WO2023231855A1 - 半导体工艺设备的补水控制方法和半导体工艺设备 - Google Patents

半导体工艺设备的补水控制方法和半导体工艺设备 Download PDF

Info

Publication number
WO2023231855A1
WO2023231855A1 PCT/CN2023/095954 CN2023095954W WO2023231855A1 WO 2023231855 A1 WO2023231855 A1 WO 2023231855A1 CN 2023095954 W CN2023095954 W CN 2023095954W WO 2023231855 A1 WO2023231855 A1 WO 2023231855A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace tube
liquid evaporator
time period
water
water replenishment
Prior art date
Application number
PCT/CN2023/095954
Other languages
English (en)
French (fr)
Inventor
曹凯悦
高飞
王旸
李凡
杨浩
杨哲
任志豪
张强
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2023231855A1 publication Critical patent/WO2023231855A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to the technical field of semiconductor process equipment, and in particular to a water replenishment control method, a water replenishment control device, a diffusion process method, a semiconductor process equipment and a computer-readable storage medium for semiconductor process equipment.
  • N-pert cells with double-sided fine gate line structures take into account the two characteristics of low cost and high efficiency.
  • Boron expansion equipment is usually used to form the P-N junction using boron atom doping method.
  • each furnace tube In boron expansion equipment, each furnace tube usually has a bubbling bottle that carries water vapor through N2 to realize the water replenishment step in the boron expansion process, and the furnace tubes do not interfere with each other.
  • some manufacturers use multiple furnace tubes to share a liquid evaporator mixer (Controlled evaporator mixer, CEM) to replace the bubble bottles of each furnace tube.
  • CEM Controlled evaporator mixer
  • the number of tubes of the liquid evaporator is used to adjust the water flow and gas flow in the liquid evaporator to stabilize the N2 and water vapor flowing into each furnace tube.
  • embodiments of the present invention are proposed to provide a water replenishment control method, a water replenishment control device, a diffusion process method, a semiconductor process equipment and a computer-readable method for semiconductor process equipment that overcome the above problems or at least partially solve the above problems. storage media.
  • an embodiment of the present invention discloses a water replenishment control method for semiconductor process equipment.
  • the semiconductor process equipment includes a liquid evaporator and multiple furnace tubes sharing the liquid evaporator.
  • the method includes:
  • the available state or unavailable state of the liquid evaporator for each furnace tube is set, so that the liquid evaporator can only supply water to one furnace tube at the same time.
  • the furnace tube is replenished with water.
  • the obtaining the water replenishment time period information that each furnace tube needs to reserve includes:
  • For each furnace tube query the multi-step process steps corresponding to the furnace tube in sequence, determine whether the process step is a water replenishing section step according to the process type of the process step, and determine whether the process step is a water replenishing section step according to the process start time of the water replenishing section step. and the end time to determine the water replenishment time period information that the furnace tube needs to reserve.
  • updating the current reservation queue according to the water replenishment time period information that each furnace tube needs to reserve includes:
  • reservation processing is performed on each furnace tube, and the current reservation queue is updated according to the reservation processing result.
  • performing reservation processing on each furnace tube and updating the current reservation queue according to the reservation processing results includes:
  • the water replenishment time period information of the furnace tubes that do not conflict with the reservation is added to the reservation. queue, and updates the current reservation queue.
  • the available or unavailable state of the liquid evaporator for each of the furnace tubes is set according to the updated water replenishment time period information in the reservation queue, so that the liquid evaporator is Only replenish water to one of the furnace tubes at the same time, including:
  • the reserved water replenishment time period information determine whether the current time reaches the reserved water replenishment time period information
  • the liquid evaporator When the current time reaches the reserved water replenishing time period, the liquid evaporator is set to the available state for the furnace tube corresponding to the reserved water replenishing time period when the current time reaches the reserved water replenishing time period, and the liquid evaporator is set to the available state for the rest.
  • the furnace tube is in an unavailable state;
  • the liquid evaporator is set to be available for each furnace tube.
  • the liquid evaporator is set to be available for the furnace tube corresponding to the current time when the current time reaches the reserved water replenishment time period. status, the rest of the furnace tubes are in an unavailable status, including:
  • the liquid evaporator is set to an available state for the furnace tube corresponding to the reserved water replenishment time period arriving at the current time, and for the remaining The furnace tube is in an unusable state;
  • the furnace tube occupying the liquid evaporator is manually replenishing water
  • the furnace tube is controlled to release the occupation of the liquid evaporator, and the liquid evaporator is set to wait until the current time reaches the The furnace tube corresponding to the reserved water replenishment time period is in an available state, and the remaining furnace tubes are in an unavailable state;
  • the furnace tube occupying the liquid evaporator If the furnace tube occupying the liquid evaporator is no longer performing manual water replenishment, wait for the furnace tube occupying the liquid evaporator to release the liquid evaporator.
  • the furnace tube corresponding to the current time reaching the reserved water replenishing time period is set to an available state, and the remaining furnace tubes are set to an unavailable state.
  • setting the liquid evaporator to an available state for each furnace tube includes:
  • liquid evaporator If the liquid evaporator is in an idle state at the current time, set the liquid evaporator to an available state for each furnace tube, and when the target furnace tube receives a manual water replenishment instruction, set all The liquid evaporator manually replenishes water to the furnace tube of the target;
  • the liquid evaporator is set to an available state for the occupied furnace tubes, and the liquid evaporator is set to an unavailable state for the remaining furnace tubes. ;Waiting for the furnace tube occupying the liquid evaporator to release the liquid evaporator, ending the occupation of the liquid evaporator by the furnace tube occupying the liquid evaporator, and setting the liquid evaporator
  • the evaporator is in an available state for each furnace tube.
  • the target furnace tube receives an instruction to manually replenish water
  • the liquid evaporator is set to manually replenish water for the target furnace tube.
  • the method also includes:
  • the reserved water replenishing time period information of the furnace tube is removed from the reservation queue.
  • the method also includes:
  • the present invention also discloses a water replenishment control device for semiconductor process equipment, which is used to control the liquid evaporator in the semiconductor process equipment to replenish water for each furnace tube sharing the liquid evaporator.
  • the water replenishment control device includes at least one processor and at least one memory, with at least one program stored in the memory;
  • the at least one processor When the at least one program is executed by the at least one processor, the at least one processor is caused to implement the above method as disclosed in the present invention.
  • the embodiment of the present invention also discloses a diffusion process method.
  • the diffusion process method includes multiple process steps.
  • the multiple process steps include a water replenishment step, and the water replenishment step adopts the above-mentioned water replenishment control method.
  • the diffusion process method includes:
  • next process step is not the water replenishing step, set the corresponding furnace tube to execute the current process step and then jump to the next process step.
  • the present invention also discloses a semiconductor process equipment, which includes It includes a liquid evaporator, a controller and multiple furnace tubes sharing the liquid evaporator.
  • the controller is used to control the liquid evaporator to replenish water for each furnace tube.
  • the controller is used to:
  • the available or unavailable state of the liquid evaporator for each furnace tube is set, so that the liquid evaporator can only supply water to one furnace tube at the same time.
  • the furnace tube is replenished with water.
  • the present invention also discloses a computer-readable storage medium for use in semiconductor processing equipment, on which a computer program is stored.
  • a computer program is stored on which a computer program is stored.
  • the program is executed by a processor, the above method disclosed in the present invention is implemented.
  • Embodiments of the present invention provide a water replenishment control method, a water replenishment control device, a diffusion process method, a semiconductor process equipment and a computer-readable storage medium for semiconductor process equipment.
  • the water replenishment control method includes: obtaining the water replenishment time period that needs to be reserved for each furnace tube. information; update the current reservation queue according to the water replenishment time period information that each furnace tube needs to reserve; set the available or unavailable state of the liquid evaporator for each furnace tube according to the reserved water replenishment time period information in the updated reservation queue, So that the liquid evaporator can only replenish water to one furnace tube at the same time.
  • the present invention enables each reserved furnace tube to replenish water in a time sequence, avoiding manual intervention in the process and reducing labor costs; by setting a liquid evaporator, The available or unavailable status of each furnace tube is such that the liquid evaporator can only be occupied by one furnace tube at the same time, which reduces the risk of time conflicts between multiple tubes occupying the liquid evaporator during the process and minimizes the process The probability of process waiting during the process improves production efficiency.
  • Figure 1 shows the steps of a water replenishment control method for semiconductor process equipment provided by an embodiment of the present invention. flow chart;
  • Figure 2 is a frame diagram between the upper computer and the lower computer provided by the embodiment of the present invention.
  • Figure 3 is a step flow chart of another water replenishment control method for semiconductor process equipment provided by an embodiment of the present invention.
  • Figure 4 is a time distribution diagram of process steps of a furnace tube provided by an embodiment of the present invention.
  • Figure 5 is an information flow chart for the lower computer to determine the water replenishment time period that each furnace tube needs to reserve according to the embodiment of the present invention
  • Figure 6 is the water replenishing time period information of a furnace tube calculated by the lower computer provided by the embodiment of the present invention.
  • Figure 7 is the updated water replenishment time period information of the reservation queue provided by the embodiment of the present invention.
  • Figure 8 is the water replenishment time period information updated in real time by the reservation queue provided by the embodiment of the present invention.
  • Figure 9 is the water replenishment time period information updated in real time by the reservation queue under abnormal working conditions provided by the embodiment of the present invention.
  • Figure 10 is a flow chart of the steps of process skipping performed by the lower computer provided by the embodiment of the present invention.
  • Figure 11 is a step flow chart of a diffusion process provided by an embodiment of the present invention.
  • Figure 12 is a structural block diagram of a semiconductor process equipment provided by an embodiment of the present invention.
  • FIG. 13 is a structural block diagram of a water replenishment control device for semiconductor process equipment provided in an embodiment of the present invention.
  • One of the core concepts of the embodiments of the present invention is to propose a water replenishment control method for semiconductor process equipment.
  • obtaining the water replenishment time period information that each furnace tube needs to reserve, and updating the reservation queue according to the obtained water replenishment time period information Realize time-sharing multiplexing of multiple furnace tubes for liquid evaporators.
  • FIG. 1 there is shown a step flow chart of a water replenishment control method for semiconductor process equipment provided by an embodiment of the present invention.
  • the semiconductor process equipment includes a liquid evaporator and multiple furnace tubes sharing the liquid evaporator.
  • the method may include follow steps 101-103:
  • Step 101 Obtain the water replenishment time period information that each furnace tube needs to reserve.
  • Figure 2 shows a software framework in which multiple furnace tubes are controlled by corresponding lower computers, the lower computers communicate with the upper computer, and the upper computer communicates with the lower computers.
  • the upper computer may include the following three program:
  • Liquid evaporator control system which communicates with the liquid evaporator through the serial port and communicates with the PLC (Programmable logic controller, programmable controller), is used to read the temperature and flow parameters of the liquid evaporator, and at the same time provides liquid evaporator for advanced users Evaporator debugging interface, the liquid evaporator control system communicates with the lower computer corresponding to each furnace tube, and is used to provide the lower computer with relevant parameters of the liquid evaporator.
  • PLC Programmable logic controller, programmable controller
  • the upper computer control software is connected to the lower computer corresponding to each furnace tube, and is used to provide users with an equipment operation interface and display the current status of each furnace tube in real time.
  • the liquid evaporator scheduling system is connected to the lower computer corresponding to each furnace tube. It is used to allocate and manage the liquid evaporator resources before the start of the process, and control the skip events and manual water replenishment events during the process to avoid each furnace Liquid evaporator usage conflict occurs between tubes.
  • Each lower computer includes a lower computer control software and is connected to the corresponding furnace tube. It can obtain the time parameters of the water replenishment time period of the corresponding furnace tube and carry the water replenishment time period parameters of the corresponding furnace tube and send them to the upper computer for water replenishment before starting.
  • Process application communication between the lower computer and the liquid evaporator scheduling system, Gets the status of whether the current liquid evaporator is available.
  • the number of furnace tubes in semiconductor process equipment can be set according to requirements.
  • the number of furnace tubes in the embodiment of the present invention is explained by taking 5 as an example, and the furnace tubes are numbered 1-5.
  • the lower computer can obtain the water replenishment time period information that the corresponding furnace tube needs to reserve and send it to the upper computer.
  • This time period information can be calculated by querying the process time of each process step of the furnace tube on the lower computer;
  • the time period information includes the start time (unit, s), end time, and tube number of each water replenishment step during this process or manual process.
  • the start time or end time refers to the distance from the current time. How many seconds are left, for example, the start time of the water replenishment step of No. 1 furnace tube is 90s, which means that there are 90 seconds left to perform this water replenishment step from the current time, and the end time of the water replenishment step of No. 1 furnace tube is 270 seconds, which means that there are 90 seconds left before the current time. There are 270 seconds left to end this hydration step.
  • Step 102 Update the current reservation queue according to the water replenishment time period information that each furnace tube needs to reserve.
  • the reservation queue refers to the queue of water replenishment time periods in the process that has been reserved.
  • the host computer can directly add the water replenishment time period information of each furnace tube that needs to be reserved to the reservation.
  • the queue is arranged according to the order of the water replenishment time period information to form a new reservation queue.
