WO2023232998A1 - Utilisation de particules de dioxyde de titane portant un metal ou un oxyde de metal pour l'obtention d'alcenes par photocatalyse - Google Patents

Utilisation de particules de dioxyde de titane portant un metal ou un oxyde de metal pour l'obtention d'alcenes par photocatalyse Download PDF

Info

Publication number
WO2023232998A1
WO2023232998A1 PCT/EP2023/064819 EP2023064819W WO2023232998A1 WO 2023232998 A1 WO2023232998 A1 WO 2023232998A1 EP 2023064819 W EP2023064819 W EP 2023064819W WO 2023232998 A1 WO2023232998 A1 WO 2023232998A1
Authority
WO
WIPO (PCT)
Prior art keywords
tio
metal
alcohol
acid
carboxylic acid
Prior art date
Application number
PCT/EP2023/064819
Other languages
English (en)
Inventor
Nathalie Herlin
Juliette KARPIEL
Pierre LONCHAMBON
Chantal Guillard
Frédéric DAPPOZZE
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Centre National De La Recherche Scientifique
Université Claude Bernard Lyon I
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives, Centre National De La Recherche Scientifique, Université Claude Bernard Lyon I filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2023232998A1 publication Critical patent/WO2023232998A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • C07C1/2078Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds by a transformation in which at least one -C(=O)-O- moiety is eliminated

