WO2023231643A1 - 一种双卡通信的方法和终端设备 - Google Patents

一种双卡通信的方法和终端设备 Download PDF

Info

Publication number
WO2023231643A1
WO2023231643A1 PCT/CN2023/090159 CN2023090159W WO2023231643A1 WO 2023231643 A1 WO2023231643 A1 WO 2023231643A1 CN 2023090159 W CN2023090159 W CN 2023090159W WO 2023231643 A1 WO2023231643 A1 WO 2023231643A1
Authority
WO
WIPO (PCT)
Prior art keywords
card
frequency band
dsda
terminal device
dual
Prior art date
Application number
PCT/CN2023/090159
Other languages
English (en)
French (fr)
Inventor
沈丽
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2023231643A1 publication Critical patent/WO2023231643A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection

Definitions

  • the present application relates to the field of communications, and more specifically, to a method and terminal device for dual-card communication in the field of communications.
  • DSDA dual sim dual standby
  • DSDA dual sim dual active
  • the terminal device supports dual-card service concurrency, that is, dual cards can send or receive at the same time.
  • the other card can receive incoming calls and perform data services (i.e., surf the Internet).
  • the terminal device does not support concurrent dual-card services.
  • the other card cannot perform data services.
  • the incoming calls will not be made.
  • the call service of the secondary card makes it impossible for the primary card to perform data services.
  • the secondary card is unable to perform data services due to network search, measurement, tracking area update (TAU), SMS, MMS, periodic Registration and other behaviors will seize the antenna and affect the Internet experience of the main card. It can be seen that compared to DSDS mode, DSDA mode has a higher user experience.
  • both cards of the terminal device When both cards of the terminal device are in the connected state, the DSDA mode is formed between the two cards, and both cards can perform uplink transmission and downlink transmission.
  • both cards can perform uplink transmission and downlink transmission.
  • the dual SIM cards performs cell switching, if the frequency band of the cell where the dual SIM cards eventually reside cannot form a DSDA mode but can only form a DSDS mode, then the uplink transmission of either of the dual SIM cards will inevitably be affected. The impact will cause the service interruption of any card. Such cell handover will fail, which will greatly affect the user experience.
  • Embodiments of the present application provide a dual-card communication method and terminal equipment.
  • the frequency bands of the cells where the dual cards ultimately reside after completion of the cell switch are maximized.
  • DSDA mode continues to maintain the connection status of dual cards, allowing the normal operation of each card's business, thereby improving user experience.
  • a method of dual-card communication is provided, which is applied to a terminal device. Both the first card and the second card of the terminal device are in a connected state. The method includes: determining a neighbor of the first card. Whether the dual-card dual-pass DSDA mode supported by the terminal device can be formed between the regional frequency band and the adjacent frequency band of the second card; whether it can form Measure the initial candidate frequency band of each card in the first card and the second card in DSDA mode; determine the first candidate frequency band that meets the preset conditions among the initial candidate frequency bands of each card.
  • the conditions include: the quality of the neighboring cells of each card meets the event for cell switching, and one neighboring cell corresponds to one frequency band; according to the first candidate frequency band based on the first card and the first candidate frequency band of the second card At least one DSDA combination of DSDA patterns formed between the candidate frequency bands determines a target DSDA combination.
  • the target DSDA combination includes the target frequency band in the first candidate frequency band of the first card and the first candidate frequency band of the second card.
  • the target frequency band in the card is reported; the measurement report is used to indicate the quality of the target frequency band of the first card and the quality of the target frequency band of the second card.
  • a DSDA mode is formed between the first card and the second card.
  • the initial candidate frequency bands of each card that can form the DSDA mode are measured, and the initial candidate frequency bands of each card are determined to meet the preset conditions ( That is, the first candidate frequency band of the quality requirements) and the target DSDA combination including the target frequency band of each card are determined from the first candidate frequency bands of the first card and the second card, and a measurement report is reported to the network device to facilitate the network device Instructing the terminal device to switch the first card and the second card to the corresponding target frequency band respectively further ensures the quality of the frequency band of the cell where the first card and the second card reside after the cell is switched.
  • the above method not only enables the frequency bands where the first card and the second card reside to continue to form a DSDA mode to maintain the connection state after switching cells, without affecting the normal operation of each card's business, but also allows the first card to The quality of the frequency band where the second card resides is better than the quality of the frequency band where the first card and the second card previously resided, improving the signal quality and overall effectively improving the user experience.
  • the at least one DSDA combination includes a plurality of DSDA combinations; and, the method is based on a DSDA pattern formed between the first candidate frequency band of the first card and the first candidate frequency band of the second card.
  • At least one DSDA combination determine the target DSDA combination, including:
  • the DSDA combination with the highest priority among the at least one DSDA combination is determined as the target DSDA combination.
  • the terminal device uses the DSDA combination with the highest priority as the target DSDA combination, so that the DSDA mode formed between the frequency bands where the first card and the second card reside after cell switching is performed. It is the optimal mode for terminal device settings, which improves the performance of dual-SIM mode and provides a good user experience.
  • the target DSDA combination is the combination with the best dual-SIM mode capability among the multiple DSDA combinations.
  • the terminal device determines the combination with the best dual-card mode capability among multiple DSDA combinations as the target DSDA combination, so that the first card and the second card can be parked after cell switching.
  • the DSDA mode formed between the remaining frequency bands is the dual-SIM mode with the best performance and the best user experience.
  • the method also includes:
  • the neighboring frequency band of the first card and the neighboring frequency band of the second card cannot form the DSDA mode supported by the terminal device, no measurement is performed on the neighboring frequency band of each card.
  • the neighboring frequency band of each card is The area frequency band is not measured, so that the first card and the second card can continue to camp in the current cell without performing cell switching to continue Maintain the dual-card DSDA mode to ensure that the first card and the second card continue to be connected, without affecting the normal operation of the business to a certain extent, to ensure as good a user experience as possible.
  • the terminal equipment does not measure the adjacent frequency band of each card, which can also avoid the waste of power consumption caused by invalid measurements and save power consumption.
  • the method further includes: include:
  • the call service has a higher priority.
  • the priority of data services if the priority is given to whether the frequency band where the first card and the second card reside after switching cells can form a DSDA mode and then the quality requirements are considered, for the card that performs the call service, the quality of the final target frequency band It may not be of the highest quality in all adjacent cell frequency bands, so the performance of the card that performs call services may not be optimal, which will affect the user experience to a certain extent.
  • the priority of the service currently executed by the first card is the same as the priority of the service currently executed by the second card, first determine whether the frequency band where the first card and the second card camp after switching cells can form a DSDA mode.
  • the quality requirements we can avoid the situation where the quality of the frequency band where a certain card resides after switching cells is not very good because the service currently executed by a certain card has a high priority, thus affecting the user experience to a certain extent.
  • the services currently performed by the first card and the second card are both data services.
  • a dual-card communication method is provided, which is applied to a terminal device. Both cards of the terminal device are in a connected state.
  • the method includes: different priorities of services currently executed by the dual cards. In the case of determining the first target frequency band that satisfies the first preset condition in the adjacent frequency band of the first card among the dual cards, the priority of the service currently executed by the first card is higher than that of the second card among the dual cards. The priority of the service currently executed by the second card.
  • the first preset condition includes: the quality of the neighboring cells of the first card meets the event for cell switching, and one neighboring cell corresponds to one frequency band; determine that the second card Among the neighboring frequency bands, the initial candidate frequency band that can form with the first target frequency band the dual-card dual-pass DSDA mode supported by the terminal device; determine the first candidate frequency band among the initial candidate frequency bands of the second card that satisfies the second preset condition.
  • a candidate frequency band, the second preset condition includes: the quality of the neighboring cells of the second card meets the event for cell switching, and one neighboring cell corresponds to one frequency band; reporting a measurement report, the measurement report is used to indicate the The quality of the first target frequency band and the quality of the second target frequency band determined based on the first candidate frequency band.
  • the terminal device when both cards are in a connected state and the priorities of the services currently executed by the two cards are different, the terminal device first starts from the neighboring card of the first card with a higher service priority. Determine the first target frequency band that meets the first preset condition (quality requirement) in the area frequency band to give priority to ensure the quality of the first card with high business priority, and then select the adjacent area frequency band of the second card with low business priority.
  • the network device reports the measurement report so that the network device instructs the terminal device to switch the first card and the second card to the corresponding target frequency band, further ensuring that the frequency band where the two cards reside after switching cells can also form a DSDA mode to continue to maintain Connected state, overall improving user experience.
  • the above method not only ensures the quality of the first card with high service priority, but also enables the frequency band where the two cards reside to continue to form a DSDA mode to maintain the connection state after switching cells, without affecting the business of each card. It works normally.
  • the quality of the frequency bands where the dual SIM cards reside is better than that of the dual SIM cards.
  • the quality of the frequency band in which it currently resides improves the signal quality and overall improves the user experience better.
  • the first candidate frequency band includes multiple frequency bands; and, before reporting the measurement report, the method further includes:
  • the frequency band with the highest priority among the first candidate frequency bands is determined as the second target frequency band.
  • the terminal device determines the frequency band with the highest priority among the first candidate frequency bands as the second target frequency band. After the terminal device performs cell switching on the dual cards, the dual cards can be stationed separately.
  • the DSDA mode formed between the remaining first target frequency band and the second target frequency band is the optimal mode set by the terminal device, which improves the performance of the dual-card mode.
  • the DSDA combination of the DSDA mode formed by the second target frequency band and the first target frequency band is the dual-card capability of each DSDA combination formed by each frequency band in the first candidate frequency band and the first target frequency band. The best combination.
  • the terminal device determines the frequency band included in the first candidate frequency band in the combination with the best dual-card capabilities among the DSDA combinations formed by each frequency band in the first candidate frequency band and the first target frequency band.
  • the second target frequency band the DSDA mode formed between the first target frequency band and the second target frequency band where the two cards respectively reside after the terminal device performs cell switching on the dual cards is the dual card mode with the best performance. The best experience.
  • the service currently performed by the first card is a call service
  • the service currently performed by the second card is a data service
  • the service currently performed by the first card is a call service performed at the foreground
  • the service currently executed by the second card is a call service performed in the background.
  • a third aspect provides a terminal device, which is configured to execute the method provided in the first or second aspect.
  • the terminal device may include a module for executing any possible implementation of the first aspect or the second aspect.
  • a fourth aspect provides a terminal device including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in any of the possible implementations of the first aspect or the second aspect.
  • the terminal device further includes a memory.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • a computer-readable storage medium is provided, with a computer program stored thereon.
  • the computer program When the computer program is executed by a device, it causes the device to implement any one of the possible implementations of the first aspect or the second aspect. Methods.
  • a sixth aspect provides a computer program product containing instructions that, when executed by a computer, cause a device to implement the method in any of the possible implementations of the first aspect or the second aspect.
  • a chip including: an input interface, an output interface, a processor, and a memory.
  • the input interface, the output interface, the processor, and the memory are connected through an internal connection path.
  • the processor uses For executing the code in the memory, when the code is executed, the processor is configured to execute the method in any possible implementation manner of the first aspect or the second aspect.
  • Figure 1 is a schematic structural diagram of a mobile communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of a dual-card communication method provided by an embodiment of the present application.
  • FIG. 4 is another schematic flow chart of the dual-card communication method provided by the embodiment of the present application.
  • FIG. 5 is another schematic flow chart of the dual-card communication method provided by the embodiment of the present application.
  • FIG. 6 is another schematic flow chart of the dual-card communication method provided by the embodiment of the present application.
  • FIG. 7 is another schematic flow chart of the dual-card communication method provided by the embodiment of the present application.
  • Figure 8 is an exemplary block diagram of a terminal device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the technical solution of the embodiment of the present application is applicable to terminal equipment that can communicate with network equipment and supports dual-card communication.
  • Each card can support telephone services and data services (ie, Internet access services).
  • the terminal equipment can be a mobile phone, a smart phone Watches, smart bracelets, tablets, etc., the embodiments of this application do not place any restrictions on the specific types of terminal devices.
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • CDMA code division multiple access Into
  • WCDMA wideband code division multiple access
  • TD-SCDMA time division code division multiple access
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5G NR fifth generation new radio
  • 6G sixth generation (6th generation, 6G) system, etc., among which, 5G NR is referred to as NR.
  • the embodiments of the present application are applicable to a mobile communication system including multiple base stations and at least one terminal device, where the multiple base stations include at least a base station capable of supporting a 5G network and a base station capable of supporting a 4G network.
  • the mobile communication system includes a base station 110, a base station 120 and a terminal device 130.
  • One of the base station 110 and the base station 120 can support a 4G network, and the other can support a 5G network.
  • the terminal device 130 can communicate with the base station. 110 is connected to at least one of the base stations 120.
  • the base station that supports the 4G network will be referred to as the 4G base station
  • the base station that supports the 5G network will be referred to as the 5G base station.
  • both cards reside on the same network (4G network or 5G network). If the terminal device 130 is connected to the base station 110 and the base station 120, then the following three situations may occur.
  • Case 1 The terminal device supports dual connection of the 4G network and the 5G network, and each of the two cards is in a dual connection state, that is, each card is connected to the 4G network and the 5G network at the same time.
  • Case 3 The terminal device supports dual connections of the LTE network and the 5G network. One card resides on the 4G network or 5G network, and the other card is connected to both the 4G network and the 5G network at the same time.
  • the mobile communication system may include multiple base stations 110 and/or multiple base stations 120 .
  • a certain base station for example, base station 110 or base station 120
  • base station 110 or base station 120 is a base station of a shared network
  • the system still allows the dual cards to reside in the network supported by the base station, where the shared network is Networks shared by different operators.
  • card 1 supports operator 1
  • card 2 supports operator 2
  • the mobile communication system includes one base station 110 and two base stations 120.
  • the base station 110 is a 4G base station that shares a 4G network and the base station 120 is a 5G base station that does not share a 5G network
  • one base station 120 supports operator 1 and the other base station 120 supports operator 2.
  • the dual cards reside on the 4G network at the same time, the dual cards reside on the same base station 110 (i.e., 4G base station); if the dual cards reside on the 5G network at the same time, the dual cards reside on different base stations 120 (i.e., , 5G base station), card 1 resides on the base station 120 corresponding to operator 1, and card 2 resides on the base station 120 corresponding to operator 2.
  • the base station 110 is a 5G base station that shares a 5G network and the base station 120 is a 4G base station that does not share a 4G network
  • one base station 120 supports operator 1 and the other base station 120 supports operator 2.
  • the dual cards reside on the 5G network at the same time, the dual cards reside on the same base station 110 (i.e., 5G base station); if the dual cards reside on the 4G network at the same time, the dual cards reside on different base stations 120 (i.e., , 4G base station), card 1 resides on the base station 120 corresponding to operator 1, and card 2 resides on the base station 120 corresponding to operator 2.
  • the mobile communication system includes two base stations 110 and two base stations 120.
  • the base station 110 is a 4G base station of a non-shared 4G network.
  • one base station 110 supports operator 1, and the other base station 110 supports operator 2.
  • the base station 120 is a 5G base station of a non-shared 5G network.
  • One base station 120 supports operator 1, and the other base station 120 supports operator 2. If dual SIM cards are camped on the 4G network at the same time, then the dual SIM cards are camped on different base stations 110 (i.e., 4G base stations). Card 1 is camped on the base station 110 corresponding to operator 1, and card 2 is camped on operator 2.
  • Card 1 resides on the base station 120 corresponding to operator 1
  • card 2 It resides on the base station 120 corresponding to operator 2.
  • the mobile communication system shown in Figure 1 is only a schematic illustration and should not limit the embodiments of the present application.
  • the mobile communication system may also include core network equipment, as well as more base stations and terminal equipment.
  • FIG. 2 shows a schematic structural diagram of the terminal device 200.
  • the terminal device 200 may be the terminal device 130 of FIG. 1 .
  • the terminal device 200 may include a processor 210, an external memory interface 220, an internal memory 221, a universal serial bus (USB) interface 230, a charging management module 240, a power management module 241, a battery 242, an antenna 1, an antenna 2 , mobile communication module 250, wireless communication module 260, audio module 270, speaker 270A, receiver 270B, microphone 270C, headphone interface 270D, sensor module 280, button 290, motor 291, indicator 292, camera 293, display screen 294, and Subscriber identification module (SIM) card interface 295, etc.
  • SIM Subscriber identification module
  • the sensor module 280 may include a pressure sensor 280A, a gyro sensor 280B, an air pressure sensor 280C, a magnetic sensor 280D, an acceleration sensor 280E, a distance sensor 280F, a proximity light sensor 280G, a fingerprint sensor 280H, a temperature sensor 280J, a touch sensor 280K, and ambient light.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the terminal device 200.
  • the terminal device 200 may include more or less components than shown in the figures, or combine some components, or split some components, or arrange different components.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 210 may include one or more processing units.
  • the processor 210 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (DSP), baseband processor, and/or neural-network processor processing unit, NPU), etc.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processor processing unit
  • different processing units can be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the terminal device 200 .
  • the controller can generate operation control signals based on the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • the processor 210 may also be provided with a memory for storing instructions and data.
  • the memory in processor 210 is cache memory. This memory may hold instructions or data that have been recently used or recycled by processor 210 . If the processor 210 needs to use the instructions or data again, it can be called directly from the memory. Repeated access is avoided and the waiting time of the processor 210 is reduced, thus improving the efficiency of the system.
  • processor 210 may include one or more interfaces. Interfaces may include integrated circuit (inter-integrated circuit, I2C) interface, integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, pulse code modulation (pulse code modulation, PCM) interface, universal asynchronous receiver and transmitter (universal asynchronous receiver/transmitter (UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and /or universal serial bus (USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART universal asynchronous receiver and transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (SDA) and a serial clock line (derail clock line, SCL).
  • processor 210 may include multiple sets of I2C buses.
  • the processor 210 can couple the touch sensor 280K, the charger, the flash, the camera 293, etc. respectively through different I2C bus interfaces.
  • the processor 210 can be coupled to the touch sensor 280K through an I2C interface, so that the processor 210 and the touch sensor 280K communicate through the I2C bus interface to implement the touch function of the terminal device 200 .
  • the I2S interface can be used for audio communication.
  • processor 210 may include multiple sets of I2S buses.
  • the processor 210 can be coupled with the audio module 270 through the I2S bus to implement communication between the processor 210 and the audio module 270.
  • the audio module 270 can transmit audio signals to the wireless communication module 260 through the I2S interface to implement the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communications to sample, quantize and encode analog signals.
  • the audio module 270 and the wireless communication module 260 may be coupled through a PCM bus interface.
  • the audio module 270 can also transmit audio signals to the wireless communication module 260 through the PCM interface to implement the function of answering calls through a Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is typically used to connect the processor 210 and the wireless communication module 260 .
  • the processor 210 communicates with the Bluetooth module in the wireless communication module 260 through the UART interface to implement the Bluetooth function.
  • the audio module 270 can transmit audio signals to the wireless communication module 260 through the UART interface to implement the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 210 with peripheral devices such as the display screen 294 and the camera 293 .
  • MIPI interfaces include camera serial interface (CSI), display serial interface (DSI), etc.
  • the processor 210 and the camera 293 communicate through the CSI interface to implement the shooting function of the terminal device 200.
  • the processor 210 and the display screen 294 communicate through the DSI interface to implement the display function of the terminal device 200.
  • the GPIO interface can be configured through software.
  • the GPIO interface can be configured as a control signal or as a data Signal.
  • the GPIO interface can be used to connect the processor 210 with the camera 293, display screen 294, wireless communication module 260, audio module 270, sensor module 280, etc.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 230 is an interface that complies with the USB standard specification, and may be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc.
  • the USB interface 230 can be used to connect a charger to charge the terminal device 200, and can also be used to transmit data between the terminal device 200 and peripheral devices. It can also be used to connect headphones to play audio through them. This interface can also be used to connect other terminal devices, such as AR devices.
  • the interface connection relationships between the modules illustrated in the embodiments of the present application are only schematic illustrations and do not constitute a structural limitation on the terminal device 200 .
  • the terminal device 200 may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
  • the charge management module 240 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the charging management module 240 may receive charging input from the wired charger through the USB interface 230 .
  • the charging management module 240 may receive wireless charging input through the wireless charging coil of the terminal device 200 . While charging the battery 242, the charging management module 240 can also provide power to the terminal device through the power management module 241.
  • the power management module 241 is used to connect the battery 242, the charging management module 240 and the processor 210.
  • the power management module 241 receives input from the battery 242 and/or the charging management module 240 and supplies power to the processor 210, internal memory 221, external memory, display screen 294, camera 293, wireless communication module 260, etc.
  • the power management module 241 can also be used to monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters.
  • the power management module 241 may also be provided in the processor 210 .
  • the power management module 241 and the charging management module 240 may also be provided in the same device.
  • the wireless communication function of the terminal device 200 can be implemented through the antenna 1, the antenna 2, the mobile communication module 250, the wireless communication module 260, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in terminal device 200 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization. For example: Antenna 1 can be reused as a diversity antenna for a wireless LAN. In other embodiments, antennas may be used in conjunction with tuning switches.
  • the mobile communication module 250 can provide wireless communication solutions including 2G/3G/4G/5G applied on the terminal device 200 .
  • the mobile communication module 250 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 250 can receive electromagnetic waves from the antenna 1, perform filtering, amplification and other processing on the received electromagnetic waves, and transmit them to the modem processor for demodulation.
  • the mobile communication module 250 can also amplify the signal modulated by the modem processor and convert it into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 250 may be disposed in the processor 210 .
  • at least part of the functional modules of the mobile communication module 250 and at least part of the modules of the processor 210 may be provided in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low-frequency baseband signal to be sent into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the application processor outputs sound signals through audio devices (not limited to speaker 270A, receiver 270B, etc.), or displays images or videos through display screen 294.
  • the modem processor may It is an independent device.
  • the modem processor may be independent of the processor 210 and may be provided in the same device as the mobile communication module 250 or other functional modules.
  • the wireless communication module 260 can provide applications on the terminal device 200 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) network), Bluetooth (bluetooth, BT), and global navigation satellites.
  • WLAN wireless local area networks
  • System global navigation satellite system, GNSS
  • frequency modulation frequency modulation, FM
  • near field communication technology near field communication, NFC
  • infrared technology infrared, IR
  • the wireless communication module 260 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 260 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 210 .
  • the wireless communication module 260 can also receive the signal to be sent from the processor 210, frequency modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the terminal device 200 is coupled to the mobile communication module 250, and the antenna 2 is coupled to the wireless communication module 260, so that the terminal device 200 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi) -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the terminal device 200 implements the display function through the GPU, the display screen 294, and the application processor.
  • the GPU is an image processing microprocessor and is connected to the display screen 294 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 210 may include one or more GPUs that execute program instructions to generate or alter display information.
  • the display screen 294 is used to display images, videos, etc.
  • Display 294 includes a display panel.
  • the display panel can use a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • AMOLED organic light-emitting diode
  • FLED flexible light-emitting diode
  • Miniled MicroLed, Micro-oLed, quantum dot light emitting diode (QLED), etc.
  • the terminal device 200 may include 1 or N display screens 294, where N is a positive integer greater than 1.
  • the terminal device 200 can implement the shooting function through the ISP, camera 293, video codec, GPU, display screen 294, application processor, etc.
  • the ISP is used to process the data fed back by the camera 293. For example, when taking a photo, the shutter is opened, the light is transmitted to the camera sensor through the lens, the optical signal is converted into an electrical signal, and the camera sensor passes the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye. ISP can also perform algorithm optimization on image noise, brightness, and skin color. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene. In some embodiments, the ISP may be provided in the camera 293.
  • Camera 293 is used to capture still images or video.
  • the object passes through the lens to produce an optical image that is projected onto the photosensitive element.
  • the photosensitive element can be a charge coupled device (CCD) or a complementary metal oxide semiconductor (complementary metal-oxide-semiconductor, CMOS) phototransistor.
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then passes the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other format image signals.
  • the terminal device 200 may include 1 or N cameras 293, where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the terminal device 200 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy.
  • Video codecs are used to compress or decompress digital video.
  • the terminal device 200 may support one or more video codecs. In this way, the terminal device 200 can play or record videos in multiple encoding formats, such as moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • MPEG moving picture experts group
  • MPEG2 MPEG2, MPEG3, MPEG4, etc.
  • NPU is a neural network (NN) computing processor.
  • NN neural network
  • the NPU can realize intelligent cognitive applications of the terminal device 200, such as image recognition, face recognition, speech recognition, text understanding, etc.
  • the external memory interface 220 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the terminal device 200.
  • the external memory card communicates with the processor 210 through the external memory interface 220 to implement the data storage function. Such as saving music, videos, etc. files in external memory card.
  • Internal memory 221 may be used to store computer executable program code, which includes instructions.
  • the processor 210 executes instructions stored in the internal memory 221 to execute various functional applications and data processing of the terminal device 200 .
