WO2023231397A1 - 聚合物微球制备装置和制备方法 - Google Patents

聚合物微球制备装置和制备方法 Download PDF

Info

Publication number
WO2023231397A1
WO2023231397A1 PCT/CN2022/142096 CN2022142096W WO2023231397A1 WO 2023231397 A1 WO2023231397 A1 WO 2023231397A1 CN 2022142096 W CN2022142096 W CN 2022142096W WO 2023231397 A1 WO2023231397 A1 WO 2023231397A1
Authority
WO
WIPO (PCT)
Prior art keywords
conduit
flow channel
polymer
working electrode
phase flow
Prior art date
Application number
PCT/CN2022/142096
Other languages
English (en)
French (fr)
Inventor
门涌帆
孔维俊
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2023231397A1 publication Critical patent/WO2023231397A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices

Definitions

  • the present application relates to the technical field of polymer microsphere preparation, and in particular to a polymer microsphere preparation device and preparation method.
  • polymer microspheres Compared with other materials, polymer microspheres have unique physical and chemical properties. In recent years, they have been widely used in fields such as photonic crystals, drug targeted delivery carriers, catalysts, environmental protection materials, and biomimetic materials.
  • Fluorescent polymer microspheres with fluorescent labels are widely used in many fields such as medical imaging, biosensing, environmental monitoring, and fluorescence instrument calibration.
  • microsphere preparation and fluorescence modification which is not only time-consuming and laborious, but also causes irreversible damage to the fluorescent activity of the label due to the multiple reagents introduced by the multi-step reaction. question.
  • microfluidic technology With the development of microfluidic technology, with the help of high-precision control of micro-scale fluids, polymer monomer droplets with controllable size and uniform particle size can be obtained.
  • microfluidic chip Due to the flow channel of the finished microfluidic chip, The structure and nozzle size are fixed, and most current synthesis methods based on microfluidic technology still cannot break through the limitations of the chip geometry on droplet size adjustment.
  • the main purpose of this application is to provide a polymer microsphere preparation device and preparation method, aiming to solve the technical problems of small size control range of polymer microspheres and complex preparation and low versatility of fluorescent polymer microspheres.
  • the present application provides a polymer microsphere preparation device, which is characterized in that the polymer microsphere preparation device includes a microsphere generation component and a collection container;
  • the microsphere generation component includes a continuous phase flow channel, a discrete phase flow channel, a main flow channel, a first conduit, a second conduit, a third conduit and a working electrode; the second conduit is a conductive structure;
  • the continuous phase flow channel and the discrete phase flow channel intersect and converge into the main flow channel; according to the flow direction, the working electrodes are arranged on both sides of the main flow channel and close to the starting end of the main flow channel;
  • the first conduit is inserted into the continuous phase flow channel, the second conduit is inserted into the discrete phase flow channel, and the third conduit is inserted into the end of the main channel;
  • the collection container is connected to the third conduit through a conduit.
  • the collection container is a transparent container.
  • the microsphere generation assembly includes a microfluidic chip and a working electrode disk;
  • the continuous phase flow channel, the discrete phase flow channel and the main flow channel are arranged inside the microfluidic chip;
  • the working electrode is arranged on the surface of the working electrode disk;
  • the microfluidic chip is attached to the working electrode disk, and the working electrode is located between the microfluidic chip and the working electrode disk.
  • the microfluidic chip includes a chip body and a sealing film.
  • the chip body is provided with a continuous phase flow channel groove, a discrete phase flow channel groove and a main flow channel groove.
  • the sealing film A flow channel groove is provided on one side of the chip body to form the continuous phase flow channel, the discrete phase flow channel and the main flow channel.
  • the polymer microsphere generating assembly further includes a power pad, which is disposed on the surface of the working electrode pad and located outside the microfluidic chip;
  • the electrical connection plate is electrically connected to the working electrode, and the electrical connection plate is electrically connected to the AC output end of the power amplifier.
  • the outer diameter of the first conduit, the second conduit and the third conduit is 0.1mm-10mm;
  • the first conduit, the second conduit and the third conduit are in a straight line.
  • the present application provides a polymer microsphere preparation method, which can be applied to any of the above polymer microsphere preparation devices; the steps of the polymer microsphere preparation method include:
  • a transparent container collects the solution containing droplets flowing out from the third conduit, and uses an ultraviolet lamp to irradiate ultraviolet light into the transparent container, and the liquid droplets solidify into polymer microspheres under the irradiation of ultraviolet light.
  • the polymer microsphere preparation method further includes washing the polymer microspheres;
  • the polymer microsphere washing steps are as follows:
