WO2023231506A1 - 轨道车辆的运行控制方法、装置及存储介质 - Google Patents

轨道车辆的运行控制方法、装置及存储介质 Download PDF

Info

Publication number
WO2023231506A1
WO2023231506A1 PCT/CN2023/081470 CN2023081470W WO2023231506A1 WO 2023231506 A1 WO2023231506 A1 WO 2023231506A1 CN 2023081470 W CN2023081470 W CN 2023081470W WO 2023231506 A1 WO2023231506 A1 WO 2023231506A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail vehicle
interval
rail
delayed
vehicles
Prior art date
Application number
PCT/CN2023/081470
Other languages
English (en)
French (fr)
Inventor
王景云
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2023231506A1 publication Critical patent/WO2023231506A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/04Automatic systems, e.g. controlled by train; Change-over to manual control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/10Operations, e.g. scheduling or time tables

Definitions

  • the present disclosure relates to the technical field of rail vehicles, and in particular, to an operation control method, device and storage medium for rail vehicles.
  • the present disclosure provides a rail vehicle operation control method, device and storage medium to solve the problem of uncertainty in the effectiveness of train control methods in the prior art due to limitations in dispatcher experience and increasingly complex network operation environments. Sexual issues.
  • a first aspect of the present disclosure provides an operation control method for a rail vehicle, including:
  • the basic parameters include planned operation diagrams and interval categories between rail vehicles.
  • the interval categories include cooperative intervals, attraction intervals and repulsive intervals;
  • the operating status of all rail vehicles is controlled according to the interval category between the rail vehicles to comply with the planned operation chart.
  • a second aspect of the present disclosure provides an operation control device for a rail vehicle, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program. The steps of the method described in the first aspect of the present disclosure are implemented sequentially.
  • a third aspect of the present disclosure provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the steps of the method described in the first aspect of the present disclosure are implemented.
  • the present disclosure provides an operation control method for a rail vehicle, which includes: obtaining basic parameters of the rail vehicle, delayed rail vehicle information, and normal operating rail vehicle information, and obtaining the interval between rail vehicles based on the delayed rail vehicle information and the normal operating rail vehicle information. Category; control the operating status of all rail vehicles according to the interval category between rail vehicles to comply with the planned operation chart.
  • This disclosed technical solution aims at situations where trains are delayed for some reason and the operating order of the line system is disrupted. By setting different interval categories, effective dispatching emergency response and operation adjustments can be made in real time for delayed vehicles and other vehicles, and a system can be established. The mechanism of synergy between individual trains within the train is then constructed, and then the automatic restoration of train operation order is achieved by constructing self-organizing rules for train operation adjustment.
  • Figure 1 is a flow chart of an operation control method for a rail vehicle in an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of the area division of the movement distance model of the sardine group in an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of rail vehicle intervals in an operation control method for rail vehicles in an embodiment of the present disclosure
  • Figure 4 is a specific flow chart of step S30 in an operation control method for a rail vehicle in an embodiment of the present disclosure
  • Figure 5 is a specific flow chart of step S31 in an operation control method for a rail vehicle in an embodiment of the present disclosure
  • Figure 6 is a schematic diagram of the operation process of a rail vehicle in an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide an operation control method for a rail vehicle, which can be applied to situations where a faulty vehicle causes a delay in an online rail vehicle. Based on the operating interval between a delayed rail vehicle and an adjacent rail vehicle on the track, all controls are controlled. The operating status of the rolling stock is in compliance with the planned operation chart.
  • an operation control method for a rail vehicle including:
  • Step S10 Obtain the basic parameters of the rail vehicle, delayed rail vehicle information and normal operation rail vehicle information.
  • the basic parameters include the planned operation chart and the interval category between the rail vehicles.
  • the interval category includes the cooperative interval, the attraction interval and the repulsion interval.
  • the planned operation chart of rail vehicles includes the operation plan, operating speed level, stop time, etc. of each rail vehicle.
  • the interval between rail vehicles refers to the time for the current rail vehicle to run to the same position of the previous adjacent rail vehicle according to the current speed mode and stop time.
  • the interval categories include cooperative interval, attraction interval and repulsive interval.
  • the cooperative interval is the current interval Within the redundancy time range of the planned operation graph;
  • the repulsion interval is the minimum value where the current interval is smaller than the redundancy time range of the planned operation graph;
  • the attraction interval is the maximum value where the current interval is greater than the redundancy time range of the planned operation graph.
  • the running interval between two adjacent trains is described.
  • rail vehicle g1, rail vehicle g2 and rail vehicle g3 run on the line, and the positional relationship between trains It is a one-dimensional operation interval.
  • rail vehicle g1 and rail vehicle g2 have a fixed interval t4
  • rail vehicle g1 and rail vehicle g3 have a fixed interval t4.
  • the operation interval includes the cooperation interval t1 and the attraction interval t2.
  • the operating interval between rail vehicle g1 and adjacent rail vehicles is extended beyond the allowable redundancy time for some reason.
  • Rail vehicle g1, rail vehicle g2, and rail vehicle g3 have Due to the attraction effect, the running interval of rail vehicle g2 and rail vehicle g3 should be shortened.
  • the system can consider automatically adding rail vehicles to keep the distance between rail vehicles within the action range.
  • the technical effect of this embodiment is: by establishing a self-organizing method for rail vehicle operation adjustment, after an emergency occurs, the rail vehicle autonomously adjusts the operation interval between adjacent rail vehicles based on the perception of the operation interval between adjacent rail vehicles, ensuring that Run orderliness and restore order as quickly as possible.
