WO2023231905A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023231905A1
WO2023231905A1 PCT/CN2023/096398 CN2023096398W WO2023231905A1 WO 2023231905 A1 WO2023231905 A1 WO 2023231905A1 CN 2023096398 W CN2023096398 W CN 2023096398W WO 2023231905 A1 WO2023231905 A1 WO 2023231905A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
information
wireless network
status information
network
Prior art date
Application number
PCT/CN2023/096398
Other languages
English (en)
French (fr)
Inventor
曾正洋
司源
李世昆
姚建辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023231905A1 publication Critical patent/WO2023231905A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
    • H04L67/025Protocols based on web technology, e.g. hypertext transfer protocol [HTTP] for remote control or remote monitoring of applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device.
  • Industrial communication protocol messages generally have periodic characteristics, and the transmission network needs to take into account both the certainty of message transmission (such as low jitter) and low latency performance, while improving network transmission efficiency and reducing costs.
  • This application provides a communication method and device to ensure the wireless requirements of industrial systems or industry systems.
  • this application provides a communication method, which can be applied to a first device, a functional module in the first device, a processor or chip in the first device, etc.
  • the method may include: after the first device obtains the status information of the second device, adjust the transmission mode of the message according to the status information of the second device; wherein, the first device is a device in an industrial system (or industry system, etc.), and the second device is a device in a wireless network; or the first device is a device in the wireless network, and the second device is a device in the industrial system.
  • Equipment in the system or industry system, etc.
  • the first device When the first device is a device in the wireless network, it may be a terminal device in the wireless network, a base station in the wireless network, or other devices in the wireless network other than the terminal device and the base station. equipment.
  • the message header of the message may include one or more of the following: sender identification, receiver identification, quality of service (QoS) requirements of the message, priority of the message level requirements or user group identification; the message content of the message does not include filler packets, and the message content of the message may include the message before the message and/or the message after the message. Compression information related to the message payload of the message.
  • the first device can obtain the status information of the second device through the following method: the first device can obtain the status of the second device through the control plane interface or control plane network element of the wireless network information. This enables key information interaction between industrial systems (or industry systems, etc.) and wireless networks.
  • the first device can also obtain the status information of the second device through the following method: the first device can obtain the status information of the second device through the management plane network element of the wireless network. This enables key information interaction between industrial systems (or industry systems, etc.) and wireless networks.
  • a connection has been established between the management plane network element in the wireless network and the equipment in the industrial system (or industry system, etc.), or the management plane network element in the wireless network and Devices in the industrial system (or industry system, etc.) communicate through an application programming interface (API).
  • API application programming interface
  • the first device can successfully obtain the status information of the second device through the management plane network element of the wireless network.
  • the first device may also obtain the status information of the second device through the following method: the first device obtains the status information of the second device through a user plane network element of the wireless network. This enables key information interaction between industrial systems (or industry systems, etc.) and wireless networks.
  • the first device and the second device can negotiate a transmission method of the status information, and then the first device can use the negotiated transmission method to Accurately obtain the status information of the second device.
  • the first device passes the The user plane network element of the wireless network obtains the status information of the second device, which may include the following method: Method 1.
  • the first device may obtain the second device through the message accompanying information of the user plane network element.
  • Status information of the device Method 2: The first device can obtain the status information of the second device in the shared information, wherein the shared information is configured in the wireless network connected to the industrial system.
  • Method 3 The first device can obtain the status information reported by the second device; Method 4 The first device may send query information to the second device, and receive query response information from the second device, where the query response information includes the status information.
  • the first device can obtain the status information of the second device more flexibly and accurately.
  • the status information can be included in the message accompanying information in any of the following ways: industrial Ethernet message header, industrial Ethernet message data part, industrial Ethernet message tail, Internet Protocol (Internet protocol, IP) message header, IP message data part or IP message tail.
  • the status information can be flexibly transmitted through message accompanying information.
  • the status information may include the following One or more items: status information of the wireless network, status information of the wireless terminal, and capability information; wherein the status information of the wireless network may include one or more of the following: load, interference, fading, network packet loss rate, wireless air interface timing accuracy, time synchronization accuracy, transmission delay, reliability of transmission delay, transmission delay jitter, reliability of transmission delay jitter, access frequency point configuration or wireless cell bandwidth configuration;
  • the status information of the wireless terminal may include one or more of the following: load, interference, fading, packet loss rate, channel quality, central processing unit CPU utilization, device temperature, transmission delay, and transmission delay of the wireless terminal.
  • the capability information may include one or more of the following: air interface transmission rules of the wireless network , the scheduling capability restrictions of the wireless network, the capability information of the wireless terminal, or the subscription information of the wireless terminal.
  • the equipment in the industrial system (or industry system, etc.) can adjust the transmission mode of the message based on the above information. Accurate and effective utilization of network resources.
  • the first device when the first device is a device in the industrial system (or industry system, etc.) and the second device is a device in the wireless network, the first device is configured according to the The method may be: the first device may adjust one or more of the following message transmission methods based on the status information of the second device: The sending parameters of the message, the feedback mechanism of the message, the redundant sending mechanism of the message or the retransmission mechanism of the message. In this way, the message transmission method can be optimized from many aspects.
  • the sending parameters of the message may include one or more of the following: sending cycle parameters, sending time starting point parameters, watchdog (Watchdog) parameters, survival time (Survival Time) parameters, link
  • the re-establishment duration parameter may include whether to feedback the reception status
  • the redundant sending mechanism of the message may include the number of sending copies of the message and/or the sending interval of the message
  • the message retransmission mechanism may include whether to retransmit and/or retransmission and merging methods.
  • the first device when the first device is a device in the industrial system (or industry system, etc.) and the second device is a device in the wireless network, the first device is configured according to the The status information of the second device is used to adjust the transmission mode of the message.
  • the method may be: the first device adjusts the message according to the business needs and/or the needs of the industrial system and the capability information in the status information. transmission method. In this way, the adjusted message transmission method can meet the business requirements and/or the requirements of the industrial system (or industry system, etc.) and the capability information of the second device.
  • the first device adjusts the transmission mode of the message according to business needs and/or needs of the industrial system (or industry system, etc.) and capability information in the status information.
  • the method can be This is: the first device determines whether the business requirement and/or the requirement of the industrial system (or industry system, etc.) exceeds the capability information; if the first device determines the business requirement and/or the If the requirements of the industrial system (or industry system, etc.) exceed the capability information, the first device determines whether the message transmission method can be adjusted to meet the capability information. In this way, the adjusted message transmission method can satisfy the capability information of the second device, thereby ensuring the success rate of message transmission.
  • the first device when the first device determines that the transmission mode of the message that satisfies the capability information cannot be adjusted, the first device may send notification information to the second device.
  • the notification information is used to indicate expansion of the wireless network; alternatively, the first device may also determine the need to reduce the business demand and/or the industrial system (or industry system, etc.). This ensures transmission reliability during subsequent message transmissions.
  • the service requirements may include one or more of the following: QoS requirements of the service, the number of network nodes of the service, or the network topology relationship of the service; the requirements of the industrial system (or industry system, etc.)
  • the requirements may include one or more of the following: QoS requirements of the industrial system (or industry system, etc.), the number of networking nodes of the industrial system (or industry system, etc.), or the number of network nodes of the industrial system (or industry system, etc.) network topology relationship.
  • the status information may include static Configuration information and/or dynamic information; wherein, the static configuration information may include one or more of the following: sending cycle, watchdog parameter configuration, survival time parameter configuration, message sending starting point or the industrial system (or industry System, etc.); the dynamic information may include one or more of the following: real-time packet loss information, real-time watchdog statistical timeout count information, survival time status information, message arrival time, clock accuracy, Transmission delay information, transmission delay reliability information, transmission delay jitter information, transmission delay jitter reliability information, topological relationship change information between devices in the industrial system (or industry system, etc.) or the second device information on whether it is working effectively. Devices in the wireless network can accurately adjust the packet transmission method based on the above information.
  • the first device when the first device is a device in the wireless network and the second device is a device in the industrial system (or industry system, etc.), the first device is configured according to the Using the status information of the second device to adjust the transmission mode of the message, the method may be: the first device adjusts one or more of the following message transmission modes according to the status information of the second device: The network resource configuration of the message, the redundant sending mechanism of the message, or the retransmission mechanism of the message. In this way, the message transmission method can be optimized from many aspects.
  • the network resource configuration of the message may include one or more of the following: pre-scheduling resources, grant-free scheduling resources, semi-persistent scheduling (SPS) resources, or all
  • the low-latency related configuration of the base station in the wireless network is described
  • the redundant sending mechanism of the message may include one or more of the following: modulation and coding scheme (MCS) order, packet data aggregation protocol ( Packet data convergence protocol (PDCP) repetition, spatial transmit diversity, multiple redundant transmission paths, time slot aggregation or multiple transmission time interval (transmission time interval, TTI) bundling repeated transmission
  • MCS modulation and coding scheme
  • PDCP Packet data convergence protocol
  • TTI transmission time interval
  • the retransmission mechanism of the message can Including one or more of the following: retransmission protocol stack level, number of retransmissions, retransmission time, retransmission feedback time length, or retransmission and merging method.
  • the first device and the second device may negotiate the sending times of different messages; wherein the sending times of the different messages are the same, or the sending times of the different messages are different.
  • the difference is the first time. Therefore, the sending time of the different messages can be negotiated to be the same according to the actual needs, so as to send the messages in multicast form; or the sending time of the different messages can be negotiated according to the actual needs, so as to reduce the number of concurrent users on the network. quantity.
  • the first device can perform time synchronization with the second device. In this way, messages can be transmitted based on time synchronization, improving message transmission reliability and efficiency.
  • the first device can perform time synchronization with the second device in the following manner: the first device determines that both the first device and the second device are synchronized to global time or world time; or, The first device uses the same time synchronization method or the same clock server as the second device.
  • the first device determines the protocol type of the message; and then when the protocol type is the first protocol type, the first device transmits the message based on the first protocol type.
  • the first protocol type is a protocol type maintained by both the first device and the second device; when the protocol type is an open platform communications unified architecture (OPC-UA) type , the first device transmits the message based on the OPC-UA type, or the first device translates or converts the OPC-UA type into the first protocol type, and transmits the message based on the first protocol type.
  • OPC-UA open platform communications unified architecture
  • the protocol type transmits the message; when the protocol type is a second protocol type, the first device translates or converts the second protocol type into the first protocol type, and performs the transmission based on the first protocol type to transmit the message, and the second protocol type is a protocol type other than the first protocol type and the OPC-UA type. This can support semantic interoperability between different protocol messages, thereby ensuring the successful transmission of messages.
  • the first device may determine the message based on an inter-message redundant coding method and/or a multi-user message joint coding method; wherein the inter-message redundant coding method It may refer to adding part or all of the information of the first N messages to the message, where N is an integer greater than or equal to 1; the joint encoding method of messages between multiple users may refer to adding messages between multiple users. redundant information. This can simplify the processing of messages, reduce the amount of transmitted data, improve transmission reliability, and improve transmission efficiency.
  • the first device when the first device is a device in the wireless network and the second device is a device in the industrial system (or industry system, etc.), the first device can be based on Network status information adjustment message Redundant coding between multiple users and/or joint coding of messages between multiple users. In this way, the message can be processed in an accurate encoding manner.
  • the first device adjusts the redundant coding method between messages and/or the joint coding method of messages between multiple users according to the network status information.
  • the method may be: the first device adjusts the redundant coding method between messages according to the network status information.
  • the first device keeps the redundant encoding method between messages and/or the joint encoding method of messages between multiple users unchanged;
  • the first device changes the redundant encoding method between messages and/or the joint encoding method of messages between multiple users. This way the exact encoding method can be determined so that the message can be processed accurately.
  • the first device transmits the message according to a first protocol; the first protocol supports the function of PDCP, as well as the function of IP or Ethernet protocol.
  • the transmission protocol stacks in the scenario where industrial systems (or industry systems) are connected to wireless networks are integrated to improve message transmission efficiency.
  • the first device when the first device is a device in the wireless network, the first device may also determine a scheduling method according to service characteristics to accurately schedule packet transmission.
  • the first device when the first device is a device in the wireless network and the first device is a terminal device, the first device can establish a connection with other terminal devices in the wireless network. Direct link and/or relay link; furthermore, the first device can select one or more links among the established links to transmit the message according to the message transmission requirements. This can improve the reliability of message transmission.
  • the first device may save a terminal device list, and the terminal devices in the terminal device list can establish a link with the first device. This enables the first device to accurately select a transmission path and ensure the reliability of message transmission.
  • the first device when the first device is a device in the wireless network and the first device is a terminal device, the first device may receive timing information from a base station in the wireless network. , and perform time synchronization based on the timing information. This allows message transmission to be transmitted on the basis of time synchronization, ensuring the reliability of message transmission.
  • the first device when the first device is a device in the wireless network, the first device can determine multiple network communication configurations, and the network communication configurations include frequency band combinations and communication standard combinations; The first device may select a currently used network communication configuration among the multiple network configurations. In this way, the first device can flexibly select the access method to meet the requirements of industrial systems (or industry systems) such as delay and reliable transmission during wireless network transmission.
  • industrial systems or industry systems
  • the first device can determine the network status change value; further, when the network status change value is greater than or equal to a preset value, the first device changes the network communication configuration used; when the network status change value is greater than or equal to a preset value, the first device changes the network communication configuration used; When the network status change value is less than the preset value, the first device keeps the network communication configuration used unchanged. In this way, the first device can flexibly adjust the network communication configuration according to the actual situation to meet the requirements of the industrial system (or industry system) for delay and reliable transmission during wireless network transmission.
  • the first device sends the message, and the message includes first timestamp information and second timestamp information, and the first timestamp information is the number of timestamp that sent the message. Time information, the second timestamp information is the completion time information of the message. This enables deterministic transmission of messages based on timestamp information.
  • this application provides a communication method, which may include: a second device providing status information of the second device to a first device, and the first device obtaining the status information of the second device, And adjust the message transmission method according to the status information of the second device; wherein the first device is an industrial system (or industry system, etc.)
  • the second device is a device in the wireless network; or the first device is a device in the wireless network, and the second device is a device in the industrial system (or industry system, etc.) equipment;
  • the device in the wireless network may be a terminal device in the wireless network, a base station in the wireless network, or other devices in the wireless network other than the terminal device and the base station.
  • the message header of the message may include one or more of the following: sender identification, receiver identification, quality of service (QoS) requirements of the message, priority of the message level requirements or user group identification; the message content of the message does not include filler packets, and the message content of the message may include the message before the message and/or the message after the message. Compression information related to the message payload of the message.
  • the second device can provide the status information of the second device to the first device through the control plane interface of the wireless network; the first device can provide the status information of the second device through the control plane interface of the wireless network.
  • the interface or control plane network element obtains the status information of the second device. This enables key information interaction between industrial systems (or industry systems, etc.) and wireless networks.
  • the second device can provide the status information of the second device to the first device through the management plane network element of the wireless network; the first device can provide the status information of the second device through the wireless network.
  • the management plane network element obtains the status information of the second device. This enables key information interaction between industrial systems (or industry systems, etc.) and wireless networks.
  • a connection has been established between the management plane network element in the wireless network and the equipment in the industrial system (or industry system, etc.), or the management plane network element in the wireless network and Devices in the industrial system (or industry system, etc.) communicate through an application programming interface (API).
  • API application programming interface
  • the first device can successfully obtain the status information of the second device through the management plane network element of the wireless network.
  • the second device can provide the status information of the second device to the first device through a user plane network element of the wireless network; the first device can provide status information of the second device through a user plane network element of the wireless network; The user plane network element obtains the status information of the second device. This enables key information interaction between industrial systems (or industry systems, etc.) and wireless networks.
  • the second device provides status information to the first device, and before the first device obtains the status information of the second device, the first device and the second device can negotiate the status.
  • the information transmission method allows the first device to accurately obtain the status information of the second device through the negotiated transmission method.
  • the second device passes the The user plane network element of the wireless network provides the status information of the second device to the first device, and the first device obtains the status information of the second device through the user plane network element of the wireless network.
  • the method includes the following methods: Method 1: The second device can provide the status information of the second device to the first device through the packet accompanying information of the user plane network element, and the first device can provide the status information of the second device through the packet path information of the user plane network element.
  • the packet accompanying information of the user plane network element obtains the status information of the second device;
  • Method 2 The second device can write the status information into the shared information, and the first device can obtain the status information in the shared information.
  • the status information of the second device wherein the shared information is configured to be connected to the industrial system in the wireless network in a device, or the shared information is configured in a device connected to the wireless network in the industrial system;
  • Method 3 The second device reports the status information to the first device, and the third device A device can obtain the status information reported by the second device;
  • Method 4 The first device can send query information to the second device, and the second device receives the query information sent by the first device , sending query response information to the first device, and the first device receives query response information from the second device, where the query response information includes the status information.
  • the first device can obtain the status information of the second device more flexibly and accurately.
  • the status information can be included in the message accompanying information in any of the following ways: industrial Ethernet message header, industrial Ethernet message data part, industrial Ethernet message tail, Internet Protocol (Internet protocol, IP) message header, IP message data part or IP message tail.
  • the status information can be flexibly transmitted through message accompanying information.
  • the status information may include the following One or more items: status information of the wireless network, status information of the wireless terminal, and capability information; wherein the status information of the wireless network may include one or more of the following: load, interference, fading, network packet loss rate, wireless air interface timing accuracy, time synchronization accuracy, transmission delay, reliability of transmission delay, transmission delay jitter, reliability of transmission delay jitter, access frequency point configuration or wireless cell bandwidth configuration;
  • the status information of the wireless terminal may include one or more of the following: load, interference, fading, packet loss rate, channel quality, central processing unit CPU utilization, device temperature, transmission delay, and transmission delay of the wireless terminal.
  • the capability information may include one or more of the following: air interface transmission rules of the wireless network , the scheduling capability restrictions of the wireless network, the capability information of the wireless terminal, or the subscription information of the wireless terminal.
  • the equipment in the industrial system adjusts the transmission mode of the message based on the above information to achieve accurate and effective utilization of network resources.
  • the first device when the first device is a device in the industrial system (or industry system, etc.) and the second device is a device in the wireless network, the first device is configured according to the The method may be: the first device may adjust one or more of the following message transmission methods based on the status information of the second device: The sending parameters of the message, the feedback mechanism of the message, the redundant sending mechanism of the message or the retransmission mechanism of the message. In this way, the message transmission method can be optimized from many aspects.
  • the sending parameters of the message may include one or more of the following: sending cycle parameters, sending time starting point parameters, watchdog (Watchdog) parameters, survival time (Survival Time) parameters, link
  • the re-establishment duration parameter may include whether to feedback the reception status
  • the redundant sending mechanism of the message may include the number of sending copies of the message and/or the sending interval of the message
  • the message retransmission mechanism may include whether to retransmit and/or retransmission and merging methods.
  • the first device when the first device is a device in the industrial system (or industry system, etc.) and the second device is a device in the wireless network, the first device is configured according to the The status information of the second device is used to adjust the transmission mode of the message.
  • the method may be: the first device adjusts the message according to the business needs and/or the needs of the industrial system and the capability information in the status information. transmission method. In this way, the adjusted message transmission method can meet the business requirements and/or the requirements of the industrial system (or industry system, etc.) and the capability information of the second device.
  • the first device adjusts the transmission mode of the message according to business needs and/or needs of the industrial system (or industry system, etc.) and capability information in the status information.
  • the method can be is: the first assumption The equipment determines whether the business needs and/or the needs of the industrial system (or industry system, etc.) exceed the capability information; if the first equipment determines that the business needs and/or the industrial system (or industry system, etc.) etc.) exceeds the capability information, the first device determines whether the transmission mode of the message can be adjusted to meet the capability information. In this way, the adjusted message transmission method can satisfy the capability information of the second device, thereby ensuring the success rate of message transmission.
  • the first device when the first device determines that the transmission mode of the message that satisfies the capability information cannot be adjusted, the first device may send notification information to the second device.
  • the second device receives notification information from the first device, where the notification information is used to indicate expansion of the wireless network; or, the first device may also determine to reduce the business demand and/or the industrial system (or industry system, etc.) needs. This ensures transmission reliability during subsequent message transmissions.
  • the service requirements may include one or more of the following: QoS requirements of the service, the number of network nodes of the service, or the network topology relationship of the service; the requirements of the industrial system (or industry system, etc.)
  • the requirements may include one or more of the following: QoS requirements of the industrial system (or industry system, etc.), the number of networking nodes of the industrial system (or industry system, etc.), or the number of network nodes of the industrial system (or industry system, etc.) network topology relationship.
  • the status information may include static Configuration information and/or dynamic information; wherein, the static configuration information may include one or more of the following: sending cycle, watchdog parameter configuration, survival time parameter configuration, message sending starting point or the industrial system (or industry System, etc.); the dynamic information may include one or more of the following: real-time packet loss information, real-time watchdog statistical timeout count information, survival time status information, message arrival time, clock accuracy, Transmission delay information, transmission delay reliability information, transmission delay jitter information, transmission delay jitter reliability information, topological relationship change information between devices in the industrial system (or industry system, etc.) or the second device information on whether it is working effectively. Devices in the wireless network can accurately adjust the packet transmission method based on the above information.
  • the first device when the first device is a device in the wireless network and the second device is a device in the industrial system (or industry system, etc.), the first device is configured according to the Using the status information of the second device to adjust the transmission mode of the message, the method may be: the first device adjusts one or more of the following message transmission modes according to the status information of the second device: The network resource configuration of the message, the redundant sending mechanism of the message, or the retransmission mechanism of the message. In this way, the message transmission method can be optimized from many aspects.
  • the network resource configuration of the message may include one or more of the following: pre-scheduling resources, grant-free scheduling resources, semi-persistent scheduling (SPS) resources, or all
  • the low-latency related configuration of the base station in the wireless network is described
  • the redundant sending mechanism of the message may include one or more of the following: modulation and coding scheme (MCS) order, packet data aggregation protocol ( Packet data convergence protocol (PDCP) repetition, spatial transmit diversity, multiple redundant transmission paths, time slot aggregation or multiple transmission time interval (transmission time interval, TTI) bundling repeated transmission
  • MCS modulation and coding scheme
  • PDCP Packet data convergence protocol
  • TTI transmission time interval
  • the retransmission mechanism of the message can Including one or more of the following: retransmission protocol stack level, number of retransmissions, retransmission time, retransmission feedback time length, or retransmission and merging method.
  • the first device and the second device may negotiate the sending times of different messages; wherein the sending times of the different messages are the same, or the sending times of the different messages are different.
  • the difference is the first time. Therefore, the sending time of the different messages can be negotiated to be the same according to the actual needs, so as to send the messages in multicast form; or the sending time of the different messages can be negotiated according to the actual needs, so as to reduce the number of concurrent users on the network. quantity.
  • the first device can perform time synchronization with the second device, and the second device can perform time synchronization with the first device.
  • messages can be transmitted based on time synchronization, improving message transmission reliability and efficiency.
  • the first device can perform time synchronization with the second device in the following manner: the first device determines that both the first device and the second device are synchronized to global time or world time; or, The first device uses the same time synchronization method or the same clock server as the second device.
  • the first device determines the protocol type of the message; and then when the protocol type is the first protocol type, the first device transmits the message based on the first protocol type.
  • the first protocol type is a protocol type maintained by both the first device and the second device; when the protocol type is an OPC-UA type, the first device based on the OPC-UA type Transmit the message, or the first device translates or converts the OPC-UA type into the first protocol type, and transmits the message based on the first protocol type; when the protocol type When it is a second protocol type, the first device translates or converts the second protocol type into the first protocol type, and transmits the message based on the first protocol type.
  • the second protocol type It is a protocol type other than the first protocol type and the OPC-UA type. This can support semantic interoperability between different protocol messages, thereby ensuring the successful transmission of messages.
  • the first device may determine the message based on an inter-message redundant coding method and/or a multi-user message joint coding method; wherein the inter-message redundant coding method It may refer to adding part or all of the information of the first N messages to the message, where N is an integer greater than or equal to 1; the joint encoding method of messages between multiple users may refer to adding messages between multiple users. redundant information. This can simplify the processing of messages, reduce the amount of transmitted data, improve transmission reliability, and improve transmission efficiency.
  • the first device when the first device is a device in the wireless network and the second device is a device in the industrial system (or industry system, etc.), the first device can be based on The network status information adjusts the redundant coding method between messages and/or the joint coding method of messages between multiple users. In this way, the message can be processed in an accurate encoding manner.
  • the first device adjusts the redundant coding method between messages and/or the joint coding method of messages between multiple users according to the network status information.
  • the method may be: the first device adjusts the redundant coding method between messages according to the network status information.
  • the first device keeps the redundant encoding method between messages and/or the joint encoding method of messages between multiple users unchanged;
  • the first device changes the redundant encoding method between messages and/or the joint encoding method of messages between multiple users. This way the exact encoding method can be determined so that the message can be processed accurately.
  • the first device transmits the message according to a first protocol; the first protocol supports the function of PDCP, as well as the function of IP or Ethernet protocol.
  • the transmission protocol stacks in the scenario where industrial systems (or industry systems) are connected to wireless networks are integrated to improve message transmission efficiency.
  • the first device when the first device is a device in the wireless network, the first device may also determine a scheduling method according to service characteristics to accurately schedule packet transmission.
  • the first device when the first device is a device in the wireless network and the first device is a terminal device, the first device can establish a connection with other terminal devices in the wireless network. Direct link and/or relay link; furthermore, the first device can select one or more links among the established links to transmit the message according to the message transmission requirements. This can improve the reliability of message transmission.
  • the first device can save a terminal device list, and the terminal devices in the terminal device list The terminal device can establish a link with the first device. This enables the first device to accurately select a transmission path and ensure the reliability of message transmission.
  • the first device when the first device is a device in the wireless network and the first device is a terminal device, the first device may receive timing information from a base station in the wireless network. , and perform time synchronization based on the timing information. This allows message transmission to be transmitted on the basis of time synchronization, ensuring the reliability of message transmission.
  • the first device when the first device is a device in the wireless network, the first device can determine multiple network communication configurations, and the network communication configurations include frequency band combinations and communication standard combinations; The first device may select a currently used network communication configuration among the multiple network configurations. In this way, the first device can flexibly select the access method to meet the requirements of industrial systems (or industry systems) such as delay and reliable transmission during wireless network transmission.
  • industrial systems or industry systems
  • the first device can determine the network status change value; further, when the network status change value is greater than or equal to a preset value, the first device changes the network communication configuration used; when the network status change value is greater than or equal to a preset value, the first device changes the network communication configuration used; When the network status change value is less than the preset value, the first device keeps the network communication configuration used unchanged. In this way, the first device can flexibly adjust the network communication configuration according to the actual situation to meet the requirements of the industrial system (or industry system) for delay and reliable transmission during wireless network transmission.