  • the upper computer continuously updates the reserved water replenishment time period information of the furnace tubes in real time through the lower computer;
  • the upper computer forms a new reservation queue by comparing the difference between the reservation queue and the water replenishment time period information that each furnace tube needs to reserve, and continuously updates the reserved furnace tubes in real time through the lower computer. Replenishment time period information.
  • Step 103 Set the available or unavailable status of the liquid evaporator for each furnace tube according to the reserved water replenishment time period information in the updated reservation queue, so that the liquid evaporator can only replenish water to one furnace tube at the same time.
  • the liquid evaporator scheduling system in the host computer can replenish water according to the reserved water in the reservation queue. Time period information, set the status of each furnace tube of the equipment. The status can be liquid evaporator available or liquid evaporator unavailable. Then the host computer can make reservations based on the liquid evaporator available or unavailable status of the furnace tube.
  • the liquid evaporator resources are allocated to the furnace tubes in the order of the water replenishment time of the furnace tubes in the queue, so that the liquid evaporator resources can only be occupied by one furnace tube at the same time.
  • the preset time for distributing liquid evaporators in advance can be set according to user needs, and is not limited here.
  • the information of the water replenishment time period that each furnace tube needs to be reserved is obtained; the current reservation queue is updated according to the water replenishment time period information that each furnace tube needs to reserve; according to the reserved water replenishment time period information in the updated reservation queue, Set the available or unavailable status of the liquid evaporator for each furnace tube, so that the liquid evaporator can only replenish water to one furnace tube at the same time.
  • the present invention obtains the water replenishment time period information of the furnace tubes that need to be reserved in advance, so that each reserved furnace tube can be replenished in time sequence, avoiding manual intervention in the process, and setting the liquid evaporator to determine the available status of each furnace tube.
  • the semiconductor process equipment includes a liquid evaporator and multiple furnace tubes sharing the liquid evaporator.
  • the multiple furnaces are respectively controlled by corresponding lower computers, and the lower computers communicate with the upper computer.
  • the method may include the following steps 201-207:
  • Step 201 For each furnace tube, query the multi-step process steps corresponding to the furnace tube in sequence, determine whether the process step is a water replenishing step according to the process type of the process step, and determine the furnace tube needs based on the process start time and end time of the water replenishing step. Appointed hydration time period information.
  • each furnace tube has multiple process steps.
  • step time Layout the serial numbers 1-7 in Figure 4 refer to the first process step to the seventh process step.
  • the types include those that require water replenishment and those that do not require water replenishment.
  • the time refers to the length of the step
  • the start time refers to the The start time of the process step
  • the end time refers to the end time of the process step.
  • Figure 5 shows the information flow chart of the lower computer determining the water replenishment time period that each furnace tube needs to reserve in the embodiment of the present invention.
  • the lower computer when the lower computer queries the water replenishment time period information of pipe No. 1, it first queries the first process step.
  • the process duration of this step is 60 seconds.
  • the first process step is a step that does not require water replenishment.
  • the process duration of this step is 60s.
  • the second process step is also a step that does not require water replenishment.
  • the third process step is a step that requires water replenishment.
  • the water replenishment time period information of pipe No. 1 can be obtained.
  • Figure 6 shows the water replenishment time period information of pipe No. 1.
  • Step 202 Perform reservation processing on each furnace tube according to the reservation queue and the water replenishment time period information that each furnace tube needs to reserve, and update the current reservation queue according to the reservation processing results.
  • the host computer receives the water replenishment time period information that needs to be reserved, it compares the reservation queue with the water replenishment time period information that each furnace tube needs to reserve, and makes a reservation for the liquid evaporator based on the difference. According to the reservation result, the reservation queue is updated.
  • step 202 may include steps sub-step S21-sub-step S23;
  • Sub-step S21 determine whether there is a conflict between the current reservation queue and the water replenishment time period information that each furnace tube needs to reserve;
  • Sub-step S22 if the current reservation queue conflicts with the water replenishment time period information that each furnace tube needs to reserve, the current reservation queue will not change;
  • the water replenishing time period information that each furnace tube needs to reserve is already in the reservation queue, that is to say, the water replenishing time period that each furnace tube needs to reserve has been occupied. It means that the reservation queue conflicts with the water replenishment time period information that each furnace tube needs to reserve. At this time, the reservation queue does not change, the lower computer corresponding to the furnace tube does not start the process, the reservation queue does not change, and the lower computer continues to move up to the upper computer. The machine sends the water replenishment time period information that the furnace tube needs to reserve until the water replenishment time period information that the furnace tube needs to reserve does not conflict with the reservation queue.
  • Sub-step S23 if the current reservation queue does not conflict with the water replenishment time period information that needs to be reserved for any one or more furnace tubes, add the water replenishment time period information that does not conflict with the furnace tubes that need to be reserved to the reservation queue, and Update the current appointment queue.
  • furnace tube No. 1 has two water replenishment time period information, and one of the two water replenishment time period information of furnace tube No. 1 is in furnace No. 4. before the No. 4 furnace tube; one after the No. 3 furnace tube; then the time period information of the No. 1 furnace tube that needs to be replenished does not conflict with the appointment queue, and the time period information of the No. 1 furnace tube that needs to be replenished is added to the appointment
  • the update is performed in the queue.
  • Figure 7 shows the water replenishment time period information after the reservation queue is updated. At this time, the No. 1 furnace tube can start the process, and the reserved queue is continuously updated in real time according to the progress of the process.
  • the reserved queue will be updated continuously according to the time of the process, throughout the entire process.
  • updating the reservation queue further includes:
  • the reserved water replenishing time period information of the furnace tube is removed from the reservation queue.
  • the process will occupy and release the liquid evaporator according to the reserved queues in Figures 4 and 8.
  • the reserved queues will be occupied and released according to the abnormal conditions.
  • the host will change the water replenishment time period information of the abnormal furnace tube from the reserved one.
  • Figure 9 shows the real-time updated water replenishment time period information of the reservation queue under abnormal working conditions.
  • the host computer when the corresponding furnace tube in the reserved water replenishment time period information fails, the host computer sends the status of whether the liquid evaporator is available to each furnace tube in the updated reserved water replenishment time period information. And allocate the liquid evaporator according to the updated scheduled water replenishment time period information; and preset the time before the liquid evaporator starts to be used, the host computer will reserve the liquid evaporator to the target furnace tube in advance, and the liquid evaporator will be aligned with the target furnace tube is available.
  • the reservation queue for the ongoing process is as shown in Figure 8.
  • the host will remove the water replenishment time period information of the No. 1 furnace tube from the reservation queue.
  • the reservation queue is updated as The time period information in Figure 9 is the updated scheduled water replenishment time period information.
  • the host computer sends whether the liquid evaporator is available to No. 4 furnace tube and No. 3 furnace tube in the updated reserved water replenishment time period information. status, assuming that they are all available, allocate liquid evaporators according to the order of time period information, and preset the time before the liquid evaporator starts to be used, assuming it is 20s, the host computer
  • the liquid evaporator is reserved for the No. 4 furnace tube in advance, so that we can be prepared to deal with emergencies such as abnormal process termination during the process and improve the stability of the process.
  • Step 203 Based on the reserved water replenishment time period information, determine whether the current time reaches the reserved water replenishment time period information.
  • the host Since the water replenishment start time and end time in the scheduled water replenishment time period refer to the number of seconds left from the current time, the host will determine whether the current time has reached the scheduled water replenishment time period based on the number of seconds left in the water replenishment start time. .
  • Step 204 when the current time reaches the reserved water replenishing time period information, set the liquid evaporator to the available state for the furnace tube corresponding to the reserved water replenishing time period at the current time, and to the unavailable state for the remaining furnace tubes;
  • the host computer can set the liquid evaporator's response to the furnace tube according to whether there is currently a furnace tube occupying the liquid evaporator and the reserved water replenishment time period information. Available status, so that the liquid evaporator can only be occupied by one furnace tube at the same time.
  • step 206 may include sub-steps S31-S35;
  • Sub-step S31 when the current time reaches the reserved water replenishment time period information, determine whether the liquid evaporator at the current time is in an idle state or an occupied state;
  • Sub-step S32 if the liquid evaporator is in the idle state at the current time, set the liquid evaporator to the available state for the furnace tube corresponding to the reserved water replenishment time period at the current time, and to the unavailable state for the remaining furnace tubes;
  • the host computer sets the liquid evaporator to the available state for the furnace tube corresponding to the reserved water replenishment time period in the reservation queue, and sets the liquid evaporator to the available state.
  • the remaining furnace tubes are set to the unavailable state, that is, the furnace tubes corresponding to the reserved water replenishment time period are set to the unavailable state.
  • the furnace tubes in the reservation queue are replenished in order of time. For example, in Figure 8, according to 1 The order of No. 1 tube-No. 4 tube-No. 1 tube-No. 3 tube Rehydrate in sequence.
  • Sub-step S33 if the liquid evaporator is in the occupied state at the current time, determine whether the furnace tube occupying the liquid evaporator is undergoing manual water replenishment;
  • water replenishment can be divided into automatic water replenishment and manual water replenishment. If the liquid evaporator is in the occupied state at the current time, it means that a furnace tube is using the liquid evaporator to replenish water. At this time, replenishing water is carried out according to the process priority. And determine whether the occupied furnace tube is a manually controlled water replenishing furnace tube.
  • Sub-step S34 if the furnace tube occupying the liquid evaporator is manually replenishing water, control the furnace tube to release the occupation of the liquid evaporator, and set the liquid evaporator to be available for the furnace tube corresponding to the reserved water replenishment time period at the current time. , the remaining furnace tubes are in an unavailable state;
  • the manually occupied tube will directly stop replenishing water, cancel the occupation status of the liquid evaporator by the occupied tube, and follow the principle of prioritizing the process reservation queue, and set the liquid evaporator to the reserved furnace tube in the reserved queue. is in the available state. At this time, the furnace tubes in the reserved queue can be replenished according to the order of reservation. The specific order will not be repeated here. The furnace tubes that have not been successfully reserved are set to the unavailable state, and the furnace tubes that have not been successfully reserved are prohibited. Hydrate.
  • Sub-step S35 if the furnace tube occupying the liquid evaporator is not replenishing water manually, wait for the furnace tube occupying the liquid evaporator to release the liquid evaporator.
  • the furnace tube occupying the liquid evaporator ends occupying the liquid evaporator, set the current
  • the time reaches the reserved water replenishment time period the corresponding furnace tube is in the available state, and the remaining furnace tubes are in the unavailable state.
  • the No. 2 furnace tube is an occupied furnace tube and is using the liquid evaporator for automatic water replenishment.
  • the host computer waits for the end of the water replenishment of the No. 2 furnace tube, that is, when it ends occupying the liquid evaporator, set The liquid evaporator is available for the furnace tubes corresponding to the reserved water replenishment time period at the current time.
  • the furnace tubes corresponding to the reserved water replenishment time period in the reserved queue can be replenished in the order of reservation.
  • the specific order is not specified here. Let’s go into details again, and set the furnace tubes corresponding to the reserved water replenishing time period to be unavailable, and the furnace tubes corresponding to the reserved water replenishing time period to be prohibited from replenishing water.
  • Step 205 When the current time does not reach the reserved water replenishment time period information, set the liquid evaporator to be available for each furnace tube.
  • the host computer can determine whether a furnace tube currently occupies the liquid evaporator and the reserved water replenishment time period information, and meet the preset requirements.
  • the liquid evaporator is controlled to replenish water manually so that the liquid evaporator can only be occupied by one furnace tube at the same time.
  • step 207 may include sub-steps S41-S43;
  • Sub-step S41 when the current time does not reach the reserved water replenishment time period information, determine whether the liquid evaporator at the current time is in an idle state or an occupied state;
  • Sub-step S42 if the liquid evaporator is in an idle state at the current time, set the liquid evaporator to be available to each furnace tube, and when the target furnace tube receives a manual water replenishment instruction, set the liquid evaporator to the target furnace. tube for manual rehydration;
  • the target furnace tube refers to the furnace tube specified by the user; in one example, if the current time is in the idle state, it means that at the current time, the liquid evaporator can manually perform manual operations on each furnace tube. Control water replenishment. At this time, the upper computer sets the liquid evaporator to be available for each furnace tube. You can manually control water replenishment for any one of the furnace tubes according to user needs, regardless of whether the appointment is successful or not.
  • Sub-step S43 if the liquid evaporator is in an occupied state at the current time, set the liquid evaporator to an available state for the occupied furnace tube, and set the liquid evaporator to an unavailable state for the remaining furnace tubes; wait for the furnace to occupy the liquid evaporator.
  • the tube releases the liquid evaporator, ends the occupation of the liquid evaporator by the furnace tube occupying the liquid evaporator, and sets the liquid evaporator to be available to each furnace tube.
  • the target furnace tube receives a manual water replenishment instruction, set The liquid evaporator manually rehydrates the furnace tubes of the target.
  • the liquid evaporator is set to the available state for the occupied furnace tubes, and the liquid evaporator is set to the unavailable state for the remaining furnace tubes.
  • the furnace tube of the evaporator ends occupying the liquid evaporator the furnace tube occupying the liquid evaporator releases the liquid evaporator.