  • Step S20 Obtain the interval category between rail vehicles based on the delayed rail vehicle information and the normal operating rail vehicle information.
  • Step S20 includes: obtaining the category of the first interval between the delayed rail vehicle and the previous adjacent rail vehicle according to the delayed rail vehicle information and the normal operation rail vehicle information, and the track before the delayed rail vehicle.
  • the category of the first interval between vehicles and obtain the category of the second interval between the late rail vehicle and the next adjacent rail vehicle, and the category of the second interval between the rail vehicles after the late rail vehicle. category.
  • the former adjacent rail vehicle refers to the rail vehicle that is adjacent to the delayed rail vehicle and runs in front of it
  • the latter adjacent rail vehicle refers to the rail vehicle that is adjacent to the delayed rail vehicle and runs behind it.
  • the delayed rail vehicle information It includes the operating status of the delayed rail vehicle, the operating speed level of the delayed rail vehicle, the stop time and the current location of the delayed rail vehicle; the information of the normal operating rail vehicle includes the operating speed level, stop time and current location of the normal operating rail vehicle.
  • the operating status of the delayed rail vehicle includes the fault stop state and the fault-free operation state. According to the operating speed level, stop time and current position of the delayed rail vehicle, the displacement time curve of the delayed rail vehicle can be obtained.
  • the normal operation rail vehicle displacement time curve can be obtained by using the level, stop time and current position.
  • the track between the late rail vehicle and the previous adjacent rail vehicle and the track before the late rail vehicle can be obtained.
  • the first interval between vehicles, and obtain the second interval between the late rail vehicle and the next adjacent rail vehicle and the rail vehicle after the late rail vehicle, and compare the first interval and the second interval with Collaborative intervals, repulsive intervals and attractive intervals are By comparing rows, the category of the first interval and the category of the second interval can be obtained respectively.
  • Step S30 Control the operating status of all rail vehicles according to the interval category between the rail vehicles to comply with the planned operation chart.
  • step S30 when the interval between the rail vehicles before the delayed rail vehicle is the first interval and the interval between the rail vehicles after the delayed rail vehicle is the second interval, as shown in Figure 4, step S30 includes:
  • Step S31 Control the operating status of all rail vehicles according to the category of the first interval and the category of the second interval, so that the category of the first interval and the category of the second interval are both coordinated intervals.
  • Step S32 Adjust the operating speed levels and/or stop times of all rail vehicles to make all vehicles comply with the planned operation chart.
  • step S31 includes:
  • Step S301 When the delayed rail vehicle is in a fault stop state and the category of the second interval is an exclusion interval, control the operating speed level and/or stop time of the rail vehicle following the delayed rail vehicle to reduce the number of rail vehicles following the delayed rail vehicle. interval between them, and at the same time control the rail vehicles before the delayed rail vehicles to operate according to the planned operation chart.
  • controlling the operating speed level and/or stop time of the rail vehicle after the delayed rail vehicle in step S301 includes:
  • the rail vehicles following the delayed rail vehicle are sequentially controlled to reduce the operating speed level and/or increase the stop time.
  • the forced stop of the late rail vehicle compresses the operating interval with the next adjacent rail vehicle, causing the operating interval between the latter adjacent rail vehicle and the late rail vehicle to deviate, resulting in The repulsive interval, and the forward distance between the next adjacent rail vehicle and the later rail vehicle is smaller than the distance between the latter adjacent rail vehicle and the second following rail vehicle.
  • the latter adjacent rail vehicle is within the repulsive interval. If the front repulsive force experienced by the vehicle is greater than the rear repulsive force experienced by the rear adjacent rail vehicle, the operating speed level of the latter adjacent rail vehicle will be reduced and/or the stop time will be increased.
  • the repulsive force between rail vehicles behind the delayed rail vehicle is transmitted backward, causing the rear rail vehicles to be affected by the backward repulsive force in turn, thereby reducing the operating speed level and/or increasing the stop time, thereby reducing the delay in turn.
  • the separation between rail vehicles following rail vehicles thereby ensuring safe train operation and orderly train services.
  • the rail vehicles ahead of the delayed rail vehicles are simultaneously controlled to operate according to the planned operation chart without other interference.
  • Step S302. When the delayed rail vehicle is in the fault-free operation state and the category of the first interval is the attraction interval, control the operating speed level and/or stop time of the delayed rail vehicle and its following rail vehicles to reduce the delayed rail vehicle. The separation between the vehicle and the previous adjacent rail vehicle, while controlling the operating speed level and/or stop time of the rail vehicle before the late rail vehicle to increase the separation between the rail vehicles before the late rail vehicle.
  • controlling the operating speed level and/or stop time of the delayed rail vehicle and the rail vehicles after it in step S302 includes:
  • the delayed rail vehicle and its subsequent rail vehicles are sequentially controlled to increase the operating speed level and/or reduce the stop time, so that the interval between the delayed rail vehicle and its subsequent rail vehicles is a coordinated interval.
  • the distance between the delayed rail vehicle and the next adjacent rail vehicle is reduced, and the distance between the rail vehicles after the delayed rail vehicle is reduced, the distance between the delayed rail vehicle and the next adjacent rail vehicle is reduced.
  • controlling the operating speed level and stop time of the rail vehicle before the delayed rail vehicle in step S302 includes:
  • the rail vehicles before the delayed rail vehicle are sequentially controlled to reduce the operating speed level and/or increase the stop time.
  • the running interval with the previous adjacent rail vehicle was enlarged, causing the operating interval between the previous adjacent rail vehicle and the late rail vehicle to deviate, entering the attraction interval, and the late track