Definitions

  • the present invention relates to the use of TiO 2 particles carrying a metal and/or a metal oxide for obtaining alkenes by photocatalysis.
  • the present invention also relates to a process for obtaining alkenes by photocatalysis of carboxylic acids and/or alcohols in the presence of a catalyst based on TiO 2 particles carrying a metal and/or a metal oxide.
  • alkenes are compounds widely used in the chemical industry, for numerous and varied applications, notably as raw materials for the production of polymers, for example plastics or lacquers, but also in the synthesis of alcohols, surfactants and fuels.
  • ethylene is the most produced and used organic molecule in the world. At the base of the petrochemical industry, its global market represents more than 130 billion dollars each year, with consumption exceeding 150 million tonnes per year. These high tonnages can be explained by the fact that ethylene is the basic monomer for the production of more than 75% of petrochemical products. It is mainly used in the synthesis of plastics such as polyethylene (PET), or in the synthesis of chemical surfactants such as ethylene oxide and ethylene glycol.
  • PET polyethylene
  • chemical surfactants such as ethylene oxide and ethylene glycol.
  • ethanol can for example be bioethanol, a renewable resource produced at low cost in the absence of toxic reagents.
  • the dehydration of ethanol uses acid catalysts such as monofunctional oxides, typically ⁇ -Al 2 O 3 alumina, or even “molecular sieves” such as zeolite structures such as ZSM-5 (Zeolite Socony Mobil-5 ).
  • acid catalysts such as monofunctional oxides, typically ⁇ -Al 2 O 3 alumina, or even “molecular sieves” such as zeolite structures such as ZSM-5 (Zeolite Socony Mobil-5 ).
  • zeolite structures such as ZSM-5 (Zeolite Socony Mobil-5 ).
  • the ethanol dehydration reaction remains very endothermic and is only shifted to ethylene at high temperatures.
  • the working temperature and pressure significantly affect the ethylene yield.
  • carboxylic acids in particular propanoic acid (CH 3 CH 2 COOH) are of certain interest, because they can be valorized, as renewable resources within biomass, into liquid fuels and other molecules of interest in the energy field.
  • Propanoic acid is a volatile fatty acid found as a pollutant in domestic wastewater. It can also be obtained from biomass by fermentation of glycerol, as well as from fermentation of industrial waters resulting, for example, from the extraction of rapeseed oil or waste derived from potatoes.
  • the aim of the present invention is to provide a process for obtaining alkenes, in particular ethylene, by a photocatalysis reaction which avoids the aforementioned drawbacks.
  • an aim of the invention is to provide a process for producing alkene(s), in particular ethylene, which does not require fossil resources and does not require significant heating (i.e. typically greater than 200°C), or even the contribution of thermal energy.
  • None of the solutions currently proposed makes it possible to obtain both good yield and/or good selectivity in alkene(s), in particular in ethylene, under ambient temperature and pressure conditions, and in particular on volumes compatible with the industrial scale of alcohol or acid solution that can be synthesized from biomass.
  • Another aim of the invention is to provide a process that is simple to implement, stable over time (for example for at least 50 hours) and inexpensive. Indeed, certain prior art approaches propose the use of expensive photocatalysts based on noble metals and/or which deactivate quickly under irradiation and therefore require regeneration, generating additional costs.
  • Another aim of the invention is to provide a process making it possible to obtain alkenes, in particular ethylene, with excellent selectivity, particularly at ambient temperature and pressure, under simple UV/visible irradiation.
  • the invention relates to the use of particles consisting of or comprising TiO 2 bearing on at least part of their surface a metal M and/or a metal oxide M, M being chosen from the group comprising Cu, Zn, Fe, Mo, W and Ni, and more particularly in the group comprising Cu, Zn, Fe, and Ni, for obtaining at least one alkene by photocatalysis from at least one carboxylic acid of formula (I) R a -COOH, and/or at least one alcohol of formula (II) R b -OH, in which R a and R b are independently chosen from linear, branched or cyclic alkyl groups, in in particular linear, branched or cyclic C 2 to C 18 alkyl groups, more particularly linear, branched or cyclic C 2 to C 6 alkyl groups, said alkyl groups being optionally substituted by at least one group X chosen from arenes, X being in particular a phenyl group.
  • M being chosen from the group comprising Cu, Zn, Fe
  • photocatalysis we mean in particular a reaction catalyzed by the action of light rays on the surface of a catalyst called a photocatalyst.
  • the largest average number dimension of the particles is from 1 to 100 nm, in particular from 5 to 70 nm.
  • the measurement of the largest average dimension in number can be carried out by any technique known to man, in particular by measuring size by counting, for example via the ImageJ software, on transmission electron microscopy (TEM) images.
  • TEM transmission electron microscopy
  • the particles consisting of or comprising TiO 2 are of spherical, spheroid, rod, wire, tube, and/or platelet shape. These therefore include nanospheres, nanospheroids, nanorods, nanowires, nanotubes, and/or nanoplatelets.
  • the particles consisting of or comprising TiO 2 in particular in one of the forms described above, can optionally be organized into chains, in particular nanochains.
  • the TiO 2 is in the form of anatase, rutile and/or brookite, in particular in the form of anatase, rutile, or a mixture of anatase and rutile, more particularly in the form of a mixture of anatase and rutile whose anatase/rutile ratio is between 0.80 and 2.33, in particular from 1.00 to 2.33, in particular from 1.00 to 2.00.
  • the particles consisting of or comprising TiO 2 have a specific surface area of 10 to 500 m 2 /g, in particular 30 to 150 m 2 /g. These specific surface area ranges may correspond to the specific surface area of particles consisting of or comprising TiO 2 excluding the surface area corresponding to metal M and/or metal oxide M. These specific surface area ranges may correspond to the surface area total specificity of the particles consisting of or comprising TiO 2 carrying the metal M and/or the metal oxide M.
  • the content of metal M and/or metal oxide M relative to the TiO 2 is comprised from 0.01 to 50% by mass, in particular from 0.1 to 5% by mass, by example of approximately 2% by mass, or more than 0.01% and less than 2% by mass.
  • the content of metal M and/or metal oxide M relative to TiO 2 is between 0.01 and 1.0; 1.2;1.4; 1.6; 1.8 or 1.9% by mass, in particular from 0.1 to 1.0; 1.2;1.4; 1.6; 1.8 or 1.9% by mass.
  • the particles consisting of or comprising TiO 2 bearing on at least part of their surface a metal M and/or a metal oxide M also include, within them, the metal M and/or metal oxide M.
  • the majority of the metal M and/or the metal oxide M of the particles consisting of or comprising TiO 2 is present on the surface of said particles.
  • more than 50% by mass in particular more than 60, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 or 99% in mass of the metal M and/or the metal oxide M of the particles consisting of or comprising TiO 2 is present on the surface of said particles.
  • ICP inductively coupled plasma spectrometry
  • XPS X-ray photoelectron spectrometry
  • the metal M and/or the metal oxide M are present, at least on the surface of the particles consisting of or comprising TiO 2 , in the form of particles whose largest number-average dimension particles is from 0.1 to 50 nm, in particular from 0.5 to 10 nm, more particularly from 1 to 3 nm.
  • the particles consisting of or comprising TiO 2 bearing on at least part of their surface a metal M and/or a metal oxide M are obtained by laser pyrolysis or by impregnation, possibly followed by a annealing, in particular in air, in particular at a temperature of 300 to 500°C, in particular from 400 to 500°C, for example at a temperature of approximately 450°C, and/or in particular for 3 hours, in particular 3 to 6 hours.
  • the particles of the invention do not include gold.
  • the invention relates to a process for obtaining at least one alkene from at least one carboxylic acid, which is in particular propanoic acid, acetic acid, phenylpropanoic acid, in particular 2-phenylpropanoic acid, n -butyric acid, n -valeric acid, or pivalic acid, more particularly propanoic acid.
  • carboxylic acid which is in particular propanoic acid, acetic acid, phenylpropanoic acid, in particular 2-phenylpropanoic acid, n -butyric acid, n -valeric acid, or pivalic acid, more particularly propanoic acid.
  • the invention relates to a process for obtaining at least one alkene from at least one alcohol, which is in particular ethanol, or cyclohexanol, more particularly ethanol.
  • the at least one alkene is ethylene.
  • the invention relates to a process for obtaining ethylene from propanoic acid.
  • the invention also relates to a process for obtaining at least one alkene from at least one carboxylic acid of formula (I) R a -COOH, and/or at least one alcohol of formula (II) R b -OH, in which R a and R b are independently chosen from linear, branched or cyclic alkyl groups, optionally substituted by at least one group X chosen from arenes, X being in particular a phenyl group, comprising a step (i) of photocatalysis by UV and/or visible irradiation of at least one carboxylic acid and/or at least one alcohol in the presence of a catalyst consisting of or comprising particles consisting of or comprising TiO 2 bearing on at least part of their surface a metal M and/or a metal oxide M, M being chosen from the group comprising Cu, Zn, Fe, Mo, W and Ni, and more particularly from the group comprising Cu, Zn , Fe, and Ni.
  • the largest average number dimension of the particles is from 1 to 100 nm, in particular from 5 to 70 nm.
  • the measurement of the largest average dimension in number can be carried out by any technique known to man, in particular by measuring size by counting, for example via the ImageJ software, on transmission electron microscopy (TEM) images.
  • TEM transmission electron microscopy
  • the particles consisting of or comprising TiO 2 are of spherical, spheroid, rod, wire, tube, and/or platelet shape. These therefore include nanospheres, nanospheroids, nanorods, nanowires, nanotubes, and/or nanoplatelets.
  • the particles consisting of or comprising TiO 2 in particular in one of the forms described above, can optionally be organized into chains, in particular nanochains.
  • the TiO 2 is in the form of anatase, rutile and/or brookite, in particular in the form of anatase, rutile, or a mixture of anatase and rutile, more particularly in the form of a mixture of anatase and rutile whose anatase/rutile ratio is between 0.80 and 2.33, in particular from 1.00 to 2.33, in particular from 1.00 to 2.00.
  • the particles consisting of or comprising TiO 2 have a specific surface area of 10 to 500 m 2 /g, in particular 30 to 150 m 2 /g. These specific surface area ranges may correspond to the specific surface area of particles consisting of or comprising TiO 2 excluding the surface area corresponding to metal M and/or metal oxide M. These specific surface area ranges may correspond to the surface area total specificity of the particles consisting of or comprising TiO 2 carrying the metal M and/or the metal oxide M.
  • the content of metal M and/or metal oxide M relative to the TiO 2 is comprised from 0.01 to 50% by mass, in particular from 0.1 to 5% by mass, by example of approximately 2% by mass, or more than 0.01% and less than 2% by mass.
  • the content of metal M and/or metal oxide M relative to TiO 2 is between 0.01 and 1.0; 1.2;1.4; 1.6; 1.8 or 1.9% by mass, in particular from 0.1 to 1.0; 1.2;1.4; 1.6; 1.8 or 1.9% by mass.
  • the particles consisting of or comprising TiO 2 bearing on at least part of their surface a metal M and/or a metal oxide M also include, within them, the metal M and/or metal oxide M.
  • the majority of the metal M and/or the metal oxide M of the particles consisting of or comprising TiO 2 is present on the surface of said particles.
  • more than 50% by mass in particular more than 60, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 or 99% in mass of the metal M and/or the metal oxide M of the particles consisting of or comprising TiO 2 is present on the surface of said particles.
  • ICP inductively coupled plasma spectrometry
  • XPS X-ray photoelectron spectrometry
  • the metal M and/or the metal oxide M are present, at least on the surface of the particles consisting of or comprising TiO 2 , in the form of particles whose largest number-average dimension particles is from 0.1 to 50 nm, in particular from 0.5 to 10 nm, more particularly from 1 to 3 nm.
  • the particles consisting of or comprising TiO 2 bearing on at least part of their surface a metal M and/or a metal oxide M are obtained by laser pyrolysis or by impregnation, possibly followed by a annealing, in particular under air, then optionally under dihydrogen, in particular at a temperature of 300 to 500°C, in particular from 400 to 500°C, for example at a temperature of approximately 450°C, and/or in particular for 3 hours, particularly from 3 to 6 hours.
  • Laser pyrolysis and impregnation are for example carried out according to operating procedures well known to those skilled in the art.
  • laser pyrolysis is carried out by bringing into contact an aerosol of a liquid composition comprising at least one precursor of TiO 2 , at least one precursor of the metal M and/or of the oxide of metal M, and possibly an organic solvent, with a laser beam.
  • the impregnation is carried out by bringing TiO 2 , for example obtained by laser pyrolysis, into contact with a precursor of the metal M and/or the metal oxide M, the impregnation being optionally followed by annealing, in particular under air, then optionally under dihydrogen, in particular at a temperature of 300 to 500°C, in particular from 400 to 500°C, for example at a temperature of approximately 450°C, and /or in particular for 3 hours, in particular from 3 to 6 hours.
  • annealing in particular under air
  • dihydrogen in particular at a temperature of 300 to 500°C, in particular from 400 to 500°C, for example at a temperature of approximately 450°C, and /or in particular for 3 hours, in particular from 3 to 6 hours.
  • the annealing is carried out, under air, then possibly under dihydrogen.
  • annealing in air is optional but preferential, which can be advantageously followed by annealing in dihydrogen.
  • annealing under dihydrogen we mean in particular annealing under pure dihydrogen or diluted in an inert gas, such as for example argon, or dinitrogen. Such annealing is likely to make it possible, if necessary, to limit the presence of oxide on the surface of the metal M.
  • the invention relates to a process for obtaining at least one alkene from at least one carboxylic acid, which is in particular propanoic acid, acetic acid, phenylpropanoic acid, in particular 2-phenylpropanoic acid, n -butyric acid, n -valeric acid, or pivalic acid, more particularly propanoic acid.
  • carboxylic acid which is in particular propanoic acid, acetic acid, phenylpropanoic acid, in particular 2-phenylpropanoic acid, n -butyric acid, n -valeric acid, or pivalic acid, more particularly propanoic acid.
  • the invention relates to a process for obtaining at least one alkene from at least one alcohol, which is in particular ethanol, or cyclohexanol, more particularly ethanol.
  • the at least one alkene is ethylene.
  • the invention relates to a process for obtaining ethylene from propanoic acid.
  • step (i) is carried out under an atmosphere comprising by volume less than 1% of dioxygen, in particular less than 0.1% of dioxygen,
  • step (i) is carried out under an inert gas atmosphere, in particular under an atmosphere of dinitrogen, helium and/or argon, more particularly under an argon atmosphere.