  • the host computer can set the liquid evaporator to be available for each furnace tube, and can adjust each furnace tube according to user needs. Any furnace tube in the furnace can be manually controlled to replenish water, regardless of whether the reservation is successful or not.
  • the method further includes:
  • Figure 10 shows the flow chart of the steps for manually controlling water replenishment by the lower computer in the embodiment of the present invention.
  • the reservation queue is empty, then the liquid evaporator is available to all furnace tubes at this time.
  • the lower computer receives After receiving the water replenishment command sent by the host computer, in order to protect personal safety, it is necessary to ensure that the manual control of water replenishment is carried out before the process is in progress. Therefore, first determine whether the current furnace tube is in the process state. If the current furnace tube is in the process state, it is prohibited to proceed. Replenish water; if the current furnace tube is not in process status, determine whether the liquid evaporator is available for the furnace tube.
  • the lower computer controls the corresponding furnace tube to replenish water; if it is not available, the lower computer controls the corresponding furnace tube to prohibit water replenishment. , until the liquid evaporator is available for the furnace tube, the lower computer controls the corresponding furnace tube to replenish water.
  • the liquid evaporator scheduling system can directly set the entire time period 0-32767s as the water replenishment time period.
  • This water replenishment time period can be set according to user needs.
  • the liquid evaporator The evaporator is available for manual replenishment of water on the furnace tubes, but not for other tubes. Manual replenishment of water on other furnace tubes is not possible. Since the process priority level is the highest, this time period will not affect the water replenishment during the process. When there is a queue in the reservation queue , the manual water replenishment pipe will release the liquid evaporator resources in time.
  • FIG 11 shows a step flow chart of a diffusion process method provided by an embodiment of the present invention.
  • the diffusion process method includes multi-step process steps.
  • the multi-step process steps include a water replenishment step.
  • the water replenishment step is controlled by the above-mentioned water replenishment control method.
  • the diffusion process method includes the following steps:
  • Step 301 When the furnace tube performs the process, if the next process step is a water replenishment step, obtain the available status of the corresponding furnace tube;
  • Step 302 determine whether the liquid evaporator is available for the corresponding furnace tube
  • Step 303 if it is in the available state, set the corresponding furnace tube to execute the current process step and then jump to the next process step; if it is in the unavailable state, set the corresponding furnace tube to maintain the current process step and wait;
  • Step 304 If the next process step is not a water replenishing step, set the corresponding furnace tube to execute the current process step and then jump to the next process step.
  • the lower computer when a certain furnace tube performs a diffusion process step, if the next step is a water replenishment step, the lower computer obtains the liquid evaporator available status of the furnace tube from the liquid evaporator scheduling system, and only when available, Step skipping is allowed, otherwise the state before skipping will be maintained, and the available status of the liquid evaporator of the furnace tube will be continuously obtained from the liquid evaporator scheduling system until the liquid evaporator is available for the pipeline. Jump to the next step; if the next step is not a water replenishment step , jump directly to the next process step.
  • the information of the water replenishment time period that each furnace tube needs to be reserved is obtained; the reservation queue is updated according to the reservation queue and the water replenishment time period information that each furnace tube needs to reserve; and the reservation queue is updated according to the reserved water replenishment time period information in the reservation queue.
  • the liquid evaporator is available or unavailable to each furnace tube, so that the liquid evaporator can only be occupied by one furnace tube at the same time.
  • the present invention obtains the water replenishment time period information of the furnace tubes that need to be reserved in advance, so that each reserved furnace tube can be replenished in time sequence, avoiding manual intervention in the process, and setting the liquid evaporator to ensure the availability of each furnace tube.
  • the semiconductor process equipment includes a liquid evaporator, a controller and multiple furnace tubes sharing the liquid evaporator.
  • the controller is used to control
  • the liquid evaporator replenishes water for each furnace tube, and the controller is used for:
  • the available or unavailable state of the liquid evaporator for each furnace tube is set, so that the liquid evaporator can only supply water to one furnace tube at the same time.
  • the furnace tube is replenished with water.
  • the controller is further configured to sequentially query the multi-step process steps corresponding to the furnace tube for each furnace tube, and determine the process step according to the process type of the process step. Whether the process step is a water replenishing section step, the water replenishing time period information that the furnace tube needs to reserve is determined based on the process start time and end time of the water replenishing section step.
  • the controller is also configured to perform reservation processing on each furnace tube according to the reservation queue and the water replenishment time period information that each furnace tube needs to reserve, and perform reservation processing according to the reservation.
  • the processing result is to update the current reservation queue.
  • the controller is also used to determine whether there is a conflict between the current reservation queue and the water replenishment time period information that each furnace tube needs to reserve;
  • the water replenishment time period information of the furnace tubes that do not conflict with the reservation is added to the reservation. queue, and updates the current reservation queue.
  • the controller is further configured to determine whether the current time reaches the reserved water replenishment time period information based on the reserved water replenishment time period information;
  • the liquid evaporator When the current time reaches the reserved water replenishing time period, the liquid evaporator is set to the available state for the furnace tube corresponding to the reserved water replenishing time period when the current time reaches the reserved water replenishing time period, and the liquid evaporator is set to the available state for the rest.
  • the furnace tube is in an unavailable state;
  • the liquid evaporator is set to be available for each furnace tube.
  • the controller is also configured to determine whether the liquid evaporator is in an idle state or occupied state at the current time when the current time reaches the reserved water replenishment time period information. ;
  • the liquid evaporator is set to an available state for the furnace tube corresponding to the reserved water replenishment time period arriving at the current time, and for the rest of the furnace tubes.
  • the furnace tube is in an unavailable state;
  • the furnace tube occupying the liquid evaporator is manually replenishing water
  • the furnace tube releases the occupation of the liquid evaporator, and the liquid evaporator is set to respond to the reserved evaporator arriving at the current time.
  • the furnace tube corresponding to the water replenishment period is in an available state, and the remaining furnace tubes are in an unavailable state;
  • furnace tube occupying the liquid evaporator If the furnace tube occupying the liquid evaporator is no longer performing manual water replenishment, wait for the furnace tube occupying the liquid evaporator to release the liquid evaporator. When the tube ends occupying the liquid evaporator, set the current time to reach the The furnace tubes corresponding to the reserved water replenishing time period are in an available state, and the remaining furnace tubes are in an unavailable state.
  • the controller is configured to determine whether the liquid evaporator is in an idle state or an occupied state at the current time when the current time has not reached the reserved water replenishment time period information;
  • liquid evaporator If the liquid evaporator is in an idle state at the current time, set the liquid evaporator to an available state for each furnace tube, and when the target furnace tube receives a manual water replenishment instruction, set the The liquid evaporator manually replenishes water to the target furnace tube;
  • the liquid evaporator is in an occupied state at the current time, set the liquid evaporator to an available state for the occupied furnace tubes, and set the liquid evaporator to an unavailable state for the remaining furnace tubes; Waiting for the furnace tube occupying the liquid evaporator to release the liquid evaporator, after the furnace tube occupying the liquid evaporator ends occupying the liquid evaporator, and in the target furnace When the tube receives an instruction to manually replenish water, the liquid evaporator is set to manually replenish water to the target furnace tube.
  • the controller is also configured to change the furnace tube's process when the process of the furnace tube corresponding to the reserved water replenishment time period information is terminated due to a fault.
  • the information about the reserved water replenishment time period is removed from the reservation queue.
  • the controller is also configured to determine whether the target furnace tube receives a water replenishment instruction when the reserved water replenishment time period information in the reservation queue is empty. For the process status;
  • the controller is also used to obtain the corresponding available status of the furnace tube if the next process step is the water replenishment step when the furnace tube is performing a process;
  • next process step is not the water replenishing step, set the corresponding furnace tube to execute the current process step and then jump to the next process step.
  • the embodiment of the present invention discloses a semiconductor process equipment.
  • the semiconductor process equipment includes a liquid evaporator, a controller and multiple furnace tubes sharing the liquid evaporator.
  • the controller is used to: obtain the water replenishment that needs to be reserved for the corresponding furnace tube. Time period information; update the current reservation queue according to the water replenishment time period information that each furnace tube needs to reserve; set the liquid evaporator to each of the water replenishment time periods according to the updated water replenishment time period information in the reservation queue.
  • the available or unavailable state of the furnace tube is such that the liquid evaporator only replenishes water to one of the furnace tubes at the same time.
  • the present invention enables each reserved furnace tube to replenish water in the order of time, avoiding excessive manual intervention in the process and reducing labor costs; by setting up a liquid evaporator The available or unavailable status of each furnace tube is so that the liquid evaporator can only be occupied by one furnace tube at the same time, which reduces the risk of time conflicts between multiple tubes occupying the liquid evaporator during the process and minimizes the The probability of process waiting during the process improves production efficiency.
  • the description is relatively simple. For relevant details, please refer to the partial description of the method embodiment.
  • FIG 13 is a structural block diagram of a water replenishment control device for semiconductor process equipment provided in an embodiment of the present invention.
  • the water replenishment control device is used to control liquid in semiconductor process equipment.
  • the evaporator replenishes water for each furnace tube of the shared liquid evaporator, and includes: at least one processor 1301, a memory 1302, and at least one I/O interface 1303.
  • At least one program is stored on the memory 1302.
  • the at least one processor 1301 implements the steps in any control method in the above embodiment; at least one I/O interface 1303 Connected between the processor 1301 and the memory 1302, configured to realize information interaction between the processor and the memory.
  • the processor 1301 is a device with data processing capabilities, including but not limited to a central processing unit (CPU), etc.
  • the memory 1302 is a device with data storage capabilities, including but not limited to random access memory (RAM, more specifically Such as SDRAM, DDR, etc.), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory (FLASH); I/O interface (read-write interface) 1303 is connected between the processor 1301 and the memory 1302 , can realize information interaction between the processor 1301 and the memory 1302, which includes but is not limited to a data bus (Bus), etc.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • FLASH flash memory
  • I/O interface (read-write interface) 1303 is connected between the processor 1301 and the memory 1302 , can realize information interaction between the processor 1301 and the memory 1302, which includes but is not limited to a data bus (Bus), etc.
  • processor 1301, memory 1302, and I/O interface 1303 are connected to each other and, in turn, to other components of the computing device via bus 104.
  • the processor 1301 includes an FPGA.
  • a computer-readable medium stores a computer program, wherein when the program is executed by the processor, the steps in any control method of the above embodiments are implemented.
  • embodiments of the present disclosure include a computer program product including a computer program carried on a machine-readable medium, the computer program containing program code for performing the method illustrated in the flowchart.
  • the computer program may be downloaded and installed from the network via the communications component, and/or installed from removable media.
  • CPU central processing unit
  • the computer-readable medium shown in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • computer readable storage medium The substance may be, for example, but is not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof. More specific examples of computer readable storage media may include, but are not limited to: an electrical connection having one or more wires, a portable computer disk, a hard drive, random access memory (RAM), read only memory (ROM), removable Programmd read-only memory (EPROM or flash memory), fiber optics, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to: wireless, wire, optical cable, RF, etc., or any suitable combination of the foregoing.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more components that implement the specified logical function(s). executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown one after another may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.
  • each block in the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration can be configured with specialized hardware-based systems that perform the specified functions or operations. to be implemented, or may be implemented using a combination of dedicated hardware and computer instructions.
  • embodiments of the present invention may be provided as methods, devices, or computer program products.
  • embodiments of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects.
  • embodiments of the invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • Embodiments of the invention are described with reference to flowcharts and/or block diagrams of methods, terminal devices (systems), and computer program products according to embodiments of the invention. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general-purpose computer, special-purpose computer, embedded processor, or other programmable data processing terminal device to produce a machine such that the instructions are executed by the processor of the computer or other programmable data processing terminal device. Means are generated for implementing the functions specified in the process or processes of the flowchart diagrams and/or the block or blocks of the block diagrams.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing terminal equipment to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the The instruction means implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing terminal equipment, so that a series of operating steps are performed on the computer or other programmable terminal equipment to produce computer-implemented processing, thereby causing the computer or other programmable terminal equipment to perform a computer-implemented process. Instructions executed on the A step that implements a function specified in a process or processes in a flowchart and/or in a block or blocks in a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Factory Administration (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