  • the rear distance between the vehicle and the previous adjacent rail vehicle is greater than the front distance between the previous adjacent rail vehicle and the first two rail vehicles.
  • the rear gravitational force received by the previous adjacent rail vehicle in the attraction interval is greater than the rear gravitational force received in the front interval. Due to the gravity ahead, the stop time of the previous adjacent rail vehicle is automatically extended. Due to the group effect between trains, the gravitational force between the rail vehicles in front is transmitted forward, causing multiple rail vehicles in front to be automatically stopped by the gravitational force from behind, thereby sharing the delay and ensuring uniform train service intervals at the station ahead.
  • controlling the operating speed level and stop time of the rail vehicle before the delayed rail vehicle also includes:
  • the rail vehicles before the late-arriving rail vehicle are sequentially controlled to increase the operating speed level and/or reduce the stop time, so that the late-arriving track
  • the separation between a vehicle and its preceding rail vehicle is the coordinated separation.
  • the technical effect of this implementation is that: through the "sardine swarm" model and algorithm, the effectiveness and applicability of the self-organizing mechanism and rule model for train operation adjustment based on group collaboration are improved.
  • the automatic adjustment strategy of extending the train stop time ensures the safety of passenger services on the train.
  • adjusting the speed levels and/or stopping times of all rail vehicles in step S31 to make all vehicles comply with the planned operation chart includes:
  • the stop time of all rail vehicles will be later than the time set in the planned operation chart.
  • all rail vehicles can be gradually Comply with planned operation chart.
  • the present disclosure provides an operation control method for a rail vehicle, which includes: obtaining basic parameters of the rail vehicle, delayed rail vehicle information, and normal operating rail vehicle information, and obtaining the interval between rail vehicles based on the delayed rail vehicle information and the normal operating rail vehicle information. Category; control the operating status of all rail vehicles according to the interval category between rail vehicles to comply with the planned operation chart.
  • This disclosed technical solution aims at situations where trains are delayed for some reason and the operating order of the line system is disrupted.
  • the "sardine swarm" algorithm of the intelligent dispatching system can make effective dispatching emergency response in real time to the delay situation by setting different interval categories. Disposal and operation adjustment, establish the synergy mechanism between individual trains in the system, and then realize the automatic restoration of train operation order by constructing self-organizing rules for train operation adjustment.
  • rail vehicle g1 As shown in Figure 6, there are 9 rail vehicles running on the rail line, namely rail vehicle g1, rail vehicle g2, rail vehicle g3, rail vehicle g4, rail vehicle g5, rail vehicle g6, rail vehicle g7, rail vehicle g8, Rail vehicle g9, in state 1, the interval between each rail vehicle is D1, and the interval D1 is the coordinated interval.
  • rail vehicle g6 fails, it enters state 2, and the distance between the next adjacent rail vehicle g5 and rail vehicle g6 The interval gradually decreases to the interval D3, and the interval D3 is the repulsive interval.
  • the interval D3 between the rail vehicle g5 and the rail vehicle g6 is smaller than the interval D2 between the rail vehicle g5 and the rail vehicle g4, which can be regarded as the rail vehicle g5.
  • the forward repulsive force received in the interval D3 is greater than the rear repulsive force received in the interval D2, and the rail vehicle g5 is controlled to reduce the operating speed level and/or increase the stop time.
  • the situation of rail vehicle g5 occurs in sequence on rail vehicles g4 to g1.
  • the repulsive force between the rear rail vehicles is transmitted backward, causing the rear rail vehicles to be affected by the backward repulsion in turn, thereby reducing the running speed.
  • state 3 the fault clearing of rail vehicle g6 can be run. At this time, rail vehicles g6 to g1 are controlled to catch up with the vehicle in front. Both are in the exclusion interval.
  • state 2 rail vehicles g7 to g9 are first controlled to operate according to the planned operation chart.
  • rail vehicle g6 is controlled to increase the operating speed level and/or reduce the stop time, increasing the number of delayed rail vehicles and track
  • the interval D6 of vehicle g5 can be controlled to reduce the stop time, so that the interval D6 between rail vehicle g6 and rail vehicle g5 can be realized as a coordinated interval.
  • the interval D5 between rail vehicles after rail vehicle g6 can be increased in sequence, so that rail vehicle g6
  • the interval between the rail vehicles and the following rail vehicles is the coordinated interval; at the same time, during the process of the rail vehicles g1 to g6 chasing forward, the rail vehicle g6 was forced to stop due to a fault, which increased the running interval D7 with the rail vehicle g7, causing the rail vehicle
  • the running interval D7 between g7 and rail vehicle g6 enters the attraction interval.
  • the rear interval D7 between rail vehicle g6 and rail vehicle g7 is greater than the interval D8 between rail vehicle g7 and rail vehicle g8.
  • Rail vehicle g7 is within the attraction interval D7.
  • the rear gravitational force received is greater than the front gravitational force received at the front interval D8, and the rail vehicle g7 automatically reduces the speed level and extends the stop time. Due to the group effect of rail vehicles, the gravitational force between rail vehicles g7 is transmitted forward, so that rail vehicles g8 and g9 are sequentially affected by the backward gravitational force to automatically reduce the speed level and extend the stop time, thus sharing the delay.
  • an operation control device for a rail vehicle including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program, the above-mentioned embodiments are implemented. Run control methods.
  • a computer-readable storage medium on which a computer program is stored.
  • the operation control method in the above embodiment is implemented.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM) or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Synchlink DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Synchlink DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM
  • Module completion means dividing the internal structure of the device into different functional units or modules to complete all or part of the functions described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

