WO2023232787A1 - Production of parts made of mgb2 - Google Patents

Production of parts made of mgb2 Download PDF

Info

Publication number
WO2023232787A1
WO2023232787A1 PCT/EP2023/064402 EP2023064402W WO2023232787A1 WO 2023232787 A1 WO2023232787 A1 WO 2023232787A1 EP 2023064402 W EP2023064402 W EP 2023064402W WO 2023232787 A1 WO2023232787 A1 WO 2023232787A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
mgb2
varies
pass
preform
Prior art date
Application number
PCT/EP2023/064402
Other languages
French (fr)
Inventor
Yohann Thimont
Lionel Presmanes
Anastasia SKLYAROVA
Original Assignee
Université Toulouse III - Paul Sabatier
Centre National De La Recherche Scientifique
Institut National Polytechnique De Toulouse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Université Toulouse III - Paul Sabatier, Centre National De La Recherche Scientifique, Institut National Polytechnique De Toulouse filed Critical Université Toulouse III - Paul Sabatier
Publication of WO2023232787A1 publication Critical patent/WO2023232787A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on magnesium boride, e.g. MgB2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics

Definitions

  • the present invention relates to a process for manufacturing a preformed part, in particular of a complex shape, in superconducting magnesium diboride or MgEL ceramic by an additive manufacturing technique.
  • Superconducting materials are increasingly present in our daily lives.
  • Superconducting parts find their applications in medicine, such as superconducting MRI coils in industry, magnets and magnetic shields in transport, or engine parts and potential levitation transport systems, and in many other areas.
  • MgEL is one of the most promising materials.
  • MgEL is an intermetallic material whose structure consists of a stack of magnesium planes alternating with boron planes along its c axis. Although this compound has been known since the 1950s, its superconductivity was only discovered a few years ago. While thin films and powders exhibit anisotropic superconducting properties, sintered ceramics are isotropic.
  • This material is of great interest in the context of superconducting applications (motors, magnetic screens, curvature elements, electricity storage, electromagnetic thrusters, etc.) in order to generate significant magnetic fields thanks to its high current density capacity. critical. These current densities are greater than those of oxide superconductors at high critical temperatures usually used such as YBa2Cu3O7 (ReYBCO) with identical cross sections. However, obtaining massive parts, particularly with complex shapes, is not possible to date. This is one of the major problems encountered until now in the use of MgB2 which is slowing down its development.
  • MgB2 is a very light material (2.5 g/cm 3 ) and is therefore interesting for on-board applications, such as in motors for electric aircraft, unlike ReBCO.
  • the invention meets this need using a process for manufacturing an MgB2 part comprising: a) the production of a preform by shaping a powder of MgB2 particles by means of a additive manufacturing technique on a powder bed, comprising the irradiation of the MgB2 powder with laser radiation, and b) a step of densification of the preform, until the MgB2 part is obtained.
  • the process thus makes it possible, in particular from a commercial MgB2 powder, preferably previously deagglomerated, to spread it in a bed then to insolate it using a laser under atmosphere inert.
  • the process is additive and makes it possible to build a preformed layer by layer. Through this process, the amount of material used can be reduced, thereby reducing raw material costs.
  • FIG 1 represents a diagram of the successive stages of an embodiment of the method according to the invention.
  • FIG 2 represents the curve obtained in the example representing the mass fraction of the MgB2 phase as a function of the cumulative energy dose for the plate with a powder bed of 100 pm.
  • FIG 3 represents XRD diagrams of samples A and B of the example after implementation of the process, namely step a) implementing the SLS technique and step b) implementing the S PS technique .
  • FIG 4 represents magnetic moment curves as a function of temperature of samples obtained in the example.
  • the insets show a photograph of sample A after step a) implementing the SLS technique then after step b) implementing the SPS technique, and the transition region for sample B in more detail ( to the right).
  • FIG 5 represents a diagram of parts of more complex shape in MgB2 to be printed (scale in mm) and corresponding preformed parts, obtained experimentally.
  • the invention relates to a method of manufacturing a part, in particular a preformed part, in particular of complex shape, of the MgB2 superconducting ceramic according to the invention, the method comprising the production of said part by shaping of a powder using an additive manufacturing technique.
  • the additive manufacturing technique is a powder bed additive manufacturing technique.
  • the additive manufacturing technique commonly called 3D printing techniques, implements a partial or complete fusion of powder particles by means of a light beam or electrons, in particular a light beam.
  • the light beam is a laser beam.
  • the additive manufacturing technique used is preferably direct metal laser sintering additive manufacturing, translation of Direct Metal Laser Sintering (DMLS).
  • the additive manufacturing technique by laser fusion on a powder bed comprises the deposition of at least one layer of powder then the partial or complete fusion of at least a part of the particles of the powder, preferably of all of the particles of the layer deposited by a selective supply of energy under the action of a laser beam.
  • step a such a step allowing the production of a preform by shaping a powder of MgEL particles by means of an additive manufacturing technique on a powder bed is called step a), and is followed by a step b) of densification.
  • densification designates the possibility of manually extracting a preformed material via an increase in the density of the material, expressed in relation to the theoretical density of the material without porosity.
  • step a) and/or step b) is carried out under an inert atmosphere, in particular under argon.
  • Step a) of the method according to the invention comprises the production of a preform by shaping a powder of MgEL particles by means of an additive manufacturing technique on a powder bed, comprising the insolation of the MgEL powder with laser radiation.
  • the MgEL powder can be that marketed as boron powder from Pavezyum, Advanced Chemicals (Istanbul, Turkey).
  • the purity may in particular be greater than 90%, or even 95%, for example 97%.
  • the median equivalent diameter of the particles of the MgB2 powder varies from 1 pm to 50 pm, in particular varies from 2 pm to 30 pm, preferably varies from 5 pm to 20 pm.
  • the process comprises, prior to step a), a step of deagglomeration of the MgB2 particle powder.
  • this deagglomeration step can be carried out by placing the powder in a mixer and/or centrifuge, for example as sold under the name Centrifugal Mixer SK-300SII by the company Kakuhanter Planetary.
  • the rotation speed can be between 800 rpm and 1500 rpm, in particular between 1000 rpm and 1400 rpm, for example at 1200 rpm.
  • the powder can be spread in beds of different thicknesses.
  • the thickness of the powder bed can influence how powder sintering occurs.
  • the thickness of the powder bed in step a) varies from 50 pm to 800 pm, in particular varies from 75 pm to 500 pm, preferably varies from 100 pm to 300 pm.
  • step a) is implemented by selective laser sintering (SLS or DMLS).
  • DMLS/SLS device Any DMLS/SLS device known to those skilled in the art can be used, such as the M ProXLS 200 device marketed by the company 3D system.
  • the type of laser that can be used in the exposure carried out in step a) of the process is in particular a 300 W laser.
  • a laser with a wavelength of 1064 nm can be used.
  • the production of a preform by shaping a powder of MgB2 particles by means of an additive manufacturing technique on a powder bed comprises the insolation of the MgB2 powder with radiation laser, with a local cumulative energy density varying from 18 mJ/pm 2 to 265 mJ/pm 2 , i.e. a global non-cumulative macroscopic dose varying from 4 J/cm 2 /pass to 70 J/cm 2 /pass, of so as to obtain the preform based on an exposed MgB2 powder.
  • the densification of the MgB2 powder at the end of step a) can vary from 30% to 45%, preferably vary from 35% to 45%, expressed in relation to the theoretical density of the material without porosity. .
  • the power of the laser radiation can in particular vary from 28 W to 115 W, in particular from 40 W to 95 W, even more particularly from 50 W to 85 W.
  • doses or energy density of laser radiation they can vary from 4 J/cm 2 /pass to 70 J/cm 2 /pass, in particular vary from 4.5 J/cm 2 /pass to 70 J /cm 2 /pass, more particularly vary from 5 J/cm 2 /pass to 70 J/cm 2 /pass, preferably vary from 6 J/cm 2 /pass to 60 J/cm 2 /pass, and more preferably from 7 J/cm 2 /pass to 50 J/cm 2 /pass.
  • cumulative dose it can vary from 18 mJ/pm 2 to 265 mJ/pm 2 , in particular vary from 31 mJ/pm 2 to 188 mJ/pm 2 , and even more particularly from 53 mJ/pm 2 to 144 mJ/pm 2 .
  • the inventors were notably able to observe that too low laser doses, for example less than 4 J/cm 2 /pass, can lead to ineffective sintering, in other words manifested by the fact that the powder remains in powder form while a larger dose, for example greater than 100 J/cm 2 /pass, leads to the degradation of the MgEL phase, typically by the formation of impurity phases such as MgEL, Mg2EL, MgO or Mg, which causes undesirable properties in the samples obtained, in particular the loss of superconductivity.
  • the cumulative energy dose can be adjusted by those skilled in the art as a function of the thickness of the selected powder bed.
  • the laser beam is moved at a speed varying from 100 mm/s to 1000 mm/s, in particular from 100 mm/s to 800 mm/s, in particular varying from 120 mm/s to 800 mm/s, more particularly varying from 120 mm/s to 500 mm/s, preferably varying from 150 mm/s to 300 mm/s, and more preferably varying from 150 mm/s to 250 mm/s.