  • the first device sends the message, and the message includes first timestamp information and second timestamp information, and the first timestamp information is the number of timestamp that sent the message. Time information, the second timestamp information is the completion time information of the message. This enables deterministic transmission of messages based on timestamp information.
  • the present application also provides a communication device.
  • the communication device may be a first device, a processor, a chip or a functional module in the first device.
  • the communication device has the ability to implement the above first aspect or the third aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit. These units can perform the corresponding functions of the first device in the above-mentioned first aspect or each possible design example of the first aspect, or the above-mentioned third
  • the corresponding functions of the first device in the second aspect or each possible design example of the second aspect please refer to the detailed description in the method example and will not be described again here.
  • the structure of the communication device includes a communication interface and a processor, and optionally a memory.
  • the communication interface is used to send and receive messages or data, and to communicate with other devices in the communication system.
  • the processor is configured to support the communication device to perform the corresponding function of the first device in the above-mentioned first aspect or each possible design example of the first aspect, or the above-mentioned second aspect or the second aspect. Corresponding functions of the first device in each possible design example.
  • the memory is coupled to the processor and holds program instructions and data necessary for the communications device.
  • the present application also provides a communication device.
  • the communication device may be a second device, a processor, a chip or a functional module in the second device.
  • the communication device has the ability to implement the above second aspect or the third aspect. Functionality of the second device in each possible design example of both aspects.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit. These units can perform the corresponding functions of the second device in the above second aspect or each possible design example of the second aspect. For details, see The detailed description in the method example will not be repeated here.
  • the structure of the communication device includes a communication interface and a processor, and optionally a memory.
  • the communication interface is used to send and receive messages or data, and to communicate with other devices in the communication system.
  • the processor is configured to support the communication device to perform the corresponding function of the second device in the above-mentioned second aspect or each possible design example of the second aspect.
  • the memory is coupled to the processor and holds program instructions and data necessary for the communications device.
  • embodiments of the present application provide a communication system, which may include the first device and the second device mentioned above.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores program instructions. When the program instructions are run on a computer, they cause the computer to execute the first aspect of the embodiments of the application and its contents. Any possible design, or the method described in the second aspect and any possible design thereof.
  • computer-readable storage media can be any available media that can be accessed by a computer.
  • computer-readable media may include non-transitory computer-readable media, random-access memory (random-access memory, RAM), read-only memory (read-only memory, ROM), electrically erasable memory
  • RAM random-access memory
  • ROM read-only memory
  • programmable read-only memory electrically EPROM, EEPROM
  • CD-ROM or other optical disk storage magnetic disk storage media or other magnetic storage devices, or can be used to carry or store the desired program code in the form of instructions or data structures and can Any other media accessed by a computer.
  • embodiments of the present application provide a computer program product that includes computer program code or instructions.
  • the computer program code or instructions are run on a computer, the first aspect or any of the possible designs of the first aspect are enabled. , or the method described in the above second aspect or any possible design of the second aspect is executed.
  • the present application also provides a chip, including a processor, the processor being coupled to a memory and configured to read and execute program instructions stored in the memory, so that the chip implements the above-mentioned first aspect Or any possible design of the first aspect, or the method described in the above second aspect or any possible design of the second aspect.
  • Figure 1 is a schematic diagram of the architecture of a communication system provided by this application.
  • FIG. 2 is a schematic diagram of the architecture of another communication system provided by this application.
  • FIG. 3 is a schematic diagram of the architecture of another communication system provided by this application.
  • Figure 4 is a schematic diagram of defining the frame format and joint coding mechanism of a message provided by this application;
  • FIG. 5 is a schematic diagram of a message provided by this application.
  • Figure 6 is a schematic diagram of the deep compression effect between packets provided by this application.
  • Figure 7 is a schematic diagram of an inter-message redundant coding method provided by this application.
  • Figure 8 is a schematic diagram of a joint encoding method for messages between multiple users provided by this application.
  • Figure 9 is a schematic diagram of a device in a wireless network provided by this application adjusting the compression method of messages, the redundant coding method between messages, and the joint coding method of messages between multiple users;
  • Figure 10 is a schematic diagram of the mutual conversion between a wireless convergence extreme briefing message and a wired network transmission message provided by this application;
  • Figure 11 is a schematic flow chart of networking and protocol function definition provided by this application.
  • FIG 12 is a schematic diagram of a WLAN-like fat AP architecture provided by this application.
  • FIG 13 is a schematic diagram of a WLAN-like thin AP architecture provided by this application.
  • Figure 14 is a schematic diagram of a point-to-point communication network architecture provided by this application.
  • Figure 15 is a schematic diagram of a converged protocol layer provided by this application.
  • Figure 16 is a schematic diagram of collaborative optimization of an industrial system and a wireless network provided by this application;
  • Figure 17 is a schematic diagram of a 3GPP network management system provided by this application transmitting wireless network status information to the configuration subsystem of an industrial system;
  • Figure 18 is a schematic diagram of information exchange between a 3GPP user plane network element and equipment in an industrial system provided by this application;
  • Figure 19 is a schematic diagram of a time synchronization method between the 5G network and the TSN system defined in accordance with the 3GPP standard provided by this application;
  • Figure 20 is a schematic diagram of point-to-point time synchronization provided by this application.
  • Figure 21a is a schematic diagram of a transmission method of adjusting messages based on status information fed back by equipment in the wireless network in an industrial system provided by this application;
  • Figure 21b is a schematic diagram of a transmission method of a device in a wireless network adjusting a message based on the status information fed back by the device in the industrial system provided by this application;
  • Figure 22 is a schematic diagram of the transmission time alignment of different messages provided by this application.
  • Figure 23 is a schematic diagram provided by this application in which the sending times of different messages are evenly staggered
  • Figure 24 is a schematic diagram of a device in an industrial system provided by this application performing service arrangement according to the obtained status information of the device of the wireless network;
  • FIG. 25 is a schematic diagram provided by this application for transmitting continuous packet loss information through the type of service (TOS) field or option field of the IP message;
  • TOS type of service
  • Figure 26 is a schematic diagram provided by this application for transmitting continuous packet loss information through the S.MAC address or data fields of MAC messages or Ethernet messages;
  • Figure 27 is a schematic diagram of reading/accessing a shared area provided by this application.
  • Figure 28 is a schematic diagram of writing in a shared area provided by this application.
  • Figure 29 is a schematic diagram of a device in a wireless network actively sending status information to a device in an industrial system provided by this application;
  • Figure 30 is a schematic diagram of a passive query-response method provided by this application.
  • Figure 31 is a schematic flow chart of collaboration and integration of multiple terminal devices in a wireless network provided by this application.
  • Figure 32 is a schematic diagram of multipath between multiple terminal devices provided by this application.
  • Figure 33 is a schematic diagram of a MESH network between multiple terminal devices and a terminal device and a wireless base station provided by this application;
  • Figure 34 is a schematic diagram of network-wide time synchronization between multiple terminal devices and base stations provided by this application;
  • Figure 35 is a schematic diagram of establishing a group relationship between four terminal devices provided by this application.
  • Figure 36 is a schematic diagram of realizing the integration of multiple access technologies and elastic air interfaces provided by this application;
  • Figure 37 is a schematic diagram of a device in a wireless network adjusting a combination of air interface transmission mechanisms provided by this application;
  • Figure 38 is a schematic diagram of equipment adjusting the air interface transmission mechanism combination in an industrial system provided by this application.
  • Figure 39 is a schematic diagram of an E2E deterministic process provided by this application.
  • Figure 40 is a schematic diagram of E2E time synchronization provided by this application.
  • Figure 41 is a schematic diagram of message transmission based on protocol interworking provided by this application.
  • Figure 42 is a schematic diagram of a protocol stack provided by this application.
  • Figure 43 is a flow chart of a communication method provided by this application.
  • Figure 44 is a schematic structural diagram of a communication device provided by this application.
  • Figure 45 is a structural diagram of a communication device provided by this application.
  • Embodiments of the present application provide a communication method and device to ensure the wireless requirements of industrial systems or industry systems.
  • the method and the device described in this application are based on the same technical concept. Since the principles of solving problems by the method and the device are similar, the implementation of the device and the method can be referred to each other, and the repeated parts will not be repeated.
  • At least one (species) refers to one (species) or multiple (species), and multiple (species) refers to two (species) or more than two (species).
  • At least one of the following" or similar expressions thereof refers to any combination of these items, including any combination of single or plural items.
  • at least one of a, b or c can mean: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can It can be single or multiple.
  • Embodiments of the present application can be applied to industrial wireless or wired communication systems, industrial wireless or wired communication systems (such as wireless or wired communication systems at industrial production sites), industrial systems and wireless network docking systems, or industry systems (also called For industry application systems) and wireless network docking systems, etc.
  • the embodiments of the present application can also be applied to electricity, augmented reality (AR), virtual reality (VR), extended reality (eXtended reality, XR), Internet of Vehicles, and vehicle-anything communication (vehicle- to-everything, V2X) and other scenarios.
  • AR augmented reality
  • VR virtual reality
  • XR extended reality
  • V2X vehicle-anything communication
  • FIG. 1 shows the architecture of a possible communication system to which embodiments of the present application are applicable.
  • the communication system may include at least one terminal device integrating industrial communication and wireless communication and a base station integrating industrial communication and wireless communication.
  • it may also include a network center control point.
  • Figure 1 schematically shows that the communication system may include a terminal device 1 integrating industrial communication and wireless communication, a terminal device 2 integrating industrial communication and wireless communication, a terminal device 3 integrating industrial communication and wireless communication, Base stations and network control points integrating industrial communications and wireless communications.
  • each terminal device can be interconnected, and the terminal device can access the base station through the wireless air interface.
  • Figure 1 is an example of a terminal device and a base station that support both industrial communication functions and wireless communication functions. That is, the industrial communication functions and wireless communication functions are co-located on one device. In practice, the industrial communication functions and wireless functions can also be deployed separately, for example, as industrial communication terminal equipment and wireless communication terminal equipment respectively.
  • Figure 1 only takes industrial communication as an example. It should be understood that industrial communication is also applicable and will not be detailed here. Explain in detail.
  • the wireless network may be the 3rd generation partnership project (3GPP) network, such as the long term evolution (LTE) communication network and the 5th generation (5G) new wireless (5G) new radio, NR) communication network, etc.
  • 3GPP 3rd generation partnership project
  • LTE long term evolution
  • 5G 5th generation new wireless
  • NR 5th generation new radio
  • the wireless network may also be other wireless networks, etc., which is not limited in this application.
  • the architecture of the communication system applicable to the embodiments of this application may also include industrial terminal equipment, 3GPP terminal equipment, 3GPP base stations and 3GPP core networks, as shown in Figures 2 and 3, for example.
  • Figure 2 shows a single-ended wireless scenario, that is, one industrial terminal device is connected to a 3GPP terminal device
  • Figure 3 shows a double-ended wireless scenario, that is, each industrial terminal device is connected to a 3GPP terminal device.
  • industrial terminal equipment can also be called industrial user equipment (industrial user equipment, i-UE), or it can also be called application equipment.
  • i-UE can be connected to 3GPP terminal equipment (also called 3GPP user equipment (3GPP user equipment, 3GPP UE)).
  • 3GPP user equipment also called 3GPP user equipment (3GPP user equipment, 3GPP UE)
  • i-UE 1 is connected to 3GPP UE
  • i-UE 4 is connected to 3GPP UE.
  • i-UE 1 is connected to 3GPP UE 1
  • i-UE 2 is connected to 3GPP UE 2.
  • i-UE can be connected to 3GPP UE through the IC-1 interface.
  • the protocol types supported by the IC-1 interface can include: Internet protocol (IP), Ethernet (ethernet) and other industrial communication scenarios.
  • i-UE can also be connected to network elements of the 3GPP core network (such as user plane network elements or control plane network elements).
  • i-UE 2 is connected to network elements in the 3GPP core network
  • i-UE 3 is connected to 3GPP Network element connections in the core network.
  • i-UE can be connected to the network element of the 3GPP core network through the N6 interface.
  • the protocol types supported by the N6 interface can include: IP, ethernet, and other extended protocol types for industrial communication scenarios. It should be noted that the above interface names are only examples and are not intended to limit this application.
  • i-UE can include, but is not limited to, programmable logic controller (PLC) equipment, input output (IO) equipment, etc.
  • PLC programmable logic controller
  • IO input output
  • 3GPP UE and 3GPP base station can be connected using 3GPP air interface (such as Uu interface).
  • 3GPP UE supports the sending of control plane and user plane messages defined by 3GPP.
  • 3GPP UE can include handheld devices, vehicle-mounted devices, etc. with wireless connection capabilities.
  • 3GPP UE can be: mobile phone, tablet computer, laptop computer, handheld computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (VR) device, augmented reality (augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in autonomous driving, wireless terminals in self-driving, wireless terminals in remote medical surgery, Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart furniture, wireless terminals in smart offices, and smart wearables Wireless terminals, wireless terminals in smart transportation or wireless terminals in smart homes, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by 3GPP UE.
  • a 3GPP base station is a device that provides wireless access services for 3GPP UEs and connects 3GPP UEs to wireless networks.
  • 3GPP base stations can be: base station (base station), transmission reception point (transmission reception point, TRP), evolved Node B (evolved Node B, eNB), next generation base station (next generation NodeB, gNB), Radio network controller (RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
  • 3GPP base stations can also be The module or unit that completes some functions of the 3GPP base station can be, for example, a centralized unit (CU) or a distributed unit (DU).
  • the CU here completes the functions of the radio resource control protocol and packet data convergence protocol (PDCP) of the 3GPP base station, and can also complete the functions of the service data adaptation protocol (SDAP);
  • SDAP service data adaptation protocol
  • DU completes the 3GPP
  • the functions of the wireless link control layer and medium access control (MAC) layer of the base station can also complete some or all of the physical layer functions.
  • MAC medium access control
  • the 3GPP core network can include the user plane function (UPF) in the 5G core network (5G core, 5GC), and the N3 interface can be used to communicate between the UPF and the 3GPP base station.
  • the 3GPP core network provides the termination of the control plane and the user plane, provides user subscription storage and management functions, mobility management functions, policy control functions, serves as an egress gateway for centralized forwarding data connections to communicate with external data networks, and serves as a 3GPP UE mobile time The anchor point for the data connection.
  • Figures 2 and 3 only show examples of one-to-one communication between industrial terminal devices.
  • industrial terminal devices can also communicate through complex networks such as chain, ring or star. .
  • the devices shown in Figures 2 and 3 are only examples. In practice, the communication system may also include other devices, such as buffer devices or buffer function modules, which are no longer shown in the figures.
  • industrial terminal equipment can be replaced by terminal equipment of other systems such as industrial terminal equipment.
  • industrial communication protocol messages generally have periodic characteristics, and the transmission network needs to take into account both the certainty of message transmission (such as low jitter) and low latency performance, while improving network transmission efficiency and reducing costs.
  • the transmission network needs to take into account both the certainty of message transmission (such as low jitter) and low latency performance, while improving network transmission efficiency and reducing costs.
  • more and more industrial communication protocols require wireless deployment to improve production flexibility or reduce deployment costs.
  • the embodiments of this application have been improved in terms of message formats, networking, message transmission methods, business arrangement, communication protocols, etc. of industrial communication protocols and wireless communication protocols. To ensure the reliability of the connection between industrial systems and wireless networks.
  • the message frame format, joint encoding mechanism, etc. in the scenario of interconnection between industrial systems and wireless networks are defined to achieve efficient transmission of messages.
  • the frame format and joint encoding mechanism of the message can be defined through the process shown in Figure 4.
  • the specific ones can be as follows:
  • Step 401 Predefine the message frame format.
  • the fusion header of the message may include one or more of the following: sender identification (such as the sender's identity, ID), receiver identification (such as the receiver's ID), quality of service of the message (quality of service, QoS) requirements, packet priority requirements or user group identification (such as user group ID), etc.
  • the message content of the predefined message does not include padding, that is, the message content in the wired communication scenario is removed.
  • padding deep compression considering the correlation between the front and back of the message payload, for example, as shown in Figure 5, to streamline the message content.
  • the message content of the message includes compression information related to the message payload of the message before the message and/or the message after the message, such as the message between messages shown in Figure 6 Schematic diagram of deep compression effect.
  • Step 402 Predefine the joint encoding method of messages of the industrial system and wireless network.
  • the message joint encoding method may include an inter-message redundant encoding method and/or a message joint encoding method between multiple users.
  • the inter-packet redundant coding method means that part or all of the information of the first N packets can be added to each packet, where N is an integer greater than or equal to 1.
  • N can be a configurable parameter, or can be obtained through adaptive adjustment of reliability effects, which is not limited in this application.
  • Figure 7 shows a schematic diagram of the redundant coding method between messages.
  • the information of the previous message can be added to the second message, and part of the information of the previous message can be added to the third message.
  • the reliability of network transmission can be improved by using redundant coding between messages.
  • the inter-packet redundant coding method can be understood as the inter-packet redundant coding method between single users.
  • the joint encoding method of messages between multiple users can refer to adding redundant information between messages of multiple users.
  • messages sent by multiple users at the same time or within the same industrial communication transmission cycle can be jointly encoded, redundant information is added between messages, and air interface resource consumption can be reduced through multicast, and multiple users can Flexible mutual assistance between them improves transmission reliability.
  • Figure 8 shows a schematic diagram of a joint encoding method for messages between multiple users.
  • the device in the wireless network can adjust one of the compression method of the packet, the redundant coding method between packets, or the joint coding method of packets between multiple users in real time according to the network status information.
  • the device in the wireless network can adjust one of the compression method of the packet, the redundant coding method between packets, or the joint coding method of packets between multiple users in real time according to the network status information.
  • Network status information can include load, interference, fading or occlusion, etc.
  • Predefine indicators corresponding to network status information such as physical resource block (PRB) utilization, number of online users, signal to interference plus noise ratio (SINR), reference signal received power (reference signal received) power, RSRP), channel quality indication (channel quality indication, CQI), etc.
  • PRB physical resource block
  • SINR signal to interference plus noise ratio
  • RSRP reference signal received power
  • CQI channel quality indication
  • the device in the wireless network sets the high threshold (high_Thd) and the low threshold (low_Thd) of the network status information indicator of the wireless network, and a certain hysteresis can be considered.
  • devices in the wireless network can determine changes in network status in real time and adjust one or more of the packet compression method, the redundant coding method between packets, or the joint coding method of packets between multiple users.
  • the device in the wireless network determines whether the network status has changed. If it is determined that the network status has not changed, the packet compression method, the redundant coding method between packets, and the multi-user reporting method are maintained. The message joint encoding method remains unchanged; if it is determined that the network status has changed, the message compression method, the message redundancy encoding method and the message joint encoding method between multiple users will be changed. Among them, when the network status changes, it may be that the network status becomes better or the network status becomes worse.
  • the following adjustments can be made according to different situations: For example, when the network status changes for the better, if the indicator corresponding to the network status is higher than the set When the high threshold value is reached, the packet compression method corresponding to the high threshold set in advance, the redundant coding method between packets, and the joint coding method of messages between multiple users can be used; for another example, if the network status deteriorates, such as When the indicator corresponding to the status is lower than the set low threshold, the message compression method corresponding to the low threshold set in advance, the redundant encoding method between messages, and the joint encoding method of messages between multiple users can be used.
  • Step 403 Predefine a wireless/wired message type translator to be compatible with wired network transmission.
  • adding a wireless/wired message type translator between wireless transmission messages and wired transmission messages can realize mutual conversion between wireless convergence extreme briefing messages and wired network transmission messages. Ensure successful message transmission.
  • the message type translator can add independent message types, padding, Verification and other contents to achieve wired transmission.
  • devices in industrial systems and devices in wireless networks can transmit messages according to the message format and encoding method defined above.
  • the industrial system and the wireless network jointly define the message frame format, encoding method, etc., carry out a very simplified design, and support adaptive selection of encoding methods, which can achieve efficient wireless transmission.
  • the first embodiment can also be compatible with wired transmission message conversion. For example, minimal definition and compression of packet headers and content can reduce the amount of transmitted data and improve transmission efficiency; redundant coding between packets can improve transmission reliability; joint coding between packets can then utilize multicast It can improve transmission reliability; the compression method and encoding method support adaptive selection according to wireless link characteristics; it is also compatible with the mutual translation of wired transmission messages.
  • the networking structure of the wireless network in the scenario where the industrial system and the wireless network are connected as well as the simplified definition of the protocol functions between the industrial system and the wireless network, etc. are defined.
  • the process of defining networking and protocol functions as shown in Figure 11 may include:
  • Step 1101 When establishing a wireless network, a minimalist network architecture can be dynamically selected based on preset policies or on demand.
  • minimalist can be understood as extremely simple, very simple, etc.
  • minimalist network architecture is a very simple network structure.
  • the first one supports a wireless local area network (WLAN)-like fat AP architecture.
  • WLAN wireless local area network
  • wireless terminal equipment 1, wireless terminal equipment 2 and wireless terminal equipment 3 respectively support 3GPP air interface connections with the wireless base station.
  • the network architecture shown in Figure 12 can support extremely simplified wireless base stations and can also support access authentication and authentication of wireless terminal devices.
  • the air interface between the wireless terminal equipment and the wireless base station supports the reliable transmission mechanism of the 3GPP air interface, such as hybrid automatic repeat request (HARQ) retransmission, modulation and coding scheme (MCS) selection wait.
  • HARQ hybrid automatic repeat request
  • MCS modulation and coding scheme
  • the second one supports WLAN-like thin AP architecture.
  • the wireless terminal device 1 is connected to the wireless terminal device 2 through the wireless base station 1, the central control point, and the wireless base station 2.
  • the network architecture shown in Figure 13 can support the networking of wireless base stations and central control points, and support the access of wireless terminal devices across wireless base stations.
  • the central control point can complete the access authentication and authentication of wireless terminal equipment.
  • the air interface between the wireless terminal equipment and the wireless base station supports the reliable transmission mechanism of the 3GPP air interface, such as HARQ retransmission, MCS selection, etc.
  • the third type is a network architecture that supports point-to-point communication.
  • wireless terminal device 1 and wireless terminal device 2 support point-to-point communication
  • wireless terminal device 2 and wireless terminal device 2 support point-to-point communication.
  • the network architecture shown in Figure 14 can support the establishment of point-to-point communication links between wireless terminal devices, as well as the encryption of communication links between wireless terminal devices.
  • the air interface supports the reliable transmission mechanism of the 3GPP air interface, such as HARQ retransmission and MCS. Select Wait.
  • Step 1102 Predefine simplified fusion definitions of protocol layers and protocol functions.
  • a converged protocol layer is defined.
  • the processing functions can be extremely simplified so that the network
  • the security encryption, integrity protection, sorting, deduplication, and application-level retransmission of the network are implemented by the application (industrial system) or by the collaboration of the industrial system and the wireless network.
  • Step 1103 The devices in the wireless network can perform extremely simplified processing according to the service characteristics, which can be understood as determining the scheduling method according to the service characteristics.
  • the equipment in the wireless network can be optimized and adjusted according to the periodicity and deterministic mechanism of the service to reduce the complexity of dynamic scheduling, such as using uplink grant-free scheduling, downlink semi-persistent scheduling (SPS), etc. .
  • SPS downlink semi-persistent scheduling
  • Embodiment 2 improves the scenario of docking wireless networks and industrial systems in three aspects: networking architecture, protocol layer definition, and simplification of processing procedures.
  • Wireless networks can choose a minimalist network architecture as needed.
  • the protocol layers and processing functions of industrial systems and wireless networks are minimally defined, and minimally processed according to business characteristics, so that efficient message transmission can be achieved for industrial communication protocols. transmission, improve application experience, and also reduce wireless network resource consumption.
  • Embodiment 3 explains the two-way collaborative optimization of industrial systems and wireless networks in the scenario of docking of industrial systems and wireless networks.
  • FIG. 16 a schematic diagram of collaborative optimization of an industrial system and a wireless network can be shown in Figure 16.
  • the specific process can include:
  • Step 1601 Devices in the industrial system and devices in the wireless network exchange respective status information.
  • the interactive interface between the wireless network and the industrial system can be predefined to facilitate the exchange of status information (such as the air interface transmission rules of the wireless network and/or the capability limit information of the wireless network and other key information) between the devices in the wireless network and the devices in the industrial system. ) interaction.
  • status information such as the air interface transmission rules of the wireless network and/or the capability limit information of the wireless network and other key information
  • the devices in the industrial system and the devices in the wireless network can exchange their respective status information through the control plane interface or the control plane network element.
  • the control plane node application function (AF) node outside 3GPP can communicate with the network exposure function (network exposure function) in the 3GPP network , NEF) network element or policy control function (PCF) network element communicates to exchange status information.
  • NEF network exposure function
  • PCF policy control function
  • control plane interface between PCF or NEF and AF can also be reused to transmit wireless network status information to the industrial system.
  • network element functions or interfaces can be added to realize the interaction of status information.
  • devices in the industrial system and devices in the wireless network can exchange their respective status information through the management plane network elements of the wireless network.
  • FIG. 17 shows a schematic diagram of the 3GPP network management system transmitting wireless network status information to the configuration subsystem of the industrial system.
  • a connection is established between the 3GPP network management system and the configuration subsystem of the industrial system.
  • the 3GPP network management system transfers the configuration of the industrial system to the configuration subsystem of the industrial system.
  • the subsystem sends status information about the wireless network.
  • the 3GPP network management system can also provide the status information of the wireless network to the configuration subsystem or program of the industrial system in an offline manner.
  • devices in the industrial system and devices in the wireless network can exchange their respective status information through user plane network elements.
  • the status information of the wireless network can be read and written in the form of user plane messages along the way or separately through network elements such as 3GPP UE and 3GPP UPF. Notify the industrial system in other ways. Both the wireless network and the industrial system need to negotiate the format of the notification, that is, negotiate the transmission method of the status information, such as message headers, optional field extensions, independent message sending, etc.
  • the 3GPP user plane functional network element and the equipment of the industrial system have pre-agreed the user plane message transmission format, and then the 3GPP user plane network element modifies the specified user plane message to carry the status information of the wireless network and will carry The wireless network status information packet is sent to the equipment in the industrial system. Finally, the industrial system equipment recognizes the specified user plane packet to obtain the wireless network status information.
  • user plane network elements may include but are not limited to base stations, core network user plane network elements, wireless access terminal equipment, etc.
  • Step 1602 Time synchronization between devices in the wireless network and devices in the industrial system.
  • step 1602 is an optional step.
  • time synchronization methods can be as follows:
  • Method 1 Equipment in the industrial system and equipment in the wireless network can be synchronized to global time or world time.
  • the time synchronization method between the 5G network and the TSN system defined by the 3GPP standard can be followed.
  • the devices in the wireless network and industrial system are each synchronized with the global time or world time.
  • the synchronization method can include the global positioning system. (global position system, GPS), Beidou or standard protocol IEEE 1588V2, etc.
  • devices in the wireless network do not need to modify and correct timestamps at packet ingress and egress defined by 3GPP, so as to simplify the synchronization solution.
