WO2023231504A1 - 一种光学atp天线和光信号处理方法 - Google Patents

一种光学atp天线和光信号处理方法 Download PDF

Info

Publication number
WO2023231504A1
WO2023231504A1 PCT/CN2023/081339 CN2023081339W WO2023231504A1 WO 2023231504 A1 WO2023231504 A1 WO 2023231504A1 CN 2023081339 W CN2023081339 W CN 2023081339W WO 2023231504 A1 WO2023231504 A1 WO 2023231504A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular
gaussian beam
optical
lens
pyramid lens
Prior art date
Application number
PCT/CN2023/081339
Other languages
English (en)
French (fr)
Inventor
廖文哲
于瀛
方楚
吴裕平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023231504A1 publication Critical patent/WO2023231504A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/118Arrangements specific to free-space transmission, i.e. transmission through air or vacuum specially adapted for satellite communication

Definitions

  • the embodiments of the present application relate to the technical field of optical signal processing, and in particular, to an optical ATP antenna and an optical signal processing method.
  • the optical acquisition, tracking, and pointing (ATP) ATP antenna is used for transmitting and receiving space optical signals.
  • the front optical path of the optical ATP antenna is a Cassegrain including a primary mirror and a secondary mirror.
  • the telephoto structure shrinks the incident beam from a larger diameter at the entrance pupil, and then delivers the reduced beam to the rear optical path.
  • the new Fresnel optical ATP antenna uses an amplitude-type Fresnel zone plate for alignment.
  • the Gaussian beam is shaped.
  • the zone plate is a grating composed of a group of alternating light-transmitting and opaque communication rings. This solution uses the focusing characteristics of the Fresnel zone plate to replace the traditional lens and uses the diffraction characteristics to generate a central dark beam, thus avoiding the energy loss caused by the central hole reflector.
  • the Fresnel optical ATP antenna divides the continuous beam into discontinuities, resulting in energy loss of the optical signal, which is not conducive to long-distance beam communication. Moreover, the Fresnel optical ATP antenna has high process requirements, making the Fresnel optical The cost of ATP antennas is higher.
  • This application provides an optical ATP antenna and an optical signal processing method for realizing the distribution of an annular Gaussian beam through a pyramid lens, thereby reducing the cost of the optical ATP antenna.
  • the first aspect of the embodiment of the present application provides an optical acquisition, tracking and aiming ATP antenna.
  • the optical ATP antenna includes: an input light source module, a pyramid lens and an optical imaging module.
  • the pyramid lens is used to emit the input light source module.
  • the first Gaussian beam is shaped into a first annular Gaussian beam, and the first annular Gaussian beam is transmitted to the optical imaging module; the optical imaging module is used to expand the first annular Gaussian beam into a second annular Gaussian beam and Transmitted to the lower optical path, the diameter of the second annular Gaussian beam is larger than the diameter of the first annular Gaussian beam.
  • the optical ATP antenna uses a lens solution, which does not require the introduction of diffractive elements to achieve the annular Gaussian beam effect.
  • the structure is simple and convenient, and the cost is low.
  • the central axes of the input light source module, the pyramid lens and the optical imaging module coincide.
  • the above-mentioned optical imaging module includes a lens unit and a reflector group.
  • the reflector group includes a primary reflector and a secondary reflector.
  • the primary reflector has holes; the lens unit is used to The first annular Gaussian beam is expanded into a second annular Gaussian beam and then transmitted to the secondary reflector.
  • the diameter of the second annular Gaussian beam is related to the diameter of the primary reflection mirror.
  • the clear apertures of the mirrors are equal, and the opening diameter of the second annular Gaussian beam is equal to the clear aperture of the secondary reflector; the primary reflector is used to transmit the second annular Gaussian beam transmitted by the secondary reflector to the lower optical path .
  • the hole of the primary reflector is located at the center of the primary reflector.
  • the first surface of the pyramid lens is an inner concave surface
  • the second surface of the pyramid lens is an outer convex surface.
  • the first surface is a surface of the pyramid lens facing the input light source module
  • the second surface is a surface of the pyramid lens facing the input light source module.
  • the first surface of the pyramid lens is a concave surface and the second surface is a convex pyramid surface.
  • the effect achieved is an annular Gaussian beam.
  • the pyramid lens directly emits an annular Gaussian beam, and there is no need to introduce an additional eyepiece system to shape the inverse Gaussian distribution into a Gaussian distribution.
  • the angle of the pyramid lens is determined by the refractive index, the length of the pyramid lens and the height of the preset light beam deviating from the optical axis.
  • the first surface of the pyramid lens is an inner concave surface, and the second surface of the pyramid lens is a plane; the pyramid lens is used to convert the Gaussian beam emitted by the input light source module Shaping into a first annular anti-Gaussian beam, and transmitting the first annular anti-Gaussian beam to the lens unit; the lens unit is also used to flip the first annular anti-Gaussian beam into a first annular Gaussian beam.
  • the lens unit includes a first lens and a second lens, and the first lens and the second lens are used to flip the first annular anti-Gaussian beam into a first annular Gaussian beam.
  • the emitted light beam is an annular anti-Gaussian beam
  • the first lens and the second lens can perform the annular anti-Gaussian beam. Flip, resulting in a circular Gaussian beam.
  • the pyramid lens includes a first pyramid lens and a second pyramid lens, the first surface of the first pyramid lens is a concave surface and the second surface is a plane; The first surface of the second pyramid lens is a flat surface, and the second surface is a convex surface.
  • the first surface and the second surface of the pyramid lens are both concave surfaces.
  • the input light source module includes a light source unit and a collimator; the light source unit is used to generate a light beam; and the collimator is used to shape the light beam into the first Gaussian light beam.
  • the optical ATP antenna further includes a receiving module; the optical imaging module is also used to receive a flat-top beam, and shape the flat-top beam into a first annular flat-top beam and transmit it to The pyramid lens; the pyramid lens is also used to condense the first annular flat-top beam into a second annular flat-top beam, and transmit the second annular flat-top beam to the receiving module; the receiving module is used to Receive the second annular flat-top beam.
  • the optical ATP antenna further includes a receiving module; the optical imaging module is also used to receive a third annular Gaussian beam, and condense the third annular Gaussian beam into a fourth annular Gaussian beam.
  • the beam is transmitted to the pyramid lens; the pyramid lens is also used to shape the fourth annular Gaussian beam into a second Gaussian beam, and transmit the second Gaussian beam to the receiving module; the receiving module is used to receive the third Two Gaussian beams.
  • the second aspect of the embodiments of the present application provides an optical signal processing method.
  • the optical ATP antenna includes an input light source module, a pyramid lens and an optical imaging module.
  • the method includes: transmitting the first light emitted by the input light source module through the pyramid lens. Shaping a Gaussian beam into a first annular Gaussian beam, and transmitting the first annular Gaussian beam to the optical imaging module;
  • the optical imaging module expands the first annular Gaussian beam into a second annular Gaussian beam and transmits it to the lower optical path.
  • the diameter of the second annular Gaussian beam is larger than the diameter of the first annular Gaussian beam.
  • the central axes of the input light source module, the pyramid lens and the optical imaging module coincide.
  • the optical imaging module includes a lens unit and a reflector group.
  • the reflector group includes a primary reflector and a secondary reflector.
  • the primary reflector has a hole.
  • the method further includes: The lens unit expands the first annular Gaussian beam into a second annular Gaussian beam and transmits it to the secondary reflector.
  • the diameter of the second annular Gaussian beam is equal to the clear aperture of the primary reflector.
  • the second annular Gaussian beam is The opening diameter of the Gaussian beam is equal to the clear aperture of the secondary reflector; the second annular Gaussian beam transmitted by the secondary reflector is transmitted to the lower optical path through the primary reflector.
  • the hole of the main reflector is located at the center of the main reflector.
  • the first surface of the pyramid lens is an inner concave surface
  • the second surface of the pyramid lens is a flat surface.
  • the method further includes: converting the input light source module through the pyramid lens.
  • the emitted Gaussian beam is shaped into a first annular anti-Gaussian beam, and the first annular anti-Gaussian beam is transmitted to the lens unit; the first annular anti-Gaussian beam is flipped into a first annular Gaussian beam through the lens unit.
  • the lens unit includes a first lens and a second lens, and turning the first annular anti-Gaussian beam into a first annular Gaussian beam through the lens unit includes: passing the first annular anti-Gaussian beam.
  • a lens and a second lens are used to flip the first annular anti-Gaussian beam into a first annular Gaussian beam.
  • the input light source module includes a light source unit and a collimator
  • the method further includes: generating a light beam through the light source unit; shaping the light beam into the first Gaussian through the collimator beam.
  • the optical ATP antenna further includes a receiving module; the method further includes: receiving a flat-top beam through the optical imaging module, and shaping the flat-top beam into a first annular flat-top beam and transmitted to the pyramid lens; through the pyramid lens, the first annular flat-top beam is condensed into a second annular flat-top beam, and the second annular flat-top beam is transmitted to the receiving module; through the receiving module Receive the second annular flat-top beam.