  • the inert gas atmosphere is obtained by purging using a flow of inert gas, the flow being in particular comprised from 1 to 500 mL/min, preferably from 50 to 70 mL/min.
  • step (i) is carried out under a continuous flow of inert gas, in particular under an atmosphere of dinitrogen, helium and/or argon, more particularly under an atmosphere of argon, the flow being more particularly comprised from 1 to 500 mL/min, preferably from 50 to 70 mL/min.
  • inert gas in particular under an atmosphere of dinitrogen, helium and/or argon, more particularly under an atmosphere of argon, the flow being more particularly comprised from 1 to 500 mL/min, preferably from 50 to 70 mL/min.
  • inert gas in particular under an atmosphere of dinitrogen, helium and/or argon, more particularly under an atmosphere of argon, the flow being more particularly comprised from 1 to 500 mL/min, preferably from 50 to 70 mL/min.
  • it is a mode that can be described as dynamic.
  • step (i) is carried out in the absence of a continuous flow of inert gas. In this case, it is a mode that can be described as static. Still in this case, step (i) is carried out under an inert gas atmosphere. In particular, a purge as defined above is carried out prior to step (i). This purge is then stopped before carrying out step (i).
  • the at least one carboxylic acid and/or the at least one alcohol is present within a composition further comprising a solvent, in particular in solution in a solvent, the solvent preferably being water, the concentration of alcohol(s) and/or carboxylic acid(s) in the composition being in particular greater than or equal to 0.0001% by volume, in particular greater than or equal to 0.01% by volume, and/or less than 100% by volume, for example approximately 1.00% by volume.
  • the at least one carboxylic acid and/or the at least one alcohol is not in the presence of a solvent.
  • the catalyst is present in the composition comprising the at least one carboxylic acid and/or the at least one alcohol and the solvent, or, in the absence of solvent, in the at least one carboxylic acid and /or at least one alcohol, at a concentration of 0.01 to 50 g/L, for example approximately 0.5 g/L.
  • step (i) is carried out at a temperature between 10 and 200°C, in particular at a temperature between approximately 20 and approximately 40°C, or at a temperature between 40 and 40°C. 200°C, in particular from 40 to 150°C, or even from 40 to 100°C.
  • step (i) is carried out at a temperature of 60 to 200°C, in particular at a temperature of 60 to 150°C, in particular of 60 to 100°C.
  • the irradiation is UV-A, UV-B, UV-C, and/or visible irradiation, in particular UV-A, in particular at a wavelength of 350 to 400 nm.
  • the invention relates to a process comprising a step (ii), following step (i), of recovering the alkene(s), this step (ii) being optionally followed by a step (iii) isolation of the alkene(s).
  • Step (ii) can be carried out by any technique known to those skilled in the art, in particular by recovery of the headspace of the photocatalytic device used.
  • Step (iii) can be carried out by any technique known to those skilled in the art, in particular by distillation, in particular by cryogenic distillation.
  • This purification technique based on the fact that each gas has its own boiling temperature, consists of separating a gas mixture by varying the pressure and temperature of the gas storage medium.
  • the gas mixture is first cooled to low temperature (usually T ⁇ -50°C).
  • the gases are liquefied and then sent to a distillation column.
  • the liquid is gradually heated, which allows the gases to be separated according to their boiling temperature.
  • Step (iii) can also be carried out by absorption-based techniques.
  • the separation is based on the principle that each gas has a particular affinity towards absorbents such as zeolites, alumina or activated carbon, or towards solvents such as methanolamine (MEA).
  • the Pressure Swing Absorption (PSA) method best illustrates this technique. Separation occurs when the gas mixture comes into contact with the absorbent/solvent in a tank which is subsequently pressurized. The gas with the best affinity for the absorbent is trapped while the other gas species pass through the system. The reservoir is regenerated by returning to atmospheric pressure, releasing the formerly trapped gas.
  • Step (iii) can also be carried out by membrane separation, always on the principle of affinity of the gases with respect to a membrane, allowing the gases to infiltrate more or less quickly through the membrane.
  • the membrane materials frequently encountered in the literature are varied, such as microporous organic polymers, zeolites and ceramic or metal-based materials.
  • the molar selectivity for alkene, in particular for ethylene is greater than or equal to 40%, in particular greater than 45%, more particularly greater than 50%.
  • the molar selectivity in alkene, in particular in ethylene, obtained from at least one carboxylic acid of formula (I) R a -COOH is greater than or equal to 50%, in particular greater at 60%, more particularly greater than 70, 80 or 90%.
  • the molar selectivity in alkene, in particular in ethylene, obtained from at least one alcohol of formula (II) R b -OH is greater than or equal to 40%, in particular greater at 45%, more particularly greater than 50%.
  • acetone and/or ethyl acetate is not formed at the end of the process.
  • the molar selectivity of the by-product chosen from acetone and/or ethyl acetate is less than 1%, in particular less than 0.1%, more particularly less than 0.01%.
  • the term “approximately” refers to a range of values of ⁇ 10% of a specific value.
  • the expression “around 20” includes the values of 20 ⁇ 10%, or the values of 18 to 22.
  • percentages refer to percentages by mass relative to the total mass of the formulation, unless otherwise indicated.
  • value ranges in the form of "x-y” or “from x to y” or “between x and y” include the limits x and y as well as the integers between these limits.
  • “1-5”, or “from 1 to 5" or “between 1 and 5" designate the integers 1, 2, 3, 4 and 5.
  • the preferred embodiments include each integer taken individually in the value range, as well as any subcombination of these integers.
  • preferred values for "1-5" may include the integers 1, 2, 3, 4, 5, 1-2, 1-3, 1-4, 1-5, 2-3, 2 -4, 2-5, etc.
  • alkyl refers to a straight or branched chain alkyl group having the number of carbon atoms indicated before said term, in particular 2 to 6 carbon atoms, such as ethyl, propyl, isopropyl , butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isoamyl, neopentyl, 1-ethylpropyl, 3-methylpentyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, hexyl, etc.
  • C1-C4 alkyl designates an alkyl radical containing 1 to 4 carbon atoms. The same is true for the term “alkane.”
  • Cycloalkyls are in particular alkyls (as defined above) comprising a ring. This is, for example, cyclohexyl.
  • arene refers to a mono- or bicyclic, substituted or unsubstituted, aromatic hydrocarbon ring system having 6 to 10 ring carbon atoms. Examples include benzene and naphthalene. Preferred arenes include unsubstituted or substituted benzene and naphthalene. Included in the definition of "arene” are fused ring systems, including, for example, ring systems in which an aromatic ring is fused to a cycloalkyl ring. Examples of such condensed ring systems include, for example, indane, indene and tetrahydronaphthalene.
  • GC Gas chromatography
  • FID flame ionization detector
  • PHID helium ionization detector
  • Example 1 Example of a photocatalytic device allowing the implementation of a use or a process according to the invention
  • the photocatalytic device ( ) is composed of an airtight Pyrex reactor with a volume of 250 mL comprising 100 mL of aqueous solution, 150 mL of headspace, a glass mechanical stirrer as well as a bubbler (also made of glass ) ensuring a neutral gas supply.
  • the neutral gas can be helium He, nitrogen N 2 or preferably argon Ar.
  • An 18W Phillips UVA PLL lamp delivering a power flux density of 4.8 mW.cm -2, was used as a light source centered at 370 nm.
  • the emitted wavelengths were between 350 and 400 nm.
  • the concentration of alcohol(s) or carboxylic acid(s) in the solution is between 0.01 and 100% by volume, preferably 1.00%.
  • the alcohol and/or carboxylic acid compounds may or may not be introduced in the form of a mixture.
  • the concentration of metal (oxide) photocatalyst/TiO 2 is between 0.01 and 50 g/L, preferably 0.5 g/L.
  • the aqueous suspension comprising one or more alcohol(s) and/or one or more carboxylic acid(s) and the photocatalyst is irradiated by UVA.
  • the photocatalytic reaction can be carried out under a continuous flow of neutral gas (dynamic mode) or statically (without neutral gas flow), preferably statically.
  • the neutral gas flow during purging and/or under irradiation is between 1 and 500 mL/min, preferably 50 and 70 mL/min.
  • the gases produced in the reactor headspace during photocatalysis are analyzed by gas chromatography via a flame ionization detector (FID) and a helium plasma detector (PDHID).
  • FID flame ionization detector
  • PDHID helium plasma detector
  • the gases are carried by the neutral gas flow; in the static mode case, the gases are transported by pumping.
  • Example 2 preparation of a catalyst allowing the implementation of a use or a process according to the invention
  • the metal and/or metal oxide can be brought into contact with the surface of the TiO 2 particles by any technique known to those skilled in the art. It may for example be a laser pyrolysis or impregnation technique.
  • TiO 2 (non-invention) and metal (oxide)/TiO 2 photocatalysts of the invention can be synthesized by the laser pyrolysis technique, an example of which is given below with copper as metal.
  • a liquid mixture comprising the titanium and copper precursors is inserted into an enclosure called a “pyrosol” comprising a cooling device, a drive gas inlet and a piezoelectric pellet.
  • the titanium precursor is titanium isopropylate (TTIP);
  • the copper precursor can for example be copper acetylacetonate Cu(acac) 2 .
  • the copper precursor can be dissolved beforehand in one or more organic solvent(s) such as a mixture of o-xylene/ethyl acetate in a proportion of 6.5:3.5 in volume.
  • the constitution of said mixture is indicated in Table 1 below for a targeted copper content of 2.00 wt% relative to the mass of TiO 2 .
  • the liquid mixture of precursors is converted into an aerosol by actuation of the piezoelectric pellet.
  • the mixture can be heated throughout the synthesis, over a range from 10 to 100°C.
  • the mixture is heated to 30°C.
  • the aerosol obtained is then conveyed into a reaction chamber confined under a neutral atmosphere via a carrier gas which can be helium He, argon Ar or even nitrogen N 2 .
  • the confinement gas in the reaction chamber can be helium He, argon Ar or even nitrogen N 2 .
  • the drive and confinement gases (chimney, reactor windows) are argon Ar.
  • the confinement flow rates are between 0 and 5000 cm 3 .min -1 , preferably 0 cm 3 .min -1 for confinement at the level of the chimney and 3,000 cm 3 .min -1 for confinement at the level of the visibility windows.
  • the flow rate of entrainment gas is between 50 and 10,000 cm 3 .min -1 , preferably 2,000 cm 3 .min -1 .
  • a CO 2 infrared laser beam with a wavelength of 10.6 ⁇ m and a power of up to 2,800 W is emitted orthogonally to the mixture of precursors, conveyed in the form of fine droplets.
  • the laser power delivered in the reaction zone is between 100 and 900 W and of the order of 670 W for the synthesis of TiO 2 and Cu/TiO 2 .
  • a gas absorbing laser radiation preferably ethylene C 2 H 4 , can also be added in a flow rate range from 0 to 5,000 cm 3 .min -1 . In the present example, the flow rate of this gas is set at 800 cm 3 .min -1 .
  • the laser power absorbed by the aerosol of precursors shown in Table 1 is 276 W for TiO 2 , and 250 W for Cu/TiO 2 .
  • the interaction between the laser beam, the aerosol of precursors and possibly the ethylene gas allows the growth of nanoparticles collected on the surface of a filter barrier comprising nanopores. Note that the use of ethylene for the synthesis is optional and that it is possible to synthesize TiO 2 and Cu/TiO 2 materials without using it.
  • the nano-powders synthesized by said process are then calcined in a tubular furnace via an air reactor to remove the amorphous carbon coming from the precursors and possibly ethylene gas if ethylene is used.
  • the heat treatment applied is for example a temperature of 450°C under air flow at 100 mL.min -1 for a duration ranging from 3 to 6 hours - until almost total or even total elimination of the amorphous carbon, here, for example 6 hours.
  • the copper content in the Cu/TiO 2 material synthesized by laser pyrolysis is 1.91% by mass which is very similar to the percentage introduced in pyrosol (2.00% by mass).
  • TEM transmission electron microscopy
  • the metal (oxide)/TiO 2 photocatalysts of the invention can also be synthesized by impregnation of metal via a metal precursor on a TiO 2 support.
  • This TiO 2 support can be commercial or obtained by laser pyrolysis, for example the TiO 2 described above. An example is given below with copper as the metal.
  • the metal precursor in the case of copper, is not limited to this compound and can be for example copper acetate (anhydrous or hydrated) or even copper nitrate.
  • one or more organic solvents such as ethanol can be added and the precursors are dispersed in an ultrasonic bath. Once the precursors have completely dissolved, the mixture is transferred to a 50 mL flat-bottomed flask and heated in a water bath to 70°C. The stirred mixture is evaporated via a magnetic bar over a period of 12 hours and the residual powder is dried in an oven at 120°C.
  • the impregnated powder is then calcined at 450°C for 6 hours in a reactor in a tubular furnace under an air flow at 100 mL.min -1 .
  • the copper content in the Cu/TiO 2 material synthesized by impregnation is 2.15%m which is very similar to the percentage (2.00 %m) introduced into a flask for impregnation of the TiO 2 support.
  • the photocatalysts TiO 2 (reference outside the invention) and Cu/TiO 2 (example 2, first part) were introduced into the pre-mentioned photocatalytic reactor ( ) at a level of 0.5 gL -1 with 1 vol% of propanoic acid in 100 mL of aqueous solution.
  • An argon flow set at 70 mL/min for 6 hours made it possible to expel the air from the photocatalytic reactor and replace it with a neutral argon atmosphere. After complete purging, the flow of argon is stopped and the photocatalytic reactor is isolated.
  • the photo-produced gaseous compounds were sampled from the reactor headspace to be sent to the GC/FID and GC/PDHID.
  • Table 4 indicates the hourly gas productions obtained for this reaction as well as the selectivities, calculated according to the quotient [compound]/ ⁇ [C x H y O z ] with x and y ⁇ 1 after 910 minutes of irradiation .
  • the yield of ethylene calculated by the ratio [C 2 H 4 /CO 2 ] considering that a photo-degraded propanoic acid molecule forms an ethane radical and a CO 2 molecule and that an ethane radical can form a molecule of ethylene or ethane, is 1.0% for TiO 2 and 85.0% for Cu/TiO 2 after 910 minutes of irradiation.
  • the Cu IMP /TiO 2 impregnated photocatalyst was introduced into the pre-mentioned photocatalytic reactor ( ) at a level of 0.5 gL-1 with 1 vol% of propanoic acid in 100 mL of aqueous solution.
  • the synthesis of ethylene by photocatalysis took place under the same conditions as described above.
  • Table 5 indicates the hourly gas productions obtained for this reaction as well as the selectivities, calculated according to the quotient [compound]/ ⁇ [C x H y O z ] with x and y ⁇ 1 after 910 minutes of irradiation .
  • the ethylene yield is 1.0% for TiO 2 and 86.5% for Cu IMP /TiO 2 after 910 minutes of irradiation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne l'utilisation de particules de TiO2 portant un métal et/ou un oxyde de métal pour l'obtention d'alcènes par photocatalyse. La présente invention vise également un procédé d'obtention d'alcènes par photocatalyse d'acides carboxyliques et/ou d'alcools en présence d'un catalyseur à base des particules de TiO2 portant un métal et/ou un oxyde de métal.