  • Method 2 Equipment in the industrial system and equipment in the wireless network can use the same time synchronization method or the same clock server (also called the same time source).
  • This second method can also be understood as point-to-point time synchronization between devices in the wireless network and devices in the industrial system.
  • point-to-point time synchronization between the wireless network and the industrial system can be performed through nodes directly connected to the industrial system such as 3GPP UE and 3GPP core network. Both parties only need to comply with the same time synchronization protocol (such as IEEE1588V2 protocol).
  • the original clock can come from a wireless network or from an industrial system.
  • devices in the wireless network such as 3GPP network elements
  • devices in the industrial system first perform a point-to-point time synchronization process, and then the devices in the wireless network provide the starting position of the wireless frame to the devices in the industrial system.
  • Step 1603 Bidirectional collaborative optimization of equipment in the industrial system and equipment in the wireless network.
  • the device in the industrial system and the device in the wireless network adjust the message transmission mode based on each other's status information to achieve refined utilization of network resources.
  • the device in the industrial system adjusts the message transmission method based on the status information fed back by the device in the wireless network, for example, as shown in Figure 21a.
  • the status information fed back by devices in the wireless network may include one or more of the following: status information of the wireless network, status information of the wireless terminal, and capability information; wherein the status information of the wireless network may include One or more of the following: load, interference, fading, network packet loss rate, wireless air interface timing accuracy, time synchronization accuracy, transmission delay, reliability of transmission delay, transmission delay jitter, reliability of transmission delay jitter , access frequency point configuration or Bandwidth configuration of wireless cells, etc.
  • the status information of the wireless terminal may include one or more of the following: load, interference, fading, packet loss rate, channel quality, central processing unit (CPU) utilization, device temperature, Transmission delay, reliability of transmission delay, transmission delay jitter, reliability of transmission delay jitter, access frequency point configuration or wireless cell bandwidth configuration, etc.
  • the capability information may include one or more of the following: air interface transmission rules of the wireless network, scheduling capability restrictions of the wireless network, capability information of the wireless terminal or subscription information of the wireless terminal, etc.
  • the air interface transmission rule may include one or more of the following: air interface frame format (such as time division duplex (TDD)/frequency division duplexing (FDD)) format, TDD uplink and downlink ratio , slot length, etc.), the precise starting position of the wireless frame, etc.
  • air interface frame format such as time division duplex (TDD)/frequency division duplexing (FDD) format
  • TDD uplink and downlink ratio slot length, etc.
  • the scheduling capability limitations of the wireless network may include but are not limited to: ultra reliable and low latency communications (URLLC) scheduling capability limitations, low latency performance, low latency reliability performance, and latency jitter performance , delay jitter reliability performance, number of concurrent users specifications, etc.
  • URLLC ultra reliable and low latency communications
  • the TDD/FDD format, TDD uplink and downlink ratio, slot length, URLLC scheduling capability restrictions, wireless terminal capability restrictions or contract information can be transmitted to the industrial system without relying on time synchronization.
  • the precise starting position of the radio frame can be communicated to the industrial system in a time-synchronized manner.
  • the equipment of the industrial system After the equipment of the industrial system obtains the above-mentioned status information fed back by the equipment in the wireless network, it can adjust the transmission method of one or more of the following messages according to the above-mentioned status information: the transmission parameters of the message, the A feedback mechanism for the message, a redundant sending mechanism for the message, or a retransmission mechanism for the message.
  • the sending parameters of the message may include one or more of the following: sending cycle parameters, sending time starting point parameters, watchdog (Watchdog) parameters, survival time (Survival Time) parameters, link re-establishment parameters. Duration parameters, etc.
  • the feedback mechanism of the message may include whether to feedback the reception status, etc.
  • the redundant sending mechanism of the message may include the number of sending copies of the message and/or the sending interval of the message, etc.
  • the message retransmission mechanism may include whether to retransmit and/or retransmission and merging methods, etc.
  • a watchdog is a device (usually a timer or driver) that can be used to monitor whether a continuously running system is normal and whether its functions are being exerted, etc.
  • the device in the wireless network adjusts the message transmission method based on the status information fed back by the device in the industrial system, for example, as shown in Figure 21b.
  • the status information fed back by the devices in the industrial system may include static configuration information and/or dynamic information.
  • the static configuration information may include one or more of the following: sending cycle, watchdog parameter configuration, survival time parameter configuration, message sending starting point, or topological relationship between devices in the industrial system.
  • the dynamic information may include one or more of the following: real-time packet loss information, real-time watchdog statistical timeout count information, time-to-live status information, message arrival time, clock accuracy, transmission delay information, and transmission delay reliability.
  • the wireless network device After the wireless network device obtains the above status information fed back by the device in the industrial system, it can adjust the transmission method of one or more of the following messages according to the above status information: the network resource configuration of the message, The redundant sending mechanism of the message or the retransmission mechanism of the message.
  • the network resource configuration of the message may include one or more of the following: pre-scheduling resources, authorization-free scheduling resources, SPS resources or low-latency related configurations of base stations in the wireless network, etc.
  • the redundant sending mechanism of the message may include one or more of the following: MCS order, PDCP repetition (PDCP duplication), spatial transmit diversity, multiple redundant transmission paths, slot aggregation or multiple transmission time intervals (TTI) bundling (TTI bundling), etc.
  • the message retransmission mechanism may include one or more of the following: protocol stack level of retransmission, number of retransmissions, time of retransmission, feedback time length of retransmission, or retransmission and merging method, etc.
  • the devices in the wireless network and the devices in the industrial system can negotiate the sending times of different messages.
  • the devices in the wireless network and the devices in the industrial system can negotiate that the sending time of the different packets is the same. That is, the sending times of different messages are aligned so that messages can be sent in multicast form.
  • Figure 22 shows a schematic diagram of aligning the sending times of different messages.
  • the device in the wireless network and the device in the industrial system can also negotiate a first time difference between the sending times of the different messages, where the first time is a preset time. That is to say, the sending times of different packets can be staggered evenly to reduce the number of concurrent users on the network.
  • Figure 23 shows a schematic diagram in which the sending times of different messages are evenly staggered.
  • the above different messages may be messages from devices in the same industrial system.
  • the sending times of messages from devices in different industrial systems can also be aligned or the sending times can be evenly staggered.
  • Embodiment 3 improves the two-way information interaction and two-way collaborative optimization of data transmission between the industrial system (application) and the wireless network.
  • a two-way information exchange interface can be opened between industrial systems and wireless networks to synchronize time, exchange their respective key information, and perform transmission or scheduling adjustments based on collaborative information.
  • better application experience such as delay, reliability, delay jitter, etc.
  • spectrum resources of wireless networks can also be saved.
  • Embodiment 4 describes how the equipment in the industrial system in the scenario of interconnection between the industrial system and the wireless network performs service orchestration based on the obtained status information of the equipment of the wireless network. It can be understood that Embodiment 4 may be a possible implementation of Embodiment 3.
  • FIG. 24 a schematic diagram in which devices in an industrial system perform service orchestration based on acquired status information of wireless network devices is shown in Figure 24.
  • the specific process may include:
  • Step 2401 The device in the industrial system obtains the status information of the device in the wireless network.
  • devices in the industrial system can obtain status information of devices in the wireless network in any of the following ways:
  • Method 1 Packet accompanying information notification. That is, the equipment in the industrial system can obtain the status information of the equipment in the wireless network through the packet accompanying information of the user plane network element.
  • the message accompanying information of the user plane network element can be, but is not limited to, address resolution protocol (ARP) discovery information, handshake information, address configuration information, other interactive messages between devices in the industrial system, etc. .
  • ARP address resolution protocol
  • the associated format of the status information in the packet associated information can be determined through negotiation between the device in the industrial system and the device in the wireless network.
  • the status information is included in the packet accompanying information in any of the following ways: Industrial Ethernet packet header, Industrial Ethernet packet data part, Industrial Ethernet packet tail, Internet Protocol IP packet header Department, number of IP packets data part, or the tail of the IP packet, etc.
  • the continuous packet loss information in the status information can be transmitted through the type of service (TOS) field or option field of the IP message shown in Figure 25.
  • TOS type of service
  • the continuous packet loss information in the status information can be transmitted through the source MAC (source MAC, S.MAC) address or data (data) fields of the MAC message or Ethernet message shown in Figure 26.
  • Method 2 Shared area reading/access. That is, the devices in the industrial system can obtain the status information of the devices in the wireless network in the shared area (shared information).
  • nodes or devices such as 5G UE, 5G UPF, NEF, etc.
  • nodes or devices that are directly connected to the wireless network and industrial systems open a shared area, place the status information that needs to be provided in the shared area in advance, and set the access method to enable industrial System shared reading.
  • the 3GPP network element opens the shared area, configures permissions, and then performs a secure interaction process between the 3GPP network element and the equipment in the industrial system. Furthermore, the equipment in the industrial system can access the shared area, thereby obtaining the equipment in the wireless network. status information.
  • the 3GPP network element here is a device in the wireless network connected to the industrial system.
  • Method 3 Write to the shared area. That is to say, the devices in the industrial system can obtain the status information of the devices in the wireless network in the shared area (shared information).
  • the nodes or devices directly connected to the industrial system and the wireless network open a shared area.
  • the devices in the wireless network write the status information that needs to be provided into the shared area and notify the devices in the industrial system. Read.
  • a device directly connected to an industrial system and a wireless network opens a shared area, configures permissions, and then performs a secure interaction process with the device in the wireless network.
  • the device in the wireless network can be in the shared area.
  • Write status information of devices in the wireless network In this way, the devices in the industrial system can read the status information of the devices in the wireless network in the shared area.
  • Method 4 The devices in the wireless network actively send status information to the devices in the industrial system.
  • the devices in the wireless network can send separate messages to notify the devices in the industrial system of their status information through the control plane, management plane or user plane.
  • the message format can be defined through negotiation between devices in the wireless network and devices in the industrial system.
  • devices in the industrial system can also require devices in the wireless network to report status information.
  • the device in the industrial system and the device in the wireless network establish a connection through the connection establishment process, and then the device in the wireless network actively sends status information to the device in the industrial system.
  • Method 5 Passive query-response method. That is, the device in the industrial system sends query information to the device in the wireless network, and receives query response information from the device in the wireless network, where the query response information includes the status information. For example, as shown in Figure 30. It should be noted that, as shown in Figure 30, before the device in the industrial system sends query information to the device in the wireless network, the device in the industrial system and the device in the wireless network establish a connection through a connection establishment process.
  • devices in the industrial system can send query information to nodes or devices directly connected to the wireless network (such as 5G UE, 5G UPF, NEF, etc.).
  • the devices in the wireless network respond according to the query information and provide key information (i.e. status information).
  • Step 2402 The equipment in the industrial system adjusts the transmission mode of the message according to business requirements and/or requirements of the industrial system and capability information in the status information. Specifically, the equipment in the industrial system determines the business needs Summarize and/or determine whether the demand for the industrial system exceeds the capability information.
  • the service requirements may include one or more of the following: QoS requirements of the service, the number of network nodes of the service, or the network topology relationship of the service.
  • the requirements of the industrial system may include one or more of the following: QoS requirements of the industrial system, the number of networking nodes of the industrial system, or the networking topology of the industrial system.
  • step 2403 If the equipment in the industrial system determines that the business demand and/or the demand of the industrial system exceeds the capability information, the equipment in the industrial system performs step 2403; otherwise, performs step 2404 or directly performs step 2406.
  • Step 2403 The equipment in the industrial system performs business orchestration, that is, the equipment in the industrial system attempts to orchestrate or adjust business logic to reduce the number of concurrency of each TTI in the wireless network. For example, the equipment in the industrial system arranges or adjusts the message sending sequence, sending cycle parameters, etc. to ensure that each TTI does not exceed the maximum capacity limit of the wireless network. Further, the equipment in the industrial system continues to execute step 2405.
  • business orchestration that is, the equipment in the industrial system attempts to orchestrate or adjust business logic to reduce the number of concurrency of each TTI in the wireless network. For example, the equipment in the industrial system arranges or adjusts the message sending sequence, sending cycle parameters, etc. to ensure that each TTI does not exceed the maximum capacity limit of the wireless network. Further, the equipment in the industrial system continues to execute step 2405.
  • Step 2404 The equipment in the industrial system can also try to adjust or arrange the business logic (arrange or adjust the message sending sequence, sending cycle parameters, etc.) to make the scheduling data amount and data type of each TTI of the wireless network air interface more efficient. Uniform to facilitate wireless network efficiency.
  • Step 2404 is an optional step.
  • Step 2405 The device in the industrial system determines whether the service orchestration is successful. It can also be understood as the device in the industrial system determines whether it is able to adjust the transmission parameter configuration or networking topology until the capability information is satisfied. It can also be understood as the device in the industrial system. Whether the device can meet the maximum capability limit of each TTI of the wireless network after the service logic is arranged or adjusted. If the service orchestration is successful (the service logic can be orchestrated/adjusted to meet the maximum capability limit of each TTI of the wireless network), then the device of the industrial system performs step 2406. If the service orchestration fails (the business logic cannot be orchestrated/adjusted, or the orchestration/adjustment exceeds the maximum capability limit of the wireless network), the device in the industrial system performs step 2407.
  • Step 2406 The equipment in the industrial system continues the subsequent data interaction process.
  • Step 2407 The wireless networking of the industrial system fails.
  • the equipment in the industrial system notifies the upper-layer application system to reduce the number of wireless networking nodes (which can be understood as determining to reduce the business requirements and/or the needs of the industrial system), or notifies the wireless network Perform capacity expansion processing (increase sites, expand the number of cells, number of carriers, etc.).
  • Embodiment 4 describes how devices in the industrial system perform service orchestration, adjustment and transmission according to the capability limitations and requirements of the wireless network. Specifically, after obtaining the key information of the wireless network, the equipment in the industrial system determines whether the current service transmission requirements exceed the capability limits of the wireless network, and then performs business orchestration according to the capability limits of the wireless network, as well as industrial systems and upper-layer applications, wireless The network exchanges information and performs supplementary processing in orchestration failure scenarios. This can prevent the number of concurrent industrial system services from exceeding the capacity limit of the wireless network, improve message timeliness, and improve the transmission efficiency of the wireless network.
  • Embodiment 5 defines the content of collaboration and integration of multiple terminal devices in the wireless network when the industrial system and the wireless network are integrated and networked in the docking scenario of the industrial system and the wireless network.
  • FIG. 31 shows a schematic flowchart of collaboration and integration of multiple terminal devices in a wireless network.
  • the specific process may include:
  • Step 3101 Establish cooperative multipath between multiple terminal devices.
  • Adjacent node discovery and connection establishment can be performed between multiple terminal devices.
  • a direct link also called a direct link.
  • Terminal Equipment If there is no direct link between them and interoperability can be achieved through wireless base stations or other terminal equipment, a relay link can be established.
  • terminal device 1 and terminal device 2 can be connected through a straight-through link and an intermediate link.
  • Relay link 1 and relay link 2 send messages in parallel to improve the reliability of message transmission.
  • one or more paths can be selected for packet transmission between terminal devices according to packet transmission requirements (such as QoS or reliability requirements for packet transmission).
  • packet transmission requirements such as QoS or reliability requirements for packet transmission.
  • terminal device 1 and terminal device 2 can select one or more paths among direct link, relay link 1, and relay link 2 to transmit messages according to message transmission requirements.
  • the repeated transmission of the same message by other parallel links can be interrupted.
  • Step 3102 Networking between multiple terminal devices and between terminal devices and wireless base station mesh (MESH).
  • ESH wireless base station mesh
  • each terminal device can maintain its own list of other terminal devices that can be interconnected.
  • a schematic diagram of MESH networking between multiple terminal devices and between terminal devices and wireless base stations can be shown in Figure 33.
  • Direct links are established between terminal devices through device-to-device (D2D).
  • D2D device-to-device
  • Relay links are established between terminal devices through base stations, or relay links are established between terminal devices through other terminal devices.
  • the list maintained by the terminal device can become stable.
  • each terminal device can refresh the corresponding list information.
  • a whitelist mechanism can be set for each terminal device, so that only terminal devices that enter the whitelist can search and discover each other.
  • the terminal devices in the whitelist are terminal devices that are close to the discoverer, have good signals, have good channel quality, or have business relationships with the discoverer.
  • Step 3103 Network-wide time synchronization is performed between multiple terminal devices and base stations.
  • terminal devices can obtain air interface timing information from wireless base stations, and then obtain global precise time information.
  • terminal devices interact with each other to achieve D2D time synchronization.
  • terminal devices can also use base stations or other terminal device relays to achieve time synchronization.
  • the time synchronization range between terminal devices can be expanded, thereby achieving time synchronization of all network nodes.
  • Step 3104 Multicast or broadcast among multiple terminal devices.
  • a group relationship can be established between service-related terminal devices. As shown in Figure 35, a group relationship is established between four terminal devices. The group user list of the terminal device that establishes the group relationship can be copied to each terminal device in the group, and each terminal device can be refreshed and maintained.
  • Terminal devices in the group can perform multicast or broadcast according to business needs.
  • Embodiment 5 can solve the problem of how to collaborate and integrate multiple terminal devices to improve transmission reliability and efficiency when industrial systems and wireless networks are integrated.
  • multiple terminal devices can establish cooperative multipaths, which can improve transmission reliability.
  • MESH networking between terminal devices and between terminal devices and base stations can improve transmission reliability.
  • Enabling multicast and broadcast between terminal devices can further improve efficiency.
  • the cooperation of multiple terminal devices in the wireless network can improve the certainty and real-time performance of industrial system application messages in the wireless network.
  • Embodiment 6 introduces the integration of multiple access technologies and elastic air interfaces in the scenario of interconnection between wireless networks and industrial systems.
  • multiple access technology convergence and elastic air interfaces can be implemented through the process shown in Figure 36.
  • Specifics may include:
  • Step 3601 Preconfigure supported wireless frequency bands or frequency sets and usage rules.
  • the frequency band may include one or more of the following: low frequency, sub-6GHz frequency band (Sub6G), high-frequency millimeter wave, unlicensed spectrum, etc.
  • Sub6G sub-6GHz frequency band
  • High-frequency millimeter wave unlicensed spectrum, etc.
  • Subframe settings Support TDD flexible uplink and downlink configuration or support FDD, etc.
  • BPSK binary phase shift keying
  • QPSK quadri phase shift keying
  • QAM 16-bit quadrature amplitude modulation
  • 64QAM 64QAM
  • 256QAM 256QAM
  • 1024QAM 1024QAM
  • the wireless network gateway system can adjust the supported wireless frequency bands or frequency sets and usage rules in real time.
  • Step 3602 Preconfigure a set of supported air interface standards.
  • 3GPP standards such as 2G, 3G, 4G, 5G, 5.5G, 6G, etc.
  • Support side link SideLink
  • D2D D2D
  • wireless LAN wireless fidelity, WiFi
  • Bluetooth technology Bluetooth
  • Step 3603 The device in the wireless network adjusts the air interface transmission mechanism combination.
  • FIG. 37 shows a schematic diagram of a device in a wireless network adjusting a combination of air interface transmission mechanisms. Specifics may include:
  • Step 3701 The base station and terminal equipment in the wireless network negotiate multiple sets of network communication configuration policy combinations (including frequency bands, ratios, multiplexing, redundancy, communication standards, etc.) according to their respective capabilities, and set network status change thresholds ( thd).
  • network communication configuration policy combinations including frequency bands, ratios, multiplexing, redundancy, communication standards, etc.
  • Step 3702 The base station and terminal equipment in the wireless network detect changes in the real-time communication status of the network (such as load, interference, fading, occlusion, etc.), and determine whether the network status change value is greater than or equal to the preset change threshold value. If the network status change value is less than the preset change threshold, step 3703 is executed. If the network status change value is greater than or equal to the preset change threshold, step 3704 is executed.
  • changes in the real-time communication status of the network such as load, interference, fading, occlusion, etc.
  • Step 3703 The base station and terminal equipment in the wireless network continue to use the used frequency band combination strategy and communication access standard combination strategy.
  • Step 3704 The base station and terminal equipment in the wireless network change the frequency band combination strategy and the communication access standard combination strategy.
  • the frequency band combination strategy and communication access standard combination strategy adopted can be statically configured or randomly selected.
  • Step 3604 The equipment in the industrial system adjusts the air interface transmission mechanism combination.
  • FIG. 38 shows a schematic diagram of equipment in an industrial system adjusting the air interface transmission mechanism combination. Specifics may include:
  • Step 3801 The equipment in the industrial system selects an initial policy combination from multiple network communication configuration policy combinations (including frequency bands, ratios, multiplexing, redundancy, communication standards, etc.) and deploys the selected policy combination.
  • multiple network communication configuration policy combinations including frequency bands, ratios, multiplexing, redundancy, communication standards, etc.
  • Step 3802 The device in the wireless network detects whether the device in the industrial system needs to adjust the communication configuration policy combination.
  • devices in the industrial system can also dynamically send requirements for adjusting communication configuration policy combinations to devices in the wireless network.
  • Devices in industrial systems detect the real-time effects of data transmission and determine whether the communication configuration policy combination needs to be adjusted.
  • step 3803 If the communication configuration policy combination does not need to be adjusted, step 3803 is executed. If the communication configuration policy combination needs to be adjusted, step 3804 is executed.
  • Step 3803 Use the already used frequency band combination strategy and communication access standard combination strategy.
  • Step 3804 The equipment in the wireless network changes the frequency band combination strategy and the communication access standard combination strategy according to the needs, and feeds back the adjusted frequency band combination strategy and communication access standard combination strategy to the equipment in the industrial system.
  • Embodiment 6 solves the problem of how to flexibly select access technologies and make adaptive adjustments for wireless air interfaces.
  • terminal equipment and base stations in wireless networks support multiple access technologies, support flexible selection, and also support adaptive adjustment of air interface transmission mechanisms.
  • Equipment in the industrial system can also flexibly call the air interface transmission mechanism combination. In this way, flexible selection of access technology and adaptive adjustment can meet the requirements of delay or reliability when industrial application packets are transmitted in wireless networks.
  • Embodiment 7 explains the optimization of end-to-end (E2E) deterministic scheduling or transmission mechanism in the scenario of interconnection between industrial systems and wireless networks.
  • Step 3901 Each E2E node implements deterministic scheduling based on timestamps to reduce delay jitter.
  • the terminal devices can carry timestamp information and message deadlines when sending information between them.
  • Requirement information i.e. the completion time of the message.
  • terminal device 1 and terminal device 2 exchange information
  • terminal device 1 can carry timestamp information and the message deadline in the message, so that node 1 in the path To node n, deterministic scheduling can be performed on demand, timestamp calibration can be performed, processing delay jitter can be reduced, and messages can be delivered to terminal device 2 in a timely manner.
  • the processing time limits of each E2E node for various service packets can be pre-configured to achieve deterministic scheduling and reduce processing delay jitter for each node.
  • jitter can refer to changes in packet transmission delay and deviations from ideal positions.
  • Step 3902 Each E2E node ensures high reliability of message transmission. For example, each E2E node ensures the certainty of high-priority message transmission by determining the absolute priority, resource reservation, and redundancy mechanism of message transmission.
  • each node can divide different resource allocation strategies according to different QoS requirements or priority requirements. For example, for different priorities of packets, you can refer to the following combinations to ensure packet transmission reliability:
  • High-priority messages Absolute priority, E2E resource reservation in advance, multi-path redundancy mechanism, multiple resource redundant transmission and other joint guarantees.
  • Medium-priority packets jointly guaranteed by high-priority, multi-path redundancy and other solutions.
  • Embodiment 7 illustrates how to implement E2E deterministic scheduling or transmission, and can be applied to the scenario of Embodiment 6, for example. Specifically, after multiple terminal devices collaborate to achieve E2E time synchronization, each node implements deterministic scheduling based on timestamp information, and provides differentiated reliability guarantees based on message priorities, which can reduce the cost of message transmission. jitter, improving the reliability of message transmission.
  • Embodiment 8 implements protocol interoperability (also called semantic interoperability) during packet transmission in the docking scenario of industrial systems and wireless networks and is compatible with existing protocols to ensure successful packet transmission.
  • protocol interoperability also called semantic interoperability
  • Figure 41 shows a schematic diagram of message transmission based on protocol interworking.
  • Specific processes may include:
  • Step 4101 The device determines to send the message.
  • Step 4102 The device determines which protocol type the industrial protocol of the message is.
  • Step 4103 When it is determined that the industrial protocol type is a newly defined protocol, the device sends a message according to the newly defined protocol. It can also be understood that the device transmits according to the optimization mechanism.
  • Step 4104 When it is determined that the industrial protocol type is an interoperability protocol such as open platform communications unified architecture (OPC-UA), the device sends a message according to an interoperability protocol such as OPC-UA, or the device interoperates with OPC-UA or other interoperability protocols.
  • OPC-UA open platform communications unified architecture
  • the protocol is translated or converted into a newly defined protocol, and messages are sent according to the newly defined protocol.
  • Step 4105 When it is determined that the industrial protocol type is an existing industrial protocol, the device translates or converts the existing industrial protocol into a newly defined protocol, and sends messages according to the newly defined protocol.
  • the existing industrial protocols can include the following protocols: Profinet, Ethernet control automation technology (EtherCAT), high-speed industrial Ethernet PowerLink, EtherNet/IP, hypertext transport protocol (HTTP), data distribution service (Data Distribution Service) ,DDS) etc.
  • a new existing protocol translation layer is added to the protocol stack, which supports mutual translation between customized industrial application layer protocols and existing industrial protocols, and supports the transmission of existing industrial protocols on customized wireless networks.
  • interoperability protocols such as OPC-UA can be translated or converted into newly defined protocols through the newly added existing protocol translation layer
  • existing industrial protocols can be translated or converted into newly defined protocols through the newly added existing protocol translation layer. protocol.
  • the process of identifying message protocol types and mutual translation can be implemented in hardware to improve efficiency.
  • the above message transmission can be optimized by combining the methods of Embodiment 1 to Embodiment 7.
  • Embodiment 8 supports mutual translation and forwarding of messages of existing protocols and newly defined protocols by adding a new existing protocol translation layer, thereby supporting optimized transmission of typical existing application layer protocols, supporting OPC-UA, etc. Direct transmission and optimized transmission of semantic interoperability protocol messages.
  • the solution of deep integration and extremely simplified design of industrial communication protocols and wireless communication mechanisms is introduced from different dimensions, ensuring the requirements for low-cost and simplified deployment of wireless transmission of industrial communication protocols in industrial or industry scenarios, and ensuring industrial application reports.
  • On the basis of high reliability of file transmission it reduces costs, improves transmission efficiency, and is compatible with existing industrial protocol transmissions, thereby achieving a balance between security effects, networking complexity, and deployment costs.
  • the device in the wireless network may be a terminal device in the wireless network, a base station in the wireless network, or other devices in the wireless network.