  • the optical ATP antenna further includes a receiving module; the method further includes: the optical imaging module is further configured to receive a third annular Gaussian beam and condense the third annular Gaussian beam is a fourth annular Gaussian beam and is transmitted to the pyramid lens; the pyramid lens is also used to shape the fourth annular Gaussian beam into a second Gaussian beam, and transmit the second Gaussian beam to the receiving module; the receiving module The module is used to receive the second Gaussian beam.
  • the third aspect of the embodiments of the present application provides an optical communication satellite equipment.
  • the optical communication satellite equipment includes the optical ATP antenna, optical amplifier module and controller in the above-mentioned first aspect or any possible implementation of the first aspect,
  • the optical ATP antenna can be used to perform the method in the above second aspect or any possible implementation of the second aspect.
  • the fourth aspect of the embodiments of the present application provides a space optical communication system.
  • the space optical communication system includes the optical communication satellite equipment of the above-mentioned third aspect.
  • the optical ATP antenna uses a lens solution, which does not require the introduction of diffraction elements to achieve the annular Gaussian beam effect.
  • the structure is simple and convenient, and the cost is low.
  • Figure 1 is a schematic structural diagram of a Fresnel optical ATP antenna
  • Figure 2a is a schematic diagram of a scene of optical communication satellite equipment provided by an embodiment of the present application.
  • Figure 2b is a schematic structural diagram of an optical communication satellite device provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of an optical ATP antenna provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a corner pyramid lens provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of another pyramid lens provided by an embodiment of the present application.
  • Figure 6a is a schematic structural diagram of another optical ATP antenna provided by an embodiment of the present application.
  • Figure 6b is a schematic structural diagram of another pyramid lens provided by an embodiment of the present application.
  • Figure 6c is a schematic structural diagram of another pyramid lens provided by an embodiment of the present application.
  • Figure 7a is a schematic structural diagram of another optical ATP antenna provided by an embodiment of the present application.
  • Figure 7b is a schematic structural diagram of another pyramid lens provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of another optical ATP antenna provided by an embodiment of the present application.
  • Figure 9 is a schematic flow chart of an optical signal processing method provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of an optical communication satellite equipment provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a space optical communication system provided by an embodiment of the present application.
  • Embodiments of the present application provide an optical ATP antenna and an optical signal processing method, which are used to realize the distribution of an annular Gaussian beam through a pyramid lens, thereby reducing the cost of the optical ATP antenna.
  • the optical acquisition, tracking, pointing (ATP) ATP antenna is used for transmitting and receiving space optical signals.
  • the front optical path of the optical ATP antenna includes the main mirror.
  • the Cassegrain telescopic structure of the secondary mirror shrinks the incident beam from a larger diameter at the entrance pupil, and then delivers the reduced beam to the rear optical path.
  • the new Fresnel optical ATP antenna uses an amplitude-type Fresnel zone plate for alignment.
  • the Gaussian beam is shaped.
  • the zone plate is a grating composed of a group of alternating light-transmitting and opaque communication rings. This solution uses the focusing characteristics of the Fresnel zone plate to replace the traditional lens and uses the diffraction characteristics to generate a central dark beam, thus avoiding the energy loss caused by the central hole reflector.
  • the embodiment of the present application provides an optical communication satellite equipment.
  • the optical communication satellite equipment includes a controller, an optical amplifier device and an optical ATP antenna.
  • the controller is used to control the optical amplifier device and the optical ATP antenna.
  • the optical amplifier device includes a light source and an optical amplifier module, and the optical amplifier module is used to implement optical communication functions.
  • the optical ATP antenna is used for beam shaping, transmission and reception.
  • the optical ATP antenna includes: input light source module, pyramid lens and optical imaging module.
  • the pyramid lens is used to shape the first Gaussian beam emitted by the input light source module into a first annular Gaussian beam, and transmit the first annular Gaussian beam to the optical imaging module.
  • the optical imaging module is used to expand the first annular Gaussian beam into a second annular Gaussian beam and transmit it to the lower optical path.
  • the diameter of the second annular Gaussian beam is larger than the diameter of the first annular Gaussian beam.
  • the optical ATP antenna in the embodiment of the present application is described below:
  • the optical ATP antenna 300 in the embodiment of the present application includes:
  • the input light source module 301 is used to generate a collimated first Gaussian beam and send it to the pyramid lens.
  • the diameter of the first Gaussian beam is a first diameter.
  • the diameter of the beam is the diameter of the circle that appears in the cross-section of the beam along the direction perpendicular to the direction of propagation.
  • the input light source module 301 includes a light source unit 304 and a collimator 305.
  • the light source unit 304 is used to generate a Gaussian beam
  • the collimator 305 is used to collimate the Gaussian beam into a first Gaussian beam.
  • the first Gaussian beam is a collimated Gaussian beam with a certain diameter.
  • the pyramid lens 302 is used to shape the first Gaussian beam emitted by the input light source module 301 into a first annular Gaussian beam, and transmit the first annular Gaussian beam to the optical imaging module.
  • the first annular Gaussian beam is an annular Gaussian beam with a central opening, and the ratio between the size of the central opening and the diameter of the beam is known.
  • the optical ATP antenna uses a lens solution, which does not require the introduction of diffraction elements to achieve the annular Gaussian beam effect.
  • the structure is simple and convenient, and the cost is low.
  • the first surface of the pyramid lens that receives the incident light beam i.e., the left end surface
  • the second surface of the pyramid lens that emits the light beam i.e., The right end surface
  • the first surface is a surface of the pyramid lens facing the input light source module
  • the second surface is a surface of the pyramid lens facing the input light source module.
  • the beam propagation direction of the pyramid lens is shown from left to right.
  • the left end surface of the pyramid lens, that is, the first surface is the incident surface of the pyramid lens
  • the right side of the pyramid lens is the incident surface of the pyramid lens.
  • the side end surface, that is, the second surface, is the exit surface of the pyramid lens.
  • the beam incident surface of the left corner cube lens, that is, the first surface, is an inner concave surface
  • the right corner pyramid lens beam exit surface, that is, the second surface is an outer convex surface.
  • the left end face of the pyramid lens is a concave surface and the right end face is a convex pyramid face.
  • the effect achieved is an annular Gaussian beam.
  • the pyramid lens directly emits an annular Gaussian beam, and there is no need to introduce an additional eyepiece system to shape the inverse Gaussian distribution into a Gaussian distribution.
  • the angle of the corresponding pyramid lens can be designed.
  • the length l of the lens and the pyramid angle of the pyramid lens can be designed in coordination with each other.
  • the left end surface of the pyramid lens is a concave surface
  • the right end surface of the pyramid lens is a flat surface.
  • the beam propagation direction of the pyramid lens is shown from left to right.
  • the left end surface of the pyramid lens is the incident surface of the pyramid lens
  • the right end surface of the pyramid lens is the corner angle.
  • the left end surface of the beam of the left corner cube lens is a concave surface
  • the right end surface of the beam of the right corner cube lens is a flat surface.
  • the left end surface, that is, the incident surface, and the right end surface, that is, the exit surface, of the pyramid lens can both be concave surfaces.
  • the pyramid lens 702 includes a first pyramid lens 712 and a second pyramid lens. 713.
  • the left end surface of the first pyramid lens, which is the incident surface, is an inner concave surface
  • the right end surface, which is the exit surface is a flat surface
  • the left end surface of the second pyramid lens is a flat surface
  • the right end surface is an outer convex surface.
  • the angle of the pyramid lens can be determined by the refractive index, length of the pyramid lens and the height of the preset light beam deviating from the optical axis.
  • the angle of the pyramid lens includes the angle of the left end surface, the angle of the right end surface of the pyramid lens, or the angle of the left end surface and the angle of the right end surface of the lens constituting the pyramid lens, which is not limited here.
  • the optical imaging module is used to expand the first annular Gaussian beam into a second annular Gaussian beam and transmit it to the lower optical path.
  • the diameter of the second annular Gaussian beam is larger than the diameter of the first annular Gaussian beam.
  • the optical imaging module 303 includes a lens unit 306 and a reflector group 307.
  • the reflector group 307 includes a primary reflector 308, which is a primary mirror, and a secondary reflector 309, which is a secondary mirror.
  • the size of the central hole 308 is equal to the size of the clear aperture of the secondary reflector 309 , that is, the size of the hole of the primary reflector 308 will not affect the secondary reflector 309 receiving the optical signal transmitted by the lens unit 306 .
  • the secondary reflector 309 is used to receive the second annular Gaussian beam transmitted by the lens unit 306. The second annular Gaussian beam will pass through the hole of the primary reflector 308 and then be transmitted to the secondary reflector 309.
  • the hole of the primary reflector 308 The size needs to be such that it does not block the transmission of the second annular Gaussian beam, so that the second annular Gaussian beam can be transmitted to the sub-reflector 309 . Therefore, the size of the hole of the primary reflector 308 needs to be equal to the size of the clear aperture of the secondary reflector 309 .