  • the prepolymerization mixture includes polymer monomer, photoinitiator and solvent.
  • the prepolymerization mixture further includes a functionalized matrix
  • the functionalized matrix includes one or more of a magnetic matrix, a fluorescent matrix, a chemiluminescent matrix, and a biomolecule matrix.
  • the fluorescent matrix includes one or more of fluorescent dyes, fluorescent proteins and fluorescent nanomaterials.
  • the polymer microsphere preparation device cleverly couples AC electrospray technology and microfluidic technology, and adjusts the AC voltage and frequency through the power amplifier to regulate the size of the generated polymer droplets. , the droplet size control range is large, reaching nearly three orders of magnitude.
  • the polymer microspheres were prepared using the above polymer microsphere preparation apparatus. Since a fluorescent matrix or other functionalized matrix such as a magnetic matrix can be directly added to the prepolymerization mixture, the preparation of fluorescent microspheres or magnetic microspheres can be completed in one step, simplifying the preparation process of fluorescent microspheres.
  • the method of the present application has good applicability to different types of matrices (such as organic small molecules, proteins and nanomaterials) and has great application potential.
  • the washing method of microspheres prepared by this method is simple and has good effect. Polymer microspheres prepared using this method have good monodispersity and excellent uniformity.
  • Figure 1 is a schematic structural diagram of an embodiment of the polymer microsphere preparation device of the present application and a schematic diagram of the connection relationship between the power supply system;
  • Figure 2 is a schematic top view of the microsphere generation component in the embodiment of the polymer microsphere preparation device of the present application
  • Figure 3 is a schematic flow diagram of an embodiment of the preparation method of polymer microspheres of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating relative importance or implicitly indicating the number of indicated technical features. Therefore, unless otherwise stated, features defined as “first” and “second” may explicitly or implicitly include one or more of the features; “plurality” means two or more.
  • the term “comprises” and any variations thereof, means the non-exclusive inclusion of the possible presence or addition of one or more other features, integers, steps, operations, units, components and/or combinations thereof.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection. , or it can be an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
  • All technical and scientific terms used in this specification have the same meanings commonly understood by those skilled in the technical field belonging to this application.
  • the terms used in the description of the present application are only for the purpose of describing specific embodiments and are not used to limit the present application.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the "droplet” mentioned in this application is a name for tiny incompatible droplets formed by water-in-oil. It is not a description of their size, and it cannot be understood as a limitation on the size of the droplets.
  • the polymer microsphere preparation device 300 includes a microsphere generation component 200 and a collection container 10; wherein the microsphere generation component 200 includes a microsphere generation component 200 and a collection container 10.
  • Continuous phase flow channel 1 is in the shape of a mouth, discrete phase flow channel 2 and main flow channel 3 It is in a straight shape, and the end of the discrete phase flow channel 2 intersects with the continuous phase flow channel 1 perpendicularly.
  • the first conduit 5 is inserted into the continuous phase flow channel 1
  • the second conduit 6 is inserted into the discrete phase flow channel
  • the third conduit 7 is inserted into the end of the main channel 3
  • the first conduit 5, the second conduit 6, and the third conduit 7 are at In a straight line
  • the collection container 10 is connected to the third conduit 7 by a conduit.
  • the working electrode 4 is arranged on the surface of the working electrode disk 9 through magnetic resonance sputtering, and the shape of the working electrode 4 can be predetermined as needed.
  • the microfluidic chip 8 is attached to the working electrode disk 9, and the working electrode 4 is located between the microfluidic chip 8 and the working electrode disk 9.
  • the working electrodes 4 are located on both sides of the main channel 3 and close to the starting end of the main channel 3 .
  • the non-integrated structure of the microfluidic chip 8 and the working electrode 4 allows them to be manufactured separately and then assembled, which can effectively reduce the manufacturing complexity of the microsphere generation component 200, which is conducive to mass production of the device and thus its application. promotion.
  • the second conduit 6 in this application is a conductive structure, and the second conduit 6 is energized. After the second conduit 6 is energized, it can generate an electric field at the starting end of the discrete phase flow channel 2; after the working electrode 4 located at the starting end of the main channel 3 is powered on, Another electric field is generated at the starting end of main channel 3. At the intersection of the discrete phase flow channel 2 and the continuous phase flow channel 1, due to the liquid surface tension of the prepolymerization mixture and the electrostatic force generated by the external electric field applied from the second conduit 6, the prepolymerization mixture is balanced at the intersection. A Taylor cone is formed, and the liquid at the tip of the cone is then shaken off into discrete droplets under the high-speed stretching of the electric field force generated by the working electrode 4.