  • the vector spacing of the laser beam varies from 50 pm to 250 pm, in particular varies from 75 pm to 175 pm, preferably varies from 100 pm to 150 pm.
  • step a) of the method according to the invention comprises the production of a preform by shaping a powder of MgB2 particles using an additive manufacturing technique on a powder bed , comprising the insolation of the MgB2 powder with laser radiation, with a macroscopic energy dose varying from 50 J/cm 2 /pass to 90 J/cm 2 /pass, so as to obtain a counterform based on an MgO powder and the preform based on an unexposed MgB2 powder adjacent to the MgO powder.
  • the energy dose of the laser radiation in step a) varies from 50 J/cm 2 /pass to 90 J/cm 2 /pass, in particular varies from 50 J/cm 2 /pass at 80 J/cm 2 /pass, preferably varies from 50 J/cm 2 /pass to 70 J/cm 2 /pass.
  • the power of the laser radiation in step a) varies from 70 W to 150 W, in particular varies from 70 W to 130 W, preferably varies from 70 W to 120 W.
  • the laser beam in step a) is moved at a speed varying from 100 mm/s to 800 mm/s, in particular varying from 120 mm/s to 500 mm/s, preferably varying from 150 mm/s to 250 mm/s.
  • the vector spacing of the laser beam in step a) varies from 50 pm to 250 pm, in particular varies from 75 pm to 175 pm, preferably varies from 100 pm to 150 pm.
  • the focusing of the laser beam in step a) varies from -50 mm to -20 mm, in particular varies from -50 mm to -30 mm, preferably varies from -50 mm to -40 mm.
  • the densification step of step b) may comprise a sintering step, in particular by densification under load, or an impregnation step, in particular with a conductive metal distinct from magnesium, and preferably with copper or a alloy of copper and silver.
  • step b) consists of a densification step under load.
  • the sintering step is carried out by densification under load, in particular by SPS or by hot pressing (in English “Hot Pressing”), in particular by SPS.
  • the objective of this densification step b) is to achieve a hardness of the formed parts compatible with the desired applications.
  • this densification step b), in particular by SPS treatment reduces the fragility and porosity of the samples or parts obtained by implementing a single step a) as described previously.
  • SPS treatment is field-assisted sintering.
  • Field-assisted sintering is also known by the English acronym “FAST” for “Field Assisted Sintering Technology”.
  • FAST Field Assisted Sintering Technology
  • Electric field-assisted sintering is also known under the name “flash sintering” and under the English acronyms “SPS” for “Spark Plasma Sintering” and “EC AS” for “Electric Current Assisted Sintering”.
  • Powder matrices or sacrificial powders can be used as part of the implementation of step b), particularly with a view to facilitating demoulding.
  • powders such as SiC, Al2O3, MgAhCL and BN.
  • Such powders can in particular be chosen so as to avoid interdiffusion and the formation of impurities due to parasitic reactions.
  • the densification step under load uses one or more sacrificial powders, and preferably at least silicon carbide.
  • the densification step under load is carried out at a temperature varying from 700°C to 1050°C, in particular varying from 750°C to 1000°C, preferably varying from 800°C to 950°C.
  • the densification step under load is carried out for a duration varying from 20 minutes to 120 minutes, in particular varying from 20 minutes to 90 minutes, preferably varying from 20 minutes to 60 minutes.
  • the densification step under load is carried out under a pressure varying from 10 MPa to 100 MPa, in particular varying from 20 MPa to 80 MPa, preferably varying from 40 MPa to 60 MPa.
  • the densification step of step b) comprises an impregnation step, in particular with a conductive metal distinct from magnesium, and preferably with copper or an alloy of copper and silver.
  • a conductive metal distinct from magnesium and preferably with copper or an alloy of copper and silver.
  • the present invention relates to a process as described above, characterized in that it comprises: a) the production of a preform by shaping a powder of MgEL particles by means of an additive manufacturing technique on a powder bed, comprising the insolation of the MgEU powder with laser radiation, with an energy dose varying from 4 J/cm 2 /pass to 70 J/cm 2 /pass, so as to to obtain the preform based on an exposed MgEU powder, and b) a step of densifying the preform, by sintering the exposed MgEU powder, until the MgEL part is obtained.
  • Figure 1 represents a diagram of the successive stages of the embodiment of the method described above.
  • Figure 5 represents a diagram of MgEL parts to be printed (scale in mm) and preformed experimentally obtained with laser powers of 63-74 W, a defocus at -50 mm, a scanning speed of 200 mm/ s, a spacing of 175 pm, and a powder bed thickness of 300 pm (corresponding to doses of 40 J/cm 2 /pass J/cm 2 /pass to 45 J/cm 2 /pass).
  • step a) The inventors have also developed a particular embodiment of the process using laser radiation with a high cumulative energy density in step a) making it possible to obtain a counterform in the form of a degraded MgEL powder. and/or decomposed MgO.
  • the preform and the counterform are then contiguous during this step a).
  • the part thus obtained at the end of step a), comprising the preform and the counterform can then be subjected to step b) to obtain the densified MgEL preform.
  • the present invention also relates to a process as described above, characterized in that it comprises: a) the production of a preform by shaping a powder of MgEL particles by means of a manufacturing technique additive on a powder bed, in an environment with oxygen, comprising the insolation of the MgEL powder with laser radiation, with an energy dose varying from 50 J/cm 2 /pass to 90 J/cm 2 /pass, preferably varying from 60 J/cm 2 /pass to 80 J/cm 2 /pass, so as to obtain a counterform based on an MgO powder and the preform based on an unexposed MgB2 powder contiguous to the MgO powder, and b) a step of densifying the preform, by sintering the unexposed MgB2 powder in step a), in a sintering oven under an inert atmosphere, followed by a step of depowdering the MgO powder, until obtaining the MgB2 piece.
  • the sintering step is carried out at a temperature varying from 700°C to 1050°C, in particular varying from 750°C to 1000°C, preferably varying from 800°C to 950°C. °C.
  • the process can also include a subsequent step of demoulding the MgB2 part.
  • the MgB2 part may be a superconductor, whose critical temperature may be between 35 K and 39 K.
  • the process according to the present invention makes it possible to produce complex shapes.
  • the size of the parts or patterns can advantageously be greater than 0.5 x 0.5 x 0.5 cm 3 to obtain good mechanical strength of the preformed parts.
  • the method according to the present invention can thus be particularly adapted for the manufacture of massive objects of multicentimeter dimensions.
  • the inventors have also demonstrated that the process according to the present invention allows the manufacture of preforms, in particular densified to 35%, with good mechanical strength for large parts, without significant degradation of the MgB2 phase.
  • the method according to the present invention makes it possible to obtain complex 3D shapes.
  • the preforms or parts obtained by the process according to the present invention can in particular be used for all types of applications using superconductors such as motors or alternators, in particular in the field of aeronautics, wind power, satellite trajectory correctors, magnetic levitation systems, thrusters, particularly for the field of magnetohydrodynamics or for launchers, magnetic shields and screenings (MAGLEV), energy storage systems (SMES), bending magnets and magnetic confinement systems, for example for particle accelerators, fusion reactors (ITER), maritime propulsion systems for submarines and boats, high-power electricity systems (superconducting shunts), magnetic field generation systems (IRM) or even electromagnetic launchers (S3EL).
  • superconductors such as motors or alternators, in particular in the field of aeronautics, wind power, satellite trajectory correctors, magnetic levitation systems, thrusters, particularly for the field of magnetohydrodynamics or for launchers, magnetic shields and screenings (
  • MgEh parts may differ from those shown.
  • a commercial powder (Pavezyum) with a purity greater than 95% and an agglomerate size less than 500 pm (particles from 1 pm to 50 pm) was used for the manufacture of the superconducting parts.
  • Mixing conditions 1100 rpm, for a duration of 6 minutes for a maximum of 180 g of powder at one time.
  • the deagglomerated powder was introduced into the SLS apparatus.
  • SLS device used for step a) M ProXLS 200 marketed by the company 3D System (wavelength: 1070 nm) under an inert argon atmosphere (O2 ⁇ 800 ppm).
  • a thin layer of silicon was applied to the surface of the build plate to prevent slippage of the MgEL powder during fabrication of the first layer.
  • the superconductivity properties of the selected samples were studied using magnetic susceptibility measurements with the SQUID magnetometer (Quantum design MPMS 5) in zero field cooling (ZFC) and zero field cooling regimes. field of 20 Oe (FC) in the temperature range of 20 - 40 K.
  • Shape of samples or parts Simple cubic shape. Each cube had a base area of 1 x 1 cm 2 and a height of ⁇ 4.4 mm.
  • Figure 2 presents the volume fraction of the MgEL phase in the sample as a function of the cumulative energy dose.
  • the highest value of the MgEL fraction was found for laser radiation doses between 4.5 J/cm 2 /pass and 60 J/cm 2 /pass.
  • the obtained samples show a similar XRD pattern with the same compounds.
  • the samples were placed in graphite matrices with the additional SiC powder around the cube and heated to 800 °C under 0.1 kN in the 20 mm diameter matrix for 8 min.
  • Cumulative energy doses of 89 mJ/pm 2 (dose 10 J/cm 2 /pass) and 179 mJ/pm 2 (50 J/cm 2 /pass) received by the raw powder under certain SLS conditions make it possible to obtain samples shaped with a virtually non-degenerate and superconducting MgEL phase.
  • the sample processed by SPS in an Ar atmosphere at 800 °C and 15.7 kN shows a clear transition to the superconducting state at ⁇ 37.8 K.