  • the internal memory 221 may include a program storage area and a data storage area.
  • the stored program area can store an operating system, at least one application program required for a function (such as a sound playback function, an image playback function, etc.).
  • the storage data area may store data created during use of the terminal device 200 (such as audio data, phone book, etc.).
  • the internal memory 221 may include high-speed random access memory, and may also include non-volatile memory, such as at least one disk storage device, flash memory device, universal flash storage (UFS), etc.
  • the terminal device 200 can implement audio functions through the audio module 270, the speaker 270A, the receiver 270B, the microphone 270C, the headphone interface 270D, and the application processor. Such as music playback, recording, etc.
  • the audio module 270 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signals. Audio module 270 may also be used to encode and decode audio signals. In some embodiments, the audio module 270 may be provided in the processor 210 , or some functional modules of the audio module 270 may be provided in the processor 210 .
  • Speaker 270A also called “speaker” is used to convert audio electrical signals into sound signals.
  • the terminal device 200 can listen to music through the speaker 270A, or listen to a hands-free call.
  • Receiver 270B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the terminal device 200 answers a call or a voice message, the voice can be heard by bringing the receiver 270B close to the human ear.
  • Microphone 270C also called “microphone” or “microphone” is used to convert sound signals into electrical signals. When making a call or sending a voice message, the user can speak close to the microphone 270C with the human mouth and input the sound signal to the microphone 270C.
  • the terminal device 200 may be provided with at least one microphone 270C. In other embodiments, the terminal device 200 may be provided with two microphones 270C, which in addition to collecting sound signals, may also implement a noise reduction function. In other embodiments, the terminal device 200 can also be equipped with three, four or more microphones 270C to collect sound signals, reduce noise, and also identify Sound source, realize directional recording function, etc.
  • the headphone interface 270D is used to connect wired headphones.
  • the headphone interface 270D may be a USB interface 230, or may be a 3.5mm open mobile terminal platform (OMTP) standard interface or a Cellular Telecommunications Industry Association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA Cellular Telecommunications Industry Association of the USA
  • the pressure sensor 280A is used to sense pressure signals and can convert the pressure signals into electrical signals.
  • pressure sensor 280A may be disposed on display screen 294.
  • pressure sensors 280A such as resistive pressure sensors, inductive pressure sensors, capacitive pressure sensors, etc.
  • a capacitive pressure sensor may include at least two parallel plates of conductive material.
  • the terminal device 200 determines the intensity of the pressure based on the change in capacitance.
  • the terminal device 200 detects the intensity of the touch operation according to the pressure sensor 280A.
  • the terminal device 200 may also calculate the touched position based on the detection signal of the pressure sensor 280A.
  • touch operations acting on the same touch location but with different touch operation intensities may correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold is applied to the short message application icon, an instruction to view the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold is applied to the short message application icon, an instruction to create a new short message is executed.
  • the gyro sensor 280B may be used to determine the motion posture of the terminal device 200 .
  • the angular velocity of the terminal device 200 about three axes may be determined by the gyro sensor 280B.
  • the gyro sensor 280B can be used for image stabilization. For example, when the shutter is pressed, the gyro sensor 280B detects the angle at which the terminal device 200 shakes, calculates the distance that the lens module needs to compensate based on the angle, and allows the lens to offset the shake of the terminal device 200 through reverse movement to achieve anti-shake.
  • the gyro sensor 280B can also be used for navigation and somatosensory gaming scenarios.
  • Air pressure sensor 280C is used to measure air pressure. In some embodiments, the terminal device 200 calculates the altitude through the air pressure value measured by the air pressure sensor 280C to assist positioning and navigation.
  • Magnetic sensor 280D includes a Hall sensor.
  • the terminal device 200 may use the magnetic sensor 280D to detect the opening and closing of the flip leather case.
  • the terminal device 200 may detect the opening and closing of the flip according to the magnetic sensor 280D. Then, based on the detected opening and closing status of the leather case or the opening and closing status of the flip cover, features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 280E can detect the acceleration of the terminal device 200 in various directions (generally three axes). When the terminal device 200 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of terminal devices and be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the terminal device 200 can measure distance through infrared or laser. In some embodiments, when shooting a scene, the terminal device 200 can use the distance sensor 280F to measure distance to achieve fast focusing.
  • Proximity light sensor 280G may include, for example, a light emitting diode (LED) and a light detector, such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the terminal device 200 emits infrared light through a light emitting diode.
  • the terminal device 200 detects infrared reflected light from nearby objects using photodiodes. When sufficient reflected light is detected, it can be determined that there is an object near the terminal device 200 . When insufficient reflected light is detected, the terminal device 200 may determine that there is no object near the terminal device 200 .
  • the terminal device 200 can use the proximity light sensor 280G to detect when the user holds the terminal device 200 close to the ear for talking, so as to automatically turn off the screen to save power.
  • the proximity light sensor 280G can also be used in holster mode, and pocket mode automatically unlocks and locks the screen.
  • the ambient light sensor 280L is used to sense ambient light brightness.
  • the terminal device 200 can adaptively adjust the brightness of the display screen 294 according to the perceived ambient light brightness.
  • the ambient light sensor 280L can also be used to automatically adjust the white balance when taking pictures. environment
  • the light sensor 280L can also cooperate with the proximity light sensor 280G to detect whether the terminal device 200 is in the pocket to prevent accidental touching.
  • Fingerprint sensor 280H is used to collect fingerprints.
  • the terminal device 200 can use the collected fingerprint characteristics to realize fingerprint unlocking, access application lock, fingerprint photography, fingerprint answering incoming calls, etc.
  • Temperature sensor 280J is used to detect temperature.
  • the terminal device 200 uses the temperature detected by the temperature sensor 280J to execute the temperature processing policy. For example, when the temperature reported by the temperature sensor 280J exceeds a threshold, the terminal device 200 reduces the performance of a processor located near the temperature sensor 280J in order to reduce power consumption and implement thermal protection. In other embodiments, when the temperature is lower than another threshold, the terminal device 200 heats the battery 242 to prevent the low temperature from causing the terminal device 200 to shut down abnormally. In some other embodiments, when the temperature is lower than another threshold, the terminal device 200 performs boosting on the output voltage of the battery 242 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 280K also called “touch panel”.
  • the touch sensor 280K can be disposed on the display screen 294.
  • the touch sensor 280K and the display screen 294 form a touch screen, which is also called a "touch screen”.
  • the touch sensor 280K is used to detect a touch operation on or near the touch sensor 280K.
  • the touch sensor can pass the detected touch operation to the application processor to determine the touch event type.
  • Visual output related to the touch operation may be provided through display screen 294.
  • the touch sensor 280K may also be disposed on the surface of the terminal device 200 in a position different from that of the display screen 294 .
  • Bone conduction sensor 280M can acquire vibration signals.
  • the bone conduction sensor 280M can acquire the vibration signal of the vibrating bone mass of the human body's vocal part.
  • the bone conduction sensor 280M can also contact the human body's pulse and receive blood pressure beating signals.
  • the bone conduction sensor 280M can also be provided in the earphone and combined into a bone conduction earphone.
  • the audio module 270 can analyze the voice signal based on the vibration signal of the vocal vibrating bone obtained by the bone conduction sensor 280M to implement the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beat signal obtained by the bone conduction sensor 280M to implement the heart rate detection function.
  • the buttons 290 include a power button, a volume button, etc.
  • Key 290 may be a mechanical key. It can also be a touch button.
  • the terminal device 200 may receive key input and generate key signal input related to user settings and function control of the terminal device 200 .
  • the motor 291 can generate vibration prompts.
  • the motor 291 can be used for vibration prompts for incoming calls and can also be used for touch vibration feedback.
  • touch operations for different applications can correspond to different vibration feedback effects.
  • Acting on touch operations in different areas of the display screen 294, the motor 291 can also correspond to different vibration feedback effects.
  • Different application scenarios (such as time reminders, receiving information, alarm clocks, games, etc.) can also correspond to different vibration feedback effects.
  • the touch vibration feedback effect can also be customized.
  • the indicator 292 may be an indicator light, which may be used to indicate charging status, power changes, or may be used to indicate messages, missed calls, notifications, etc.
  • the SIM card interface 295 is used to connect a SIM card.
  • the SIM card can be inserted into the SIM card interface 295 or pulled out from the SIM card interface 295 to realize contact and separation from the terminal device 200 .
  • the terminal device 200 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • SIM card interface 295 can support Nano SIM card, Micro SIM card, SIM card, etc. Multiple cards can be inserted into the same SIM card interface 295 at the same time. The types of the plurality of cards may be the same or different.
  • the SIM card interface 295 is also compatible with different types of SIM cards.
  • the SIM card interface 295 is also compatible with external memory cards.
  • the terminal device 200 interacts with the network through the SIM card to implement functions such as calls and data communications.
  • the terminal device 200 adopts eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the terminal device 200 and cannot be separated from the terminal device 200 .
  • a dual-card mode supported by the terminal device can also be understood as the dual-card capability of the terminal device, and the receiving antennas of the dual-card cards are time-shared and multiplexed.
  • the terminal device does not support concurrent dual-card services.
  • the specific manifestations are: (1) When one card performs call services, the other card cannot perform data services (i.e., access the Internet); (2) When one card performs data services , although the other card can receive incoming calls, the incoming calls will interrupt the data service.
  • the call service of the secondary card will make the main card unable to perform data services.
  • the secondary card is required to search the network, measure, track area update (TAU), SMS, MMS, cycle Behaviors such as sexual registration will seize the antenna, making the main card's Internet experience poor.
  • Dual receiver, dual card, dual standby dual receiver-dual simdual dtandby, DR-DSDS
  • Another dual-card mode supported by the terminal device can also be understood as another dual-card capability of the terminal device.
  • the receiving antennas of the dual cards can be diversity multiplexed, that is, one card uses the main set and the other card uses the diversity. Can receive at the same time, but cannot send at the same time.
  • DR-DSDS mode (1) when one card performs call service, the other card has a signal, but cannot respond to paging, and cannot perform TAU; (2) when one card performs data service, the other card performs uplink During transmission, the radio frequency (RF) antenna needs to be preempted, thus affecting the experience of the card performing data services.
  • RF radio frequency
  • Another dual-SIM mode supported by the terminal device can also be understood as another dual-SIM capability of the terminal device.
  • DSDA mode the terminal device supports dual-card business concurrency, that is, two cards can send or receive at the same time. When one card performs call services, the other card can receive incoming calls and perform data services (i.e., surf the Internet).
  • the DSDA mode may further include two modes, a DSDA transmit sharing mode and a DSDA transmit exclusive mode.
  • the DSDA transmission sharing mode the two cards share an antenna and transmit in a time-sharing manner during uplink transmission.
  • the two cards use different antennas during downlink transmission.
  • the performance of the user's Internet access There is a loss of experience.
  • DSDA transmission exclusive mode the two cards use different antennas for uplink transmission and different antennas for downlink transmission. Uplink transmission and downlink transmission are completely independent, and the user's online performance experience is basically without loss. Better performance experience than in DSDA launch exclusive mode.
  • Non-standalone networking non-standalone, NSA
  • independent networking standalone, SA
  • 5G includes two networking methods: NSA and SA.
  • NSA refers to the deployment of 5G networks using existing 4G core network and other facilities. It is a networking method that integrates 4G and 5G.
  • the 5G carrier based on the NSA architecture only carries user data, and control signaling is still transmitted through the 4G network.
  • 5G cannot work alone. It only serves as a supplement to 4G and shares 4G traffic.
  • SA refers to the new 5G network, including new base stations, backhaul links and core networks. While SA has introduced new network elements and interfaces, it will also adopt new technologies such as network virtualization and software-defined networks on a large scale and combine them with 5GNR. At the same time, the technical challenges faced by SA in protocol development, network planning and deployment, and interoperability will be Beyond 3G and 4G systems.
  • the current SA has two networking methods. One networking method uses 5G base stations to connect to the 5G core network. This is the ultimate form of 5G network architecture and can support all 5G applications, but it costs a lot; the other networking method The method is to upgrade the existing 4G base station into an enhanced 4G base station, and connect the enhanced 4G base station to the 5G core network, which costs less.
  • 4G can be used as an alternative description of LTE
  • 5G can be used as an alternative description of NR. Unless otherwise specified, the two can be used as alternative descriptions.
  • DSDA mode As mentioned before, compared to DSDS mode, DSDA mode has a better user experience. However, the current mainstream chips in terminal equipment on the market do not have perfect support for DSDA mode. In many scenarios, terminal equipment is in DSDS mode instead of DSDA mode, thus reducing the user experience. It can be seen that by making the terminal device in the DSDA mode as much as possible, the user experience can be improved.
  • the dual-card mode supported by the terminal device is related to the network and frequency band in which each card is located.
  • some frequency bands of the NR SA network and some frequency bands of the LTE network support the DSDA mode, and some frequency bands of the NR SA network and parts of the NR SA network
  • the frequency band can support DSDA mode, where NR SA represents the 5G network, specifically indicating the 5G network with SA networking mode, referred to as NR SA, and LTE represents the 4G network.
  • DSDA mode includes one or more DSDA combinations, and DSDA combinations include the network type and frequency band of dual cards.
  • the DSDA combination can be expressed in the form of "network 1 frequency band number + network 2 frequency band number".
  • the frequency band of the LTE network can be referred to as the LTE frequency band
  • the frequency band of the NR network can be referred to as the NR frequency band.
  • the LTE frequency band can be represented by the LTE band number, and the LTE band number can be represented by Bx, where x is an integer greater than 0, for example, B1 , similarly, the NR frequency band can be represented by the NR band number, and the NR band number can be represented by nx, where n is an integer greater than 0, for example, n78.
  • a DSDA combination in DSDA mode is NR SA n41+LTE B1, which means that one card resides in the frequency band indicated by n41 in the NR SA network.
  • n41 is the NR band number, indicating an NR frequency band and the other card resides in it.
  • B1 indicates the frequency band.
  • B1 represents the LTE frequency band number, indicating an LTE frequency band.
  • the dual cards can form a DSDA mode, and the terminal device can be in the DSDA mode.
  • the terminal device will, based on instructions from the network device, change the quality of the serving cell where each of the at least one card resides. Neighbors perform measurements to switch to good quality neighbors.
  • both cards of the terminal device When both cards of the terminal device are connected, a DSDA mode is formed between the two cards, and both cards can perform uplink transmission and downlink transmission.
  • DSDA mode When completing the cell switching, if the frequency band of the cell where the two cards ultimately reside cannot be formed DSDA mode can only form DSDS mode, then the uplink transmission of either card in the dual card will inevitably be affected, causing the service of either card to be interrupted. Such cell switching will fail, which will greatly affect the user experience.
  • the embodiments of this application propose that in a scenario where both cards are in a connected state, a DSDA mode is formed between the two cards to improve the cell handover process.
  • the frequency band of the cell where the two cards will eventually reside is determined.
  • the neighboring cells of at least one card are measured to perform cell switching, so that the DSDA mode can be formed between the frequency bands of the cells where the two cards eventually reside. In this way, the two cards can still be in the connected state. , the uplink transmission of any card will not be affected, and the normal operation of the business can be maintained, thereby improving the user experience.
  • the cell (serving cell or neighboring cell) measurement performed during the cell handover process means measuring the frequency point of the cell, and one cell corresponds to one frequency point. Since one frequency point corresponds to one frequency band, cell measurement can also be expressed as measuring the frequency band of the cell. Among them, the frequency point represents the center frequency point, and the frequency band can be obtained based on the frequency point.
  • Figure 3 is a schematic flow chart of a dual-card communication method 300 provided by an embodiment of the present application.
  • This method 300 can be supported by It can be executed by a terminal device holding dual-card communication, or it can be executed by a chip in the terminal device.
  • the embodiments of this application do not impose any limitations. For ease of description, method 300 will be described in detail by taking a terminal device as an example.
  • the embodiment shown in the method 300 is a scenario where dual SIM cards perform cell switching.
  • the DSDA mode is still formed between the frequency bands where the dual SIM cards reside after the cell switching, so as to continue to maintain the connection state, so as to improve the user experience. If the DSDA mode cannot be formed between the frequency bands where the two cards reside after switching cells, the cell switching will not be performed to continue to maintain the current DSDA mode, so that both cards are in a connected state and will not affect the normal operation of each card's business.
  • card 1 is one of the main card and the secondary card
  • card 2 is the other one of the main card and the secondary card. There is no limitation here.
  • the terminal device determines that both card 1 and card 2 are in the connected state.
  • card 1 and card 2 When card 1 and card 2 are both in the connected state, it means that card 1 and card 2 can independently perform uplink transmission and downlink transmission, and only when the DSDA mode is formed between card 1 and card 2 will card 1 and card 2 are both in connected state. Therefore, when card 1 and card 2 are both in the connected state, the DSDA mode must have been formed between card 1 and card 2. Therefore, when the terminal device determines that both card 1 and card 2 are in the connected state, it is equivalent to determining that the DSDA mode is formed between card 1 and card 2.
  • the terminal device receives the measurement control information of each of Card 1 and Card 2 sent by the network device.
  • the measurement control information is used to indicate the neighboring cell frequency point of each card.
  • the neighboring cell frequency point indicates the frequency point of the neighboring cell of the cell where each card currently resides (i.e., the serving cell).
  • the neighboring cell frequency point includes at least one frequency point. , at least one frequency point corresponds to at least one neighboring cell, and one frequency point corresponds to one neighboring cell.
  • measurement control information of card 1 is referred to as measurement control information 1
  • measurement control information of card 2 is referred to as measurement control information 2.
  • Measurement control information 1 is used to indicate the frequency point of the neighboring cell of card 1
  • measurement control information 2 is used to indicate the frequency point of the neighboring cell of card 2.
  • the measurement control information 1 and the measurement control information 2 may be sent by the network device at the same time, or may be sent by the network device successively at different time periods.
  • This embodiment of the present application does not impose any limitation.
  • the network device may send it periodically or based on an event trigger, which is not limited in the embodiments of this application.
  • the event used to trigger the network device to send measurement control information may be an event that the quality of the cell where each card currently resides deteriorates.
  • the above event may Including A2 events, A2 events represent events in which the signal quality of the serving cell is lower than a certain threshold.
  • the above network equipment includes one or more base stations. Measurement control information 1 and measurement control information 2 can be sent by the same base station or different base stations. It mainly depends on whether the network where card 1 and card 2 reside is the same and whether it supports Depends on the same operator.
  • the network device can only include one base station, and measurement control information 1 and measurement control information 2 are provided by the same Sent by the base station.
  • card 1 and card 2 support the same operator, and card 1 and card 2 reside on different networks.
  • the network equipment can include two base stations, one base station supports one network, and different base stations are resident. Cards remaining in the corresponding network send measurement control messages. For example, if card 1 resides on the 5G network and card 2 resides on the 4G network, then the 5G base station sends measurement control information 1 for card 1, and the 4G base station sends measurement control information 2 for card 2.
  • the network equipment may include one or two base stations.
  • the base station is a base station that can share the same network (referred to as a shared network) with different operators.
  • This base station can allow dual SIM cards to be used when the same operator is not supported.
  • the dual cards reside in the network supported by the base station.
  • measurement control information 1 and measurement control information 2 are sent by the same base station.
  • the network device includes two base stations, one base station corresponds to one operator, and measurement control information 1 and measurement control information 2 are respectively sent by the base station that supports the corresponding operator.
  • the terminal device determines whether the DSDA mode supported by the terminal device can be formed between the adjacent frequency band of card 1 and the adjacent frequency band of card 2.
  • the neighbor frequency point includes at least one frequency point
  • the neighbor frequency band includes at least one frequency band corresponding to the at least one frequency point.
  • the terminal device determines the corresponding neighbor frequency band based on the neighbor frequency point of card 1 obtained from measurement control information 1, and determines the corresponding neighbor frequency band based on the neighbor frequency point of card 2 obtained from measurement control information 2.
  • area frequency band and then determines whether a DSDA mode supported by the terminal equipment can be formed between the adjacent area frequency band of card 1 and the adjacent area frequency band of card 2 based on the DSDA mode information of the terminal equipment.
  • the adjacent cell frequency band of card 1 and the adjacent cell frequency band of card 2 can form a DSDA mode supported by the terminal device, it means that card 1 and card 2 have the opportunity to continue to form a DSDA mode after cell switching to continue to maintain the connection status of the dual cards. , then continue to execute S341.
  • the adjacent frequency band of card 1 and the adjacent frequency band of card 2 cannot form a DSDA mode supported by the terminal device, it means that card 1 and card 2 cannot form a DSDA mode after cell switching, and the connection status of the dual cards cannot be guaranteed, making The cell handover fails. Therefore, the neighboring cell frequency bands of Card 1 and Card 2 are not measured or the measurement results are not reported even if they are measured. For details, refer to the relevant description of step S342 below, which will not be described again.
  • DSDA mode information is used to indicate all DSDA combinations supported by the terminal device that can form a DSDA mode.
  • Each DSDA combination includes the network type and frequency band of the dual card.
  • DSDA mode information can be pre-configured in the terminal device.
  • the DSDA combinations supported by the same terminal device are fixed, and the DSDA combinations supported by different terminal devices may be the same or different. The details may be determined based on the model or hardware information of the terminal device.
  • the combinations of dual-card modes supported by a certain terminal device are listed in Table 1.
  • the DSDA mode has 3 DSDA combinations.
  • the DSDA combination formed by NRSAn1+NRSA n1 in the DSDA transmission sharing mode the DSDA combination formed by NRSA n1+NRSA n78 in the DSDA transmission exclusive mode, and the DSDA combination formed by NRSAn1+LTE B41 in the DSDA transmission exclusive mode.
  • the three DSDA combinations in Table 1 can be all DSDA combinations supported by the terminal device indicated by the DSDA mode information.
  • the following is an example of a process in which the terminal device determines whether the adjacent frequency band of card 1 and the adjacent frequency band of card 2 can form a DSDA mode supported by the terminal device.
  • card 1 resides in network 1
  • the neighboring frequency band of card 1 includes three frequency bands of network 1, namely: frequency band 11, frequency band 12, and frequency band 14.
  • Card 2 resides in network 2, and the neighboring frequency band of card 2 Including 2 frequency bands of network 2, namely frequency band 21 and frequency band 22.
  • All DSDA combinations of DSDA modes supported by the terminal equipment indicated by the DSDA mode information of the terminal equipment include 3 DSDA combinations, namely: "Network 1 Frequency Band 11+” DSDA combination 1 formed by "Network 2 frequency band 21", DSDA combination 2 formed by "Network 1 frequency band 12 + Network 2 frequency band 22", and DSDA combination 3 formed by "Network 1 frequency band 14 + Network 2 frequency band 23".
  • frequency band 11 in the neighboring frequency band of card 1 and frequency band 21 in the neighboring frequency band of card 2 can form DSDA combination 1 of DSDA mode
  • frequency band 12 in the neighboring frequency band of card 1 and frequency band 21 in the neighboring frequency band of card 2 Frequency band 22 in the frequency band can form DSDA combination 2 of DSDA mode. Therefore, the adjacent frequency band of card 1 and the adjacent frequency band of card 2 can form DSDA mode, and can form two DSDA combinations of DSDA mode.
  • the terminal device when the DSDA mode cannot be formed between the adjacent frequency band of card 1 and the adjacent frequency band of card 2, the terminal device does not measure the adjacent frequency band of each card, or measures the adjacent frequency band of each card. The measurement results will not be reported after measuring the zone frequency band.
  • the terminal device can perform the following two solutions for the adjacent cell frequency band of the dual SIM card.
  • the terminal device does not measure the adjacent frequency band of card 1 and the adjacent frequency band of card 2. In this way, Card 1 and Card 2 can continue to reside in the current cell without performing cell switching to continue to maintain the dual-card DSDA mode, thereby ensuring that both Card 1 and Card 2 are in the connected state without affecting the normal operation of the business. To ensure a good user experience.
  • the terminal equipment does not measure the adjacent frequency bands of card 1 and card 2, which can also avoid wasting power consumption due to measurement and save power consumption.
  • the terminal device measures the neighboring frequency band of card 1 and the neighboring frequency band of card 2, but does not report the measurement results after the measurement.
  • the network equipment will not initiate a handover request, and the terminal equipment will not perform cell switching.
  • Card 1 and Card 2 can continue to reside in the current cell without performing cell switching to continue Maintain the dual-card DSDA mode to ensure that both card 1 and card 2 are connected, without affecting the normal operation of the business, to ensure a good user experience.
  • the terminal device measures the initial candidate frequency band of each card that can form the DSDA mode.
  • the initial value of each card includes at least one or more frequency bands.
  • the terminal device determines the frequency bands that can form the DSDA mode in the neighboring frequency bands of card 1 and the neighboring frequency band of card 2 as the initial candidate frequency bands of card 1 and the initial candidate frequency band of card 2, respectively.
  • Each frequency band in the initial candidate frequency band is measured to obtain the quality of each frequency band in the initial candidate frequency band for each card, and the measurement results are reported when certain conditions are met.
  • the quality of the frequency band can be represented by at least one of reference signal receiving power (reference signal receiving power, RSRP) and reference signal receiving quality (reference signal receiving quality, RSRQ).
  • reference signal receiving power reference signal receiving power
  • RSRQ reference signal receiving quality
  • the frequency bands in the initial candidate frequency bands of a card are part or all of the frequency bands in the neighboring cells of the card. If all the frequency bands in the neighboring frequency bands of one card can form a DSDA mode with at least one frequency band in the neighboring frequency bands of another card, then the initial candidate frequency band of the one card is all the neighboring frequency bands of the one card. frequency band. If part of the frequency band of one card in the neighboring area can form a DSDA mode with at least one frequency band in the frequency band of another card in the neighboring area, then the initial candidate frequency band of the one card is part of the frequency band in the neighboring area of the card. .
  • One DSDA combination includes the initial candidate frequency band of card 1. A band and one of the initial candidate bands for Card 2.
  • frequency band 11 in the neighboring frequency band of card 1 and the frequency band 21 in the neighboring frequency band of card 2 can form the DSDA combination 1 of the DSDA mode, as well as the frequency band 12 in the neighboring frequency band of card 1 and the neighboring frequency band of card 2
  • the frequency band 22 in can form the DSDA combination 2 of the DSDA mode as an example.
  • band 11 is one of the initial candidate frequency bands for card 1
  • frequency band 21 is one of the initial candidate frequency bands for card 2.
  • frequency band 12 is one of the initial candidate frequency bands for card 1.
  • Another frequency band, frequency band 22 is another frequency band among the initial candidate frequency bands of card 2.
  • the initial candidate frequency band of card 1 includes frequency band 11 and frequency band 12, and the initial candidate frequency band of card 1 is the neighboring frequency band of card 1.
  • the initial candidate frequency bands of Card 2 include frequency band 21 and frequency band 22, and the initial candidate frequency bands of Card 2 are all frequency bands in the neighboring frequency bands of Card 2.
  • the terminal device determines whether there is a first candidate frequency band that satisfies the preset condition among the initial candidate frequency bands of each card.
  • the first candidate frequency band of each card includes at least one or more frequency bands.