Description

UTILISATION DE PARTICULES DE DIOXYDE DE TITANE PORTANT UN METAL OU UN OXYDE DE METAL POUR L’OBTENTION D’ALCENES PAR PHOTOCATALYSE
La présente invention concerne l’utilisation de particules de TiO2 portant un métal et/ou un oxyde de métal pour l’obtention d’alcènes par photocatalyse. La présente invention vise également un procédé d’obtention d’alcènes par photocatalyse d’acides carboxyliques et/ou d’alcools en présence d’un catalyseur à base des particules de TiO2 portant un métal et/ou un oxyde de métal.
Produits généralement au cours du raffinage du pétrole brut, les alcènes sont des composés très utilisés dans l’industrie chimique, pour des applications nombreuses et variées, notamment comme matières premières pour la production de polymères, par exemple des plastiques ou des laques, mais également dans la synthèse d’alcools, de surfactants et de carburants.
Parmi les alcènes, l’éthylène est la molécule organique la plus produite et la plus utilisée au monde. A la base de l’industrie pétrochimique, son marché mondial représente plus de 130 milliards de dollars chaque année, avec une consommation excédant 150 millions de tonnes par an. Ces tonnages élevés s’expliquent du fait que l’éthylène est le monomère de base pour l’élaboration de plus de 75% des produits pétrochimiques. Il est principalement employé dans la synthèse de plastiques comme le polyéthylène (PET), ou dans la synthèse de surfactants chimiques tels que l’oxyde d’éthylène et l’éthylène glycol.
A l’heure actuelle, la production industrielle de l’éthylène repose à 99% sur le craquage du naphta (un intermédiaire entre l'essence et le kérosène, produit par distillation fractionnée du pétrole) ou d’hydrocarbures tels que l’éthane, usuellement chauffés entre 750 et 950°C. Les rendements en éthylène sont variables, environ 35% à partir du naphta et 80% à partir de l’éthane. Cependant, en plus d’être très énergivore, cette synthèse est polluante et dépend des ressources pétrolières. Ainsi, avec la limitation des énergies fossiles et l’enjeu climatique, il est devenu primordial de développer de nouveaux procédés de synthèse de l’éthylène à basse énergie et à bas coût à partir de ressources renouvelables.
Compte tenu de ces enjeux, de nombreux travaux de recherche ont été mis en œuvre afin de trouver une alternative au craquage de dérivés pétroliers pour la production d’éthylène.
L’une de ces technologies alternatives consiste en la déshydratation catalytique de l’éthanol en éthylène. Il peut par exemple s’agir de bioéthanol, ressource renouvelable produite à bas coût en l’absence de réactifs toxiques. La déshydratation de l’éthanol utilise des catalyseurs acides tels que des oxydes monofonctionnels, typiquement l’alumine γ-Al2O3, ou encore des « tamis moléculaires » telles que les structures zéolitiques comme le ZSM-5 (Zeolite Socony Mobil-5). Néanmoins, malgré l’utilisation de catalyseurs acides, la réaction de déshydratation de l’éthanol reste très endothermique et n’est déplacée vers l’éthylène qu’à haute température. Ainsi, la température et la pression de travail affectent sensiblement le rendement en éthylène. Par conséquent, ces technologies permettent généralement d’obtenir des rendements élevés en éthylène, mais les températures (typiquement de 300 à 550°C) et les pressions (généralement entre 0,3 et 4 MPa) employées demeurent importantes, et de ce fait énergivores et coûteuses. Et généralement, lorsque les températures de travail sont plus faibles, la formation d’une quantité non négligeable de sous-produit est observée, avec un pourcentage de conversion de l’éthanol limité et des pressions restant importantes. De plus, les catalyseurs acides typiquement employés pour abaisser la température de travail ont une durée de vie limitée car ils tendent à se désactiver par cokage (formation par craquage thermique d'un dépôt de coke sur les surfaces d'un système soumises à de hautes températures, ayant pour conséquence d'en réduire les performances), et les réactions de régénération à haute température aboutissent à des coûts élevés et à une perte d’efficacité catalytique non négligeable.
D’autres technologies, basées sur la production d’éthylène par photocatalyse ont par la suite été développées, le catalyseur utilisé étant notamment CuCl2. Ces méthodes sont intéressantes, car l’utilisation d’énergie lumineuse s’y substitue à l’emploi d’énergie thermique et de pression élevée. Toutefois, le catalyseur de type CuCl2 devient très rapidement inactif, typiquement en moins d’une heure, et doit en conséquence être régulièrement régénéré, sous air.
Outre l’éthanol, les acides carboxyliques, notamment l’acide propanoïque (CH3CH2COOH) revêtent un intérêt certain, car ils peuvent être valorisés, en tant que ressources renouvelables au sein de biomasse, en carburants liquides et autres molécules d’intérêt pour le domaine de l’énergie. L’acide propanoïque est un acide gras volatil que l’on retrouve comme polluant dans les eaux usées domestiques. Il peut également être obtenu à partir de biomasse par fermentation du glycérol, ainsi que de fermentation d’eaux industrielles issues par exemple de l’extraction d’huile de colza ou de déchets dérivés de pomme de terre.
Des procédés de décarboxylation de l’acide propanoïque en alcanes par photocatalyse à l’aide de poudres de TiO2, éventuellement platinisées, ont été développés dans ce cadre. De l’éthylène peut également être formé à l’aide de ces procédés, mais uniquement à l’état de traces, à l’issue de réactions secondaires. Par ailleurs, le platine présent dans certains procédés est un métal noble de platine ce qui en fait un matériau cher à produire et donc peu compatible pour un développement à l’échelle industrielle.
La présente invention a pour but de fournir un procédé d’obtention d’alcènes, notamment d’éthylène, par une réaction de photocatalyse qui évite les inconvénients précités.
Ainsi, un but de l’invention est de fournir un procédé de production d’alcène(s), notamment de l’éthylène, s’affranchissant des ressources fossiles et ne nécessitant pas de chauffage conséquent (c’est-à-dire typiquement supérieur à 200°C), voire d’apport d’énergie thermique. Aucune des solutions actuellement proposées ne permet d’obtenir à la fois un bon rendement et/ou une bonne sélectivité en alcène(s), en particulier en éthylène, dans des conditions de température et de pression ambiantes, et notamment sur des volumes compatibles avec l’échelle industrielle de solution d’alcool ou d’acide pouvant être synthétisés à partir de biomasse.
Un autre but de l’invention est de fournir un procédé simple à mettre en œuvre, stable dans le temps (par exemple pendant au moins 50 heures) et peu coûteux. En effet, certaines approches de l’art antérieur proposent l’utilisation de photocatalyseurs onéreux à base de métaux nobles et/ou se désactivant rapidement sous irradiation et de ce fait nécessitant d’être régénéré, engendrant des coûts supplémentaires.
Un autre but de l’invention est de fournir un procédé permettant l’obtention d’alcènes, en particulier d’éthylène, avec une excellente sélectivité, et ce, notamment à température et pression ambiantes, sous simple irradiation UV/visible.
Ainsi, selon un premier aspect, l’invention concerne l’utilisation de particules constituées de ou comprenant du TiO2 portant sur au moins une partie de leur surface un métal M et/ou un oxyde de métal M, M étant choisi dans le groupe comprenant Cu, Zn, Fe, Mo, W et Ni, et plus particulièrement dans le groupe comprenant Cu, Zn, Fe, et Ni, pour l’obtention d’au moins un alcène par photocatalyse à partir d’au moins un acide carboxylique de formule (I) Ra-COOH, et/ou d’au moins un alcool de formule (II) Rb-OH, dans lesquelles Ra et Rb sont indépendamment choisis parmi les groupes alkyle linéaires, branchés ou cycliques, en particulier les groupes alkyle en C2 à C18 linéaires, branchés ou cycliques, plus particulièrement les groupes alkyle en C2 à C6 linéaires, branchés ou cycliques, lesdits groupes alkyle étant optionnellement substitués par au moins un groupe X choisi parmi les arènes, X étant en particulier un groupe phényle.
Par « photocatalyse », on entend notamment une réaction catalysée par l’action de rayons lumineux à la surface d'un catalyseur appelé photocatalyseur.
Selon un mode de réalisation particulier, la plus grande dimension moyenne en nombre des particules est comprise de 1 à 100 nm, en particulier de 5 à 70 nm. La mesure de la plus grande dimension moyenne en nombre peut être effectuée par toute technique connue de l’homme, notamment par mesure de taille par comptage, par exemple via le logiciel ImageJ, sur des clichés de microscopie électronique en transmission (MET).
Selon un mode de réalisation particulier, les particules constituées de ou comprenant du TiO2 sont de forme sphérique, sphéroïde, de bâtonnet, de fil, de tube, et/ou de plaquette. Il s’agit donc notamment de nanosphères, de nanosphéroïdes, de nanobâtonnets, de nanofils, de nanotubes, et/ou de nanoplaquettes.
Les particules constituées de ou comprenant du TiO2, notamment sous l’une des formes décrites ci-dessus, peuvent éventuellement être organisées en chaînettes, notamment de nanochaînettes.
Selon un mode de réalisation particulier, le TiO2 est sous forme d’anatase, de rutile et/ou de brookite, en particulier sous forme d’anatase, de rutile, ou d’un mélange d’anatase et de rutile, plus particulièrement sous forme d’un mélange d’anatase et de rutile dont le rapport anatase/rutile est compris de 0,80 à 2,33, notamment de 1,00 à 2,33, en particulier de 1,00 à 2,00.
Selon un mode de réalisation particulier, les particules constituées de ou comprenant du TiO2 ont une surface spécifique comprise de 10 à 500 m2/g, en particulier de 30 à 150 m2/g. Ces gammes de surface spécifique peuvent correspondre à la surface spécifique des particules constituées de ou comprenant du TiO2à l’exclusion de la surface correspondant au métal M et/ou en oxyde de métal M. Ces gammes de surface spécifique peuvent correspondre à la surface spécifique totale des particules constituées de ou comprenant du TiO2portant le métal M et/ou l’oxyde de métal M.
Selon un mode de réalisation particulier, la teneur en métal M et/ou en oxyde de métal M par rapport au TiO2 est compris de 0,01 à 50% en masse, en particulier de 0,1 à 5% en masse, par exemple d’environ 2% en masse, ou plus de 0,01% et moins de 2% en masse.
Selon un mode de réalisation particulier, la teneur en métal M et/ou en oxyde de métal M par rapport au TiO2 est compris de 0,01 à 1,0 ; 1,2 ;1,4 ; 1,6 ; 1,8 ou 1,9% en masse, en particulier de 0,1 à 1,0 ; 1,2 ;1,4 ; 1,6 ; 1,8 ou 1,9% en masse.
Selon un mode de réalisation particulier, les particules constituées de ou comprenant du TiO2 portant sur au moins une partie de leur surface un métal M et/ou un oxyde de métal M, comprennent également, en leur sein, le métal M et/ou l’oxyde de métal M.
Selon un mode de plus réalisation particulier, la majorité du métal M et/ou de l’oxyde de métal M des particules constituées de ou comprenant du TiO2 est présent à la surface desdites particules.
Selon un autre mode de plus réalisation particulier, plus de 50% en masse, notamment plus de 60, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 ou 99% en masse du métal M et/ou de l’oxyde de métal M des particules constituées de ou comprenant du TiO2 est présent à la surface desdites particules. Ceci peut être mesuré par toutes techniques connues de l’homme du métier, par exemple en comparant les mesures réalisées par spectrométrie à plasma à couplage inductif (ICP), lesquelles permettent de quantifier la teneur en métal totale d’un matériau, à celles réalisées par spectrométrie photoélectronique X (XPS), qui permettent de mesurer la quantité d’éléments surfaciques du matériau.
Selon un mode de réalisation particulier, le métal M et/ou l’oxyde de métal M sont présents, au moins à la surface des particules constituées de ou comprenant du TiO2, sous la forme de particules dont la plus grande dimension moyenne en nombre des particules est comprise de 0,1 à 50 nm, en particulier de 0,5 à 10 nm, plus particulièrement de 1 à 3 nm.
Selon un mode de réalisation particulier, les particules constituées de ou comprenant du TiO2 portant sur au moins une partie de leur surface un métal M et/ou un oxyde de métal M sont obtenues par pyrolyse laser ou par imprégnation, éventuellement suivie d’un recuit, en particulier sous air, notamment à une température de 300 à 500°C, en particulier de 400 à 500°C, par exemple à une température d’environ 450°C, et/ou notamment pendant 3 heures, en particulier de 3 à 6 heures.
Selon un mode de réalisation particulier, les particules de l’invention ne comprennent pas d’or.
Selon un mode de réalisation particulier, l’invention concerne un procédé d’obtention d’au moins un alcène à partir d’un moins un acide carboxylique, lequel est en particulier l’acide propanoïque, l’acide acétique, un acide phénylpropanoïque, en particulier l’acide 2- phénylpropanoïque, l’acide n-butyrique, l’acide n-valérique, ou l’acide pivalique, plus particulièrement l’acide propanoïque.
Selon un mode de réalisation particulier, l’invention concerne un procédé d’obtention d’au moins un alcène à partir d’au moins un alcool, lequel est en particulier l’éthanol, ou le cyclohexanol, plus particulièrement l’éthanol.
Selon un mode de réalisation particulier, le au moins un alcène est l’éthylène.
Selon un mode de réalisation particulier, l’invention concerne un procédé d’obtention d’éthylène à partir d’acide propanoïque.
Selon un autre aspect, l’invention concerne également un procédé d’obtention d’au moins un alcène à partir d’au moins un acide carboxylique de formule (I) Ra-COOH, et/ou d’au moins un alcool de formule (II) Rb-OH, dans lesquelles Ra et Rb sont indépendamment choisis parmi les groupes alkyle linéaires, branchés ou cycliques, optionnellement substitués par au moins un groupe X choisi parmi les arènes, X étant en particulier un groupe phényle, comprenant une étape (i) de photocatalyse par irradiation UV et/ou visible d’au moins un acide carboxylique et/ou d’au moins un alcool en présence d’un catalyseur constitué de ou comprenant des particules constituées de ou comprenant du TiO2 portant sur au moins une partie de leur surface un métal M et/ou un oxyde de métal M, M étant choisi dans le groupe comprenant Cu, Zn, Fe, Mo, W et Ni, et plus particulièrement dans le groupe comprenant Cu, Zn, Fe, et Ni.
Selon un mode de réalisation particulier, la plus grande dimension moyenne en nombre des particules est comprise de 1 à 100 nm, en particulier de 5 à 70 nm. La mesure de la plus grande dimension moyenne en nombre peut être effectuée par toute technique connue de l’homme, notamment par mesure de taille par comptage, par exemple via le logiciel ImageJ, sur des clichés de microscopie électronique en transmission (MET).
Selon un mode de réalisation particulier, les particules constituées de ou comprenant du TiO2 sont de forme sphérique, sphéroïde, de bâtonnet, de fil, de tube, et/ou de plaquette. Il s’agit donc notamment de nanosphères, de nanosphéroïdes, de nanobâtonnets, de nanofils, de nanotubes, et/ou de nanoplaquettes.
Les particules constituées de ou comprenant du TiO2, notamment sous l’une des formes décrites ci-dessus, peuvent éventuellement être organisées en chaînettes, notamment de nanochaînettes.
Selon un mode de réalisation particulier, le TiO2 est sous forme d’anatase, de rutile et/ou de brookite, en particulier sous forme d’anatase, de rutile, ou d’un mélange d’anatase et de rutile, plus particulièrement sous forme d’un mélange d’anatase et de rutile dont le rapport anatase/rutile est compris de 0,80 à 2,33, notamment de 1,00 à 2,33, en particulier de 1,00 à 2,00.