  • embodiments of the present application also provide a communication method. As shown in Figure 43, the flow of the method may include:
  • Step 4301 The first device obtains status information of the second device.
  • Step 4302 The first device adjusts the message transmission mode according to the status information of the second device.
  • the first device may be a device in the first system, and the second device may be a device in a wireless network; or, the first device may be a device in the wireless network, and the second device may be a device in the wireless network.
  • Equipment in the first system; the first system may be an industrial system or an industry system (also called an industry application system), etc.
  • the first system is an industrial system as an example. It should be understood that this does not limit the present application.
  • the message header of the message may include one or more of the following: sender identifier, receiver identifier, quality of service QoS requirement of the message, priority requirement of the message or user group identifier;
  • the message content of the message does not include stuffing packets, and the message content of the message includes compression information related to the message payload of the message before the message and/or the message after the message.
  • the frame format of the message please refer to the relevant description in the above-mentioned Embodiment 1.
  • the equipment in the wireless network may be a base station in the wireless network, a terminal device in the wireless network, or other equipment in the wireless network, which is not limited in this application.
  • the method for the first device to obtain the status information of the second device may be: the first device obtains the status information of the second device through the control plane interface or control plane network element of the wireless network. status information.
  • the first device obtains the status information of the second device through the control plane interface or control plane network element of the wireless network. status information.
  • the method for the first device to obtain the status information of the second device may also be: the first device obtains the status information of the second device through the management plane network element of the wireless network.
  • a connection has been established between the management plane network element in the wireless network and the equipment in the industrial system, or the management plane network element in the wireless network and the equipment in the industrial system are connected through API communication.
  • the method for the first device to obtain the status information of the second device may be: the first device obtains the status information of the second device through a user plane network element of the wireless network.
  • the first device negotiates with the second device about a transmission method of the status information.
  • the first device when the first device is a device in the industrial system and the second device is a device in the wireless network, the first device obtains the data through the user plane network element of the wireless network.
  • the status information of the second device may include the following four methods:
  • Method a1 The first device obtains the status information of the second device through the packet accompanying information of the user plane network element. For details, please refer to the relevant description in Mode 1 of the fourth embodiment above.
  • Method a2 The first device obtains the status information of the second device in the shared information, wherein the shared information is configured in a device connected to the industrial system in the wireless network, or the The shared information is configured in a device connected to the wireless network in the industrial system.
  • the shared information is configured in a device connected to the industrial system in the wireless network, or the The shared information is configured in a device connected to the wireless network in the industrial system.
  • Method a3 The first device obtains the status information reported by the second device.
  • the first device obtains the status information reported by the second device.
  • Method a4 The first device sends query information to the second device, and receives query response information from the second device, where the query response information includes the status information.
  • the query response information includes the status information.
  • the status information may be included in the packet accompanying information in any of the following ways: industrial Ethernet packet header, industrial Ethernet packet data part, industrial Ethernet packet tail, Internet Protocol IP packet header, data part of IP packet or tail of IP packet.
  • the status information may include one or more of the following: The status information of the wireless network, the status information of the wireless terminal, and the capability information; wherein, the status information of the wireless network may include one or more of the following: load, interference, fading, network packet loss rate, wireless air interface timing accuracy, Time synchronization accuracy, transmission delay, transmission delay reliability, transmission delay jitter, transmission delay jitter reliability, access frequency point configuration or wireless cell bandwidth configuration; the status information of the wireless terminal may include One or more of the following: load, interference, fading, packet loss rate, channel quality, central processing unit CPU utilization, equipment temperature, transmission delay, transmission delay reliability, transmission delay jitter of the wireless terminal , the reliability of transmission delay jitter, access frequency point configuration or wireless cell bandwidth configuration; the capability information may include one or more of the following: air interface transmission rules of the wireless network, scheduling of the wireless network Capability restrictions, capability information of the wireless terminal, or subscription information of the wireless terminal
  • the method may be: the first device adjusts the transmission mode of the message according to the status information of the second device: one or more of the following: sending parameters of the message , the feedback mechanism of the message, the redundant sending mechanism of the message or the retransmission mechanism of the message.
  • the sending parameters of the message may include one or more of the following: sending cycle parameters, sending time starting point parameters, watchdog parameters, survival time parameters, and link re-establishment duration parameters; so
  • the feedback mechanism of the message includes whether to feedback the reception status;
  • the redundant sending mechanism of the message includes the number of sending copies of the message and/or the sending interval of the message;
  • the retransmission mechanism of the message includes Whether to retransmit and/or retransmit and combine.
  • the first device adjusts the report based on the status information of the second device.
  • the method may be: the first device adjusts the transmission mode of the message according to business requirements and/or requirements of the industrial system and capability information in the status information.
  • the first device adjusts the transmission mode of the message according to business needs and/or needs of the industrial system and capability information in the status information.
  • the method may be: the first device determines the transmission mode of the message. Whether the business needs and/or the needs of the industrial system exceed the capability information; if the first device determines that the business needs and/or the needs of the industrial system exceed the capability information, the first device The device determines whether it can adjust the transmission mode of the message that satisfies the capability information.
  • the first device determines that the transmission mode of the message that satisfies the capability information cannot be adjusted, the first device sends notification information to the second device, and the notification information is used to indicate that the The wireless network is expanded; or, the first device determines to reduce the business demand and/or the demand of the industrial system.
  • the business requirements may include one or more of the following: QoS requirements of the service, the number of networking nodes of the service, or the networking topology of the service;
  • the requirements of the industrial system include one or more of the following: QoS requirements of the industrial system, the number of networking nodes of the industrial system, or the networking topology of the industrial system.
  • the status information may include static configuration information and/or dynamic information.
  • the static configuration information includes one or more of the following: sending cycle, watchdog parameter configuration, survival time parameter configuration, message sending starting point or topological relationship between devices in the industrial system;
  • the dynamic information Including one or more of the following: real-time packet loss information, real-time watchdog statistics and timeout count information, time-to-live status information, packet arrival time, clock accuracy degree, transmission delay information, transmission delay reliability information, transmission delay jitter information, transmission delay jitter reliability information, topological relationship change information between devices in the industrial system or whether the second device is working effectively information.
  • the method may be: the first device adjusts the transmission mode of the message according to the status information of the second device: one or more of the following: network resources of the message Configuration, redundant sending mechanism of the message or retransmission mechanism of the message.
  • the network resource configuration of the message may include one or more of the following: pre-scheduling resources, grant-free scheduling resources, semi-static scheduling SPS resources, or base station low-latency related configurations in the wireless network ;
  • the redundant sending mechanism of the message may include one or more of the following: modulation and coding scheme MCS order, packet data convergence protocol PDCP repetition, spatial transmit diversity, multiple redundant transmission paths, time slot aggregation or multiple transmission time interval TTI binding and repeated transmission;
  • the retransmission mechanism of the message may include one or more of the following: the protocol stack level of retransmission, the number of retransmissions, the time of retransmission, the feedback time length of retransmission, or Retransmission and merging methods.
  • the first device and the second device may negotiate the sending time of different messages; wherein the sending time of the different messages is the same, or the sending time of the different messages The first time difference between moments.
  • the sending time of the different messages is the same, or the sending time of the different messages The first time difference between moments.
  • the first device may perform time synchronization with the second device.
  • the time synchronization between the first device and the second device may include the following method: the first device determines that both the first device and the second device are synchronized to global time or world time; or, the first device One device uses the same time synchronization method or the same clock server as the second device. Among them, the same clock server can also be called the same time source.
  • the first device may determine the protocol type of the message; when the protocol type is the first protocol type, the first device transmits the message based on the first protocol type.
  • the first protocol type is a protocol type maintained by both the first device and the second device; when the protocol type is an OPC-UA type, the first device uses the OPC -Transmit the message in UA type, or the first device translates or converts the OPC-UA type into the first protocol type, and transmits the message based on the first protocol type; when the When the protocol type is the second protocol type, the first device translates or converts the second protocol type into the first protocol type, and transmits the message based on the first protocol type, and the first device
  • the second protocol type is a protocol type other than the first protocol type and the OPC-UA type.
  • the first protocol type may be a newly defined protocol type
  • the second protocol type may be an existing industrial protocol type.
  • the first device may determine the message according to an inter-message redundancy coding method and/or a joint coding method for messages between multiple users; wherein the inter-message redundancy coding method refers to the Part or all of the information of the first N messages is added to the above message, where N is an integer greater than or equal to 1; the joint encoding method of messages between multiple users refers to adding redundant information between messages of multiple users.
  • the inter-message redundancy coding method refers to the Part or all of the information of the first N messages is added to the above message, where N is an integer greater than or equal to 1
  • the joint encoding method of messages between multiple users refers to adding redundant information between messages of multiple users.
  • the first device when the first device is a device in the wireless network and the second device is a device in the industrial system, the first device can adjust inter-message redundancy according to network status information. Encoding method and/or joint encoding method for messages between multiple users.
  • the first device adjusts the redundant encoding method between messages and/or the joint encoding method of messages between multiple users according to the network status information.
  • the method may be: the first device determines the encoding method based on the network status information. When the network status remains unchanged, the first device keeps the redundant encoding method between messages and/or the joint encoding method of messages between multiple users unchanged; When the first device determines that the network status changes according to the network status information, the first device changes the redundant coding method between messages and/or the joint coding method of messages between multiple users.
  • the first device can transmit the message according to a first protocol; the first protocol supports the function of packet convergence protocol PDCP, and supports the function of Internet Protocol IP or Ethernet protocol. .
  • the first protocol may be a protocol corresponding to the converged protocol layer in the second embodiment. For details, please refer to the relevant description in the first embodiment.
  • the first device when the first device is a device in the wireless network, the first device may determine the scheduling method according to service characteristics.