  • the terminal device determines whether there is a first candidate frequency band that satisfies the preset condition in the initial candidate frequency bands of each card based on the quality of each frequency band in the initial candidate frequency bands of each card obtained in S341. If there is a first candidate frequency band that satisfies the preset condition in the initial candidate frequency band of each card, S361 is executed. If there is no first candidate frequency band that satisfies the preset condition in the initial candidate frequency band of at least one card, S362 is executed.
  • the frequency bands in the first candidate frequency bands are part or all of the initial candidate frequency bands. If all the frequency bands in the initial candidate frequency band meet the preset conditions, then the frequency band of the first candidate frequency band is all the frequency bands of the initial candidate frequency band; if some of the frequency bands in the initial candidate frequency band meet the preset conditions, then the first candidate frequency band is the initial candidate. part of the frequency band.
  • the preset condition is: the quality of each card's neighboring cells meets the event used for cell switching, and one neighboring cell corresponds to one frequency band.
  • the quality of the neighboring cell may be represented by at least one of RSRP and RSRQ of the frequency band corresponding to the neighboring cell.
  • the event used for cell handover may be any of the following events: A3 event, A4 event, B1 event or B2 event.
  • the A3 event represents an event in which the quality of a neighboring cell in the same system and frequency as the serving cell is higher than the quality of the serving cell.
  • the A4 event indicates an event in which the quality of the neighboring cell in the same system and different frequency as the serving cell is higher than a threshold.
  • the B1 event represents the The serving cell is an event in which the quality of neighboring cells in different systems is higher than a threshold.
  • the B2 event represents an event in which the quality of the neighboring cell in a different system from the serving cell is higher than one threshold and the quality of the serving cell is lower than another threshold.
  • one neighboring cell corresponds to one event
  • the events corresponding to different neighboring cells may be the same or different, depending on the relationship between the serving cell and the neighboring cells. For example, if a neighboring cell is a cell with the same system and frequency as the serving cell, the network device configures the A3 event for the neighboring cell. If a neighboring cell is a cell of the same system and different frequency of the serving cell, the network device configures the A4 event for the neighboring cell.
  • the first candidate frequency band of card 1 includes frequency band 11 and frequency band 12, which are all the frequency bands in the initial candidate frequency bands of card 1. If only frequency band 21 among the initial candidate frequency bands of card 2 satisfies the preset conditions, then the first candidate frequency band of card 2 One candidate frequency band includes frequency band 21, which is part of the initial candidate frequency band of card 1.
  • card 1 and card 2 may not necessarily form a DSDA mode, and this kind of cell handover will fail. Therefore, even if the terminal equipment measures the initial candidate frequency bands of Card 1 and Card 2, it will not report a measurement report, and the network equipment will not instruct cell switching.
  • the terminal device forms a DSDA pattern based on the first candidate frequency band of card 1 and the first candidate frequency band of card 2.
  • At least one DSDA combination determines a target DSDA combination, and the target DSDA combination includes a target frequency band in the first candidate frequency band of card 1 and a target frequency band in the first candidate frequency band of card 2.
  • the terminal device determines based on the first candidate frequency band of card 1 and the first candidate frequency band of card 2. At least one DSDA combination capable of forming a DSDA pattern, and a target DSDA combination is determined from the at least one DSDA combination.
  • the target DSDA combination includes one of the first candidate frequency bands of card 1 (recorded as the target frequency band of card 1) and card 2 One of the first candidate frequency bands (recorded as the target frequency band of card 2).
  • this unique DSDA combination is determined as the target DSDA combination.
  • the target DSDA combination is a certain DSDA combination among the multiple DSDA combinations.
  • the target DSDA combination can be any DSDA combination among the multiple DSDA combinations, or it can be The DSDA combination determined according to the rules is not subject to any restrictions here.
  • the DSDA combination with the highest priority among the multiple DSDA combinations may be determined as the target DSDA combination.
  • the DSDA combination with the highest priority is the dual-SIM mode capability among the multiple DSDA combinations. The best combination.
  • This embodiment is to define the DSDA combination priority from the capability of dual-SIM mode.
  • the capabilities of the dual-card mode from high to low are: DSDA transmitter exclusive > DSDA transmitter shared > DR-DSDS > DSDS.
  • the priority of the DSDA combination from high to low can be: DSDA transmitter exclusive > DSDA transmitter shared > DR -DSDS>DSDS.
  • the DSDA combination with the highest priority is the combination with the best independence of the downlink transmission channels of the dual cards among the multiple DSDA combinations.
  • card 1 has 4 downlink transmission channels on frequency band 11, and card 2 has 4 downlink transmission channels on frequency band 21.
  • DSDA is formed between the two cards.
  • the downlink transmission channels of card 1 and card 2 are still 4, which do not affect each other and have good independence.
  • card 1 has 4 downlink transmission channels on frequency band 11, and card 2 has 4 downlink transmission channels on frequency band 22.
  • DSDA combination however, in this DSDA combination, the downlink transmission channels of each card are changed from 4 to 2, and the downlink transmission channels of each card are affected.
  • the terminal device reports the measurement report of each card to the network device. Measurement reports for each card are used to indicate the quality of each card's target frequency band.
  • the network device can send a switching request to the terminal device based on the measurement report of each card to instruct the terminal device to switch each card to the target frequency band.
  • card 1 resides on the target frequency band of card 1
  • card 2 resides on the target frequency band of card 2.
  • the DSDA mode is formed between the two cards, and card 1 and card 2 can continue to remain connected. In this way, Cell switching was successfully completed, ensuring user experience.
  • the terminal device first determines whether the DSDA mode can be formed between the adjacent frequency bands of the dual SIM cards, so as to give priority to ensuring that the frequency band where the dual SIM cards reside after switching cells can form the DSDA mode. , and then further determine the first candidate frequency band that meets the preset conditions (quality requirements) among the initial candidate frequency bands of the dual cards that can form the DSDA mode, and determine the target frequency band including each card from the first candidate frequency band of each card.
  • the target DSDA combination further ensures the quality of the frequency band where the dual cards reside after switching cells.
  • terminal equipment has two main services, call service and data service (i.e. Internet service).
  • the priority of call service is higher than the priority of data service.
  • the priority of call service in the foreground (referred to as the front desk call service)
  • the priority is higher than the call service in the background (referred to as the background call service).
  • the priorities of the services currently performed by the dual cards are different, for example, one card performs call services and the other card performs data services, if the priority is given to whether the frequency band where the dual cards reside after switching cells can form a DSDA mode, then the quality requirements are considered.
  • the quality of the final target frequency band may not be the highest quality among all neighboring frequency bands. Therefore, the performance of the card that performs call services may not be optimal, which will affect users to a certain extent. experience.
  • the terminal device may first determine whether the priorities of the services currently executed by the two cards are the same. If the priorities of the services currently executed by the two cards are the same, execute S330. and subsequent steps. For example, the services currently performed by the dual cards are all data services.
  • the priorities of the services currently executed by the two cards are different, for example, one card executes the call service and the other card executes the data According to the service, or if one card performs the foreground call service and the other card performs the background call service, the method 400 below is executed. Please refer to the detailed description below.
  • step S310 and step S320 may be interchanged.
  • Figure 4 is a schematic flow chart of a dual-card communication method 400 provided by an embodiment of the present application. Same as method 300, for convenience of description, method 400 will be described in detail by taking a terminal device as an example.
  • card 1 is a card with high business priority
  • card 2 is a card with low business priority
  • terminal equipment has two main services, call service and data service (i.e. Internet access service).
  • call service has a higher priority than the data service
  • foreground call service has a higher priority than the background call service. priority.
  • step S410 the terminal device determines that both cards are in a connected state.
  • the relevant description of step S310 please refer to the relevant description of step S310, which will not be described again.
  • the terminal device receives the measurement control information of each card in the dual cards sent by the network device.
  • the measurement control information of each card is used to indicate the neighboring cell frequency points of each card. For specific description, please refer to the relevant description of step S320, which will not be described again.
  • the terminal device determines that the priorities of the services currently executed by the two cards are different.
  • the service currently executed by one card has a high priority, and the service currently executed by the other card has a low priority.
  • the card with high business priority is recorded as card 1
  • the card with low business priority is recorded as card 2.
  • card 1 currently performs call services
  • card 2 currently performs data services.
  • card 1 is currently performing the foreground call service
  • card 2 is currently performing the background call service.
  • the terminal device determines the target frequency band 1 that satisfies the preset condition 1 in the neighboring frequency band of the card 1 with high service priority.
  • the terminal device measures the neighboring frequency bands corresponding to the neighboring frequency bands of Card 1 based on the measurement control information of Card 1, obtains the quality of each frequency band in the neighboring frequency bands, and determines the card based on the quality of each frequency band.
  • the preset condition 1 is: the quality of the neighboring cells of card 1 meets the event used for cell switching, and one neighboring cell corresponds to one frequency band.
  • the quality of the cell can be represented by at least one of RSRP and RSRQ of the frequency band corresponding to the cell.
  • the target frequency band 1 is a certain frequency band in the neighboring frequency band of the card 1 that satisfies the preset condition 1. It can be any frequency band that satisfies the preset condition 1. This embodiment of the present application does not impose any limitation.
  • the frequency band that satisfies the preset condition 1 includes multiple frequency bands, for example, the frequency band with the best quality among the multiple frequency bands may be determined as the target frequency band 1.
  • the terminal device determines that the adjacent frequency band of card 2 with low service priority can form an initial candidate frequency band with the target frequency band 1 of card 1 in the DSDA mode supported by the terminal device.
  • the initial candidate frequency bands of card 2 include one or more frequency bands.
  • the initial candidate frequency bands of the card 2 are part or all of the frequency bands of the neighboring cells of the card 2 . If all the frequency bands in the neighboring frequency bands of card 2 can form a DSDA mode with the target frequency band 1 of card 1, then the initial candidate frequency bands of card 2 are all the frequency bands in the neighboring frequency bands of card 2. If part of the frequency band of card 2 can form a DSDA mode with the target frequency band 1 of card 1, then the initial candidate frequency band of card 2 is part of the frequency band of card 2.
  • the terminal device measures the initial candidate frequency bands of Card 2 to obtain the quality of each frequency band in the initial candidate frequency bands of Card 2.
  • the quality of the frequency band please refer to the relevant description above and will not be repeated again.
  • the terminal device determines whether there is a first candidate frequency band that satisfies preset condition 2 among the initial candidate frequency bands of card 2.
  • the first candidate frequency band includes one or more frequency bands.
  • the terminal device determines whether there is a first candidate frequency band that satisfies preset condition 2 in the initial candidate frequency bands of card 2 based on the quality of each frequency band in the initial candidate frequency bands of card 2 obtained in S460. If it is determined that there is a first candidate frequency band that satisfies the preset condition 2 in the initial candidate frequency band of card 2, then execute S481; if it is determined that there is not a first candidate frequency band that satisfies the preset condition 2 in the initial candidate frequency band of card 2, then execute S482. .
  • the preset condition 2 is: the quality of the neighboring cells of the card 2 meets the event used for cell switching, and one neighboring cell corresponds to one frequency band.
  • the quality of the cell is represented by at least one of RSRP and RSRQ of the frequency band corresponding to the cell.
  • the frequency bands in the first candidate frequency bands are part or all of the initial candidate frequency bands. If all the frequency bands in the initial candidate frequency band meet the preset conditions, then the frequency band of the first candidate frequency band is all the frequency bands of the initial candidate frequency band; if some of the frequency bands in the initial candidate frequency band meet the preset conditions, then the first candidate frequency band is the initial candidate. part of the frequency band.
  • the terminal device determines the target frequency band 2 from the first candidate frequency band of the card 2.
  • this unique frequency band is determined as target frequency band 2.
  • the target frequency band 2 can be any one of the multiple frequency bands, or it can be based on A certain frequency band determined by the rules, there are no restrictions here.
  • the terminal device determines the frequency band with the highest priority among the first candidate frequency bands as the target frequency band 2.
  • the frequency band with the highest priority is the frequency band with the best dual-card mode capability in the DSDA mode formed by the first candidate frequency band of card 2 and the target frequency band 1 of card 1. That is to say, among the DSDA modes formed by the first candidate frequency band and the target frequency band 1, the frequency band with the best dual-SIM mode capability is the target frequency band 2.
  • the priority of the frequency band in the first candidate frequency band is defined based on the capability of dual-SIM mode.
  • the capabilities of dual-SIM mode from high to low are: DSDA transmitter exclusive > DSDA transmitter shared > DR-DSDS > DS.
  • the frequency band with the highest priority is the frequency band with the best quality among the first candidate frequency bands of card 2 . That is to say, the frequency band with the best quality among the first candidate frequency bands is target frequency band 2.
  • the quality of the frequency band can be characterized by at least one of an RSRP value and an RSRQ value.
  • This embodiment defines the priority of the frequency bands in the first candidate frequency band based on the quality of the frequency bands. The better the quality of a certain frequency band in the first candidate frequency band, the higher the priority of the certain frequency band. On the contrary, the worse the quality of a certain frequency band in the first candidate frequency band, the lower the priority of the certain frequency band.
  • the priority of the frequency bands in the first candidate frequency band defined above can be used alone or in combination.
  • the capability of the dual-SIM mode is combined with the quality of the frequency band, and the priority of the frequency band is first considered based on the capability of the dual-SIM mode, and then the priority of the frequency band is considered based on the quality of the frequency band. priority.
  • the target frequency band 2 can be further determined based on the quality of the frequency bands.
  • the terminal device reports the measurement report of target frequency band 1 and the measurement report of target frequency band 2.
  • the network device instructs the terminal device to switch each card to the target frequency band based on the measurement report of each card's target frequency band.
  • card 1 resides on target frequency band 1
  • card 2 resides on On target frequency band 2
  • the DSDA mode is formed between the two cards, and card 1 and card 2 can continue to remain connected. In this way, the cell handover is successfully completed and the user experience is guaranteed.
  • the terminal device determines the target frequency band 2 from the initial candidate frequency bands of the card 2.
  • target frequency band 2 will still be determined from the initial candidate frequency band and reported to the network device.
  • this unique frequency band is determined as target frequency band 2.
  • the initial candidate frequency band of card 2 includes multiple frequency bands, then one of the multiple frequency bands is determined as the target frequency band 2.
  • the target frequency band 2 can be any one of the multiple frequency bands, or it can be according to the rules. A determined frequency band, without any limitation here.
  • the terminal device determines the frequency band with the highest priority among the initial candidate frequency bands as the target frequency band 2.
  • the frequency band with the highest priority is the frequency band with the best dual-card mode capability in the DSDA mode formed by the initial candidate frequency band of card 2 and the target frequency band 1 of card 1. That is to say, among the initial candidate frequency bands and the DSDA mode formed by the target frequency band 1, the frequency band with the best dual-card mode capability is the target frequency band 2.
  • the priority of the frequency band in the initial candidate frequency band is defined from the capability of dual-SIM mode.
  • the priority of the frequency band in the first candidate frequency band is defined from the capability of dual-SIM mode.
  • the above will be The first candidate frequency band in this article can be replaced with the initial candidate frequency band here, and no further details will be given.
  • the frequency band with the highest priority is the frequency band with the best quality among the initial candidate frequency bands of card 2 .
  • the frequency band with the best quality among the initial candidate frequency bands is target frequency band 2.
  • the quality of the frequency band can be characterized by at least one of an RSRP value and an RSRQ value.
  • the priority of the frequency band in the initial candidate frequency band is defined based on the quality of the frequency band.
  • the priority of the frequency band in the first candidate frequency band is defined based on the quality of the frequency band.
  • the above first The candidate frequency band can be replaced with the initial candidate frequency band here, and no further details will be given.
  • the priority of the frequency band in the initial candidate frequency band defined above can be used alone or in combination.
  • the candidate frequency band can be replaced with the initial candidate frequency band here, and no further details will be given.
  • the terminal device reports the measurement report of target frequency band 1 and the measurement report of target frequency band 2.
  • step S491 For specific description, please refer to the relevant description of step S491, which will not be described again.
  • the terminal device first determines from the neighboring frequency band of card 1 with a higher business priority that satisfies the preset conditions.
  • Target frequency band 1 of 1 to ensure the signal quality of card 1 with high business priority first, and then use the neighboring frequency band of card 2 with low business priority.
  • the terminal device may only report the measurement report of target frequency band 1 and not report the measurement report of any frequency band of card 2. measurement report.
  • the network device can instruct the terminal device to switch card 1 to the cell corresponding to the good-quality target frequency band 1, and card 2 continues to camp in the current cell, although the frequency band card 1 will camp in after the cell switch is different from that of card 2
  • the frequency band of the current resident cell may not necessarily be able to form a DSDA mode, but it can give priority to ensuring the quality requirements of the service currently performed by card 1.
  • Figure 5 is a schematic flow chart of a dual-card communication method 500 provided by an embodiment of the present application. Same as method 300, for convenience of description, method 500 will be described in detail by taking the terminal device as an example.
  • method 500 describes a scenario where one of the dual cards needs to perform cell switching.
  • card 1 is one of the main card and the secondary card
  • card 2 is the other one of the main card and the secondary card.
  • step S510 the terminal device determines that both cards are connected. For specific description, please refer to the relevant description of step S310, which will not be described again.
  • the terminal device receives the measurement control information of card 1 sent by the network device.
  • the measurement control information is used to indicate the neighboring cell frequency points of card 1.
  • the measurement control information please refer to the relevant description of S320, which will not be described again.
  • the terminal device determines that the frequency band of the neighboring cell of card 1 can form an initial candidate frequency band of the DSDA mode supported by the terminal device with the frequency band where card 2 currently resides.
  • the initial candidate frequency band includes one or more frequency bands.
  • the terminal device determines the corresponding neighboring frequency band based on the neighboring frequency points of card 1 determined from the measurement control information of card 1, and further determines the frequency band in the neighboring frequency band of card 1 that can match the frequency band where card 2 currently resides. Form the initial candidate frequency band for the DSDA mode supported by the terminal device.
  • the initial candidate frequency bands of Card 1 are part or all of the frequency bands in neighboring cells of Card 1 . If all the frequency bands in the neighboring frequency bands of card 1 can form a DSDA mode with the frequency band where card 2 currently resides, then the initial candidate frequency bands of card 1 are all the frequency bands in the neighboring frequency bands of card 1. If part of the frequency band of card 1 can form a DSDA mode with the frequency band where card 2 currently resides, then the initial candidate frequency band of card 1 is part of the frequency band of card 1.
  • the terminal device determines the first candidate frequency band that satisfies the preset condition from the initial candidate frequency bands.
  • the initial candidate frequency band includes one or more frequency bands.
  • the terminal device measures the initial candidate frequency bands of card 1 to obtain the quality of each frequency band in the initial candidate frequency bands of card 1, thereby determining the first candidate frequency band that meets the preset conditions.
  • the frequency bands in the first candidate frequency band are part or all of the initial candidate frequency bands of the card 1 . If all the frequency bands in the initial candidate frequency band meet the preset conditions, then the frequency band of the first candidate frequency band is all the frequency bands of the initial candidate frequency band; if some of the frequency bands in the initial candidate frequency band meet the preset conditions, then the first candidate frequency band is the initial candidate. part of the frequency band sub-band.
  • the preset condition is: the quality of the neighboring cells of card 1 meets the event used for cell switching, and one neighboring cell corresponds to one frequency band.
  • the quality of the neighboring cell may be represented by at least one of RSRP and RSRQ of the frequency band corresponding to the neighboring cell.
  • the terminal device determines the target frequency band from the first candidate frequency band.
  • this unique frequency band is determined as the target frequency band.
  • the target frequency band can be any one of the multiple frequency bands, or it can be a certain frequency band determined according to the rules. Frequency band, there is no limitation here.
  • the terminal device determines the frequency band with the highest priority among the first candidate frequency bands as the target frequency band.
  • the frequency band with the highest priority is the frequency band with the best dual-card mode capability in the DSDA mode formed with the frequency band where card 2 currently resides in the first candidate frequency band. That is to say, the frequency band with the best dual-card mode capability among the DSDA modes formed by the frequency band where card 2 currently resides in the first candidate frequency band is the target frequency band.
  • the frequency band with the highest priority is the frequency band with the best quality among the first candidate frequency bands. That is to say, the frequency band with the best quality among the first candidate frequency bands is the target frequency band.
  • the priority of the frequency bands in the above-mentioned first candidate frequency band can be used alone or in combination.
  • the terminal device reports a measurement report of the target frequency band, and the measurement report is used to indicate the quality of the target frequency band.
  • the network equipment instructs the terminal device to switch card 1 to the target frequency band based on the measurement report of the target frequency band.
  • card 1 resides on the target frequency band 1
  • card 2 still resides on the current frequency band.
  • the DSDA mode is formed between the dual cards, and card 1 and card 2 can continue to remain connected. In this way, the cell switching is successfully completed and the user experience is guaranteed.
  • the terminal device first determines whether the frequency band of the neighboring cell of card 1 that needs to perform neighbor cell measurement and the frequency band currently camped by card 2 can form a DSDA mode, so as to give priority to ensuring that the frequency band camped by card 1 after switching cells can be
  • the frequency band currently occupied by card 2 still forms the DSDA mode, and then the first candidate frequency band that meets the preset conditions (quality requirements) is further determined among the initial candidate frequency bands of card 1 that can form the DSDA mode, and is determined from the first candidate frequency band
  • the target frequency band further ensures the quality of the frequency band where card 1 resides after switching cells.
  • Figure 6 is a schematic flow chart of a dual-card communication method 600 provided by an embodiment of the present application.
  • the method 600 can be executed by a terminal device that supports dual-SIM communication or by a chip in the terminal device.
  • the embodiments of this application do not impose any limitations.
  • method 600 is described in detail by taking a terminal device as an example.
  • the embodiment shown in method 600 is a scenario where two cards perform cell switching.
  • the frequency bands where the two cards reside can still form a DSDA mode after the cell switching, so as to continue to maintain the connection state without affecting the business of each card. Proceed normally to improve user experience.
  • both the first card and the second card of the terminal device are in the connected state.
  • the first card can be one of the main card and the secondary card
  • the second card can be the other of the main card and the secondary card.
  • the method 600 may be analogous to the method 300
  • the first card may be analogous to the card 1 in the method 300
  • the second card may be analogous to the card 2 in the method 300 .
  • the first card and the second card When the first card and the second card are both in the connected state, it means that the first card and the second card can independently perform uplink transmission and downlink transmission, and only when the DSDA mode is formed between the first card and the second card Only then will the first card and the second card be in the connected state. Therefore, when the first card and the second card are both in the connected state, the DSDA mode must have been formed between the first card and the second card, that is, the terminal device is in the DSDA mode. Therefore, when both the first card and the second card are in the connected state, it is equivalent to forming a DSDA mode between the first card and the second card.
  • the terminal device determines whether the dual-card dual-pass DSDA mode supported by the terminal device can be formed between the adjacent frequency band of the first card and the adjacent frequency band of the second card.
  • the adjacent cell frequency band of the first card includes at least one frequency band
  • the adjacent cell frequency band of the second card includes at least one frequency band.
  • the terminal device may determine the neighbor frequency point of the first card based on the measurement control information of the first card sent by the network device, and determine the neighbor frequency point of the second card based on the measurement control information of the second card sent by the network device.
  • the neighboring cell frequency point represents the frequency point of the neighboring cell of the cell where each card currently resides (i.e., the serving cell).
  • the neighboring cell frequency point includes at least one frequency point, and at least one frequency point corresponds to at least one neighboring cell. , one frequency point corresponds to one neighboring cell. Therefore, the neighboring cell frequency band of the first card can be determined according to the neighboring cell frequency point of the first card, and the neighboring cell frequency band of the second card can be determined according to the neighboring cell frequency point of the second card.
  • the DSDA mode information of the terminal device determines whether the DSDA mode supported by the terminal device can be formed between the adjacent frequency band of the first card and the adjacent frequency band of the second card.
  • DSDA mode information is used to indicate all DSDA combinations supported by the terminal device that can form a DSDA mode.
  • Each DSDA combination includes the network type and frequency band of the dual card.
  • DSDA mode information can be pre-configured in the terminal device.
  • the DSDA combinations supported by the same terminal device are fixed, and the DSDA combinations supported by different terminal devices may be the same or different.
  • the details may be determined based on the model or hardware information of the terminal device. For specific description, please refer to the relevant description above and will not be described again.
  • the above-mentioned network equipment includes one or more base stations.
  • the measurement control information of the first card and the measurement control information of the second card may be sent by the same base station or by different base stations, depending on the location of the first card and the second card. It depends on whether the remaining networks are the same and whether they support the same operator. For specific descriptions, please refer to the relevant description of S320 above. Just replace the above card 1 and card 2 with the first card and the second card respectively. No longer.
  • the terminal device measures the initial candidate frequency band of each of the first card and the second card that can form the DSDA mode.
  • the neighboring frequency band of the first card and the neighboring frequency band of the second card can form a DSDA mode supported by the terminal equipment, it means that the first card and the second card have the opportunity to continue to form a DSDA mode after cell switching to continue to maintain dual
  • the connection status of the card can successfully realize cell switching. Therefore, in this step, when the DSDA mode can be formed between the adjacent cell frequency band of the first card and the adjacent cell frequency band of the second card, the adjacent cell frequency band of the first card and the adjacent cell frequency band of the second card are The frequency bands that can form the DSDA mode are determined as the initial candidate frequency band of the first card and the initial candidate frequency band of the second card. Each frequency band in the initial candidate frequency band of each card is measured to obtain the initial candidate frequency band of each card. The quality of each frequency band in the system is used to report measurement results when certain conditions are met.
  • One or more DSDA combinations of the DSDA mode can be formed.
  • One DSDA combination includes one of the initial candidate frequency bands of the first card. bands and one of the initial candidate bands for the second card.
  • the frequency bands in each card's initial candidate frequency bands are some or all of the frequency bands in each card's neighbor frequency bands. If all the frequency bands in the neighboring frequency bands of one card can form a DSDA mode with at least one frequency band in the neighboring frequency bands of another card, then the initial candidate frequency band of the one card is all the frequency bands in the neighboring frequency bands of the one card. . If part of the frequency band of one card in the neighboring area can form a DSDA mode with at least one frequency band in the frequency band of another card in the neighboring area, then the initial candidate frequency band of the one card is part of the frequency band in the neighboring area of the card. .