Abstract

The invention relates to a method for producing a part made of MgB2 comprising: a) producing a preform by shaping a powder of MgB2 particles by means of an additive manufacturing process on a powder bed, comprising the irradiation of the MgB2 powder with laser radiation and b) a step of densifying the preform until the part made of MgB2 is obtained.

Description

Description Description
Titre : Elaboration de pièces en MgB Title: Development of MgB parts
La présente invention concerne un procédé de fabrication d’une pièce préformée, notamment de forme complexe, en céramique supraconductrice de diborure de magnésium ou MgEL par une technique de fabrication additive. The present invention relates to a process for manufacturing a preformed part, in particular of a complex shape, in superconducting magnesium diboride or MgEL ceramic by an additive manufacturing technique.
Technique antérieure Prior art
Les matériaux supraconducteurs sont de plus en plus présents dans notre vie quotidienne. Les pièces supraconductrices trouvent leurs applications en médecine, comme les bobines supraconductrices d’IRM dans l’industrie, les aimants et les boucliers magnétiques dans les transports, ou encore les pièces de moteurs et les systèmes de transport à lévitation potentielle, et dans de nombreux autres domaines. Superconducting materials are increasingly present in our daily lives. Superconducting parts find their applications in medicine, such as superconducting MRI coils in industry, magnets and magnetic shields in transport, or engine parts and potential levitation transport systems, and in many other areas.
Parmi ces matériaux, le MgEL est l’un des matériaux les plus prometteurs. Le MgEL est un matériau intermétallique dont la structure consiste en un empilement de plans de magnésium alternant avec des plans de bore le long de son axe c. Si ce composé est connu depuis les années 1950, sa supraconductivité a été découverte il y a quelques années seulement. Alors que les films minces et les poudres présentent des propriétés supraconductrices anisotropes, les céramiques frittées sont isotropes. Among these materials, MgEL is one of the most promising materials. MgEL is an intermetallic material whose structure consists of a stack of magnesium planes alternating with boron planes along its c axis. Although this compound has been known since the 1950s, its superconductivity was only discovered a few years ago. While thin films and powders exhibit anisotropic superconducting properties, sintered ceramics are isotropic.
Néanmoins, les céramiques supraconductrice MgEL sont très difficiles à mettre en forme et à usiner car le matériau est extrêmement dur (Hv = 18 GPa et Module d’ Young = 400 MPa), fragile (K = 2 MPam1/2), difficile à fritter puisque seul le Spark Plasma Sintering permet son frittage optimal, et sa composition chimique est facilement décomposable avec la température. However, MgEL superconducting ceramics are very difficult to shape and machine because the material is extremely hard (Hv = 18 GPa and Young's modulus = 400 MPa), fragile (K = 2 MPam 1/2 ), difficult to sintering since only Spark Plasma Sintering allows optimal sintering, and its chemical composition is easily decomposed with temperature.
Ce matériau présente un fort intérêt dans le cadre d’applications supraconductrices (moteurs, écran magnétiques, éléments de courbures, stockage d’électricité, propulseur électromagnétiques. . .) afin de générer des champs magnétiques importants grâce à sa forte capacité de densité de courant critique. Ces densités de courants sont plus importantes que celles des oxydes supraconducteurs à hautes températures critiques habituellement utilisés tels que le YBa2Cu3Û7 (ReYBCO) à section de passage identiques. Toutefois, l’obtention de pièces massives, notamment à formes complexes, n’est pas possible jusqu’à ce jour, C’est un des problèmes majeurs rencontrés jusqu’à présent dans l’utilisation de MgB2 qui en freine le développement. This material is of great interest in the context of superconducting applications (motors, magnetic screens, curvature elements, electricity storage, electromagnetic thrusters, etc.) in order to generate significant magnetic fields thanks to its high current density capacity. critical. These current densities are greater than those of oxide superconductors at high critical temperatures usually used such as YBa2Cu3O7 (ReYBCO) with identical cross sections. However, obtaining massive parts, particularly with complex shapes, is not possible to date. This is one of the major problems encountered until now in the use of MgB2 which is slowing down its development.
Par ailleurs, le MgB2 est un matériau très léger (2,5 g/cm3) et est donc intéressant pour des applications embarquées, telles que dans des moteurs pour avion électrique, contrairement aux ReBCO. Furthermore, MgB2 is a very light material (2.5 g/cm 3 ) and is therefore interesting for on-board applications, such as in motors for electric aircraft, unlike ReBCO.
Les applications concernant des champs magnétiques importants demandent de plus en plus de pouvoir produire des cartes de champs magnétiques complexes ce qui impose aux pièces du matériau supraconducteur également d’avoir des formes complexes. De telles applications dans le cas de MgB2 sont rendues extrêmement difficiles car il n’est pas possible de l’usiner à cause de sa grande dureté (GPa) et de sa fragilité. Applications involving large magnetic fields increasingly require the ability to produce complex magnetic field maps, which requires the parts of the superconducting material to also have complex shapes. Such applications in the case of MgB2 are made extremely difficult because it is not possible to machine it due to its high hardness (GPa) and brittleness.
Il existe donc un besoin de disposer d’un procédé de fabrication d’une pièce en MgB2 permettant de s’affranchir de l’enroulement de rubans, tel qu’utilisé dans le cas des oxydes tels que le ReBCO, qui est une opération technique très délicate, et surtout d’avoir une section de passage du courant supraconducteur complète correspondant à la section vraie du matériau. There is therefore a need to have a process for manufacturing an MgB2 part making it possible to avoid the need for winding ribbons, as used in the case of oxides such as ReBCO, which is a technical operation. very delicate, and above all to have a complete superconducting current passage section corresponding to the true section of the material.
Il existe aussi un besoin de disposer d’un tel procédé de fabrication de sorte à pouvoir diminuer la taille des dispositifs pour les mêmes performances magnétiques et d’éviter la perte de matière due à l’usinage ou encore l’usure des outils d’usinage. There is also a need to have such a manufacturing process so as to be able to reduce the size of the devices for the same magnetic performances and to avoid the loss of material due to machining or the wear of the tools. machining.
Résumé de l’invention Summary of the invention
L’invention répond à ce besoin à l’aide d’un procédé de fabrication d’une pièce de MgB2 comportant : a) la production d’une préforme par mise en forme d’une poudre de particules de MgB2 au moyen d’une technique de fabrication additive sur lit de poudre, comportant l’insolation de la poudre de MgB2 avec un rayonnement laser, et b) une étape de densification de la préforme, jusqu’à obtention de la pièce de MgB2. The invention meets this need using a process for manufacturing an MgB2 part comprising: a) the production of a preform by shaping a powder of MgB2 particles by means of a additive manufacturing technique on a powder bed, comprising the irradiation of the MgB2 powder with laser radiation, and b) a step of densification of the preform, until the MgB2 part is obtained.
Dans le cadre de la présente invention, le procédé permet ainsi, notamment à partir d’une poudre de MgB2 commerciale, de préférence préalablement désagglomérée, de l’étaler en lit puis de l’insoler à l’aide d’un laser sous atmosphère inerte. Le procédé est additif et permet de construire couche par couche un préformé. Grâce à ce procédé, la quantité de matériau utilisée peut être réduite, ce qui diminue les coûts en matière première. In the context of the present invention, the process thus makes it possible, in particular from a commercial MgB2 powder, preferably previously deagglomerated, to spread it in a bed then to insolate it using a laser under atmosphere inert. The process is additive and makes it possible to build a preformed layer by layer. Through this process, the amount of material used can be reduced, thereby reducing raw material costs.
A ce jour, aucune réalisation de matériau MgB2 par des techniques de fabrication additive n’a été rapportée dans la littérature. To date, no production of MgB2 material using additive manufacturing techniques has been reported in the literature.
Brève description des dessins Brief description of the drawings
L’invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d’exemples de mise en œuvre non limitatifs de celle-ci, et à l’examen des figures : The invention can be better understood on reading the detailed description which follows, non-limiting examples of its implementation, and on examining the figures:
[Fig 1] représente un schéma des étapes successives d’un mode de réalisation du procédé selon l’invention. [Fig 1] represents a diagram of the successive stages of an embodiment of the method according to the invention.
[Fig 2] représente la courbe obtenue à l’exemple représentant la fraction massique de la phase MgB2 en fonction de la dose d’énergie cumulée pour la plaque avec un lit de poudre de 100 pm. [Fig 2] represents the curve obtained in the example representing the mass fraction of the MgB2 phase as a function of the cumulative energy dose for the plate with a powder bed of 100 pm.
[Fig 3] représente des diagrammes XRD des échantillons A et B de l’exemple après mise en œuvre du procédé, à savoir l’étape a) mettant en œuvre la technique SLS et l’étape b) mettant en œuvre la technique S PS. [Fig 3] represents XRD diagrams of samples A and B of the example after implementation of the process, namely step a) implementing the SLS technique and step b) implementing the S PS technique .
[Fig 4] représente des courbes de moment magnétique en fonction de la température d’échantillons obtenus dans l’exemple. Les encarts montrent une photographie de l’échantillon A après l’étape a) mettant en œuvre la technique SLS puis après l’étape b) mettant en œuvre la technique SPS, et la région de transition pour l’échantillon B plus en détail (à droite). [Fig 4] represents magnetic moment curves as a function of temperature of samples obtained in the example. The insets show a photograph of sample A after step a) implementing the SLS technique then after step b) implementing the SPS technique, and the transition region for sample B in more detail ( to the right).
[Fig 5] représente un schéma de pièces de forme plus complexe en MgB2 à imprimer (échelle en mm) et préformés correspondants, obtenus expérimentalement. [Fig 5] represents a diagram of parts of more complex shape in MgB2 to be printed (scale in mm) and corresponding preformed parts, obtained experimentally.
Description détaillée detailed description