  • the diameter of the second annular Gaussian beam matches the clear aperture of the primary reflector 308.
  • the size of the hole of the primary reflector 308 needs to be the same as the size of the secondary reflector 309. Specifically, Ground, the size of the outer ring of the second annular Gaussian beam can be equal to the clear aperture of the primary reflector 308, that is, the diameter of the hole of the primary reflector 308, and the inner ring of the second annular Gaussian beam is equal to the clear aperture size of the secondary mirror.
  • the size of the central opening of the primary reflector 308 is equal to the passing aperture of the secondary reflector 309, and is not specifically limited here.
  • the lens unit 306 is used to receive the first annular Gaussian beam transmitted by the pyramid lens 302, expand the first annular Gaussian beam into a second annular Gaussian beam, and then transmit the second annular Gaussian beam to the secondary reflector.
  • the diameter of the second annular Gaussian beam is equal to the clear aperture of the center of the primary reflector, and the opening diameter of the second annular Gaussian beam is equal to the clear aperture of the secondary reflector, that is, the diameter of the second annular Gaussian beam is less than or equal to the primary reflector. hole that allows the second annular Gaussian beam to transmitted to secondary mirror 309.
  • the lens unit 306 may include multiple lenses.
  • the lens unit 606 when the left end surface of the pyramid lens 602, that is, the incident surface, is an inner concave surface, the angle of the pyramid lens 602
  • the lens unit 606 may include a first lens 610 and a second lens 611 .
  • This type of pyramid lens 602 emits a first annular anti-Gaussian beam, that is, the light beam emitted by this type of pyramid lens is an annular anti-Gaussian beam, so the first annular anti-Gaussian beam needs to be inverted.
  • the first lens 610 and the second lens 611 are used to flip the first annular anti-Gaussian beam into a first annular Gaussian beam.
  • the first lens 610 and the second lens 611 can be a combination of a negative lens and a positive lens, a positive lens group, or a positive lens group or a negative lens group of a double cemented lens. Specifically, There are no restrictions anywhere.
  • the secondary reflecting mirror 309 is used to receive the second annular Gaussian beam transmitted by the lens unit 306 and transmit it to the primary reflecting mirror 308 .
  • the primary reflector 308 has a hole.
  • the primary reflector 308 is used to receive the second annular Gaussian beam transmitted by the secondary reflector 309 and transmit the second annular Gaussian beam transmitted by the secondary reflector 309 to the lower optical path.
  • the hole of the main reflector 308 may be located at the center of the main reflector, or may not be located at the center of the main reflector when light beam transmission is required. The details are not limited here.
  • the optical ATP antenna can also be used to process the received light beam.
  • the optical ATP antenna also includes a receiving module 801.
  • the optical imaging module 803 is used to receive the third annular Gaussian beam transmitted from the outside, and convert the third annular Gaussian beam into The Gaussian beam is condensed into a fourth annular Gaussian beam, and the fourth annular Gaussian beam is transmitted to the pyramid lens 802 .
  • the pyramid lens 802 is used to receive the fourth annular Gaussian beam transmitted by the optical imaging module 803 , shape the fourth annular Gaussian beam into a second Gaussian beam, and then transmit the second Gaussian beam to the receiving module 801 .
  • the receiving module 801 is used to receive the second Gaussian beam transmitted by the pyramid lens 802 .
  • the optical ATP antenna can also process the received annular Gaussian beam.
  • the light beam received by the optical ATP antenna may also be a flat-top light beam.
  • the optical ATP antenna also includes a receiving module 801.
  • the optical imaging module 803 is used to receive a flat-top beam transmitted from the outside and shape the flat-top beam into The first annular flat-top beam is transmitted to the pyramid lens 802.
  • the pyramid lens 802 is used to receive the first annular flat-top beam transmitted by the optical imaging module 803, condense the first annular flat-top beam into a second annular flat-top beam, and then transmit the second annular flat-top beam. to the receiving module 801.
  • the receiving module 801 is used to receive the second annular flat-top beam transmitted by the pyramid lens 802 .
  • the pyramid lens 802 of the optical ATP antenna can be the pyramid lens in any of the embodiments shown in FIGS. 3 to 7 b.
  • the optical imaging module 803 and the pyramid lens of the optical ATP antenna 802 plays the same role as the optical imaging module and the pyramid lens in any of the embodiments shown in Figure 3 to Figure 7b.
  • the direction of the optical path is opposite.
  • the right side of the pyramid lens The end surface, that is, the second surface, is the incident surface, and the left end surface, that is, the first surface, is the exit surface. Details will not be repeated here.
  • the central axes of the input light source module, the pyramid lens and the optical imaging module may be coincident, or they may not be coincident when the light beam transmission is satisfied, and the details are not limited here.
  • the following is an optical signal processing method in the embodiment of the present application.
  • This method is applied to an optical ATP antenna.
  • the optical ATP The antenna includes an input light source module, a pyramid lens and an optical imaging module, and the method includes:
  • the optical ATP antenna generates the first Gaussian beam.
  • the input light source module of the optical ATP antenna includes a light source unit and a collimator.
  • the optical ATP antenna generates a beam through the light source unit, and then the optical ATP antenna shapes the beam into a first Gaussian beam through the collimator.
  • the optical ATP antenna shapes the first Gaussian beam into the first annular Gaussian light.
  • the optical ATP antenna shapes the first Gaussian beam emitted by the input light source module into a first annular Gaussian beam through the pyramid lens, and transmits the first annular Gaussian beam to the optical imaging module.
  • the optical ATP antenna expands the first annular Gaussian beam into a second annular Gaussian beam.
  • the optical ATP antenna expands the first annular Gaussian beam into a second annular Gaussian beam through the optical imaging module and transmits it to the lower optical path.
  • the diameter of the second annular Gaussian beam is larger than the diameter of the first annular Gaussian beam.
  • the optical imaging module includes a lens unit and a reflector group.
  • the reflector group includes a primary reflector and a secondary reflector.
  • the primary reflector has a hole in the center.
  • the optical ATP antenna converts the first annular Gaussian Expanding the beam into a second annular Gaussian beam also includes: expanding the first annular Gaussian beam into a second annular Gaussian beam through the lens unit and then transmitting it to the secondary reflector.
  • the diameter of the second annular Gaussian beam is the same as that of the primary beam.
  • the clear apertures at the centers of the reflectors are equal, and the opening diameter of the second annular Gaussian beam is equal to the clear aperture of the secondary reflector.
  • the second annular Gaussian beam transmitted by the secondary reflector is transmitted to the lower optical path through the primary reflector.
  • the hole of the primary reflector may be located at the center of the primary reflector, or may not be located at the center of the primary reflector when light beam transmission is required, and the details are not limited here.
  • the central axes of the input light source module, the pyramid lens and the optical imaging module may be coincident, or they may not be coincident when the light beam transmission is satisfied, and the details are not limited here.
  • the left end surface of the pyramid lens is an inner concave surface
  • the right end surface of the pyramid lens is a plane
  • the lens unit includes a first lens and a second lens
  • the optical ATP antenna combines the first Expanding the annular Gaussian beam into a second annular Gaussian beam also includes: shaping the Gaussian beam emitted by the input light source module into a first annular anti-Gaussian beam through the pyramid lens, and transmitting the first annular anti-Gaussian beam to the lens. Unit; flipping the first annular anti-Gaussian beam into a first annular Gaussian beam through the first lens and the second lens.
  • the optical ATP antenna further includes a receiving module; the optical ATP antenna further includes a receiving module; the method further includes: receiving a flat-top beam through the optical imaging module, and shaping the flat-top beam into a third An annular flat-top beam is transmitted to the pyramid lens; the first annular flat-top beam is condensed into a second annular flat-top beam through the pyramid lens, and the second annular flat-top beam is transmitted to the receiving module ; Receive the second annular flat-top beam through the receiving module.
  • the optical ATP antenna further includes a receiving module; the method further includes: the optical imaging module is also used to receive a third annular Gaussian beam, and condense the third annular Gaussian beam into a fourth annular beam. Gaussian beam and transmit it to the pyramid lens; the pyramid lens is also used to shape the fourth annular Gaussian beam into a second Gaussian beam, and transmit the second Gaussian beam to the receiving module; the receiving module is used to receive Second Gaussian beam.
  • the embodiment of the present application provides an optical communication satellite equipment 1000.
  • the optical communication satellite equipment 1000 includes a controller 1001, an optical communication module 1002 and an optical ATP antenna 1003.
  • the optical ATP antenna 1003 can be as shown in Figure 3 to the optical ATP antenna in any embodiment of FIG. 8 .
  • the embodiment of the present application provides a space optical communication system 1100.
  • the space optical communication system 1100 includes a first optical communication satellite equipment 1101, a second optical communication satellite equipment 1102 and a third optical communication satellite equipment 1103. and multiple optical communication satellite equipment, which may be optical communication satellite equipment as shown in Figure 11.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or may be Integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例公开了一种光学获取、跟踪与瞄准ATP天线,用于通过角锥透镜实现环形高斯光束的分布,降低了光学ATP天线的成本。该光学ATP天线包括:输入光源模块、角锥透镜和光学成像模块,输入光源模块、角锥透镜和光学成像模块的中心轴重合。角锥透镜用于将输入光源模块发射的第一高斯光束整形为第一环形高斯光束,并将第一环形高斯光束传输给光学成像模块。光学成像模块用于将第一环形高斯光束扩束为第二环形高斯光束并传输给下光路,第二环形高斯光束的直径大于第一环形高斯光束的直径。