  • the first device when the first device is a device in the wireless network and the first device is a terminal device, the first device may communicate with other terminal devices in the wireless network Establish a direct link and/or a relay link; the first device selects one or more links among the established links to transmit the message according to the message transmission requirements.
  • the first device may communicate with other terminal devices in the wireless network Establish a direct link and/or a relay link; the first device selects one or more links among the established links to transmit the message according to the message transmission requirements.
  • the first device saves a terminal device list, and the terminal devices in the terminal device list can establish a link with the first device.
  • the first device when the first device is a device in the wireless network and the first device is a terminal device, the first device may receive timing information from a base station in the wireless network; and then The first device performs time synchronization based on the timing information.
  • the first device when the first device is a device in the wireless network, the first device can determine multiple network communication configurations, and the network communication configurations include frequency band combinations and communication standard combinations; and then , the first device selects a currently used network communication configuration among the plurality of network configurations.
  • the network communication configurations include frequency band combinations and communication standard combinations
  • the first device may determine the network status change value; when the network status change value is greater than or equal to a preset value, the first device changes the network communication configuration used; when the network status change value When the value is less than the preset value, the first device keeps the network communication configuration used unchanged.
  • the first device sends the message, the message includes first timestamp information and second timestamp information, and the first timestamp information is the result of sending the The time information of the message, and the second timestamp information is the completion time information of the message.
  • the first device may perform time synchronization before sending the message. For details, please refer to the relevant description in Embodiment 7 above.
  • the embodiment of the present application also provides a communication device.
  • the communication device 4400 may include a transceiver unit 4401 and a processing unit 4402.
  • the transceiver unit 4401 is used for communication with the communication device 4400, such as receiving messages (information, messages or data) or sending messages (information, messages or data), and the processing unit 4402 is used for processing the The operations of the communication device 4400 are controlled and managed.
  • the processing unit 4402 can also control the steps performed by the transceiver unit 4401.
  • the communication device 4400 may be a device in the wireless network in the above embodiment, a processor of the device in the wireless network, or a chip, or a chip system, or a functional module, etc.
  • the communication device 4400 may specifically be a device in the industrial system (or industry system) in the above embodiment, a processor of a device in the industrial system (or industry system), or a chip, or a chip system, or a function module wait.
  • the transceiver unit 4401 can implement the transceiver operation performed by the device in the wireless network in the above embodiment; the processing unit 4402 may implement other operations other than transceiving operations performed by devices in the wireless network in the above embodiments.
  • the relevant descriptions in the above embodiments please refer to the relevant descriptions in the above embodiments, and will not be introduced in detail here.
  • the transceiver unit 4401 can implement the functions of the equipment in the industrial system (or industry system) in the above embodiment.
  • the processing unit 4402 can implement other operations other than the sending and receiving operations performed by the devices in the industrial system (or industry system) in the above embodiments.
  • each functional unit in the embodiment of the present application can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .
  • the communication device 4500 may include a communication interface 4501 and a processor 4502.
  • the communication device 4500 may also include a memory 4503.
  • the memory 4503 may be disposed inside the communication device 4500 or may be disposed outside the communication device 4500 .
  • the processor 4502 can control the communication interface 4501 to receive and send messages, information, messages or data, etc.
  • the processor 4502 may be a central processing unit (CPU), a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor 4502 may further include a hardware chip.
  • the above-mentioned hardware chip can be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) or any combination thereof.
  • the communication interface 4501, the processor 4502 and the memory 4503 are connected to each other.
  • the communication interface 4501, the processor 4502 and the memory 4503 are connected to each other through a bus 4504;
  • the bus 4504 may be a Peripheral Component Interconnect standard (Peripheral Component Interconnect, PCI) bus or an extended industry standard Structure (Extended Industry Standard Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 45, but it does not mean that there is only one bus or one type of bus.
  • the memory 4503 is used to store programs, etc.
  • the program may include program code including computer operating instructions.
  • the memory 4503 may include RAM, and may also include non-volatile memory (non-volatile memory), such as one or more disk memories.
  • the processor 4502 executes the application program stored in the memory 4503 to implement the above functions, thereby realizing the functions of the communication device 4500.
  • the communication device 4500 may be a device in the wireless network in the above embodiment; it may also be a device in the industrial system (or industry system) in the above embodiment.
  • the communication interface 4501 can implement the sending and receiving operations performed by the device in the wireless network in the above embodiment; processor 4502 Other operations other than the sending and receiving operations performed by the devices in the wireless network in the above embodiments may be implemented. For specific relevant descriptions, please refer to the relevant descriptions in the above embodiments, and will not be introduced in detail here.
  • the communication device 4500 when the communication device 4500 implements the functions of the equipment in the industrial system (or industry system) in the above embodiment, the communication interface 4501 can implement the functions in the industrial system (or industry system) in the above embodiment.
  • Transceiver operations performed by devices; the processor 4502 can implement other operations other than transceiver operations performed by devices in the industrial system (or industry system) in the above embodiments.
  • embodiments of the present application provide a communication system, which may include devices in wireless networks and devices in industrial systems (or industry systems) related to the above embodiments.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the method provided by the above method embodiment.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the method provided by the above method embodiment.
  • An embodiment of the present application also provides a chip, which includes a processor.
  • the processor is coupled to a memory and is configured to call a program in the memory so that the chip implements the method provided by the above method embodiment.
  • Embodiments of the present application also provide a chip, the chip is coupled to a memory, and the chip is used to implement the method provided in the above method embodiment.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the computer-readable memory produce instructions that include instructions.
  • the instruction device implements the functions specified in one process or multiple processes of the flowchart and/or one block or multiple blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,用以保证工业系统或行业系统的无线化需求。第一设备获取第二设备的状态信息,并根据第二设备的状态信息,调整报文的传输方式;第一设备为工业系统或行业系统中的设备,第二设备为无线网络中的设备;或者,第一设备为无线网络中的设备,第二设备为工业系统或行业系统中的设备;报文的报文头包括以下一项或多项:发送方标识、接收方标识、报文的服务质量QoS需求、报文的优先级需求或用户组标识;报文的报文内容不包括填充包,报文的报文内容包括在报文之前的报文和/或在报文之后的报文的报文净荷相关压缩信息。这样可以保证工业系统或行业系统与无线网络对接场景下报文传输的确定性、可靠性和传输效率。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年05月30日提交中国国家知识产权局、申请号为202210601695.3、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
工业通信协议报文一般具有周期性特征,需要传输网络同时兼顾报文传输的确定性(如低抖动)和低时延性能,同时提升网络传输效率、降低成本。
当前越来越多的工业通信协议有无线化部署的需求,以提升生产的柔性化,或者降低部署的成本。然而,目前的工业通信协议在使用无线技术(比如长期演进(long term evolution,LTE)技术、第五代(the 5th generation,5G)技术、无线保真(wireless fidelity,WiFi)等)传输时,存在时延可靠性保障不足、传输效率低、组网成本高等问题。
发明内容
本申请提供一种通信方法及装置,用以保证工业系统或行业系统的无线化需求。
第一方面,本申请提供了一种通信方法,该方法可以应用于第一设备、第一设备中的一个功能模块、第一设备中的处理器或芯片等。以应用于第一设备为例,该方法可以包括:第一设备获取第二设备的状态信息后,根据所述第二设备的状态信息,调整报文的传输方式;其中,所述第一设备为工业系统(或行业系统等)中的设备,所述第二设备为无线网络中的设备;或者,所述第一设备为所述无线网络中的设备,所述第二设备为所述工业系统(或行业系统等)中的设备;
其中,所述第一设备为所述无线网络中的设备时,可以是无线网络中的终端设备,也可以是无线网络中的基站,还可以是无线网络中的除终端设备和基站以外的其他设备。
通过上述方法,可以在工业系统(或行业系统等)和无线网络对接的场景下实现工业系统(或行业系统等)和无线网络中的设备之间双向协同优化,保证报文传输的确定性、可靠性等。
在一个可能的设计中,所述报文的报文头可以包括以下一项或多项:发送方标识、接收方标识、报文的服务质量(quality of service,QoS)需求、报文的优先级需求或用户组标识;所述报文的报文内容不包括填充包,所述报文的报文内容可以包括在所述报文之前的报文和/或在所述报文之后的报文的报文净荷相关压缩信息。通过简化报文的头部和内容可以提升报文传输可靠性和传输效率。从而可以保证工业系统或行业系统的无线化需求。
在一个可能的设计中,第一设备可以通过如下方法获取第二设备的状态信息:所述第一设备可以通过所述无线网络的控制面接口或控制面网元获取所述第二设备的状态信息。 从而可以实现工业系统(或行业系统等)与无线网络之间的关键信息交互。
在一个可能的设计中,第一设备也可以通过如下方法获取第二设备的状态信息:所述第一设备可以通过所述无线网络的管理面网元获取所述第二设备的状态信息。从而可以实现工业系统(或行业系统等)与无线网络之间的关键信息交互。
在一个可能的设计中,所述无线网络中的管理面网元与所述工业系统(或行业系统等)中的设备之间已建立连接,或者,所述无线网络中的管理面网元与所述工业系统(或行业系统等)中的设备之间通过应用程序接口(application programming interface,API)通信。在此基础上,可以成功实现第一设备通过所述无线网络的管理面网元获取所述第二设备的状态信息。
在一个可能的设计中,第一设备还可以通过如下方法获取第二设备的状态信息:所述第一设备通过所述无线网络的用户面网元获取所述第二设备的状态信息。从而可以实现工业系统(或行业系统等)与无线网络之间的关键信息交互。
在一个可能的设计中,所述第一设备获取第二设备的状态信息之前,所述第一设备与第二设备可以协商所述状态信息的传输方式,进而第一设备可以通过协商的传输方式准确获取到第二设备的状态信息。
在一个可能的设计中,当所述第一设备为所述工业系统(或行业系统等)中的设备,所述第二设备为所述无线网络中的设备时,所述第一设备通过所述无线网络的用户面网元获取所述第二设备的状态信息,可以包括如下方法:方法一、所述第一设备可以通过所述用户面网元的报文随路信息获取所述第二设备的状态信息;方法二、所述第一设备可以获取共享信息中的所述第二设备的所述状态信息,其中,所述共享信息配置在所述无线网络中与所述工业系统连接的设备中,或,所述共享信息配置在所述工业系统中与所述无线网络连接的设备中;方法三、所述第一设备可以获取所述第二设备上报的所述状态信息;方法四、所述第一设备可以向所述第二设备发送查询信息,并从所述第二设备接收查询响应信息,所述查询响应信息中包括所述状态信息。通过上述多种方法,第一设备获取第二设备的状态信息可以比较灵活准确。
在一个可能的设计中,所述状态信息可以通过以下任一种方式包含在所述报文随路信息中:工业以太报文头部、工业以太报文数据部分、工业以太报文尾部、互联网协议(Internet protocol,IP)报文头部、IP报文数据部分或IP报文尾部。这样可以灵活地通过报文随路信息传输所述状态信息。
在一个可能的设计中,当所述第一设备为所述工业系统(或行业系统等)中的设备,所述第二设备为所述无线网络中的设备时,所述状态信息可以包括以下一项或多项:所述无线网络的状态信息、无线终端的状态信息、能力信息;其中,所述无线网络的状态信息可以包括以下一项或多项:负载、干扰、衰落、网络丢包率、无线空口授时精度、时间同步精度、传输时延、传输时延的可靠性、传输时延抖动、传输时延抖动的可靠性、接入频点配置或无线小区的频宽配置;所述无线终端的状态信息可以包括以下一项或多项:所述无线终端的负载、干扰、衰落、丢包率、信道质量、中央处理器CPU利用率、设备温度、传输时延、传输时延的可靠性、传输时延抖动、传输时延抖动的可靠性、接入频点配置或无线小区的频宽配置;所述能力信息可以包括以下一项或多项:所述无线网络的空口发送规律、所述无线网络的调度能力限制、所述无线终端的能力信息或所述无线终端的签约信息。所述工业系统(或行业系统等)中的设备基于上述信息调整报文的传输模式可以实现 网络资源的准确有效利用。
在一个可能的设计中,当所述第一设备为所述工业系统(或行业系统等)中的设备,所述第二设备为所述无线网络中的设备时,所述第一设备根据所述第二设备的状态信息,调整报文的传输方式,方法可以为:所述第一设备可以根据所述第二设备的状态信息,调整以下一项或多项所述报文的传输方式:所述报文的发送参数、所述报文的反馈机制、所述报文的冗余发送机制或所述报文的重传机制。从而可以从多个方面优化报文的传输方式。
在一个可能的设计中,所述报文的发送参数可以包括以下一项或多项:发送周期参数、发送时间起点参数、看门狗(Watchdog)参数、生存时间(Survival Time)参数、链路重新建立的时长参数;所述报文的反馈机制可以包括是否反馈接收状态;所述报文的冗余发送机制可以包括所述报文的发送份数和/或所述报文的发送间隔;所述报文的重传机制可以包括是否重传和/或重传与合并方式。
在一个可能的设计中,当所述第一设备为所述工业系统(或行业系统等)中的设备,所述第二设备为所述无线网络中的设备时,所述第一设备根据所述第二设备的状态信息,调整报文的传输方式,方法可以为:所述第一设备根据业务需求和/或所述工业系统的需求以及所述状态信息中的能力信息调整所述报文的传输方式。这样可以使得调整后的报文的传输方式可以满足业务需求和/或所述工业系统(或行业系统等)的需求和第二设备的能力信息。
在一个可能的设计中,所述第一设备根据业务需求和/或所述工业系统(或行业系统等)的需求和所述状态信息中的能力信息调整所述报文的传输方式,方法可以为:所述第一设备判断所述业务需求和/或所述工业系统(或行业系统等)的需求是否超出所述能力信息;若所述第一设备确定所述业务需求和/或所述工业系统(或行业系统等)的需求超出所述能力信息,则所述第一设备判断是否能够调整到满足所述能力信息的所述报文的传输方式。这样可以使调整后的报文的传输方式满足第二设备的能力信息,以保证报文传输的成功率。
在一个可能的设计中,当所述第一设备判断不能调整到满足所述能力信息的所述报文的传输方式时,所述第一设备可以向所述第二设备发送通知信息,所述通知信息用于指示对所述无线网络进行扩容;或者,所述第一设备也可以确定降低所述业务需求和/或所述工业系统(或行业系统等)的需求。这样可以在后续报文传输时保证传输的可靠性。
在一个可能的设计中,所述业务需求可以包括以下一项或多项:业务的QoS需求、业务的组网节点数或业务的组网拓扑关系;所述工业系统(或行业系统等)的需求可以包括以下一项或多项:所述工业系统(或行业系统等)的QoS需求、所述工业系统(或行业系统等)的组网节点数或所述工业系统(或行业系统等)的组网拓扑关系。
在一个可能的设计中,当所述第一设备为所述无线网络中的设备,所述第二设备为所述工业系统(或行业系统等)中的设备时,所述状态信息可以包括静态配置信息和/或动态信息;其中,所述静态配置信息可以包括以下一项或多项:发送周期、看门狗参数配置、生存时间参数配置、报文发送起点或所述工业系统(或行业系统等)中设备间的拓扑关系;所述动态信息可以包括以下一项或多项:实时丢包信息、实时看门狗统计超时计数信息、生存时间状态信息、报文到达时间、时钟精度、传输时延信息、传输时延可靠性信息、传输时延抖动信息、传输时延抖动可靠性信息、所述工业系统(或行业系统等)中设备间的拓扑关系变化信息或所述第二设备是否有效工作的信息。无线网络中的设备可以基于上述信息来准确调整报文的传输方式。
在一个可能的设计中,当所述第一设备为所述无线网络中的设备,所述第二设备为所述工业系统(或行业系统等)中的设备时,所述第一设备根据所述第二设备的状态信息,调整报文的传输方式,方法可以为:所述第一设备根据所述第二设备的状态信息,调整以下一项或多项所述报文的传输方式:所述报文的网络资源配置、所述报文的冗余发送机制或所述报文的重传机制。从而可以从多个方面优化报文的传输方式。
在一个可能的设计中,所述报文的网络资源配置可以包括以下一项或多项:预调度资源、免授权(grant free)调度资源、半静态调度(semi persistent scheduling,SPS)资源或所述无线网络中的基站低时延相关配置;所述报文的冗余发送机制可以包括以下一项或多项:调制和编码方案(modulation and coding scheme,MCS)阶数、分组数据汇聚协议(packet data convergence protocol,PDCP)重复、空间发射分集、多条冗余传输路径、时隙聚合或多个传输时间间隔(transmission time interval,TTI)绑定重复发送;所述报文的重传机制可以包括以下一项或多项:重传的协议栈层次、重传次数、重传的时刻、重传的反馈时间长度或重传与合并方式。
在一个可能的设计中,所述第一设备和所述第二设备可以协商不同报文的发送时刻;其中,所述不同报文的发送时刻相同,或者所述不同报文的发送时刻之间相差第一时间。从而可以根据实际需求协商所述不同报文的发送时刻相同,以采用组播形式发送报文;或者根据实际需求协商所述不同报文的发送时刻之间相差第一时间,以降低网络并发用户数量。
在一个可能的设计中,所述第一设备可以进行与所述第二设备的时间同步。这样可以在时间同步的基础上进行报文的传输,提升报文传输可靠性和传输效率。
在一个可能的设计中,所述第一设备可以通过如下方式进行与所述第二设备的时间同步:所述第一设备确定与所述第二设备均同步到全局时间或世界时间;或者,所述第一设备采用与所述第二设备相同的时间同步方式或相同的时钟服务器。
在一个可能的设计中,所述第一设备确定所述报文的协议类型;进而当所述协议类型为第一协议类型时,所述第一设备基于所述第一协议类型传输所述报文,所述第一协议类型为所述第一设备和所述第二设备均维护的协议类型;当所述协议类型为开放平台通信统一架构(open platform communications unified architecture,OPC-UA)类型时,所述第一设备基于所述OPC-UA类型传输所述报文,或者,所述第一设备将所述OPC-UA类型翻译或转换为所述第一协议类型,并基于所述第一协议类型传输所述报文;当所述协议类型为第二协议类型时,所述第一设备将所述第二协议类型翻译或转换为所述第一协议类型,并基于所述第一协议类型传输所述报文,所述第二协议类型为所述第一协议类型和所述OPC-UA类型以外的协议类型。这样可以支持不同协议报文之间的语义互通,从而保证报文的成功过传输。
在一个可能的设计中,所述第一设备可以根据报文间冗余编码方式和/或多用户之间报文联合编码方式确定所述报文;其中,所述报文间冗余编码方式可以指在所述报文中添加前N个报文的部分或全部信息,N为大于或者等于1的整数;所述多用户之间报文联合编码方式可以指多用户的报文之间增加冗余信息。这样可以实现对报文的简化处理,减少传输数据量,提升传输可靠性,提升传输效率。
在一个可能的设计中,当所述第一设备为所述无线网络中的设备,所述第二设备为所述工业系统(或行业系统等)中的设备时,所述第一设备可以根据网络状态信息调整报文 间冗余编码方式和/或多用户之间报文联合编码方式。这样后续可以通过准确的编码方式处理报文。
在一个可能的设计中,所述第一设备根据所述网络状态信息调整报文间冗余编码方式和/或多用户之间报文联合编码方式,方法可以为:所述第一设备根据所述网络状态信息确定网络状态不变时,所述第一设备保持所述报文间冗余编码方式和/或多用户之间报文联合编码方式不变;所述第一设备根据所述网络状态信息确定网络状态发生改变时,所述第一设备更改所述报文间冗余编码方式和/或多用户之间报文联合编码方式。这样可以确定准确的编码方式,从而准确处理报文。
在一个可能的设计中,所述第一设备根据第一协议传输所述报文;所述第一协议支持PDCP的功能,以及支持IP或以太网协议的功能。这样在工业系统(或行业系统)与无线网络对接的场景中的传输协议栈进行融合,以提升报文的传输效率。
在一个可能的设计中,当所述第一设备为所述无线网络中的设备时,所述第一设备还可以根据业务特征确定调度方式,以准确调度报文传输。
在一个可能的设计中,当所述第一设备为所述无线网络中的设备,且所述第一设备为终端设备时,所述第一设备可以与所述无线网络中的其他终端设备建立直连链路和/或中继链路;进而所述第一设备可以根据报文传输需求,在建立的链路中选择一条或多条链路传输所述报文。这样可以提升报文的传输可靠性。
在一个可能的设计中,所述第一设备可以保存终端设备列表,所述终端设备列表中的终端设备能够与所述第一设备建立链路。从而使第一设备可以准确选择传输路径,保证报文的传输可靠性。
在一个可能的设计中,当所述第一设备为所述无线网络中的设备,且所述第一设备为终端设备时,所述第一设备可以从所述无线网络中的基站接收授时信息,并根据所述授时信息进行时间同步。这样可以使报文传输在时间同步的基础上传输,保证报文的传输可靠性。
在一个可能的设计中,当所述第一设备为所述无线网络中的设备时,所述第一设备可以确定多种网络通信配置,所述网络通信配置包括频段组合和通信制式组合;所述第一设备可以在所述多种网络配置中选择当前使用的一种网络通信配置。这样第一设备可以灵活选择接入方式,以满足工业系统(或行业系统)在无线网络传输时的时延和可靠性传输等要求。
在一个可能的设计中,所述第一设备可以确定网络状态变化值;进而,当所述网络状态变化值大于或等于预设值时,所述第一设备变更使用的网络通信配置;当所述网络状态变化值小于所述预设值时,所述第一设备保持使用的网络通信配置不变。这样第一设备可以根据实际情况灵活调整网络通信配置,以满足工业系统(或行业系统)在无线网络传输时的时延和可靠性传输等要求。
在一个可能的设计中,所述第一设备发送所述报文,所述报文中包括第一时间戳信息和第二时间戳信息,所述第一时间戳信息为发送所述报文的时间信息,所述第二时间戳信息为所述报文的完成时间信息。这样可以基于时间戳信息实现报文的确定性传输。
第二方面,本申请提供了一种通信方法,该方法可以包括:第二设备向第一设备提供所述第二设备的状态信息,所述第一设备获取所述第二设备的状态信息,并根据所述第二设备的状态信息,调整报文的传输方式;其中,所述第一设备为工业系统(或行业系统等) 中的设备,所述第二设备为无线网络中的设备;或者,所述第一设备为所述无线网络中的设备,所述第二设备为所述工业系统(或行业系统等)中的设备;