L’invention concerne un procédé de fabrication d’une pièce, notamment d’une pièce préformée, en particulier de forme complexe, de la céramique supraconductrice MgB2 selon l’invention, le procédé comportant la production de ladite pièce par mise en forme d’une poudre au moyen d’une technique de fabrication additive. The invention relates to a method of manufacturing a part, in particular a preformed part, in particular of complex shape, of the MgB2 superconducting ceramic according to the invention, the method comprising the production of said part by shaping of a powder using an additive manufacturing technique.
De préférence, la technique de fabrication additive est une technique de fabrication additive sur lit de poudre. De préférence, la technique de fabrication additive, communément appelée techniques d’impression 3D, met en œuvre une fusion partielle ou complète de particules de poudre au moyen d’un faisceau lumineux ou d’électrons, en particulier d’un faisceau lumineux. De préférence, le faisceau lumineux est un faisceau laser. Dans le cadre de la présente invention, la technique de fabrication additive utilisée est de préférence la fabrication additive de frittage laser direct de métal, traduction de Direct Metal Laser Sintering (DMLS). Preferably, the additive manufacturing technique is a powder bed additive manufacturing technique. Preferably, the additive manufacturing technique, commonly called 3D printing techniques, implements a partial or complete fusion of powder particles by means of a light beam or electrons, in particular a light beam. Preferably, the light beam is a laser beam. In the context of the present invention, the additive manufacturing technique used is preferably direct metal laser sintering additive manufacturing, translation of Direct Metal Laser Sintering (DMLS).
La technique de fabrication additive par fusion laser sur lit de poudre comprend le dépôt d’au moins une couche de poudre puis la fusion partielle ou complète d’au moins une partie des particules de la poudre, de préférence de l’ensemble des particules de la couche déposée par un apport sélectif d’énergie sous l’action d’un faisceau laser. The additive manufacturing technique by laser fusion on a powder bed comprises the deposition of at least one layer of powder then the partial or complete fusion of at least a part of the particles of the powder, preferably of all of the particles of the layer deposited by a selective supply of energy under the action of a laser beam.
Dans le cadre de la présente invention, une telle étape permettant la production d’une préforme par mise en forme d’une poudre de particules de MgEL au moyen d’une technique de fabrication additive sur lit de poudre est nommée étape a), et est suivie d’une étape b) de densification. In the context of the present invention, such a step allowing the production of a preform by shaping a powder of MgEL particles by means of an additive manufacturing technique on a powder bed is called step a), and is followed by a step b) of densification.
Selon les termes de l’invention, la « densification » désigne la possibilité d’extraire manuellement un préformé via une augmentation de la densité du matériau, exprimée par rapport à la masse volumique théorique du matériau sans porosité. According to the terms of the invention, “densification” designates the possibility of manually extracting a preformed material via an increase in the density of the material, expressed in relation to the theoretical density of the material without porosity.
Selon une variante, l’étape a) et/ou l’étape b) est mise en œuvre sous atmosphère inerte, en particulier sous argon. According to a variant, step a) and/or step b) is carried out under an inert atmosphere, in particular under argon.
Les différents du procédé selon l’invention, et différents modes de réalisation sont détaillées ci-après. The differences of the process according to the invention, and different embodiments are detailed below.
Fabrication additive sur lit de poudre - étape a) Powder bed additive manufacturing - step a)
L’étape a) du procédé selon l’invention comporte la production d’une préforme par mise en forme d’une poudre de particules de MgEL au moyen d’une technique de fabrication additive sur lit de poudre, comportant l’insolation de la poudre de MgEL avec un rayonnement laser. Dans une variante, la poudre de MgEL peut être celle commercialisée en tant que poudre de bore provenant de Pavezyum, Advanced Chemicals (Istanbul, Turquie). Step a) of the method according to the invention comprises the production of a preform by shaping a powder of MgEL particles by means of an additive manufacturing technique on a powder bed, comprising the insolation of the MgEL powder with laser radiation. In a variant, the MgEL powder can be that marketed as boron powder from Pavezyum, Advanced Chemicals (Istanbul, Turkey).
En ce qui concerne la qualité de cette poudre de départ, la pureté peut être notamment supérieure à 90 %, voire à 95 %, par exemple de 97 %. Concerning the quality of this starting powder, the purity may in particular be greater than 90%, or even 95%, for example 97%.
A titre de traces présentes dans cette poudre, on peut citer des traces de MgO (par exemple 2 %) et de MgEL (par exemple 0,1 %). Dans une variante, le diamètre équivalent médian des particules de la poudre de MgB2 varie de 1 pm à 50 pm, en particulier varie de 2 pm à 30 pm, de préférence varie de 5 pm à 20 pm. As traces present in this powder, we can cite traces of MgO (for example 2%) and MgEL (for example 0.1%). In a variant, the median equivalent diameter of the particles of the MgB2 powder varies from 1 pm to 50 pm, in particular varies from 2 pm to 30 pm, preferably varies from 5 pm to 20 pm.
Dans une variante, le procédé comprend préalablement à l’étape a) une étape de désagglomération de la poudre de particules de MgB2. In a variant, the process comprises, prior to step a), a step of deagglomeration of the MgB2 particle powder.
Typiquement, cette étape de désagglomération peut être effectuée en plaçant la poudre dans un mixeur et/ou centrifugeur, par exemple tel que commercialisé sous le nom Centrifugal Mixer SK-300SII par la société Kakuhanter Planetary. Typiquement, la vitesse de rotation peut être comprise entre 800 tr/min et 1500 tr/min, en particulier entre 1000 tr/min et 1400 tr/min, par exemple à 1200 tr/min. Typically, this deagglomeration step can be carried out by placing the powder in a mixer and/or centrifuge, for example as sold under the name Centrifugal Mixer SK-300SII by the company Kakuhanter Planetary. Typically, the rotation speed can be between 800 rpm and 1500 rpm, in particular between 1000 rpm and 1400 rpm, for example at 1200 rpm.
La poudre peut être étalée en lit de différentes épaisseurs. L’épaisseur du lit de poudre peut en particulier influencer la façon dont le frittage de la poudre se produit. On peut chercher en effet dans le cadre de la présente invention à viser une température qui évite la dégradation de la phase MgB2, notamment en Mg et B. The powder can be spread in beds of different thicknesses. In particular, the thickness of the powder bed can influence how powder sintering occurs. In fact, within the framework of the present invention, we can seek to aim for a temperature which avoids degradation of the MgB2 phase, in particular into Mg and B.
Selon une variante, l’épaisseur du lit de poudre en étape a) varie de 50 pm à 800 pm, en particulier varie de 75 pm à 500 pm, de préférence varie de 100 pm à 300 pm. According to a variant, the thickness of the powder bed in step a) varies from 50 pm to 800 pm, in particular varies from 75 pm to 500 pm, preferably varies from 100 pm to 300 pm.
Selon une variante, l’étape a) est mise en œuvre par frittage sélectif par laser (SLS ou DMLS). According to a variant, step a) is implemented by selective laser sintering (SLS or DMLS).
Tout appareil DMLS/SLS connu de l’homme de l’art peut être utilisé, tel que l’appareil M ProXLS 200 commercialisé par la société 3D system. Any DMLS/SLS device known to those skilled in the art can be used, such as the M ProXLS 200 device marketed by the company 3D system.
Le type de laser pouvant être utilisé dans l’insolation menée en étape a) du procédé est notamment un laser de 300 W. Typiquement, un laser de longueur d’onde 1064 nm peut être utilisé. The type of laser that can be used in the exposure carried out in step a) of the process is in particular a 300 W laser. Typically, a laser with a wavelength of 1064 nm can be used.
Selon une variante de réalisation, la production d’une préforme par mise en forme d’une poudre de particules de MgB2 au moyen d’une technique de fabrication additive sur lit de poudre, comporte l’insolation de la poudre de MgB2 avec un rayonnement laser, avec une densité d’énergie cumulée locale variant de 18 mJ/pm2 à 265 mJ/pm2, soit une dose macroscopique globale non cumulée variant de 4 J/cm2/passe à 70 J/cm2/passe, de manière à obtenir la préforme à base d’une poudre insolée de MgB2. According to a variant embodiment, the production of a preform by shaping a powder of MgB2 particles by means of an additive manufacturing technique on a powder bed, comprises the insolation of the MgB2 powder with radiation laser, with a local cumulative energy density varying from 18 mJ/pm 2 to 265 mJ/pm 2 , i.e. a global non-cumulative macroscopic dose varying from 4 J/cm 2 /pass to 70 J/cm 2 /pass, of so as to obtain the preform based on an exposed MgB2 powder.
L’insolation permet d’aboutir à une densification de la préforme. Ainsi, la densification de la poudre de MgB2 à l’issue de l’étape a) peut varier de 30 % à 45 %, de préférence varier de 35 % à 45 %, exprimée par rapport à la masse volumique théorique du matériau sans porosité. The insolation results in a densification of the preform. Thus, the densification of the MgB2 powder at the end of step a) can vary from 30% to 45%, preferably vary from 35% to 45%, expressed in relation to the theoretical density of the material without porosity. .
L’optimisation de l’insolation laser (dose, épaisseur) a notamment permis de fournir la possibilité d’avoir des préformes (35 % de densification) manipulates qui peuvent ensuite être frittées sous charge et sous atmosphère inerte durant l’étape b) détaillée ci-après. The optimization of laser exposure (dose, thickness) notably made it possible to provide the possibility of having preforms (35% densification) manipulated which can then be sintered under load and under an inert atmosphere during step b) detailed below.
La puissance du rayonnement laser peut notamment varier de 28 W à 115 W, en particulier de 40 W à 95 W, encore plus particulièrement de 50 W à 85 W. The power of the laser radiation can in particular vary from 28 W to 115 W, in particular from 40 W to 95 W, even more particularly from 50 W to 85 W.
En termes de doses ou de densité d’énergie du rayonnement laser, elles peuvent varier de 4 J/cm2/passe à 70 J/cm2/passe, en particulier varier de 4,5 J/cm2/passe à 70 J/cm2/passe, plus particulièrement varier de 5 J/cm2/passe à 70 J/cm2/passe, de préférence varier de 6 J/cm2/passe à 60 J/cm2/passe, et plus préférentiellement de 7 J/cm2/passe à 50 J/cm2/passe. En termes de dose cumulée, elle peut varier de 18 mJ/pm2 à 265 mJ/pm2, en particulier varier de 31 mJ/pm2 à 188 mJ/pm2, et encore plus particulièrement de 53 mJ/pm2 à 144 mJ/pm2.In terms of doses or energy density of laser radiation, they can vary from 4 J/cm 2 /pass to 70 J/cm 2 /pass, in particular vary from 4.5 J/cm 2 /pass to 70 J /cm 2 /pass, more particularly vary from 5 J/cm 2 /pass to 70 J/cm 2 /pass, preferably vary from 6 J/cm 2 /pass to 60 J/cm 2 /pass, and more preferably from 7 J/cm 2 /pass to 50 J/cm 2 /pass. In terms of cumulative dose, it can vary from 18 mJ/pm 2 to 265 mJ/pm 2 , in particular vary from 31 mJ/pm 2 to 188 mJ/pm 2 , and even more particularly from 53 mJ/pm 2 to 144 mJ/pm 2 .