一种轨道车辆的运行控制方法,包括:获取轨道车辆的基础参数、晚点轨道车辆信息以及正常运行轨道车辆信息(S10);根据晚点轨道车辆信息以及正常运行轨道车辆信息获取轨道车辆之间的间隔类别(S20);根据轨道车辆之间的间隔类别控制所有轨道车辆的运行状态以符合计划运行图(S30)。

Description

轨道车辆的运行控制方法、装置及存储介质
相关申请的交叉引用
本公开要求在2022年05月31日提交中国专利局、申请号为202210608712.6、名称为“轨道车辆的运行控制方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及轨道车辆技术领域,尤其涉及一种用于轨道车辆的运行控制方法、装置及存储介质。
背景技术
目前,在轨道车辆的运营调度指挥体系中,当出现列车运行晚点情况时,主要采取人工介入调整模式,由于受限于调度员经验和日益复杂的网络运营环境等不确定因素干扰,导致列车运营调整方案的效果存在很大的不确定性。
发明内容
本公开提供一种轨道车辆的运行控制方法、装置及存储介质,以解决现有技术中现有技术中由于受限于调度员经验和日益复杂的网络运营环境导致列车控制方式的效果存在不确定性的问题。
本公开第一方面提供一种轨道车辆的运行控制方法,包括:
获取轨道车辆的基础参数、晚点轨道车辆信息以及正常运行轨道车辆信息,所述基础参数包括计划运行图和轨道车辆间的间隔类别,所述间隔类别包括协同间隔、吸引间隔以及排斥间隔;
根据所述晚点轨道车辆信息以及正常运行轨道车辆信息获取轨道车辆之间的间隔类别;
根据所述轨道车辆之间的间隔类别控制所有轨道车辆的运行状态以符合所述计划运行图。
本公开第二方面提供一种轨道车辆的运行控制装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程 序时实现如本公开第一方面所述方法的步骤。
本公开第三方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如本公开第一方面所述方法的步骤。
本公开提供一种轨道车辆的运行控制方法,包括:获取轨道车辆的基础参数、晚点轨道车辆信息以及正常运行轨道车辆信息,根据晚点轨道车辆信息以及正常运行轨道车辆信息获取轨道车辆之间的间隔类别;根据轨道车辆之间的间隔类别控制所有轨道车辆的运行状态以符合所述计划运行图。本公开技术方案,针对列车因故晚点以及线路系统运行秩序被打乱后的状态,通过设置不同的间隔类别,实时地针对晚点车辆及其他车辆做出有效的调度应急处置与运营调整,建立系统内列车个体间协同作用机理,继而通过构建列车运行调整的自组织规则,实现列车运行秩序的自动恢复。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一实施例中一种用于轨道车辆的运行控制方法的一流程图;
图2是本公开一实施例中沙丁鱼群的运动距离模型区域划分示意图;
图3是本公开一实施例中一种用于轨道车辆的运行控制方法中的轨道车辆间隔示意图;
图4是本公开一实施例中一种用于轨道车辆的运行控制方法中的步骤S30的具体流程图;
图5是本公开一实施例中一种用于轨道车辆的运行控制方法中的步骤S31的具体流程图;
图6是本公开一实施例中轨道车辆的运行过程示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例,都属于本公开保护的范围。
本公开实施例提供一种轨道车辆的运行控制方法,可应用于线上运行轨道车辆中出现故障车辆导致晚点的情况,基于轨道上的晚点轨道车辆与邻近轨道车辆之间的运行间隔,控制所有轨道车辆的运行状态以符合所述计划运行图。
在本实施例中,如图1所示,提供一种用于轨道车辆的运行控制方法,包括:
步骤S10.获取轨道车辆的基础参数、晚点轨道车辆信息以及正常运行轨道车辆信息,基础参数包括计划运行图和轨道车辆间的间隔类别,间隔类别包括协同间隔、吸引间隔以及排斥间隔。
其中,轨道车辆的计划运行图包括每辆轨道车辆的运行计划、运行速度等级以及停靠站时间等等。
其中,轨道车辆间的间隔是指当前轨道车辆按照当前速度模式及停站时间运行到前一相邻轨道车辆相同位置的时间,间隔类别包括协同间隔、吸引间隔以及排斥间隔,协同间隔为当前间隔在计划运行图的冗余时间范围内;排斥间隔为当前间隔小于计划运行图的冗余时间范围的最小值;吸引间隔为当前间隔大于计划运行图的冗余时间范围的最大值。
其中,对于上述协同间隔、吸引间隔以及排斥间隔,可以从沙丁鱼群模型进行理解,研究表明,尽管整个沙丁鱼群具有高度相关性,但每个个体通常只受最邻近的另一个体的影响,鱼群通过相邻鱼之间的吸引力和排斥力保持行动统一。基于鱼对相对距离的感受,每两条鱼之间的运动距离有三个层级,即图2所示的三个区域:排斥区域Q1、协同区域Q2以及吸引区域Q3,在排斥区域Q1内,其他个体对此个体有排斥作用,即此个体希望远离排斥区域内的其他个体;在协同区域Q2内,其他个体对此个体总保持协同运动或保持一致运动的趋势;在吸引区域Q3内,其他个体对此个体有吸引作用,即此个体希望向它们靠近。当超出吸引区域,其他个体对此个体不产生影响。
参考沙丁鱼群中个体对周边运动距离的感受,对邻近两列车之间的运行间隔进行描述,如图3所示,轨道车辆g1、轨道车辆g2以及轨道车辆g3在线路上运行,列车间的位置关系为一维运行间隔,在正常情况下,按照计划运行图,轨道车辆g1与轨道车辆g2具有固定间隔t4,轨道车辆g1与轨道车辆g3具有固定间隔t4,运行间隔包括协同间隔t1、吸引间隔t2以及排斥间隔t3,轨道车辆g1与轨道车辆g2、轨道车辆g3在协同间隔t1内时,在计划运行图时刻表的冗余时间范围内为可接受范围,智能调度系统采取按照 计划运行图模式协调轨道车辆运行。轨道车辆g1与轨道车辆g2、轨道车辆g3在排斥间隔t3内时,轨道车辆g1与邻近轨道车辆的运行间隔因故缩短至冗余时间允许范围以内,轨道车辆g1与轨道车辆g2、轨道车辆g3有排斥作用,轨道车辆g2、轨道车辆g3要拉大与轨道车辆g1的运行间隔。轨道车辆g1与轨道车辆g2、轨道车辆g3在吸引间隔t2内时,轨道车辆g1与邻近轨道车辆运行间隔因故延长至冗余时间允许范围以外,轨道车辆g1与轨道车辆g2、轨道车辆g3有吸引作用,轨道车辆g2、轨道车辆g3要缩短运行间隔。此外,当轨道车辆g1与邻近轨道车辆运行间隔超出吸引作用范围,即在线轨道车辆无法通过相互协同满足乘客运输需求,系统可考虑自动加开轨道车辆,使轨道车辆间隔在可作用范围内。