其中,所述无线网络中的设备可以是无线网络中的终端设备,也可以是无线网络中的基站,还可以是无线网络中的除终端设备和基站以外的其他设备。
通过上述方法,可以在工业系统(或行业系统等)和无线网络对接的场景下实现工业系统(或行业系统等)和无线网络中的设备之间双向协同优化,保证报文传输的确定性、可靠性等。
在一个可能的设计中,所述报文的报文头可以包括以下一项或多项:发送方标识、接收方标识、报文的服务质量(quality of service,QoS)需求、报文的优先级需求或用户组标识;所述报文的报文内容不包括填充包,所述报文的报文内容可以包括在所述报文之前的报文和/或在所述报文之后的报文的报文净荷相关压缩信息。通过简化报文的头部和内容也可以提升报文传输可靠性和传输效率。从而可以保证工业系统或行业系统的无线化需求。
在一个可能的设计中,所述第二设备可以通过所述无线网络的控制面接口向第一设备提供所述第二设备的状态信息;所述第一设备可以通过所述无线网络的控制面接口或控制面网元获取所述第二设备的状态信息。从而可以实现工业系统(或行业系统等)与无线网络之间的关键信息交互。
在一个可能的设计中,所述第二设备可以通过所述无线网络的管理面网元向所述第一设备提供所述第二设备的状态信息;所述第一设备可以通过所述无线网络的管理面网元获取所述第二设备的状态信息。从而可以实现工业系统(或行业系统等)与无线网络之间的关键信息交互。
在一个可能的设计中,所述无线网络中的管理面网元与所述工业系统(或行业系统等)中的设备之间已建立连接,或者,所述无线网络中的管理面网元与所述工业系统(或行业系统等)中的设备之间通过应用程序接口(application programming interface,API)通信。在此基础上,可以成功实现第一设备通过所述无线网络的管理面网元获取所述第二设备的状态信息。
在一个可能的设计中,所述第二设备可以通过所述无线网络的用户面网元向所述第一设备提供所述第二设备的状态信息;所述第一设备通过所述无线网络的用户面网元获取所述第二设备的状态信息。从而可以实现工业系统(或行业系统等)与无线网络之间的关键信息交互。
在一个可能的设计中,所述第二设备向所述第一设备提供状态信息,所述第一设备获取第二设备的状态信息之前,所述第一设备与第二设备可以协商所述状态信息的传输方式,进而第一设备可以通过协商的传输方式准确获取到第二设备的状态信息。
在一个可能的设计中,当所述第一设备为所述工业系统(或行业系统等)中的设备,所述第二设备为所述无线网络中的设备时,所述第二设备通过所述无线网络的用户面网元向所述第一设备提供所述第二设备的状态信息,所述第一设备通过所述无线网络的用户面网元获取所述第二设备的状态信息,可以包括如下方法:方法一、所述第二设备可以通过所述用户面网元的报文随路信息向所述第一设备提供所述第二设备的状态信息,所述第一设备可以通过所述用户面网元的报文随路信息获取所述第二设备的状态信息;方法二、所述第二设备可以将状态信息写入共享信息中,所述第一设备可以获取共享信息中的所述第二设备的所述状态信息,其中,所述共享信息配置在所述无线网络中与所述工业系统连接 的设备中,或,所述共享信息配置在所述工业系统中与所述无线网络连接的设备中;方法三、所述第二设备向所述第一设备上报所述状态信息,所述第一设备可以获取所述第二设备上报的所述状态信息;方法四、所述第一设备可以向所述第二设备发送查询信息,所述第二设备接收所述第一设备发送的查询信息,并向所述第一设备发送查询响应信息,所述第一设备从所述第二设备接收查询响应信息,所述查询响应信息中包括所述状态信息。通过上述多种方法,第一设备获取第二设备的状态信息可以比较灵活准确。
在一个可能的设计中,所述状态信息可以通过以下任一种方式包含在所述报文随路信息中:工业以太报文头部、工业以太报文数据部分、工业以太报文尾部、互联网协议(Internet protocol,IP)报文头部、IP报文数据部分或IP报文尾部。这样可以灵活地通过报文随路信息传输所述状态信息。
在一个可能的设计中,当所述第一设备为所述工业系统(或行业系统等)中的设备,所述第二设备为所述无线网络中的设备时,所述状态信息可以包括以下一项或多项:所述无线网络的状态信息、无线终端的状态信息、能力信息;其中,所述无线网络的状态信息可以包括以下一项或多项:负载、干扰、衰落、网络丢包率、无线空口授时精度、时间同步精度、传输时延、传输时延的可靠性、传输时延抖动、传输时延抖动的可靠性、接入频点配置或无线小区的频宽配置;所述无线终端的状态信息可以包括以下一项或多项:所述无线终端的负载、干扰、衰落、丢包率、信道质量、中央处理器CPU利用率、设备温度、传输时延、传输时延的可靠性、传输时延抖动、传输时延抖动的可靠性、接入频点配置或无线小区的频宽配置;所述能力信息可以包括以下一项或多项:所述无线网络的空口发送规律、所述无线网络的调度能力限制、所述无线终端的能力信息或所述无线终端的签约信息。所述工业系统(或行业系统等)中的设备基于上述信息调整报文的传输模式可以实现网络资源的准确有效利用。
在一个可能的设计中,当所述第一设备为所述工业系统(或行业系统等)中的设备,所述第二设备为所述无线网络中的设备时,所述第一设备根据所述第二设备的状态信息,调整报文的传输方式,方法可以为:所述第一设备可以根据所述第二设备的状态信息,调整以下一项或多项所述报文的传输方式:所述报文的发送参数、所述报文的反馈机制、所述报文的冗余发送机制或所述报文的重传机制。从而可以从多个方面优化报文的传输方式。
在一个可能的设计中,所述报文的发送参数可以包括以下一项或多项:发送周期参数、发送时间起点参数、看门狗(Watchdog)参数、生存时间(Survival Time)参数、链路重新建立的时长参数;所述报文的反馈机制可以包括是否反馈接收状态;所述报文的冗余发送机制可以包括所述报文的发送份数和/或所述报文的发送间隔;所述报文的重传机制可以包括是否重传和/或重传与合并方式。
在一个可能的设计中,当所述第一设备为所述工业系统(或行业系统等)中的设备,所述第二设备为所述无线网络中的设备时,所述第一设备根据所述第二设备的状态信息,调整报文的传输方式,方法可以为:所述第一设备根据业务需求和/或所述工业系统的需求以及所述状态信息中的能力信息调整所述报文的传输方式。这样可以使得调整后的报文的传输方式可以满足业务需求和/或所述工业系统(或行业系统等)的需求和第二设备的能力信息。
在一个可能的设计中,所述第一设备根据业务需求和/或所述工业系统(或行业系统等)的需求和所述状态信息中的能力信息调整所述报文的传输方式,方法可以为:所述第一设 备判断所述业务需求和/或所述工业系统(或行业系统等)的需求是否超出所述能力信息;若所述第一设备确定所述业务需求和/或所述工业系统(或行业系统等)的需求超出所述能力信息,则所述第一设备判断是否能够调整到满足所述能力信息的所述报文的传输方式。这样可以使调整后的报文的传输方式满足第二设备的能力信息,以保证报文传输的成功率。
在一个可能的设计中,当所述第一设备判断不能调整到满足所述能力信息的所述报文的传输方式时,所述第一设备可以向所述第二设备发送通知信息,所述第二设备从所述第一设备接收通知信息,所述通知信息用于指示对所述无线网络进行扩容;或者,所述第一设备也可以确定降低所述业务需求和/或所述工业系统(或行业系统等)的需求。这样可以在后续报文传输时保证传输的可靠性。
在一个可能的设计中,所述业务需求可以包括以下一项或多项:业务的QoS需求、业务的组网节点数或业务的组网拓扑关系;所述工业系统(或行业系统等)的需求可以包括以下一项或多项:所述工业系统(或行业系统等)的QoS需求、所述工业系统(或行业系统等)的组网节点数或所述工业系统(或行业系统等)的组网拓扑关系。
在一个可能的设计中,当所述第一设备为所述无线网络中的设备,所述第二设备为所述工业系统(或行业系统等)中的设备时,所述状态信息可以包括静态配置信息和/或动态信息;其中,所述静态配置信息可以包括以下一项或多项:发送周期、看门狗参数配置、生存时间参数配置、报文发送起点或所述工业系统(或行业系统等)中设备间的拓扑关系;所述动态信息可以包括以下一项或多项:实时丢包信息、实时看门狗统计超时计数信息、生存时间状态信息、报文到达时间、时钟精度、传输时延信息、传输时延可靠性信息、传输时延抖动信息、传输时延抖动可靠性信息、所述工业系统(或行业系统等)中设备间的拓扑关系变化信息或所述第二设备是否有效工作的信息。无线网络中的设备可以基于上述信息来准确调整报文的传输方式。
在一个可能的设计中,当所述第一设备为所述无线网络中的设备,所述第二设备为所述工业系统(或行业系统等)中的设备时,所述第一设备根据所述第二设备的状态信息,调整报文的传输方式,方法可以为:所述第一设备根据所述第二设备的状态信息,调整以下一项或多项所述报文的传输方式:所述报文的网络资源配置、所述报文的冗余发送机制或所述报文的重传机制。从而可以从多个方面优化报文的传输方式。
在一个可能的设计中,所述报文的网络资源配置可以包括以下一项或多项:预调度资源、免授权(grant free)调度资源、半静态调度(semi persistent scheduling,SPS)资源或所述无线网络中的基站低时延相关配置;所述报文的冗余发送机制可以包括以下一项或多项:调制和编码方案(modulation and coding scheme,MCS)阶数、分组数据汇聚协议(packet data convergence protocol,PDCP)重复、空间发射分集、多条冗余传输路径、时隙聚合或多个传输时间间隔(transmission time interval,TTI)绑定重复发送;所述报文的重传机制可以包括以下一项或多项:重传的协议栈层次、重传次数、重传的时刻、重传的反馈时间长度或重传与合并方式。
在一个可能的设计中,所述第一设备和所述第二设备可以协商不同报文的发送时刻;其中,所述不同报文的发送时刻相同,或者所述不同报文的发送时刻之间相差第一时间。从而可以根据实际需求协商所述不同报文的发送时刻相同,以采用组播形式发送报文;或者根据实际需求协商所述不同报文的发送时刻之间相差第一时间,以降低网络并发用户数量。
在一个可能的设计中,所述第一设备可以进行与所述第二设备的时间同步,所述第二设备可以进行与所述第一设备的时间同步。这样可以在时间同步的基础上进行报文的传输,提升报文传输可靠性和传输效率。
在一个可能的设计中,所述第一设备可以通过如下方式进行与所述第二设备的时间同步:所述第一设备确定与所述第二设备均同步到全局时间或世界时间;或者,所述第一设备采用与所述第二设备相同的时间同步方式或相同的时钟服务器。
在一个可能的设计中,所述第一设备确定所述报文的协议类型;进而当所述协议类型为第一协议类型时,所述第一设备基于所述第一协议类型传输所述报文,所述第一协议类型为所述第一设备和所述第二设备均维护的协议类型;当所述协议类型为OPC-UA类型时,所述第一设备基于所述OPC-UA类型传输所述报文,或者,所述第一设备将所述OPC-UA类型翻译或转换为所述第一协议类型,并基于所述第一协议类型传输所述报文;当所述协议类型为第二协议类型时,所述第一设备将所述第二协议类型翻译或转换为所述第一协议类型,并基于所述第一协议类型传输所述报文,所述第二协议类型为所述第一协议类型和所述OPC-UA类型以外的协议类型。这样可以支持不同协议报文之间的语义互通,从而保证报文的成功过传输。
在一个可能的设计中,所述第一设备可以根据报文间冗余编码方式和/或多用户之间报文联合编码方式确定所述报文;其中,所述报文间冗余编码方式可以指在所述报文中添加前N个报文的部分或全部信息,N为大于或者等于1的整数;所述多用户之间报文联合编码方式可以指多用户的报文之间增加冗余信息。这样可以实现对报文的简化处理,减少传输数据量,提升传输可靠性,提升传输效率。
在一个可能的设计中,当所述第一设备为所述无线网络中的设备,所述第二设备为所述工业系统(或行业系统等)中的设备时,所述第一设备可以根据网络状态信息调整报文间冗余编码方式和/或多用户之间报文联合编码方式。这样后续可以通过准确的编码方式处理报文。
在一个可能的设计中,所述第一设备根据所述网络状态信息调整报文间冗余编码方式和/或多用户之间报文联合编码方式,方法可以为:所述第一设备根据所述网络状态信息确定网络状态不变时,所述第一设备保持所述报文间冗余编码方式和/或多用户之间报文联合编码方式不变;所述第一设备根据所述网络状态信息确定网络状态发生改变时,所述第一设备更改所述报文间冗余编码方式和/或多用户之间报文联合编码方式。这样可以确定准确的编码方式,从而准确处理报文。
在一个可能的设计中,所述第一设备根据第一协议传输所述报文;所述第一协议支持PDCP的功能,以及支持IP或以太网协议的功能。这样在工业系统(或行业系统)与无线网络对接的场景中的传输协议栈进行融合,以提升报文的传输效率。
在一个可能的设计中,当所述第一设备为所述无线网络中的设备时,所述第一设备还可以根据业务特征确定调度方式,以准确调度报文传输。
在一个可能的设计中,当所述第一设备为所述无线网络中的设备,且所述第一设备为终端设备时,所述第一设备可以与所述无线网络中的其他终端设备建立直连链路和/或中继链路;进而所述第一设备可以根据报文传输需求,在建立的链路中选择一条或多条链路传输所述报文。这样可以提升报文的传输可靠性。
在一个可能的设计中,所述第一设备可以保存终端设备列表,所述终端设备列表中的 终端设备能够与所述第一设备建立链路。从而使第一设备可以准确选择传输路径,保证报文的传输可靠性。
在一个可能的设计中,当所述第一设备为所述无线网络中的设备,且所述第一设备为终端设备时,所述第一设备可以从所述无线网络中的基站接收授时信息,并根据所述授时信息进行时间同步。这样可以使报文传输在时间同步的基础上传输,保证报文的传输可靠性。
在一个可能的设计中,当所述第一设备为所述无线网络中的设备时,所述第一设备可以确定多种网络通信配置,所述网络通信配置包括频段组合和通信制式组合;所述第一设备可以在所述多种网络配置中选择当前使用的一种网络通信配置。这样第一设备可以灵活选择接入方式,以满足工业系统(或行业系统)在无线网络传输时的时延和可靠性传输等要求。
在一个可能的设计中,所述第一设备可以确定网络状态变化值;进而,当所述网络状态变化值大于或等于预设值时,所述第一设备变更使用的网络通信配置;当所述网络状态变化值小于所述预设值时,所述第一设备保持使用的网络通信配置不变。这样第一设备可以根据实际情况灵活调整网络通信配置,以满足工业系统(或行业系统)在无线网络传输时的时延和可靠性传输等要求。
在一个可能的设计中,所述第一设备发送所述报文,所述报文中包括第一时间戳信息和第二时间戳信息,所述第一时间戳信息为发送所述报文的时间信息,所述第二时间戳信息为所述报文的完成时间信息。这样可以基于时间戳信息实现报文的确定性传输。
第三方面,本申请还提供了一种通信装置,所述通信装置可以是第一设备,第一设备中的处理器、芯片或一个功能模块等,该通信装置具有实现上述第一方面或第一方面的各个可能的设计示例中第一设备的功能,或者上述第二方面或第二方面的各个可能的设计示例中的方法的中的第一设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第一方面或第一方面的各个可能的设计示例中第一设备的相应功能,或者上述第二方面或第二方面的各个可能的设计示例中第一设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括通信接口和处理器,可选地还包括存储器,所述通信接口用于收发报文或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第一方面或第一方面的各个可能的设计示例中第一设备的相应的功能,或者上述第二方面或第二方面的各个可能的设计示例中第一设备的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第四方面,本申请还提供了一种通信装置,所述通信装置可以是第二设备,第二设备中的处理器、芯片或一个功能模块等,该通信装置具有实现上述第二方面或第二方面的各个可能的设计示例中第二设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第二方面或第二方面的各个可能的设计示例中第二设备的相应功能,具体参见 方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括通信接口和处理器,可选地还包括存储器,所述通信接口用于收发报文或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第二方面或第二方面的各个可能的设计示例中第二设备的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第五方面,本申请实施例提供了一种通信系统,可以包括上述提及的第一设备和第二设备等。
第六方面,本申请实施例提供的一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在计算机上运行时,使得计算机执行本申请实施例第一方面及其任一可能的设计中,或第二方面及其任一可能的设计中所述的方法。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第七方面,本申请实施例提供一种计算机程序产品,包括计算机程序代码或指令的,当计算机程序代码或指令在计算机上运行时,使得上述第一方面或第一方面任一种可能的设计中,或者上述第二方面或第二方面任一种可能的设计中所述的方法被执行。
第八方面,本申请还提供了一种芯片,包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以使所述芯片实现上述第一方面或第一方面任一种可能的设计中,或者上述第二方面或第二方面任一种可能的设计中所述的方法。
上述第三方面至第八方面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方面或第一方面中的各种可能方案,或者上述第二方面或第二方面中的各种可能方案可以达到的技术效果说明,这里不再重复赘述。
附图说明
图1为本申请提供的一种通信系统的架构示意图;
图2为本申请提供的又一种通信系统的架构的示意图;
图3为本申请提供的又一种通信系统的架构的示意图;
图4为本申请提供的一种对报文的帧格式和联合编码机制进行定义的示意图;
图5为本申请提供的一种报文的示意图;
图6为本申请提供的一种报文间深度压缩效果示意图;
图7为本申请提供的一种报文间冗余编码方式的示意图;
图8为本申请提供的一种多用户之间报文联合编码方式的示意图;
图9为本申请提供的一种无线网络中的设备调整报文的压缩方式、报文间冗余编码方式和多用户之间报文联合编码方式的示意图;
图10为本申请提供的一种无线融合极简报文和有线网络传输报文之间的互相转换的示意图;
图11为本申请提供的一种组网与协议功能定义的流程示意图;
图12为本申请提供的一种类WLAN的胖AP架构的示意图;
图13为本申请提供的一种类WLAN的瘦AP架构的示意图;
图14为本申请提供的一种点对点通信的网络架构的示意图;
图15为本申请提供的一种融合协议层示意图;
图16为本申请提供的一种工业系统和无线网络协同优化的示意图;
图17为本申请提供的一种3GPP网管系统向工业系统的配置子系统传递无线网络的状态信息的示意图;
图18为本申请提供的一种3GPP用户面网元和工业系统中的设备交互信息的示意图;
图19为本申请提供的一种按照3GPP标准定义的5G网络与TSN系统的时间同步方式的示意图;
图20为本申请提供的一种点对点时间同步的示意图;
图21a为本申请提供的一种工业系统中设备基于无线网络中的设备反馈的状态信息调整报文的传输方式的示意图;
图21b为本申请提供的一种无线网络中设备基于工业系统中的设备反馈的状态信息调整报文的传输方式的示意图;
图22为本申请提供的一种不同报文的发送时刻对齐的示意图;
图23为本申请提供的一种不同报文的发送时刻均匀错开的示意图;
图24为本申请提供的一种工业系统中的设备按照获取的无线网络的设备的状态信息进行业务编排的示意图;
图25为本申请提供的一种通过IP报文的服务类型(type of service,TOS)字段或选项字段传送连续丢包信息的示意图;
图26为本申请提供的一种通过MAC报文或者以太网报文的S.MAC地址或data等字段传送连续丢包信息的示意图;
图27为本申请提供的一种共享区域读取/访问的示意图;
图28为本申请提供的一种共享区域写入的示意图;
图29为本申请提供的一种无线网络中的设备主动发送状态信息给工业系统中的设备的示意图;
图30为本申请提供的一种被动查询-应答的方式的示意图;
图31为本申请提供的一种无线网络中的多个终端设备协作、融合一体化的流程示意图;
图32为本申请提供的一种多个终端设备之间多路径的示意图;
图33为本申请提供的一种多个终端设备之间以及终端设备和无线基站MESH组网的示意图;
图34为本申请提供的一种多个终端设备和基站间进行全网时间同步示意图;
图35为本申请提供的一种四个终端设备之间建立组关系的示意图;
图36为本申请提供的一种实现多接入技术融合以及弹性空口的示意图;
图37为本申请提供的一种无线网络中的设备调整空口发送机制组合的示意图;
图38为本申请提供的一种工业系统中的设备调整空口发送机制组合的示意图;
图39为本申请提供的一种E2E的确定性过程的示意图;
图40为本申请提供的一种E2E时间同步示意图;
图41为本申请提供的一种基于协议互通的报文传输示意图;
图42为本申请提供的一种协议栈的示意图;
图43为本申请提供的一种通信方法的流程图;
图44为本申请提供的一种通信装置的结构示意图;
图45为本申请提供的一种通信装置的结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种通信方法及装置,用以保证工业系统或行业系统的无线化需求。其中,本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在本申请中的描述中,“至少一个(种)”是指一个(种)或者多个(种),多个(种)是指两个(种)或者两个(种)以上。“以下至少一项”或其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b或c中的至少一项,可以表示:a,b,c,a和b,a和c,b和c,或,a和b和c,其中,a,b,c可以是单个,也可以是多个。
本申请的描述中“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。“/”表示“或”,例如a/b表示a或b。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的通信方法及装置进行详细说明。
本申请实施例可以应用于工业系无线化或有线通信系统、行业无线化或有线通信系统(如行业生产现场的无线或有线通信系统)、工业系统与无线网络对接系统或者行业系统(也可以称为行业应用系统)与无线网络对接系统等。此外,本申请实施例还可以应用于电力、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)、扩展现实(eXtended reality,XR)、车联网、车与任何事物通信(vehicle-to-everything,V2X)等场景。
在本申请的描述中,为方便描述,仅以工业系统为例说明,应理解,工业系统的描述行业系统等同样适用,后续不再一一说明。
示例性的,图1示出了本申请实施例适用的一种可能的通信系统的架构。该通信系统可以包括至少一个工业通信与无线通信一体化的终端设备和工业通信与无线通信一体化的基站,可选的,还可以包括网络中心控制点。例如,图1示例性示出了该通信系统可以包括工业通信与无线通信一体化的终端设备1、工业通信与无线通信一体化的终端设备2、工业通信与无线通信一体化的终端设备3、工业通信与无线通信一体化的基站和网络控制点。其中,各个终端设备之间可以互联,终端设备可以通过无线空口接入基站。
需要说明的是,图1中是以终端设备和基站既支持工业通信功能又支持无线通信功能为例说明,也即工业通信功能和无线通信功能合设部署在一个设备上,实际中,工业功能和无线功能也可以分开单独部署,例如分别部署为工业通信终端设备和无线通信终端设备。
需要说明的是,图1仅以工业通信为例说明,应理解行业通信同样适用,此处不再详 细说明。
本申请中,无线网络可以为第三代合作伙伴项目(the 3rd generation partnership project,3GPP)网络,例如长期演进(long term evolution,LTE)通信网络和第五代(5th generation,5G)新无线(new radio,NR)通信网络等。或者,无线网络也可以为其他无线网络等,本申请对此不作限定。
例如,以无线网络为3GPP网络为例,本申请实施例适用的通信系统的架构也可以包括工业终端设备、3GPP终端设备、3GPP基站和3GPP核心网,例如图2和图3所示。其中,图2示出了单端无线化场景,即有一个工业终端设备连接3GPP终端设备,图3示出了双端无线化场景,即每个工业终端设备均连接一个3GPP终端设备。
其中,工业终端设备也可以称之为工业用户设备(industrial user equipment,i-UE),或者也可以称之为应用设备。与其他i-UE进行通信。其中,i-UE可以与3GPP终端设备(也称3GPP用户设备(3GPP user equipment,3GPP UE))连接,例如图2中i-UE 1与3GPP UE连接,i-UE 4与3GPP UE连接,又例如图3中i-UE 1与3GPP UE 1连接,i-UE 2与3GPP UE 2连接。可选的,i-UE可以与3GPP UE通过IC-1接口连接,例如,IC-1接口支持的协议类型可以包括:互联网协议(Internet protocol,IP)、以太网(ethernet)以及其他工业通信场景扩展的协议类型。i-UE也可以与3GPP核心网的网元(例如用户面网元或控制面网元)连接,例如图2中i-UE 2与3GPP核心网中的网元连接,i-UE 3与3GPP核心网中的网元连接。可选的,i-UE可以与3GPP核心网的网元通过N6接口连接。N6接口支持的协议类型可以包括:IP、ethernet以及其他工业通信场景扩展的协议类型。需要说明的是,上述接口名称仅为示例,不作为对本申请的限定。
在工业中,i-UE可以但不限于包括可编程逻辑控制器(programmable logic controller,PLC)设备、输入输出(input output,IO)设备等。
3GPP UE与3GPP基站之间可以使用3GPP空口(如Uu接口)进行连接。3GPP UE支持3GPP定义的控制面与用户面报文的发送。
3GPP UE可以包括具有无线连接功能的手持式设备、车载设备等。目前,3GPP UE可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、自动驾驶中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智能家具中的无线终端、智能办公中的无线终端、智能穿戴中的无线终端、智能交通中的无线终端或智慧家庭(smart home)中的无线终端等。本申请的实施例对3GPP UE所采用的具体技术和具体设备形态不作限定。
3GPP基站是为3GPP UE提供无线接入服务,将3GPP UE接入到无线网络的设备。目前,一些3GPP基站的举例可以为:基站(base station)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、下一代基站(next generation NodeB,gNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。3GPP基站也可以是 完成3GPP基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成3GPP基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成3GPP基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考3GPP的相关技术规范。
3GPP核心网中的网元支持与3GPP基站之间互联与通信。5G NR场景下,3GPP核心网可以包含5G核心网(5G core,5GC)中的用户面功能网元(user plane function,UPF),UPF与3GPP基站之间可以使用N3接口通信。3GPP核心网提供控制面与用户面的终结,提供用户签约存储及管理功能,移动性管理功能,策略控制功能,作为集中转发的数据连接的出口网关与外部数据网络联系,并作为3GPP UE移动时候数据连接的锚点。
需要说明的是,图2和图3中仅示出了工业终端设备之间一对一通信的示例,实际中,也可以工业终端设备也可以通过链形、环形或星形等复杂组网通信。
需要说明的是,图2和图3示出的设备仅为示例,实际中通信系统中还可以包括其他设备,例如缓存(buffer)设备或缓冲区功能模块等,图中不再示出。
需要说明的是,上述描述中,工业终端设备可以替换为行业终端设备等其他系统的终端设备。
众所周知,工业通信协议报文一般具有周期性特征,需要传输网络同时兼顾报文传输的确定性(如低抖动)和低时延性能,同时提升网络传输效率、降低成本。当前越来越多的工业通信协议有无线化部署的需求,以提升生产的柔性化,或者降低部署的成本。
然而,目前的工业通信协议在使用无线技术(比如长期演进(long term evolution,LTE)技术、第五代(the 5th generation,5G)技术、无线保真(wireless fidelity,WiFi)等)传输时,对于无线网络和工业系统对接场景的报文传输并没有完善,可能存在时延可靠性保障不足、传输效率低、组网成本高等问题。
基于此,本申请实施例在工业通信协议和无线通信协议的报文格式、组网、报文的传输方式、业务编排、通信协议等方面进行了完善。以保证工业系统和无线网络对接的可靠性等效果。
下面通过具体的实施例对工业系统和无线网络对接的完善进行详细说明。
实施例一
在该实施例一中,定义了工业系统和无线网络对接的场景下的报文帧格式、联合编码机制等,以实现报文的高效传输。
示例性的,可以通过图4所示流程对报文的帧格式和联合编码机制进行定义。具体的可以如下:
步骤401:预定义报文帧格式。
预定义工业系统和无线网络联合的融合报文头,如图5所示的融合报文头,以减少资源消耗。报文的融合报文头可以包括以下一项或多项:发送方标识(如发送方的(identity,ID))、接收方标识(如接收方的ID)、报文的服务质量(quality of service,QoS)需求、报文的优先级需求或用户组标识(如用户组ID)等。
预定义所述报文的报文内容不包括填充包(padding),即去除有线通信场景中的 padding,考虑报文净荷(payload)前后相关性深度压缩,例如图5所示,以精简报文内容。例如,所述报文的报文内容包括在所述报文之前的报文和/或在所述报文之后的报文的报文净荷相关压缩信息,例如图6示出的报文间深度压缩效果示意图。
步骤402:预定义工业系统和无线网络的报文联合编码方式。
报文联合编码方式可以包括报文间冗余编码方式和/或多用户之间报文联合编码方式。
报文间冗余编码方式是指可以在每个报文中添加前N个报文的部分或全部信息,N为大于或者等于1的整数。可选的,N可以为可配置的参数,也可以通过可靠性效果自适应调整获取,本申请对此不作限定。例如,图7示出的报文间冗余编码方式的示意图,可以在第二个报文中添加前一个报文的信息,可以在第三个报文中添加前一个报文的部分信息。采用报文间冗余编码方式可以提升网络传输的可靠性。其中,报文间冗余编码方式可以理解为单用户间的报文间冗余编码方式。
多用户之间报文联合编码方式可以是指多用户的报文之间增加冗余信息。可选的,多个用户同一时刻或同一工业通信发送周期内发送的报文可以联合编码,报文之间增加冗余信息,并且可以通过组播方式降低空口资源消耗、并可通过多个用户之间灵活互助提升传输可靠性。例如,图8示出了多用户之间报文联合编码方式的示意图。
示例性的,在实际报文传输过程中,无线网络中的设备可以根据网络状态信息实时调整报文的压缩方式、报文间冗余编码方式或多用户之间报文联合编码方式中的一种或多种。
网络状态信息可以包括负载、干扰、衰落或遮挡等。预先定义网络状态信息对应的指标,例如物理资源块(physical resource block,PRB)利用率、在线用户数、信号噪声干扰比(signal to interference plus noise ratio,SINR)、参考信号接收功率(reference signal received power,RSRP)、信道质量指示(channel quality indication,CQI)等。
无线网络中的设备设置无线网络的网络状态信息的指标的高门限(high_Thd)和低门限(low_Thd),可考虑一定的迟滞。按照指标的高门限和低门限设置不同的报文的压缩方式、报文间冗余编码方式或多用户之间报文联合编码方式。进而,无线网络中的设备可以实时判断网络状态的变化情况,调整报文的压缩方式、报文间冗余编码方式或多用户之间报文联合编码方式中的一种或多种。
示例性的,如图9所示,无线网络中的设备判断网络状态是否发生变化,若确定网络状态不变时,则保持报文压缩方式、报文间冗余编码方式和多用户之间报文联合编码方式不变;若确定网络状态发生改变时,则更改报文压缩方式、报文间冗余编码方式和多用户之间报文联合编码方式。其中,网络状态发生改变时,可能是网络状态变好,也可能是网络状态变差,根据不同的情况可以有如下调整:例如,网络状态变好时,如网络状态对应的指标高于设定的高门限值时,则可以采用提前设置的高门限对应的报文压缩方式、报文间冗余编码方式和多用户之间报文联合编码方式;又例如,网络状态变差,如网络状态对应的指标低于设定的低门限值时,则可以采用提前设置的低门限对应的报文压缩方式、报文间冗余编码方式和多用户之间报文联合编码方式。
步骤403:预定义无线/有线报文类型翻译器,以兼容有线网络传输。
例如,图10所示,在无线传输的报文和有线传输的报文之间增加无线/有线报文类型翻译器,可以实现无线融合极简报文和有线网络传输报文之间的互相转换,保证报文传输成功。
示例性的,报文类型翻译器在有线传输场景下,可以按需添加独立报文类型、padding、 校验等内容,以实现有线传输。
基于上述,工业系统中的设备和无线网络中的设备可以按照上述定义的报文格式、编码方式等传输报文。
实施例一中,通过工业系统和无线网络联合定义报文帧格式、编码方式等,进行了极简化设计,并支持自适应选择编码方式,可以实现高效进行无线传输。同时通过实施例一也可以兼容有线传输报文转换。例如,报文头部和内容极简定义和压缩,可以使传输数据量减少,提升传输效率;报文之间冗余编码,可以提升传输可靠性;报文之间联合编码,再利用组播可以提升传输可靠性;压缩方式和编码方式支持按照无线链路特征进行自适应选择;还可以兼容有线传输报文的互译。
实施例二
在该实施例二中,定义了工业系统和无线网络对接的场景下的无线网络的组网结构,以及工业系统和无线网络之间的协议功能简化定义等。
示例性的,如图11所示的组网与协议功能定义的流程,可以包括:
步骤1101:无线网络组网时可以基于预设策略户或者按需动态选择极简网络架构。
本申请中,“极简”可以理解为极其简单、非常简单等。例如,极简网络架构即非常简单的网络结构。
示例性的,可以选择的网络架构可以有如下三种:
第一种,支持类无线局域网(wireless local area network,WLAN)的胖AP架构。例如图12所示,无线终端设备1、无线终端设备2和无线终端设备3分别与无线基站之间支持3GPP空口连接。
图12所示的网络架构,可以支持极简化无线基站,也可以支持无线终端设备的接入认证、鉴权等。以及,无线终端设备和无线基站之间空口支持3GPP空口的可靠性传输机制,例如混合自动重传请求(hybrid automatic repeat request,HARQ)重传、调制和编码方案(modulation and coding scheme,MCS)选择等。
第二种,支持类WLAN的瘦AP架构。例如图13所示,无线终端设备1通过无线基站1、中心控制点、无线基站2与无线终端设备2连接。
图13所示的网络架构,可以支持无线基站和中心控制点组网,支持无线终端设备跨无线基站接入。其中,中心控制点可以完成无线终端设备的接入认证、鉴权等。无线终端设备和无线基站之间空口支持3GPP空口的可靠性传输机制,例如HARQ重传、MCS选择等。