Les inventeurs ont notamment pu observer que des doses laser trop faibles, par exemple inférieures à 4 J/cm2/passe, peuvent entrainer un frittage non effectif, autrement dit se manifestant par le fait que la poudre reste sous forme de poudre alors qu’une dose plus grande, par exemple supérieure à 100 J/cm2/passe, entraine la dégradation de la phase MgEL, typiquement par formation de phases d’impuretés telles que MgEL, Mg2EL, MgO ou Mg, qui entraine des propriétés indésirables dans les échantillons obtenus, notamment la perte de la supraconductivité. Par ailleurs, la dose d’énergie cumulée peut être ajustée par l’homme de l’art en fonction de l’épaisseur du lit de poudre sélectionnée. The inventors were notably able to observe that too low laser doses, for example less than 4 J/cm 2 /pass, can lead to ineffective sintering, in other words manifested by the fact that the powder remains in powder form while a larger dose, for example greater than 100 J/cm 2 /pass, leads to the degradation of the MgEL phase, typically by the formation of impurity phases such as MgEL, Mg2EL, MgO or Mg, which causes undesirable properties in the samples obtained, in particular the loss of superconductivity. Furthermore, the cumulative energy dose can be adjusted by those skilled in the art as a function of the thickness of the selected powder bed.
Selon une variante, le faisceau laser est déplacé à une vitesse variant de 100 mm/s à 1000 mm/s, notamment de 100 mm/s à 800 mm/s, en particulier variant de 120 mm/s à 800 mm/s, plus particulièrement variant de 120 mm/s à 500 mm/s, de préférence variant de 150 mm/s à 300 mm/s, et plus préférentiellement variant de 150 mm/s à 250 mm/s. According to a variant, the laser beam is moved at a speed varying from 100 mm/s to 1000 mm/s, in particular from 100 mm/s to 800 mm/s, in particular varying from 120 mm/s to 800 mm/s, more particularly varying from 120 mm/s to 500 mm/s, preferably varying from 150 mm/s to 300 mm/s, and more preferably varying from 150 mm/s to 250 mm/s.
Selon une variante, l’écart-vecteur du faisceau laser varie de 50 pm à 250 pm, en particulier varie de 75 pm à 175 pm, de préférence varie de 100 pm à 150 pm. According to a variant, the vector spacing of the laser beam varies from 50 pm to 250 pm, in particular varies from 75 pm to 175 pm, preferably varies from 100 pm to 150 pm.
Selon une variante, la focalisation du faisceau laser varie de -50 mm à -20 mm, en particulier varie de -50 mm à -30 mm, de préférence varie de -50 mm à -40 mm. Selon une autre variante de réalisation, l’étape a) du procédé selon l’invention comprend la production d’une préforme par mise en forme d’une poudre de particules de MgB2 au moyen d’une technique de fabrication additive sur lit de poudre, comportant l’insolation de la poudre de MgB2 avec un rayonnement laser, avec une dose d’énergie macroscopique variant de 50 J/cm2/passe à 90 J/cm2/passe, de manière à obtenir une contreforme à base d’une poudre de MgO et la préforme à base d’une poudre non insolée de MgB2 contiguë à la poudre de MgO. According to a variant, the focusing of the laser beam varies from -50 mm to -20 mm, in particular varies from -50 mm to -30 mm, preferably varies from -50 mm to -40 mm. According to another alternative embodiment, step a) of the method according to the invention comprises the production of a preform by shaping a powder of MgB2 particles using an additive manufacturing technique on a powder bed , comprising the insolation of the MgB2 powder with laser radiation, with a macroscopic energy dose varying from 50 J/cm 2 /pass to 90 J/cm 2 /pass, so as to obtain a counterform based on an MgO powder and the preform based on an unexposed MgB2 powder adjacent to the MgO powder.
Selon une variante de ce mode de réalisation, la dose d’énergie du rayonnement laser en étape a) varie de 50 J/cm2/passe à 90 J/cm2/passe, en particulier varie de 50 J/cm2/passe à 80 J/cm2/passe, de préférence varie de 50 J/cm2/passe à 70 J/cm2/passe. According to a variant of this embodiment, the energy dose of the laser radiation in step a) varies from 50 J/cm 2 /pass to 90 J/cm 2 /pass, in particular varies from 50 J/cm 2 /pass at 80 J/cm 2 /pass, preferably varies from 50 J/cm 2 /pass to 70 J/cm 2 /pass.
Selon une variante de ce mode de réalisation, la puissance du rayonnement laser en étape a) varie de 70 W à 150 W, en particulier varie de 70 W à 130 W, de préférence varie de 70 W à 120 W. According to a variant of this embodiment, the power of the laser radiation in step a) varies from 70 W to 150 W, in particular varies from 70 W to 130 W, preferably varies from 70 W to 120 W.
Selon une variante de ce mode de réalisation, le faisceau laser en étape a) est déplacé à une vitesse variant de 100 mm/s à 800 mm/s, en particulier variant de 120 mm/s à 500 mm/s, de préférence variant de 150 mm/s à 250 mm/s. According to a variant of this embodiment, the laser beam in step a) is moved at a speed varying from 100 mm/s to 800 mm/s, in particular varying from 120 mm/s to 500 mm/s, preferably varying from 150 mm/s to 250 mm/s.
Selon une variante de ce mode de réalisation, l’écart- vecteur du faisceau laser en étape a) varie de 50 pm à 250 pm, en particulier varie de 75 pm à 175 pm, de préférence varie de 100 pm à 150 pm. According to a variant of this embodiment, the vector spacing of the laser beam in step a) varies from 50 pm to 250 pm, in particular varies from 75 pm to 175 pm, preferably varies from 100 pm to 150 pm.
Selon une variante de ce mode de réalisation, la focalisation du faisceau laser en étape a) varie de -50 mm à -20 mm, en particulier varie de -50 mm à -30 mm, de préférence varie de -50 mm à -40 mm.
Figure imgf000008_0001
According to a variant of this embodiment, the focusing of the laser beam in step a) varies from -50 mm to -20 mm, in particular varies from -50 mm to -30 mm, preferably varies from -50 mm to -40 mm.
Figure imgf000008_0001
L’étape de densification de l’étape b) peut comprendre une étape de frittage, en particulier par densification sous charge, ou une étape d’imprégnation, en particulier avec un métal conducteur distinct du magnésium, et de préférence avec du cuivre ou un alliage de cuivre et d’argent. The densification step of step b) may comprise a sintering step, in particular by densification under load, or an impregnation step, in particular with a conductive metal distinct from magnesium, and preferably with copper or a alloy of copper and silver.
Selon un mode de réalisation particulier, l’étape b) consiste en une étape de densification sous charge. According to a particular embodiment, step b) consists of a densification step under load.
Selon une variante, l’étape de frittage est effectuée par densification sous charge, notamment par SPS ou par pressage à chaud (en anglais « Hot Pressing »), en particulier par SPS. L’objectif de cette étape b) de densification est d’aboutir à une dureté des pièces formées compatible avec les applications souhaitées. En d’autres termes, cette étape b) de densification, notamment par traitement par SPS, diminue la fragilité et la porosité des échantillons ou pièces obtenues par mise en œuvre d’une unique étape a) telle que décrite précédemment. According to a variant, the sintering step is carried out by densification under load, in particular by SPS or by hot pressing (in English “Hot Pressing”), in particular by SPS. The objective of this densification step b) is to achieve a hardness of the formed parts compatible with the desired applications. In other words, this densification step b), in particular by SPS treatment, reduces the fragility and porosity of the samples or parts obtained by implementing a single step a) as described previously.
Le traitement par SPS est un frittage assisté sous champ. Le frittage assisté sous champ est également connu sous l’acronyme anglophone « FAST » pour « Field Assisted Sintering Technology ». Par « frittage assisté sous champ », on entend un frittage assisté sous champ électrique ou champ magnétique. Le frittage assisté sous champ électrique est également connu sous la dénomination de « frittage flash » et sous les acronymes anglophones « SPS » pour « Spark Plasma Sintering » et « EC AS » pour « Electric Current Assisted Sintering ». Des matrices de poudres ou poudres sacrificielles peuvent être utilisées dans le cadre de la mise en œuvre de l’étape b), notamment en vue de faciliter le démoulage. Parmi de telles poudres, on peut notamment citer des poudres telles que SiC, AI2O3, MgAhCL et BN. De telles poudres peuvent en particulier être choisies de sorte à éviter l’interdiffusion et la formation d’impuretés dues à des réactions parasites. SPS treatment is field-assisted sintering. Field-assisted sintering is also known by the English acronym “FAST” for “Field Assisted Sintering Technology”. By “field-assisted sintering” we mean assisted sintering under an electric field or magnetic field. Electric field-assisted sintering is also known under the name “flash sintering” and under the English acronyms “SPS” for “Spark Plasma Sintering” and “EC AS” for “Electric Current Assisted Sintering”. Powder matrices or sacrificial powders can be used as part of the implementation of step b), particularly with a view to facilitating demoulding. Among such powders, mention may in particular be made of powders such as SiC, Al2O3, MgAhCL and BN. Such powders can in particular be chosen so as to avoid interdiffusion and the formation of impurities due to parasitic reactions.
Selon une variante, l’étape de densification sous charge met en œuvre une ou plusieurs poudres sacrificielles, et de préférence au moins du carbure de silicium. According to a variant, the densification step under load uses one or more sacrificial powders, and preferably at least silicon carbide.
Comme illustré dans l’exemple qui suit, il a pu être observé que la géométrie de la pièce a ainsi pu être conservée. As illustrated in the following example, it could be observed that the geometry of the part could thus be preserved.
Selon une variante, l’étape de densification sous charge est effectuée à une température variant de 700 °C à 1050 °C, en particulier variant de 750 °C à 1000 °C, de préférence variant de 800°C à 950 °C. According to a variant, the densification step under load is carried out at a temperature varying from 700°C to 1050°C, in particular varying from 750°C to 1000°C, preferably varying from 800°C to 950°C.
Selon une variante, l’étape de densification sous charge est effectuée pendant une durée variant de 20 minutes à 120 minutes, en particulier variant de 20 minutes à 90 minutes, de préférence variant de 20 minutes à 60 minutes. According to a variant, the densification step under load is carried out for a duration varying from 20 minutes to 120 minutes, in particular varying from 20 minutes to 90 minutes, preferably varying from 20 minutes to 60 minutes.
Selon une variante, l’étape de densification sous charge est effectuée sous une pression variant de 10 MPa à 100 MPa, en particulier variant de 20 MPa à 80 MPa, de préférence variant de 40 MPa à 60 MPa. According to a variant, the densification step under load is carried out under a pressure varying from 10 MPa to 100 MPa, in particular varying from 20 MPa to 80 MPa, preferably varying from 40 MPa to 60 MPa.