因此,本实施方式的技术效果在于:通过建立轨道车辆运行调整的自组织方式,在突发事件发生后,轨道车辆依据对邻近轨道车辆运行间隔的感知自主调整与邻近轨道车辆的运行间隔,确保运行有序性并尽快恢复图定秩序。
步骤S20.根据所述晚点轨道车辆信息以及正常运行轨道车辆信息获取轨道车辆之间的间隔类别。
其中,步骤S20包括:根据所述晚点轨道车辆信息以及正常运行轨道车辆信息获取所述晚点轨道车辆与前一相邻轨道车辆之间的第一间隔的类别,以及所述晚点轨道车辆之前的轨道车辆之间的第一间隔的类别,并获取所述晚点轨道车辆与后一相邻轨道车辆之间的第二间隔的类别,以及所述晚点轨道车辆之后的轨道车辆之间的第二间隔的类别。
其中,前一相邻轨道车辆是指与晚点轨道车辆邻近并行驶于其前面的轨道车辆,后一相邻轨道车辆是指与晚点轨道车辆邻近并行驶于其后面的轨道车辆,晚点轨道车辆信息包括晚点轨道车辆的运行状态、晚点轨道车辆运行速度等级、停站时间以及晚点轨道车辆当前位置;正常运行轨道车辆信息包括正常运行轨道车辆的运行速度等级、停站时间及当前位置。晚点轨道车辆的运行状态包括故障停止状态以及解除故障运行状态,根据晚点轨道车辆运行速度等级、停站时间以及晚点轨道车辆当前位置可以得到晚点轨道车辆位移时间曲线,根据正常运行轨道车辆的运行速度等级、停站时间及当前位置可以得到正常运行轨道车辆位移时间曲线,通过不同轨道车辆的位移时间曲线可以得出晚点轨道车辆与前一相邻轨道车辆之间以及所述晚点轨道车辆之前的轨道车辆之间的第一间隔,并获取所述晚点轨道车辆与后一相邻轨道车辆之间以及所述晚点轨道车辆之后的轨道车辆之间的第二间隔,将第一间隔和第二间隔与协同间隔、排斥间隔以及吸引间隔进 行对比,可以分别得出第一间隔的类别和第二间隔的类别。
步骤S30.根据所述轨道车辆之间的间隔类别控制所有轨道车辆的运行状态以符合所述计划运行图。
作为一种实施方式,根据步骤S20中晚点轨道车辆之前的轨道车辆的间隔为第一间隔,晚点轨道车辆之后的轨道车辆的间隔为第二间隔时,如图4所示,步骤S30包括:
步骤S31.根据所述第一间隔的类别以及所述第二间隔的类别控制所有轨道车辆的运行状态,使所述第一间隔的类别和所述第二间隔的类别均为协同间隔。
步骤S32.调整所有轨道车辆的运行速度等级和/或停站时间使所有车辆符合所述计划运行图。
其中,如图5所示,步骤S31包括:
步骤S301.当晚点轨道车辆处于故障停止状态且第二间隔的类别为排斥间隔时,控制晚点轨道车辆之后的轨道车辆的运行速度等级和/或停站时间,以减少晚点轨道车辆之后的轨道车辆之间的间隔,同时控制晚点轨道车辆之前的轨道车辆按照计划运行图运行。
其中,步骤S301中的控制晚点轨道车辆之后的轨道车辆的运行速度等级和/或停站时间,包括:
从后一相邻轨道车辆开始依次控制晚点轨道车辆之后的轨道车辆降低运行速度等级和/或增加停站时间。
其中,当晚点轨道车辆处于故障停止状态时,晚点轨道车辆迫停压缩了与后一相邻轨道车辆的运行间隔,使得后一相邻轨道车辆与晚点轨道车辆之间的运行间隔出现偏差,形成排斥间隔,且后一相邻轨道车辆与晚点轨道车辆之间的前方间隔小于后一相邻轨道车辆与后二轨道车辆间隔,对于后一相邻轨道车辆,后一相邻轨道车辆在排斥间隔内受到的前方斥力大于在后方间隔受到的后方斥力,后一相邻轨道车辆降低运行速度等级和/或增加停站时间。同样由于轨道车辆间的群体效应,晚点轨道车辆之后的轨道车辆间的斥力向后传递,使得后方轨道车辆依次受向后的斥力作用进而降低运行速度等级和/或增加停站时间,依次减少晚点轨道车辆之后的轨道车辆之间的间隔,由此确保列车运行安全且列车服务有序。此外,在没有受到其他干扰的情况下,同时控制晚点轨道车辆之前的轨道车辆按照计划运行图运行。
步骤S302.当晚点轨道车辆处于解除故障运行状态且第一间隔的类别为吸引间隔时,控制晚点轨道车辆及其之后的轨道车辆的运行速度等级和/或停站时间,以减小晚点轨道 车辆与前一相邻轨道车辆之间的间隔,同时控制晚点轨道车辆之前的轨道车辆的运行速度等级和/或停站时间,以增加晚点轨道车辆之前的轨道车辆之间的间隔。
其中,步骤S302中的控制晚点轨道车辆及其之后的轨道车辆的运行速度等级和/或停站时间,包括:
从晚点轨道车辆开始依次控制晚点轨道车辆及其之后的轨道车辆提升运行速度等级和/或减少停站时间,使晚点轨道车辆及其之后的轨道车辆的间隔为协同间隔。
本步骤中,由于减小了晚点轨道车辆与后一相邻轨道车辆的间隔,以及减小了晚点轨道车辆之后的轨道车辆之间的间隔,因此,晚点轨道车辆与后一相邻轨道车辆之间以及晚点轨道车辆之后的轨道车辆之间均处于排斥间隔,通过控制晚点轨道车辆提升运行速度等级和/或减少停站时间,增加了晚点轨道车辆与后一轨道之间的间隔,通过控制减少停站时间,可以实现晚点轨道车辆与后一轨道之间的间隔为协同间隔。通过控制晚点轨道车辆之后的轨道车辆提升运行速度等级和/或减少停站时间,增加了晚点轨道车辆之后的轨道车辆之间的间隔,通过控制减少停站时间,可以实现晚点轨道车辆之后的轨道车辆之间的间隔为协同间隔。
其中,步骤S302中的控制晚点轨道车辆之前的轨道车辆的运行速度等级和停站时间,包括:
从前一相邻轨道车辆开始依次控制晚点轨道车辆之前的轨道车辆降低运行速度等级和/或增加停站时间。