  • the quality of the frequency band may be represented by at least one of RSRP and RSRQ.
  • the quality of the above frequency band can also be understood as the quality of the cell corresponding to the frequency band, and the two can be described interchangeably.
  • the neighboring frequency bands of the first card include three frequency bands of network 1, namely: frequency band 11, frequency band 12, and frequency band 14.
  • the second card resides in network 2.
  • the neighbor band includes two frequency bands of network 2, namely frequency band 21 and frequency band 22.
  • All DSDA combinations of the DSDA mode supported by the terminal equipment indicated by the DSDA mode information of the terminal equipment include 3 DSDA combinations, respectively: DSDA combination 1 formed by "1 frequency band 11 + network 2 frequency band 21", and DSDA combination 2 formed by "network 1 frequency band 12 + network 2 frequency band 22", DSDA combination 2 formed by "network 1 frequency band 14 + network 2 frequency band 23" Combination 3.
  • the frequency band 11 in the adjacent frequency band of the first card and the frequency band 21 in the adjacent frequency band of the second card can form DSDA combination 1
  • the frequency band 12 in the adjacent frequency band of the first card and the adjacent frequency band of the second card can form DSDA combination 1.
  • Frequency band 22 in the zone frequency band can form DSDA combination 2. Therefore, the adjacent zone frequency band of the first card and the adjacent zone frequency band of the second card can form a DSDA mode, and can form two DSDA combinations of the DSDA mode.
  • band 11 is one of the initial candidate frequency bands for the first card
  • frequency band 21 is one of the initial candidate frequency bands for the second card.
  • frequency band 12 is the initial candidate for the first card.
  • frequency band 22 is another frequency band among the initial candidate frequency bands of the second card. Therefore, the initial candidate frequency band of the first card includes frequency band 11 and frequency band 12, and the initial candidate frequency band of the first card is the For some frequency bands in the neighboring frequency band of one card, the initial candidate frequency band of the second card includes frequency band 21 and frequency band 22, and the initial candidate frequency band of the second card is all the frequency bands in the neighboring frequency band of the second card.
  • the terminal device determines the first candidate frequency band among the initial candidate frequency bands of each card that satisfies preset conditions.
  • the preset conditions include: the quality of the neighboring cells of each card satisfies the event for cell handover, and a neighbor Zone corresponds to a frequency band.
  • the first candidate frequency band includes at least one frequency band.
  • the terminal device determines the first candidate frequency band among the initial candidate frequency bands of each card that satisfies the preset conditions based on the quality of each frequency band in the initial candidate frequency bands of each card obtained in S620 and according to the preset conditions. .
  • the quality of the neighboring cell can be represented by at least one of RSRP and RSRQ of the frequency band corresponding to the neighboring cell.
  • the event used for cell switching may be any of the following events: A3 event, A4 event, B1 event or B2 event. For specific description of each event, please refer to the relevant description above and will not be described again.
  • the frequency bands in the first candidate frequency bands are part or all of the initial candidate frequency bands. If all the frequency bands in the initial candidate frequency band meet the preset conditions, then the frequency band of the first candidate frequency band is all the frequency bands of the initial candidate frequency band; if some of the frequency bands in the initial candidate frequency band meet the preset conditions, then the first candidate frequency band is the initial candidate. part of the frequency band.
  • the terminal device determines a target DSDA combination based on at least one DSDA combination based on a DSDA pattern formed between the first candidate frequency band of the first card and the first candidate frequency band of the second card, and the target DSDA combination includes the first The target frequency band in the first candidate frequency band of the card and the target frequency band in the first candidate frequency band of the second card.
  • the terminal device determines at least one DSDA combination that can form a DSDA mode based on the first candidate frequency band of the first card and the first candidate frequency band of the second card, and determines the target DSDA combination from the at least one DSDA combination.
  • one DSDA combination includes one of the first candidate frequency bands of the first card and one of the first candidate frequency bands of the second card.
  • one of the first candidate frequency bands of the first card included in the target DSDA combination is recorded as the target frequency band of the first card
  • one of the first candidate frequency bands of the second card included in the target DSDA combination is recorded as the target frequency band of the first card.
  • One frequency band is recorded as the target frequency band of the second card.
  • this unique DSDA combination is determined as the target DSDA combination.
  • the target DSDA combination is a certain DSDA combination among the multiple DSDA combinations.
  • the target DSDA combination can be any DSDA combination among the multiple DSDA combinations, or it can be The DSDA combination determined according to the rules is not subject to any restrictions here.
  • the at least one DSDA combination includes a plurality of DSDA combinations; and, the at least one DSDA pattern based on a first candidate frequency band of the first card and a first candidate frequency band of the second card.
  • determining the target DSDA combination includes: determining the DSDA combination with the highest priority among the at least one DSDA combination as the target DSDA combination.
  • the terminal equipment can make the DSDA mode formed between the frequency bands where the first card and the second card reside after cell switching be the optimal mode set by the terminal equipment. Improved performance in dual-SIM mode.
  • the target DSDA combination is the combination with the best dual-SIM mode capability among the multiple DSDA combinations.
  • the priority of the DSDA combination is defined based on the capability of dual-card mode.
  • the relevant description in S361 above please refer to the relevant description in S361 above.
  • the above card 1 and card 2 are respectively replaced with the first card and the second card here. Just click it, no need to go into details.
  • the terminal device By determining the combination with the best dual-card mode capabilities among multiple DSDA combinations as the target DSDA combination, after the terminal device performs cell switching on the first card and the second card according to the target DSDA combination, it can make the first card after the cell switching.
  • the DSDA mode formed between the card and the frequency band where the second card resides is the dual-card mode with the best performance and the best user experience.
  • the target DSDA combination is the combination with the best independence of the downlink transmission channels of the dual cards among the multiple DSDA combinations.
  • the terminal device By determining the combination with the highest independence of the downlink transmission channels of the dual cards among multiple DSDA combinations as the target DSDA combination, after the terminal device performs cell switching on the first card and the second card according to the target DSDA combination, the first card and the second card
  • the frequency band where the two cards reside can not only form a DSDA mode, but also minimize the reduction of the downlink transmission channels of each card and improve transmission efficiency.
  • the terminal device reports a measurement report, which is used to indicate the quality of the target frequency band of the first card and the quality of the target frequency band of the second card.
  • the network device may send a switching request to the terminal device based on the measurement report to instruct the terminal device to switch each card to the corresponding target frequency band.
  • the first card resides on the target frequency band of the first card
  • the second card resides on the target frequency band of the second card.
  • the two cards form a DSDA mode to continue to maintain the connection state. In this way, the Cell switching was successfully completed, ensuring user experience.
  • the measurement report may include a first measurement report for the first card and a second measurement report for the second card, the first measurement report is used to indicate the quality of the target frequency band of the first card, and the second measurement report is used to Indicates the quality of the second card's target band.
  • the terminal device can report the first measurement report and the second measurement report to the network device respectively.
  • a DSDA mode is formed between the first card and the second card.
  • the initial candidate frequency bands of each card that can form the DSDA mode are measured, and the initial candidate frequency bands of each card are determined to meet the preset conditions ( That is, the first candidate frequency band of the quality requirements) and the target DSDA combination including the target frequency band of each card are determined from the first candidate frequency bands of the first card and the second card, and a measurement report is reported to the network device to facilitate the network device Instructing the terminal device to switch the first card and the second card to the corresponding target frequency band respectively further ensures the quality of the frequency band of the cell where the first card and the second card reside after the cell is switched.
  • the above method not only enables the frequency bands where the first card and the second card reside to continue to form a DSDA mode to maintain the connection state after switching cells, without affecting the normal operation of each card's business, but also allows the first card to The quality of the frequency band where the second card resides is better than the quality of the frequency band where the first card and the second card previously resided, improving signal quality and overall improving user experience.
  • the method 600 before determining whether the dual-SIM dual-pass DSDA mode supported by the terminal device can be formed between the adjacent frequency band of the first card and the adjacent frequency band of the second card, the method 600 further includes:
  • the terminal device determines that the priority of the service currently executed by the first card is the same as the priority of the service currently executed by the second card.
  • the services currently performed by the first card and the second card are both data services.
  • the priorities of the services currently executed by the first card and the second card are different, for example, one card executes the call service and the other card executes the data service, the priority of the call service is higher than the priority of the data service. If the first card is given priority, Whether the frequency band where the card and the second card reside after switching cells can form a DSDA mode will then consider the quality requirements. For cards that perform call services, the quality of the final target frequency band may not be the highest among all neighboring cell frequency bands. , Therefore, the performance of the card that performs call services may not be optimal, which will affect the user experience to a certain extent.
  • the priority of the service currently executed by the first card is the same as the priority of the service currently executed by the second card, first determine whether the frequency band where the first card and the second card camp after switching cells can form a DSDA mode.
  • the quality requirements we can avoid the situation where the quality of the frequency band where a certain card resides after switching cells is not very good because the service currently executed by a certain card has a high priority, thus affecting the user experience to a certain extent.
  • method 600 also includes:
  • the terminal device does not measure the neighboring frequency band of each card.
  • the terminal equipment does not measure the neighboring frequency bands of each card.
  • the DSDA mode of the card can ensure that the first card and the second card continue to be connected, without affecting the normal operation of the business to a certain extent, so as to ensure a good user experience as much as possible.
  • the terminal equipment does not measure the adjacent frequency band of each card, which can also avoid the waste of power consumption caused by invalid measurements and save power consumption.
  • the terminal device when the adjacent cell frequency band of the first card and the adjacent cell frequency band of the second card cannot form a DSDA mode supported by the terminal device, the terminal device conducts the adjacent cell frequency band of each card. Measure, but do not submit a measurement report.
  • the network equipment will not initiate a handover request, and the terminal equipment will not perform cell switching.
  • the first card and the second card can continue to reside in the current cell without performing cell switching.
  • the dual-card DSDA mode can be maintained to ensure that the first card and the second card continue to be connected, without affecting the normal operation of the business to a certain extent, ensuring a good user experience.
  • Figure 7 is a schematic flow chart of a dual-card communication method 700 provided by an embodiment of the present application.
  • the method 600 can be executed by a terminal device that supports dual-SIM communication or by a chip in the terminal device.
  • the embodiments of this application do not impose any limitations.
  • method 700 will be described in detail by taking a terminal device as an example.
  • Both cards in method 700 are in the connected state.
  • the difference from method 600 is that the priorities of the services currently executed by the two cards are different.
  • the first card is the card with high business priority
  • the second card is the card with low business priority.
  • the neighboring frequency band of the second card with high business priority can be matched with the first target.
  • the frequency band forms the second target frequency band of the DSDA mode to give priority to ensuring the quality of the frequency band where the first card with higher business priority resides after switching cells. It also ensures that the frequency bands where the dual cards reside after switching cells form the DSDA mode to continue to maintain the connection. status, without affecting the normal operation of each card's business, to better improve user experience.
  • the method 700 may be analogous to the method 400
  • the first card may be analogous to the card 1 in the method 400
  • the second card may be analogous to the card 2 of the method 400 .
  • the terminal device determines the first target frequency band that satisfies the first preset condition in the adjacent frequency band of the first card among the dual cards.
  • the first card is currently
  • the priority of the service executed is higher than the priority of the service currently executed by the second card in the dual card.
  • the first preset condition includes: the quality of the neighboring cell of the first card meets the event for cell handover. Zone corresponds to a frequency band.
  • the terminal device will determine whether the priorities of the services currently executed by the two cards are the same. If the priorities of the services currently executed by the two cards are different, determine the neighbor of the first card with the highest service priority among the two cards. The first target frequency band in the frequency band that meets the first preset condition is selected to find the frequency band with good quality.
  • the frequency band with the best quality among the multiple frequency bands may be determined as the first target frequency band.
  • the quality of the neighboring cell can be represented by at least one of RSRP and RSRQ of the frequency band corresponding to the neighboring cell.
  • the event used for cell switching may be any of the following events: A3 event, A4 event, B1 event or B2 event. For specific description of each event, please refer to the relevant description above and will not be described again.
  • the service currently performed by the first card is a call service
  • the service currently performed by the second card is a data service
  • the service currently performed by the first card is a call service performed in the foreground
  • the service currently performed by the second card is a call service performed in the background
  • the terminal device determines that the neighboring frequency band of the second card can form the terminal with the first target frequency band.
  • the initial candidate frequency band of the second card includes one or more frequency bands.
  • the terminal device determines the first candidate frequency band among the initial candidate frequency bands of the second card that satisfies the second preset condition.
  • the second preset condition includes: the quality of the neighboring cell of the second card satisfies the requirement for cell switching. events, one neighbor cell corresponds to one frequency band.
  • the first candidate frequency band of the second card includes one or more frequency bands.
  • the quality of the neighboring cell can be represented by at least one of RSRP and RSRQ of the frequency band corresponding to the neighboring cell.
  • the event used for cell switching may be any of the following events: A3 event, A4 event, B1 event or B2 event. For specific description of each event, please refer to the relevant description above and will not be described again.
  • the frequency bands in the first candidate frequency bands are part or all of the initial candidate frequency bands. If all the frequency bands in the initial candidate frequency band meet the preset conditions, then the frequency band of the first candidate frequency band is all the frequency bands of the initial candidate frequency band; if some of the frequency bands in the initial candidate frequency band meet the preset conditions, then the first candidate frequency band is the initial candidate. part of the frequency band.
  • the terminal device reports a measurement report, which is used to indicate the quality of the first target frequency band and the quality of the second target frequency band determined based on the first candidate frequency band.
  • the network device may send a switching request to the terminal device based on the measurement report to instruct the terminal device to switch each card to the corresponding target frequency band.
  • the first card resides on the first target frequency band
  • the second card resides on the second target frequency band.
  • the two cards form a DSDA mode to continue to maintain the connection state. In this way, the cell switching is successfully completed. User experience is guaranteed.
  • the measurement report may include a first measurement report for the first card and a second measurement report for the second card.
  • the first measurement report is used to indicate the quality of the first target frequency band of the first card.
  • the second measurement report Used to indicate the quality of the second target band of the second card.
  • the terminal device can report the first measurement report and the second measurement report to the network device respectively.
  • the method 700 further includes: determining the second target frequency band from the first candidate frequency band.
  • the second target frequency band is a certain frequency band in the first candidate frequency band. It can be any frequency band, or it can be a frequency band determined according to a certain rule. It is not limited here and will be explained in detail later.
  • the terminal device when both cards are in a connected state and the priorities of the services currently executed by the two cards are different, the terminal device first starts from the neighboring card of the first card with a higher service priority. Determine the first target frequency band that meets the first preset condition (quality requirement) in the area frequency band to give priority to ensure the quality of the first card with high business priority, and then select the adjacent area frequency band of the second card with low business priority.
  • the frequency band where the dual SIM card resides can also form a DSDA mode to continue to maintain the connection state, which overall improves the user experience.
  • the above method not only ensures the quality of the first card with high service priority, but also enables the frequency band where the two cards reside to continue to form a DSDA mode to maintain the connection state after switching cells, without affecting the business of each card. It proceeds normally.
  • the quality of the frequency bands where the dual cards reside after switching cells is better than the quality of the frequency bands where the dual cards resided before, improving signal quality and overall better user experience.
  • the first candidate frequency band includes multiple frequency bands; and before reporting the measurement report, the method 700 further includes: the terminal device determines the frequency band with the highest priority in the first candidate frequency band as the second target. frequency band.
  • the DSDA mode formed between the first target frequency band and the second target frequency band where the dual cards respectively reside is the optimal mode set by the terminal device, which improves the performance of the dual card mode.
  • the DSDA combination of the DSDA mode formed by the second target frequency band and the first target frequency band is the one with the best dual-card capability among the DSDA combinations formed by each frequency band in the first candidate frequency band and the first target frequency band. combination.
  • the terminal device determines the frequency band included in the first candidate frequency band in the combination with the best dual-card capability among the DSDA combinations formed by each frequency band in the first candidate frequency band and the first target frequency band as the second target frequency band.
  • This embodiment defines the priority of the frequency bands in the first candidate frequency band based on the dual-SIM mode capability. The better the dual-SIM mode capability formed by a certain frequency band in the first candidate frequency band and the first target frequency band, the better the dual-SIM mode capability of a certain frequency band. The higher the priority, conversely, the worse the capability of the dual-SIM mode formed by a certain frequency band in the first candidate frequency band and the first target frequency band, the lower the priority of this certain frequency band.
  • the capabilities of dual-SIM mode from high to low are: DSDA transmitter exclusive > DSDA transmitter shared > DR-DSDS > DSDS.
  • the first candidate frequency band includes 3 frequency bands. These 3 frequency bands and the first target frequency band can form 3 DSDA combinations.
  • DSDA combination 1 is the DSDA transmission exclusive mode
  • DSDA combination 2 and DSDA combination 3 are DSDA transmission modes. Shared mode, then, DSDA combination 1 whose DSDA mode is DSDA transmit exclusive mode is the combination with the best dual-card capabilities among the three DSDA combinations.
  • the frequency band in the first candidate frequency band included in DSDA combination 1 is the second target frequency band. .
  • the terminal device determines the frequency band included in the first candidate frequency band in the combination with the best dual-card capabilities among the DSDA combinations formed by each frequency band in the first candidate frequency band and the first target frequency band.
  • the DSDA mode formed between the first target frequency band and the second target frequency band where the dual SIM cards respectively reside is the dual SIM mode with the best performance and the best user experience.
  • the second target frequency band is the best quality frequency band among the first candidate frequency bands.
  • the terminal device selects the frequency band with the best quality among the first candidate frequency bands as the second target frequency band.
  • the quality of the frequency band can be characterized by at least one of an RSRP value and an RSRQ value.
  • This embodiment defines the priority of the frequency bands in the first candidate frequency band based on the quality of the frequency bands. The better the quality of a certain frequency band in the first candidate frequency band, the higher the priority of the certain frequency band. On the contrary, the worse the quality of a certain frequency band in the first candidate frequency band, the lower the priority of the certain frequency band.
  • the dual-card communication method provided by the embodiment of the present application is described in detail above with reference to FIGS. 1 to 7 .
  • the terminal device provided according to the embodiment of the present application will be described in detail below with reference to FIGS. 8 to 9 .
  • FIG. 8 is an exemplary block diagram of a terminal device 800 provided by an embodiment of the present application.
  • the terminal device 800 includes a processing unit 810 .
  • the terminal device 800 is configured to execute various processes and steps corresponding to the terminal device in the above method 600, where both the first card and the second card of the terminal device 800 are in a connected state.
  • the processing unit 810 is used to perform the following steps:
  • the preset conditions include: the quality of the neighboring cells of each card satisfies the event for cell switching, and one neighboring cell corresponds to a frequency band;
  • At least one DSDA combination of modes determines a target DSDA combination, where the target DSDA combination includes a target frequency band among the first candidate frequency bands of the first card and a target frequency band among the first candidate frequency bands of the second card;
  • Report a measurement report, where the measurement report is used to indicate the quality of the target frequency band of the first card and the quality of the target frequency band of the second card.
  • processing unit 810 can be used to perform various steps performed by the terminal device in the method 600. For specific descriptions, reference can be made to the relevant descriptions above, which will not be described again.
  • the terminal device 800 is used to execute various processes and steps corresponding to the terminal device in the above method 700, where both the dual cards of the terminal device 800 are in a connected state.
  • the processing unit 810 is used to perform the following steps:
  • the priorities of the services currently executed by the dual cards are different, determine the first target frequency band that satisfies the first preset condition in the adjacent frequency band of the first card among the dual cards, and the first card is currently executing
  • the priority of the service is higher than the priority of the service currently executed by the second card in the dual card
  • the first preset condition includes: the quality of the neighboring cell of the first card meets the event for cell switching, One neighbor cell corresponds to one frequency band;
  • the second preset condition includes: the quality of the neighboring cell of the second card satisfies an event for cell switching, One neighbor cell corresponds to one frequency band;
  • Report a measurement report, where the measurement report is used to indicate the quality of the first target frequency band and the quality of the second target frequency band determined based on the first candidate frequency band.
  • processing unit 810 can be used to perform various steps performed by the terminal device in the method 700. For specific descriptions, reference can be made to the relevant descriptions above, which will not be described again.
  • terminal device 800 here is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a proprietary processor, or a group of processors
  • memory merged logic circuitry, and/or other suitable components to support the described functionality.
  • the terminal device in Figure 8 may also be a chip or a chip system, such as a system on chip (SoC).
  • SoC system on chip
  • Figure 9 is a schematic structural diagram of a terminal device 900 provided by an embodiment of this application.
  • the terminal device 900 is used to execute corresponding steps and/or processes in the above method embodiments.
  • the terminal device 900 includes a processor 910, a transceiver 920, and a memory 930. Among them, the processor 910, the transceiver 920 and the memory 930 communicate with each other through internal connection paths.
  • the processor 910 can implement the functions of the processor 910 in various possible implementations in the terminal device 900.
  • the memory 930 is used to store instructions, and the processor 910 is used to execute the instructions stored in the memory 930. In other words, the processor 910 can call these stored instructions to implement the functions of the processor 910 in the terminal device 900.
  • the memory 930 may include read-only memory and random access memory and provide instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory.
  • the memory may also store device type information.
  • the processor 910 may be used to execute instructions stored in the memory, and when the processor 910 executes the instructions stored in the memory, the processor 910 is used to execute each step of the method embodiment corresponding to the terminal device and/or process.
  • the terminal device 900 is configured to execute various processes and steps corresponding to the terminal device in the above method 600, where both the first card and the second card of the terminal device 900 are in a connected state.
  • Processor 910 is used to perform the following steps:
  • the preset conditions include: the quality of the neighboring cells of each card satisfies the event for cell switching, and one neighboring cell corresponds to a frequency band;
  • a target DSDA combination based on at least one DSDA combination based on a DSDA pattern formed between a first candidate frequency band of the first card and a first candidate frequency band of the second card, the target DSDA combination including the first a target frequency band in the first candidate frequency band of the card and a target frequency band in the first candidate frequency band of the second card;
  • Report a measurement report, where the measurement report is used to indicate the quality of the target frequency band of the first card and the quality of the target frequency band of the second card.
  • the terminal device 900 is used to execute various processes and steps corresponding to the terminal device in the above method 700, where both the dual cards of the terminal device 900 are in a connected state.
  • Processor 910 is used to perform the following steps:
  • the priorities of the services currently executed by the dual cards are different, determine the first target frequency band that satisfies the first preset condition in the adjacent frequency band of the first card among the dual cards, and the first card is currently executing
  • the priority of the service is higher than the priority of the service currently executed by the second card in the dual card
  • the first preset condition includes: the quality of the neighboring cell of the first card meets the event for cell switching, One neighbor cell corresponds to one frequency band;
  • the second preset condition includes: the quality of the neighboring cell of the second card satisfies an event for cell switching, One neighbor cell corresponds to one frequency band;
  • Report a measurement report, where the measurement report is used to indicate the quality of the first target frequency band and the quality of the second target frequency band determined based on the first candidate frequency band.
  • the processor of the above device can be a central processing unit (CPU), and the processor can also be other general-purpose processors, digital signal processors (DSP), or application-specific integrated circuits. (ASIC), field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software units in the processor.
  • the software unit can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor executes the instructions in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • Embodiments of the present application provide a computer program product.
  • the computer program product When the computer program product is run on a terminal device, it causes the terminal device to execute the technical solutions in the above embodiments.
  • the implementation principles and technical effects are similar to the above-mentioned method-related embodiments, and will not be described again here.
  • Embodiments of the present application provide a readable storage medium.
  • the readable storage medium contains instructions.
  • the instructions When the instructions are run on a terminal device, the terminal device executes the technical solutions of the above embodiments.
  • the implementation principles and technical effects are similar and will not be described again here.
  • Embodiments of the present application provide a chip.
  • the chip is used to execute instructions.
  • the technical solutions in the above embodiments are executed.
  • the implementation principles and technical effects are similar and will not be described again here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • an embodiment means that a particular feature, structure, or characteristic associated with the embodiment is included in at least one embodiment of the present application. Therefore, various embodiments are not necessarily referred to the same embodiment throughout this specification. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments. It should be understood that in the various embodiments of the present application, the size of the sequence numbers of the above-mentioned processes does not mean the order of execution. The execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application. The implementation process constitutes any limitation.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. In the three cases B, A can be singular or plural, and B can be singular or plural.
  • At least one of or “at least one of” in this article means all or all of the listed items. Any combination, for example, “at least one of A, B and C” can mean: A alone, B alone, C alone, A and B at the same time, B and C at the same time, A and B at the same time There are six cases of and C, where A can be singular or plural, B can be singular or plural, and C can be singular or plural.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Abstract