Description

一种光学ATP天线和光信号处理方法
本申请要求于2022年05月31日提交中国专利局、申请号为CN202210616022.5、申请名称为“一种光学ATP天线和光信号处理方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光信号处理技术领域,尤其涉及一种光学ATP天线和光信号处理方法。
背景技术
空间光通信系统中,光学获取、跟踪与瞄准(Acquisition,Tracking,Pointing,ATP)ATP天线用于空间光信号的发射与接收,光学ATP天线的前光路为包括主镜和次镜的卡塞格林望远结构,从而将入射光束从入瞳处较大直径进行缩束,然后将缩束后的光束传递到后光路中。
为了减小同轴架构的卡塞格林式望远结构的光学ATP天线的因为中心开孔反射镜带来的能量损失,新型菲涅尔光学ATP天线采用振幅型菲涅尔波带片对准直高斯光束进行了整形,波带片是由一组透光与不透光的通信圆环交替组成的光栅,该方案利用菲涅尔波带片的聚焦特性取代传统透镜,利用衍射特性产生中心暗的光束,从而避开被中心开孔反射镜带来的能量损失。
菲涅尔光学ATP天线把连续的光束分割成不连续,造成了光信号的能量损失,不利于远距离光束的通信,并且菲涅尔光学ATP天线对工艺的要求较高,使得菲涅尔光学ATP天线的成本较高。
发明内容
本申请提供了一种光学ATP天线和光信号处理方法,用于通过角锥透镜实现环形高斯光束的分布,降低了光学ATP天线的成本。
本申请实施例第一方面提供了一种光学获取、跟踪与瞄准ATP天线,该光学ATP天线包括:输入光源模块、角锥透镜和光学成像模块,该角锥透镜用于将该输入光源模块发射的第一高斯光束整形为第一环形高斯光束,并将该第一环形高斯光束传输给该光学成像模块;该光学成像模块用于将该第一环形高斯光束扩束为第二环形高斯光束并传输给下光路,该第二环形高斯光束的直径大于该第一环形高斯光束的直径。
该种可能的实现方式中,该光学ATP天线使用了透镜方案,不需要引入衍射元件来实现环形高斯光束效果,结构简单方便,成本低。
在第一方面一种可能的实现方式中,该输入光源模块、该角锥透镜和该光学成像模块的中心轴重合。
在第一方面一种可能的实现方式中,上述光学成像模块包括透镜单元和反射镜组,该反射镜组包括主反射镜与次反射镜,该主反射镜有孔;该透镜单元用于将该第一环形高斯光束扩束为第二环形高斯光束后传输给该次反射镜,该第二环形高斯光束的直径与该主反射 镜的通光孔径相等,所述第二环形高斯光束的开孔直径与次反射镜的通光孔径相等;该主反射镜用于将该次反射镜传输的第二环形高斯光束传输给下光路。
在第一方面一种可能的实现方式中,该主反射镜的孔位于该主反射镜的中心。
在第一方面一种可能的实现方式中,该角锥透镜的第一面为内凹面,该角锥透镜的第二面为外凸面。该第一面为该角锥透镜与该输入光源模块相对的面,该第二面为该角锥透镜与该输入光源模块相对的面。
该种可能的实现方式中,利用了使用的角锥透镜结构不同,角锥透镜的第一面为凹面,第二面为凸面角锥面,实现的效果是环形高斯光束。另一方面,该角锥透镜直接出射为环形高斯光束,不需要额外引入目镜系统对反高斯分布整形成高斯分布。
在第一方面一种可能的实现方式中,该角锥透镜的角度通过该角锥透镜的折射率、长度和预设光束偏离光轴的高度确定。
在第一方面一种可能的实现方式中,该角锥透镜的第一面为内凹面,该角锥透镜的第二面为平面;该角锥透镜用于将该输入光源模块发射的高斯光束整形为第一环形反高斯光束,并将该第一环形反高斯光束传输给该透镜单元;该透镜单元还用于将该第一环形反高斯光束翻转为第一环形高斯光束。
在第一方面一种可能的实现方式中,该透镜单元包括第一透镜和第二透镜,该第一透镜和第二透镜用于将该第一环形反高斯光束翻转为第一环形高斯光束。
该种可能的实现方式中,对于第一面为内凹面,第二面为平面的角锥透镜,出射的光束为环形反高斯光束,第一透镜和第二透镜可以对该环形反高斯光束进行翻转,从而得到环形高斯光束。
在第一方面一种可能的实现方式中,该角锥透镜包括第一角锥透镜和第二角锥透镜,该第一角锥透镜的第一面为内凹面,第二面为平面;该第二角锥透镜的第一面为平面,第二面为外凸面。
在第一方面一种可能的实现方式中,该角锥透镜的第一面和第二面都是内凹面。
在第一方面一种可能的实现方式中,该输入光源模块包括光源单元和准直器;该光源单元用于生成光束;该准直器用于将该光束整形为该第一高斯光束。
在第一方面一种可能的实现方式中,该光学ATP天线还包括接收模块;该光学成像模块还用于接收平顶光束,并将该平顶光束整形为第一环形平顶光束并传输给该角锥透镜;该角锥透镜还用于将该第一环形平顶光束缩束为第二环形平顶光束,并将该第二环形平顶光束传输给该接收模块;该接收模块用于接收该第二环形平顶光束。
在第一方面一种可能的实现方式中,该光学ATP天线还包括接收模块;该光学成像模块还用于接收第三环形高斯光束,并将该第三环形高斯光束缩束为第四环形高斯光束并传输给该角锥透镜;该角锥透镜还用于将该第四环形高斯光束整形为第二高斯光束,并将该第二高斯光束传输给该接收模块;该接收模块用于接收第二高斯光束。
本申请实施例第二方面提供了一种光信号处理方法,该光学ATP天线包括输入光源模块、角锥透镜和光学成像模块,该方法包括:通过该角锥透镜将该输入光源模块发射的第一高斯光束整形为第一环形高斯光束,并将该第一环形高斯光束传输给该光学成像模块; 通过该光学成像模块将该第一环形高斯光束扩束为第二环形高斯光束并传输给下光路,该第二环形高斯光束的直径大于该第一环形高斯光束的直径。
在第二方面一种可能的实现方式中,该输入光源模块、该角锥透镜和该光学成像模块的中心轴重合。
在第二方面一种可能的实现方式中,该光学成像模块包括透镜单元和反射镜组,该反射镜组包括主反射镜与次反射镜,该主反射镜有孔,该方法还包括:通过该透镜单元将该第一环形高斯光束扩束为第二环形高斯光束后传输给该次反射镜,该第二环形高斯光束的直径与该主反射镜的通光孔径相等,所述第二环形高斯光束的开孔直径与次反射镜的通光孔径相等;通过该主反射镜将该次反射镜传输的第二环形高斯光束传输给下光路。
在第二方面一种可能的实现方式中,该主反射镜的孔位于该主反射镜的中心。
在第二方面一种可能的实现方式中,该角锥透镜的第一面为内凹面,该角锥透镜的第二面为平面,该方法还包括:通过该角锥透镜将该输入光源模块发射的高斯光束整形为第一环形反高斯光束,并将该第一环形反高斯光束传输给该透镜单元;通过该透镜单元将该第一环形反高斯光束翻转为第一环形高斯光束。
在第二方面一种可能的实现方式中,该透镜单元包括第一透镜和第二透镜,所述通过该透镜单元将该第一环形反高斯光束翻转为第一环形高斯光束包括:通过该第一透镜和第二透镜用于将该第一环形反高斯光束翻转为第一环形高斯光束。
在第二方面一种可能的实现方式中,该输入光源模块包括光源单元和准直器,该方法还包括:通过该光源单元生成光束;通过该准直器将该光束整形为该第一高斯光束。
在第二方面一种可能的实现方式中,该光学ATP天线还包括接收模块;该方法还包括:通过该光学成像模块接收平顶光束,并将该平顶光束整形为第一环形平顶光束并传输给该角锥透镜;通过该角锥透镜将该第一环形平顶光束缩束为第二环形平顶光束,并将该第二环形平顶光束传输给该接收模块;通过该接收模块接收该第二环形平顶光束。
在第二方面一种可能的实现方式中,该光学ATP天线还包括接收模块;该方法还包括:该光学成像模块还用于接收第三环形高斯光束,并将该第三环形高斯光束缩束为第四环形高斯光束并传输给该角锥透镜;该角锥透镜还用于将该第四环形高斯光束整形为第二高斯光束,并将该第二高斯光束传输给该接收模块;该接收模块用于接收第二高斯光束。