其中,由于晚点轨道车辆因故障迫停拉大了与前一相邻轨道车辆的运行间隔,使得前一相邻轨道车辆与晚点轨道车辆之间的运行间隔出现偏差,进入吸引间隔,且晚点轨道车辆与前一相邻轨道车辆之间的后方间隔大于前一相邻轨道车辆与前二轨道车辆之间前方间隔,前一相邻轨道车辆在吸引间隔内受到的后方引力大于在前方间隔受到的前方引力,前一相邻轨道车辆自动延长停站时间。由于列车之间存在群体效应,前方轨道车辆间的引力向前传递,使得前方多辆轨道车辆依次受向后的引力作用自动扣停,由此分摊晚点,确保前方车站列车服务间隔均匀。
进一步的,控制晚点轨道车辆之前的轨道车辆的运行速度等级和停站时间,之后还包括:
当晚点轨道车辆与前一相邻轨道车辆之间的间隔为协同间隔时,从前一车辆开始依次控制晚点轨道车辆之前的轨道车辆提升运行速度等级和/或减少停站时间,使晚点轨道 车辆及其之前的轨道车辆的间隔为协同间隔。
本实施方式的技术效果在于:通过“沙丁鱼群”模型和算法,提升了基于群体协同的列车运行调整自组织机制与规则模型的有效性和应用性,在系统实施列车运行自组织调整过程中,采取延长列车停站时间的自动调整策略,确保了列车上旅客服务的安全性。
其中,步骤S31中的调整所有轨道车辆的速度等级和/或停站时间使所有车辆符合计划运行图,包括:
控制所有轨道车辆提升运行速度等级和/或减少停站时间,直至所有车辆符合计划运行图。
其中,由于存在晚点轨道车辆,所有轨道车辆的停站时间会晚于计划运行图中设定的时间,通过调整所有轨道车辆提升运行速度等级和/或减少停站时间,可以使所有轨道车辆逐渐符合计划运行图。
本公开提供一种轨道车辆的运行控制方法,包括:获取轨道车辆的基础参数、晚点轨道车辆信息以及正常运行轨道车辆信息,根据晚点轨道车辆信息以及正常运行轨道车辆信息获取轨道车辆之间的间隔类别;根据轨道车辆之间的间隔类别控制所有轨道车辆的运行状态以符合所述计划运行图。本公开技术方案,针对列车因故晚点、线路系统运行秩序被打乱后的状态,智能调度系统的“沙丁鱼群”算法,通过设置不同的间隔类别,实时地针对晚点情况做出有效的调度应急处置与运营调整,建立系统内列车个体间协同作用机理,继而通过构建列车运行调整的自组织规则,实现列车运行秩序的自动恢复。
下面以运行中的轨道车辆为例对本公开实施例进行说明:
如图6所示,轨道线上正运行9辆轨道车辆,分别为轨道车辆g1、轨道车辆g2、轨道车辆g3、轨道车辆g4、轨道车辆g5、轨道车辆g6、轨道车辆g7、轨道车辆g8、轨道车辆g9,在状态1时,各轨道车辆之间的间隔为D1,间隔D1为协同间隔,当轨道车辆g6出现故障时,进入状态2,后一相邻轨道车辆g5与轨道车辆g6之间的间隔逐渐减小至间隔D3,间隔D3为排斥间隔,此时,轨道车辆g5与轨道车辆g6之间的间隔D3小于轨道车辆g5与轨道车辆g4之间的间隔D2,可以视为轨道车辆g5在间隔D3内受到的前方斥力大于在间隔D2受到的后方斥力,控制轨道车辆g5降低运行速度等级和/或增加停站时间。同样由于轨道车辆间的群体效应,轨道车辆g5出现的情况在轨道车辆g4至g1上依次出现,后方轨道车辆间的斥力向后传递,使得后方轨道车辆依次受向后的斥力作用进而降低运行速度等级和/或增加停站时间,依次减少晚点轨道车辆之后的轨道车辆 之间的间隔,并进入状态3。在状态3中,轨道车辆g6的故障清除可以运行,此时控制轨道车辆g6至g1追赶前方车辆,由于在状态2中轨道车辆g6与轨道车辆g5之间以及轨道车辆g5至轨道车辆g1之间均处于排斥间隔,在状态2中先控制轨道车辆g7至g9按照计划运行图运行,在状态3中,控制轨道车辆g6提升运行速度等级和/或减少停站时间,增加了晚点轨道车辆与轨道车辆g5的间隔D6,通过控制减少停站时间,可以实现轨道车辆g6与轨道车辆g5之间的间隔D6为协同间隔,依次增加轨道车辆g6之后的轨道车辆之间的间隔D5,使轨道车辆g6及其之后的轨道车辆的间隔为协同间隔;同时,在轨道车辆g1至g6向前追赶的过程中,由于轨道车辆g6因故障迫停拉大了与轨道车辆g7的运行间隔D7,使得轨道车辆g7与轨道车辆g6之间的运行间隔D7进入吸引间隔,轨道车辆g6与轨道车辆g7之间的后方间隔D7大于轨道车辆g7与轨道车辆g8之间的间隔D8,轨道车辆g7在吸引间隔D7内受到的后方引力大于在前方间隔D8受到的前方引力,轨道车辆g7自动降低速度等级以及延长停站时间。由于轨道车辆存在群体效应,轨道车辆g7间的引力向前传递,使得轨道车辆g8、g9依次受向后的引力作用自动降低速度等级以及延长停站时间,由此分摊晚点,当轨道车辆g6加速追赶轨道车辆g7,与轨道车辆g7之间的间隔为排斥间隔时,从轨道车辆g7开始依次控制晚点轨道车辆之前的轨道车辆提升运行速度等级和/或减少停站时间,使晚点轨道车辆及其之前的轨道车辆的间隔为协同间隔。当所有轨道车辆之间的间隔均为协同间隔时,调整所有轨道车辆的运行速度等级和/或停站时间使所有车辆符合计划运行图。
在一个实施例中,提供了一种轨道车辆的运行控制装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述实施例中的运行控制方法。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述实施例中的运行控制方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本公开所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM) 或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。
以上所述实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围,均应包含在本公开的保护范围之内。