Selon un mode de réalisation particulier, les particules constituées de ou comprenant du TiO2 ont une surface spécifique comprise de 10 à 500 m2/g, en particulier de 30 à 150 m2/g. Ces gammes de surface spécifique peuvent correspondre à la surface spécifique des particules constituées de ou comprenant du TiO2à l’exclusion de la surface correspondant au métal M et/ou en oxyde de métal M. Ces gammes de surface spécifique peuvent correspondre à la surface spécifique totale des particules constituées de ou comprenant du TiO2portant le métal M et/ou l’oxyde de métal M.
Selon un mode de réalisation particulier, la teneur en métal M et/ou en oxyde de métal M par rapport au TiO2 est compris de 0,01 à 50% en masse, en particulier de 0,1 à 5% en masse, par exemple d’environ 2% en masse, ou plus de 0,01% et moins de 2% en masse.
Selon un mode de réalisation particulier, la teneur en métal M et/ou en oxyde de métal M par rapport au TiO2 est compris de 0,01 à 1,0 ; 1,2 ;1,4 ; 1,6 ; 1,8 ou 1,9% en masse, en particulier de 0,1 à 1,0 ; 1,2 ;1,4 ; 1,6 ; 1,8 ou 1,9% en masse.
Selon un mode de réalisation particulier, les particules constituées de ou comprenant du TiO2 portant sur au moins une partie de leur surface un métal M et/ou un oxyde de métal M, comprennent également, en leur sein, le métal M et/ou l’oxyde de métal M.
Selon un mode de plus réalisation particulier, la majorité du métal M et/ou de l’oxyde de métal M des particules constituées de ou comprenant du TiO2 est présent à la surface desdites particules.
Selon un autre mode de plus réalisation particulier, plus de 50% en masse, notamment plus de 60, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 ou 99% en masse du métal M et/ou de l’oxyde de métal M des particules constituées de ou comprenant du TiO2 est présent à la surface desdites particules. Ceci peut être mesuré par toutes techniques connues de l’homme du métier, par exemple en comparant les mesures réalisées par spectrométrie à plasma à couplage inductif (ICP), lesquelles permettent de quantifier la teneur en métal totale d’un matériau, à celles réalisées par spectrométrie photoélectronique X (XPS), qui permettent de mesurer la quantité d’éléments surfaciques du matériau.
Selon un mode de réalisation particulier, le métal M et/ou l’oxyde de métal M sont présents, au moins à la surface des particules constituées de ou comprenant du TiO2, sous la forme de particules dont la plus grande dimension moyenne en nombre des particules est comprise de 0,1 à 50 nm, en particulier de 0,5 à 10 nm, plus particulièrement de 1 à 3 nm.
Selon un mode de réalisation particulier, les particules constituées de ou comprenant du TiO2 portant sur au moins une partie de leur surface un métal M et/ou un oxyde de métal M sont obtenues par pyrolyse laser ou par imprégnation, éventuellement suivie d’un recuit, en particulier sous air, puis éventuellement sous dihydrogène, notamment à une température de 300 à 500°C, en particulier de 400 à 500°C, par exemple à une température d’environ 450°C, et/ou notamment pendant 3 heures, en particulier de 3 à 6 heures.
La pyrolyse laser et l’imprégnation sont par exemple réalisées selon des modes opératoires bien connus de l’homme du métier.
Selon un mode de réalisation plus particulier, la pyrolyse laser est effectuée par mise en contact d’un aérosol d’une composition liquide comprenant au moins un précurseur de TiO2, au moins un précurseur du métal M et/ou de l’oxyde de métal M, et éventuellement un solvant organique, avec un faisceau laser.
Selon un autre mode de réalisation plus particulier, l’imprégnation est effectuée par mise en contact de TiO2, par exemple obtenu par pyrolyse laser, avec un précurseur du métal M et/ou de l’oxyde de métal M, l’imprégnation étant éventuellement suivie d’un recuit, en particulier sous air, puis éventuellement sous dihydrogène, notamment à une température de 300 à 500°C, en particulier de 400 à 500°C, par exemple à une température d’environ 450°C, et/ou notamment pendant 3 heures, en particulier de 3 à 6 heures.
Lorsque le TiO2 ou le TiO2 portant sur au moins une partie de sa surface un métal M et/ou un oxyde de métal M est obtenu par pyrolyse laser, le recuit est réalisé, sous air, puis éventuellement sous dihydrogène.
Lorsque le TiO2est commercial et destiné à être imprégné comme défini ci-dessus, le recuit sous air est optionnel mais préférentiel, lequel peut être suivi de façon avantageuse par le recuit sous dihydrogène.
Par « recuit sous dihydrogène », on entend en particulier un recuit sous dihydrogène pur ou dilué dans un gaz inerte, tel que par exemple l’argon, ou le diazote. Un tel recuit est susceptible de permettre, si nécessaire, de limiter la présence d’oxyde à la surface du métal M.
Selon un mode de réalisation particulier, l’invention concerne un procédé d’obtention d’au moins un alcène à partir d’un moins un acide carboxylique, lequel est en particulier l’acide propanoïque, l’acide acétique, un acide phénylpropanoïque, en particulier l’acide 2- phénylpropanoïque, l’acide n-butyrique, l’acide n-valérique, ou l’acide pivalique, plus particulièrement l’acide propanoïque.
Selon un mode de réalisation particulier, l’invention concerne un procédé d’obtention d’au moins un alcène à partir d’au moins un alcool, lequel est en particulier l’éthanol, ou le cyclohexanol, plus particulièrement l’éthanol.
Selon un mode de réalisation particulier, le au moins un alcène est l’éthylène.
Selon un mode de réalisation particulier, l’invention concerne un procédé d’obtention d’éthylène à partir d’acide propanoïque.
Selon un mode de réalisation particulier, l’étape (i) est effectuée sous une atmosphère comprenant en volume moins de 1% de dioxygène, notamment moins de 0,1% de dioxygène,
en particulier moins de 0,01% de dioxygène, plus particulièrement moins de 0,001% de dioxygène.
Selon un mode de réalisation particulier, l’étape (i) est effectuée sous atmosphère de gaz inerte, en particulier sous atmosphère de diazote, d’hélium et/ou d’argon, plus particulièrement sous atmosphère d’argon.
Selon un mode de réalisation plus particulier, l’atmosphère de gaz inerte est obtenu par purge à l’aide d’un flux du gaz inerte, le flux étant en particulier compris de 1 à 500 mL/min, de préférence de 50 à 70 mL/min.
Selon un mode de réalisation particulier, l’étape (i) se fait sous flux continu de gaz inerte en particulier sous atmosphère de diazote, d’hélium et/ou d’argon, plus particulièrement sous atmosphère d’argon, le flux étant plus particulièrement compris de 1 à 500 mL/min, de préférence de 50 à 70 mL/min. Dans ce cas, il s’agit d’un mode qui peut être qualifié de dynamique.
Selon un autre mode de réalisation particulier, l’étape (i) se fait en l’absence de flux continu de gaz inerte. Dans ce cas, il s’agit d’un mode qui peut être qualifié de statique. Toujours dans ce cas, l’étape (i) est effectuée sous atmosphère de gaz inerte. En particulier, une purge telle que définie précédemment est réalisée préalablement à l’étape (i). Cette purge est ensuite arrêtée avant la réalisation de l’étape (i).
Selon un mode de réalisation particulier, le au moins un acide carboxylique et/ou le au moins un alcool est présent au sein d’une composition comprenant en outre un solvant, en particulier en solution dans un solvant, le solvant étant de préférence de l’eau, la concentration en alcool(s) et/ou en acide(s) carboxylique(s) dans la composition étant notamment supérieure ou égale à 0,0001% en volume, en particulier supérieure ou égale 0,01% en volume, et/ou inférieure à 100% en volume, par exemple d’environ 1,00% en volume.
Selon un autre mode de réalisation particulier, le au moins un acide carboxylique et/ou le au moins un alcool n’est pas en présence d’un solvant.
Selon un mode de réalisation particulier, le catalyseur est présent dans la composition comprenant le au moins un acide carboxylique et/ou le au moins un alcool et le solvant, ou, en l’absence de solvant, dans le au moins un acide carboxylique et/ou le au moins un alcool, à une concentration comprise de 0,01 à 50 g/L, par exemple d’environ 0,5 g/L.
Selon un mode de réalisation particulier, l’étape (i) est effectuée à une température comprise de 10 à 200°C, en particulier à une température comprise d’environ 20 à environ 40°C, ou à une température comprise de 40 à 200°C, notamment de 40 à 150°C, voire de 40 à 100°C.
Selon un mode de réalisation particulier, l’étape (i) est effectuée à une température comprise de 60 à 200°C, en particulier à une température comprise de 60 à 150°C, notamment de 60 à 100°C.
Selon un mode de réalisation particulier, l’irradiation est une irradiation UV-A, UV-B, UV-C, et/ou visible, notamment UV-A, en particulier à une longueur d’onde comprise de 350 à 400 nm.
Selon un mode de réalisation particulier, l’invention concerne un procédé comprenant une étape (ii), suivant l’étape (i), de récupération du ou des alcènes, cette étape (ii) étant optionnellement suivie d’une étape (iii) d’isolation du ou des alcènes.
L’étape (ii) peut être effectuée par toute technique connue de l’homme du métier, notamment par récupération de l’espace de tête du dispositif photocatalytique utilisé.
L’étape (iii) peut être effectuée par toute technique connue de l’homme du métier, notamment par distillation, en particulier par distillation cryogénique. Cette technique de purification, basée sur le fait que chaque gaz possède une température d’ébullition qui lui est propre, consiste à séparer un mélange gazeux en faisant varier la pression et la température du milieu de stockage des gaz. Le mélange gazeux est tout d’abord refroidi à basse température (usuellement T < -50°C). A la suite du refroidissement, les gaz sont liquéfiés puis acheminés dans une colonne de distillation. Le liquide est réchauffé progressivement ce qui permet de séparer les gaz en fonction de leur température d’ébullition.
L’étape (iii) peut également être effectuée par des techniques basées sur l’absorption. La séparation repose sur le principe que chaque gaz à une affinité particulière vis-à-vis d’absorbants tels que les zéolithes, l’alumine ou encore le charbon actif, ou vis-à-vis de solvants comme la méthanolamine (MEA). La méthode d’absorption modulée en pression (Pressure Swing Absorption – PSA) illustre au mieux cette technique. La séparation s’opère lorsque le mélange de gaz entre en contact avec l’absorbant/solvant dans un réservoir par la suite pressurisé. Le gaz ayant la meilleure affinité pour l’absorbant est piégé tandis que les autres espèces gazeuses passent à travers le système. Le réservoir est régénéré par retour à la pression atmosphérique, libérant le gaz anciennement piégé.
L’étape (iii) peut également être effectuée par séparation membranaire, toujours sur le principe d’affinité des gaz vis-à-vis d’une membrane, permettant aux gaz de s’infiltrer plus ou moins rapidement au travers de la membrane. Les matériaux membranaires fréquemment rencontrés dans la littérature sont variés, comme les polymères organiques microporeux, les zéolithes et les matériaux à base céramique ou métal. Ainsi, au sein d’un premier réservoir, le mélange gazeux est mis au contact d’une membrane située à l’interface d’un second réservoir. Les différents gaz diffusent dans le second réservoir à l’aide d’un gradient de pression, promouvant le transport de masse au travers de la membrane séparant le rétentat du perméat.
Selon un mode de réalisation particulier, la sélectivité molaire en alcène, en particulier en éthylène, est supérieure ou égale à 40%, en particulier supérieure à 45%, plus particulièrement supérieure à 50%.
Selon un mode de réalisation plus particulier, la sélectivité molaire en alcène, en particulier en éthylène, obtenu à partir d’au moins un acide carboxylique de formule (I) Ra-COOH, est supérieure ou égale à 50%, en particulier supérieure à 60%, plus particulièrement supérieure à 70, 80 ou 90%.
Selon un autre mode de réalisation plus particulier, la sélectivité molaire en alcène, en particulier en éthylène, obtenu à partir d’au moins un alcool de formule (II) Rb-OH, est supérieure ou égale à 40%, en particulier supérieure à 45%, plus particulièrement supérieure à 50%.
Selon un mode de réalisation particulier, n’est pas formé à l’issue du procédé d’acétone et/ou d’acétate d’éthyle.
Selon un mode de réalisation particulier, la sélectivité molaire en sous-produit choisi parmi acétone et/ou acétate d’éthyle est inférieure à 1%, en particulier inférieure à 0,1%, plus particulièrement inférieure à 0,01%.
DEFINITIONS
Tel qu’on l’utilise dans la présente description, le terme « environ » se réfère à un intervalle de valeurs de ± 10 % d’une valeur spécifique. A titre d’exemple, l’expression « environ 20 » comprend les valeurs de 20 ± 10 %, soit les valeurs de 18 à 22.
Au sens de la présente description, les pourcentages se réfèrent à des pourcentages en masse par rapport à la masse totale de la formulation, sauf indication contraire.
Tel qu’on l’entend ici, les plages de valeur sous forme de « x-y » ou « de x à y » ou « entre x et y » incluent les bornes x et y ainsi que les entiers compris entre ces bornes. A titre d’exemple, « 1-5 », ou « de 1 à 5 » ou « entre 1 et 5 » désignent les entiers 1, 2, 3, 4 et 5. Les modes de réalisations préférés incluent chaque entier pris individuellement dans la plage de valeur, ainsi que toute sous-combinaison de ces entiers. A titre d’exemple, les valeurs préférées pour « 1-5 » peuvent comprendre les entiers 1, 2, 3, 4, 5, 1-2, 1-3, 1-4, 1-5, 2-3, 2-4, 2-5, etc.
Tel qu'il est utilisé ici, le terme "alkyle" désigne un groupe alkyle à chaîne linéaire ou ramifiée ayant le nombre d’atomes de carbone indiqué avant ledit terme, notamment 2 à 6 atomes de carbone, tel que éthyle, propyle, isopropyle, butyle, isobutyle, sec-butyle, tert-butyle, pentyle, isoamyle, néopentyle, 1-éthylpropyle, 3-méthylpentyle, 2,2-diméthylbutyle, 2,3-diméthylbutyle, hexyle, etc. Ainsi, une expression telle que "alkyle en C1-C4" désigne un radical alkyle contenant de 1 à 4 atomes de carbone. Il en est de même pour le terme « alcane ».
Les cycloalkyles sont en particulier des alkyles (tels que définis précédemment) comportant un cycle. Il s’agit par exemple du cyclohexyle.
Tel qu'utilisé ici, le terme "arène" désigne un système cyclique aromatique hydrocarboné mono- ou bicyclique, substitué ou non substitué, ayant 6 à 10 atomes de carbone dans le cycle. Les exemples incluent le benzène et le naphtalène. Les arènes préférés comprennent le benzène et le naphtalène non substitués ou substitués. Sont inclus dans la définition d'"arène" les systèmes cycliques condensés, y compris, par exemple, les systèmes cycliques dans lesquels un cycle aromatique est condensé à un cycle cycloalkyle. Les exemples de tels systèmes cycliques condensés comprennent, par exemple, l'indane, l'indène et le tétrahydronaphtalène.
FIGURES
La présente un exemple de dispositif photocatalytique susceptible de permettre la mise en œuvre d’une utilisation ou d’un procédé selon la présente invention.
1. Lampe UV ;
2. Réacteur photocatalytique ;
3. Bulleur ;
4. Entrée eau réfrigérant ;
5. Sortie eau réfrigérant ;
6. Solution contenant le photocatalyseur et le(s) précurseur(s) alcool(s) et/ou acide(s) carboxylique(s) ;
7. Espace de tête contenant les gaz produits lors de la photocatalyse ;
8. Injecteur relié à un appareillage de chromatographie en phase gazeuse (GC) ;