本申请实施例提供了一种双卡通信的方法和终端设备,在双卡均处于连接态下进行小区切换时,在确定第一卡的邻区频段和第二卡的邻区频段之间能够形成终端设备支持的DSDA模式的情况下,在能够形成DSDA模式的每个卡的初始候选频段中确定出满足预设条件的第一候选频段,从基于每个卡的第一候选频段形成的DSDA组合中确定包括每个卡的目标频段的目标DSDA组合,以便于终端设备将第一卡和第二卡分别切换至对应的目标频段上。上述方法不仅能够优先保证切换小区后双卡驻留的频段继续形成DSDA模式以保持连接态,不影响每个卡的业务的正常进行,而且,切换小区后双卡驻留的频段的质量优于双卡之前驻留的频段的质量,提高了信号质量,均有效地提高了用户体验。

Description

一种双卡通信的方法和终端设备
本申请要求于2022年5月30日提交国家知识产权局、申请号为202210603383.6、申请名称为“一种双卡通信的方法和终端设备”的中国专利申请的优先权,要求于2022年6月28日提交国家知识产权局、申请号为202210742421.6、申请名称为“一种双卡通信的方法和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及通信领域中一种双卡通信的方法和终端设备。
背景技术
随着通信的发展,目前的终端设备(例如,手机)大部分都支持双卡双待(dual sim dual standby,DSDS)或双卡双通(dual sin dual active,DSDA)模式。在DSDA模式下,终端设备支持双卡的业务并发,即双卡可实现同时发送或接收,一个卡执行通话业务时,另一个卡可以收到来电,也可以执行数据业务(即上网)。在DSDS模式下,终端设备不支持双卡业务并发,一个卡执行通话业务时,另一个卡无法进行数据业务,以及,一个卡执行数据业务时,另一个卡虽然可以接收来电,但来电会打断数据业务,对于主卡来讲,副卡的通话业务使得主卡无法进行数据业务,而且,副卡由于搜网、测量、跟踪区更新(tracking area update,TAU)、短信、彩信、周期性注册等行为会抢占天线,影响主卡的上网体验。可以看出,相比于DSDS模式,DSDA模式的用户体验更高。
当终端设备的双卡均处于连接态时,双卡间形成DSDA模式,双卡均可进行上行传输和下行传输。但是,当双卡中的至少一个卡进行小区切换后,若双卡最终驻留的小区的频段无法形成DSDA模式而只能形成DSDS模式,那么,双卡中任一个卡的上行传输必然会受到影响,导致该任一个卡的业务中断,这样的小区切换是失败的,非常影响用户体验。
发明内容
本申请实施例提供一种双卡通信的方法和终端设备,在双卡均处于连接态的情况下进行小区切换时,尽可能使得完成小区切换后双卡最终驻留的小区的频段之间形成DSDA模式以继续保持双卡的连接态,使得每个卡的业务的正常进行,从而,提高用户体验。
第一方面,提供了一种双卡通信的方法,应用于终端设备中,所述终端设备的第一卡和第二卡均处于连接态,所述方法包括:确定所述第一卡的邻区频段和所述第二卡的邻区频段之间是否能够形成所述终端设备支持的双卡双通DSDA模式;对能够形 成DSDA模式的所述第一卡和所述第二卡中每个卡的初始候选频段进行测量;确定所述每个卡的初始候选频段中满足预设条件的第一候选频段,所述预设条件包括:所述每个卡的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段;根据基于所述第一卡的第一候选频段和所述第二卡的第一候选频段之间形成的DSDA模式的至少一个DSDA组合,确定目标DSDA组合,所述目标DSDA组合包括所述第一卡的第一候选频段中的目标频段和所述第二卡的第一候选频段中的目标频段;上报测量报告,所述测量报告用于指示所述第一卡的目标频段的质量和所述第二卡的目标频段的质量。
本申请实施例提供的双卡通信的方法,在第一卡和第二卡均处于连接态的情况下,第一卡和第二卡之间形成DSDA模式,当需要进行小区切换时,首先确定第一卡的邻区频段和第二卡的邻区频段之间是否能够形成终端设备支持的DSDA模式,在能够形成DSDA模式的情况下继续执行后续步骤,以优先保证第一卡和第二卡切换小区后驻留的小区的频段之间依然能够形成DSDA模式,随后,对能够形成DSDA模式的每个卡的初始候选频段进行测量、从每个卡的初始候选频段中确定满足预设条件(即,质量要求)的第一候选频段以及从第一卡和第二卡的第一候选频段中确定出包括每个卡的目标频段的目标DSDA组合,向网络设备上报测量报告,以便于网络设备指示终端设备将第一卡和第二卡分别切换至对应的目标频段上,进一步保证了切换小区后第一卡和第二卡驻留的小区的频段的质量。综上,上述方法不仅能够使得切换小区后第一卡和第二卡驻留的频段继续形成DSDA模式以保持连接态,不影响每个卡的业务的正常进行,而且,切换小区后第一卡和第二卡驻留的频段的质量优于第一卡和第二卡之前驻留的频段的质量,提高了信号质量,总体上均有效地提高了用户体验。
可选地,所述至少一个DSDA组合包括多个DSDA组合;以及,所述根据基于所述第一卡的第一候选频段和所述第二卡的第一候选频段之间形成的DSDA模式的至少一个DSDA组合,确定目标DSDA组合,包括:
将所述至少一个DSDA组合中优先级最高的DSDA组合确定为所述目标DSDA组合。
本申请实施例提供的双卡通信的方法,终端设备通过将优先级最高的DSDA组合作为目标DSDA组合,能够使得进行小区切换后第一卡和第二卡驻留的频段之间形成的DSDA模式是终端设备设定的最优模式,提高了双卡模式的性能,用户体验好。
可选地,所述目标DSDA组合是所述多个DSDA组合中双卡模式的能力最好的组合。
本申请实施例提供的双卡通信的方法,终端设备通过将多个DSDA组合中双卡模式的能力最好的组合确定为目标DSDA组合,能够使得进行小区切换后第一卡和第二卡驻留的频段之间形成的DSDA模式是性能最好的双卡模式,用户的体验最好。
可选地,所述方法还包括:
在所述第一卡的邻区频段和所述第二卡的邻区频段无法形成所述终端设备支持的DSDA模式的情况下,对所述每个卡的邻区频段不进行测量。
本申请实施例提供的双卡通信的方法,在所述第一卡的邻区频段和所述第二卡的邻区频段无法形成终端设备支持的DSDA模式的情况下,对每个卡的邻区频段不进行测量,这样,第一卡和第二卡能够继续驻留在当前的小区而不进行小区切换,以继续 保持双卡的DSDA模式,从而能够保证第一卡和第二卡继续处于连接态,一定程度上不影响业务的正常进行,以尽可能保证良好的用户体验。此外,终端设备对每个卡的邻区频段不进行测量,还能避免由于无效的测量造成的功耗浪费,节省了功耗。
可选地,在所述确定所述第一卡的邻区频段和所述第二卡的邻区频段之间是否能够形成所述终端设备支持的双卡双通DSDA模式之前,所述方法还包括:
确定所述第一卡当前执行的业务的优先级与所述第二卡当前执行的业务的优先级相同。
本申请实施例提供的双卡通信的方法,若第一卡和第二卡当前执行的业务的优先级不同,例如,一个卡执行通话业务,另一个卡执行数据业务,通话业务的优先级高于数据业务的优先级,若优先考虑第一卡和第二卡切换小区后驻留的频段是否能够形成DSDA模式再考虑质量要求,对于执行通话业务的卡而言,最终确定的目标频段的质量可能并不是所有邻区频段中质量靠前的,所以,执行通话业务的卡的性能可能达不到最优,一定程度上会影响用户体验。因此,在第一卡当前执行的业务的优先级与第二卡当前执行的业务的优先级相同的情况下,先确定第一卡和第二卡切换小区后驻留的频段是否能够形成DSDA模式再考虑质量要求,能够避免出现由于某个卡当前执行的业务的优先级高但切换小区后该某个卡驻留的频段的质量并不是很好的情况,从而在一定程度上影响用户体验。
可选地,所述第一卡和所述第二卡当前执行的业务均为数据业务。
第二方面,提供了一种双卡通信的方法,应用于终端设备中,所述终端设备的双卡均处于连接态,所述方法包括:在所述双卡当前执行的业务的优先级不同的情况下,确定所述双卡中第一卡的邻区频段中满足第一预设条件的第一目标频段,所述第一卡当前执行的业务的优先级高于所述双卡中第二卡当前执行的业务的优先级,所述第一预设条件包括:所述第一卡的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段;确定所述第二卡的邻区频段中能够与所述第一目标频段形成所述终端设备支持的双卡双通DSDA模式的初始候选频段;确定所述第二卡的初始候选频段中满足第二预设条件的第一候选频段,所述第二预设条件包括:所述第二卡的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段;上报测量报告,所述测量报告用于指示所述第一目标频段的质量和基于所述第一候选频段确定的第二目标频段的质量。
本申请实施例提供的双卡通信的方法,在双卡均处于连接态的情况下,当双卡当前执行的业务的优先级不同时,终端设备先从业务优先级高的第一卡的邻区频段中确定满足第一预设条件(质量要求)的第一目标频段,以优先保证业务优先级高的第一卡的质量,然后再从业务优先级低的第二卡的邻区频段中确定能够与第一目标频段形成DSDA模式的初始候选频段以及从初始候选频段中确定满足第二预设条件(质量要求)的第一候选频段,从第一候选频段中确定第二目标频段,向网络设备上报测量报告,以便于网络设备指示终端设备将第一卡和第二卡分别切换至对应的目标频段上,进一步保证了切换小区后双卡驻留的频段也能够形成DSDA模式以继续保持连接态,总体提高了用户体验。综上,上述方法不仅优先保证了业务优先级高的第一卡的质量,而且,能够使得切换小区后双卡驻留的频段继续形成DSDA模式以保持连接态,不影响每个卡的业务的正常进行,此外,切换小区后双卡驻留的频段的质量均优于双卡之 前驻留的频段的质量,提高了信号质量,总体上更好地提高了用户体验。
可选地,所述第一候选频段包括多个频段;以及,在所述上报测量报告之前,所述方法还包括:
将所述第一候选频段中优先级最高的频段确定为所述第二目标频段。
本申请实施例提供的双卡通信的方法,终端设备通过将第一候选频段中优先级最高的频段确定为第二目标频段,可以在终端设备对双卡进行小区切换后能够使得双卡分别驻留的第一目标频段和第二目标频段之间形成的DSDA模式是终端设备设定的最优模式,提高了双卡模式的性能。
可选地,所述第二目标频段与所述第一目标频段形成的DSDA模式的DSDA组合是所述第一候选频段中各个频段与所述第一目标频段形成的各个DSDA组合中双卡能力最好的组合。
本申请实施例提供的双卡通信的方法,终端设备通过将第一候选频段中各个频段与第一目标频段形成的各个DSDA组合中双卡能力最好的组合中第一候选频段包括的频段确定为第二目标频段,可以在终端设备对双卡进行小区切换后能够使得双卡分别驻留的第一目标频段和第二目标频段之间形成的DSDA模式是性能最优的双卡模式,用户的体验最好。
可选地,所述第一卡当前执行的业务是通话业务,所述第二卡当前执行的业务是数据业务;或,所述第一卡当前执行的业务是在前台进行的通话业务,所述第二卡当前执行的业务是在后台进行的通话业务。
第三方面,提供一种终端设备,所述终端设备用于执行上述第一方面或第二方面提供的方法。具体地,所述终端设备可以包括用于执行上述第一方面或第二方面中任一种可能实现方式的模块。
第四方面,提供一种终端设备,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第二方面中任一种可能实现方式中的方法。可选地,该终端设备还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
第五方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被装置执行时,使得所述装置实现上述第一方面或第二方面中任一种可能实现方式中的方法。
第六方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得装置实现上述第一方面或第二方面中任一种可能实现方式中的方法。
第七方面,提供一种芯片,包括:输入接口、输出接口、处理器和存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述第一方面或第二方面中任一种可能实现方式中的方法。
附图说明
图1是本申请实施例提供的移动通信系统的示意性结构图。
图2是本申请实施例提供的终端设备的结构示意图。
图3是本申请实施例提供的双卡通信的方法的示意性流程图。
图4是本申请实施例提供的双卡通信的方法的另一示意性流程图。
图5是本申请实施例提供的双卡通信的方法的另一示意性流程图。
图6是本申请实施例提供的双卡通信的方法的另一示意性流程图。
图7是本申请实施例提供的双卡通信的方法的另一示意性流程图。
图8是本申请实施例提供的终端设备的示例性框图。
图9是本申请实施例提供的终端设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案适用于能够与网络设备通信且支持双卡通信的终端设备,每个卡均可支持电话业务和数据业务(即,上网业务),例如,终端设备可以是手机、智能手表、智能手环或平板电脑等,本申请实施例对终端设备的具体类型不做任何限制。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system for mobile communications,GSM)系统,通用分组无线服务(general packet radio service,GPRS)系统,码分多址接入(code division multiple access,CDMA)系统,宽带码分多址(wideband code division multiple access,WCDMA)系统,时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代新无线(5th generation new radio,5G NR)或未来的第六代(6th generation,6G)系统等,其中,5G NR简称NR。
本申请实施例适用于包括多个基站和至少一个终端设备的移动通信系统中,其中,多个基站中至少包括能够支持5G网络的基站和能够支持4G网络的基站。示例性地,如图1所示,移动通信系统包括基站110、基站120和终端设备130,基站110和基站120中的一个能够支持4G网络,另一个能够支持5G网络,终端设备130可与基站110和基站120中的至少一个连接。为了便于描述,将支持4G网络的基站简称为4G基站,将支持5G网络的基站简称为5G基站。
若终端设备130与基站110和基站120中的一个连接时,双卡均驻留在同一网络(4G网络或5G网络)。若终端设备130均与基站110和基站120连接,那么,可能有以下3种情况。情况1、终端设备支持4G网络和5G网络的双连接,以及,两个卡中的每个卡均处于双连接状态,即,每个卡同时连接4G网络和5G网络。情况2、一个卡驻留在4G网络,另一个卡驻留在5G网络。情况3、终端设备支持LTE网络和5G网络的双连接,一个卡驻留在4G网络或5G网络,另一个卡同时连接4G网络和5G网络。
需要说明的是,由于双卡并不一定支持同一个运营商,所以,当双卡同时驻留在4G网络或5G网络时,双卡驻留的4G基站或5G基站可能并不相同,因此,移动通信系统中可能包括多个基站110和/或多个基站120。当某个基站(例如,基站110或基站120)为共享网络的基站时,即使双卡不支持同一个运营商,系统依然允许双卡驻留在该基站支持的网络中,其中,共享网络为不同运营商共享的网络。
假设,双卡支持不同的运营商,卡1支持运营商1,卡2支持运营商2,移动通信系 统中包括一个基站110和两个基站120。
在一示例中,若基站110为共享4G网络的4G基站,基站120为非共享5G网络的5G基站,一个基站120支持运营商1,另一个基站120支持运营商2。若双卡同时驻留在4G网络,则双卡均驻留在同一个基站110(即,4G基站);若双卡同时驻留在5G网络,则双卡驻留在不同的基站120(即,5G基站)上,卡1驻留在运营商1对应的基站120上,卡2驻留在运营商2对应的基站120上。
在另一示例中,若基站110为共享5G网络的5G基站,基站120为非共享4G网络的4G基站,一个基站120支持运营商1,另一个基站120支持运营商2。若双卡同时驻留在5G网络,则双卡均驻留在同一个基站110(即,5G基站);若双卡同时驻留在4G网络,则双卡驻留在不同的基站120(即,4G基站)上,卡1驻留在运营商1对应的基站120上,卡2驻留在运营商2对应的基站120上。
再假设,双卡支持不同的运营商,卡1支持运营商1,卡2支持运营商2,移动通信系统中包括两个基站110和两个基站120,基站110为非共享4G网络的4G基站,一个基站110支持运营商1,另一个基站110支持运营商2,基站120为非共享5G网络的5G基站,一个基站120支持运营商1,另一个基站120支持运营商2。若双卡同时驻留在4G网络,则双卡驻留在不同的基站110(即,4G基站)上,卡1驻留在运营商1对应的基站110上,卡2驻留在运营商2对应的基站110上;若双卡同时驻留在5G网络,则双卡驻留在不同的基站120(即,5G基站)上,卡1驻留在运营商1对应的基站120上,卡2驻留在运营商2对应的基站120上。
应理解,图1示出的移动通信系统仅为示意性说明,不应对本申请实施例构成限定。例如,移动通信系统中还可以包括核心网设备,以及,更多的基站和终端设备等。
图2示出了终端设备200的结构示意图。其中,终端设备200可以是图1的终端设备130。终端设备200可以包括处理器210,外部存储器接口220,内部存储器221,通用串行总线(universal serial bus,USB)接口230,充电管理模块240,电源管理模块241,电池242,天线1,天线2,移动通信模块250,无线通信模块260,音频模块270,扬声器270A,受话器270B,麦克风270C,耳机接口270D,传感器模块280,按键290,马达291,指示器292,摄像头293,显示屏294,以及用户标识模块(subscriber identification module,SIM)卡接口295等。其中传感器模块280可以包括压力传感器280A,陀螺仪传感器280B,气压传感器280C,磁传感器280D,加速度传感器280E,距离传感器280F,接近光传感器280G,指纹传感器280H,温度传感器280J,触摸传感器280K,环境光传感器280L,骨传导传感器280M等。
可以理解的是,本申请实施例示意的结构并不构成对终端设备200的具体限定。在本申请另一些实施例中,终端设备200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器210可以包括一个或多个处理单元,例如:处理器210可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network  processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是终端设备200的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器210中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器210中的存储器为高速缓冲存储器。该存储器可以保存处理器210刚用过或循环使用的指令或数据。如果处理器210需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器210的等待时间,因而提高了系统的效率。
在一些实施例中,处理器210可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器210可以包含多组I2C总线。处理器210可以通过不同的I2C总线接口分别耦合触摸传感器280K,充电器,闪光灯,摄像头293等。例如:处理器210可以通过I2C接口耦合触摸传感器280K,使处理器210与触摸传感器280K通过I2C总线接口通信,实现终端设备200的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器210可以包含多组I2S总线。处理器210可以通过I2S总线与音频模块270耦合,实现处理器210与音频模块270之间的通信。在一些实施例中,音频模块270可以通过I2S接口向无线通信模块260传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块270与无线通信模块260可以通过PCM总线接口耦合。在一些实施例中,音频模块270也可以通过PCM接口向无线通信模块260传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器210与无线通信模块260。例如:处理器210通过UART接口与无线通信模块260中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块270可以通过UART接口向无线通信模块260传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器210与显示屏294,摄像头293等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器210和摄像头293通过CSI接口通信,实现终端设备200的拍摄功能。处理器210和显示屏294通过DSI接口通信,实现终端设备200的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据 信号。在一些实施例中,GPIO接口可以用于连接处理器210与摄像头293,显示屏294,无线通信模块260,音频模块270,传感器模块280等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口230是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口230可以用于连接充电器为终端设备200充电,也可以用于终端设备200与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他终端设备,例如AR设备等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对终端设备200的结构限定。在本申请另一些实施例中,终端设备200也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块240用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块240可以通过USB接口230接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块240可以通过终端设备200的无线充电线圈接收无线充电输入。充电管理模块240为电池242充电的同时,还可以通过电源管理模块241为终端设备供电。
电源管理模块241用于连接电池242,充电管理模块240与处理器210。电源管理模块241接收电池242和/或充电管理模块240的输入,为处理器210,内部存储器221,外部存储器,显示屏294,摄像头293,和无线通信模块260等供电。电源管理模块241还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块241也可以设置于处理器210中。在另一些实施例中,电源管理模块241和充电管理模块240也可以设置于同一个器件中。
终端设备200的无线通信功能可以通过天线1,天线2,移动通信模块250,无线通信模块260,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。终端设备200中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块250可以提供应用在终端设备200上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块250可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块250可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块250还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块250的至少部分功能模块可以被设置于处理器210中。在一些实施例中,移动通信模块250的至少部分功能模块可以与处理器210的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器270A,受话器270B等)输出声音信号,或通过显示屏294显示图像或视频。在一些实施例中,调制解调处理器可以 是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器210,与移动通信模块250或其他功能模块设置在同一个器件中。
无线通信模块260可以提供应用在终端设备200上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块260可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块260经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器210。无线通信模块260还可以从处理器210接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,终端设备200的天线1和移动通信模块250耦合,天线2和无线通信模块260耦合,使得终端设备200可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
终端设备200通过GPU,显示屏294,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏294和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器210可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏294用于显示图像,视频等。显示屏294包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,终端设备200可以包括1个或N个显示屏294,N为大于1的正整数。
终端设备200可以通过ISP,摄像头293,视频编解码器,GPU,显示屏294以及应用处理器等实现拍摄功能。
ISP用于处理摄像头293反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头293中。
摄像头293用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体 (complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,终端设备200可以包括1个或N个摄像头293,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当终端设备200在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。终端设备200可以支持一种或多种视频编解码器。这样,终端设备200可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现终端设备200的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口220可以用于连接外部存储卡,例如Micro SD卡,实现扩展终端设备200的存储能力。外部存储卡通过外部存储器接口220与处理器210通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器221可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器210通过运行存储在内部存储器221的指令,从而执行终端设备200的各种功能应用以及数据处理。内部存储器221可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储终端设备200使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器221可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
终端设备200可以通过音频模块270,扬声器270A,受话器270B,麦克风270C,耳机接口270D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块270用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块270还可以用于对音频信号编码和解码。在一些实施例中,音频模块270可以设置于处理器210中,或将音频模块270的部分功能模块设置于处理器210中。
扬声器270A,也称“喇叭”,用于将音频电信号转换为声音信号。终端设备200可以通过扬声器270A收听音乐,或收听免提通话。
受话器270B,也称“听筒”,用于将音频电信号转换成声音信号。当终端设备200接听电话或语音信息时,可以通过将受话器270B靠近人耳接听语音。
麦克风270C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风270C发声,将声音信号输入到麦克风270C。终端设备200可以设置至少一个麦克风270C。在另一些实施例中,终端设备200可以设置两个麦克风270C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,终端设备200还可以设置三个,四个或更多麦克风270C,实现采集声音信号,降噪,还可以识别 声音来源,实现定向录音功能等。
耳机接口270D用于连接有线耳机。耳机接口270D可以是USB接口230,也可以是3.5mm的开放移动终端设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器280A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器280A可以设置于显示屏294。压力传感器280A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器280A,电极之间的电容改变。终端设备200根据电容的变化确定压力的强度。当有触摸操作作用于显示屏294,终端设备200根据压力传感器280A检测所述触摸操作强度。终端设备200也可以根据压力传感器280A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器280B可以用于确定终端设备200的运动姿态。在一些实施例中,可以通过陀螺仪传感器280B确定终端设备200围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器280B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器280B检测终端设备200抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消终端设备200的抖动,实现防抖。陀螺仪传感器280B还可以用于导航,体感游戏场景。
气压传感器280C用于测量气压。在一些实施例中,终端设备200通过气压传感器280C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器280D包括霍尔传感器。终端设备200可以利用磁传感器280D检测翻盖皮套的开合。在一些实施例中,当终端设备200是翻盖机时,终端设备200可以根据磁传感器280D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器280E可检测终端设备200在各个方向上(一般为三轴)加速度的大小。当终端设备200静止时可检测出重力的大小及方向。还可以用于识别终端设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器280F,用于测量距离。终端设备200可以通过红外或激光测量距离。在一些实施例中,拍摄场景,终端设备200可以利用距离传感器280F测距以实现快速对焦。
接近光传感器280G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。终端设备200通过发光二极管向外发射红外光。终端设备200使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定终端设备200附近有物体。当检测到不充分的反射光时,终端设备200可以确定终端设备200附近没有物体。终端设备200可以利用接近光传感器280G检测用户手持终端设备200贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器280G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器280L用于感知环境光亮度。终端设备200可以根据感知的环境光亮度自适应调节显示屏294亮度。环境光传感器280L也可用于拍照时自动调节白平衡。环境 光传感器280L还可以与接近光传感器280G配合,检测终端设备200是否在口袋里,以防误触。
指纹传感器280H用于采集指纹。终端设备200可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器280J用于检测温度。在一些实施例中,终端设备200利用温度传感器280J检测的温度,执行温度处理策略。例如,当温度传感器280J上报的温度超过阈值,终端设备200执行降低位于温度传感器280J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,终端设备200对电池242加热,以避免低温导致终端设备200异常关机。在其他一些实施例中,当温度低于又一阈值时,终端设备200对电池242的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器280K,也称“触控面板”。触摸传感器280K可以设置于显示屏294,由触摸传感器280K与显示屏294组成触摸屏,也称“触控屏”。触摸传感器280K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏294提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器280K也可以设置于终端设备200的表面,与显示屏294所处的位置不同。
骨传导传感器280M可以获取振动信号。在一些实施例中,骨传导传感器280M可以获取人体声部振动骨块的振动信号。骨传导传感器280M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器280M也可以设置于耳机中,结合成骨传导耳机。音频模块270可以基于所述骨传导传感器280M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器280M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键290包括开机键,音量键等。按键290可以是机械按键。也可以是触摸式按键。终端设备200可以接收按键输入,产生与终端设备200的用户设置以及功能控制有关的键信号输入。
马达291可以产生振动提示。马达291可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏294不同区域的触摸操作,马达291也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器292可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口295用于连接SIM卡。SIM卡可以通过插入SIM卡接口295,或从SIM卡接口295拔出,实现和终端设备200的接触和分离。终端设备200可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口295可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口295可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口295也可以兼容不同类型的SIM卡。SIM卡接口295也可以兼容外部存储卡。终端设备200通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,终端设备200采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在终端设备200中,不能和终端设备200分离。
上文对本申请实施例的通信系统和终端设备做了介绍,以下,对本申请实施例涉及的相关术语做说明。
双卡双待(dual sim dual standby,DSDS)
终端设备支持的一种双卡模式,也可以理解为终端设备的双卡能力,双卡的接收天线分时复用。在DSDS模式下,终端设备不支持双卡业务并发,具体表现为:(1)一个卡执行通话业务时,另一个卡无法进行数据业务(即,上网);(2)一个卡执行数据业务时,另一个卡虽然可以接收来电,但来电会打断数据业务。
对于双卡中的主卡来讲,副卡的通话业务会使得主卡无法进行数据业务,而且,副卡由于搜网、测量、跟踪区更新(tracking area update,TAU)、短信、彩信、周期性注册等行为会抢占天线,使得主卡的上网体验较差。
双接收双卡双待(dual receiver-dual simdual dtandby,DR-DSDS)
终端设备支持的另一种双卡模式,也可以理解为终端设备的另一种双卡能力,双卡的接收天线可以分集复用,即一个卡用主集,另一个卡用分集,双卡可以同时接收,但无法同时发送。在DR-DSDS模式下,(1)一个卡执行通话业务时,另一个卡有信号,但是无法响应寻呼,以及,无法进行TAU;(2)一个卡执行数据业务时,另一个卡进行上行传输时,需抢占射频(radio frequency,RF)天线,从而影响执行数据业务的卡的体验。
双卡双通(dual sin dual active,DSDA)
终端设备支持的另一种双卡模式,也可以理解为终端设备的另一种双卡能力。在DSDA模式下,终端设备支持双卡的业务并发,即两个卡可实现同时发送或接收,一个卡执行通话业务时,另一个卡可以收到来电,也可以执行数据业务(即上网)。
DSDA模式进一步可包括两种模式,DSDA发射共享模式和DSDA发射独享模式。在DSDA发射共享模式下,两个卡在上行传输时共用天线且分时发送,在下行传输时两个卡分别使用不同的天线,不过,由于两个卡的上行传输共用天线,用户上网的性能体验有损失。在DSDA发射独享模式下,两个卡在上行传输时分别使用不同的天线,在下行传输时也分别使用不同的天线,上行传输和下行传输均完全独立,用户上网的性能体验基本无损失,比在DSDA发射独享模式下的性能体验好。
非独立组网(non-standalone,NSA)和独立组网(standalone,SA)随着5G的发展,5G包括NSA和SA两种组网方式。
NSA指的是利用现有的4G核心网等设施,进行5G网络的部署,是4G和5G融合的组网方式。基于NSA架构的5G载波仅承载用户数据,控制信令仍通过4G网络传输。在NSA中,5G无法单独工作,仅仅是作为4G的补充,分担4G的流量。
SA指的是新建5G网络,包括新基站、回程链路以及核心网。SA引入了全新网元与接口的同时,还将大规模采用网络虚拟化、软件定义网络等新技术,并与5GNR结合,同时其协议开发、网络规划部署及互通互操作所面临的技术挑战将超越3G和4G系统。目前的SA有两种组网方式,一种组网方式是采用5G基站连接5G核心网,这是5G网络架构的终极形态,可以支持5G的所有应用,但花费很大;另一种组网方式是将现有的4G基站升级,变成增强型4G基站,将增强型4G基站接入5G核心网,花费较少。
在本申请实施例中,4G可作为LTE的替换描述,5G可作为NR的替换描述,若无特殊说明,两者可替换描述。
如前所述,相比于DSDS模式,DSDA模式的用户体验更好。但是,目前市场上终端设备中主流的芯片对DSDA模式的支持是不完善的,很多场景下终端设备处于DSDS模式而非处于DSDA模式,由此降低了用户体验。可以看出,通过使得终端设备尽可能处于DSDA模式,可以提高用户体验。
终端设备支持的双卡模式与各个卡所处的网络和频段有关,目前,NR SA网络的部分频段与LTE网络的部分频段支持DSDA模式,以及,NR SA网络的部分频段与NR SA网络的部分频段可支持DSDA模式,其中,NR SA表示5G网络,具体表示组网方式为SA的5G网络,简称NR SA,LTE表示4G网络。
DSDA模式包括一个或多个DSDA组合,DSDA组合包括双卡的网络类型和频段。为了便于描述,可采用“网络1频段号+网络2频段号”的方式表示DSDA组合。此外,可以将LTE网络的频段简称为LTE频段,将NR网络的频段简称为NR频段,LTE频段可以采用LTE频段号表示,LTE频段号可采用Bx表示,x为大于0的整数,例如,B1,同理,NR频段可采用NR频段号表示,NR频段号可采用nx表示,n为大于0的整数,例如,n78。
例如,DSDA模式的一个DSDA组合为NR SA n41+LTE B1,表示的是,一个卡驻留在NR SA网络中n41指示的频段,n41为NR频段号,表示一个NR频段,另一个卡驻留在LTE网络中B1指示的频段,B1表示LTE频段号,表示一个LTE频段。
从上述可以看出,只要双卡当前驻留的网络的网络类型和频段满足DSDA模式中任一个DSDA组合包括的网络类型和频段,双卡间就能够形成DSDA模式,终端设备就能够处于DSDA模式。
在小区切换(handover)的场景中,当双卡中至少一个卡驻留的服务小区的质量变差时,终端设备会基于网络设备的指示对至少一个卡中每个卡驻留的服务小区的邻区进行测量以切换至质量好的邻区。
当终端设备的双卡均处于连接态时,双卡间形成DSDA模式,双卡均可进行上行传输和下行传输,但是,在完成小区切换后,若双卡最终驻留的小区的频段无法形成DSDA模式而只能形成DSDS模式,那么,双卡中任一个卡的上行传输必然会受到影响,导致该任一个卡的业务中断,这样的小区切换是失败的,非常影响用户体验。
基于此,本申请实施例提出,在双卡均处于连接态的场景下,双卡间形成DSDA模式,对小区切换的流程做改进,在确定完成小区切换后双卡最终驻留的小区的频段有机会形成DSDA模式的情况下,对至少一个卡的邻区进行测量以进行小区切换,以使得双卡最终驻留的小区的频段间能够形成DSDA模式,这样,双卡依然均能够处于连接态,任一个卡的上行传输都不受影响,保持业务的正常进行,从而,能够提高用户体验。
需要说明的是,小区切换过程中进行的小区(服务小区或邻区)测量,表示的是对小区的频点进行测量,一个小区对应一个频点。由于一个频点对应一个频段,所以,小区测量也可以表示为对小区的频段进行测量。其中,频点表示的是中心频点,根据频点可以得到频段。
还需要说明的是,本申请实施例默认双卡驻留的网络,不需要调整某个卡驻留的网络,仅对某个卡当前驻留网络的频段进行调整。
以下,结合附图,对不同场景下的双卡通信的方法做详细说明。
图3是本申请实施例提供的双卡通信的方法300的示意性流程图。该方法300可由支 持双卡通信的终端设备执行,也可由终端设备中的芯片执行,本申请实施例不做任何限定。为了便于描述,以终端设备为例对方法300做详细说明。
方法300所示的实施例是双卡进行小区切换的场景,通过相关设计尽可能使得切换小区后双卡驻留的频段间依然形成DSDA模式以继续保持连接态,以提高用户体验。若切换小区后双卡驻留的频段间无法形成DSDA模式,则不进行小区切换,以继续保持当前的DSDA模式,使得双卡均处于连接态,不影响每个卡的业务的正常进行。
在方法300中,卡1为主卡和副卡中的其中一个,卡2为主卡和副卡中的另一个,此处不做任何限定。
在S310中,终端设备确定卡1和卡2均处于连接态。
当卡1和卡2均处于连接态的时候,意味着卡1和卡2均可独立进行上行传输和下行传输,而只有卡1和卡2之间形成DSDA模式的情况下才会使得卡1和卡2均处于连接态。所以,当卡1和卡2均处于连接态时,卡1和卡2间必然已形成DSDA模式。因此,终端设备确定卡1和卡2均处于连接态时也相当于确定了卡1和卡2之间形成DSDA模式。
在S320中,终端设备接收网络设备发送的卡1和卡2中每个卡的测量控制信息。
测量控制信息用于指示每个卡的邻区频点,邻区频点表示每个卡当前驻留的小区(即,服务小区)的邻区的频点,邻区频点包括至少一个频点,至少一个频点与至少一个邻区一一对应,一个频点对应一个邻区。
为了便于描述,将卡1的测量控制信息记为测量控制信息1,将卡2的测量控制信息记为测量控制信息2。测量控制信息1用于指示卡1的邻区频点,测量控制信息2用于指示卡2的邻区频点。
应理解,测量控制信息1和测量控制信息2可以是网络设备同时发送的,也可以是网络设备先后在不同时段发送的,本申请实施例不做任何限定。
此外,对于每个卡的测量控制信息,网络设备可以是周期性发送的,也可以基于事件触发发送的,本申请实施例不做任何限定。
在网络设备基于事件触发发送测量控制信息的实施例中,用于触发网络设备发送测量控制信息的事件可以是每个卡当前驻留的小区的质量变差的事件,示例性地,上述事件可以包括A2事件,A2事件表示服务小区的信号质量低于一定门限的事件。
上述网络设备包括一个或多个基站,测量控制信息1和测量控制信息2可以是同一个基站发送的也可以是不同基站发送的,主要视卡1和卡2驻留的网络是否相同以及是否支持相同的运营商的情况而定。
假设,卡1和卡2支持同一个运营商,卡1和卡2驻留在相同的网络,这种情况下,网络设备可以仅包括一个基站,测量控制信息1和测量控制信息2由同一个基站发送。
再假设,卡1和卡2支持同一个运营商,卡1和卡2驻留在不同的网络,这种情况下,网络设备可以包括两个基站,一个基站支持一个网络,不同的基站为驻留在对应网络的卡发送测量控制信息。例如,卡1驻留在5G网络,卡2驻留在4G网络,那么,5G基站为卡1发送测量控制信息1,4G基站为卡2发送测量控制信息2。
再假设,卡1和卡2支持不同的运营商,卡1和卡2驻留在相同的网络,这种情况下,网络设备可以包括一个或两个基站。当网络设备包括一个基站时,该基站为不同运行商可共享同一个网络(简称共享网络)的基站,该基站可以在双卡不支持同一个运营商时允许 双卡驻留在该基站支持的网络中,这种情况下,测量控制信息1和测量控制信息2由同一个基站发送。当网络设备包括两个基站时,一个基站对应一个运营商,测量控制信息1和测量控制信息2分别由支持对应的运营商的基站发送。
在S330中,终端设备确定卡1的邻区频段和卡2的邻区频段之间是否能够形成终端设备支持的DSDA模式。
邻区频点包括至少一个频点,邻区频段包括该至少一个频点一一对应的至少一个频段。
在该步骤中,终端设备根据从测量控制信息1中得到的卡1的邻区频点确定对应的邻区频段,根据从测量控制信息2中得到的卡2的邻区频点确定对应的邻区频段,进而根据终端设备的DSDA模式信息,确定卡1的邻区频段和卡2的邻区频段之间是否能够形成终端设备支持的DSDA模式。
若卡1的邻区频段和卡2的邻区频段之间能够形成终端设备支持的DSDA模式,意味着卡1和卡2进行小区切换后有机会继续形成DSDA模式以继续保持双卡的连接态,则继续执行S341。
若卡1的邻区频段和卡2的邻区频段之间无法形成终端设备支持的DSDA模式,意味着卡1和卡2进行小区切换后无法形成DSDA模式从而无法保证双卡的连接态,使得小区切换失败,所以,对卡1和卡2的邻区频段不进行测量或者即使测量了也不上报测量结果,具体参考下文关于步骤S342的相关描述,不再赘述。
DSDA模式信息用于指示终端设备支持的能够形成DSDA模式的所有DSDA组合,每个DSDA组合包括双卡的网络类型和频段。实现中,可以在终端设备中预配置DSDA模式信息。
应理解,同一个终端设备支持的DSDA组合是固定的,不同终端设备支持的DSDA组合可以相同也可以不同,具体可以根据终端设备的型号或硬件信息确定。为了便于描述,以表1的形式列出某个终端设备支持的双卡模式的组合,在表1中,DSDA模式有3个DSDA组合,DSDA发射共享模式中由NRSAn1+NRSA n1形成的DSDA组合,DSDA发射独享模式中由NRSA n1+NRSA n78形成的DSDA组合,DSDA发射独享模式中由NRSAn1+LTE B41形成的DSDA组合。其中,表1中的3个DSDA组合可以是DSDA模式信息指示的终端设备支持的所有DSDA组合。
表1