本发明提供了一种半导体工艺设备的补水控制方法、扩散工艺方法和半导体工艺设备,该补水控制方法包括:获取各个炉管需要预约的补水时间段信息;根据各个炉管需要预约的补水时间段信息,更新当前的预约队列;根据更新的预约队列中已预约的补水时间段信息,设置液体蒸发器对各个炉管的可用状态或不可用状态,以使液体蒸发器在同一时刻只能向一个炉管进行补水。本发明使得各个预约炉管可以按照时间先后顺序进行补水,避免了在工艺过程中的人工干预,通过设置液体蒸发器对各个炉管的可用状态或不可用状态,以使液体蒸发器在同一时刻只能被一个炉管占用,降低了工艺过程中出现工艺等待的概率,提高了生产效率。

Description

半导体工艺设备的补水控制方法和半导体工艺设备 技术领域
本发明涉及半导体工艺设备技术领域,特别是涉及一种半导体工艺设备的补水控制方法、补水控制装置、扩散工艺方法、半导体工艺设备和计算机可读存储介质。
背景技术
晶硅太阳能电池产品价格大幅下降,推动着低成本、高效率太阳能电池技术的发展,在此形势下,具有双面细栅线结构的N-pert电池兼顾了低成本、高效率两大特点,在N-pert结构中,P-N结及背场的形成是获得高效率电池的关键,通常使用硼扩设备采用硼原子掺杂的方法形成P-N结。
在硼扩设备中,通常各炉管各有一个鼓泡瓶通过N2携带水蒸气来实现硼扩工艺中的补水步骤,各炉管之间互不干扰。部分厂家为了降低成本或者节省设备空间,通过多炉管共用一个液体蒸发器(Controlled evaporator mixer,CEM)的方式来代替各炉管的鼓泡瓶,在各炉管共用过程中,根据当前正在使用液体蒸发器的管数来调节液体蒸发器中的水流量和气体流量来稳定通入各炉管的N2和水蒸气,为了保证每次各炉管通入的N2和水蒸气的量是固定的,通过各炉管之间补水阶段的互斥实现每次只有一个炉管在使用液体蒸发器,然而每次占用炉管的液体蒸发器的使用时间及排队炉管的个数都是不确定的,造成每次的工艺等待过程都无法预估时长,导致工艺控制过程需要进行人工监控,不定时及不定时长的工艺等待会给工艺结果带来无法预估的影响,增大了人工成本,大大影响了工艺的稳定性,降低了生产效率。
发明内容
鉴于上述问题,提出了本发明实施例以便提供一种克服上述问题或者至少部分地解决上述问题的一种半导体工艺设备的补水控制方法、补水控制装置、扩散工艺方法、半导体工艺设备和计算机可读存储介质。
为了解决上述问题,本发明实施例公开了一种半导体工艺设备的补水控制方法,所述半导体工艺设备包括液体蒸发器和共用所述液体蒸发器的多个炉管,所述方法包括:
获取各个所述炉管需要预约的补水时间段信息;
根据各个所述炉管需要预约的补水时间段信息,更新当前的预约队列;
根据更新的所述预约队列中已预约的补水时间段信息,设置所述液体蒸发器对各个所述炉管的可用状态或不可用状态,以使所述液体蒸发器在同一时刻只能向一个所述炉管进行补水。
可选地,所述获取各个所述炉管需要预约的补水时间段信息包括:
对每个所述炉管,依次查询所述炉管对应的多步工艺步骤,根据所述工艺步骤的工艺类型判断所述工艺步骤是否为补水段步骤,根据所述补水段步骤的工艺开始时间和结束时间确定所述炉管需要预约的补水时间段信息。
可选地,所述根据各个所述炉管需要预约的补水时间段信息,更新当前的预约队列包括:
根据所述预约队列和各个所述炉管需要预约的补水时间段信息,对各个所述炉管进行预约处理,并根据预约处理结果,更新当前的所述预约队列。
可选地,所述对各个所述炉管进行预约处理,并根据预约处理结果,更新当前的所述预约队列包括:
判断当前的所述预约队列与各个所述炉管需要预约的补水时间段信息是否产生冲突;
若当前的所述预约队列与各个所述炉管需要预约的补水时间段信息均发生冲突,则当前的所述预约队列不发生改变;
若当前的所述预约队列与任意一个或多个所述炉管需要预约的补水时间段信息不发生冲突,则将不发生冲突的所述炉管需要预约的补水时间段信息添加到所述预约队列中,并更新当前的所述预约队列。
可选地,所述根据更新的所述预约队列中已预约的补水时间段信息,设置所述液体蒸发器对各个所述炉管的可用状态或不可用状态,以使所述液体蒸发器在同一时刻只向一个所述炉管进行补水,包括:
根据所述已预约的补水时间段信息,判断当前时间是否到达所述已预约的补水时间段信息;
当所述当前时间到达所述已预约的补水时间段信息,设置所述液体蒸发器对所述当前时间到达所述已预约的补水时间段对应的所述炉管为可用状态,对其余的所述炉管为不可用状态;
当所述当前时间未到达所述已预约的补水时间段信息,设置所述液体蒸发器对各个所述炉管均为可用状态。
可选地,所述当所述当前时间到达所述已预约的补水时间段信息,设置所述液体蒸发器对所述当前时间到达所述已预约的补水时间段对应的所述炉管为可用状态,对其余的所述炉管为不可用状态,包括:
当所述当前时间到达所述已预约的补水时间段信息,判断在所述当前时间所述液体蒸发器为空闲状态还是占用状态;
若在所述当前时间所述液体蒸发器为空闲状态,则设置所述液体蒸发器对所述当前时间到达的所述已预约的补水时间段对应的所述炉管为可用状态,对其余的所述炉管为不可用状态;
若在所述当前时间所述液体蒸发器为占用状态,则判断占用所述液体蒸发器的所述炉管是否在进行手动补水;
若占用所述液体蒸发器的所述炉管在进行手动补水,则控制所述炉管释放对所述液体蒸发器的占用,设置所述液体蒸发器对所述当前时间到达所述 已预约的补水时间段对应的所述炉管为可用状态,对所述其余的所述炉管为不可用状态;
若占用所述液体蒸发器的所述炉管不在进行手动补水,则等待占用所述液体蒸发器的所述炉管释放所述液体蒸发器,在所述占用所述液体蒸发器的所述炉管结束对所述液体蒸发器的占用时,设置所述当前时间到达所述已预约的补水时间段对应的所述炉管为可用状态,对所述其余的所述炉管为不可用状态。
可选地,所述当所述当前时间未到达所述已预约的补水时间段信息,设置所述液体蒸发器对各个所述炉管均为可用状态,包括:
当所述当前时间未到达所述已预约的补水时间段信息,判断在当前时间所述液体蒸发器为空闲状态还是占用状态;
若在所述当前时间所述液体蒸发器为空闲状态,设置所述液体蒸发器对各个所述炉管均为可用状态,并在目标的所述炉管接收到手动补水的指令时,设置所述液体蒸发器对目标的所述炉管进行手动补水;
若在所述当前时间所述液体蒸发器为占用状态,设置所述液体蒸发器对占用的所述炉管为可用状态,以及设置所述液体蒸发器对其余的所述炉管为不可用状态;等待占用所述液体蒸发器的所述炉管释放所述液体蒸发器,在所述占用所述液体蒸发器的所述炉管结束对所述液体蒸发器的占用,并设置所述液体蒸发器对各个所述炉管均为可用状态,在目标的所述炉管接收到手动补水的指令时,设置所述液体蒸发器对目标的所述炉管进行手动补水。
可选地,所述方法还包括:
当所述已预约的补水时间段信息对应的所述炉管的工艺由于故障导致终止时,将所述炉管的所述已预约补水时间段信息从所述预约队列中剔除掉。
可选地,所述方法还包括:
当所述预约队列中已预约的补水时间段信息为空时,且在目标的所述炉 管接收到补水指令后,判断目标的所述炉管是否为工艺状态;
若为工艺状态,则设置目标的所述炉管禁止进行补水;
若不为工艺状态,则判断所述液体蒸发器针对目标的所述炉管是否为可用状态;
若为可用状态,则设置目标的所述炉管进行补水;
若为不可用状态,则设置目标的所述炉管禁止进行补水。
可选地,本发明还公开了一种半导体工艺设备的补水控制装置,用于控制所述半导体工艺设备中的液体蒸发器对共用所述液体蒸发器的各个炉管进行补水,所述补水控制装置包括至少一个处理器和至少一个存储器,所述存储器中存储有至少一个程序;
当所述至少一个程序被所述至少一个处理器执行时,使得所述至少一个处理器实现如本发明公开的上述方法。
可选地,本发明实施例还公开了一种扩散工艺方法,所述扩散工艺方法包括多步工艺步骤,多步所述工艺步骤中包括补水步,所述补水步采用如上述的补水控制方法进行控制,所述扩散工艺方法包括:
在所述炉管执行工艺时,若下一工艺步骤为所述补水步,获取对应的所述炉管的可用状态;
判断所述液体蒸发器对对应的所述炉管是否为可用状态;
若为可用状态,则设置对应的所述炉管执行当前工艺步骤结束后,跳步至所述下一工艺步骤;
若为不可用状态,则设置对应的所述炉管保持所述当前工艺步骤并等待;
若所述下一工艺步骤不为所述补水步,则设置对应的所述炉管执行所述当前工艺步骤结束后,跳步至所述下一工艺步骤。
可选地,本发明还公开了一种半导体工艺设备,所述半导体工艺设备包 括液体蒸发器、控制器和共用所述液体蒸发器的多个炉管,所述控制器用于控制所述液体蒸发器对各个所述炉管进行补水,所述控制器用于:
获取对应的所述炉管需要预约的补水时间段信息;
根据各个所述炉管需要预约的补水时间段信息,更新当前的预约队列;
根据更新的所述预约队列中已预约的补水时间段信息,设置所述液体蒸发器对各个所述炉管的可用状态或不可用状态,以使所述液体蒸发器在同一时刻只向一个所述炉管补水。
可选地,本发明还公开了一种计算机可读存储介质,用于半导体加工设备,其上存储有计算机程序,所述程序被处理器执行时实现如本发明公开的上述方法。
本发明实施例包括以下优点:
本发明实施例提供了一种半导体工艺设备的补水控制方法、补水控制装置、扩散工艺方法、半导体工艺设备和计算机可读存储介质,该补水控制方法包括:获取各个炉管需要预约的补水时间段信息;根据各个炉管需要预约的补水时间段信息,更新当前的预约队列;根据更新的预约队列中已预约的补水时间段信息,设置液体蒸发器对各个炉管的可用状态或不可用状态,以使液体蒸发器在同一时刻只能向一个炉管进行补水。本发明通过提前获取需要预约的炉管的补水时间段信息,使得各个预约炉管可以按照时间先后顺序进行补水,避免了在工艺过程中的人工干预,降低了人工成本;通过设置液体蒸发器对各个炉管的可用状态或不可用状态,以使液体蒸发器在同一时刻只能被一个炉管占用,降低了工艺过程中多管对液体蒸发器占用出现时间冲突的风险,最大程度的降低工艺过程中出现工艺等待的概率,提高了生产效率。
附图说明
图1是本发明实施例提供的一种半导体工艺设备的补水控制方法的步骤 流程图;
图2是本发明实施例提供的上位机与下位机之间的框架图;
图3是本发明实施例提供的另一种半导体工艺设备的补水控制方法的步骤流程图;
图4是本发明实施例提供的一个炉管的工艺步骤时间分布图;
图5是本发明实施例提供的下位机确定各个炉管需要预约的补水时间段信息流程图;
图6是本发明实施例提供下位机计算出的一个炉管的补水时间段信息;
图7是本发明实施例提供的预约队列更新后的补水时间段信息;
图8是本发明实施例提供的预约队列实时更新的补水时间段信息;
图9是本发明实施例提供的异常工况下预约队列实时更新的补水时间段信息;
图10是本发明实施例提供的下位机进行工艺跳步的步骤流程图;
图11是本发明实施例提供的一种扩撒工艺的步骤流程图;
图12是本发明实施例提供的一种半导体工艺设备的结构框图;
图13为本发明实施例中提供的半导体工艺设备的补水控制装置的一种结构框图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
现有技术中,为了降低成本和节省设备空间,通过多个炉管共用一个CEM(Controlled evaporator mixer,液体蒸发器)的方式代替各炉管的鼓泡瓶,同时,在多个炉管共用液体蒸发器的情况下,为了保证每次各炉管通入的N2和水蒸气的量是固定的,通过各炉管之间补水阶段的互斥实现每次只有一个炉管在使用液体蒸发器,然而各炉管之间补水阶段的互斥的等待时间 和补水时长无法确定,需要进行人工监控每个炉管补水的结束时间,从而产生较大的人工成本,还会给工艺结果造成无法预估的影响,降低生产效率。
本发明实施例的核心构思之一在于,提出一种半导体工艺设备的补水控制方法,通过获取每个炉管需要预约的补水时间段信息,并根据获取的补水时间段信息对预约队列进行更新,实现多个炉管对于液体蒸发器的分时复用。
参照图1,示出了本发明实施例提供的一种半导体工艺设备的补水控制方法的步骤流程图,该半导体工艺设备包括液体蒸发器和共用液体蒸发器的多个炉管,该方法可以包括如下步骤101-103:
步骤101,获取各个炉管需要预约的补水时间段信息。
在本发明实施例中,参照图2示出了多个炉管分别通过对应的下位机控制,下位机与上位机通信,上位机与下位机之间通信的软件框架,上位机可以包括以下三个程序:
液体蒸发器控制系统,该系统通过串口与液体蒸发器通讯以及与PLC(Programmable logic controller,可编程控制器)通讯控制,用于读取液体蒸发器的温度及流量参数,同时为高级用户提供液体蒸发器调试界面,液体蒸发器控制系统与各炉管对应的下位机通信连接,用于为下位机提供液体蒸发器的相关参数。
上位机控制软件,分别与各炉管对应的下位机连接,用于为用户提供设备操作界面,以及实时显示当前各炉管的状态。
液体蒸发器调度系统,分别与各炉管对应的下位机连接,用于在工艺开始前对液体蒸发器资源进行分配和管理,并控制工艺过程中的跳步事件和手动补水事件从而避免各个炉管之间出现液体蒸发器使用冲突。
每个下位机包括一个下位机控制软件,并与对应的炉管连接,可以获取对应炉管的补水时间段的时间参数,并携带对应炉管的补水时间段参数发送至上位机进行补水开始前的工艺申请;下位机与液体蒸发器调度系统通讯, 可获取当前液体蒸发器是否可用的状态。
需要说明的是,一般情况下,半导体工艺设备中的炉管数量可以按照需求设定,本发明实施例中的炉管数量以5个为例来进行解释,炉管的编号为1-5。