本申请实施例第三方面提供了一种光通信卫星设备,该光通信卫星设备包括上述第一方面或第一方面任一种可能的实现方式中的光学ATP天线、光放模块和控制器,该光学ATP天线可用于执行上述第二方面或第二方面任一种可能的实现方式中方法。
本申请实施例第四方面提供了一种空间光通信系统,该空间光通信系统包括上述第三方面的光通信卫星设备。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,该光学ATP天线使用了透镜方案,不需要引入衍射元件来实现环形高斯光束效果,结构简单方便,成本低。
附图说明
图1为一种菲涅尔光学ATP天线的结构示意图;
图2a为本申请实施例提供的一种光通信卫星设备的场景示意图;
图2b为本申请实施例提供的一种光通信卫星设备的结构示意图;
图3为本申请实施例提供的一种光学ATP天线的结构示意图;
图4为本申请实施例提供的一种角锥透镜的场景示意图;
图5为本申请实施例提供的另一种角锥透镜的结构示意图;
图6a为本申请实施例提供的另一种光学ATP天线的结构示意图;
图6b为本申请实施例提供的另一种角锥透镜的结构示意图;
图6c为本申请实施例提供的另一种角锥透镜的结构示意图;
图7a为本申请实施例提供的另一种光学ATP天线的结构示意图;
图7b为本申请实施例提供的另一种角锥透镜的结构示意图;
图8为本申请实施例提供的另一种光学ATP天线的结构示意图;
图9为本申请实施例提供的一种光信号处理方法的流程示意图;
图10为本申请实施例提供的一种光通信卫星设备的结构示意图;
图11为本申请实施例提供的一种空间光通信系统的结构示意图。
具体实施方式
本申请实施例提供了一种光学ATP天线和光信号处理方法,用于通过角锥透镜实现环形高斯光束的分布,降低了光学ATP天线的成本。
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
如图1所示,在空间光通信系统中,光学获取、跟踪与瞄准(acquisition,tracking,pointing,ATP)ATP天线用于空间光信号的发射与接收,光学ATP天线的前光路为包括主镜和次镜的卡塞格林望远结构,从而将入射光束从入瞳处较大直径进行缩束,然后将缩束后的光束传递到后光路中。为了减小同轴架构的卡塞格林式望远结构的光学ATP天线的因为中心开孔反射镜带来的能量损失,新型菲涅尔光学ATP天线采用振幅型菲涅尔波带片对准直高斯光束进行了整形,波带片是由一组透光与不透光的通信圆环交替组成的光栅,该方案利用菲涅尔波带片的聚焦特性取代传统透镜,利用衍射特性产生中心暗的光束,从而避开被中心开孔反射镜带来的能量损失。
如图2a和图2b所示,本申请实施例提供了一种光通信卫星设备,该光通信卫星设备包括控制器、光放器件和光学ATP天线,该控制器用于控制光放器件和光学ATP天线对光信 号的处理。该光放器件包括光源和光放模块,该光放模块用于实现光通信功能。该光学ATP天线用于光束整形、传输和接收,该光学ATP天线包括:输入光源模块、角锥透镜和光学成像模块。角锥透镜用于将输入光源模块发射的第一高斯光束整形为第一环形高斯光束,并将第一环形高斯光束传输给光学成像模块。光学成像模块用于将第一环形高斯光束扩束为第二环形高斯光束并传输给下光路,第二环形高斯光束的直径大于第一环形高斯光束的直径。
根据上述光通信卫星设备,下面对本申请实施例中的光学ATP天线进行描述:
如图3所示,本申请实施例中的光学ATP天线300包括:
输入光源模块301,该输入光源模块301用于生成准直的第一高斯光束并发送给角锥透镜,该第一高斯光束的直径为第一直径。光束的直径为该光束沿着传播方向的垂直方向上光束的横截面内所呈现的圆的直径。
一种可能的实现方式中,该输入光源模块301包括光源单元304和准直器305,该光源单元304用于生成高斯光束,该准直器305用于将该高斯光束准直为第一高斯光束,该第一高斯光束为具有一定直径的准直的高斯光束。
角锥透镜302,该角锥透镜用于将输入光源模块301发射的第一高斯光束整形为第一环形高斯光束,并将该第一环形高斯光束传输给该光学成像模块。如图4所示,该第一环形高斯光束为中心开孔的环形高斯光束,且中心开孔的大小和光束的直径比例已知。
本申请实施例中,该光学ATP天线使用了透镜方案,不需要引入衍射元件来实现环形高斯光束效果,结构简单方便,成本低。
一种可能的实现方式中,如图3所示,该角锥透镜的接收入射的光束的第一面(即左侧端面)为内凹面,该角锥透镜的出射光束的第二面(即右侧端面)为外凸面。该第一面为该角锥透镜与该输入光源模块相对的面,该第二面为该角锥透镜与该输入光源模块相对的面。该种可能的实现方式中,角锥透镜的光束传播方向图示为从左到右,图3中角锥透镜的左侧端面即第一面为角锥透镜的入射面,角锥透镜的右侧端面即第二面为角锥透镜的出射面。左侧角锥透镜光束入射面即第一面为内凹面,右侧角锥透镜光束出射面即第二面为外凸面。
该种可能的实现方式中,利用了使用的角锥透镜结构不同,角锥透镜的左侧端面为凹面,右侧端面为凸面角锥面,实现的效果是环形高斯光束。另一方面,该角锥透镜直接出射为环形高斯光束,不需要额外引入目镜系统对反高斯分布整形成高斯分布。
如图5所示,角锥透镜的设计由光束的输入角度决定。假设光束入射角定义为∠A,角锥左侧端面与角锥透镜外边的夹角为∠B,角锥右侧端面与角锥透镜外边的夹角为∠C,两个角锥面的长度为l,经过角锥透镜后光束从透镜光轴中心分开的高度为h,角锥外的环境折射率为n1(外部为真空/空气折射率=1),角锥透镜的折射率为n2(内部透镜材料的折射率用n2表示)。参考图5中三角关系和折射定律,可以有以下计算公式:
∠A+∠B=90°;
n*sinA’=sinA;
h=sin(A-A’)*sin(90°-A)*l÷sin(90°+A’);
l=h*sin(90°+A’)÷【sin(A-A’)*sin(90°-A)】。
通过上述计算公式可知,通过给定的材料折射率n2、透镜的长度l,希望光束偏离光轴的高度h,即可设计出对应角锥透镜的角度。其中透镜的长度l和角锥透镜的角锥角度可以互相协调来设计
一种可能的实现方式中,如图6a和6b所示,该角锥透镜的左侧端面为内凹面,该角锥透镜的右侧端面为平面。该种可能的实现方式中,角锥透镜的光束传播方向图示为从左到右,图3中角锥透镜的左侧端面为角锥透镜的入射面,角锥透镜的右侧端面为角锥透镜的出射面。左侧角锥透镜光束左侧端面为内凹面,右侧角锥透镜光束右侧端面为平面。
一种可能的实现方式中,如图6c所示,该角锥透镜的左侧端面即入射面和右侧端面即出射面可以都是内凹面。
一种可能的实现方式中,如图7a和图7b所示,角锥透镜的光束传播方向图示为从左到右,该角锥透镜702包括第一角锥透镜712和第二角锥透镜713,该第一角锥透镜的左侧端面即入射面为内凹面,右侧端面即出射面为平面;该第二角锥透镜的左侧端面为平面,右侧端面为外凸面。该第一角锥透镜和第二角锥透镜之间可以有一定的空隔,也可以使用透明材料胶合,具体此处不做限定。
本申请实施例中,该角锥透镜的角度可以通过该角锥透镜的折射率、长度和预设光束偏离光轴的高度来确定。该角锥透镜的角度包括该角锥透镜的左侧端面的角度、右侧端面的角度或组成角锥透镜的透镜的左侧端面的角度和右侧端面的角度,具体此处不做限定。
光学成像模块303,光学成像模块用于将该第一环形高斯光束扩束为第二环形高斯光束并传输给下光路,该第二环形高斯光束的直径大于该第一环形高斯光束的直径。