第三种,支持点对点通信的网络架构。例如图14所示的网络结构,无线终端设备1和无线终端设备2支持点对点通信,无线终端设备2和无线终端设备2支持点对点通信。
图14所示的网络架构,可以支持无线终端设备之间点对点建立通信链路,以及支持无线终端设备之间的通信链路加密,空口支持3GPP空口的可靠性传输机制,例如HARQ重传、MCS选择等。
步骤1102:预定义协议层和协议功能的简化融合定义。
例如,图15所示,相对于原有协议层,定义了融合协议层,该融合协议层可以支持分组数汇聚协议(packet data convergence protocol,PDCP)的功能,以及支持IP或以太网协议的功能。
通过定义融合协议层,即部分协议层融合、裁剪,可以实现处理功能极简化,以使网 络的安全加密、完整性保护、排序、去重、应用层级重传等部分由应用(工业系统)实现或者由工业系统和无线网络协同实现。
步骤1103:无线网络中的设备可以按照业务特征进行极简化处理,可以理解为按照业务特征确定调度方式。
例如,无线网络中的设备可以按照业务的周期性、确定性机制优化调整,减少动态调度的复杂度,比如采用上行免授权(grant free)调度,下行半静态调度(semi persistent scheduling,SPS)等。
实施例二针对组网架构、协议层定义和处理过程的简化三个方面对无线网络和工业系统对接的场景进行了完善。无线网络可以按需选择极简的网络架构,工业系统和无线网络的协议层和处理功能进行了极简定义,以及按照业务特征进行极简化处理,这样针对工业通信协议传输可以实现报文的高效传输,提升应用体验,同时还可以降低无线网络的资源消耗。
实施例三
实施例三对工业系统和无线网络对接场景下的工业系统和无线网络双向协同优化进行说明。
示例性的,一种工业系统和无线网络协同优化的示意图可以如图16所示,具体过程可以包括:
步骤1601:工业系统中的设备和无线网络中的设备交互各自的状态信息。
可以预定义无线网络与工业系统之间的交互接口,以便于无线网络中的设备和工业系统中的设备进行状态信息(比如无线网络的空口发送规律和/或无线网络的能力限制信息等关键信息)的交互。
一种可选的实施方式一中,工业系统中的设备和无线网络中的设备可以通过控制面接口或控制面网元交互各自的状态信息。
例如,在3GPP网络对接时间敏感网络(time-sensitive networking,TSN)网络的架构中,3GPP外部的控制面节点应用功能(application function,AF)节点可以与3GPP网络中的网络开放功能(network exposure function,NEF)网元或策略控制功能(policy control function,PCF)网元通信进行状态信息交互。
又例如,也可以复用PCF或NEF与AF之间的控制面接口给工业系统传输无线网络的状态信息。
又例如,可以新增网元功能或者新增接口实现状态信息的交互。
一种可选的实施方式二中,工业系统中的设备和无线网络中的设备可以通过无线网络的管理面网元交互各自的状态信息。
由于3GPP网管系统(如网络管理站系统(network management system,NMS)或增强管理系统(enhanced management system,EMS)等)一般也能获取无线网络的空口发送规律、无线网络的能力限制信息等,因此可以通过无线网络的管理面给工业系统(配置子系统或程序)传递上述信息;3GPP网管系统需要和工业控制系统之间通过建立连接或应用程序接口(application programming interface,API)开放等方式,传递上述信息。例如,图17示出了3GPP网管系统向工业系统的配置子系统传递无线网络的状态信息的示意图,3GPP网管系统与工业系统的配置子系统之间建立连接,之后3GPP网管系统向工业系统的配置子系统发送无线网络的状态信息。
可选的,3GPP网管系统也可以将无线网络的状态信息通过离线方式提供给工业系统的配置子系统或程序。
一种可选的实施方式三中,工业系统中的设备和无线网络中的设备可以通过用户面网元交互各自的状态信息。
例如,以无线网络中的设备向工业系统中的设备提供状态信息为例,无线网络的状态信息可以通过3GPP UE、3GPP UPF等网元以用户面报文随路或单独发消息或共享读写等方式通知工业系统。需要无线网络与工业系统双方协商好通知的格式,即协商所述状态信息的传输方式,比如报文头部、可选字段扩展、独立消息发送等。如图18所示,3GPP用户面功能网元与工业系统的设备预先约定好用户面报文传输格式,然后3GPP用户面网元修改指定用户面报文,携带无线网络的状态信息,并将携带无线网络的状态信息的报文发送给工业系统中的设备,最后工业系统的设备识别指定的用户面报文,从而获取无线网络的状态信息。
可选的,用户面网元可以包括但不限于基站、核心网用户面网元、无线接入终端设备等。
步骤1602:无线网络中的设备和工业系统中的设备进行时间同步。
其中,步骤1602是可选的步骤。
示例性的,时间同步方式可以有如下两种:
方式一、工业系统中的设备和无线网络中的设备可以均同步到全局时间或世界时间。
例如,如图19所示,可以按照3GPP标准定义的5G网络与TSN系统的时间同步方式,无线网络与工业系统中的设备各自均与全局时间或世界时间同步,同步的方法可包括全球定位系统(global position system,GPS)、北斗或标准协议IEEE 1588V2等。
可选的,无线网络中的设备可以不进行3GPP定义的报文入口和出口对时间戳的修改与校正操作,以使同步方案简单。
方式二、工业系统中的设备和无线网络中的设备可以采用相同的时间同步方式或相同的时钟服务器(也可称为相同的时间源)。
该方式二也可以理解为无线网络中的设备和工业系统中的设备进行点对点时间同步。例如,可以通过3GPP UE、3GPP核心网等与工业系统直接连接的节点,进行无线网络与工业系统之间的点对点的时间同步。双方只需要遵从同一种时间同步协议(比如IEEE1588V2协议)。可选的,原始时钟可以来自无线网络,也可以来自工业系统。
如图20所示,无线网络中的设备(如3GPP网元)与工业系统中的设备先进行点对点时间同步过程,然后无线网络中的设备向工业系统中的设备提供无线帧的起始位置。
步骤1603:工业系统中的设备与无线网络中的设备双向协同优化。
在一种可选的实施方式中,工业系统中的设备与无线网络中的设备基于对方的状态信息调整报文的传输方式,以实现网络资源精细化利用。
第一种示例中,无线网络中的设备向工业系统中的设备反馈状态信息后,工业系统中设备基于无线网络中的设备反馈的状态信息调整报文的传输方式,例如图21a所示。
可选的,无线网络中的设备反馈的状态信息可以包括以下一项或多项:所述无线网络的状态信息、无线终端的状态信息、能力信息;其中,所述无线网络的状态信息可以包括以下一项或多项:负载、干扰、衰落、网络丢包率、无线空口授时精度、时间同步精度、传输时延、传输时延的可靠性、传输时延抖动、传输时延抖动的可靠性、接入频点配置或 无线小区的频宽配置等。所述无线终端的状态信息可以包括以下一项或多项:所述无线终端的负载、干扰、衰落、丢包率、信道质量、中央处理器(central processing unit,CPU)利用率、设备温度、传输时延、传输时延的可靠性、传输时延抖动、传输时延抖动的可靠性、接入频点配置或无线小区的频宽配置等。所述能力信息可以包括以下一项或多项:所述无线网络的空口发送规律、所述无线网络的调度能力限制、所述无线终端的能力信息或所述无线终端的签约信息等。
可选的,空口发送规律可以包括以下一项或多项:空口帧格式(如时分双工(time division duplex,TDD)/频分双工(frequency division duplexing,FDD)制式、TDD上下行配比、时隙(slot)长度等)、无线帧的精确起始位置等。
所述无线网络的调度能力限制可以包括但不限于:高可靠低时延通信(ultra reliable and low latency communications,URLLC)调度能力限制、低时延性能、低时延可靠性性能、时延抖动性能、时延抖动可靠性性能、并发的用户数规格等。
可选的,TDD/FDD制式、TDD上下行配比、slot长度,以及URLLC调度能力限制、无线终端的能力限制或签约信息可以不依赖时间同步方式传递给工业系统。无线帧的精确起始位置可以以时间同步的方式传递给工业系统。
进一步的,工业系统的设备获取到无线网络中的设备反馈的上述状态信息后,可以根据上述状态信息调整以下一项或多项所述报文的传输方式:所述报文的发送参数、所述报文的反馈机制、所述报文的冗余发送机制或所述报文的重传机制。
可选的,所述报文的发送参数可以包括以下一项或多项:发送周期参数、发送时间起点参数、看门狗(Watchdog)参数、生存时间(Survival Time)参数、链路重新建立的时长参数等。所述报文的反馈机制可以包括是否反馈接收状态等。所述报文的冗余发送机制可以包括所述报文的发送份数和/或所述报文的发送间隔等。所述报文的重传机制可以包括是否重传和/或重传与合并方式等。
其中,看门狗是一种装置(通常是一个计时器或驱动器),可以用于监视连续运行的系统是否正常、功能是否发挥出来等。
第二种示例中,工业系统中的设备向无线网络中的设备反馈状态信息后,无线网络中设备基于工业系统中的设备反馈的状态信息调整报文的传输方式,例如图21b所示。
可选的,工业系统中的设备反馈的状态信息可以包括静态配置信息和/或动态信息。
例如,所述静态配置信息可以包括以下一项或多项:发送周期、看门狗参数配置、生存时间参数配置、报文发送起点或所述工业系统中设备间的拓扑关系。
所述动态信息可以包括以下一项或多项:实时丢包信息、实时看门狗统计超时计数信息、生存时间状态信息、报文到达时间、时钟精度、传输时延信息、传输时延可靠性信息、传输时延抖动信息、传输时延抖动可靠性信息、所述工业系统中设备间的拓扑关系变化信息或所述工业系统中的设备是否有效工作的信息。
进一步地,无线网络的设备获取到工业系统中的设备反馈的上述状态信息后,可以根据上述状态信息调整以下一项或多项所述报文的传输方式:所述报文的网络资源配置、所述报文的冗余发送机制或所述报文的重传机制。
可选的,所述报文的网络资源配置可以包括以下一项或多项:预调度资源、免授权调度资源、SPS资源或所述无线网络中的基站低时延相关配置等。
所述报文的冗余发送机制可以包括以下一项或多项:MCS阶数、PDCP重复(PDCP  duplication)、空间发射分集、多条冗余传输路径、时隙聚合(slot aggregation)或多个传输时间间隔(transmission time interval,TTI)绑定重复发送(TTI bundling)等。
所述报文的重传机制可以包括以下一项或多项:重传的协议栈层次、重传次数、重传的时刻、重传的反馈时间长度或重传与合并方式等。
在又一种可选的实施方式中,无线网络中的设备与工业系统中的设备可以协商不同报文的发送时刻。
一种可能的方式中,无线网络中的设备与工业系统中的设备可以协商所述不同报文的发送时刻相同。也即,不同报文的发送时刻对齐以便于采用组播形式发送报文。例如,图22示出了一种不同报文的发送时刻对齐的示意图。
又一种可能的方式中,无线网络中的设备与工业系统中的设备也可以协商所述不同报文的发送时刻之间相差第一时间,其中第一时间是预设的时间。也即可以将不通过不同报文的发送时刻均匀错开,以便于降低网络并发用户数量。例如,图23示出了一种不同报文的发送时刻均匀错开的示意图。
需要说明的是,上述不同报文可以是同一个工业系统中的设备的报文。在一种可选的实施方式中,不同工业系统中的设备的报文也可以发送时刻对齐或者发送时刻均匀错开。
实施例三中的方案完善了工业系统(应用)和无线网络之间进行双向信息交互、双向协同优化数据发送。例如,工业系统和无线网络之间可以打通双向信息交互接口,进行时间同步,交互各自的关键信息并按照协同信息进行传输或调度调整。通过工业系统和无线网络双向协同优化,可以获取较好的应用体验(如时延、可靠性、时延抖动等),也可以节约无线网络的频谱资源。
实施例四
实施例四对工业系统和无线网络对接场景下的工业系统中的设备按照获取的无线网络的设备的状态信息进行业务编排的说明。可以理解的是,实施例四可以是实施例三的一种可能的实现方式。
示例性的,一种工业系统中的设备按照获取的无线网络的设备的状态信息进行业务编排的示意图可以如图24所示,具体过程可以包括:
步骤2401:工业系统中的设备获取无线网络中的设备的状态信息。
可选的,无线网络中的设备的状态信息的具体内容可以参见实施例三中涉及的相关描述,此处不再详细说明。
示例性的,工业系统中的设备可以通过如下任一种方式获取无线网络中的设备的状态信息:
方式1、报文随路信息通知。即工业系统中的设备可以通过用户面网元的报文随路信息获取无线网络中的设备的状态信息。
其中,用户面网元的报文随路信息可以但不限于是地址解析协议(address resolution protocol,ARP)发现信息、握手信息、地址配置信息、工业系统中的设备之间其他的交互报文等。
状态信息在所述报文随路信息中的随路格式可以通过工业系统中的设备和无线网络中的设备协商确定。
可选的,该状态信息通过以下任一种方式包含在所述报文随路信息中:工业以太报文头部、工业以太报文数据部分、工业以太报文尾部、互联网协议IP报文头部、IP报文数 据部分、或IP报文尾部等。
例如,该状态信息中连续丢包信息等可以通过图25所示的IP报文的服务类型(type of service,TOS)字段或选项字段传送。
又例如,该状态信息中连续丢包信息等可以通过图26所示的MAC报文或者以太网报文的源MAC(source MAC,S.MAC)地址或数据(data)等字段传送。
方式2、共享区域读取/访问。也就是工业系统中的设备可以获取共享区域(共享信息)中的无线网络中的设备的状态信息。
可选的,无线网络与工业系统直接连接的节点或设备(比如5G UE、5G UPF、NEF等)开放一块共享区域,将需要提供的状态信息提前放置到共享区域,设置访问方式,以使工业系统共享读取。
例如,图27所示,3GPP网元开放共享区域,配置权限,然后3GPP网元与工业系统中的设备进行安全交互流程,进而,工业系统中的设备可以访问共享区域,从而获取无线网络中设备的状态信息。其中,这里3GPP网元为所述无线网络中与所述工业系统连接的设备。
方式3、共享区域写入。也就是说,工业系统中的设备可以获取共享区域(共享信息)中的无线网络中的设备的状态信息。
可选的,工业系统与无线网络直接连接的节点或设备(比如PLC、IO等)开放一块共享区域,无线网络中的设备将需要提供的状态信息写入共享区域,并通知工业系统中的设备读取。
例如,图28所示,工业系统与无线网络直接连接的设备开放共享区域,配置权限,然后该设备与无线网络中的设备进行安全交互流程,进而,无线网络中的设备可以在该共享区域中写入无线网络中设备的状态信息。这样,工业系统中的设备可以读取该共享区域中无线网络中的设备的状态信息。
方式4、无线网络中的设备主动发送状态信息给工业系统中的设备。
可选的,无线网络中的设备可以通过控制面、管理面或者用户面单独发送消息通知工业系统中的设备自己的状态信息。其中,消息格式可以无线网络中的设备和工业系统中的设备协商定义。
可选的,工业系统中的设备也可以要求无线网络中的设备上报状态信息。
例如,如图29所示,工业系统中的设备和无线网络中的设备通过连接建立流程建立连接,之后无线网络中的设备主动向工业系统中的设备发送状态信息。
方式5、被动查询-应答的方式。也就是工业系统中的设备向无线网络中的设备发送查询信息,并从无线网络中的设备接收查询响应信息,所述查询响应信息中包括所述状态信息。例如图30所示。需要说明的是,如图30所示,在工业系统中的设备向无线网络中的设备发送查询信息之前,工业系统中的设备和无线网络中的设备通过连接建立流程建立连接。
可选的,工业系统中的设备可以向无线网络直联的节点或设备(比如5G UE、5G UPF、NEF等)发送查询信息,无线网络中的设备根据查询信息应答,提供关键信息(即状态信息)。
步骤2402:工业系统中的设备根据业务需求和/或所述工业系统的需求以及所述状态信息中的能力信息调整所述报文的传输方式。具体的,工业系统中的设备判断所述业务需 求和/或所述工业系统的需求是否超出所述能力信息。
具体的,能力信息可以参见实施例三中涉及的相关描述,此处不再赘述。
所述业务需求可以包括以下一项或多项:业务的QoS需求、业务的组网节点数或业务的组网拓扑关系。
所述工业系统的需求可以包括以下一项或多项:所述工业系统的QoS需求、所述工业系统的组网节点数或所述工业系统的组网拓扑关系。
若工业系统中的设备判断所述业务需求和/或所述工业系统的需求超出所述能力信息,则所述工业系统中的设备执行步骤2403,否则执行步骤2404或者直接执行步骤2406。
步骤2403:工业系统中的设备进行业务编排,即工业系统中的设备尝试编排或调整业务逻辑,降低在无线网络中每个TTI的并发数。例如,工业系统中的设备编排或调整报文发送先后顺序、发送周期参数等,以保障每个TTI均不超过无线网络的最大能力限制。进一步地,工业系统中的设备继续执行步骤2405。
步骤2404:工业系统中的设备也可以尝试调整或编排业务逻辑(编排或调整报文发送先后顺序、发送周期参数等),以使无线网络空口的每个TTI的调度数据量和数据类型更为均匀,便于无线网络提升效率。
步骤2404是可选的步骤。
步骤2405:工业系统中的设备判断业务编排是否成功,也可以理解为工业系统中的设备判断是够能够调整发送参数配置或组网拓扑等到满足所述能力信息,也可以理解为工业系统中的设备进行业务逻辑编排或调整后是否可以满足无线网络的每TTI的最大能力限制。若业务编排成功(业务逻辑编排/调整后可以满足无线网络的每TTI的最大能力限制),则工业系统的设备执行步骤2406。若业务编排失败(业务逻辑无法编排/调整,或者编排/调整后也超过无线网络的最大能力限制),则工业系统中的设备执行步骤2407。
步骤2406:工业系统中的设备继续后续的数据交互流程。
步骤2407:工业系统无线组网失败,工业系统中的设备通知上层应用系统降低无线组网节点数(可以理解为确定降低所述业务需求和/或所述工业系统的需求),或者通知无线网络进行扩容处理(增加站点、扩小区数、载波数等)。
实施例四中的方案描述了工业系统中的设备如何按照无线网络的能力限制和要求进行业务编排调整发送。具体的,工业系统中的设备在获取了无线网络的关键信息后,判断当前业务发送需求是否超出无线网络的能力限制,然后按照无线网络的能力限制进行业务编排,以及工业系统和上层应用、无线网络进行信息交互,在编排失败场景进行补充处理。从而可以避免工业系统业务并发数量超过无线网络的能力限制,提升报文时效性,以及提升无线网络的传输效率。
实施例五
实施例五定义了工业系统和无线网络对接场景下,工业系统和无线网络融合组网时,无线网络中的多终端设备协作、融合一体化的内容。
示例性的,图31示出了无线网络中的多个终端设备协作、融合一体化的流程示意图。具体的过程可以包括:
步骤3101:多个终端设备之间协作多路径建立。
多个终端设备之间可以进行相邻节点的发现和连接建立。
可选的,终端设备之间存在直通路径的,建立直通链路(也称直连链路)。终端设备 之间不存在直通链路的,可以通过无线基站或者其他终端设备实现互通的,则可以建立中继链路。
终端设备之间信息交互时,可采用多条路径并行发送消息,以保障报文传输的可靠性;例如,如图32所示,终端设备1和终端设备2之间可以通过直通链路、中继链路1、中继链路2并行发送报文,提升报文传输的可靠性。
可选的,终端设备之间可以按照报文传输需求(例如报文传输的QoS或可靠性要求)选择一条或者多条路径进行报文传输。例如,如图32所示,终端设备1和终端设备2之间可以按照报文传输需求选择直通链路、中继链路1、中继链路2中的一条或多条路径传输报文。
在一种可选的方式中,如果某一条链路报文传输成功后,可以中断其他并行链路对相同报文的重复传输。
步骤3102:多个终端设备之间以及终端设备和无线基站网格(MESH)组网。
示例性的,各个终端设备可以维护自己可互联的其他终端设备列表。例如,多个终端设备之间以及终端设备和无线基站MESH组网的示意图可以如图33所示。
终端设备之间通过设备到设备(device-to-device,D2D)建立直通链路。
终端设备之间通过基站建立中继链路,或者,终端设备之间通过其他终端设备建立中继链路。
经过一段时间的节点发现、路径搜索和连接建立后,终端设备则维护的列表可以趋于稳定。
当有终端设备接入或退出后,各个终端设备可以刷新对应的列表信息。
可选的,为了控制终端设备列表规模,可以为各个终端设备设置白名单机制,进入白名单的终端设备才能相互搜索发现。例如,白名单的终端设备为与发现者距离近、信号好、信道质量好或者与发现者有业务关联的终端设备等。
步骤3103:多个终端设备和基站间进行全网时间同步。
如图34所示的多个终端设备和基站间进行全网时间同步示意图,终端设备可以从无线基站获取空口授时信息,进而获取全局精确时间信息。
进而,终端设备之间交互,实现D2D的时间同步。或者,终端设备之间也可借助基站或其他终端设备中继,实现时间同步。
终端设备之间时间同步范围可以扩大,从而可以实现全网络节点时间同步。
步骤3104:多个终端设备之间组播或广播。
可选的,业务相关的终端设备之间可以建立组关系,如图35所示四个终端设备之间建立组关系。建立组关系的终端设备的组用户列表可以被复制到组内每个终端设备中,各个终端设备进行刷新维护。
组内终端设备可以按照业务需求进行组播或广播。
实施例五的方案可以解决工业系统和无线网络融合组网时,多终端设备之间如何协作、融合一体化以提升传输可靠性和效率的问题。具体的,多个终端设备就按建立协作多路径,可以提升传输可靠性。终端设备之间、终端设备和基站之间MESH组网可以提升传输可靠性。终端设备之间使能组播和广播,可以进一步提升效率。这样,无线网络中的多终端设备协作,可以提升工业系统应用报文在无线网络传输的确定性和实时性。
实施例六
实施例六介绍无线网络和工业系统对接场景中的多接入技术融合以及弹性空口。
示例性的,可以通过如图36所示的过程实现多接入技术融合以及弹性空口。具体可以包括:
步骤3601:预配置支持的无线频段或频率集合与使用规则。
例如,频段可以包括以下一项或多项:低频、6GHz以下频段(Sub6G)、高频毫米波、免许可(Unlicensed)频谱等。
子帧设置:支持TDD灵活上下行配比或支持FDD等。
支持各类资源复用技术,如时分、频分、码分、空分、波分等。
支持资源冗余发送。
支持各类空口编码:如二进制相移键控(binary phase shift keying,BPSK)、四相相移键控(quadri phase shift keying,QPSK)、16位正交调幅(quadrature amplitude modulation,QAM)、64QAM、256QAM、1024QAM等。
可选的,无线网络的网关系统可以实时调整支持的无线频段或频率集合与使用规则。
步骤3602:预配置支持的空口制式集合。
例如,支持3GPP制式,如2G、3G、4G、5G、5.5G、6G等。
支持侧行链路(SideLink)或D2D等。
支持无线局域网(wireless fidelity,WiFi)、蓝牙技术(BlueTooth)等。
步骤3603:无线网络中的设备调整空口发送机制组合。
示例性的,图37示出了无线网络中的设备调整空口发送机制组合的示意图。具体可以包括:
步骤3701:无线网络中的基站和终端设备按照各自能力协商多套网络通信配置策略组合(包括频段、配比、复用、冗余、通信制式等),并设置网络状态的变化门限值(thd)。
步骤3702:无线网络中的基站和终端设备检测网络实时通信状态(如负载、干扰、衰落、遮挡等)的变化情况,并判断网络状态变化值是否大于或等于预设的变化门限值。若网络状态变化值小于预设的变化门限值,则执行步骤3703,若网络状态变化值大于或等于预设的变化门限值,则执行步骤3704。
步骤3703:无线网络中的基站和终端设备沿用已用的频段组合策略以及通信接入制式组合策略。
步骤3704:无线网络中的基站和终端设备更改频段组合策略以及通信接入制式组合策略。
可选的,无线网络中的基站和终端设备初始建立连接通信时,采用的频段组合策略以及通信接入制式组合策略可以静态配置也可以随机选择。
步骤3604:工业系统中的设备调整空口发送机制组合。
示例性的,图38示出了工业系统中的设备调整空口发送机制组合的示意图。具体可以包括:
步骤3801:工业系统中的设备从多套网络通信配置策略组合(包括频段、配比、复用、冗余、通信制式等)中选择初始的策略组合,并部署选择的策略组合。
步骤3802:无线网络中设备检测工业系统中的设备是否需要调整通信配置策略组合。
可选的,工业系统中的设备也可以动态将调整通信配置策略组合的需求发送给无线网络中的设备。
工业系统中的设备检测数据传输的实时效果,并判断是否需要调整通信配置策略组合。
若不需要调整通信配置策略组合,则执行步骤3803,若需要调整通信配置策略组合,则执行步骤3804。
步骤3803:沿用已用的频段组合策略以及通信接入制式组合策略。
步骤3804:无线网络中的设备按照需求更改频段组合策略以及通信接入制式组合策略,并将调整后的频段组合策略以及通信接入制式组合策略反馈给工业系统中的设备。
实施例六中的方案解决了无线空口如何灵活选择接入技术、并自适应调整的问题。具体的,无线网络中的终端设备和基站支持多种接入技术,并支持灵活选择,也支持自适应调整空口发送机制。工业系统中的设备也可以灵活调用空口发送机制组合。这样,灵活选择接入技术并自适应调整,可以满足工业应用报文在无线网络传输时的时延或可靠性等要求。
实施例七
实施例七对工业系统和无线网络对接的场景下的端到端(end to end,E2E)确定性调度或传输机制的优化进行说明。
示例性的,E2E的确定性过程可以如图39所示。具体的:
步骤3901:E2E各节点基于时间戳实现确定性调度,以降低时延抖动。
例如,基于实施例五中图34所示的组网中无线网络的多个终端设备和基站间全网时间同步后,终端设备之间进行信息发送时,可以携带时间戳信息和报文截止时间需求信息(即报文的完成时间)。例如图40示出的E2E时间同步示意图所示,终端设备1和终端设备2进行信息交互时,终端设备1可以在报文中携带时间戳信息和报文截止时间,以使路径中的节点1到节点n可以按需确定性调度,进行时间戳校准,降低处理时延抖动,以及时传递报文给终端设备2。
可选的,可以预先配置E2E各个节点对各类业务报文的处理时间限制,以实现确定性调度,以及各节点降低处理时延抖动。
本申请中,抖动可以指报文传输时延的变化情况及偏离理想位置的情况。
步骤3902:E2E各节点进行报文传输高可靠性保证。例如,E2E各个节点通过确定报文传输的绝对优先级、资源预留和冗余机制,保障高优先级报文传输确定性。
可选的,各个节点可以按照不同的QoS需求或优先级需求,划分不同的资源分配策略。例如,针对报文的不同优先级可以参考如下组合以保障报文传输可靠性:
高优先级报文:绝对优先级、E2E资源提前预留、多路径冗余机制、多份资源冗余传输等方案联合保障。
中优先级报文:高优先级、多路径冗余等方案联合保障。
低优先级报文:尽力而为,最大化系统容量。
实施例七中的方案说明了如何实现E2E确定性调度或传输,例如可以应用于实施例六的场景下。具体的,多个终端设备之间协作实现E2E的时间同步后,各个节点之间基于时间戳信息实现确定性调度,以及根据报文优先级进行差异化的可靠性保障,从而可以降低报文传输的抖动,提升报文传输的可靠性。
实施例八
实施例八对工业系统和无线网络对接场景下报文传输时的协议互通(也称语义互通)并兼容存量协议,以保证报文传输成功。
例如,图41示出了基于协议互通的报文传输示意图。具体过程可以包括:
步骤4101:设备确定进行报文发送。
步骤4102:设备判断报文的工业协议的类型是哪一种协议类型。
步骤4103:当确定工业协议类型为新定义协议时,设备按照新定义协议发送报文。也可以理解为设备按照优化机制传输。
步骤4104:当确定工业协议类型为开放平台通信统一架构(ppen platform communications unified architecture,OPC-UA)等互通协议时,设备按照OPC-UA等互通协议发送报文,或者设备将OPC-UA等互通协议翻译或转换成新定义的协议,并按照新定义协议发送报文。
步骤4105:当确定工业协议类型为存量工业协议时,设备将存量工业协议翻译或转换成新定义的协议,并按照新定义协议发送报文。
上述过程支持的协议栈的示意图可以如图42所示。
其中,存量工业协议可以包括以下协议:Profinet、以太网控制自动化技术(EtherCAT)、高速工业以太网PowerLink、EtherNet/IP、超文本传输协议(hypertext transport protocol,HTTP)、数据分发服务(Data Distribution Service,DDS)等。
协议栈中新增存量协议翻译层,支持定制化的工业应用层协议与存量工业协议的相互翻译,支持存量工业协议在定制的无线网络上传输。例如步骤4104可以通过新增的存量协议翻译层将OPC-UA等互通协议翻译或转换成新定义的协议,步骤4105中可以通过新增的存量翻译层将存量工业协议翻译或转换成新定义的协议。
可选的,具体实现时,报文协议类型的识别、相互翻译的过程,可以通过硬件化实现来提升效率。
在实际场景中,一种可能的实施方式中,上述报文传输可以结合实施例一到实施例七的方法进行优化传输。
实施例八中的方案通过新增存量协议翻译层,支持存量协议和新定义的协议的报文之间互相翻译和转发,从而可以支持典型的存量应用层协议的优化传输、支持OPC-UA等语义互通协议报文的直接传输与优化传输。
通过上述八个实施例从不同维度介绍了工业通信协议与无线通信机制深度融合、极简化设计的方案,保障工业或行业场景工业通信协议无线化传输的低成本简化部署的要求,保障工业应用报文传输高可靠性的基础上,降低成本、提升传输效率,并且能够兼容存量工业协议传输,从而实现保障效果、组网复杂度、部署成本的均衡。
需要说明的是,上述八个实施例中,流程的步骤之间不限定先后顺序,也不限定其中的逻辑关系,可选的,可能每个步骤为一个单独的实施方案,本申请对此不作限定。
需要说明的是,本申请中,如无特殊说明,无线网络中的设备可以为无线网络中的终端设备,也可以为无线网络中的基站,或者可以为无线网络中的其他设备等。
需要说明的是,在本申请的描述中,仅以工业系统为例说明。应理解,行业系统可以替换工业系统的描述,行业系统可以参考工业系统的方法,两者类似,可以相互参见。
基于以上实施例,本申请实施例还提供了一种通信方法,参阅图43所示,该方法的流程可以包括:
步骤4301:第一设备获取第二设备的状态信息。
步骤4302:所述第一设备根据所述第二设备的状态信息,调整报文的传输方式。
其中,所述第一设备可以为第一系统中的设备,所述第二设备为无线网络中的设备;或者,所述第一设备为所述无线网络中的设备,所述第二设备为所述第一系统中的设备;所述第一系统可以为工业系统或行业系统(也可称行业应用系统)等。为描述方便,在以下的描述中,仅以第一系统为工业系统为例说明,应理解,这不作为对本申请的限定。
可选的,所述报文的报文头可以包括以下一项或多项:发送方标识、接收方标识、报文的服务质量QoS需求、报文的优先级需求或用户组标识;所述报文的报文内容不包括填充包,所述报文的报文内容包括在所述报文之前的报文和/或在所述报文之后的报文的报文净荷相关压缩信息。具体的,报文的帧格式可以参见上述实施例一中的相关说明。
需要说明的是,无线网络中的设备可以为无线网络中的基站、无线网络中的终端设备或无线网络中的其他设备,本申请对此不作限定。
在一种可选的实施方式中,第一设备获取第二设备的状态信息方法可以为:所述第一设备通过所述无线网络的控制面接口或控制面网元获取所述第二设备的状态信息。具体可以参见上述实施例三中一种可选的实施方式一中的相关描述。
在另一种可选的实施方式中,第一设备获取第二设备的状态信息方法还可以为:所述第一设备通过所述无线网络的管理面网元获取所述第二设备的状态信息。具体可以参见上述实施例三中一种可选的实施方式二中的相关描述。
可选的,所述无线网络中的管理面网元与所述工业系统中的设备之间已建立连接,或者所述无线网络中的管理面网元与所述工业系统中的设备之间通过API通信。
在又一种可选的实施方式中,第一设备获取第二设备的状态信息方法可以为:所述第一设备通过所述无线网络的用户面网元获取所述第二设备的状态信息。具体可以参见上述实施例三中一种可选的实施方式三中的相关描述。
可选的,所述第一设备获取第二设备的状态信息之前,所述第一设备与第二设备协商所述状态信息的传输方式。
示例性的,当所述第一设备为所述工业系统中的设备,所述第二设备为所述无线网络中的设备时,所述第一设备通过所述无线网络的用户面网元获取所述第二设备的状态信息,可以包括以下四种方法:
方法a1、所述第一设备通过所述用户面网元的报文随路信息获取所述第二设备的状态信息。具体可以参见上述实施例四中方式1中的相关描述。
方法a2、所述第一设备获取共享信息中的所述第二设备的所述状态信息,其中,所述共享信息配置在所述无线网络中与所述工业系统连接的设备中,或,所述共享信息配置在所述工业系统中与所述无线网络连接的设备中。具体可以参见上述实施例四中方式2和方式3中的相关描述。
方法a3、所述第一设备获取所述第二设备上报的所述状态信息。具体可以参见上述实施例四中方式4中的相关描述。
方法a4、所述第一设备向所述第二设备发送查询信息,并从所述第二设备接收查询响应信息,所述查询响应信息中包括所述状态信息。具体可以参见上述实施例四中方式5中的相关描述。
示例性的,所述状态信息可以通过以下任一种方式包含在所述报文随路信息中:工业以太报文头部、工业以太报文数据部分、工业以太报文尾部、互联网协议IP报文头部、IP报文数据部分或IP报文尾部。
在一种示例中,当所述第一设备为所述工业系统中的设备,所述第二设备为所述无线网络中的设备时,所述状态信息可以包括以下一项或多项:所述无线网络的状态信息、无线终端的状态信息、能力信息;其中,所述无线网络的状态信息可以包括以下一项或多项:负载、干扰、衰落、网络丢包率、无线空口授时精度、时间同步精度、传输时延、传输时延的可靠性、传输时延抖动、传输时延抖动的可靠性、接入频点配置或无线小区的频宽配置;所述无线终端的状态信息可以包括以下一项或多项:所述无线终端的负载、干扰、衰落、丢包率、信道质量、中央处理器CPU利用率、设备温度、传输时延、传输时延的可靠性、传输时延抖动、传输时延抖动的可靠性、接入频点配置或无线小区的频宽配置;所述能力信息可以包括以下一项或多项:所述无线网络的空口发送规律、所述无线网络的调度能力限制、所述无线终端的能力信息或所述无线终端的签约信息。
一种可能的方式中,当所述第一设备为所述工业系统中的设备,所述第二设备为所述无线网络中的设备时,所述第一设备根据所述第二设备的状态信息,调整报文的传输方式,方法可以为:所述第一设备根据所述第二设备的状态信息,调整以下一项或多项所述报文的传输方式:所述报文的发送参数、所述报文的反馈机制、所述报文的冗余发送机制或所述报文的重传机制。具体可以参见上述实施例四中的相关描述。
示例性的,所述报文的发送参数可以包括以下一项或多项:发送周期参数、发送时间起点参数、看门狗Watchdog参数、生存时间Survival Time参数、链路重新建立的时长参数;所述报文的反馈机制包括是否反馈接收状态;所述报文的冗余发送机制包括所述报文的发送份数和/或所述报文的发送间隔;所述报文的重传机制包括是否重传和/或重传与合并方式。
具体的,当所述第一设备为所述工业系统中的设备,所述第二设备为所述无线网络中的设备时,所述第一设备根据所述第二设备的状态信息,调整报文的传输方式,方法可以为:所述第一设备根据业务需求和/或所述工业系统的需求以及所述状态信息中的能力信息调整所述报文的传输方式。
可选的,所述第一设备根据业务需求和/或所述工业系统的需求和所述状态信息中的能力信息调整所述报文的传输方式,方法可以为:所述第一设备判断所述业务需求和/或所述工业系统的需求是否超出所述能力信息;若所述第一设备确定所述业务需求和/或所述工业系统的需求超出所述能力信息,则所述第一设备判断是否能够调整到满足所述能力信息的所述报文的传输方式。
当所述第一设备判断不能调整到满足所述能力信息的所述报文的传输方式时,所述第一设备向所述第二设备发送通知信息,所述通知信息用于指示对所述无线网络进行扩容;或者,所述第一设备确定降低所述业务需求和/或所述工业系统的需求。