下位机可以获取对应炉管需要预约的补水时间段信息并发送至上位机,该时间段信息可通过下位机查询炉管的每个工艺步骤的工艺时间计算得到;
需要说明的是,该时间段信息包括本次工艺过程中或者手动过程中,每一次补水步骤的开始时间(单位,s)、结束时间、管号,开始时间或者结束时间指的是距离当前时间还剩多少秒,例如,1号炉管补水步骤的开始时间90s,指的是距离当前时刻还剩90秒执行本次补水步骤,1号炉管补水步骤的结束时间270s,指的是距离当前时刻还剩270秒结束本次补水步骤。
步骤102,根据各个炉管需要预约的补水时间段信息,更新当前的预约队列。
在本发明实施例中,预约队列指的是已经预约好的工艺中的补水时间段队列,当预约队列为空集时,上位机可以将各个炉管需要预约的补水时间段信息直接加入到预约队列中,并按照补水时间段信息的先后顺序进行排列,形成新的预约队列,上位机通过下位机不断实时更新已预约的炉管的补水时间段信息;
当预约队列不为空集时,上位机通过比较预约队列与各个炉管需要预约的补水时间段信息之间的差异来形成新的预约队列,并通过下位机不断实时更新已预约的炉管的补水时间段信息。
步骤103,根据更新的预约队列中已预约的补水时间段信息,设置液体蒸发器对各个炉管的可用状态或不可用状态,以使液体蒸发器在同一时刻只能向一个炉管进行补水。
上位机中的液体蒸发器调度系统可以根据预约队列中已经预约的补水 时间段信息,对设备的每个炉管的状态进行设置,该状态可以为液体蒸发器可用和液体蒸发器不可用,然后上位机可以根据炉管的液体蒸发器可用状态或者不可用状态、预约队列中炉管补水时间的先后顺序给炉管分配液体蒸发器资源,使得液体蒸发器资源在同一时刻只能被一个炉管占用。
需要说明的是,本发明实施例中提前对液体蒸发器进行分配的预设时间可以根据用户需求设定,在此不做限定。
本发明实施例中,获取各个炉管需要预约的补水时间段信息;根据各个炉管需要预约的补水时间段信息,更新当前的预约队列;根据更新的预约队列中已预约的补水时间段信息,设置液体蒸发器对各个炉管的可用状态或不可用状态,以使液体蒸发器在同一时刻只能向一个炉管进行补水。本发明通过提前获取需要预约的炉管的补水时间段信息,使得各个预约炉管按照时间先后顺序进行补水,避免了在工艺过程中的人工干预,通过设置液体蒸发器对各个炉管的可用状态或不可用状态,以使液体蒸发器在同一时刻只能被一个炉管占用,降低了工艺过程中多管对液体蒸发器占用出现时间冲突的风险,最大程度的降低工艺过程中出现工艺等待的概率,降低了人工成本,提高了生产效率。
参照图3,示出了本发明实施例提供的另一种半导体工艺设备的补水控制方法的步骤流程图,该半导体工艺设备包括液体蒸发器和共用液体蒸发器的多个炉管,多个炉管分别通过对应的下位机控制,下位机与上位机通信,该方法可以包括如下步骤201-207:
步骤201,对每个炉管,依次查询炉管对应的多步工艺步骤,根据工艺步骤的工艺类型判断工艺步骤是否为补水段步骤,根据补水段步骤的工艺开始时间和结束时间确定炉管需要预约的补水时间段信息。
在本发明的实施例中,每个炉管的工艺步骤有多个,在一种示例中,假设1号炉管的工艺步骤有七个,如图4,示出了1号炉管的工艺步骤时间分 布图,图4中的序号1-7指的是第一个工艺步骤到第七个工艺步骤,类型包括需要补水和不需要补水,时间指的是该步骤的时长,开始时间指的是该工艺步骤开始的时间,结束时间指的是该工艺步骤结束的时间。
下位机接收到上位机发送的工艺请求后,会依次查询炉管的每一个工艺步骤,如图5示出了本发明实施例中下位机确定各个炉管需要预约的补水时间段信息流程图,下位机先查询第一个工艺步骤,并清空补水时间段信息表,设置时间累加变量S0=0,判断该步骤是否为空步骤,如果不为空步骤,继续判断该步骤是否为补水步骤,如果不是补水步骤,S0=S0+本步骤工艺时长,并查询下一个步骤;如果是补水步骤,补水开始时间为S0,补水结束时间为S0+本步骤工艺时长,并将该补水步骤的补水开始时间、补水结束时间、管号加入到补水时间段信息表中,并查询下一个步骤,直到查询完所有工艺步骤,即该工艺步骤为空步骤时,输出该炉管的补水时间段信息表,下位机查询完所有各个炉管的补水时间段信息表得到各个炉管需要预约的补水时间段信息。
在一种示例中,下位机查询1号管的补水时间段信息时,先查询第一个工艺步骤,该步骤的工艺时长为60s,第一个工艺步骤为不需要补水的步骤,累计变量S0=0+60=60s;然后查询第二个工艺步骤,该步骤的工艺时长为60s,第二个工艺步骤也为不需要补水的步骤,累计变量S0=60+60=120s;并查询第三个工艺步骤,第三个工艺步骤为需要补水的步骤,该步骤的工艺时长为600s,补水开始时间=120s,补水结束时间=S0+600=120+600=720s,并将(1号管,120,720,)加入到补水时间段信息表中,依次查询完第七个步骤,可以得到1号管的补水时间段信息,如图6示出了1号管的补水时间段信息。
步骤202,根据预约队列和各个炉管需要预约的补水时间段信息,对各个炉管进行预约处理,并根据预约处理结果,更新当前的预约队列。
在本发明的实施例中,上位机中可能已经有预约队列在排队进行补水, 上位机接收到需要预约的补水时间段信息后,比较预约队列和各个炉管需要预约的补水时间段信息,并根据差异对液体蒸发器进行预约,根据预约结果,对预约队列进行更新。
在一种实施例方式中,步骤202可以包括步骤子步骤S21-子步骤S23;
子步骤S21,判断当前的预约队列与各个炉管需要预约的补水时间段信息是否产生冲突;
子步骤S22,若当前的预约队列与各个炉管需要预约的补水时间段信息均发生冲突,则当前的预约队列不发生改变;
在一种示例中,假设各个炉管需要预约的补水时间段信息均已在预约队列中,也就是说,各个炉管需要预约的补水时间段都已被占用。则说明预约队列与各个炉管需要预约的补水时间段信息发生冲突,此时预约队列不发生改变,该炉管对应的下位机不开始工艺,预约队列不发生改变,下位机继续向上位机位机发送该炉管需要预约的补水时间段信息,直到该炉管需要预约的补水时间段信息与预约队列不发生冲突。
子步骤S23,若当前的预约队列与任意一个或多个炉管需要预约的补水时间段信息不发生冲突,则将不发生冲突的炉管需要预约的补水时间段信息添加到预约队列中,并更新当前的预约队列。
在一种示例中,假设3号炉管和4号炉管在预约队列中,1号炉管有两个补水时间段信息,且1号炉管的两个补水时间段信息一个在4号炉管之前;一个在4号炉管后,3号炉管后;则1号炉管需要补水的时间段信息与预约队列不发生冲突,并将一号炉管需要补水的时间段信息加入到预约队列中进行更新,如图7示出了预约队列更新后的补水时间段信息,此时1号炉管可以开始工艺,并根据工艺的进程不断实时更新已预约的队列,例如,当1号炉管的第一个工艺步骤运行了30s,第一段补水段的开始时间变为=第一步剩余时间30s+第二步工艺时间60s=90s,第一段补水段的结束时间变为=第二步 剩余时间90s+第三步工艺时间600s=690s,即第一段补水时间段信息更新为(1号管,90,690),同理第二段补水时间段信息更新为(1号管,1470,1770),如图8示出了预约队列实时更新的补水时间段信息。
需要说明的是,本发明实施例中已预约的队列会根据工艺进行的时间不间断更新,贯穿整个工艺过程。
在本发明的一种实施例方式中,所述更新所述预约队列还包括:
当已预约的补水时间段信息中对应的炉管的工艺由于故障导致终止时,将炉管的已预约的补水时间段信息从预约队列中剔除掉。
在本发明的实施例中,正常情况下,工艺过程会按照图4和图8中已预约的队列进行液体蒸发器的占用及释放,但是当出现异常工况时,已预约的队列会根据异常工况做出处理,例如,当一号炉管在第一个工艺步骤运行了30s后由于报警导致整个工艺过程终止,此时,上位机会将该异常炉管的补水时间段信息从已预约的队列中剔除,如图9示出了异常工况下预约队列实时更新的补水时间段信息。
在本发明的一示例中,当已预约的补水时间段信息中对应炉管发生故障时,上位机向更新后的已预约的补水时间段信息中各炉管发送液体蒸发器是否可用的状态,并根据更新后的已预约的补水时间段信息分配液体蒸发器;并在液体蒸发器开始使用前预设时间,上位机将液体蒸发器提前预定给目标炉管,且液体蒸发器对目标炉管为可用状态。
假设正在进行工艺的预约队列为图8,当1号炉管运行了30s后导致工艺终止时,上位机会将1号炉管的补水时间段信息从预约队列中剔除掉,此时预约队列更新为图9中的时间段信息,即更新后的已预约的补水时间段信息,上位机向更新后的已预约的补水时间段信息中的4号炉管和3号炉管发送液体蒸发器是否可用的状态,假设都可用,按照时间段信息的先后顺序分配液体蒸发器,并在液体蒸发器开始使用前预设时间,假设为20s,上位机 将液体蒸发器提前预定给4号炉管,从而可以有准备的应对工艺中出现的异常工艺终止等突发事件,提高工艺的稳定性。
步骤203,根据已预约的补水时间段信息,判断当前时间是否到达已预约的补水时间段信息。
由于已预约的补水时间段中补水开始时间和结束时间都是指的是距离当前时刻还剩多少秒,上位机会根据补水开始时间还剩多少秒来判断当前时间是否到达已预约的补水时间段信息。
步骤204,当当前时间到达已预约的补水时间段信息,设置液体蒸发器对当前时间到达已预约的补水时间段对应的炉管为可用状态,对其余的炉管为不可用状态;
当补水开始时间剩0s时,说明当前时间到达已预约的补水时间段信息,上位机可以根据当前是否有炉管占用液体蒸发器和已预约的补水时间段信息,设置液体蒸发器对炉管的可用状态,使液体蒸发器在同一时刻只能被一个炉管占用。
在一种实施例方式中,步骤206可以包括子步骤S31-子步骤S35;
子步骤S31,当当前时间到达已预约的补水时间段信息,判断当前时间液体蒸发器为空闲状态还是占用状态;
子步骤S32,若在当前时间所述液体蒸发器为空闲状态,则设置液体蒸发器对当前时间到达已预约的补水时间段对应的炉管为可用状态,对其余的炉管为不可用状态;
若在当前时间液体蒸发器为空闲状态,说明没有炉管占用液体蒸发器,上位机设置液体蒸发器对预约队列中到达已预约的补水时间段对应的炉管为可用状态,设置液体蒸发器对其余炉管设置为不可用状态,即设置未到达已预约的补水时间段对应的炉管为不可用状态,此时预约队列中的炉管按照时间先后顺序进行补水,例如图8中,按照1号管-4号管-1号管-3号管的先后 顺序进行补水。
子步骤S33,若当前时间液体蒸发器为占用状态,则判断占用液体蒸发器的炉管是否在进行手动补水;
在本发明的实施例中,补水可分为自动补水和手动控制补水,若当前时间液体蒸发器为占用状态,说明有炉管在使用液体蒸发器进行补水,此时按照工艺优先顺序进行补水,并判断占用炉管是否为手动控制补水炉管。
子步骤S34,若占用液体蒸发器的炉管在进行手动补水,则控制炉管释放对液体蒸发器的占用,设置液体蒸发器对当前时间到达已预约的补水时间段对应的炉管为可用状态,对其余的炉管为不可用状态;
若占用炉管在进行手动补水,则手动占用管直接停止补水,取消占用管对液体蒸发器的占用状态,并遵循工艺已预约队列优先的原则,设置液体蒸发器对已预约队列中预约炉管为可用状态,此时已预约队列中的炉管可以按照预约顺序进行补水,具体顺序在此不再做赘述,并设置未预约成功的炉管为不可用状态,且未预约成功的炉管禁止补水。
子步骤S35,若占用液体蒸发器的炉管不在进行手动补水,则等待占用液体蒸发器的炉管释放液体蒸发器,在占用液体蒸发器的炉管结束对液体蒸发器的占用时,设置当前时间到达已预约的补水时间段对应的炉管为可用状态,对其余的炉管为不可用状态。
在一种示例中,假设2号炉管为占用炉管,并且正在使用液体蒸发器进行自动补水,此时上位机等待2号炉管补水结束时,即结束对液体蒸发器的占用时,设置液体蒸发器对当前时间到达已预约的补水时间段对应的炉管为可用状态,此时已预约队列中到达已预约的补水时间段对应的炉管可以按照预约顺序进行补水,具体顺序在此不再做赘述,并设置未到达已预约的补水时间段对应的炉管为不可用状态,且未到达已预约的补水时间段对应的炉管禁止补水。
步骤205,当当前时间未到达已预约的补水时间段信息,设置液体蒸发器对各个炉管均为可用状态。
当补水开始时间不为0时,说明当前时间未到达已预约的补水时间段信息,上位机可以根据当前是否有炉管占用液体蒸发器和已预约的补水时间段信息,并在满足预设要求时控制液体蒸发器进行手动补水,使液体蒸发器在同一时刻只能被一个炉管占用。
在一种实施例方式中,步骤207可以包括子步骤S41-S43;
子步骤S41,当当前时间未到达已预约的补水时间段信息,判断当前时间液体蒸发器为空闲状态还是占用状态;
子步骤S42,若在当前时间液体蒸发器为空闲状态,设置液体蒸发器对各个炉管均为可用状态,并在目标的炉管接收到手动补水的指令时,设置液体蒸发器对目标的炉管进行手动补水;
在本发明的实施例中,目标的炉管指的是用户指定的炉管;在一种示例中,若当前时间为空闲状态,说明在当前时间,液体蒸发器对各个炉管都可以进行手动控制补水,此时上位机设置液体蒸发器对各个炉管为可用状态,可以按照用户需求对各个炉管中的任意一个炉管进行手动控制补水,无论是否预约成功。
子步骤S43,若在当前时间液体蒸发器为占用状态,设置液体蒸发器对占用的炉管为可用状态,以及设置液体蒸发器对其余的炉管为不可用状态;等待占用液体蒸发器的炉管释放液体蒸发器,在占用液体蒸发器的炉管结束对液体蒸发器的占用,并设置液体蒸发器对各个炉管均为可用状态,在目标的炉管接收到手动补水的指令时,设置液体蒸发器对目标的炉管进行手动补水。