该光学成像模块303包括透镜单元306和反射镜组307,该反射镜组307包括主反射镜308即主镜与次反射镜309即次镜,该主反射镜308中心有孔,该主反射镜308的中心孔的大小与该次反射镜309的通光孔径大小尺寸相等,即该主反射镜308的孔的大小不会影响该次反射镜309接收透镜单元306传输的光信号。该次反射镜309用于接收透镜单元306传输的第二环形高斯光束,该第二环形高斯光束会穿过该主反射镜308的孔再传输到次反射镜309,该主反射镜308的孔的大小需要满足不阻挡第二环形高斯光束的传输,使得该第二环形高斯光束可以传输到次反射镜309。因此该主反射镜308的孔的大小需要与次反射镜309的通光孔径尺寸相等。
本申请实施例中,上述第二环形高斯光束的直径与主反射镜308的通光孔径相匹配,该主反射镜308的孔的大小需要与次反射镜309的大小相通光孔径尺寸相等,具体地,该第二环形高斯光束的外环的大小可以与主反射镜308的通光孔径即主反射镜308的孔的直径相等,第二环形高斯光束的内环与次镜的通光孔径尺寸相等,主反射镜308的中心开孔的大小与次反射镜309的通过孔径相等,具体此处不做限定。
该透镜单元306用于接收该角锥透镜302传输的第一环形高斯光束,并将该第一环形高斯光束扩束为第二环形高斯光束后传输给该次反射镜,该第二环形高斯光束的直径与该主反射镜中心的通光孔径相等,所述第二环形高斯光束的开孔直径与次反射镜的通光孔径相等,即第二环形高斯光束的直径小于或等于主反射镜的孔,可以让该第二环形高斯光束 传输到次反射镜309。
一种可能的实现方式中,该透镜单元306可以包括多个透镜,例如如图6a和6b所示,当该角锥透镜602的左侧端面即入射面为内凹面,该角锥透镜602的右侧端面即出射面为平面时,该透镜单元606可以包括第一透镜610和第二透镜611。该种类型的角锥透镜602出射的为第一环形反高斯光束,即该种类型的角锥透镜出射的光束为环形反高斯的光束,因此需要对该第一环形反高斯光束进行翻转。该第一透镜610和该第二透镜611用于将该第一环形反高斯光束翻转为第一环形高斯光束。
该种可能的实现方式中,该第一透镜610和第二透镜611可以是负透镜和正透镜的组合,也可以是正透镜组,也可以是双胶合透镜的正透镜组或负透镜组,具体此处不做限定。
该次反射镜309用于接收透镜单元306传输的第二环形高斯光束,并传输给主反射镜308。
该主反射镜308有孔,该主反射镜308用于接收次反射镜309传输的第二环形高斯光束,并将该次反射镜传输的第二环形高斯光束传输给下光路。
本申请实施例中,该主反射镜308的孔可以位于该主反射镜的中心,也可以满足光束传输的情况下不位于该主反射镜的中心,具体此处不做限定。
一种可能的实现方式中,该光学ATP天线还可以用于处理接收到的光束。具体地,如图8所示,该光学ATP天线还包括接收模块801,该种可能的实现方式中,该光学成像模块803用于接收外界传输的第三环形高斯光束,并将该第三环形高斯光束缩束为第四环形高斯光束后,并将该第四环形高斯光束传输给该角锥透镜802。该角锥透镜802用于接收光学成像模块803传输的第四环形高斯光束,并将该第四环形高斯光束整形为第二高斯光束,然后将该第二高斯光束传输给接收模块801。该接收模块801用于接收角锥透镜802传输的第二高斯光束。该种可能的实现方式中,该光学ATP天线还可以处理接收到的环形高斯光束。
一种可能的实现方式中,该光学ATP天线接收到的光束也可以是平顶光束。具体地,如图8所示,该光学ATP天线还包括接收模块801,该种可能的实现方式中,该光学成像模块803用于接收外界传输的平顶光束,并将该平顶光束整形为第一环形平顶光束并传输给角锥透镜802。该角锥透镜802用于接收光学成像模块803传输的第一环形平顶光束,并将该第一环形平顶光束缩束为第二环形平顶光束,然后将该第二环形平顶光束传输给接收模块801。该接收模块801用于接收角锥透镜802传输的第二环形平顶光束。
该种可能的实现方式中,光学ATP天线的角锥透镜802可以是上述图3至图7b所示的任一实施例中的角锥透镜,该光学ATP天线的光学成像模块803和角锥透镜802所起到的作用与上述图3至图7b所示的任一实施例中的光学成像模块和角锥透镜相同,光路的方向相反,该种可能的实现方式中,角锥透镜的右侧端面即第二面为入射面,左侧端面即第一面为出射面,具体此处不再赘述。
本申请实施例中,该输入光源模块、该角锥透镜和该光学成像模块的中心轴可以是重合的,也可以是满足光束传输的情况下不重合,具体此处不做限定。
下面对本申请实施例中的光信号处理方法,该方法应用于光学ATP天线,该光学ATP 天线包括输入光源模块、角锥透镜和光学成像模块,该方法包括:
901、光学ATP天线生成第一高斯光束。
光学ATP天线的输入光源模块包括光源单元和准直器,光学ATP天线通过该光源单元生成光束,然后光学ATP天线通过该准直器将该光束整形为该第一高斯光束。
902、光学ATP天线将第一高斯光束整形为第一环形高斯光。
光学ATP天线通过该角锥透镜将该输入光源模块发射的第一高斯光束整形为第一环形高斯光束,并将该第一环形高斯光束传输给该光学成像模块。
903、光学ATP天线将第一环形高斯光束扩束为第二环形高斯光束。
光学ATP天线通过光学成像模块将该第一环形高斯光束扩束为第二环形高斯光束并传输给下光路,该第二环形高斯光束的直径大于该第一环形高斯光束的直径。
一种可能的实现方式中,该光学成像模块包括透镜单元和反射镜组,该反射镜组包括主反射镜与次反射镜,该主反射镜中心有孔,该光学ATP天线将第一环形高斯光束扩束为第二环形高斯光束还包括:通过该透镜单元将该第一环形高斯光束扩束为第二环形高斯光束后传输给该次反射镜,该第二环形高斯光束的直径与该主反射镜中心的通光孔径相等,所述第二环形高斯光束的开孔直径与次反射镜的通光孔径相等。通过该主反射镜将该次反射镜传输的第二环形高斯光束传输给下光路。
本申请实施例中,该主反射镜的孔可以位于该主反射镜的中心,也可以满足光束传输的情况下不位于该主反射镜的中心,具体此处不做限定。
本申请实施例中,该输入光源模块、该角锥透镜和该光学成像模块的中心轴可以是重合的,也可以是满足光束传输的情况下不重合,具体此处不做限定。
一种可能的实现方式中,该角锥透镜的左侧端面为内凹面,该角锥透镜的右侧端面为平面,该透镜单元包括第一透镜和第二透镜,该光学ATP天线将第一环形高斯光束扩束为第二环形高斯光束还包括:通过该角锥透镜将该输入光源模块发射的高斯光束整形为第一环形反高斯光束,并将该第一环形反高斯光束传输给该透镜单元;通过该第一透镜和该第二透镜将该第一环形反高斯光束翻转为第一环形高斯光束。
一种可能的实现方式中,该光学ATP天线还包括接收模块;该光学ATP天线还包括接收模块;该方法还包括:通过该光学成像模块接收平顶光束,并将该平顶光束整形为第一环形平顶光束并传输给该角锥透镜;通过该角锥透镜将该第一环形平顶光束缩束为第二环形平顶光束,并将该第二环形平顶光束传输给该接收模块;通过该接收模块接收该第二环形平顶光束。
一种可能的实现方式中,该光学ATP天线还包括接收模块;该方法还包括:该光学成像模块还用于接收第三环形高斯光束,并将该第三环形高斯光束缩束为第四环形高斯光束并传输给该角锥透镜;该角锥透镜还用于将该第四环形高斯光束整形为第二高斯光束,并将该第二高斯光束传输给该接收模块;该接收模块用于接收第二高斯光束。
如图10所示,本申请实施例提供了一种光通信卫星设备1000,该光通信卫星设备1000包括控制器1001、光通信模块1002和光学ATP天线1003,该光学ATP天线1003可以是图3至图8中任一实施例中的光学ATP天线。
如图11所示,本申请实施例提供了一种空间光通信系统1100,该空间光通信系统1100包括第一光通信卫星设备1101、第二光通信卫星设备1102和第三光通信卫星设备1103等多个光通信卫星设备,该多个光通信卫星设备可以是如图11所示的光通信卫星设备。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (18)