Claims (13)

  1. 一种轨道车辆的运行控制方法,其特征在于,包括:
    获取轨道车辆的基础参数、晚点轨道车辆信息以及正常运行轨道车辆信息,所述基础参数包括计划运行图和轨道车辆间的间隔类别,所述间隔类别包括协同间隔、吸引间隔以及排斥间隔;
    根据所述晚点轨道车辆信息以及正常运行轨道车辆信息获取轨道车辆之间的间隔类别;
    根据所述轨道车辆之间的间隔类别控制所有轨道车辆的运行状态以符合所述计划运行图。
  2. 如权利要求1所述的运行控制方法,其特征在于,所述协同间隔为当前间隔在所述计划运行图的冗余时间范围内;
    所述排斥间隔为当前间隔小于所述计划运行图的冗余时间范围的最小值;
    所述吸引间隔为当前间隔大于所述计划运行图的冗余时间范围的最大值。
  3. 如权利要求1或2所述的运行控制方法,其特征在于,所述晚点轨道车辆信息包括晚点轨道车辆的运行状态、晚点轨道车辆运行速度等级、停站时间以及晚点轨道车辆当前位置;
    所述正常运行轨道车辆信息包括正常运行轨道车辆的运行速度等级、停站时间及当前位置。
  4. 如权利要求1~3任一所述的运行控制方法,其特征在于,所述根据所述晚点轨道车辆信息以及正常运行轨道车辆信息获取轨道车辆之间的间隔类别,包括:
    根据所述晚点轨道车辆信息以及正常运行轨道车辆信息获取所述晚点轨道车辆与前一相邻轨道车辆之间的第一间隔的类别,以及获取所述晚点轨道车辆之前的轨道车辆之间的第一间隔的类别,并获取所述晚点轨道车辆与后一相邻轨道车辆之间的第二间隔的类别,以及所述晚点轨道车辆之后的轨道车辆之间的第二间隔的类别。
  5. 如权利要求4所述的运行控制方法,其特征在于,所述根据所述轨道车辆之间的间隔类别控制所有轨道车辆的运行状态以符合所述计划运行图,包括:
    根据所述第一间隔的类别以及所述第二间隔的类别控制所有轨道车辆的运行状态,使所述第一间隔的类别和所述第二间隔的类别均为协同间隔;
    调整所有轨道车辆的运行速度等级和/或停站时间使所有车辆符合所述计划运行图。
  6. 如权利要求5所述的运行控制方法,其特征在于,所述根据所述第一间隔的类别以及所述第二间隔的类别控制所有轨道车辆的运行状态,使所述第一间隔的类别和所述第二间隔的类别均为协同间隔,包括:
    当所述晚点轨道车辆处于故障停止状态且所述第二间隔的类别为排斥间隔时,控制所述晚点轨道车辆之后的轨道车辆的运行速度等级和/或停站时间,以减少所述晚点轨道车辆之后的轨道车辆之间的间隔,同时控制所述晚点轨道车辆之前的轨道车辆按照所述计划运行图运行;
    当所述晚点轨道车辆处于解除故障运行状态且所述第一间隔的类别为吸引间隔时,控制所述晚点轨道车辆及其之后的轨道车辆的运行速度等级和/或停站时间,以减小所述晚点轨道车辆与前一相邻轨道车辆之间的间隔,同时控制所述晚点轨道车辆之前的轨道车辆的运行速度等级和/或停站时间,以增加所述晚点轨道车辆之前的轨道车辆之间的间隔。
  7. 如权利要求6所述的运行控制方法,其特征在于,所述控制所述晚点轨道车辆之后的轨道车辆的运行速度等级和/或停站时间,包括:
    从后一相邻轨道车辆开始依次控制所述晚点轨道车辆之后的轨道车辆降低运行速度等级和/或增加停站时间。
  8. 如权利要求6所述的运行控制方法,其特征在于,所述控制所述晚点轨道车辆及其之后的轨道车辆的运行速度等级和/或停站时间,包括:
    从所述晚点轨道车辆开始依次控制所述晚点轨道车辆及其之后的轨道车辆提升运行速度等级和/或减少停站时间,使所述晚点轨道车辆及其之后的轨道车辆的间隔为协同间隔。
  9. 如权利要求6所述的运行控制方法,其特征在于,所述控制所述晚点轨道车辆之前的轨道车辆的运行速度等级和停站时间,包括:
    从前一相邻轨道车辆开始依次控制所述晚点轨道车辆之前的轨道车辆降低运行速度等级和/或增加停站时间。
  10. 如权利要求6所述的运行控制方法,其特征在于,所述控制所述晚点轨道车辆之前的轨道车辆的运行速度等级和停站时间,之后还包括:
    当所述晚点轨道车辆与前一相邻轨道车辆之间的间隔为吸引间隔时,从所述前一车辆开始依次控制所述晚点轨道车辆之前的轨道车辆提升运行速度等级和/或减少停站时 间,使所述晚点轨道车辆及其之前的轨道车辆的间隔为协同间隔。
  11. 如权利要求4~10任一所述的运行控制方法,其特征在于,所述调整所有轨道车辆的速度等级和/或停站时间使所有车辆符合所述计划运行图,包括:
    控制所有轨道车辆提升运行速度等级和/或减少停站时间,直至所有车辆符合所述计划运行图。
  12. 一种轨道车辆的运行控制装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至11任一项所述方法的步骤。
  13. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至11任一项所述方法的步骤。
PCT/CN2023/081470 2022-05-31 2023-03-14 轨道车辆的运行控制方法、装置及存储介质 WO2023231506A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210608712.6 2022-05-31
CN202210608712.6A CN117184182A (zh) 2022-05-31 2022-05-31 轨道车辆的运行控制方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023231506A1 true WO2023231506A1 (zh) 2023-12-07