若当前时间为占用状态,由于工艺优先的原则,则设置液体蒸发器对占用炉管为可用状态,设置液体蒸发器对其余炉管为不可用状态,在占用液体 蒸发器的炉管结束对液体蒸发器的占用时,即占用液体蒸发器的炉管释放液体蒸发器,上位机可以设置液体蒸发器对各个炉管为可用状态,可以按照用户需求对各个炉管中的任意一个炉管进行手动控制补水,无论是否预约成功。
在一种实施例方式中,所述方法还包括:
当预约队列中已预约的补水时间段信息为空时,且在目标的炉管接收到补水指令后,判断目标的炉管是否为工艺状态;
若为工艺状态,则设置目标的炉管禁止进行补水;
若不为工艺状态,则判断液体蒸发器针对目标的炉管是否为可用状态;
若为可用状态,则设置目标的炉管进行补水;
若为不可用状态,则设置目标的炉管禁止进行补水。
如图10,示出了本发明实施例中下位机进行手动控制补水的步骤流程图,在当前时间段,预约队列为空,则该时刻液体蒸发器对所有炉管均可用,当下位机接收到上位机发送的补水指令后,为了保护人身安全,必须保证人工控制补水是在未进行工艺情况下进行,所以先判断当前炉管是否为工艺状态,如果当前炉管为工艺状态,则禁止进行补水;如果当前炉管不为工艺状态,判断液体蒸发器对该炉管是否可用,在可用的情况下下位机控制对应炉管进行补水;如果不可用,则下位机控制对应炉管禁止进行补水,直到液体蒸发器对该炉管可用时下位机控制对应炉管进行补水。
需要说明的是,由于手动补水情况属于不可控时间,液体蒸发器调度系统可以直接将整个时间段0-32767s设置为补水时间段,该补水时间段可以根据用户需求设定,在此时间段液体蒸发器对于手动补水炉管为可用,对其他管为不可用,其它炉管无法进行手动补水,由于工艺优先级别最高,该时间段不会影响工艺过程中的补水,当预约队列中有队列时,手动补水管会及时释放液体蒸发器资源。
如图11示出了本发明实施例提供的一种扩散工艺方法的步骤流程图, 所述扩散工艺方法包括多步工艺步骤,多步工艺步骤包括补水步骤,所述补水步骤采用上述的补水控制方法进行控制,所述扩散工艺方法包括如下步骤:
步骤301,在炉管执行工艺时,若下一工艺步骤为补水步,获取对应的炉管的可用状态;
步骤302,判断液体蒸发器对对应的炉管是否为可用状态;
步骤303,若为可用状态,则设置对应的炉管执行当前工艺步骤结束后,跳步至下一工艺步骤;若为不可用状态,则设置对应的炉管保持当前工艺步骤并等待;
步骤304,若下一工艺步骤不为补水步,则设置对应的炉管执行当前工艺步骤结束后,跳步至下一工艺步骤。
本发明实施例中,当某个炉管执行扩散工艺步骤时,如果下一步为补水步,则下位机从液体蒸发器调度系统获取该炉管的液体蒸发器可用状态,并在可用时,才允许跳步,否则保持跳步前状态,并持续向液体蒸发器调度系统获取该炉管的液体蒸发器可用状态,直到液体蒸发器对该管道可用时跳到下一步;如果下一步不是补水步,则直接跳到下一步工艺步骤。
本发明实施例中通过获取各个炉管需要预约的补水时间段信息;根据预约队列和各个炉管需要预约的补水时间段信息,更新预约队列;根据预约队列中已预约的补水时间段信息,设置液体蒸发器对各个炉管的可用状态或不可用状态,以使液体蒸发器在同一时刻只能被一个炉管占用。本发明通过提前获取需要预约的炉管的补水时间段信息,使得各个预约炉管按照时间先后顺序进行补水,避免了在在工艺过程中的人工干预,通过设置液体蒸发器对各个炉管的可用状态或不可用状态,以使液体蒸发器在同一时刻只能被一个炉管占用,降低了工艺过程中多管对液体蒸发器占用出现时间冲突的风险,最大程度的降低工艺过程中出现工艺等待的概率,降低了人工成本,提高了生产效率。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明实施例并不受所描述的动作顺序的限制,因为依据本发明实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明实施例所必须的。
参照图12,示出了本发明实施例提供的一种半导体工艺设备结构框图,所述半导体工艺设备包括液体蒸发器、控制器和共用液体蒸发器的多个炉管,所述控制器用于控制所述液体蒸发器对各个所述炉管进行补水,所述控制器用于:
获取对应的所述炉管需要预约的补水时间段信息;
根据各个所述炉管需要预约的补水时间段信息,更新当前的预约队列;
根据更新的所述预约队列中已预约的补水时间段信息,设置所述液体蒸发器对各个所述炉管的可用状态或不可用状态,以使所述液体蒸发器在同一时刻只向一个所述炉管补水。
在本发明的一种实施例方式中,所述控制器还用于对每个所述炉管,依次查询所述炉管对应的多步工艺步骤,根据所述工艺步骤的工艺类型判断所述工艺步骤是否为补水段步骤,根据所述补水段步骤的工艺开始时间和结束时间确定所述炉管需要预约的补水时间段信息。
在本发明的一种实施例方式中,所述控制器还用于根据所述预约队列和各个所述炉管需要预约的补水时间段信息,对各个所述炉管进行预约处理,并根据预约处理结果,更新当前的所述预约队列。
在本发明的一种实施例方式中,所述控制器还用于判断当前的所述预约队列与各个所述炉管需要预约的补水时间段信息是否产生冲突;
若当前的所述预约队列与各个所述炉管需要预约的补水时间段信息均发生冲突,则当前的所述预约队列不发生改变;
若当前的所述预约队列与任意一个或多个所述炉管需要预约的补水时间段信息不发生冲突,则将不发生冲突的所述炉管需要预约的补水时间段信息添加到所述预约队列中,并更新当前的所述预约队列。
在本发明的一种实施例方式中,所述控制器还用于根据所述已预约的补水时间段信息,判断当前时间是否到达所述已预约的补水时间段信息;
当所述当前时间到达所述已预约的补水时间段信息,设置所述液体蒸发器对所述当前时间到达所述已预约的补水时间段对应的所述炉管为可用状态,对其余的所述炉管为不可用状态;
当所述当前时间未到达所述已预约的补水时间段信息,设置所述液体蒸发器对各个所述炉管均为可用状态。
在本发明的一种实施例方式中,所述控制器还用于当所述当前时间到达所述已预约的补水时间段信息,判断所述当前时间所述液体蒸发器为空闲状态还是占用状态;
若所述当前时间所述液体蒸发器为空闲状态,则设置所述液体蒸发器对所述当前时间到达的所述已预约的补水时间段对应的所述炉管为可用状态,对其余的所述炉管为不可用状态;
若所述当前时间所述液体蒸发器为占用状态,则判断占用所述液体蒸发器的所述炉管是否在进行手动补水;
若占用所述液体蒸发器的所述炉管在进行手动补水,则所述炉管释放对所述液体蒸发器的占用,设置所述液体蒸发器对所述当前时间到达的所述已预约的补水时间段对应的所述炉管为可用状态,对所述其余的所述炉管为不可用状态;
若占用所述液体蒸发器的所述炉管不在进行手动补水,则等待占用所述液体蒸发器的所述炉管释放所述液体蒸发器,在所述占用所述液体蒸发器的所述炉管结束对所述液体蒸发器的占用时,设置所述当前时间到达的所述已 预约的补水时间段对应的所述炉管为可用状态,对所述其余的所述炉管为不可用状态。
在本发明的一种实施例方式中,所述控制器用于当所述当前时间未到达所述已预约的补水时间段信息,判断当前时间所述液体蒸发器为空闲状态还是占用状态;
若所述当前时间所述液体蒸发器为空闲状态,设置所述液体蒸发器对各个所述炉管均为可用状态,并在目标的所述炉管接收到手动补水的指令时,设置所述液体蒸发器对目标的所述炉管进行手动补水;
若所述当前时间所述液体蒸发器为占用状态,设置所述液体蒸发器对占用的所述炉管为可用状态,以及设置所述液体蒸发器对其余的所述炉管为不可用状态;等待占用所述液体蒸发器的所述炉管释放所述液体蒸发器,在所述占用所述液体蒸发器的所述炉管结束对所述液体蒸发器的占用,并在目标的所述炉管接收到手动补水的指令时,设置所述液体蒸发器对目标的所述炉管进行手动补水。
在本发明的一种实施例方式中,所述控制器还用于当所述已预约的补水时间段信息对应的所述炉管的工艺由于故障导致终止时,将所述炉管的所述已预约补水时间段信息从所述预约队列中剔除掉。
可选地,所述控制器还用于当所述预约队列中已预约的补水时间段信息为空时,且在目标的所述炉管接收到补水指令后,判断目标的所述炉管是否为工艺状态;
若为工艺状态,则设置目标的所述炉管禁止进行补水;
若不为工艺状态,则判断所述液体蒸发器针对目标的所述炉管是否为可用状态;
若为可用状态,则设置目标的所述炉管进行补水;
若为不可用状态,则设置目标的所述炉管禁止进行补水。
在本发明的一种实施例方式中,所述控制器还用于在所述炉管执行工艺时,若下一工艺步骤为所述补水步,获取对应的所述炉管的可用状态;
判断所述液体蒸发器对对应的所述炉管是否为可用状态;
若为可用状态,则设置对应的所述炉管执行当前工艺步骤结束后,跳步至所述下一工艺步骤;
若为不可用状态,则设置对应的所述炉管保持所述当前工艺步骤并等待;
若所述下一工艺步骤不为所述补水步,则设置对应的所述炉管执行所述当前工艺步骤结束后,跳步至所述下一工艺步骤。
本发明实施例公开了一种半导体工艺设备,该半导体工艺设备包括液体蒸发器、控制器和共用液体蒸发器的多个炉管,该控制器用于:获取对应的所述炉管需要预约的补水时间段信息;根据各个所述炉管需要预约的补水时间段信息,更新当前的预约队列;根据更新的所述预约队列中已预约的补水时间段信息,设置所述液体蒸发器对各个所述炉管的可用状态或不可用状态,以使所述液体蒸发器在同一时刻只向一个所述炉管补水。本发明通过提前获取需要预约的炉管的补水时间段信息,使得各个预约炉管按照时间先后顺序进行补水,避免了在在工艺过程中过多的人工干预降低了人工成本;通过设置液体蒸发器对各个炉管的可用状态或不可用状态,以使液体蒸发器在同一时刻只能被一个炉管占用,降低了工艺过程中多管对液体蒸发器占用出现时间冲突的风险,最大程度的降低工艺过程中出现工艺等待的概率,提高了生产效率。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
图13为本发明实施例中提供的半导体工艺设备的补水控制装置的一种结构框图,如图13所示,该补水控制装置用于控制半导体工艺设备中的液体 蒸发器对共用液体蒸发器的各个炉管进行补水,包括:至少一个处理器1301、存储器1302、至少一个I/O接口1303。存储器1302上存储有至少一个程序,当该至少一个程序被该至少一个处理器1301执行,使得该至少一个处理器实现如上述实施例中任一控制方法中的步骤;至少一个I/O接口1303连接在处理器1301与存储器1302之间,配置为实现处理器与存储器的信息交互。
其中,处理器1301为具有数据处理能力的器件,其包括但不限于中央处理器(CPU)等;存储器1302为具有数据存储能力的器件,其包括但不限于随机存取存储器(RAM,更具体如SDRAM、DDR等)、只读存储器(ROM)、带电可擦可编程只读存储器(EEPROM)、闪存(FLASH);I/O接口(读写接口)1303连接在处理器1301与存储器1302间,能实现处理器1301与存储器1302的信息交互,其包括但不限于数据总线(Bus)等。
在一些实施例中,处理器1301、存储器1302和I/O接口1303通过总线104相互连接,进而与计算设备的其它组件连接。
在一些实施例中,该处理器1301包括FPGA。
根据本公开的实施例,还提供一种计算机可读介质。该计算机可读介质上存储有计算机程序,其中,该程序被处理器执行时实现如上述实施例任一控制方法中的步骤。
特别地,根据本公开实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在机器可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分从网络上被下载和安装,和/或从可拆卸介质被安装。在该计算机程序被中央处理单元(CPU)执行时,执行本公开的系统中限定的上述功能。
需要说明的是,本公开所示的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介 质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF等等,或者上述的任意合适的组合。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,前述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统 来实现,或者可以用专用硬件与计算机指令的组合来实现。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本发明实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本发明实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明实施例是参照根据本发明实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用 于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本发明所提供的一种半导体工艺设备的补水控制方法、扩散工艺方法和半导体工艺设备,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (13)