  1. 一种光学获取、跟踪与瞄准ATP天线,其特征在于,所述光学ATP天线包括:
    输入光源模块、角锥透镜和光学成像模块;
    所述角锥透镜用于将所述输入光源模块发射的第一高斯光束整形为第一环形高斯光束,并将所述第一环形高斯光束传输给所述光学成像模块;
    所述光学成像模块用于将所述第一环形高斯光束扩束为第二环形高斯光束并传输给下光路,所述第二环形高斯光束的直径大于所述第一环形高斯光束的直径。
  2. 根据权利要求1所述的光学ATP天线,其特征在于,所述光学成像模块包括透镜单元和反射镜组,所述反射镜组包括主反射镜与次反射镜,所述主反射镜有孔;
    所述透镜单元用于将所述第一环形高斯光束扩束为第二环形高斯光束后传输给所述次反射镜,所述第二环形高斯光束的直径与所述主反射镜的高斯通光孔径相等,所述第二环形高斯光束的开孔直径与次反射镜的通光孔径相等;
    所述主反射镜用于将所述次反射镜传输的第二环形高斯光束传输给下光路。
  3. 根据权利要求2所述的光学ATP天线,其特征在于,所述角锥透镜的第一面为内凹面,所述角锥透镜的第二面为外凸面,所述第一面为所述角锥透镜与所述输入光源模块相对的面,所述第二面为所述角锥透镜与所述输入光源模块相对的面。
  4. 根据权利要求3所述的光学ATP天线,其特征在于,所述角锥透镜的角度通过所述角锥透镜的折射率、长度和预设光束偏离光轴的高度确定。
  5. 根据权利要求2所述的光学ATP天线,其特征在于,所述角锥透镜的第一面为内凹面,所述角锥透镜的第二面为平面;
    所述角锥透镜用于将所述输入光源模块发射的高斯光束整形为第一环形反高斯光束,并将所述第一环形反高斯光束传输给所述透镜单元;
    所述透镜单元还用于将所述第一环形反高斯光束翻转为第一环形高斯光束。
  6. 根据权利要求2所述的光学ATP天线,其特征在于,所述角锥透镜包括第一角锥透镜和第二角锥透镜,所述第一角锥透镜的第一面为内凹面,第二面为平面;所述第二角锥透镜的第一面为平面,第二面为外凸面。
  7. 根据权利要求2所述的光学ATP天线,其特征在于,所述角锥透镜的第一面和第二面都是内凹面。
  8. 根据权利要求1至7任一项所述的光学ATP天线,其特征在于,所述输入光源模块包括光源单元和准直器;
    所述光源单元用于生成光束;
    所述准直器用于将所述光束整形为所述第一高斯光束。
  9. 根据权利要求8所述的光学ATP天线,其特征在于,所述光学ATP天线还包括接收模块;
    所述光学成像模块还用于接收平顶光束,并将所述平顶光束整形为第一环形平顶光束并传输给所述角锥透镜;
    所述角锥透镜还用于将所述第一环形平顶光束缩束为第二环形平顶光束,并将所述第 二环形平顶光束传输给所述接收模块;
    所述接收模块用于接收所述第二环形平顶光束。
  10. 根据权利要求8所述的光学ATP天线,其特征在于,所述光学ATP天线还包括接收模块;
    所述光学成像模块还用于接收第三环形高斯光束,并将所述第三环形高斯光束缩束为第四环形高斯光束并传输给所述角锥透镜;
    所述角锥透镜还用于将所述第四环形高斯光束整形为第二高斯光束,并将所述第二高斯光束传输给所述接收模块;
    所述接收模块用于接收第二高斯光束。
  11. 一种光信号处理方法,其特征在于,所述光学ATP天线包括输入光源模块、角锥透镜和光学成像模块,所述方法包括:
    通过所述角锥透镜将所述输入光源模块发射的第一高斯光束整形为第一环形高斯光束,并将所述第一环形高斯光束传输给所述光学成像模块;
    通过所述光学成像模块将所述第一环形高斯光束扩束为第二环形高斯光束并传输给下光路,所述第二环形高斯光束的直径大于所述第一环形高斯光束的直径。
  12. 根据权利要求11所述的方法,其特征在于,所述光学成像模块包括透镜单元和反射镜组,所述反射镜组包括主反射镜与次反射镜,所述主反射镜有孔,所述方法还包括:
    通过所述透镜单元将所述第一环形高斯光束扩束为第二环形高斯光束后传输给所述次反射镜,所述第二环形高斯光束的直径与所述主反射镜的通光孔径相等,所述第二环形高斯光束的开孔直径与次反射镜的通光孔径相等;
    通过所述主反射镜将所述次反射镜传输的第二环形高斯光束传输给下光路。
  13. 根据权利要求12所述的方法,其特征在于,所述角锥透镜的第一面为内凹面,所述角锥透镜的第二面为平面,所述方法还包括:
    通过所述角锥透镜将所述输入光源模块发射的高斯光束整形为第一环形反高斯光束,并将所述第一环形反高斯光束传输给所述透镜单元;
    通过所述透镜单元将所述第一环形反高斯光束翻转为第一环形高斯光束。
  14. 根据权利要求11至13任一项所述的方法,其特征在于,所述输入光源模块包括光源单元和准直器,所述方法还包括:
    通过所述光源单元生成光束;
    通过所述准直器将所述光束整形为所述第一高斯光束。
  15. 根据权利要求14所述的方法,其特征在于,所述光学ATP天线还包括接收模块;所述方法还包括:
    通过所述光学成像模块接收平顶光束,并将所述平顶光束整形为第一环形平顶光束并传输给所述角锥透镜;
    通过所述角锥透镜将所述第一环形平顶光束缩束为第二环形平顶光束,并将所述第二环形平顶光束传输给所述接收模块;
    通过所述接收模块接收所述第二环形平顶光束。
  16. 根据权利要求14所述的方法,其特征在于,所述光学ATP天线还包括接收模块;所述方法还包括:
    所述光学成像模块还用于接收第三环形高斯光束,并将所述第三环形高斯光束缩束为第四环形高斯光束并传输给所述角锥透镜;
    所述角锥透镜还用于将所述第四环形高斯光束整形为第二高斯光束,并将所述第二高斯光束传输给所述接收模块;
    所述接收模块用于接收第二高斯光束。
  17. 一种光通信卫星设备,其特征在于,所述光通信卫星设备包括权利要求1至10任一项所述的光学ATP天线、光放模块和控制器,该光学ATP天线可用于执行权利要求11至16任一项所述的方法。
  18. 一种空间光通信系统,其特征在于,所述空间光通信系统包括多个权利要求17所述的光通信卫星设备。
PCT/CN2023/081339 2022-05-31 2023-03-14 一种光学atp天线和光信号处理方法 WO2023231504A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210616022.5 2022-05-31
CN202210616022.5A CN117192784A (zh) 2022-05-31 2022-05-31 一种光学atp天线和光信号处理方法

