the methane reactor;
    Methane production system.
  2.  前記第2返送路に、前記第2分離流体を冷却する冷却器が設けられている、
     請求項1に記載のメタン生成システム。
    The second return path is provided with a cooler that cools the second separation fluid.
    The methane production system of claim 1.
  3.  前記供給経路によって供給される前記水との熱交換によって前記返送流体を冷却する熱交換器をさらに備え、
     前記第1分離器は、気液分離器である、
     請求項1に記載のメタン生成システム。
    Further comprising a heat exchanger that cools the return fluid by heat exchange with the water supplied by the supply route,
    the first separator is a gas-liquid separator;
    The methane production system of claim 1.
  4.  前記供給経路によって供給される前記二酸化炭素および前記水の混合流体との熱交換によって前記返送流体を冷却する熱交換器をさらに備え、
     前記第1分離器は、気液分離器である、
     請求項1に記載のメタン生成システム。
    further comprising a heat exchanger that cools the return fluid by heat exchange with the mixed fluid of the carbon dioxide and the water supplied by the supply route,
    the first separator is a gas-liquid separator;
    The methane production system of claim 1.
  5.  前記供給経路は、前記二酸化炭素を供給する第1供給路と、前記水を供給する第2供給路とを備え、
     前記第1供給路および前記第2供給路によって供給される前記二酸化炭素および前記水との熱交換によって前記返送流体を冷却する熱交換器をさらに備え、
     前記第1分離器は、気液分離器である、
     請求項1に記載のメタン生成システム。
    The supply route includes a first supply route that supplies the carbon dioxide and a second supply route that supplies the water,
    Further comprising a heat exchanger that cools the return fluid by heat exchange with the carbon dioxide and the water supplied by the first supply path and the second supply path,
    the first separator is a gas-liquid separator;
    The methane production system of claim 1.
  6.  前記メタン反応器は、
      前記混合ガスからメタンを生成させて中間ガスを得る第1メタン反応部と、
      前記中間ガスからメタンを生成させて前記生成物ガスを得る第2メタン反応部と、を備え、
     前記中間ガスの一部から、水を含む第3分離流体と水素を含む第4分離流体とを分離する第2分離器と、
     前記第3分離流体を前記電解装置に導く第3返送路、および、前記第4分離流体を前記第1メタン反応部に導く第4返送路を有する第2循環経路と、をさらに備える、
     請求項1に記載のメタン生成システム。
    The methane reactor is
    a first methane reaction section that generates methane from the mixed gas to obtain an intermediate gas;
    a second methane reaction section that generates methane from the intermediate gas to obtain the product gas;
    a second separator that separates a third separation fluid containing water and a fourth separation fluid containing hydrogen from a portion of the intermediate gas;
    Further comprising a second circulation path having a third return path that leads the third separated fluid to the electrolyzer, and a fourth return path that leads the fourth separated fluid to the first methane reaction section.
    The methane production system of claim 1.
  7.  前記供給経路に、前記二酸化炭素と前記水の少なくとも一方を駆動流体として前記第1分離流体および前記第3分離流体を吸引するエジェクタが設けられている、
     請求項6に記載のメタン生成システム。
    The supply path is provided with an ejector that sucks the first separation fluid and the third separation fluid using at least one of the carbon dioxide and the water as a driving fluid.
    The methane production system according to claim 6.
  8.  前記エジェクタは、前記第1分離流体を吸引する第1エジェクタ部と、前記第3分離流体を吸引する第2エジェクタ部とを備える、
     請求項7に記載のメタン生成システム。
    The ejector includes a first ejector section that sucks the first separation fluid, and a second ejector section that sucks the third separation fluid.
    The methane production system according to claim 7.
PCT/JP2022/022036 2022-05-31 2022-05-31 Methane production system WO2023233499A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023530167A JPWO2023233499A1 (en) 2022-05-31 2022-05-31
PCT/JP2022/022036 WO2023233499A1 (en) 2022-05-31 2022-05-31 Methane production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022036 WO2023233499A1 (en) 2022-05-31 2022-05-31 Methane production system

Publications (1)

Publication Number Publication Date
WO2023233499A1 true WO2023233499A1 (en) 2023-12-07

Family

ID=89025923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022036 WO2023233499A1 (en) 2022-05-31 2022-05-31 Methane production system

Country Status (2)

Country Link
JP (1) JPWO2023233499A1 (en)
WO (1) WO2023233499A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115992A (en) * 1987-10-29 1989-05-09 Nkk Corp Production of hydrocarbon
JP2018135283A (en) * 2017-02-21 2018-08-30 株式会社日立製作所 Method and apparatus for manufacturing methane
WO2021201192A1 (en) * 2020-03-31 2021-10-07 大阪瓦斯株式会社 Hydrocarbon production system
JP2021161124A (en) * 2020-03-31 2021-10-11 大阪瓦斯株式会社 Hydrocarbon production system, method for producing the system, and method for operating the system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115992A (en) * 1987-10-29 1989-05-09 Nkk Corp Production of hydrocarbon
JP2018135283A (en) * 2017-02-21 2018-08-30 株式会社日立製作所 Method and apparatus for manufacturing methane
WO2021201192A1 (en) * 2020-03-31 2021-10-07 大阪瓦斯株式会社 Hydrocarbon production system
JP2021161124A (en) * 2020-03-31 2021-10-11 大阪瓦斯株式会社 Hydrocarbon production system, method for producing the system, and method for operating the system

Also Published As

Publication number Publication date
JPWO2023233499A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
US8157900B2 (en) Hydrogen-processing assemblies and hydrogen-producing systems and fuel cell systems including the same
US7964176B2 (en) Process and apparatus for thermally integrated hydrogen generation system
CA2936038C (en) Energy-efficient method for producing compressed carbon dioxide suitable for enhanced oil or gas recovery
WO2004022480A3 (en) Apparatus and process for production of high purity hydrogen
EP1135822A1 (en) Miniature fuel reformer and system using metal thin film
AU2014377527A1 (en) Method and system for producing carbon dioxide and electricity from a gaseous hydrocarbon feed
JP6405275B2 (en) Hydrogen production method and hydrogen production system
WO2007105696A1 (en) Hydrogen generator and process for producing hydrogen
US20130130134A1 (en) Solid oxide fuel cell steam reforming power system
CN117396264A (en) Method for recycling unused gas of membrane reactor
WO2023233499A1 (en) Methane production system
JP2007524553A (en) Fuel processing system having a membrane separator
AU2007232991A1 (en) Liquid fuel synthesizing system
JP2005336003A (en) High purity hydrogen producing device
JP2024094421A (en) Methane Generation System
WO2024013968A1 (en) Methane synthesis system
JP7270865B1 (en) methanation system
JP2008207969A (en) Apparatus, system and method for producing hydrogen
JP2024012206A (en) Methane synthesis system
JP2016184550A (en) Gas manufacturing apparatus
WO2024013959A1 (en) Methane synthesis system
JP2021160960A (en) Hydrogen supply system
JP2020111492A (en) Hydrogen production system
JP2016060649A (en) Hydrogen production system for hydrogen station
JP2020079178A (en) Hydrogen production apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023530167

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944788

Country of ref document: EP

Kind code of ref document: A1