以下,举例说明终端设备确定卡1的邻区频段和卡2的邻区频段是否能够形成终端设备支持的DSDA模式的过程。
假设,卡1驻留在网络1,卡1的邻区频段包括网络1的3个频段,分别是:频段11、频段12、频段14,卡2驻留在网络2,卡2的邻区频段包括网络2的2个频段,分别是频段21和频段22,终端设备的DSDA模式信息指示的终端设备支持的DSDA模式的所有DSDA组合包括3个DSDA组合,分别是:由“网络1频段11+网络2频段21”形成的DSDA组合1,以及,由“网络1频段12+网络2频段22”形成的DSDA组合2,由“网络1频段14+网络2频段23”形成的DSDA组合3。可以看出,卡1的邻区频段中的频段11和卡2的邻区频段中的频段21可形成DSDA模式的DSDA组合1,卡1的邻区频段中的频段12和卡2的邻区频段中的频段22可形成DSDA模式的DSDA组合2,所以,卡1的邻区频段和卡2的邻区频段能够形成DSDA模式,且可形成DSDA模式的2个DSDA组合。
在S342中,在卡1的邻区频段和卡2的邻区频段之间无法形成DSDA模式的情况下,终端设备对每个卡的邻区频段不进行测量,或者,对每个卡的邻区频段测量后不上报测量结果。
由于卡1的邻区频段和卡2的邻区频段之间无法形成DSDA模式,意味着卡1和卡2进行小区切换后是无法形成DSDA模式的,从而无法保证两个卡依然处于连接态,这样的小区切换是失败的。因此,在该步骤中,示例性地,终端设备对双卡的邻区频段可执行以下两种方案。
在一种实现方式中,终端设备对卡1的邻区频段和卡2的邻区频段不进行测量。这样,卡1和卡2能够继续驻留在当前的小区而不进行小区切换,以继续保持双卡的DSDA模式,从而能够保证卡1和卡2均处于连接态,不影响业务的正常进行,以保证良好的用户体验。此外,终端设备对卡1和卡2的邻区频段不进行测量,还能避免由于测量造成的功耗浪费,节省了功耗。
在另一种实现方式中,终端设备对卡1的邻区频段和卡2的邻区频段进行测量,但测量后不上报测量结果。这样,由于终端设备不会上报测量结果,网络设备就不会发起切换请求,终端设备也不会进行小区切换,卡1和卡2能够继续驻留在当前的小区而不进行小区切换,以继续保持双卡的DSDA模式,从而能够保证卡1和卡2均处于连接态,不影响业务的正常进行,以保证良好的用户体验。
在S341中,在卡1的邻区频段和卡2的邻区频段之间能够形成DSDA模式的情况下,终端设备对能够形成DSDA模式的每个卡的初始候选频段进行测量。其中,每个卡的初始 候选频段包括至少一个或多个频段。
在该步骤中,终端设备将卡1的邻区频段和卡2的邻区频段中能够形成DSDA模式的频段分别确定为卡1的初始候选频段和卡2的初始候选频段,对每个卡的初始候选频段中的每个频段进行测量,以得到每个卡的初始候选频段中每个频段的质量,以在满足一定条件时上报测量结果。
示例性地,频段的质量可以采用参考信号接收功率(reference signal receiving power,RSRP)和参考信号接收质量(reference signal receiving quality,RSRQ)中的至少一个来表示。
应理解,上述频段的质量也可以理解为小区的质量,两者可以替换描述。
应理解,一个卡的初始候选频段中的频段是该一个卡的邻区频段中的部分或全部频段。若该一个卡的邻区频段中的所有频段均能够和另一个卡的邻区频段中的至少一个频段形成DSDA模式,则该一个卡的初始候选频段是该一个卡的邻区频段中的全部频段。若该一个卡的邻区频段中的部分频段能够和另一个卡的邻区频段中的至少一个频段形成DSDA模式,则该一个卡的初始候选频段是该一个卡的邻区频段中的部分频段。
还应理解,当卡1的邻区频段和卡2的邻区频段之间能够形成DSDA模式时,可以形成DSDA模式的一个或多个DSDA组合,一个DSDA组合包括卡1的初始候选频段中的一个频段和卡2的初始候选频段中的一个频段。
继续以上述卡1的邻区频段中的频段11和卡2的邻区频段中的频段21可形成DSDA模式的DSDA组合1以及卡1的邻区频段中的频段12和卡2的邻区频段中的频段22可形成DSDA模式的DSDA组合2的例子为例。在DSDA组合1中,频段11是卡1的初始候选频段中的一个频段,频段21是卡2的初始候选频段中的一个频段,在DSDA组合2中,频段12是卡1的初始候选频段中的另一个频段,频段22是卡2的初始候选频段中的另一个频段,所以,卡1的初始候选频段即包括频段11和频段12,且卡1的初始候选频段是卡1的邻区频段中的部分频段,卡2的初始候选频段即包括频段21和频段22,且卡2的初始候选频段是卡2的邻区频段中的全部频段。
在S350中,终端设备确定每个卡的初始候选频段中是否存在满足预设条件的第一候选频段。其中,每个卡的第一候选频段包括至少一个或多个频段。
在该步骤中,终端设备基于在S341中得到的每个卡的初始候选频段中每个频段的质量,确定每个卡的初始候选频段中是否存在满足预设条件的第一候选频段。若每个卡的初始候选频段中存在满足预设条件的第一候选频段,则执行S361,若至少一个卡的初始候选频段中不存在满足预设条件的第一候选频段,则执行S362。
应理解,第一候选频段中的频段是初始候选频段中的部分或全部频段。若初始候选频段中的所有频段均满足预设条件,则第一候选频段的频段为初始候选频段的全部频段;若初始候选频段中的部分频段满足预设条件,则第一候选频段为初始候选频段中的部分频段。
在一些实施例中,预设条件为:每个卡的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段。示例性地,邻区的质量可以采用邻区对应的频段的RSRP和RSRQ中的至少一个表示。
其中,用于小区切换的事件可以是以下任一个事件:A3事件、A4事件、B1事件或B2事件。A3事件表示与服务小区是同系统同频的邻区的质量高于服务小区的质量的事件。A4事件表示与服务小区是同系统异频的邻区的质量高于一个门限的事件。B1事件表示与 服务小区是异系统的邻区的质量高于一个门限的事件。B2事件表示与服务小区是异系统的邻区的质量高于一个门限且服务小区的质量低于另一个门限的事件。
需要说明的是,一个邻区对应一个事件,不同邻区对应的事件可以相同也可以不同,具体以服务小区与邻区的关系而定。例如,若一个邻区是服务小区的同系统同频的小区,则网络设备为该邻区配置A3事件。若一个邻区是服务小区的同系统异频的小区,则网络设备为该邻区配置A4事件。
继续以上述卡1的初始候选频段包括频段11和频段12以及卡2的初始候选频段包括频段21和频段22为例,若卡1的初始候选频段中的频段11和频段12均满足预设条件,则卡1的第一候选频段包括频段11和频段12,是卡1的初始候选频段中的全部频段,若卡2的初始候选频段中只有频段21满足预设条件在,则卡2的第一候选频段包括频段21,是卡1的初始候选频段中的部分频段。
在S362中,在每个卡的初始候选频段中不存在满足预设条件的第一候选频段的情况下,终端设备不上报任一个卡的测量报告。
若确定出卡1和卡2中的其中一个卡的初始候选频段不存在满足预设条件的第一候选频段,另一个卡存在满足预设条件的第一候选频段,即使将另一个卡切换至第一候选频段中的某个频段,卡1和卡2不一定形成DSDA模式,这种小区切换是失败的。所以,终端设备即使测量了卡1和卡2的初始候选频段,也不上报测量报告,网络设备也不会指示小区切换。
若确定出卡1的初始候选频段和卡2的初始候选频段中均不存在满足预设条件的第一候选频段,意味着两个卡的初始候选频段的质量都不好,没必要切换小区。所以,终端设备即使测量了卡1和卡2的初始候选频段,也不上报测量报告,网络设备也不会指示小区切换。
在S361中,在每个卡的初始候选频段中存在满足预设条件的第一候选频段的情况下,终端设备根据基于卡1的第一候选频段和卡2的第一候选频段形成的DSDA模式的至少一个DSDA组合确定目标DSDA组合,目标DSDA组合包括卡1的第一候选频段中的目标频段和卡2的第一候选频段中的目标频段。
在该步骤中,若在S350中确定出每个卡的初始候选频段中存在满足预设条件的第一候选频段,则终端设备根据卡1的第一候选频段和卡2的第一候选频段确定能够形成DSDA模式的至少一个DSDA组合,从该至少一个DSDA组合中确定目标DSDA组合,该目标DSDA组合包括卡1的第一候选频段中的一个频段(记为卡1的目标频段)和卡2的第一候选频段中的一个频段(记为卡2的目标频段)。
若上述至少一个DSDA组合仅有一个DSDA组合,则将这个唯一的一个DSDA组合确定为目标DSDA组合。
若上述至少一个DSDA组合包括多个DSDA组合,则目标DSDA组合为该多个DSDA组合中的某个DSDA组合,该目标DSDA组合可以是该多个DSDA组合中的任一个DSDA组合,也可以是按照规则确定的DSDA组合,此处不做任何限定。
在上述至少一个DSDA组合包括多个DSDA组合的实施例中,可以将该多个DSDA组合中优先级最高的DSDA组合确定为目标DSDA组合。
在一些实施例中,该优先级最高的DSDA组合是该多个DSDA组合中双卡模式的能力 最好的组合。
该实施例是从双卡模式的能力定义DSDA组合优先级。双卡模式的能力越好,DSDA组合的优先级越高,反之,双卡模式的能力越差,DSDA组合的优先级越低。双卡模式的能力由高到低为:DSDA发射独享>DSDA发射共享>DR-DSDS>DSDS,那么,DSDA组合的优先级由高到低可以为:DSDA发射独享>DSDA发射共享>DR-DSDS>DSDS。
在另一些实施例中,该优先级最高的DSDA组合是该多个DSDA组合中双卡的下行传输通道的独立性最好的组合。
这里所说的独立性,表示的是双卡在进行下行传输时,一个卡的下行传输通道不会影响另一个卡的下行传输通道。例如,卡1在频段11上有4个下行传输通道,卡2在频段21上有4个下行传输通道,当卡1驻留在频段11以及卡2驻留在频段21时双卡间形成DSDA组合,卡1和卡2的下行传输通道依然是4个,互不影响,独立性好。再例如,卡1在频段11上有4个下行传输通道,卡2在频段22上有4个下行传输通道,当卡1驻留在频段11以及卡2驻留在频段22时双卡间形成DSDA组合,但是,在这种DSDA组合中,每个卡的下行传输通道由4个变为2个,每个卡的下行传输通道受到了影响。
在S370中,终端设备向网络设备上报每个卡的测量报告。每个卡的测量报告用于指示每个卡的目标频段的质量。
这样,网络设备基于每个卡的测量报告,可以向终端设备发送切换请求,以指示终端设备将每个卡切换至目标频段上。当完成小区切换后,卡1驻留在卡1的目标频段上,卡2驻留在卡2的目标频段上,双卡间形成DSDA模式,卡1和卡2可以继续保持连接态,这样,成功完成了小区切换,保证了用户体验。
在上述方法300中,对于双卡均处于连接态的场景,终端设备先确定双卡的邻区频段之间是否能够形成DSDA模式,以优先保证双卡切换小区后驻留的频段能够形成DSDA模式,然后在双卡的能够形成DSDA模式的初始候选频段中进一步确定满足预设条件(质量要求)的第一候选频段,从每个卡的第一候选频段中确定出包括每个卡的目标频段的目标DSDA组合,进一步保证了切换小区后双卡驻留的频段的质量。
因此,对于双卡均处于连接态的场景,通过上述方法300,不仅能够使得切换小区后双卡驻留的频段继续形成DSDA模式以保持连接态,而且,切换小区后双卡驻留的频段的质量优于双卡之前驻留的频段的质量,提高了信号质量,总体上提高了用户体验。
一般情况下,终端设备有两个主要业务,通话业务和数据业务(即上网业务),通话业务的优先级高于数据业务的优先级,在前台的通话业务(简称前台通话业务)的优先级高于在后台的通话业务(简称后台通话业务)的优先级。若双卡当前执行的业务的优先级不同,例如,一个卡执行通话业务,另一个卡执行数据业务,若优先考虑双卡切换小区后驻留的频段是否能够形成DSDA模式再考虑质量要求,对于执行通话业务的卡而言,最终确定的目标频段的质量可能并不是所有邻区频段中质量靠前的,所以,执行通话业务的卡的性能可能达不到最优,一定程度上会影响用户体验。
因此,在上述方法300中,在一些实施例中,在执行S330之前,终端设备可以先确定双卡当前执行的业务的优先级是否相同,若双卡当前执行的业务的优先级相同,执行S330以及后续步骤,例如,双卡当前执行的业务均为数据业务。
若双卡当前执行的业务的优先级不同,例如,一个卡执行通话业务,另一个卡执行数 据业务,或者,一个卡执行前台通话业务,另一个卡执行后台通话业务,则执行下文的方法400,参考下文的具体描述。
应理解,上述方法300中步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。例如,步骤S310和步骤S320的执行顺序可以互相调换。
图4是本申请实施例提供的双卡通信的方法400的示意性流程图。同方法300,为了便于描述,以终端设备为例对方法400做详细说明。
在方法400中,卡1为业务优先级高的卡,卡2为业务优先级低的卡。一般情况下,终端设备有两个主要业务,通话业务和数据业务(即上网业务),而且,通话业务的优先级高于数据业务的优先级,前台通话业务的优先级高于后台通话业务的优先级。
在S410中,终端设备确定双卡均处于连接态。具体描述可参考步骤S310的相关描述,不再赘述。
在S420中,终端设备接收网络设备发送的双卡中每个卡的测量控制信息。
每个卡的测量控制信息用于指示每个卡的邻区频点,具体描述可参考步骤S320的相关描述,不再赘述。
在S430中,终端设备确定双卡当前执行的业务的优先级不同。
其中一个卡当前执行的业务的优先级高,另一个卡当前执行的业务的优先级低。为了便于描述,将业务优先级高的卡记为卡1,将业务优先级低的卡记为卡2。
例如,卡1当前执行通话业务,卡2当前执行数据业务。再例如,卡1当前执行前台通话业务,卡2当前执行后台通话业务。
在S440中,终端设备确定业务优先级高的卡1的邻区频段中满足预设条件1的目标频段1。在该步骤中,终端设备根据卡1的测量控制信息,对卡1的邻区频段对应的邻区频段进行测量,得到邻区频段中每个频段的质量,根据每个频段的质量,确定卡1的邻区频段中满足预设条件1的目标频段1。
示例性地,预设条件1为:卡1的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段。其中,小区的质量可以采用小区对应的频段的RSRP和RSRQ中至少一个表示。关于用于小区切换的事件的具体描述可参考上文S350中的相关描述,不再赘述。
应理解,目标频段1是卡1的邻区频段中满足预设条件1的某个频段,可以是满足预设条件1的任一个频段,本申请实施例不做任何限定。当满足预设条件1的频段包括多个频段时,示例性地,可以将该多个频段中质量最好的频段确定为目标频段1。
在S450中,终端设备确定业务优先级低的卡2的邻区频段中能够与卡1的目标频段1形成终端设备支持的DSDA模式的初始候选频段。其中,卡2的初始候选频段包括一个或多个频段。
应理解,卡2的初始候选频段是卡2的邻区频段中的部分或全部频段。若卡2的邻区频段中的所有频段均能够和卡1的目标频段1形成DSDA模式,则卡2的初始候选频段是卡2的邻区频段中的全部频段。若卡2的邻区频段中的部分频段能够和卡1的目标频段1形成DSDA模式,则卡2的初始候选频段是卡2的邻区频段中的部分频段。
在S460中,终端设备对卡2的初始候选频段进行测量,以得到卡2的初始候选频段中每个频段的质量。关于频段的质量的具体描述可参考上文的相关描述,不再赘述。
在S470中,终端设备确定卡2的初始候选频段中是否存在满足预设条件2的第一候选频段。其中,第一候选频段包括一个或多个频段。
在该步骤中,终端设备基于在S460中得到的卡2的初始候选频段中每个频段的质量,确定卡2的初始候选频段中是否存在满足预设条件2的第一候选频段。若确定卡2的初始候选频段中存在满足预设条件2的第一候选频段,则执行S481,若确定卡2的初始候选频段中不存在满足预设条件2的第一候选频段,则执行S482。
在一些实施例中,预设条件2为:卡2的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段。示例性地,小区的质量采用小区对应的频段的RSRP和RSRQ中的至少一个表示。关于用于小区切换的事件的具体描述可参考上文S350中的相关描述,不再赘述。
应理解,第一候选频段中的频段是初始候选频段中的部分或全部频段。若初始候选频段中的所有频段均满足预设条件,则第一候选频段的频段为初始候选频段的全部频段;若初始候选频段中的部分频段满足预设条件,则第一候选频段为初始候选频段中的部分频段。
在S481中,在卡2的初始候选频段中存在满足预设条件2的第一候选频段的情况下,终端设备从卡2的第一候选频段中确定目标频段2。
若卡2的第一候选频段包括一个频段,则将这个唯一的频段确定为目标频段2。
若卡2的第一候选频段包括多个频段,则将该多个频段中的某个频段确定为目标频段2,该目标频段2可以是该多个频段中的任一个频段,也可以是按照规则确定的某个频段,此处不做任何限定。
在卡2的第一候选频段包括多个频段的实施例中,终端设备将第一候选频段中优先级最高的频段确定为目标频段2。
在一些实施例中,该优先级最高的频段是卡2的第一候选频段中与卡1的目标频段1形成的DSDA模式中双卡模式的能力最好的频段。也就是说,第一候选频段中与目标频段1形成的DSDA模式中双卡模式的能力最好的频段为目标频段2。
该实施例是从双卡模式的能力定义第一候选频段中频段的优先级的。第一候选频段中某个频段与卡1的目标频段1形成的双卡模式的能力越好,该某个频段的优先级越高,反之,第一候选频段中某个频段与卡1的目标频段1形成的双卡模式的能力越差,该某个频段的优先级越低。双卡模式的能力由高到低为:DSDA发射独享>DSDA发射共享>DR-DSDS>DSDS。
在另一些实施例中,该优先级最高的频段是卡2的第一候选频段中质量最好的频段。也就是说,第一候选频段中质量最好的频段为目标频段2。频段的质量可以采用RSRP值和RSRQ值中的至少一个表征。
该实施例是从频段的质量定义第一候选频段中频段的优先级的。第一候选频段中某个频段的质量越好,该某个频段的优先级越高,反之,第一候选频段中某个频段的质量越差,该某个频段的优先级越低。
需要说明的是,上述定义的第一候选频段中频段的优先级可以单独使用,也可以结合使用。
在结合使用上述频段的优先级时,在一些实施例中,将双卡模式的能力与频段的质量结合起来,优先从双卡模式的能力考虑频段的优先级,再从频段的质量考虑频段的优先级。 一般情况下,若第一候选频段中与卡1的目标频段1形成的DSDA模式中双卡模式的能力最好的频段有多个时,可以进一步结合频段的质量确定目标频段2。
在S491中,终端设备上报目标频段1的测量报告和目标频段2的测量报告。
对应地,网络设备基于每个卡的目标频段的测量报告,指示终端设备将每个卡切换至目标频段上,当完成小区切换后,卡1驻留在目标频段1上,卡2驻留在目标频段2上,双卡间形成DSDA模式,卡1和卡2可以继续保持连接态,这样,成功完成了小区切换,保证了用户体验。
在S482中,在卡2的初始候选频段中不存在满足预设条件2的第一候选频段的情况下,终端设备从卡2的初始候选频段中确定目标频段2。
在卡2的初始候选频段中不存在满足预设条件2的第一候选频段的情况下,考虑到卡2当前驻留的频段在后续时段内很可能质量越来越差,即使卡2的初始候选频段不满足质量要求,但考虑到初始候选频段在后续时段有可能质量变好,所以,这种情况下,依然会从初始候选频段中确定目标频段2,以上报给网络设备。
若卡2的初始候选频段包括一个频段,则将这个唯一的频段确定为目标频段2。
若卡2的初始候选频段包括多个频段,则将该多个频段中的某个频段确定为目标频段2,该目标频段2可以是该多个频段中的任一个频段,也可以是按照规则确定的一个频段,此处不做任何限定。
在卡2的初始候选频段包括多个频段的实施例中,终端设备将初始候选频段中优先级最高的频段确定为目标频段2。
在一些实施例中,该优先级最高的频段是卡2的初始候选频段中与卡1的目标频段1形成的DSDA模式中双卡模式的能力最好的频段。也就是说,初始候选频段中与目标频段1形成的DSDA模式中双卡模式的能力最好的频段为目标频段2。
该实施例是从双卡模式的能力定义初始候选频段中频段的优先级的,具体描述可参考上文关于从双卡模式的能力定义第一候选频段中频段的优先级的相关描述,将上文的第一候选频段替换为这里的初始候选频段即可,不再赘述。
在另一些实施例中,该优先级最高的频段是卡2的初始候选频段中质量最好的频段。也就是说,初始候选频段中质量最好的频段为目标频段2。频段的质量可以采用RSRP值和RSRQ值中的至少一个表征。
该实施例是从频段的质量定义初始候选频段中频段的优先级的,具体描述可参考上文关于从频段的质量定义第一候选频段中频段的优先级的相关描述,将上文的第一候选频段替换为这里的初始候选频段即可,不再赘述。
需要说明的是,上述定义的初始候选频段中频段的优先级可以单独使用,也可以结合使用,具体可参考上文关于第一候选频段中频段的优先级的相关描述,将上文的第一候选频段替换为这里的初始候选频段即可,不再赘述。
在S492中,终端设备上报目标频段1的测量报告和目标频段2的测量报告。
具体描述可参考步骤S491的相关描述,不再赘述。
在上述方法400中,对于双卡均处于连接态的场景,当双卡当前执行的业务的优先级不同时,终端设备先从业务优先级高的卡1的邻区频段中确定满足预设条件1的目标频段1,以优先保证业务优先级高的卡1的信号质量,然后再从业务优先级低的卡2的邻区频 段中确定能够与卡1的目标频段1形成DSDA组合的初始候选频段以及从初始候选频段中确定满足预设条件2的第一候选频段,从第一候选频段中确定目标频段2,进一步保证了切换小区后双卡驻留的频段也能够形成DSDA模式以继续保持连接态,总体提高了用户体验。
应理解,上述方法400的过程仅为示意性描述,不应对本申请实施例构成限定。
在一些实施例中,在卡2的初始候选频段中不存在满足预设条件2的第一候选频段的情况下,终端设备可以仅上报目标频段1的测量报告,不上报卡2的任何频段的测量报告。
这样,网络设备基于该测量报告可以指示终端设备将卡1切换至质量好的目标频段1对应的小区,卡2继续驻留在当前小区,虽然卡1进行小区切换后驻留的频段与卡2当前驻留的小区的频段不一定能够形成DSDA模式,但能够优先保证卡1当前执行的业务的质量要求。
还应理解,上述方法400中步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图5是本申请实施例提供的双卡通信的方法500的示意性流程图。同方法300,为了便于描述,以终端设备为例对方法500做详细说明。
与上述方法300和方法400不同之处在于,方法500描述的是双卡中其中一个卡需要进行小区切换的场景。在方法500中,卡1为主卡和副卡中的其中一个,卡2为主卡和副卡中的另一个,此处不做任何限定。
在S510中,终端设备确定双卡均处于连接态。具体描述可参考步骤S310的相关描述,不再赘述。
在S520中,终端设备接收网络设备发送的卡1的测量控制信息。
测量控制信息用于指示卡1的邻区频点。关于测量控制信息的具体描述可参考S320的相关描述,不再赘述。
在S530中,终端设备确定卡1的邻区频段中能够与卡2当前驻留的频段形成终端设备支持的DSDA模式的初始候选频段。其中,初始候选频段包括一个或多个频段。
在该步骤中,终端设备根据从卡1的测量控制信息确定的卡1的邻区频点确定对应的邻区频段,进而,确定卡1的邻区频段中能够与卡2当前驻留的频段形成终端设备支持的DSDA模式的初始候选频段。
应理解,卡1的初始候选频段是卡1的邻区频段中的部分或全部频段。若卡1的邻区频段中的所有频段均能够和卡2当前驻留的频段形成DSDA模式,则卡1的初始候选频段是卡1的邻区频段中的全部频段。若卡1的邻区频段中的部分频段能够和卡2当前驻留的频段形成DSDA模式,则卡1的初始候选频段是卡1的邻区频段中的部分频段。
在S540中,终端设备从初始候选频段中确定满足预设条件的第一候选频段。其中,初始候选频段包括一个或多个频段。
在该步骤中,终端设备对卡1的初始候选频段进行测量,以得到卡1的初始候选频段中每个频段的质量,从而,确定满足预设条件的第一候选频段。
应理解,第一候选频段中的频段是卡1的初始候选频段中的部分或全部频段。若初始候选频段中的所有频段均满足预设条件,则第一候选频段的频段为初始候选频段的全部频段;若初始候选频段中的部分频段满足预设条件,则第一候选频段为初始候选频段中的部 分频段。
在一些实施例中,预设条件为:卡1的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段。示例性地,邻区的质量可以采用邻区对应的频段的RSRP和RSRQ中的至少一个表示。关于用于小区切换的事件的具体描述可参考上文S350中的相关描述,不再赘述。
在S550中,终端设备从第一候选频段中确定目标频段。
若第一候选频段包括一个频段,则将这个唯一的频段确定为目标频段。
若第一候选频段包括多个频段,则将该多个频段中的某个频段确定为目标频段,该目标频段可以是该多个频段中的任一个频段,也可以是按照规则确定的某个频段,此处不做任何限定。
在第一候选频段包括多个频段的实施例中,终端设备将第一候选频段中优先级最高的频段确定为目标频段。
在一些实施例中,该优先级最高的频段是第一候选频段中与卡2当前驻留的频段形成的DSDA模式中双卡模式的能力最好的频段。也就是说,第一候选频段中与卡2当前驻留的频段形成的DSDA模式中双卡模式的能力最好的频段为目标频段。
在另一些实施例中,该优先级最高的频段是第一候选频段中质量最好的频段。也就是说,第一候选频段中质量最好的频段为目标频段。
需要说明的是,上述第一候选频段中频段的优先级可以单独使用,也可以结合使用。
关于上述从第一候选频段中确定目标频段的具体描述可参考上文的相关描述,不再赘述。
在S560中,终端设备上报目标频段的测量报告,测量报告用于指示目标频段的质量。
对应地,网络设备基于目标频段的测量报告,指示终端设备将卡1切换至目标频段上,当完成小区切换后,卡1驻留在目标频段1上,卡2依然驻留在当前频段上,双卡间形成DSDA模式,卡1和卡2可以继续保持连接态,这样,成功完成了小区切换,保证了用户体验。
在上述方法500中,终端设备先确定需要进行邻区测量的卡1的邻区频段中与卡2当前驻留的频段是否能够形成DSDA模式,以优先保证卡1切换小区后驻留的频段能够和卡2当前驻留的频段依然形成DSDA模式,然后在卡1的能够形成DSDA模式的初始候选频段中进一步确定满足预设条件(质量要求)的第一候选频段,从第一候选频段中确定目标频段,进一步保证了切换小区后卡1驻留的频段的质量。这样,不仅能够使得卡1切换小区后卡1驻留的频段能够和卡2当前驻留的频段继续形成DSDA模式以保持连接态,而且,切换小区后的卡1驻留的频段的质量优于之前驻留的频段的质量,提高了信号质量,总体上提高了用户体验。
图6是本申请实施例提供的双卡通信的方法600的示意性流程图。该方法600可由支持双卡通信的终端设备执行,也可由终端设备中的芯片执行,本申请实施例不做任何限定。为了便于描述,以终端设备为例对方法600做详细说明。
方法600所示的实施例是双卡进行小区切换的场景,通过相关设计尽可能使得切换小区后双卡驻留的频段间依然形成DSDA模式以继续保持连接态,不影响每个卡的业务的正常进行,以提高用户体验。
在方法600中,终端设备的第一卡和第二卡均处于连接态,第一卡可以为主卡和副卡中的一个卡,第二卡为主卡和副卡中的另一个卡。此外,方法600可类比于方法300,第一卡可以类比于方法300中的卡1,第二卡可以类比于方法300中的卡2。
当第一卡和第二卡均处于连接态时,意味着第一卡和第二卡均可独立进行上行传输和下行传输,而只有当第一卡和第二卡之间形成DSDA模式的情况下才会使得第一卡和第二卡处于连接态。所以,当第一卡和第二卡均处于连接态时,第一卡和第二卡之间必然已形成DSDA模式,即终端设备处于DSDA模式。因此,当第一卡和第二卡均处于连接态时也相当于第一卡和第二卡之间形成DSDA模式。
在S610中,终端设备确定第一卡的邻区频段和第二卡的邻区频段之间是否能够形成终端设备支持的双卡双通DSDA模式。其中,第一卡的邻区频段包括至少一个频段,第二卡的邻区频段包括至少一个频段。
在该步骤中,终端设备可以根据网络设备发送的第一卡的测量控制信息确定第一卡的邻区频点,根据网络设备发送的第二卡的测量控制信息确定第二卡的邻区频点,邻区频点表示每个卡当前驻留的小区(即,服务小区)的邻区的频点,邻区频点包括至少一个频点,至少一个频点与至少一个邻区一一对应,一个频点对应一个邻区,因此,根据第一卡的邻区频点可以确定第一卡的邻区频段,根据第二卡的邻区频点可以确定第二卡的邻区频段,根据终端设备的DSDA模式信息,确定第一卡的邻区频段和第二卡的邻区频段之间是否能够形成终端设备支持的DSDA模式。