  1. 一种半导体工艺设备的补水控制方法,其特征在于,所述半导体工艺设备包括液体蒸发器和共用所述液体蒸发器的多个炉管,所述方法包括:
    获取各个所述炉管需要预约的补水时间段信息;
    根据各个所述炉管需要预约的补水时间段信息,更新当前的预约队列;
    根据更新的所述预约队列中已预约的补水时间段信息,设置所述液体蒸发器对各个所述炉管的可用状态或不可用状态,以使所述液体蒸发器在同一时刻只能向一个所述炉管进行补水。
  2. 根据权利要求1所述的方法,其特征在于,所述获取各个所述炉管需要预约的补水时间段信息包括:
    对每个所述炉管,依次查询所述炉管对应的多步工艺步骤,根据所述工艺步骤的工艺类型判断所述工艺步骤是否为补水段步骤,根据所述补水段步骤的工艺开始时间和结束时间确定所述炉管需要预约的补水时间段信息。
  3. 根据权利要求1所述的方法,其特征在于,所述根据各个所述炉管需要预约的补水时间段信息,更新当前的预约队列包括:
    根据所述预约队列和各个所述炉管需要预约的补水时间段信息,对各个所述炉管进行预约处理,并根据预约处理结果,更新当前的所述预约队列。
  4. 根据权利要求3所述的方法,其特征在于,所述对各个所述炉管进行预约处理,并根据预约处理结果,更新当前的所述预约队列包括:
    判断当前的所述预约队列与各个所述炉管需要预约的补水时间段信息是否产生冲突;
    若当前的所述预约队列与各个所述炉管需要预约的补水时间段信息均发生冲突,则当前的所述预约队列不发生改变;
    若当前的所述预约队列与任意一个或多个所述炉管需要预约的补水时间段信息不发生冲突,则将不发生冲突的所述炉管需要预约的补水时间段信息添加到所述预约队列中,并更新当前的所述预约队列。
  5. 根据权利要求1所述的方法,其特征在于,所述根据更新的所述预约队列中已预约的补水时间段信息,设置所述液体蒸发器对各个所述炉管的可用状态或不可用状态,以使所述液体蒸发器在同一时刻只向一个所述炉管进行补水,包括:
    根据所述已预约的补水时间段信息,判断当前时间是否到达所述已预约的补水时间段信息;
    当所述当前时间到达所述已预约的补水时间段信息,设置所述液体蒸发器对所述当前时间到达所述已预约的补水时间段对应的所述炉管为可用状态,对其余的所述炉管为不可用状态;
    当所述当前时间未到达所述已预约的补水时间段信息,设置所述液体蒸发器对各个所述炉管均为可用状态。
  6. 根据权利要求5所述的方法,其特征在于,所述当所述当前时间到达所述已预约的补水时间段信息,设置所述液体蒸发器对所述当前时间到达所述已预约的补水时间段对应的所述炉管为可用状态,对其余的所述炉管为不可用状态,包括:
    当所述当前时间到达所述已预约的补水时间段信息,判断在所述当前时间所述液体蒸发器为空闲状态还是占用状态;
    若在所述当前时间所述液体蒸发器为空闲状态,则设置所述液体蒸发器对所述当前时间到达的所述已预约的补水时间段对应的所述炉管为可用状态,对其余的所述炉管为不可用状态;
    若在所述当前时间所述液体蒸发器为占用状态,则判断占用所述液体蒸发器的所述炉管是否在进行手动补水;
    若占用所述液体蒸发器的所述炉管在进行手动补水,则控制所述炉管释放对所述液体蒸发器的占用,设置所述液体蒸发器对所述当前时间到达所述已预约的补水时间段对应的所述炉管为可用状态,对所述其余的所述炉管为不可用状态;
    若占用所述液体蒸发器的所述炉管不在进行手动补水,则等待占用所述液体蒸发器的所述炉管释放所述液体蒸发器,在所述占用所述液体蒸发器的所述炉管结束对所述液体蒸发器的占用时,设置所述当前时间到达所述已预约的补水时间段对应的所述炉管为可用状态,对所述其余的所述炉管为不可用状态。
  7. 根据权利要求5所述的方法,其特征在于,所述当所述当前时间未到达所述已预约的补水时间段信息,设置所述液体蒸发器对各个所述炉管均为可用状态,包括:
    当所述当前时间未到达所述已预约的补水时间段信息,判断在当前时间所述液体蒸发器为空闲状态还是占用状态;
    若在所述当前时间所述液体蒸发器为空闲状态,设置所述液体蒸发器对各个所述炉管均为可用状态,并在目标的所述炉管接收到手动补水的指令时,设置所述液体蒸发器对目标的所述炉管进行手动补水;
    若在所述当前时间所述液体蒸发器为占用状态,设置所述液体蒸发器对占用的所述炉管为可用状态,以及设置所述液体蒸发器对其余的所述炉管为不可用状态;等待占用所述液体蒸发器的所述炉管释放所述液体蒸发器,在所述占用所述液体蒸发器的所述炉管结束对所述液体蒸发器的占用,并设置所述液体蒸发器对各个所述炉管均为可用状态,在目标的所述炉管接收到手动补水的指令时,设置所述液体蒸发器对目标的所述炉管进行手动补水。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述已预约的补水时间段信息对应的所述炉管的工艺由于故障导致 终止时,将所述炉管的所述已预约补水时间段信息从所述预约队列中剔除掉。
  9. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述预约队列中已预约的补水时间段信息为空时,且在目标的所述炉管接收到补水指令后,判断目标的所述炉管是否为工艺状态;
    若为工艺状态,则设置目标的所述炉管禁止进行补水;
    若不为工艺状态,则判断所述液体蒸发器针对目标的所述炉管是否为可用状态;
    若为可用状态,则设置目标的所述炉管进行补水;
    若为不可用状态,则设置目标的所述炉管禁止进行补水。
  10. 一种半导体工艺设备的补水控制装置,用于控制所述半导体工艺设备中的液体蒸发器对共用所述液体蒸发器的各个炉管进行补水,其特征在于,所述补水控制装置包括至少一个处理器和至少一个存储器,所述存储器中存储有至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行时,使得所述至少一个处理器实现如权利要求1-9中任一所述的方法。
  11. 一种扩散工艺方法,其特征在于,所述扩散工艺方法包括多步工艺步骤,多步所述工艺步骤中包括补水步,所述补水步采用如权利要求1-9任意一项所述的补水控制方法进行控制,所述扩散工艺方法包括:
    在所述炉管执行工艺时,若下一工艺步骤为所述补水步,获取对应的所述炉管的可用状态;
    判断所述液体蒸发器对对应的所述炉管是否为可用状态;
    若为可用状态,则设置对应的所述炉管执行当前工艺步骤结束后,跳步至所述下一工艺步骤;
    若为不可用状态,则设置对应的所述炉管保持所述当前工艺步骤并等待;
    若所述下一工艺步骤不为所述补水步,则设置对应的所述炉管执行所述当前工艺步骤结束后,跳步至所述下一工艺步骤。
  12. 一种半导体工艺设备,其特征在于,所述半导体工艺设备包括液体蒸发器、控制器和共用所述液体蒸发器的多个炉管,所述控制器用于控制所述液体蒸发器对各个所述炉管进行补水,所述控制器用于:
    获取对应的所述炉管需要预约的补水时间段信息;
    根据各个所述炉管需要预约的补水时间段信息,更新当前的预约队列;
    根据更新的所述预约队列中已预约的补水时间段信息,设置所述液体蒸发器对各个所述炉管的可用状态或不可用状态,以使所述液体蒸发器在同一时刻只向一个所述炉管补水。
  13. 一种计算机可读存储介质,用于半导体加工设备,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求1-9中任一所述的方法。
PCT/CN2023/095954 2022-05-31 2023-05-24 半导体工艺设备的补水控制方法和半导体工艺设备 WO2023231855A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210607885.6 2022-05-31
CN202210607885.6A CN114975183A (zh) 2022-05-31 2022-05-31 半导体工艺设备的补水控制方法和半导体工艺设备