Selon une autre variante, l’étape de densification de l’étape b) comprend une étape d’imprégnation, en particulier avec un métal conducteur distinct du magnésium, et de préférence avec du cuivre ou un alliage de cuivre et d’argent. Une telle étape permet de combler la porosité par capillarité. According to another variant, the densification step of step b) comprises an impregnation step, in particular with a conductive metal distinct from magnesium, and preferably with copper or an alloy of copper and silver. Such a step makes it possible to fill the porosity by capillary action.
Selon un mode particulier de réalisation, la présente invention concerne un procédé tel que décrit précédemment, caractérisé en ce qu’il comporte : a) la production d’une préforme par mise en forme d’une poudre de particules de MgEL au moyen d’une technique de fabrication additive sur lit de poudre, comportant l’insolation de la poudre de MgEU avec un rayonnement laser, avec une dose d’énergie variant de 4 J/cm2/passe à 70 J/cm2/passe, de manière à obtenir la préforme à base d’une poudre insolée de MgEU, et b) une étape de densification de la préforme, par frittage de la poudre insolée de MgEU, jusqu’à obtention de la pièce de MgEL. According to a particular embodiment, the present invention relates to a process as described above, characterized in that it comprises: a) the production of a preform by shaping a powder of MgEL particles by means of an additive manufacturing technique on a powder bed, comprising the insolation of the MgEU powder with laser radiation, with an energy dose varying from 4 J/cm 2 /pass to 70 J/cm 2 /pass, so as to to obtain the preform based on an exposed MgEU powder, and b) a step of densifying the preform, by sintering the exposed MgEU powder, until the MgEL part is obtained.
La figure 1 représente un schéma des étapes successives du mode de réalisation du procédé décrit ci-dessus. Figure 1 represents a diagram of the successive stages of the embodiment of the method described above.
Par ailleurs, la figure 5 représente un schéma de pièces en MgEL à imprimer (échelle en mm) et préformés obtenus expérimentalement avec des puissances de laser de 63-74 W, une défocalisation à -50 mm, une vitesse de balayage de 200 mm/s, un espacement de 175 pm, et une épaisseur de lit de poudre de 300 pm (correspondant à des doses de 40 J/cm2/passe J/cm2/passe à 45 J/cm2/passe). Furthermore, Figure 5 represents a diagram of MgEL parts to be printed (scale in mm) and preformed experimentally obtained with laser powers of 63-74 W, a defocus at -50 mm, a scanning speed of 200 mm/ s, a spacing of 175 pm, and a powder bed thickness of 300 pm (corresponding to doses of 40 J/cm 2 /pass J/cm 2 /pass to 45 J/cm 2 /pass).
Les inventeurs ont par ailleurs mis au point un mode de réalisation particulier du procédé mettant en œuvre un rayonnement laser avec une densité d’énergie cumulée importante à l’étape a) permettant d’obtenir une contreforme sous forme d’une poudre de MgEL dégradée et/ou décomposé de MgO. Autrement dit, la préforme et la contreforme se trouvent alors contiguës durant cette étape a). La pièce ainsi obtenue à l’issue de l’étape a), comprenant la préforme et la contreforme peuvent ensuite être soumise à l’étape b) pour obtenir la préforme en MgEL densifiée. The inventors have also developed a particular embodiment of the process using laser radiation with a high cumulative energy density in step a) making it possible to obtain a counterform in the form of a degraded MgEL powder. and/or decomposed MgO. In other words, the preform and the counterform are then contiguous during this step a). The part thus obtained at the end of step a), comprising the preform and the counterform can then be subjected to step b) to obtain the densified MgEL preform.
Ainsi, la présente invention concerne également un procédé tel que décrit précédemment, caractérisé en ce qu’il comprend : a) la production d’une préforme par mise en forme d’une poudre de particules de MgEL au moyen d’une technique de fabrication additive sur lit de poudre, dans un environnement avec de l’oxygène, comportant l’insolation de la poudre de MgEL avec un rayonnement laser, avec une dose d’énergie variant de 50 J/cm2/passe à 90 J/cm2/passe, de préférence variant de 60 J/cm2/passe à 80 J/cm2/passe, de manière à obtenir une contreforme à base d’une poudre de MgO et la préforme à base d’une poudre non insolée de MgB2 contiguë à la poudre de MgO, et b) une étape de densification de la préforme, par frittage de la poudre non insolée de MgB2 en étape a), dans un four de frittage sous atmosphère inerte, suivie d’une étape de dépoudrage de la poudre de MgO, jusqu’à obtention de la pièce de MgB2. Thus, the present invention also relates to a process as described above, characterized in that it comprises: a) the production of a preform by shaping a powder of MgEL particles by means of a manufacturing technique additive on a powder bed, in an environment with oxygen, comprising the insolation of the MgEL powder with laser radiation, with an energy dose varying from 50 J/cm 2 /pass to 90 J/cm 2 /pass, preferably varying from 60 J/cm 2 /pass to 80 J/cm 2 /pass, so as to obtain a counterform based on an MgO powder and the preform based on an unexposed MgB2 powder contiguous to the MgO powder, and b) a step of densifying the preform, by sintering the unexposed MgB2 powder in step a), in a sintering oven under an inert atmosphere, followed by a step of depowdering the MgO powder, until obtaining the MgB2 piece.
Selon une variante de ce mode de réalisation, l’étape de frittage est effectuée à une température variant de 700 °C à 1050 °C, en particulier variant de 750 °C à 1000 °C, de préférence variant de 800 °C à 950 °C. According to a variant of this embodiment, the sintering step is carried out at a temperature varying from 700°C to 1050°C, in particular varying from 750°C to 1000°C, preferably varying from 800°C to 950°C. °C.
A l’issue de l’étape b), le procédé peut également comprendre une étape postérieure de démoulage de la pièce de MgB2. At the end of step b), the process can also include a subsequent step of demoulding the MgB2 part.
La pièce de MgB2 peut être un supraconducteur, dont la température critique peut être comprise entre 35 K et 39 K. The MgB2 part may be a superconductor, whose critical temperature may be between 35 K and 39 K.
Préformes ou pièces obtenues et leur utilisation Preforms or parts obtained and their use
Les inventeurs ont montré que le procédé selon la présente invention permet de réaliser des formes complexes. Typiquement, la taille des pièces ou motifs peut avantageusement être supérieure à 0,5 x 0,5 x 0,5 cm3 pour obtenir une bonne tenue mécanique des préformés. Le procédé selon la présente invention peut ainsi être notamment adapté pour la fabrication d’objets massifs de dimensions multicentimétriques. The inventors have shown that the process according to the present invention makes it possible to produce complex shapes. Typically, the size of the parts or patterns can advantageously be greater than 0.5 x 0.5 x 0.5 cm 3 to obtain good mechanical strength of the preformed parts. The method according to the present invention can thus be particularly adapted for the manufacture of massive objects of multicentimeter dimensions.
Les inventeurs ont par ailleurs démontré que le procédé selon la présente invention permet la fabrication de préformes, notamment densifiées à 35 %, avec une bonne tenue mécanique pour de grandes pièces, sans dégradation importante de la phase MgB2. L’étape successive de densification sous charge (SPS), notamment utilisant une poudre sacrificielle telle qu’une poudre de SiC, à des fins d’éviter une diffusion couplée à une réaction indésirable et à des fins de démoulage, permet d’accroître la densification des préformés en gardant la géométrie initiale du préformé. Du fait d’un retrait pouvant être important, notamment de 65 %, en particulier visible le long de l’axe d’application de la force, comme illustré dans l’exemple qui suit, il pourra être avantageux d’en tenir compte pour satisfaire les cotes finales des pièces. Par ailleurs, comme le montre la figure 4, les inventeurs ont pu montrer que des échantillons présentaient la phase MgB2 et que ces derniers étaient supraconducteurs avec une température critique analogue à celle d’échantillons obtenus par la voie conventionnelle (38 K). The inventors have also demonstrated that the process according to the present invention allows the manufacture of preforms, in particular densified to 35%, with good mechanical strength for large parts, without significant degradation of the MgB2 phase. The successive step of densification under load (SPS), in particular using a sacrificial powder such as a SiC powder, in order to avoid diffusion coupled with an undesirable reaction and for demolding purposes, makes it possible to increase the densification of the preformed while keeping the initial geometry of the preformed. Due to a shrinkage which can be significant, in particular 65%, in particular visible along the axis of application of the force, as illustrated in the example which follows, it may be advantageous to take it into account for satisfy the final dimensions of the parts. Furthermore, as shown in Figure 4, the inventors were able to show that samples presented the MgB2 phase and that the latter were superconductors with a critical temperature similar to that of samples obtained by the conventional route (38 K).
Le procédé selon la présente invention permet l’obtention de formes complexes en 3D. Les préformes ou pièces obtenues par le procédé selon la présente invention peuvent notamment être utilisés pour tous types d’applications mettant en œuvre des supraconducteurs telles que des moteurs ou des alternateurs, en particulier dans le domaine de l’aéronautique, de l’éolien, des correcteurs de trajectoire de satellites, des systèmes de lévitation magnétique, des propulseurs, notamment pour dans le domaine de la magnétohydrodynamique ou pour des lanceurs, des boucliers et écrantages magnétiques (MAGLEV), des systèmes de stockage d’énergie (SMES), des aimants de courbure et des systèmes de confinement magnétique, par exemple pour des accélérateurs de particules, des réacteurs à fusion (ITER), des systèmes de propulsion maritime pour sous-marins et bateaux, des systèmes d’électricité haute puissance (shunts supraconducteurs), des systèmes de génération de champ magnétique (IRM) ou encore des lanceurs électromagnétiques (S3EL). The method according to the present invention makes it possible to obtain complex 3D shapes. The preforms or parts obtained by the process according to the present invention can in particular be used for all types of applications using superconductors such as motors or alternators, in particular in the field of aeronautics, wind power, satellite trajectory correctors, magnetic levitation systems, thrusters, particularly for the field of magnetohydrodynamics or for launchers, magnetic shields and screenings (MAGLEV), energy storage systems (SMES), bending magnets and magnetic confinement systems, for example for particle accelerators, fusion reactors (ITER), maritime propulsion systems for submarines and boats, high-power electricity systems (superconducting shunts), magnetic field generation systems (IRM) or even electromagnetic launchers (S3EL).