DSDA模式信息用于指示终端设备支持的能够形成DSDA模式的所有DSDA组合,每个DSDA组合包括双卡的网络类型和频段。实现中,可以在终端设备中预配置DSDA模式信息。
应理解,同一个终端设备支持的DSDA组合是固定的,不同终端设备支持的DSDA组合可以相同也可以不同,具体可以根据终端设备的型号或硬件信息确定。具体描述可参考上文的相关描述,不再赘述。
上述网络设备包括一个或多个基站,第一卡的测量控制信息和第二卡的测量控制信息可以是同一个基站发送的也可以是不同基站发送的,主要视第一卡和第二卡驻留的网络是否相同以及是否支持相同的运营商的情况而定,具体描述可参考上文S320的相关描述,将上文的卡1和卡2分别替换为第一卡和第二卡即可,不再赘述。
在S620中,终端设备对能够形成DSDA模式的第一卡和第二卡中每个卡的初始候选频段进行测量。
若第一卡的邻区频段和第二卡的邻区频段之间能够形成终端设备支持的DSDA模式,意味着第一卡和第二卡进行小区切换后有机会继续形成DSDA模式以继续保持双卡的连接态,能够成功实现小区的切换。因此,在该步骤中,在第一卡的邻区频段和第二卡的邻区频段之间能够形成DSDA模式的情况下,将第一卡的邻区频段和第二卡的邻区频段中能够形成DSDA模式的频段分别确定为第一卡的初始候选频段和第二卡的初始候选频段,对每个卡的初始候选频段中的每个频段进行测量,以得到每个卡的初始候选频段中每个频段的质量,以在满足一定条件时上报测量结果。
当第一卡的邻区频段和第二卡的邻区频段之间能够形成DSDA模式时,可以形成DSDA模式的一个或多个DSDA组合,一个DSDA组合包括第一卡的初始候选频段中的一 个频段和第二卡的初始候选频段中的一个频段。
应理解,每个卡的初始候选频段中的频段是该每个卡的邻区频段中的部分或全部频段。若一个卡的邻区频段中的所有频段均能够和另一个卡的邻区频段中的至少一个频段形成DSDA模式,则该一个卡的初始候选频段是该一个卡的邻区频段中的全部频段。若该一个卡的邻区频段中的部分频段能够和另一个卡的邻区频段中的至少一个频段形成DSDA模式,则该一个卡的初始候选频段是该一个卡的邻区频段中的部分频段。
示例性地,频段的质量可以采用RSRP和RSRQ中的至少一个来表示。
应理解,上述频段的质量也可以理解为频段对应的小区的质量,两者可以替换描述。
以下,举例说明终端设备确定每个卡的初始候选频段的过程。
假设,第一卡驻留在网络1,第一卡的邻区频段包括网络1的3个频段,分别是:频段11、频段12、频段14,第二卡驻留在网络2,第二卡的邻区频段包括网络2的2个频段,分别是频段21和频段22,终端设备的DSDA模式信息指示的终端设备支持的DSDA模式的所有DSDA组合包括3个DSDA组合,分别是:由“网络1频段11+网络2频段21”形成的DSDA组合1,以及,由“网络1频段12+网络2频段22”形成的DSDA组合2,由“网络1频段14+网络2频段23”形成的DSDA组合3。可以看出,第一卡的邻区频段中的频段11和第二卡的邻区频段中的频段21可形成DSDA组合1,第一卡的邻区频段中的频段12和第二卡的邻区频段中的频段22可形成DSDA组合2,所以,第一卡的邻区频段和第二卡的邻区频段能够形成DSDA模式,且可形成DSDA模式的2个DSDA组合。在DSDA组合1中,频段11是第一的初始候选频段中的一个频段,频段21是第二卡的初始候选频段中的一个频段,在DSDA组合2中,频段12是第一卡的初始候选频段中的另一个频段,频段22是第二卡的初始候选频段中的另一个频段,所以,第一卡的初始候选频段即包括频段11和频段12,且第一卡的初始候选频段是第一卡的邻区频段中的部分频段,第二卡的初始候选频段即包括频段21和频段22,且第二卡的初始候选频段是第二卡的邻区频段中的全部频段。
在S630中,终端设备确定每个卡的初始候选频段中满足预设条件的第一候选频段,该预设条件包括:该每个卡的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段。其中,第一候选频段包括至少一个频段。
在该步骤中,终端设备基于在S620中得到的每个卡的初始候选频段中每个频段的质量,根据预设条件,确定每个卡的初始候选频段中满足预设条件的第一候选频段。
在预设条件中,示例性地,邻区的质量可以采用邻区对应的频段的RSRP和RSRQ中的至少一个表示。而且,用于小区切换的事件的可以是以下任一个事件:A3事件、A4事件、B1事件或B2事件,关于各个事件的具体描述可参考上文的相关描述,不再赘述。
应理解,第一候选频段中的频段是初始候选频段中的部分或全部频段。若初始候选频段中的所有频段均满足预设条件,则第一候选频段的频段为初始候选频段的全部频段;若初始候选频段中的部分频段满足预设条件,则第一候选频段为初始候选频段中的部分频段。
在S640中,终端设备根据基于第一卡的第一候选频段和第二卡的第一候选频段之间形成的DSDA模式的至少一个DSDA组合,确定目标DSDA组合,该目标DSDA组合包括该第一卡的第一候选频段中的目标频段和该第二卡的第一候选频段中的目标频段。
在该步骤中,若在S640中确定出每个卡的初始候选频段中存在满足预设条件的第一 候选频段,则终端设备根据第一卡的第一候选频段和第二卡的第一候选频段确定能够形成DSDA模式的至少一个DSDA组合,从该至少一个DSDA组合中确定目标DSDA组合。
在上述至少一个DSDA组合中,一个DSDA组合包括第一卡的第一候选频段中的一个频段和第二卡的第一候选频段中的一个频段。对于目标DSDA组合,将目标DSDA组合中包括的第一卡的第一候选频段中的一个频段记为第一卡的目标频段,将目标DSDA组合中包括的第二卡的第一候选频段中的一个频段记为第二卡的目标频段。
若上述至少一个DSDA组合仅有一个DSDA组合,则将这个唯一的一个DSDA组合确定为目标DSDA组合。
若上述至少一个DSDA组合包括多个DSDA组合,则目标DSDA组合为该多个DSDA组合中的某个DSDA组合,该目标DSDA组合可以是该多个DSDA组合中的任一个DSDA组合,也可以是按照规则确定的DSDA组合,此处不做任何限定。
在一些实施例中,该至少一个DSDA组合包括多个DSDA组合;以及,该根据基于该第一卡的第一候选频段和该第二卡的第一候选频段之间形成的DSDA模式的至少一个DSDA组合,确定目标DSDA组合,包括:将该至少一个DSDA组合中优先级最高的DSDA组合确定为该目标DSDA组合。
这样,终端设备通过将优先级最高的DSDA组合作为目标DSDA组合,能够使得进行小区切换后第一卡和第二卡驻留的频段之间形成的DSDA模式是终端设备设定的最优模式,提高了双卡模式的性能。
在一示例中,该目标DSDA组合是该多个DSDA组合中双卡模式的能力最好的组合。
该实施例中是从双卡模式的能力定义DSDA组合的优先级,具体描述可参考上文S361中的相关描述,将上文的卡1和卡2分别替换为这里的第一卡和第二卡即可,不再赘述。
通过将多个DSDA组合中双卡模式的能力最好的组合确定为目标DSDA组合,终端设备根据该目标DSDA组合对第一卡和第二卡进行小区切换后,能够使得进行小区切换后第一卡和第二卡驻留的频段之间形成的DSDA模式是性能最好的双卡模式,用户的体验最好。
在另一示例中,该目标DSDA组合是该多个DSDA组合中双卡的下行传输通道的独立性最好的组合。
这里所说的独立性,表示的是双卡在DSDA模式下进行下行传输时,一个卡的下行传输通道不会影响另一个卡的下行传输通道,每个卡的下行传输通道均不会减少。关于该实施例的描述可参考上文S361中的相关描述,将上文的卡1和卡2分别替换为这里的第一卡和第二卡即可,不再赘述。
通过将多个DSDA组合中双卡的下行传输通道的独立性最高的组合确定为目标DSDA组合,终端设备根据该目标DSDA组合对第一卡和第二卡进行小区切换后,第一卡和第二卡驻留的频段不仅能够形成DSDA模式,而且,尽可能不会使得每个卡的下行传输通道减少,提高传输效率。
在S650中,终端设备上报测量报告,该测量报告用于指示第一卡的目标频段的质量和第二卡的目标频段的质量。
对应地,网络设备可以基于测量报告,向终端设备发送切换请求,以指示终端设备将每个卡切换至对应的目标频段上。当完成小区切换后,第一卡驻留在第一卡的目标频段上,第二卡驻留在第二卡的目标频段上,双卡间形成DSDA模式以继续保持连接态,这样,成 功完成了小区切换,保证了用户体验。
示例性地,测量报告可以包括针对第一卡的第一测量报告和针对第二卡的第二测量报告,第一测量报告用于指示第一卡的目标频段的质量,第二测量报告用于指示第二卡的目标频段的质量。这样,终端设备可以将第一测量报告和第二测量报告分别上报给网络设备。
本申请实施例提供的双卡通信的方法,在第一卡和第二卡均处于连接态的情况下,第一卡和第二卡之间形成DSDA模式,当需要进行小区切换时,首先确定第一卡的邻区频段和第二卡的邻区频段之间是否能够形成终端设备支持的DSDA模式,在能够形成DSDA模式的情况下继续执行后续步骤,以优先保证第一卡和第二卡切换小区后驻留的小区的频段之间依然能够形成DSDA模式,随后,对能够形成DSDA模式的每个卡的初始候选频段进行测量、从每个卡的初始候选频段中确定满足预设条件(即,质量要求)的第一候选频段以及从第一卡和第二卡的第一候选频段中确定出包括每个卡的目标频段的目标DSDA组合,向网络设备上报测量报告,以便于网络设备指示终端设备将第一卡和第二卡分别切换至对应的目标频段上,进一步保证了切换小区后第一卡和第二卡驻留的小区的频段的质量。综上,上述方法不仅能够使得切换小区后第一卡和第二卡驻留的频段继续形成DSDA模式以保持连接态,不影响每个卡的业务的正常进行,而且,切换小区后第一卡和第二卡驻留的频段的质量优于第一卡和第二卡之前驻留的频段的质量,提高了信号质量,总体上提高了用户体验。
在一些实施例中,在该确定该第一卡的邻区频段和该第二卡的邻区频段之间是否能够形成该终端设备支持的双卡双通DSDA模式之前,方法600还包括:
终端设备确定该第一卡当前执行的业务的优先级与该第二卡当前执行的业务的优先级相同。
示例性地,该第一卡和该第二卡当前执行的业务均为数据业务。
若第一卡和第二卡当前执行的业务的优先级不同,例如,一个卡执行通话业务,另一个卡执行数据业务,通话业务的优先级高于数据业务的优先级,若优先考虑第一卡和第二卡切换小区后驻留的频段是否能够形成DSDA模式再考虑质量要求,对于执行通话业务的卡而言,最终确定的目标频段的质量可能并不是所有邻区频段中质量靠前的,所以,执行通话业务的卡的性能可能达不到最优,一定程度上会影响用户体验。因此,在第一卡当前执行的业务的优先级与第二卡当前执行的业务的优先级相同的情况下,先确定第一卡和第二卡切换小区后驻留的频段是否能够形成DSDA模式再考虑质量要求,能够避免出现由于某个卡当前执行的业务的优先级高但切换小区后该某个卡驻留的频段的质量并不是很好的情况,从而在一定程度上影响用户体验。
在以上实施例中,描述的是在第一卡的邻区频段与第二卡的邻区频段能够形成DSDA模式的情况下终端设备的行为,在一些实施例中,方法600还包括:
在该第一卡的邻区频段和该第二卡的邻区频段无法形成该终端设备支持的DSDA模式的情况下,终端设备对该每个卡的邻区频段不进行测量。
由于第一卡的邻区频段和第二卡的邻区频段之间无法形成DSDA模式,意味着第一卡和第二卡进行小区切换后是无法形成DSDA模式的,从而无法保证双卡依然处于连接态,这样的小区切换是失败的。因此,终端设备对每个卡的邻区频段不进行测量。
这样,第一卡和第二卡能够继续驻留在当前的小区而不进行小区切换,以继续保持双 卡的DSDA模式,从而能够保证第一卡和第二卡继续处于连接态,一定程度上不影响业务的正常进行,以尽可能保证良好的用户体验。此外,终端设备对每个卡的邻区频段不进行测量,还能避免由于无效的测量造成的功耗浪费,节省了功耗。
在另一些实施例中,在该第一卡的邻区频段和该第二卡的邻区频段无法形成该终端设备支持的DSDA模式的情况下,终端设备对该每个卡的邻区频段进行测量,但不上报测量报告。
这样,由于终端设备不会上报测量结果,网络设备就不会发起切换请求,终端设备也不会进行小区切换,第一卡和第二卡能够继续驻留在当前的小区而不进行小区切换,以继续保持双卡的DSDA模式,从而能够保证第一卡和第二卡继续处于连接态,一定程度上不影响业务的正常进行,以保证良好的用户体验。
图7是本申请实施例提供的双卡通信的方法700的示意性流程图。该方法600可由支持双卡通信的终端设备执行,也可由终端设备中的芯片执行,本申请实施例不做任何限定。为了便于描述,以终端设备为例对方法700做详细说明。
方法700的双卡均处于连接态,与方法600不同之处在于,双卡当前执行的业务的优先级不同,第一卡是业务优先级高的卡,第二卡是业务优先级低的卡,需要先确定业务优先级高的第一卡的邻区频段中质量好的第一目标频段,基于第一目标频段,从业务优先级的第二卡的邻区频段中匹配能够和第一目标频段形成DSDA模式的第二目标频段,以优先保证切换小区后业务优先级高的第一卡驻留的频段的质量,也能保证切换小区后双卡驻留的频段形成DSDA模式以继续保持连接态,不影响每个卡的业务的正常进行,以更好地提高用户体验。
此外,方法700可类比于方法400,第一卡可类比于方法400中的卡1,第二卡可类比于方法400的卡2。
在S710中,在双卡当前执行的业务的优先级不同的情况下,终端设备确定双卡中第一卡的邻区频段中满足第一预设条件的第一目标频段,该第一卡当前执行的业务的优先级高于该双卡中第二卡当前执行的业务的优先级,该第一预设条件包括:该第一卡的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段。
在该步骤之前,终端设备会确定双卡当前执行的业务的优先级是否相同,在双卡当前执行的业务的优先级不同的情况下,确定双卡中业务优先级高的第一卡的邻区频段中满足第一预设条件的第一目标频段,以找出质量好的频段。
当第一卡的邻区频段中满足第一预设条件的频段包括多个频段时,可以将该多个频段中质量最好的频段确定为第一目标频段。
在第一预设条件中,示例性地,邻区的质量可以采用邻区对应的频段的RSRP和RSRQ中的至少一个表示。而且,用于小区切换的事件的可以是以下任一个事件:A3事件、A4事件、B1事件或B2事件,关于各个事件的具体描述可参考上文的相关描述,不再赘述。
在一些实施例中,第一卡当前执行的业务是通话业务,第二卡当前执行的业务是数据业务。
在另一些实施例中,第一卡当前执行的业务是在前台进行的通话业务,第二卡当前执行的业务是在后台进行的通话业务。
在S720中,终端设备确定该第二卡的邻区频段中能够与该第一目标频段形成该终端 设备支持的双卡双通DSDA模式的初始候选频段。其中,第二卡的初始候选频段包括一个或多个频段。
关于S720的具体描述可参考S450的相关描述,将S450中的卡1和卡2分别替换为这里的第一卡和第二卡即可,不再赘述。
在S730中,终端设备确定该第二卡的初始候选频段中满足第二预设条件的第一候选频段,该第二预设条件包括:该第二卡的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段。其中,第二卡的第一候选频段包括一个或多个频段。
在第二预设条件中,示例性地,邻区的质量可以采用邻区对应的频段的RSRP和RSRQ中的至少一个表示。而且,用于小区切换的事件的可以是以下任一个事件:A3事件、A4事件、B1事件或B2事件,关于各个事件的具体描述可参考上文的相关描述,不再赘述。
应理解,第一候选频段中的频段是初始候选频段中的部分或全部频段。若初始候选频段中的所有频段均满足预设条件,则第一候选频段的频段为初始候选频段的全部频段;若初始候选频段中的部分频段满足预设条件,则第一候选频段为初始候选频段中的部分频段。
在S740中,终端设备上报测量报告,该测量报告用于指示该第一目标频段的质量和基于该第一候选频段确定的第二目标频段的质量。
对应地,网络设备可以基于测量报告,向终端设备发送切换请求,以指示终端设备将每个卡切换至对应的目标频段上。当完成小区切换后,第一卡驻留在第一目标频段上,第二卡驻留在第二目标频段上,双卡间形成DSDA模式以继续保持连接态,这样,成功完成了小区切换,保证了用户体验。
示例性地,测量报告可以包括针对第一卡的第一测量报告和针对第二卡的第二测量报告,第一测量报告用于指示第一卡的第一目标频段的质量,第二测量报告用于指示第二卡的第二目标频段的质量。这样,终端设备可以将第一测量报告和第二测量报告分别上报给网络设备。
应理解,在终端设备上报测量报告之前,方法700还包括:从第一候选频段中确定第二目标频段。第二目标频段是第一候选频段中的某个频段,可以是任一个频段,也可以是按照某种规则确定的频段,此处不做限定,后续做具体说明。
本申请实施例提供的双卡通信的方法,在双卡均处于连接态的情况下,当双卡当前执行的业务的优先级不同时,终端设备先从业务优先级高的第一卡的邻区频段中确定满足第一预设条件(质量要求)的第一目标频段,以优先保证业务优先级高的第一卡的质量,然后再从业务优先级低的第二卡的邻区频段中确定能够与第一目标频段形成DSDA模式的初始候选频段以及从初始候选频段中确定满足第二预设条件(质量要求)的第一候选频段,从第一候选频段中确定第二目标频段,进一步保证了切换小区后双卡驻留的频段也能够形成DSDA模式以继续保持连接态,总体提高了用户体验。综上,上述方法不仅优先保证了业务优先级高的第一卡的质量,而且,能够使得切换小区后双卡驻留的频段继续形成DSDA模式以保持连接态,不影响每个卡的业务的正常进行,此外,切换小区后双卡驻留的频段的质量均优于双卡之前驻留的频段的质量,提高了信号质量,总体上更好地提高了用户体验。
在一些实施例中,该第一候选频段包括多个频段;以及,在该上报测量报告之前,方法700还包括:终端设备将该第一候选频段中优先级最高的频段确定为该第二目标频段。
这样,终端设备对双卡进行小区切换后,双卡分别驻留的第一目标频段和第二目标频段之间形成的DSDA模式是终端设备设定的最优模式,提高了双卡模式的性能。
在一示例中,该第二目标频段与该第一目标频段形成的DSDA模式的DSDA组合是该第一候选频段中各个频段与该第一目标频段形成的各个DSDA组合中双卡能力最好的组合。
也就是说,终端设备将第一候选频段中各个频段与该第一目标频段形成的各个DSDA组合中双卡能力最好的组合中第一候选频段包括的频段确定为第二目标频段。该实施例是从双卡模式的能力定义第一候选频段中频段的优先级的,第一候选频段中某个频段与第一目标频段形成的双卡模式的能力越好,该某个频段的优先级越高,反之,第一候选频段中某个频段与第一目标频段形成的双卡模式的能力越差,该某个频段的优先级越低。双卡模式的能力由高到低为:DSDA发射独享>DSDA发射共享>DR-DSDS>DSDS。
例如,第一候选频段中包括3个频段,该3个频段与第一目标频段可以形成3个DSDA组合,其中,DSDA组合1是DSDA发射独享模式,DSDA组合2和DSDA组合3是DSDA发射共享模式,那么,DSDA模式为DSDA发射独享模式的DSDA组合1是3个DSDA组合中双卡能力最好的组合,DSDA组合1中包括的第一候选频段中的频段即为第二目标频段。
本申请实施例提供的双卡通信的方法,终端设备通过将第一候选频段中各个频段与第一目标频段形成的各个DSDA组合中双卡能力最好的组合中第一候选频段包括的频段确定为第二目标频段,对双卡进行小区切换后,双卡分别驻留的第一目标频段和第二目标频段之间形成的DSDA模式是性能最优的双卡模式,用户的体验最好。
在另一示例中,第二目标频段是该第一候选频段中质量最好的频段。
也就是说,终端设备将第一候选频段中质量最好的频段为第二目标频段。频段的质量可以采用RSRP值和RSRQ值中的至少一个表征。该实施例是从频段的质量定义第一候选频段中频段的优先级的。第一候选频段中某个频段的质量越好,该某个频段的优先级越高,反之,第一候选频段中某个频段的质量越差,该某个频段的优先级越低。
需要说明的是,上述定义的第一候选频段中频段的优先级可以单独使用,也可以结合使用,具体描述可参考上文S481的相关描述,不再赘述。
以上,结合图1至图7,详细说明了本申请实施例提供的双卡通信的方法,下面将结合图8至图9,详细描述根据本申请实施例提供的终端设备。
图8是本申请实施例提供的终端设备800的示例性框图。该终端设备800包括处理单元810。
在一种可能的实现方式中,终端设备800用于执行上述方法600中终端设备对应的各个流程和步骤,其中,终端设备800的第一卡和第二卡均处于连接态。
处理单元810用于执行以下步骤:
确定所述第一卡的邻区频段和所述第二卡的邻区频段之间是否能够形成所述终端设备支持的双卡双通DSDA模式;
对能够形成DSDA模式的所述第一卡和所述第二卡中每个卡的初始候选频段进行测量;
确定所述每个卡的初始候选频段中满足预设条件的第一候选频段,所述预设条件包括:所述每个卡的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段;
根据基于所述第一卡的第一候选频段和所述第二卡的第一候选频段之间形成的DSDA 模式的至少一个DSDA组合,确定目标DSDA组合,所述目标DSDA组合包括所述第一卡的第一候选频段中的目标频段和所述第二卡的第一候选频段中的目标频段;
上报测量报告,所述测量报告用于指示所述第一卡的目标频段的质量和所述第二卡的目标频段的质量。
应理解,处理单元810可用于执行方法600中终端设备执行的各个步骤,具体描述可参考上文的相关描述,不再赘述。
在另一种可能的实现方式中,终端设备800用于执行上述方法700中终端设备对应的各个流程和步骤,其中,终端设备800的双卡均处于连接态。
处理单元810用于执行以下步骤:
在所述双卡当前执行的业务的优先级不同的情况下,确定所述双卡中第一卡的邻区频段中满足第一预设条件的第一目标频段,所述第一卡当前执行的业务的优先级高于所述双卡中第二卡当前执行的业务的优先级,所述第一预设条件包括:所述第一卡的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段;
确定所述第二卡的邻区频段中能够与所述第一目标频段形成所述终端设备支持的双卡双通DSDA模式的初始候选频段;
确定所述第二卡的初始候选频段中满足第二预设条件的第一候选频段,所述第二预设条件包括:所述第二卡的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段;
上报测量报告,所述测量报告用于指示所述第一目标频段的质量和基于所述第一候选频段确定的第二目标频段的质量。
应理解,处理单元810可用于执行方法700中终端设备执行的各个步骤,具体描述可参考上文的相关描述,不再赘述。
应理解,这里的终端设备800以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。
在本申请的实施例,图8中的终端设备也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。
图9本申请实施例提供的终端设备900的示意性结构图。终端设备900用于执行上述方法实施例中对应的各个步骤和/或流程。
终端设备900包括处理器910、收发器920和存储器930。其中,处理器910、收发器920和存储器930通过内部连接通路互相通信,处理器910可以实现终端设备900中各种可能的实现方式中处理器910的功能。存储器930用于存储指令,处理器910用于执行存储器930存储的指令,或者说,处理器910可以调用这些存储指令实现终端设备900中处理器910的功能。
可选地,该存储器930可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器910可以用于执行存储器中存储的指令,并且当该处理器910执行存储器中存储的指令时,该处理器910用于执行上述与终端设备对应的方法实施例的各个步骤和/或流程。
在一种可能的实现方式中,终端设备900用于执行上述方法600中终端设备对应的各个流程和步骤,其中,终端设备900的第一卡和第二卡均处于连接态。
处理器910用于执行以下步骤:
确定所述第一卡的邻区频段和所述第二卡的邻区频段之间是否能够形成所述终端设备支持的双卡双通DSDA模式;
对能够形成DSDA模式的所述第一卡和所述第二卡中每个卡的初始候选频段进行测量;
确定所述每个卡的初始候选频段中满足预设条件的第一候选频段,所述预设条件包括:所述每个卡的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段;
根据基于所述第一卡的第一候选频段和所述第二卡的第一候选频段之间形成的DSDA模式的至少一个DSDA组合,确定目标DSDA组合,所述目标DSDA组合包括所述第一卡的第一候选频段中的目标频段和所述第二卡的第一候选频段中的目标频段;
上报测量报告,所述测量报告用于指示所述第一卡的目标频段的质量和所述第二卡的目标频段的质量。
在另一种可能的实现方式中,终端设备900用于执行上述方法700中终端设备对应的各个流程和步骤,其中,终端设备900的双卡均处于连接态。
处理器910用于执行以下步骤:
在所述双卡当前执行的业务的优先级不同的情况下,确定所述双卡中第一卡的邻区频段中满足第一预设条件的第一目标频段,所述第一卡当前执行的业务的优先级高于所述双卡中第二卡当前执行的业务的优先级,所述第一预设条件包括:所述第一卡的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段;
确定所述第二卡的邻区频段中能够与所述第一目标频段形成所述终端设备支持的双卡双通DSDA模式的初始候选频段;
确定所述第二卡的初始候选频段中满足第二预设条件的第一候选频段,所述第二预设条件包括:所述第二卡的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段;
上报测量报告,所述测量报告用于指示所述第一目标频段的质量和基于所述第一候选频段确定的第二目标频段的质量。
应理解,各个器件执行上述各个方法中相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,此处不再赘述。
应理解,在本申请实施例中,上述装置的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本申请实施例提供一种计算机程序产品,当所述计算机程序产品在终端设备运行时,使得终端设备执行上述实施例中的技术方案。其实现原理和技术效果与上述方法相关实施例类似,此处不再赘述。
本申请实施例提供一种可读存储介质,所述可读存储介质包含指令,当所述指令在终端设备运行时,使得所述终端设备执行上述实施例的技术方案。其实现原理和技术效果类似,此处不再赘述。
本申请实施例提供一种芯片,所述芯片用于执行指令,当所述芯片运行时,执行上述实施例中的技术方案。其实现原理和技术效果类似,此处不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下UE或者基站会做出相应的处理,并非是限定时间,且也不要求UE或基站实现时一定要有判断的动作,也不意味着存在其它限定。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。本申请中,在没有特别说明的情况下,“至少一个”旨在用于表示“一个或者多个”,“多个”旨在用于表示“两个或两个以上”。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A可以是单数或者复数,B可以是单数或者复数。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或 任意组合,例如,“A、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况,其中A可以是单数或者复数,B可以是单数或者复数,C可以是单数或者复数。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请中各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以上所述的本申请实施方式并不构成对本申请保护范围的限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请 的保护范围之内。