9. Agitateur mécanique ;
10. Vanne d’isolement ;
11. Régulateur de débit massique ;
12. Arrivée de gaz ;
13. Vanne ;
14. Appareillage de chromatographie en phase gazeuse (GC) couplé avec un détecteur à ionisation de flamme (FID) et un détecteur d'ionisation à l'hélium (PDHID pour « Pulsed Discharge Helium Ionization Detector »).
La est un graphique représentant la production d’éthylène selon l’exemple 3, sous argon à partir de la dégradation de l’acide propanoïque (1 vol%) sous UVA avec des nanoparticules de TiO2 (référence hors invention) et Cu/TiO2 (invention) synthétisées par pyrolyse laser.
La est relative à un graphique représentant la production d’éthylène selon l’exemple 3 sous argon à partir de la dégradation de l’acide propanoïque (1 vol%) sous UVA avec des nanoparticules TiO2 (référence hors invention) synthétisées par pyrolyse laser et CuIMP/TiO2 (invention) obtenu par imprégnation du support TiO2.
La présente les produits obtenus par photo-oxydation de l’éthanol (1 %m) sous UVA, selon le temps d’irradiation, d’après l’exemple 4.
La décrit les sélectivités molaires en produits CxHyOz tels qu’obtenus par photo-oxydation de l’éthanol (1 %m) sous UVA, selon l’exemple 4.
EXEMPLES
Exemple 1 : Exemple de dispositif photocatalytique permettant la mise en œuvre d’une utilisation ou d’un procédé selon l’invention
Le dispositif photocatalytique ( ) est composé d’un réacteur étanche à l’air en Pyrex d’un volume de 250 mL comprenant 100 mL de solution aqueuse, 150 mL d’espace de tête, un agitateur mécanique en verre ainsi qu’un bulleur (également en verre) assurant une arrivée de gaz neutre. Le gaz neutre peut être de l’hélium He, de l’azote N2 ou préférentiellement de l’argon Ar.
Une lampe UVA PLL Phillips de 18W, délivrant une puissance surfacique de 4,8 mW.cm-2 a été utilisée comme source lumineuse centrée à 370 nm. Les longueurs d’ondes émises étaient comprises entre 350 et 400 nm.
La concentration d’alcool(s) ou d’acide(s) carboxylique(s) dans la solution est comprise entre 0,01 et 100% en volume, préférentiellement 1,00%. Les composés alcools et/ou acides carboxyliques peuvent être introduits ou non sous forme de mélange. La concentration en photocatalyseur (oxyde de) métal/TiO2 est comprise entre 0,01 et 50 g/L, préférentiellement 0,5 g/L.
Après la purge complète de l’air ambiant dans le réacteur via le bullage de gaz neutre, la suspension aqueuse comprenant un ou des alcool(s) et/ou un ou des acides(s) carboxylique(s) et le photocatalyseur est irradiée par les UVA. La réaction photocatalytique peut se faire sous flux continu de gaz neutre (mode dynamique) ou en statique (sans flux de gaz neutre), de préférence en statique. Typiquement, le flux de gaz neutre lors de la purge et/ou sous irradiation est compris entre 1 et 500 mL/min, de préférence 50 et 70 mL/min.
Les gaz produits dans l’espace de tête du réacteur lors de la photocatalyse sont analysés par chromatographie en phase gaz via un détecteur à ionisation de flamme (FID) et un détecteur à plasma d’hélium (PDHID). Dans le cas d’une réaction en mode dynamique, les gaz sont véhiculés par le flux de gaz neutre ; dans le cas en mode statique, les gaz sont transportés par pompage.
Exemple 2 : préparation d’un catalyseur permettant la mise en œuvre d’une utilisation ou d’un procédé selon l’invention
Le métal et/ou l’oxyde de métal peut être mis en contact avec la surface des particules de TiO2 par toute technique connue de l’homme du métier. Il peut par exemple s’agir d’une technique de pyrolyse laser ou d’imprégnation.
Synthèse par pyrolyse laser :
Les photocatalyseurs TiO2 (hors invention) et (oxyde de) métal/TiO2 de l’invention peuvent être synthétisés par la technique de pyrolyse laser, dont un exemple est donné ci-après avec le cuivre comme métal.
Un mélange liquide comprenant les précurseurs de titane et de cuivre est inséré dans une enceinte appelée « pyrosol » comprenant un dispositif réfrigérant, une arrivée de gaz d’entraînement ainsi qu’une pastille piézoélectrique. Typiquement, le précurseur de titane est l’isopropylate de titane (TTIP) ; le précurseur de cuivre peut être par exemple l’acétylacétonate de cuivre Cu(acac)2. Eventuellement, le précurseur de cuivre peut être dissout au préalable dans un ou des solvant(s) organique(s) tel(s) qu’un mélange d’o-xylène/acétate d’éthyle en proportion 6,5:3,5 en volume.
La constitution dudit mélange est indiquée dans le Tableau 1 ci-après pour une teneur en cuivre visée de 2,00 wt% par rapport à la masse de TiO2.
Matériau TTIP Cu(acac) 2 o-xylène / acétate d’éthyle (6,5:3,5)
TiO2
(hors invention)
175 g - 150 mL
Cu/TiO2 175 g 4,134 g 150 mL
Constitution du mélange de précurseurs pour la pyrolyse laser
Le mélange liquide de précurseurs est converti en aérosol par actionnement de la pastille piézoélectrique. Eventuellement, le mélange peut être chauffé durant toute la synthèse, sur une plage allant de 10 à 100°C. Préférentiellement, le mélange est chauffé à 30°C.
L’aérosol obtenu est ensuite acheminé dans une chambre réactionnelle confinée sous atmosphère neutre via un gaz vecteur qui peut être de l’hélium He, de l’argon Ar ou encore de l’azote N2. De même, le gaz de confinement dans la chambre réactionnelle peut être de l’hélium He, de l’argon Ar ou encore de l’azote N2. De préférence, les gaz d’entraînement et de confinement (cheminée, fenêtres du réacteur) sont l’argon Ar. Les débits de confinements sont compris entre 0 et 5000 cm3.min-1, de préférence 0 cm3.min-1 pour le confinement au niveau de la cheminée et 3 000 cm3.min-1 pour les confinements au niveau des fenêtres de visibilité. Le débit de gaz d’entraînement est compris entre 50 et 10 000 cm3.min-1, préférentiellement 2 000 cm3.min-1.
Au sein de la chambre de réaction, un faisceau laser infrarouge CO2 d’une longueur d’onde de 10,6 μm et d’une puissance pouvant atteindre 2 800 W est émis orthogonalement au mélange de précurseurs, véhiculé sous forme de fines gouttelettes. Idéalement, la puissance du laser délivrée dans la zone de réaction est comprise entre 100 et 900 W et de l’ordre de 670 W pour la synthèse du TiO2 et du Cu/TiO2. Un gaz absorbant la radiation laser, de préférence l’éthylène C2H4, peut également être ajouté dans une gamme de débit allant de 0 à 5 000 cm3.min-1. Dans le présent exemple, le débit de ce gaz est fixé à 800 cm3.min-1. Dans ce cas, la puissance laser absorbée par l’aérosol de précurseurs renseignés dans le Tableau 1 est de 276 W pour le TiO2, et de 250 W pour le Cu/TiO2. L’interaction entre le faisceau laser, l’aérosol de précurseurs et éventuellement le gaz d’éthylène permet la croissance de nanoparticules collectées à la surface d’une barrière filtrante comportant des nanopores. A noter que l’utilisation de l’éthylène pour la synthèse est optionnelle et qu’il est possible de synthétiser les matériaux TiO2 et Cu/TiO2 sans y avoir recours.
Les nano-poudres synthétisées par ledit procédé sont ensuite calcinées dans un four tubulaire via un réacteur sous air pour éliminer le carbone amorphe provenant des précurseurs et éventuellement du gaz d’éthylène si l’éthylène est utilisé. Le traitement thermique appliqué est par exemple une température de 450°C sous flux d’air à 100 mL.min-1 pour une durée allant de 3 à 6 heures - jusqu’à élimination quasi-totale voire totale du carbone amorphe, ici, par exemple de 6 heures.
Les principales caractéristiques physico-chimiques des photocatalyseurs TiO2 et Cu/TiO2 synthétisés par pyrolyse laser sont indiquées dans le Tableau 2 suivant.
Matériau Teneur en cuivre (%m ICP) S BET (m 2 .g -1 ) %m Anatase %m Rutile
TiO2 (hors invention) - 81 72 28
Cu/TiO2 1,91 40 53 47
Caractéristiques physico-chimiques des photocatalyseurs synthétisés par pyrolyse laser
Il est à noter que la teneur en cuivre dans le matériau Cu/TiO2 synthétisé par pyrolyse laser, déterminée par spectrométrie à plasma à couplage inductif (ICP), est de 1,91 % en masse ce qui est très similaire au pourcentage introduit dans le pyrosol (2,00 % en masse).
Des images prises par microscopie électronique en transmission (TEM) de nanoparticules de TiO2 et de Cu/TiO2 obtenues selon le présent montre que la taille des nanoparticules est comprise entre 5 et 25 nm pour le TiO2 et entre 10 et 70 nm pour le Cu/TiO2.
Les images obtenues par microscopie électronique à transmission à balayage (STEM) et EDX de nanoparticules Cu/TiO2 de l’invention mettant en évidence des clusters de cuivre/oxyde de cuivre à la surface du TiO2, d’un diamètre compris entre 1 et 3 nm.
Synthèse par imprégnation sur support TiO 2  :
Les photocatalyseurs (oxyde de) métal/TiO2 de l’invention peuvent également être synthétisés par imprégnation de métal via un précurseur métallique sur un support de TiO2. Ce support TiO2 peut être commercial ou obtenu par pyrolyse laser comme par exemple le TiO2 décrit ci-dessus. Un exemple est donné ci-après avec le cuivre comme métal.
500 mg de TiO2 obtenu par pyrolyse laser ont été dissouts dans 50 mL d’eau distillée auxquels a été ajouté 43,3 mg (2,00 wt%) d’un précurseur de cuivre, l’acétylacétonate de cuivre Cu(acac)2 (pureté = 97%). Le précurseur métallique, dans le cas du cuivre, n’est pas limité à ce composé et peut être par exemple l’acétate de cuivre (anhydre ou hydraté) ou encore le nitrate de cuivre. Eventuellement, un ou des solvants organiques tels que l’éthanol peuvent être ajoutés et les précurseurs sont dispersés dans un bain à ultrasons. Une fois la dissolution complète des précurseurs, le mélange est transféré dans un ballon à fond plat de 50 mL et est chauffé au bain-marie à 70°C. L’évaporation du mélange agité via un barreau magnétique s’opère sur une durée de 12 heures et la poudre résiduelle est séchée dans une étuve à 120°C.
La poudre imprégnée est ensuite calcinée à 450°C pendant 6 heures au sein d’un réacteur dans un four tubulaire sous flux d’air à 100 mL.min-1.
Les principales caractéristiques physico-chimiques du support TiO2 obtenu par pyrolyse laser sont rappelées et ainsi que celles du photocatalyseur CuIMP/TiO2 synthétisé par imprégnation sont présentées dans le Tableau 3 suivant.
Matériau Teneur en cuivre (%m ICP) S BET (m 2 .g -1 ) %m Anatase %m Rutile
TiO2 (hors invention) - 81 72 28
CuIMP/TiO2 2,15 37 66 34
Caractéristiques physico-chimiques des photocatalyseurs TiO2 et CuIMP/TiO2
Il est à noter que la teneur en cuivre dans le matériau Cu/TiO2 synthétisé par imprégnation, déterminée par spectrométrie à plasma à couplage inductif (ICP), est de 2,15 %m ce qui est très similaire au pourcentage (2,00 %m) introduit dans ballon pour l’imprégnation du support TiO2.
Exemple 3 : Photocatalyse de l’acide propanoïque
Les photocatalyseurs TiO2 (référence hors invention) et Cu/TiO2 (exemple 2, première partie) ont été introduits dans le réacteur photocatalytique pré-mentionné ( ) à hauteur de 0,5 g.L-1 avec 1 vol% d’acide propanoïque dans 100 mL de solution aqueuse. Un flux d’argon fixé à 70 mL/min pendant 6 heures a permis de chasser l’air du réacteur photocatalytique et de le remplacer par une atmosphère neutre d’argon. Après purge complète, le flux d’argon est arrêté et le réacteur photocatalytique est isolé. Les composés gazeux photo-produits ont été prélevés dans l’espace de tête du réacteur pour être envoyés vers le GC/FID et GC/PDHID.
La présente l’éthylène produit à partir de l’acide propanoïque (1 vol% dans H2O) pendant 910 minutes sous irradiation UVA centrés à 370 nm avec les photocatalyseurs TiO2 et Cu/TiO2. L’éthylène obtenu par photocatalyse avec le TiO2 atteint une vitesse de production de 2 ppmv/h, et de 214 ppmv/h avec Cu/TiO2. Cette production est linéaire et le photocatalyseur ne perd en activité au cours des 910 minutes d’irradiation.
Le Tableau 4 ci-après indique les productions horaires de gaz obtenues pour cette réaction ainsi que les sélectivités, calculées selon le quotient [composé]/∑[CxHyOz] avec x et y ≥ 1 après 910 minutes d’irradiation.
Matériau Synthèse C 2 H 4 (ppmv/h), sélectivité (%) C 2 H 6 (ppmv/h), sélectivité (%) C 4 H 10 (ppmv/h), sélectivité (%)
TiO2 (hors invention) Pyrolyse laser 2 (1%) 163 (96%) 3 (2%)
Cu/TiO2 Pyrolyse laser 214 (91%) 18 (8%) 2 (1%)
Productions horaires (ppmv/h) et sélectivités (%) en gaz photo-produits à partir d’1 vol% d’acide propanoïque sous argon par TiO2 et Cu/TiO2 synthétisés par pyrolyse laser
Le rendement en éthylène, calculé par le ratio [C2H4/CO2] considérant qu’une molécule d’acide propanoïque photo-dégradée forme un radical éthane et une molécule de CO2 et qu’un radical éthane peut former une molécule d’éthylène ou d’éthane, est de 1,0% pour le TiO2 et de 85,0% pour le Cu/TiO2 après 910 minutes d’irradiation.
De façon tout à fait analogue, la photocatalyse a été effectuée à l’aide de photocalyseurs imprégnés (exemple 2, seconde partie).
Le photocatalyseur imprégné CuIMP/TiO2 a été introduit dans le réacteur photocatalytique pré-mentionné ( ) à hauteur de 0,5 g.L-1 avec 1 vol% d’acide propanoïque dans 100 mL de solution aqueuse. La synthèse d’éthylène par photocatalyse s’est opérée dans les mêmes conditions telles que décrites ci-dessus.
La présente l’éthylène produit à partir de l’acide propanoïque (1 vol% dans H2O) sous irradiation UVA centrés à 370 nm avec les photocatalyseurs TiO2 (obtenu par pyrolyse laser, 910 min d’irradiation) et CuIMP/TiO2 (obtenu par imprégnation du support TiO2 pré-mentionné, pendant 3 250 minutes soit plus de 54 heures d’irradiation). L’éthylène synthétisé par photocatalyse avec le TiO2 atteint une vitesse de production de 2 ppmv/h, et de 218 ppmv/h avec CuIMP/TiO2. Cette production est linéaire et le photocatalyseur ne perd pas en activité au cours des 3 250 minutes d’irradiation.
Le Tableau 5 ci-après indique les productions horaires de gaz obtenues pour cette réaction ainsi que les sélectivités, calculées selon le quotient [composé]/ ∑[CxHyOz] avec x et y ≥ 1 après 910 minutes d’irradiation.
Matériau Synthèse C 2 H 4 (ppmv/h), sélectivité (%) C 2 H 6 (ppmv/h), sélectivité (%) C 4 H 10 (ppmv/h), sélectivité (%)
TiO2 (hors invention) Pyrolyse laser 2 (1%) 163 (96%) 3 (2%)
Cu/TiO2 Imprégnation 218 (92%) 16 (7%) 2 (1%)
Productions horaires (ppmv/h) et sélectivités (%) en gaz photo-produits à partir d’1 vol% d’acide propanoïque sous argon par TiO2 synthétisé par pyrolyse laser et CuIMP/TiO2
Le rendement en éthylène, est de 1,0% pour le TiO2et de 86,5% pour le CuIMP/TiO2après 910 minutes d’irradiation.
Exemple 4 : Photocatalyse de l’éthanol
Une concentration d’éthanol de 1% en masse (soit 1,27 % en volume) a été utilisée. Le catalyseur 2%Cu/TiO2 a été introduit à 0,5 gcat/L dans la solution de 100 mL résultante, sous atmosphère inerte (argon). Toujours sous atmosphère inerte, l’irradiation sous UV (UVA centrés à 370 nm) s’est déroulée sur 650 min environ à température ambiante (20-25°C). Le suivi des produits gazeux s’est déroulé comme pour l’exemple 3, i.e. avec suivi cinétique par GC-FID et GC-PDHID, ainsi qu’avec identification et calibration des produits à partir d’étalons.
Résultats :
Après 600 minutes d’irradiation ont été obtenus de l’H2, du CO2, de l’éthylène C2H4, de l’acétaldéhyde CH3CHO, du méthane CH4 ainsi que des traces de CO et d’éthane.
La présente la formation de ces espèces au cours du temps d’irradiation, et la les sélectivités obtenues.
Les résultats montrent une excellente sélectivité de l’éthylène par rapport aux autres produits CxHyOz (x, y ≥ 1). Ainsi, la sélectivité molaire en éthylène et en acétaldéhyde est de 51% et 38%, respectivement. L’éthylène est donc le produit CxHyOz (x, y ≥ 1) majoritaire.
En outre, il n’a pas été détecté d’acétone ni d’acétate d’éthyle.