Family

ID=88989313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081470 WO2023231506A1 (zh) 2022-05-31 2023-03-14 轨道车辆的运行控制方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN117184182A (zh)
WO (1) WO2023231506A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0976913A (ja) * 1995-09-18 1997-03-25 Central Japan Railway Co 列車運転時隔制御方法及び装置
CN108622142A (zh) * 2018-03-30 2018-10-09 卡斯柯信号有限公司 一种基于实时客流的列车智能运行调整系统及方法
CN110341763A (zh) * 2019-07-19 2019-10-18 东北大学 一种快速恢复高铁列车准点运行的智能调度系统及方法
CN112084636A (zh) * 2020-08-24 2020-12-15 北京交通大学 一种多列车协同控制方法和装置
CN113306605A (zh) * 2021-06-10 2021-08-27 交控科技股份有限公司 一种动态运行图的调整方法及系统
CN114355896A (zh) * 2021-12-14 2022-04-15 东南大学 一种智能网联队列内车辆换道安全间距确定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0976913A (ja) * 1995-09-18 1997-03-25 Central Japan Railway Co 列車運転時隔制御方法及び装置
CN108622142A (zh) * 2018-03-30 2018-10-09 卡斯柯信号有限公司 一种基于实时客流的列车智能运行调整系统及方法
CN110341763A (zh) * 2019-07-19 2019-10-18 东北大学 一种快速恢复高铁列车准点运行的智能调度系统及方法
CN112084636A (zh) * 2020-08-24 2020-12-15 北京交通大学 一种多列车协同控制方法和装置
CN113306605A (zh) * 2021-06-10 2021-08-27 交控科技股份有限公司 一种动态运行图的调整方法及系统
CN114355896A (zh) * 2021-12-14 2022-04-15 东南大学 一种智能网联队列内车辆换道安全间距确定方法

Also Published As

Publication number Publication date
CN117184182A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
CN103707904B (zh) 一种城轨cbtc模式下的临时限速方法及限速系统
CN113525461B (zh) 面向虚拟编队的列车运行控制方法
WO2023231506A1 (zh) 轨道车辆的运行控制方法、装置及存储介质
EP2253525A1 (en) Train control method, device and system
EP1018849A2 (de) Mobilkommunikationssystem und Weiterreichungsverfahren
US20220135087A1 (en) Passenger-oriented transfer synchronization optimization method and passenger-oriented transfer synchronization optimization device
WO2018041381A1 (de) Verfahren zum aufbau eines drahtlosen fahrzeug-netzwerks
CN114312932B (zh) 一种tacs系统的防死锁方法、装置、设备及介质
AU2009205883A1 (en) Method for managing vital train movements
WO2013135763A1 (de) Verfahren zum erzeugen von handlungsempfehlungssignalen für den führer eines schienenfahrzeugs oder von steuersignalen für das schienenfahrzeug mittels eines fahrerassistenzsystems und fahrerassistenzsystem
CN114872767B (zh) 基于区间单向缓行的列车运图调整方法及系统
CN112706803A (zh) 一种地铁列车救援自动调整方法及系统
CN111874044B (zh) 一种车辆移交跨区域重叠区的方法
DE10204682B4 (de) Verfahren und System zur Steuerung von Lichtsignalanlagen
CN105892463B (zh) 一种用于自动导引运输车的通讯系统及其通讯方法
Van Oort et al. Line length versus operational reliability: network design dilemma in urban public transportation
CN110843868A (zh) 车辆控制方法、装置、计算机设备及存储介质
CN115394105A (zh) 一种基于露天矿多场景的路权动态管控方法
DE102012209509A1 (de) Sicheres stoßfreies Handover bei zellularen industriellen Funknetzen
CN104680327A (zh) 一种铁路运行计划自动调整方法和装置
Ishikawa et al. Cooperative learning of a driving strategy to suppress phantom traffic jams
DE10162117A1 (de) Dezentrales System zur vollautomatischen Durchführung von Transportdienstleistungen
EP4101601A1 (de) Redundanz-steuerung in einem verteilten automatisierungssystem
EP4130921A4 (en) METHOD FOR OPTIMIZING REGULATION AND DECISION-MAKING CONTROL, METHOD FOR CONTROLLING VEHICLE TRAVEL AND ASSOCIATED DEVICES
WO2021089607A1 (de) Verfahren zur sicherung der zeitsynchronisation in einem netzwerk gegen unautorisierte änderungen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814704

Country of ref document: EP

Kind code of ref document: A1