Claims (14)

  1. 一种双卡通信的方法,应用于终端设备中,所述终端设备的第一卡和第二卡均处于连接态,其特征在于,包括:
    确定所述第一卡的邻区频段和所述第二卡的邻区频段之间是否能够形成所述终端设备支持的双卡双通DSDA模式;
    对能够形成DSDA模式的所述第一卡和所述第二卡中每个卡的初始候选频段进行测量;
    确定所述每个卡的初始候选频段中满足预设条件的第一候选频段,所述预设条件包括:所述每个卡的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段;
    根据基于所述第一卡的第一候选频段和所述第二卡的第一候选频段之间形成的DSDA模式的至少一个DSDA组合,确定目标DSDA组合,所述目标DSDA组合包括所述第一卡的第一候选频段中的目标频段和所述第二卡的第一候选频段中的目标频段;
    上报测量报告,所述测量报告用于指示所述第一卡的目标频段的质量和所述第二卡的目标频段的质量。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个DSDA组合包括多个DSDA组合;以及,所述根据基于所述第一卡的第一候选频段和所述第二卡的第一候选频段之间形成的DSDA模式的至少一个DSDA组合,确定目标DSDA组合,包括:
    将所述多个DSDA组合中优先级最高的DSDA组合确定为所述目标DSDA组合。
  3. 根据权利要求2所述的方法,其特征在于,所述目标DSDA组合是所述多个DSDA组合中双卡模式的能力最好的组合。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一卡的邻区频段和所述第二卡的邻区频段之间无法形成所述终端设备支持的DSDA模式的情况下,对所述每个卡的邻区频段不进行测量。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,在所述确定所述第一卡的邻区频段和所述第二卡的邻区频段之间是否能够形成所述终端设备支持的双卡双通DSDA模式之前,所述方法还包括:
    确定所述第一卡当前执行的业务的优先级与所述第二卡当前执行的业务的优先级相同。
  6. 根据权利要求5所述的方法,其特征在于,所述第一卡和所述第二卡当前执行的业务均为数据业务。
  7. 一种双卡通信的方法,应用于终端设备中,所述终端设备的双卡均处于连接态,其特征在于,包括:
    在所述双卡当前执行的业务的优先级不同的情况下,确定所述双卡中第一卡的邻区频段中满足第一预设条件的第一目标频段,所述第一卡当前执行的业务的优先级高于所述双卡中第二卡当前执行的业务的优先级,所述第一预设条件包括:所述第一卡的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段;
    确定所述第二卡的邻区频段中能够与所述第一目标频段形成所述终端设备支持的双卡双通DSDA模式的初始候选频段;
    确定所述第二卡的初始候选频段中满足第二预设条件的第一候选频段,所述第二预设条件包括:所述第二卡的邻区的质量满足用于小区切换的事件,一个邻区对应一个频段;
    上报测量报告,所述测量报告用于指示所述第一目标频段的质量和基于所述第一候选频段确定的第二目标频段的质量。
  8. 根据权利要求7所述的方法,其特征在于,所述第一候选频段包括多个频段;以及,在所述上报测量报告之前,所述方法还包括:
    将所述第一候选频段中优先级最高的频段确定为所述第二目标频段。
  9. 根据权利要求8所述的方法,其特征在于,所述第二目标频段与所述第一目标频段形成的DSDA模式的DSDA组合是所述第一候选频段中各个频段与所述第一目标频段形成的各个DSDA组合中双卡能力最好的组合。
  10. 根据权利要求7至9中任一项所述的方法去,其特征在于,所述第一卡当前执行的业务是通话业务,所述第二卡当前执行的业务是数据业务;或,
    所述第一卡当前执行的业务是在前台进行的通话业务,所述第二卡当前执行的业务是在后台进行的通话业务。
  11. 一种终端设备,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于调用所述存储器中存储的计算机指令,以执行如权利要求1至6中任一项所述的方法,或,以执行如权利要求7至10中任一项所述的方法。
  12. 一种计算机可读存储介质,其特征在于,用于存储计算机指令,所述计算机指令用于实现如权利要求1至6中任一项所述的方法,或,所述计算机指令用于实现如权利要求7至10中任一项所述的方法。
  13. 一种计算机程序产品,其特征在于,包括计算机指令,所述计算机指令用于实现如权利要求1至6中任一项所述的方法,或,所述计算机指令用于实现如权利要求7至10中任一项所述的方法。
  14. 一种芯片,其特征在于,所述芯片包括:
    存储器:用于存储指令;
    处理器,用于从所述存储器中调用并运行所述指令,使得安装有所述芯片系统的通信设备执行如权利要求1至6中任一项所述的方法,或,使得安装有所述芯片系统的通信设备执行如权利要求7至10中任一项所述的方法。
PCT/CN2023/090159 2022-05-30 2023-04-23 一种双卡通信的方法和终端设备 WO2023231643A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210603383 2022-05-30
CN202210603383.6 2022-05-30
CN202210742421.6 2022-06-28
CN202210742421.6A CN117202283A (zh) 2022-05-30 2022-06-28 一种双卡通信的方法和终端设备

Publications (1)

Publication Number Publication Date
WO2023231643A1 true WO2023231643A1 (zh) 2023-12-07

Family

ID=88983843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090159 WO2023231643A1 (zh) 2022-05-30 2023-04-23 一种双卡通信的方法和终端设备

Country Status (2)

Country Link
CN (1) CN117202283A (zh)
WO (1) WO2023231643A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107529198A (zh) * 2017-09-13 2017-12-29 努比亚技术有限公司 通话过程中防止掉话的方法及移动终端
CN113316206A (zh) * 2021-05-31 2021-08-27 维沃移动通信有限公司 小区重选方法、装置、终端设备和存储介质
WO2022021328A1 (zh) * 2020-07-31 2022-02-03 华为技术有限公司 通信方法和通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107529198A (zh) * 2017-09-13 2017-12-29 努比亚技术有限公司 通话过程中防止掉话的方法及移动终端
WO2022021328A1 (zh) * 2020-07-31 2022-02-03 华为技术有限公司 通信方法和通信装置
CN113316206A (zh) * 2021-05-31 2021-08-27 维沃移动通信有限公司 小区重选方法、装置、终端设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on Support for Multi-USIM Devices (Release 17)", 3GPP TR 22.834, no. V1.0.0, 30 May 2019 (2019-05-30), pages 1 - 17, XP051753901 *

Also Published As

Publication number Publication date
CN117202283A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
US11895583B2 (en) Network connection processing method, related device, and computer storage medium
WO2021135815A1 (zh) 通信方法、相关设备及通信系统
WO2020244623A1 (zh) 一种空鼠模式实现方法及相关设备
US20220398057A1 (en) Screen-On Control Method and Electronic Device
US20220346010A1 (en) Data Sending/Receiving Method, Electronic Device, and Computer-Readable Storage Medium
WO2021175268A1 (zh) 移动网络热点的共享方法、装置和热点共享设备
CN113810938B (zh) 通道切换方法、电子设备及存储介质
WO2021043219A1 (zh) 一种蓝牙回连方法及相关装置
WO2021023046A1 (zh) 一种电子设备控制方法及一种电子设备
WO2021104115A1 (zh) 小区测量的方法、测量装置、终端设备、芯片及存储介质
US20220272563A1 (en) Device control method and system, and related apparatus
WO2022262492A1 (zh) 数据下载方法、装置和终端设备
WO2022042264A1 (zh) 一种切换接入点的方法、装置及系统
CN114449099B (zh) 一种设备方位调整的方法、终端设备和可读存储介质
WO2021043250A1 (zh) 一种蓝牙通信方法及相关装置
CN116055988B (zh) 一种双卡通信的方法和终端设备
CN116056064B (zh) 一种双卡通信的方法和终端设备
CN115065997B (zh) 小区变更方法及终端设备
WO2022161036A1 (zh) 天线选择方法、装置、电子设备及可读存储介质
WO2020124447A1 (zh) 面向多卡的网络管理
WO2023231643A1 (zh) 一种双卡通信的方法和终端设备
US20230354202A1 (en) Transmit power control method, terminal, chip system, and system
WO2023231642A1 (zh) 一种双卡通信的方法和终端设备
CN113141637A (zh) 一种多路径传输控制的方法及控制装置
WO2024001735A1 (zh) 网络连接方法、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814829

Country of ref document: EP

Kind code of ref document: A1