Claims (10)

  1. Utilisation de particules constituées de ou comprenant du TiO2 portant sur au moins une partie de leur surface un métal M et/ou un oxyde de métal M, M étant choisi dans le groupe comprenant Cu, Zn, Fe, Mo, W et Ni, pour l’obtention d’au moins un alcène par photocatalyse à partir d’au moins un acide carboxylique de formule (I) Ra-COOH, et/ou d’au moins un alcool de formule (II) Rb-OH, dans lesquelles Ra et Rb sont indépendamment choisis parmi les groupes alkyle linéaires, branchés ou cycliques, optionnellement substitués par au moins un groupe X choisi parmi les arènes, X étant en particulier un groupe phényle.
  2. Procédé d’obtention d’au moins un alcène à partir d’au moins un acide carboxylique de formule (I) Ra-COOH, et/ou d’au moins un alcool de formule (II) Rb-OH, dans lesquelles Ra et Rb sont indépendamment choisis parmi les groupes alkyle linéaires, branchés ou cycliques, optionnellement substitués par au moins un groupe X choisi parmi les arènes, X étant en particulier un groupe phényle, comprenant une étape (i) de photocatalyse par irradiation UV et/ou visible d’un moins un acide carboxylique et/ou d’au moins un alcool en présence d’un catalyseur constitué de ou comprenant des particules constituées de ou comprenant du TiO2 portant sur au moins une partie de leur surface un métal M et/ou un oxyde de métal M, M étant choisi dans le groupe comprenant Cu, Zn, Fe, Mo, W et Ni.
  3. Procédé selon la revendication 2, dans lequel :
    • la plus grande dimension moyenne en nombre des particules constituées de ou comprenant du TiO2 est comprise de 1 à 100 nm, en particulier de 5 à 70 nm ; et/ou
    • les particules constituées de ou comprenant du TiO2 sont de forme sphérique, sphéroïde, de bâtonnet, de fil, de tube, et/ou de plaquette, les particules étant éventuellement organisées en chaînettes.
  4. Procédé selon l’une quelconque des revendications 2 à 3, dans lequel le TiO2 est sous forme d’anatase, de rutile et/ou de brookite, en particulier sous forme d’anatase, de rutile, ou d’un mélange d’anatase et de rutile, plus particulièrement sous forme d’un mélange d’anatase et de rutile dont le rapport anatase/rutile est compris de 0,80 à 2,33, notamment de 1,00 à 2,00.
  5. Procédé selon l’une quelconque des revendications 2 à 4, dans lequel :
    • la teneur en métal M et/ou en oxyde de métal M par rapport au TiO2 est compris de 0,01 à 50% en masse, en particulier de 0,1 à 5% en masse, par exemple d’environ 2% en masse, ou plus de 0,01% et moins de 2% en masse ; et/ou
    • le métal M et/ou l’oxyde de métal M sont présents, au moins à la surface des particules constituées de ou comprenant du TiO2, sous la forme de particules dont la plus grande dimension moyenne en nombre des particules est comprise de 0,1 à 50 nm, en particulier de 0,5 à 10 nm, plus particulièrement de 1 à 3 nm.
  6. Procédé selon l’une quelconque des revendications 2 à 5, d’obtention d’au moins un alcène à partir d’au moins un acide carboxylique, lequel est en particulier l’acide propanoïque, l’acide acétique, un acide phénylpropanoïque, en particulier l’acide 2- phénylpropanoïque, l’acide n-butyrique, l’acide n-valérique, ou l’acide pivalique, plus particulièrement l’acide propanoïque, ou à partir d’au moins un alcool, lequel est en particulier l’éthanol, ou le cyclohexanol, plus particulièrement l’éthanol, et/ou le au moins un alcène est l’éthylène.
  7. Procédé selon l’une quelconque des revendications 2 à 6, dans lequel l’étape (i) se fait :
    • sous une atmosphère comprenant en volume moins de 1% de dioxygène, notamment moins de 0,1% de dioxygène, en particulier moins de 0,01% de dioxygène, plus particulièrement moins de 0,001% de dioxygène ;
    • sous atmosphère de gaz inerte, en particulier sous atmosphère de diazote, d’hélium et/ou d’argon, plus particulièrement sous atmosphère d’argon ; et/ou
    • sous flux continu de gaz inerte en particulier sous atmosphère de diazote, d’hélium et/ou d’argon, plus particulièrement sous atmosphère d’argon, le flux étant plus particulièrement compris de 1 à 500 mL/min, de préférence de 50 à 70 mL/min ; ou
    • en l’absence de flux continu de gaz inerte.
  8. Procédé selon l’une quelconque des revendications 2 à 7, dans lequel le au moins un acide carboxylique et/ou le au moins un alcool est présent au sein d’une composition comprenant en outre un solvant, en particulier en solution dans un solvant, le solvant étant de préférence de l’eau, la concentration en alcool(s) et/ou en acide(s) carboxylique(s) dans la composition étant notamment supérieure ou égale à 0,0001% en volume, en particulier supérieure ou égale 0,01% en volume, et/ou inférieure à 100% en volume, par exemple d’environ 1,00% en volume, ou dans lequel le au moins un acide carboxylique et/ou le au moins un alcool n’est pas en présence d’un solvant.
  9. Procédé selon l’une quelconque des revendications 2 à 8, dans lequel le catalyseur est présent dans la composition comprenant le au moins un acide carboxylique et/ou le au moins un alcool et le solvant, ou, en l’absence de solvant, dans le au moins un acide carboxylique et/ou le au moins un alcool, à une concentration comprise de 0,01 à 50 g/L, par exemple d’environ 0,5 g/L.
  10. Procédé selon l’une quelconque des revendications 2 à 9, dans lequel :
    • l’étape (i) est effectué à une température comprise de 10 à 200°C, en particulier à une température comprise d’environ 20 à environ 40°C, ou à une température comprise de 40 à 200°C, notamment de 40 à 150°C, voire de 40 à 100°C ; et/ou
    • l’irradiation est une irradiation UV-A, UV-B, UV-C, et/ou visible, notamment UV-A, en particulier à une longueur d’onde comprise de 350 à 400 nm.
PCT/EP2023/064819 2022-06-03 2023-06-02 Utilisation de particules de dioxyde de titane portant un metal ou un oxyde de metal pour l'obtention d'alcenes par photocatalyse WO2023232998A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2205384 2022-06-03
FR2205384A FR3136177A1 (fr) 2022-06-03 2022-06-03 Utilisation de particules de dioxyde de titane portant un metal ou un oxyde de metal pour l’obtention d’alcenes par photocatalyse