Publications (1)

Publication Number Publication Date
WO2023231504A1 true WO2023231504A1 (zh) 2023-12-07

Family

ID=89000353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081339 WO2023231504A1 (zh) 2022-05-31 2023-03-14 一种光学atp天线和光信号处理方法

Country Status (2)

Country Link
CN (1) CN117192784A (zh)
WO (1) WO2023231504A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103309044A (zh) * 2013-06-28 2013-09-18 哈尔滨工业大学 一种用于实现圆形光束整形为环形光束的方法
CN104104435A (zh) * 2013-04-12 2014-10-15 北京国科环宇空间技术有限公司 无线激光通信传输方法及系统
CN105629449A (zh) * 2016-01-20 2016-06-01 电子科技大学 一种新型菲涅耳光学天线发射系统
CN111552087A (zh) * 2020-04-24 2020-08-18 哈尔滨工业大学 一种将环形光束与共轴反射式光学系统耦合的方法
US20210098973A1 (en) * 2018-11-06 2021-04-01 Zhejiang University Structured beam generation device and method based on beam shaping
CN113253470A (zh) * 2021-06-11 2021-08-13 季华实验室 准直环形光束产生装置、激光通信系统及激光加工系统
CN114326135A (zh) * 2021-12-30 2022-04-12 中国科学院光电技术研究所 一种基于双锥形结构棱镜的空间光通信终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104104435A (zh) * 2013-04-12 2014-10-15 北京国科环宇空间技术有限公司 无线激光通信传输方法及系统
CN103309044A (zh) * 2013-06-28 2013-09-18 哈尔滨工业大学 一种用于实现圆形光束整形为环形光束的方法
CN105629449A (zh) * 2016-01-20 2016-06-01 电子科技大学 一种新型菲涅耳光学天线发射系统
US20210098973A1 (en) * 2018-11-06 2021-04-01 Zhejiang University Structured beam generation device and method based on beam shaping
CN111552087A (zh) * 2020-04-24 2020-08-18 哈尔滨工业大学 一种将环形光束与共轴反射式光学系统耦合的方法
CN113253470A (zh) * 2021-06-11 2021-08-13 季华实验室 准直环形光束产生装置、激光通信系统及激光加工系统
CN114326135A (zh) * 2021-12-30 2022-04-12 中国科学院光电技术研究所 一种基于双锥形结构棱镜的空间光通信终端

Also Published As

Publication number Publication date
CN117192784A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
EP2949000B1 (en) Directional multi-band antenna
US4439012A (en) Dual-secondary mirror cassegrain optical system
JP2020531826A (ja) コリメートを行うカバー要素によって覆われたスキャンミラーを備えた送信器
US7843650B1 (en) Monolithic afocal telescope
CN109031533B (zh) 基于卡塞格林望远镜的双光路收发一体化天线及收发方法
CN112543059B (zh) 一种共接收光路无线激光通信组网天线
CN107357029B (zh) 一种毫米波/长波红外共口径复合成像镜头
JP4976474B2 (ja) 送信方向制御をする光送受信機
CN108594411B (zh) 一种长焦距、大口径、多视场中波红外光学系统
CN111650755A (zh) 一种水下激光光源系统和水下无线光通信系统
CN1347208A (zh) 一点到多点自由空间无线光通信系统
CN101738715B (zh) 高焦比集光器
WO2023231504A1 (zh) 一种光学atp天线和光信号处理方法
US3287728A (en) Zoned radiant energy reflector and antenna having a glory ray and axial ray in phase at the focal point
EP3179198B1 (en) Telescope and beam expander assemblies
KR102205382B1 (ko) 광학 빔으로부터 광학 에너지를 추출하는 방법
CN116520619A (zh) 一种具有激光指示功能的变焦激光红外补光灯及控制方法
CN2810046Y (zh) 一种自由空间光通信装置
CN111722408B (zh) 大角度偏转收发一体光纤准直器
CN112666694B (zh) 折反式光学系统
CN100428654C (zh) 一种自由空间光通信系统
US7088526B2 (en) Lens collimator and method of producing optical signals with reduced aberrations
CN111045201B (zh) 一种小型化激光通信系统光学天线
CN116366155B (zh) 一种紧凑型的环形视域卫星激光通信终端
CN219392270U (zh) 一种基于激光雷达发射单元的光学系统及激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814702

Country of ref document: EP

Kind code of ref document: A1