Publications (1)

Publication Number Publication Date
WO2023231855A1 true WO2023231855A1 (zh) 2023-12-07

Family

ID=82958028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095954 WO2023231855A1 (zh) 2022-05-31 2023-05-24 半导体工艺设备的补水控制方法和半导体工艺设备

Country Status (3)

Country Link
CN (1) CN114975183A (zh)
TW (1) TW202349543A (zh)
WO (1) WO2023231855A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114975183A (zh) * 2022-05-31 2022-08-30 北京北方华创微电子装备有限公司 半导体工艺设备的补水控制方法和半导体工艺设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110580A (ja) * 2000-09-29 2002-04-12 Dainippon Screen Mfg Co Ltd 基板の光照射式熱処理装置
CN107201549A (zh) * 2017-04-14 2017-09-26 中国电子科技集团公司第四十八研究所 一种可提升炉口硅片方阻均匀性的扩散炉
CN113122927A (zh) * 2021-05-25 2021-07-16 中南大学 一种可提升硅片方阻均匀性的扩散炉
CN114975183A (zh) * 2022-05-31 2022-08-30 北京北方华创微电子装备有限公司 半导体工艺设备的补水控制方法和半导体工艺设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110580A (ja) * 2000-09-29 2002-04-12 Dainippon Screen Mfg Co Ltd 基板の光照射式熱処理装置
CN107201549A (zh) * 2017-04-14 2017-09-26 中国电子科技集团公司第四十八研究所 一种可提升炉口硅片方阻均匀性的扩散炉
CN113122927A (zh) * 2021-05-25 2021-07-16 中南大学 一种可提升硅片方阻均匀性的扩散炉
CN114975183A (zh) * 2022-05-31 2022-08-30 北京北方华创微电子装备有限公司 半导体工艺设备的补水控制方法和半导体工艺设备

Also Published As

Publication number Publication date
CN114975183A (zh) 2022-08-30
TW202349543A (zh) 2023-12-16

Similar Documents

Publication Publication Date Title
WO2024060789A1 (zh) 面向智能计算的分布式训练任务调度方法、系统和装置
WO2023231855A1 (zh) 半导体工艺设备的补水控制方法和半导体工艺设备
JP2003298599A (ja) 分散制御方法及び装置
JP4935595B2 (ja) ジョブ管理方法、ジョブ管理装置およびジョブ管理プログラム
KR100509794B1 (ko) 데이터베이스 관리시스템을 이용하는 작업들의 실시간 처리를 위한 스케줄링 방법
JP4907166B2 (ja) リソース管理装置
US20100087941A1 (en) Method and system for managing process jobs in a semiconductor fabrication facility
JP4490298B2 (ja) プロセッサ電力制御装置及びプロセッサ電力制御方法
JP4697805B2 (ja) データ処理装置
CN104731657B (zh) 一种资源调度方法和系统
JP2006230146A (ja) 複数の電力使用系の動作制御装置、動作制御方法及び記憶媒体
CN115454589A (zh) 一种任务调度方法、装置及Kubernetes调度器
CN102779062A (zh) 一种访问系统资源的线程数量的控制方法及装置
CN108228493B (zh) 闪存接口控制器及操作命令处理方法
RU2453901C2 (ru) Аппаратно-реализуемый способ планирования заданий (варианты), система планирования заданий и машиночитаемый носитель
CN105389204A (zh) 一种多资源偏序调度策略
CN104598311A (zh) 一种面向Hadoop的实时作业公平调度的方法和装置
JP4811260B2 (ja) プログラマブルコントローラ、及びその支援装置
JP2001195268A (ja) サービスレベルによる資源割当方式
JP2012093865A (ja) 製造計画演算方法と製造計画演算装置
JP2008225641A (ja) コンピュータシステム、割り込み制御方法及びプログラム
CN101661406A (zh) 处理单元调度装置和方法
CN107589985A (zh) 一种面向大数据平台的两阶段作业调度方法及系统
JP2007249635A (ja) データ転送装置及びデータ転送方法
JP2006215621A (ja) Dma制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815039

Country of ref document: EP

Kind code of ref document: A1