L’invention n’est pas limitée aux modes de réalisation décrits ci-dessus. The invention is not limited to the embodiments described above.
Par exemple, les pièces de MgEh peuvent être différentes de celles illustrées. For example, MgEh parts may differ from those shown.
Exemples Examples
MATERIAUX ET METHODES MATERIALS AND METHODS
Une poudre commerciale (Pavezyum) d’une pureté supérieure à 95 % et d’une taille d’ aggloméras inférieure à 500 pm (particules de 1 pm à 50 pm) a été utilisée pour la fabrication des pièces supraconductrices. A commercial powder (Pavezyum) with a purity greater than 95% and an agglomerate size less than 500 pm (particles from 1 pm to 50 pm) was used for the manufacture of the superconducting parts.
La pureté de ladite poudre, ainsi que la distribution des phases dans les échantillons produits, ont été vérifiées à l’aide du diffractomètre Bruker D8 dans la configuration Bragg-Brentano (30 < 29 < 65°, pas 0,01°) et un rayonnement de longueur d’onde CuKa (40 kV, 40 mA). Pendant l’acquisition, un filtre de nickel a été utilisé pour éliminer le rayonnement Kp et réduire la fluorescence. Le mélange de la poudre brute a été effectué pour la désagglomération de la poudre plusieurs jours avant le début de la mise en œuvre du procédé au moyen de l’appareillage Kakuhanter Planetary Centrifugal Mixer SK-300SII. The purity of said powder, as well as the distribution of phases in the samples produced, were verified using the Bruker D8 diffractometer in the Bragg-Brentano configuration (30 < 29 < 65°, step 0.01°) and a CuKa wavelength radiation (40 kV, 40 mA). During acquisition, a nickel filter was used to eliminate Kp radiation and reduce fluorescence. Mixing of the raw powder was carried out for powder deagglomeration several days before the start of the process using the Kakuhanter Planetary Centrifugal Mixer SK-300SII equipment.
Conditions de mélange : 1100 tr/min, pour une durée de 6 minutes pour un maximum de 180 g de poudre en une fois. Mixing conditions: 1100 rpm, for a duration of 6 minutes for a maximum of 180 g of powder at one time.
La poudre désagglomérée a été introduite dans l’appareil SLS. The deagglomerated powder was introduced into the SLS apparatus.
Appareil SLS utilisé pour l’étape a) : M ProXLS 200 commercialisé par la société 3D System (longueur d’onde : 1070 nm) sous une atmosphère inerte d’argon (O2 < 800 ppm). SLS device used for step a): M ProXLS 200 marketed by the company 3D System (wavelength: 1070 nm) under an inert argon atmosphere (O2 < 800 ppm).
Une fine couche de silicium a été appliquée sur la surface de la plaque de fabrication pour éviter le glissement de la poudre de MgEL pendant la fabrication de la première couche.A thin layer of silicon was applied to the surface of the build plate to prevent slippage of the MgEL powder during fabrication of the first layer.
Tous les échantillons obtenus ont été étudiés à l’aide de la microscopie (KEYENCE VH- Z100R, SEM TESCAN VEGA3) et des techniques XRD. All samples obtained were studied using microscopy (KEYENCE VH-Z100R, SEM TESCAN VEGA3) and XRD techniques.
Les propriétés de supraconductivité des échantillons sélectionnés ont été étudiées à l’aide de mesures de susceptibilité magnétique avec le magnétomètre SQUID (Quantum design MPMS 5) dans les régimes de refroidissement à champ nul (« zero field cooling » -ZFC) et de refroidissement à champ de 20 Oe (FC) dans l’intervalle de température de 20 - 40 K. The superconductivity properties of the selected samples were studied using magnetic susceptibility measurements with the SQUID magnetometer (Quantum design MPMS 5) in zero field cooling (ZFC) and zero field cooling regimes. field of 20 Oe (FC) in the temperature range of 20 - 40 K.
Forme des échantillons ou pièces : Forme cubique simple. Chaque cube avait une surface de base de 1 x 1 cm2 et une hauteur de ~ 4,4 mm. Shape of samples or parts: Simple cubic shape. Each cube had a base area of 1 x 1 cm 2 and a height of ~4.4 mm.
Epaisseur du lit de poudre : 100 pm Powder bed thickness: 100 pm
Laser : Laser:
- stratégie hexagonale du mouvement du laser - hexagonal strategy of laser movement
- puissance du laser (P) : {30 ; 129} W - laser power (P): {30; 129} W
- vitesse de balayage du laser (v) : {50 ; 800} mm/s - laser scanning speed (v): {50; 800} mm/s
- écart entre deux passages du laser (A) : { 100 ; 250} pm - distance between two passes of the laser (A): { 100; 250} p.m.
- taille du spot laser : 1000 pm - laser spot size: 1000 pm
Appareil utilisé pour l’étape b) : Spark Plasma Sintering SPS Dr. Sinter 2080 commercialisé par la société Sumitomo. Device used for step b): Spark Plasma Sintering SPS Dr. Sinter 2080 marketed by the company Sumitomo.
RESULTATS RESULTS
Dans les conditions identifiées plus haut, le rendement de fabrication du SLS était de ~ 85 % (échantillons viables). Under the conditions identified above, the SLS manufacturing yield was ~85% (viable samples).
Tous les échantillons synthétisés ont ensuite été étudiés par diffraction de rayons X. La figure 2 présente la fraction volumique de la phase MgEL dans l’échantillon en fonction de la dose d’énergie cumulée. All synthesized samples were then studied by X-ray diffraction. Figure 2 presents the volume fraction of the MgEL phase in the sample as a function of the cumulative energy dose.
La valeur la plus élevée de la fraction de MgEL a été trouvée pour des doses du rayonnement laser comprises entre 4,5 J/cm2/passe et 60 J/cm2/passe. The highest value of the MgEL fraction was found for laser radiation doses between 4.5 J/cm 2 /pass and 60 J/cm 2 /pass.
Selon l’étude microscopique, tous les échantillons, qui ont reçu une dose d’énergie inférieure à 4 J/cm2/passe, étaient fragiles et présentaient une forte porosité, ce qui indique que l’énergie de rayonnement du faisceau laser n’est pas suffisante pour obtenir un frittage complet de la poudre. According to the microscopic study, all samples, which received an energy dose less than 4 J/cm 2 /pass, were fragile and had high porosity, indicating that the radiation energy of the laser beam does not is not sufficient to obtain complete sintering of the powder.
Après une étude approfondie, deux échantillons contenant une phase MgEL supérieure à 94 % ont été sélectionnés. After an in-depth study, two samples containing an MgEL phase greater than 94% were selected.
Ces résultats ont été obtenus dans les conditions laser suivantes : These results were obtained under the following laser conditions:
- P = 66 W, v = 800 mm/s, A = 100 pm (échantillon A, soit une dose de 10 J/cm2/passe correspondant également à une dose cumulée Ed = 89 mJ/ pm2), et - P = 66 W, v = 800 mm/s, A = 100 pm (sample A, i.e. a dose of 10 J/cm 2 /pass also corresponding to a cumulative dose Ed = 89 mJ/pm 2 ), and
- P = 84 W, v = 200 mm/s, A = 250 pm (échantillon B, soit une dose de 50 J/cm2/passe, correspondant également à une dose cumulée Ed = 179 mJ/ pm2). - P = 84 W, v = 200 mm/s, A = 250 pm (sample B, i.e. a dose of 50 J/cm 2 /pass, also corresponding to a cumulative dose Ed = 179 mJ/pm 2 ).
Les clichés radiographiques de ces échantillons sont présentés sur la figure 3 (a, b). The X-ray images of these samples are shown in Figure 3 (a, b).
Les échantillons obtenus montrent un schéma XRD similaire avec les mêmes composés.The obtained samples show a similar XRD pattern with the same compounds.
Un traitement supplémentaire par frittage par plasma à étincelles a été effectué. Further processing by spark plasma sintering was carried out.
Les échantillons ont été placés dans des matrices en graphite avec la poudre de SiC supplémentaire autour du cube et chauffés à 800 °C sous 0,1 kN dans la matrice de diamètre 20 mm pendant 8 min. The samples were placed in graphite matrices with the additional SiC powder around the cube and heated to 800 °C under 0.1 kN in the 20 mm diameter matrix for 8 min.
Ensuite, une pression uniaxiale de 15,7 kN a été appliquée pendant 20 minutes et cette température et cette pression ont été maintenues pendant 20 minutes supplémentaires. Enfin, la pression et la température ont été relâchées pendant 16 minutes. Then, a uniaxial pressure of 15.7 kN was applied for 20 minutes and this temperature and pressure were maintained for an additional 20 minutes. Finally, the pressure and temperature were released for 16 minutes.
Les échantillons parallélépipédiques obtenus présentaient une géométrie non déformée (figure 4 en médaillon) de leur surface de base, mais leur hauteur était extrêmement réduite. Malgré une seule différence dans les conditions de SPS, le diagramme de diffraction des rayons X pour l’échantillon B montre plus de pics d’impuretés (Figure 3 c, d), ce qui peut être expliqué par la présence de SiC mal éliminé. The parallelepiped samples obtained presented an undeformed geometry (Figure 4 inset) of their base surface, but their height was extremely reduced. Despite only one difference in SPS conditions, the X-ray diffraction pattern for sample B shows more impurity peaks (Figure 3 c,d), which can be explained by the presence of poorly removed SiC.
En ce qui concerne les propriétés supraconductrices, les mesures de susceptibilité magnétique montrent une transition claire vers la supraconductivité à Te ~ 37,8 K dans l’échantillon A, tandis que la courbe de susceptibilité de l’échantillon B croît à nouveau rapidement avec la diminution de la température juste après la transition vers l’état supraconducteur (Te ~ 37,8 K) (figure 4). Regarding superconducting properties, magnetic susceptibility measurements show a clear transition to superconductivity at Te ~37.8 K in sample A, while the susceptibility curve of sample B grows again rapidly with the decrease in temperature just after the transition to the superconducting state (Te ~ 37.8 K) (figure 4).
Finalement, les conditions SPS décrites ci-dessus donnent un bon résultat tant pour la composition de la phase obtenue que pour la préservation des propriétés de supraconductivité. Finally, the SPS conditions described above give a good result both for the composition of the phase obtained and for the preservation of the superconductivity properties.
CONCLUSIONS CONCLUSIONS
Des doses d’énergie cumulées de 89 mJ/pm2 (dose 10 J/cm2/passe) et 179 mJ/pm2 (50 J/cm2/passe) reçues par la poudre brute dans certaines conditions SLS, permettent d’obtenir des échantillons façonnés avec une phase MgEL pratiquement non dégénérée et supraconductrice . Cumulative energy doses of 89 mJ/pm 2 (dose 10 J/cm 2 /pass) and 179 mJ/pm 2 (50 J/cm 2 /pass) received by the raw powder under certain SLS conditions, make it possible to obtain samples shaped with a virtually non-degenerate and superconducting MgEL phase.
L’échantillon traité par SPS dans une atmosphère d’Ar à 800 °C et 15,7 kN montre une transition nette vers l’état supraconducteur à ~ 37,8 K. The sample processed by SPS in an Ar atmosphere at 800 °C and 15.7 kN shows a clear transition to the superconducting state at ~37.8 K.
Ces résultats montrent que le procédé selon la présente invention permet la fabrication de pièces supraconductrices en MgB2 avec des formes complexes pour tous types d’ applications supraconductrices . These results show that the process according to the present invention allows the manufacture of superconducting parts in MgB2 with complex shapes for all types of superconducting applications.