例如,所述业务需求可以包括以下一项或多项:业务的QoS需求、业务的组网节点数或业务的组网拓扑关系;所述工业系统的需求包括以下一项或多项:所述工业系统的QoS需求、所述工业系统的组网节点数或所述工业系统的组网拓扑关系。
又一种示例中,当所述第一设备为所述无线网络中的设备,所述第二设备为所述工业系统中的设备时,所述状态信息可以包括静态配置信息和/或动态信息;所述静态配置信息包括以下一项或多项:发送周期、看门狗参数配置、生存时间Survival Time参数配置、报文发送起点或所述工业系统中设备间的拓扑关系;所述动态信息包括以下一项或多项:实时丢包信息、实时看门狗统计超时计数信息、生存时间状态信息、报文到达时间、时钟精 度、传输时延信息、传输时延可靠性信息、传输时延抖动信息、传输时延抖动可靠性信息、所述工业系统中设备间的拓扑关系变化信息或所述第二设备是否有效工作的信息。
一种可能的方式中,当所述第一设备为所述无线网络中的设备,所述第二设备为所述工业系统中的设备时,所述第一设备根据所述第二设备的状态信息,调整报文的传输方式,方法可以为:所述第一设备根据所述第二设备的状态信息,调整以下一项或多项所述报文的传输方式:所述报文的网络资源配置、所述报文的冗余发送机制或所述报文的重传机制。
可选的,所述报文的网络资源配置可以包括以下一项或多项:预调度资源、免授权grant free调度资源、半静态调度SPS资源或所述无线网络中的基站低时延相关配置;所述报文的冗余发送机制可以包括以下一项或多项:调制和编码方案MCS阶数、分组数据汇聚协议PDCP重复、空间发射分集、多条冗余传输路径、时隙聚合或多个传输时间间隔TTI绑定重复发送;所述报文的重传机制可以包括以下一项或多项:重传的协议栈层次、重传次数、重传的时刻、重传的反馈时间长度或重传与合并方式。
在一种可选的实施方式中,所述第一设备和所述第二设备可以协商不同报文的发送时刻;其中,所述不同报文的发送时刻相同,或者所述不同报文的发送时刻之间相差第一时间。具体可以参见上述实施例三中的相关描述。
可选的,所述第一设备可以进行与所述第二设备的时间同步。
进一步地,所述第一设备进行与所述第二设备的时间同步,可以包括如下方法:所述第一设备确定与所述第二设备均同步到全局时间或世界时间;或者,所述第一设备采用与所述第二设备相同的时间同步方式或相同的时钟服务器。其中,相同的时钟服务器也可以称为相同的时间源。
在一种可选的实施方式中,所述第一设备可以确定所述报文的协议类型;当所述协议类型为第一协议类型时,所述第一设备基于所述第一协议类型传输所述报文,所述第一协议类型为所述第一设备和所述第二设备均维护的协议类型;当所述协议类型为OPC-UA类型时,所述第一设备基于所述OPC-UA类型传输所述报文,或者,所述第一设备将所述OPC-UA类型翻译或转换为所述第一协议类型,并基于所述第一协议类型传输所述报文;当所述协议类型为第二协议类型时,所述第一设备将所述第二协议类型翻译或转换为所述第一协议类型,并基于所述第一协议类型传输所述报文,所述第二协议类型为所述第一协议类型和所述OPC-UA类型以外的协议类型。
其中,第一协议类型可以为新定义的协议类型,第二协议类型可以为存量工业协议类型,具体可以参见上述实施例八中的相关描述。
示例性的,所述第一设备可以根据报文间冗余编码方式和/或多用户之间报文联合编码方式确定所述报文;其中,所述报文间冗余编码方式指在所述报文中添加前N个报文的部分或全部信息,N为大于或者等于1的整数;所述多用户之间报文联合编码方式指多用户的报文之间增加冗余信息。具体可参见上述实施例一中的相关描述。
可选的,当所述第一设备为所述无线网络中的设备,所述第二设备为所述工业系统中的设备时,所述第一设备可以根据网络状态信息调整报文间冗余编码方式和/或多用户之间报文联合编码方式。
例如,所述第一设备根据所述网络状态信息调整报文间冗余编码方式和/或多用户之间报文联合编码方式,方法可以为:所述第一设备根据所述网络状态信息确定网络状态不变时,所述第一设备保持所述报文间冗余编码方式和/或多用户之间报文联合编码方式不变; 所述第一设备根据所述网络状态信息确定网络状态发生改变时,所述第一设备更改所述报文间冗余编码方式和/或多用户之间报文联合编码方式。
一种可选的实施方式中,所述第一设备可以根据第一协议传输所述报文;所述第一协议支持分组数汇聚协议PDCP的功能,以及支持互联网协议IP或以太网协议的功能。其中,所述第一协议可以为上述实施例二中的融合协议层对应的协议,具体可以参见上述实施例一中的相关描述。
可选的,当所述第一设备为所述无线网络中的设备时,所述第一设备可以根据业务特征确定调度方式。
在一种可能的方式中,当所述第一设备为所述无线网络中的设备,且所述第一设备为终端设备时,所述第一设备可以与所述无线网络中的其他终端设备建立直连链路和/或中继链路;所述第一设备根据报文传输需求,在建立的链路中选择一条或多条链路传输所述报文。具体可以参见上述实施例五中的相关描述。
可选的,所述第一设备保存终端设备列表,所述终端设备列表中的终端设备能够与所述第一设备建立链路。
一种示例中,当所述第一设备为所述无线网络中的设备,且所述第一设备为终端设备时,所述第一设备可以从所述无线网络中的基站接收授时信息;进而所述第一设备根据所述授时信息进行时间同步。
一种实施例中,当所述第一设备为所述无线网络中的设备时,所述第一设备可以根据确定多种网络通信配置,所述网络通信配置包括频段组合和通信制式组合;进而,所述第一设备所述多种网络配置中选择当前使用的一种网络通信配置。具体的可以参见上述实施例六中的相关描述。
示例性的,所述第一设备可以确定网络状态变化值;当所述网络状态变化值大于或等于预设值时,所述第一设备变更使用的网络通信配置;当所述网络状态变化值小于所述预设值时,所述第一设备保持使用的网络通信配置不变。
在一种可选的实施方式中,所述第一设备发送所述报文,所述报文中包括第一时间戳信息和第二时间戳信息,所述第一时间戳信息为发送所述报文的时间信息,所述第二时间戳信息为所述报文的完成时间信息。可选的,所述第一设备在发送所述报文之前可以先进行时间同步。具体的可以参见上述实施例七中的相关描述。
通过上述方法,可以在工业系统和无线网络对接的场景下实现工业系统和无线网络中的设备之间双向协同优化,保证报文传输的确定性、可靠性等。同时通过简化报文的头部和内容也可以提升报文传输可靠性和传输效率。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图44所示,通信装置4400可以包括收发单元4401和处理单元4402。其中,所述收发单元4401用于所述通信装置4400进行通信,例如接收报文(信息、消息或数据)或发送报文(信息、消息或数据),所述处理单元4402用于对所述通信装置4400的动作进行控制管理。所述处理单元4402还可以控制所述收发单元4401执行的步骤。
示例性地,该通信装置4400具体可以是上述实施例中的无线网络中的设备、所述无线网络中的设备的处理器,或者芯片,或者芯片系统,或者是一个功能模块等。或者,该通信装置4400具体可以是上述实施例中的工业系统(或行业系统)中的设备、所述工业系统(或行业系统)中的设备的处理器,或者芯片,或者芯片系统,或者是一个功能模块 等。
在一个实施例中,所述通信装置4400用于实现上述实施例中无线网络中的设备的功能时,收发单元4401可以实现上述实施例中的由无线网络中的设备执行的收发操作;处理单元4402可以实现上述实施例中由无线网络中的设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述实施例中的相关描述,此处不再详细介绍。
在另一个实施例中,所述通信装置4400用于实现上述实施例中工业系统(或行业系统)中的设备的功能时,收发单元4401可以实现上述实施例中的由工业系统(或行业系统)中的设备执行的收发操作;处理单元4402可以实现上述实施例中由工业系统(或行业系统)中的设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述实施例中的相关描述,此处不再详细介绍。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图45所示,通信装置4500可以包括通信接口4501和处理器4502。可选地,所述通信装置4500中还可以包括存储器4503。其中,所述存储器4503可以设置于所述通信装置4500内部,还可以设置于所述通信装置4500外部。其中,所述处理器4502可以控制所述通信接口4501接收和发送报文、信息、消息或数据等。
具体地,所述处理器4502可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器4502还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
其中,所述通信接口4501、所述处理器4502和所述存储器4503之间相互连接。可选地,所述通信接口4501、所述处理器4502和所述存储器4503通过总线4504相互连接;所述总线4504可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图45中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一种可选地实施方式中,所述存储器4503,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器4503可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如一个或多个磁盘存储器。所述处理器4502执行所述存储器4503所存放的应用程序,实现上述功能,从而实现通信装置4500的功能。
示例性地,该通信装置4500可以是上述实施例中的无线网络中的设备;还可以是上述实施例中的工业系统(或行业系统)中的设备。
在一个实施例中,所述通信装置4500在实现上述实施例中无线网络中的设备的功能时,通信接口4501可以实现上述实施例中的由无线网络中的设备执行的收发操作;处理器4502可以实现上述实施例中由无线网络中的设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述实施例中的相关描述,此处不再详细介绍。
在一个实施例中,所述通信装置4500在实现上述实施例中工业系统(或行业系统)中的设备的功能时,通信接口4501可以实现上述实施例中的由工业系统(或行业系统)中的设备执行的收发操作;处理器4502可以实现上述实施例中由工业系统(或行业系统)中的设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述实施例中的相关描述,此处不再详细介绍。
基于以上实施例,本申请实施例提供了一种通信系统,该通信系统可以包括上述实施例涉及的无线网络中的设备和工业系统(或行业系统)中的设备等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的方法。
本申请实施例还提供一种芯片,包括处理器,所述处理器与存储器耦合,用于调用所述存储器中的程序使得所述芯片实现上述方法实施例提供的方法。
本申请实施例还提供一种芯片,所述芯片与存储器耦合,所述芯片用于实现上述方法实施例提供的方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (55)

  1. 一种通信方法,其特征在于,包括:
    第一设备获取第二设备的状态信息;
    所述第一设备根据所述第二设备的状态信息,调整报文的传输方式;
    其中,所述第一设备为工业系统中的设备,所述第二设备为无线网络中的设备;或者,所述第一设备为所述无线网络中的设备,所述第二设备为所述工业系统中的设备;
    所述报文的报文头包括以下一项或多项:发送方标识、接收方标识、报文的服务质量QoS需求、报文的优先级需求或用户组标识;
    所述报文的报文内容不包括填充包,所述报文的报文内容包括在所述报文之前的报文和/或在所述报文之后的报文的报文净荷相关压缩信息。
  2. 如权利要求1所述的方法,其特征在于,第一设备获取第二设备的状态信息,包括:
    所述第一设备通过所述无线网络的控制面接口或控制面网元获取所述第二设备的状态信息。
  3. 如权利要求1所述的方法,其特征在于,第一设备获取第二设备的状态信息,包括:
    所述第一设备通过所述无线网络的管理面网元获取所述第二设备的状态信息。
  4. 如权利要求3所述的方法,其特征在于,所述无线网络中的管理面网元与所述工业系统中的设备之间已建立连接,或者所述无线网络中的管理面网元与所述工业系统中的设备之间通过应用程序接口API通信。
  5. 如权利要求1所述的方法,其特征在于,第一设备获取第二设备的状态信息,包括:
    所述第一设备通过所述无线网络的用户面网元获取所述第二设备的状态信息。
  6. 如权利要求5所述的方法,其特征在于,所述第一设备获取第二设备的状态信息之前,所述方法还包括:
    所述第一设备与第二设备协商所述状态信息的传输方式。
  7. 如权利要求5或6所述的方法,其特征在于,当所述第一设备为所述工业系统中的设备,所述第二设备为所述无线网络中的设备时,所述第一设备通过所述无线网络的用户面网元获取所述第二设备的状态信息,包括:
    所述第一设备通过所述用户面网元的报文随路信息获取所述第二设备的状态信息;或者
    所述第一设备获取共享信息中的所述第二设备的所述状态信息,其中,所述共享信息配置在所述无线网络中与所述工业系统连接的设备中,或,所述共享信息配置在所述工业系统中与所述无线网络连接的设备中;或者
    所述第一设备获取所述第二设备上报的所述状态信息;或者
    所述第一设备向所述第二设备发送查询信息,并从所述第二设备接收查询响应信息,所述查询响应信息中包括所述状态信息。
  8. 如权利要求7所述的方法,其特征在于,所述状态信息通过以下任一种方式包含在所述报文随路信息中:工业以太报文头部、工业以太报文数据部分、工业以太报文尾部、互联网协议IP报文头部、IP报文数据部分或IP报文尾部。
  9. 如权利要求1-8任一项所述的方法,其特征在于,当所述第一设备为所述工业系统中的设备,所述第二设备为所述无线网络中的设备时,所述状态信息包括以下一项或多项: 所述无线网络的状态信息、无线终端的状态信息、能力信息;
    所述无线网络的状态信息包括以下一项或多项:负载、干扰、衰落、网络丢包率、无线空口授时精度、时间同步精度、传输时延、传输时延的可靠性、传输时延抖动、传输时延抖动的可靠性、接入频点配置或无线小区的频宽配置;
    所述无线终端的状态信息包括以下一项或多项:所述无线终端的负载、干扰、衰落、丢包率、信道质量、中央处理器CPU利用率、设备温度、传输时延、传输时延的可靠性、传输时延抖动、传输时延抖动的可靠性、接入频点配置或无线小区的频宽配置;
    所述能力信息包括以下一项或多项:所述无线网络的空口发送规律、所述无线网络的调度能力限制、所述无线终端的能力信息或所述无线终端的签约信息。
  10. 如权利要求1-9任一项所述的方法,其特征在于,当所述第一设备为所述工业系统中的设备,所述第二设备为所述无线网络中的设备时,所述第一设备根据所述第二设备的状态信息,调整报文的传输方式,包括:
    所述第一设备根据所述第二设备的状态信息,调整以下一项或多项所述报文的传输方式:所述报文的发送参数、所述报文的反馈机制、所述报文的冗余发送机制或所述报文的重传机制。
  11. 如权利要求10所述的方法,其特征在于,所述报文的发送参数包括以下一项或多项:发送周期参数、发送时间起点参数、看门狗Watchdog参数、生存时间Survival Time参数、链路重新建立的时长参数;所述报文的反馈机制包括是否反馈接收状态;所述报文的冗余发送机制包括所述报文的发送份数和/或所述报文的发送间隔;所述报文的重传机制包括是否重传和/或重传与合并方式。
  12. 如权利要求1-9任一项所述的方法,其特征在于,当所述第一设备为所述工业系统中的设备,所述第二设备为所述无线网络中的设备时,所述第一设备根据所述第二设备的状态信息,调整报文的传输方式,包括:
    所述第一设备根据业务需求和/或所述工业系统的需求以及所述状态信息中的能力信息调整所述报文的传输方式。
  13. 如权利要求12所述的方法,其特征在于,所述第一设备根据业务需求和/或所述工业系统的需求和所述状态信息中的能力信息调整所述报文的传输方式,包括:
    所述第一设备判断所述业务需求和/或所述工业系统的需求是否超出所述能力信息;
    若所述第一设备确定所述业务需求和/或所述工业系统的需求超出所述能力信息,则所述第一设备判断是否能够调整到满足所述能力信息的所述报文的传输方式。
  14. 如权利要求13所述的方法,其特征在于,当所述第一设备判断不能调整到满足所述能力信息的所述报文的传输方式时,所述方法还包括:
    所述第一设备向所述第二设备发送通知信息,所述通知信息用于指示对所述无线网络进行扩容;或者
    所述第一设备确定降低所述业务需求和/或所述工业系统的需求。
  15. 如权利要求13-14任一项所述的方法,其特征在于,所述业务需求包括以下一项或多项:业务的QoS需求、业务的组网节点数或业务的组网拓扑关系;所述工业系统的需求包括以下一项或多项:所述工业系统的QoS需求、所述工业系统的组网节点数或所述工业系统的组网拓扑关系。
  16. 如权利要求1-6任一项所述的方法,其特征在于,当所述第一设备为所述无线网络 中的设备,所述第二设备为所述工业系统中的设备时,所述状态信息包括静态配置信息和/或动态信息;
    所述静态配置信息包括以下一项或多项:发送周期、看门狗参数配置、生存时间Survival Time参数配置、报文发送起点或所述工业系统中设备间的拓扑关系;
    所述动态信息包括以下一项或多项:实时丢包信息、实时看门狗统计超时计数信息、生存时间状态信息、报文到达时间、时钟精度、传输时延信息、传输时延可靠性信息、传输时延抖动信息、传输时延抖动可靠性信息、所述工业系统中设备间的拓扑关系变化信息或所述第二设备是否有效工作的信息。
  17. 如权利要求1-6、16任一项所述的方法,其特征在于,当所述第一设备为所述无线网络中的设备,所述第二设备为所述工业系统中的设备时,所述第一设备根据所述第二设备的状态信息,调整报文的传输方式,包括:
    所述第一设备根据所述第二设备的状态信息,调整以下一项或多项所述报文的传输方式:所述报文的网络资源配置、所述报文的冗余发送机制或所述报文的重传机制。
  18. 如权利要求17所述的方法,其特征在于,所述报文的网络资源配置包括以下一项或多项:预调度资源、免授权grant free调度资源、半静态调度SPS资源或所述无线网络中的基站低时延相关配置;
    所述报文的冗余发送机制包括以下一项或多项:调制和编码方案MCS阶数、分组数据汇聚协议PDCP重复、空间发射分集、多条冗余传输路径、时隙聚合或多个传输时间间隔TTI绑定重复发送;
    所述报文的重传机制包括以下一项或多项:重传的协议栈层次、重传次数、重传的时刻、重传的反馈时间长度或重传与合并方式。
  19. 如权利要求1-18任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备和所述第二设备协商不同报文的发送时刻;其中,所述不同报文的发送时刻相同,或者所述不同报文的发送时刻之间相差第一时间。
  20. 如权利要求1-19任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备进行与所述第二设备的时间同步。
  21. 如权利要求20所述的方法,其特征在于,所述第一设备进行与所述第二设备的时间同步,包括:
    所述第一设备确定与所述第二设备均同步到全局时间或世界时间;或者
    所述第一设备采用与所述第二设备相同的时间同步方式或相同的时钟服务器。
  22. 如权利要求1-21任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备确定所述报文的协议类型;
    当所述协议类型为第一协议类型时,所述第一设备基于所述第一协议类型传输所述报文,所述第一协议类型为所述第一设备和所述第二设备均维护的协议类型;
    当所述协议类型为OPC-UA类型时,所述第一设备基于所述OPC-UA类型传输所述报文,或者,所述第一设备将所述OPC-UA类型翻译或转换为所述第一协议类型,并基于所述第一协议类型传输所述报文;
    当所述协议类型为第二协议类型时,所述第一设备将所述第二协议类型翻译或转换为所述第一协议类型,并基于所述第一协议类型传输所述报文,所述第二协议类型为所述第一协议类型和所述OPC-UA类型以外的协议类型。
  23. 如权利要求1-22任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备根据报文间冗余编码方式和/或多用户之间报文联合编码方式确定所述报文;
    其中,所述报文间冗余编码方式指在所述报文中添加前N个报文的部分或全部信息,N为大于或者等于1的整数;
    所述多用户之间报文联合编码方式指多用户的报文之间增加冗余信息。
  24. 如权利要求23所述的方法,其特征在于,当所述第一设备为所述无线网络中的设备,所述第二设备为所述工业系统中的设备时,所述方法还包括:
    所述第一设备根据网络状态信息调整报文间冗余编码方式和/或多用户之间报文联合编码方式。
  25. 如权利要求24所述的方法,其特征在于,所述第一设备根据所述网络状态信息调整报文间冗余编码方式和/或多用户之间报文联合编码方式,包括:
    所述第一设备根据所述网络状态信息确定网络状态不变时,所述第一设备保持所述报文间冗余编码方式和/或多用户之间报文联合编码方式不变;
    所述第一设备根据所述网络状态信息确定网络状态发生改变时,所述第一设备更改所述报文间冗余编码方式和/或多用户之间报文联合编码方式。
  26. 如权利要求1-25任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备根据第一协议传输所述报文;所述第一协议支持分组数汇聚协议PDCP的功能,以及支持互联网协议IP或以太网协议的功能。
  27. 如权利要求1-26任一项所述的方法,其特征在于,当所述第一设备为所述无线网络中的设备时,所述方法还包括:
    所述第一设备根据业务特征确定调度方式。
  28. 如权利要求1-27任一项所述的方法,其特征在于,当所述第一设备为所述无线网络中的设备,且所述第一设备为终端设备时,所述方法还包括:
    所述第一设备与所述无线网络中的其他终端设备建立直连链路和/或中继链路;
    所述第一设备根据报文传输需求,在建立的链路中选择一条或多条链路传输所述报文。
  29. 如权利要求28所述的方法,其特征在于,所述方法还包括:
    所述第一设备保存终端设备列表,所述终端设备列表中的终端设备能够与所述第一设备建立链路。
  30. 如权利要求1-29任一项所述的方法,其特征在于,当所述第一设备为所述无线网络中的设备,且所述第一设备为终端设备时,所述方法还包括:
    所述第一设备从所述无线网络中的基站接收授时信息;
    所述第一设备根据所述授时信息进行时间同步。
  31. 如权利要求1-29任一项所述的方法,其特征在于,当所述第一设备为所述无线网络中的设备时,所述方法还包括:
    所述第一设备根据确定多种网络通信配置,所述网络通信配置包括频段组合和通信制式组合;
    所述第一设备所述多种网络配置中选择当前使用的一种网络通信配置。
  32. 如权利要求31所述的方法,其特征在于,所述方法还包括:
    所述第一设备确定网络状态变化值;
    当所述网络状态变化值大于或等于预设值时,所述第一设备变更使用的网络通信配置;
    当所述网络状态变化值小于所述预设值时,所述第一设备保持使用的网络通信配置不变。
  33. 如权利要求1-32任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备发送所述报文,所述报文中包括第一时间戳信息和第二时间戳信息,所述第一时间戳信息为发送所述报文的时间信息,所述第二时间戳信息为所述报文的完成时间信息。
  34. 一种通信方法,其特征在于,包括:
    向第一设备提供第二设备的状态信息,以使得第一设备根据第二设备的状态信息,调整报文的传输方式;其中,所述第一设备为工业系统中的设备,所述第二设备为无线网络中的设备;或者,所述第一设备为所述无线网络中的设备,所述第二设备为所述工业系统中的设备。
  35. 如权利要求34所述的方法,其特征在于,所述报文的报文头包括以下一项或多项:发送方标识、接收方标识、报文的服务质量QoS需求、报文的优先级需求或用户组标识;
    所述报文的报文内容不包括填充包,所述报文的报文内容包括在所述报文之前的报文和/或在所述报文之后的报文的报文净荷相关压缩信息。
  36. 如权利要求34或35所述的方法,其特征在于,向所述第一设备提供所述第二设备的状态信息,包括:
    通过所述无线网络的控制面接口向所述第一设备提供所述第二设备的状态信息。
  37. 如权利要求34或35所述的方法,其特征在于,向所述第一设备提供所述第二设备的状态信息,包括:
    通过所述无线网络的管理面网元向所述第一设备提供所述第二设备的状态信息。
  38. 如权利要求37所述的方法,其特征在于,所述无线网络中的管理面网元与所述工业系统中的设备之间已建立连接,或者,所述无线网络中的管理面网元与所述工业系统中的设备之间通过应用程序接口API通信。
  39. 如权利要求34或35所述的方法,其特征在于,向所述第一设备提供所述第二设备的状态信息,包括:
    通过所述无线网络的用户面网元向所述第一设备提供所述第二设备的状态信息。
  40. 如权利要求39所述的方法,其特征在于,向所述第一设备提供所述第二设备的状态信息之前,所述方法还包括:
    与所述第一设备协商所述状态信息的传输方式。
  41. 如权利要求39或40所述的方法,其特征在于,当所述第一设备为所述工业系统中的设备,所述第二设备为所述无线网络中的设备时,通过所述无线网络的用户面网元向所述第一设备提供所述第二设备的状态信息,包括:
    通过所述用户面网元的报文随路信息向所述第一设备提供所述第二设备的状态信息;或者
    将状态信息写入共享信息中,以使得所述第一设备获取共享信息中的所述第二设备的所述状态信息,其中,所述共享信息配置在所述无线网络中与所述工业系统连接的设备中,或,所述共享信息配置在所述工业系统中与所述无线网络连接的设备中;或者
    向所述第一设备上报所述状态信息;或者
    接收所述第一设备发送的查询信息,并向所述第一设备发送查询响应信息,所述查询响应信息中包括所述状态信息。
  42. 如权利要求41所述的方法,其特征在于,所述状态信息通过以下任一种方式包含在所述报文随路信息中:工业以太报文头部、工业以太报文数据部分、工业以太报文尾部、互联网协议IP报文头部、IP报文数据部分或IP报文尾部。
  43. 如权利要求34-42任一项所述的方法,其特征在于,当所述第一设备为所述工业系统中的设备,所述第二设备为所述无线网络中的设备时,所述状态信息包括以下一项或多项:所述无线网络的状态信息、无线终端的状态信息、能力信息;
    其中,所述无线网络的状态信息包括以下一项或多项:负载、干扰、衰落、网络丢包率、无线空口授时精度、时间同步精度、传输时延、传输时延的可靠性、传输时延抖动、传输时延抖动的可靠性、接入频点配置或无线小区的频宽配置;
    所述无线终端的状态信息包括以下一项或多项:所述无线终端的负载、干扰、衰落、丢包率、信道质量、中央处理器CPU利用率、设备温度、传输时延、传输时延的可靠性、传输时延抖动、传输时延抖动的可靠性、接入频点配置或无线小区的频宽配置;
    所述能力信息包括以下一项或多项:所述无线网络的空口发送规律、所述无线网络的调度能力限制、所述无线终端的能力信息或所述无线终端的签约信息。
  44. 如权利要求34-43任一项所述的方法,其特征在于,所述方法还包括:
    从所述第一设备接收通知信息,所述通知信息用于指示对所述无线网络进行扩容。
  45. 如权利要求34-40任一项所述的方法,其特征在于,当所述第一设备为所述无线网络中的设备,所述第二设备为所述工业系统中的设备时,所述状态信息包括静态配置信息和/或动态信息;
    其中,所述静态配置信息包括以下一项或多项:发送周期、看门狗参数配置、生存时间参数配置、报文发送起点或所述工业系统中设备间的拓扑关系;
    所述动态信息包括以下一项或多项:实时丢包信息、实时看门狗统计超时计数信息、生存时间状态信息、报文到达时间、时钟精度、传输时延信息、传输时延可靠性信息、传输时延抖动信息、传输时延抖动可靠性信息、所述工业系统中设备间的拓扑关系变化信息或所述第二设备是否有效工作的信息。
  46. 如权利要求34-45任一项所述的方法,其特征在于,所述方法还包括:
    和所述第一设备协商不同报文的发送时刻;其中,所述不同报文的发送时刻相同,或者所述不同报文的发送时刻之间相差第一时间。
  47. 如权利要求34-46任一项所述的方法,其特征在于,所述方法还包括:
    进行与所述第一设备的时间同步。
  48. 一种通信装置,其特征在于,包括存储器、处理器和通信接口,其中:
    所述通信接口,用于所述通信装置进行通信;
    所述存储器,用于存储计算机指令;
    所述处理器,用于调用所述存储器中的计算机指令,以通过所述通信接口执行如权利要求1-33任一项所述的方法。
  49. 一种通信装置,其特征在于,用于实现权利要求1-33任一项所述的方法。
  50. 一种通信装置,其特征在于,包括存储器、处理器和通信接口,其中:
    所述通信接口,用于所述通信装置进行通信;
    所述存储器,用于存储计算机指令;
    所述处理器,用于调用所述存储器中的计算机指令,以通过所述通信接口执行如权利要求34-47任一项所述的方法。
  51. 一种通信装置,其特征在于,用于实现权利要求34-47任一项所述的方法。
  52. 一种通信系统,其特征在于,包括权利要求48或49所述的通信装置,和权利要求50或51所述的通信装置。
  53. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时以执行如权利要求1-33中任一项所述的方法,或者执行如权利要求34-47中任一项所述的方法。
  54. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得如权利要求1-33中任一项所述的方法被执行,或者使得如权利要求34-47中任一项所述的方法被执行。
  55. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-33中任一项所述的方法,或者实现如权利要求34-47中任一项所述的方法。
PCT/CN2023/096398 2022-05-30 2023-05-25 一种通信方法及装置 WO2023231905A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210601695.3A CN117220842A (zh) 2022-05-30 2022-05-30 一种通信方法及装置
CN202210601695.3 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023231905A1 true WO2023231905A1 (zh) 2023-12-07

Family

ID=89026897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096398 WO2023231905A1 (zh) 2022-05-30 2023-05-25 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117220842A (zh)
WO (1) WO2023231905A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108076026A (zh) * 2016-11-15 2018-05-25 中国科学院沈阳自动化研究所 一种基于opc-ua服务平台的工业无线网络服务适配方法
CN109687995A (zh) * 2018-12-04 2019-04-26 重庆邮电大学 一种适用于资源受限型工业现场设备的基于CoAP的OPC UA报文传输方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108076026A (zh) * 2016-11-15 2018-05-25 中国科学院沈阳自动化研究所 一种基于opc-ua服务平台的工业无线网络服务适配方法
CN109687995A (zh) * 2018-12-04 2019-04-26 重庆邮电大学 一种适用于资源受限型工业现场设备的基于CoAP的OPC UA报文传输方法

Also Published As

Publication number Publication date
CN117220842A (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
JP6980836B2 (ja) データ送信方法、ユーザ機器、および基地局
US11122587B2 (en) Apparatus and methods for scheduling resources in mesh networks
TW202008821A (zh) 實體上行鏈路控制通道重複配置
WO2013152743A1 (zh) 传输信号的方法和装置
CN113475145A (zh) 用于在无线通信系统中减少调度时延的方法和装置
US11564230B2 (en) Method and apparatus for supporting fully-distributed time-sensitive networking in mobile communication system
WO2021161861A1 (ja) 端末及び通信方法
CN114041314A (zh) 用户设备和调度节点
WO2016074211A1 (zh) 一种数据转发的方法和控制器
Schulz et al. Network architectures for demanding 5G performance requirements: Tailored toward specific needs of efficiency and flexibility
CN114451003A (zh) 文件递送故障反馈和应用反馈
WO2021215098A1 (ja) 端末及び通信方法
WO2023231905A1 (zh) 一种通信方法及装置
KR20200132605A (ko) 무선 통신 시스템에서 지연 감소를 위한 전송 경로 결정 방법 및 장치
US20230319625A1 (en) Replication in a Wireless Communication Network
WO2022014272A1 (ja) 端末、基地局及び通信方法
WO2022074884A1 (ja) 端末、基地局及び通信方法
WO2021070508A1 (ja) 基地局、端末、送信方法及び受信方法
WO2021179325A1 (zh) 一种数据处理的方法及装置
Pedersen et al. Overview of 3GPP new radio industrial IoT solutions
JP7115555B2 (ja) 受信装置、送信装置、無線通信システム及び通信状態報告方法
TW202201938A (zh) 側行鏈路上的超可靠低時延通訊
WO2022030113A1 (ja) 基地局、端末及び通信方法
WO2024066979A1 (zh) 一种协作传输的数据调度的方法和装置
WO2023013217A1 (ja) 基地局、端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815088

Country of ref document: EP

Kind code of ref document: A1