Publications (1)

Publication Number Publication Date
WO2023232998A1 true WO2023232998A1 (fr) 2023-12-07

Family

ID=82694252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/064819 WO2023232998A1 (fr) 2022-06-03 2023-06-02 Utilisation de particules de dioxyde de titane portant un metal ou un oxyde de metal pour l'obtention d'alcenes par photocatalyse

Country Status (2)

Country Link
FR (1) FR3136177A1 (fr)
WO (1) WO2023232998A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106883087A (zh) * 2017-03-21 2017-06-23 内蒙古大学 一种气相光催化氧化乙醇制乙烯、乙醛和丙酮的Cu/TiO2催化剂及反应工艺

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106883087A (zh) * 2017-03-21 2017-06-23 内蒙古大学 一种气相光催化氧化乙醇制乙烯、乙醛和丙酮的Cu/TiO2催化剂及反应工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FIGGEMEIER ET AL: "Titanium dioxide nanoparticles prepared by laser pyrolysis: Synthesis and photocatalytic properties", APPLIED SURFACE SCIENCE, ELSEVIER, AMSTERDAM , NL, vol. 254, no. 4, 23 November 2007 (2007-11-23), pages 1037 - 1041, XP022360042, ISSN: 0169-4332, DOI: 10.1016/J.APSUSC.2007.08.036 *
JANCZAREK MARCIN ET AL: "On the Origin of Enhanced Photocatalytic Activity of Copper-Modified Titania in the Oxidative Reaction Systems", CATALYSTS, vol. 7, no. 11, 27 October 2017 (2017-10-27), pages 317, XP055841973, DOI: 10.3390/catal7110317 *
KRAEUTLER BERNHARD ET AL: "Heterogeneous Photocatalytic Decomposition of Saturated Carboxylic Acids on TiO2 Powder. Decarboxylative Route to Alkanes", JACS, vol. 100, no. 19, 13 September 1978 (1978-09-13), pages 5985 - 5992, XP093014044, Retrieved from the Internet <URL:https://pubs.acs.org/doi/10.1021/ja00487a001> [retrieved on 20230114], DOI: 10.1021/ja00487a001 *

Also Published As

Publication number Publication date
FR3136177A1 (fr) 2023-12-08

Similar Documents

Publication Publication Date Title
FR3065650B1 (fr) Procede de reduction photocatalytique du dioxyde de carbone mettant en œuvre un photocatalyseur sous forme de monolithe poreux
EP2921227B1 (fr) Catalyseur fischer-tropsch à base d&#39;un metal du groupe viiib et d&#39;un support d&#39;oxydes comprenant de l&#39;alumine, de la silice, une spinelle et du phosphore
EP1827684B1 (fr) Catalyseur a base de cobalt pour la synthese fischer-tropsch
FR2882053A1 (fr) Procede de deshydratation du glycerol en acrolene
EP3283216B1 (fr) Catalyseur comprenant une phase active dopee au bore
EP2310348B1 (fr) Procede de fabrication de dialcoxyalcanes par oxydation partielle d&#39;alcools inferieurs en presence d&#39;un catalyseur a base de molybdene et fer
CA2817684C (fr) Procede de preparation d&#39;un catalyseur mettant en oeuvre une etape de sechage rapide et son utilisation pour la synthese fischer-tropsch
EP3710162A1 (fr) Procede de reduction photocatalytique du dioxyde de carbone mettant en uvre un photocatalyseur a base de sulfure de molybdene ou de sulfure de tungstene supporte
FR3104455A1 (fr) Procede de reduction photocatalytique du dioxyde de carbone en presence d’un photocatalyseur prepare par impregnation en milieu fondu
EP2921547B1 (fr) Procédé fischer-tropsch utilisant un catalyseur à base d&#39;un metal du groupe viiib et d&#39;un support d&#39;oxydes comprenant de l&#39;alumine, de la silice et du phosphore.
FR3095598A1 (fr) Procede de reduction photocatalytique du dioxyde de carbone en presence d’un champ electrique externe
EP2448670B1 (fr) Procede de preparation d&#39;un catalyseur multi-métallique présentant une proximité de sites optimisée
WO2023232998A1 (fr) Utilisation de particules de dioxyde de titane portant un metal ou un oxyde de metal pour l&#39;obtention d&#39;alcenes par photocatalyse
WO2016083020A1 (fr) Procede de preparation d&#39;un catalyseur fischer-tropsch avec traitement a la vapeur
EP2632883B1 (fr) Procédé d&#39;obtention d&#39;acroléine par déshydratation catalytique de glycérol ou de glycérine
EP3381552A1 (fr) Procédé de préparation de catalyseurs à base de cobalt
EP2432591B1 (fr) Catalyseur pour le réformage de goudrons utilisables dans la vapogazéification de la biomasse
FR3109900A1 (fr) Procédé de préparation d’un catalyseur métallique supporté, catalyseur obtenu selon ce procédé et utilisations
EP2470299B1 (fr) Catalyseur pour le traitement photocalytique de milieux gazeux comprenant du monoxyde de carbone
EP3784366A1 (fr) Procede de captation et de decontamination d&#39;un milieu gazeux en presence d&#39;un monolithe comprenant du tioet de la silice
FR3087787A1 (fr) Procede d’hydrogenation comprenant un catalyseur prepare par addition d’un compose organique en phase gazeuse
WO2015055942A2 (fr) Catalyseur métallique supporté et son utilisation pour l&#39;oxydation sélective du glycérol
FR3053898A1 (fr) Procede de prepation d&#39;une composition a base de cobalt assiste par irradiation
WO2020260064A1 (fr) Procede de reduction photocatalytique du co2 mettant en oeuvre un photocatalyseur de type sulfure metallique cristallise microporeux
JP6596950B2 (ja) フラン化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23730494

Country of ref document: EP

Kind code of ref document: A1