Claims

Revendications Claims
1. Procédé de fabrication d’une pièce de MgB2 comportant : a) la production d’une préforme par mise en forme d’une poudre de particules de MgB2 au moyen d’une technique de fabrication additive sur lit de poudre, comportant l’insolation de la poudre de MgB2 avec un rayonnement laser, et b) une étape de densification de la préforme, jusqu’à obtention de la pièce de MgB2. 1. Process for manufacturing an MgB2 part comprising: a) the production of a preform by shaping a powder of MgB2 particles by means of an additive manufacturing technique on a powder bed, comprising the irradiation of the MgB2 powder with laser radiation, and b) a step of densification of the preform, until the MgB2 part is obtained.
2. Procédé selon la revendication 1, caractérisé en ce que le diamètre équivalent médian des particules de la poudre de MgB2 varie de 1 pm à 50 pm, en particulier varie de 2 pm à 30 pm, de préférence varie de 5 pm à 20 pm. 2. Method according to claim 1, characterized in that the median equivalent diameter of the particles of the MgB2 powder varies from 1 pm to 50 pm, in particular varies from 2 pm to 30 pm, preferably varies from 5 pm to 20 pm .
3. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que l’étape a) est mise en œuvre par frittage sélectif par laser. 3. Method according to any one of the preceding claims, characterized in that step a) is implemented by selective laser sintering.
4. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que l’étape b) comprend une étape de frittage, en particulier par densification sous charge, ou une étape d’imprégnation, en particulier avec un métal conducteur distinct du magnésium, et de préférence avec du cuivre ou un alliage de cuivre et d’argent. 4. Method according to any one of the preceding claims, characterized in that step b) comprises a sintering step, in particular by densification under load, or an impregnation step, in particular with a conductive metal distinct from magnesium , and preferably with copper or an alloy of copper and silver.
5. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comporte : a) la production d’une préforme par mise en forme d’une poudre de particules de MgB2 au moyen d’une technique de fabrication additive sur lit de poudre, comportant l’insolation de la poudre de MgB2 avec un rayonnement laser, avec une dose d’énergie variant de 4 J/cm2/passe à 70 J/cm2/passe, de manière à obtenir la préforme à base d’une poudre insolée de MgB2, et b) une étape de densification de la préforme, par frittage de la poudre insolée de MgB2, jusqu’à obtention de la pièce de MgB2. 5. Method according to any one of the preceding claims, characterized in that it comprises: a) the production of a preform by shaping a powder of MgB2 particles by means of an additive manufacturing technique on powder bed, comprising the insolation of the MgB2 powder with laser radiation, with an energy dose varying from 4 J/cm 2 /pass to 70 J/cm 2 /pass, so as to obtain the base preform of an exposed MgB2 powder, and b) a step of densifying the preform, by sintering the exposed MgB2 powder, until the MgB2 part is obtained.
6. Procédé selon l’une quelconque des revendications précédentes, caractérisée en ce que l’étape a) est conduite de telle sorte que la densification de la poudre de MgB2 après insolation varie de 30 % à 45 %, de préférence varie de 35 % à 45 %, exprimé par rapport à la masse volumique théorique sans porosité. 6. Method according to any one of the preceding claims, characterized in that step a) is carried out such that the densification of the MgB2 powder after exposure varies from 30% to 45%, preferably varies from 35%. at 45%, expressed in relation to the theoretical density without porosity.
7. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la dose d’énergie du rayonnement laser en étape a) varie de 4,5 J/cm2/passe à 70 J/cm2/passe, en particulier varie de 5 J/cm2/passe à 70 J/cm2/passe, encore plus particulièrement varie de 6 J/cm2/passe à 60 J/cm2/passe. 7. Method according to any one of the preceding claims, characterized in that the energy dose of the laser radiation in step a) varies from 4.5 J/cm 2 / increases to 70 J/cm 2 /pass, in particular varies from 5 J/cm 2 /pass to 70 J/cm 2 /pass, even more particularly varies from 6 J/cm 2 /pass to 60 J/cm 2 /pass.
8. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que l’épaisseur du lit de poudre en étape a) varie de 50 pm à 800 pm, en particulier varie de 75 pm à 500 pm, de préférence varie de 100 pm à 300 pm. 8. Method according to any one of the preceding claims, characterized in that the thickness of the powder bed in step a) varies from 50 pm to 800 pm, in particular varies from 75 pm to 500 pm, preferably varies from 100 pm p.m. to 300 p.m.
9. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que l’étape de frittage est effectuée par densification sous charge, notamment par SPS ou par pressage à chaud, en particulier par SPS. 9. Method according to any one of the preceding claims, characterized in that the sintering step is carried out by densification under load, in particular by SPS or by hot pressing, in particular by SPS.
10. Procédé selon l’une quelconque des revendications 1 à 4, caractérisé en ce qu’il comprend : a) la production d’une préforme par mise en forme d’une poudre de particules de MgB2 au moyen d’une technique de fabrication additive sur lit de poudre, dans un environnement avec de l’oxygène, comportant l’insolation de la poudre de MgB2 avec un rayonnement laser, avec une dose d’énergie variant de 50 J/cm2/passe à 90 J/cm2/passe, de manière à obtenir une contreforme à base d’une poudre de MgO et la préforme à base d’une poudre non insolée de MgB2 contiguë à la poudre de MgO, et b) une étape de densification de la préforme, par frittage de la poudre non insolée de MgB2 en étape a), dans un four de frittage sous atmosphère inerte, suivie d’une étape de dépoudrage de la poudre de MgO, jusqu’à obtention de la pièce de MgB2. 10. Method according to any one of claims 1 to 4, characterized in that it comprises: a) the production of a preform by shaping a powder of MgB2 particles by means of a manufacturing technique additive on a powder bed, in an environment with oxygen, comprising the insolation of the MgB2 powder with laser radiation, with an energy dose varying from 50 J/cm 2 /pass to 90 J/cm 2 /pass, so as to obtain a counterform based on an MgO powder and the preform based on an unexposed MgB2 powder adjoining the MgO powder, and b) a step of densifying the preform, by sintering of the unexposed MgB2 powder in step a), in a sintering furnace under an inert atmosphere, followed by a step of depowdering the MgO powder, until the MgB2 part is obtained.
11. Procédé selon la revendication précédente, caractérisé en ce que la dose d’énergie du rayonnement laser en étape a) varie de 50 J/cm2/passe à 80 J/cm2/passe, de préférence varie de 50 J/cm2/passe à 70 J/cm2/passe. 11. Method according to the preceding claim, characterized in that the energy dose of the laser radiation in step a) varies from 50 J/cm 2 /pass to 80 J/cm 2 /pass, preferably varies from 50 J/cm 2 /pass to 70 J/cm 2 /pass.
12. Procédé selon l’une quelconque des revendications 10 ou 11, caractérisé en ce que l’épaisseur du lit de poudre en étape a) varie de 50 pm à 800 pm, en particulier varie de 75 pm à 500 pm, de préférence varie de 100 pm à 300 pm. 12. Method according to any one of claims 10 or 11, characterized in that the thickness of the powder bed in step a) varies from 50 pm to 800 pm, in particular varies from 75 pm to 500 pm, preferably varies from 100 p.m. to 300 p.m.
13. Procédé selon l’une quelconque des revendications 10 à 12, caractérisé en ce que l’étape de frittage est effectuée à une température variant de 700 °C à 1050 °C, en particulier variant de 750 °C à 1000 °C, de préférence variant de 800 °C à 950 °C. 13. Method according to any one of claims 10 to 12, characterized in that the sintering step is carried out at a temperature varying from 700 °C to 1050 °C, in particular varying from 750 °C to 1000 °C, preferably varying from 800°C to 950°C.
14. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comprend une étape postérieure de démoulage de la pièce de MgB2. 14. Method according to any one of the preceding claims, characterized in that it comprises a subsequent step of demolding the MgB2 part.
15. Procédé selon l’une quelconque des revendications précédentes, la pièce de MgB2 étant un supraconducteur possédant une température critique comprise entre 35 K et 15. Method according to any one of the preceding claims, the MgB2 part being a superconductor having a critical temperature of between 35 K and
PCT/EP2023/064402 2022-06-02 2023-05-30 Production of parts made of mgb2 WO2023232787A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2205332A FR3136178A1 (en) 2022-06-02 2022-06-02 Production of MgB2 parts
FRFR2205332 2022-06-02

Publications (1)

Publication Number Publication Date
WO2023232787A1 true WO2023232787A1 (en) 2023-12-07

Family

ID=82943355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/064402 WO2023232787A1 (en) 2022-06-02 2023-05-30 Production of parts made of mgb2

Country Status (2)

Country Link
FR (1) FR3136178A1 (en)
WO (1) WO2023232787A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3071178A1 (en) * 2017-09-15 2019-03-22 Safran PROCESS FOR MANUFACTURING A TURBOMACHINE PART BY ADDITIVE MANUFACTURING AND FLASH SINTING
FR3088016A1 (en) * 2018-11-02 2020-05-08 Universite Paul Sabatier Toulouse 3 METHOD FOR MANUFACTURING A PART BY DENSIFICATION UNDER LOAD
RO134559A0 (en) * 2019-12-18 2020-11-27 Institutul Naţional De Cercetare-Dezvoltare Pentru Fizica Materialelor Quick processing process for manufacturing superconductive solid bodies of mgb2

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3071178A1 (en) * 2017-09-15 2019-03-22 Safran PROCESS FOR MANUFACTURING A TURBOMACHINE PART BY ADDITIVE MANUFACTURING AND FLASH SINTING
FR3088016A1 (en) * 2018-11-02 2020-05-08 Universite Paul Sabatier Toulouse 3 METHOD FOR MANUFACTURING A PART BY DENSIFICATION UNDER LOAD
RO134559A0 (en) * 2019-12-18 2020-11-27 Institutul Naţional De Cercetare-Dezvoltare Pentru Fizica Materialelor Quick processing process for manufacturing superconductive solid bodies of mgb2

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THIMONT YOHANN: "Post Doc Proposition: Elaboration of superconductor parts by additive manufacturing", 1 January 2019 (2019-01-01), pages 1 - 2, XP093075362, Retrieved from the Internet <URL:http://www.ecole.ensicaen.fr/~chateign/jobs/Postdocs/2019_3D_superconductors_CIRIMAT_Toulouse.pdf> [retrieved on 20230822] *

Also Published As

Publication number Publication date
FR3136178A1 (en) 2023-12-08

Similar Documents

Publication Publication Date Title
EP2986582B1 (en) Process for manufacturing a carbide matrix composite material
EP2964590B1 (en) Method for preparing a multilayer carbide ceramic coating on, and possibly in, a part made of carbon material using an rmi reactive melt infiltration technique
EP3700876B1 (en) Particulate ceramic composite material, part comprising the same, and method for the production of said part
WO2014170447A1 (en) Magnetocaloric plate for a magnetic cooling element and method for the production thereof, block for magnetic cooling element comprising same and methods for the production thereof, and magnetic cooling element comprising said blocks
EP3728162B1 (en) Process for the manufacture of a ceramic matrix composite part
EP1343600B1 (en) Method for making thin films in metal/ceramic composite
FR3023961A1 (en) PROCESS FOR MANUFACTURING A COMPOSITE MATERIAL PART BY HIGH-TEMPERATURE SELF-CARRIED REACTION SYNTHESIS
FR3008224A1 (en) RADIALLY MAGNIFYING FRITTE ANNULAR MAGNET HAVING A REINFORCED MECHANICAL STRENGTH
EP1708975A1 (en) Sinterable nanopowder ceramic material and method for synthesis thereof
FR3032449A1 (en) CERMET MATERIALS AND PROCESS FOR PRODUCING SUCH MATERIALS
JP6908248B2 (en) SiC ceramics using coated SiC nanoparticles and their manufacturing method
WO2023232787A1 (en) Production of parts made of mgb2
EP3394002B1 (en) Manufacturing process of a ceramic via a chemical reaction between a disilicide and a reactive gaseous phase
EP2943598B1 (en) Method for producing an al-tic nanocomposite materia
EP3997050A1 (en) Porous ceramic structure for part made of cmc material and method for obtaining same
FR2907110A1 (en) PROCESS FOR PRODUCING ALUMINUM NITRIDE
FR3051186A1 (en) METHOD FOR MANUFACTURING A METAL-CERAMIC POWDER SUITABLE FOR THE PRODUCTION OF A HARD CERAMIC PIECE AND METHOD FOR MANUFACTURING THE SAME
FR3071255A1 (en) ALLOY TURBINE PIECE COMPRISING A MAX PHASE
TWI720111B (en) Method of producing cu-ga alloy sputtering target and cu-ga alloy sputtering target
FR3102994A1 (en) PROCESS FOR THE MANUFACTURING OF AN OPTIMIZED STEEL MATERIAL.
Kolobov et al. Microstructure Evolution of W–Cu Pseudo Alloy Surface After High-Temperature Gas Processing.
CA3056317A1 (en) Sintered metal material having directional porosity and comprising at least one ferromagnetic part, and production method thereof
EP1391444A1 (en) Process for making a refractory material, protective coating obtainable by such process and their uses
EP4330209A1 (en) Method for producing high-purity, dense sintered sic material
EP4363141A1 (en) Method for manufacturing a 6061 aluminium alloy part by additive manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23729128

Country of ref document: EP

Kind code of ref document: A1