  • the sample solution in the discrete phase flow channel 2 is generated under the action of the electric field force and surface tension. droplets. Therefore, adjusting the intensity and frequency of the energized voltage on the second conduit 6 and the working electrode 4 can change the size of the formed droplets.
  • the microsphere generation assembly 200 is provided with through holes at the inlet of the continuous phase flow channel 1, the inlet of the discrete phase flow channel 2, and the outlet of the main channel.
  • the conduit 5, the second conduit 6 and the third conduit 7 are respectively inserted into the corresponding through holes, so that the first conduit 5 is inserted into the continuous phase flow channel 1, the second conduit 6 is inserted into the discrete phase flow channel, and the third conduit 7 Insert into sprue 3.
  • the outer diameters of the first conduit 5, the second conduit 6, and the third conduit 7 are in close contact with the inner diameters of the respective through holes to form a seal.
  • the outer diameters of the first conduit 5, the second conduit 6, and the third conduit 7 are 0.1 mm. -10mm.
  • the through holes provide accurate insertion positions for the first conduit 5, the second conduit 6, and the third conduit 7, making the assembly of the microsphere generating assembly 200 easier.
  • the second conduit 6 is a conductive structure.
  • the second conduit 6 can be a hollow steel needle.
  • the steel needle can not only facilitate its insertion into the discrete phase flow channel, but also has good conductivity, and the material is cheap and easy to obtain.
  • the first conduit 5 and the third conduit 7 can also be hollow steel needles.
  • the high-voltage AC power supply 101, the oscilloscope 103 and the power amplifier 102 constitute the power supply system 100 of the polymer microsphere preparation device; the high-voltage AC power supply 101 and the oscilloscope 103 are respectively It is electrically connected to the power amplifier 102.
  • the power amplifier 102 has two output lines. One output line is connected to the second conduit 6, and the other output line is connected to the working electrode 4.
  • the output line port can be in the shape of a clip and can be directly clamped to on the second conduit 6, making the connection simple and convenient.
  • the high-voltage AC power supply 101 provides high-voltage AC power
  • the power amplifier 102 can adjust the voltage and frequency of the output AC power
  • the oscilloscope 103 can display the frequency, voltage or other parameters of the AC power output by the power amplifier 102 .
  • the output voltage and frequency are adjusted through the power amplifier, that is, the output voltage and frequency are adjusted through the power amplifier, and the voltage intensity and frequency applied to the second conduit 6 and the working electrode 4 are preset so that the water and oil phases meet.
  • a preset AC electric field is generated at the location.
  • the polymer microsphere preparation device 300 of the present application can greatly adjust the size of the droplets formed in the polymer microsphere generation assembly 200. Under optimal conditions, the present application can produce super-uniform droplets within a range of nearly three orders of magnitude. It can obtain polymer droplets of the desired size and is highly versatile. It can also visualize the microsphere preparation parameters.
  • the continuous phase liquid of the polymer microspheres is injected into the continuous phase flow channel 1 from the first conduit 5, and the discrete phase of the polymer microspheres, that is, the prepolymerization mixed liquid, is injected from the second conduit 6.
  • the discrete phase of the polymer microspheres that is, the prepolymerization mixed liquid
  • the continuous phase liquid flows along the continuous phase flow channel 1 to the intersection of the continuous phase flow channel 1 and the discrete phase flow channel 2
  • the prepolymerization mixed liquid flows along the discrete phase flow channel 2
  • the flow direction is the intersection of continuous phase flow channel 1 and discrete phase flow channel 2.
  • the continuous phase liquid is a water-insoluble liquid, that is, the "oil phase”
  • the prepolymerization mixed liquid is a "water phase” sample. Since the difference in liquid surface tension between the "oil phase” and “water phase” samples is different from the liquid surface tension applied from the second conduit 6
  • the external electric field creates an electrostatic force balance, causing the prepolymerized mixed liquid to form a Taylor cone at the intersection.
  • the cone tip liquid is then ejected into discrete droplets under the high-speed stretching of the electric field force generated by the working electrode 4, that is, discrete phase flow.
  • the sample solution in lane 2 generates droplets under the action of electric field force and surface tension.
  • adjusting the intensity and frequency of the energized voltage on the second conduit 6 and the working electrode 4 can change the size of the formed droplets.
  • the liquid droplets and the continuous phase liquid flow in the main channel 3 and flow out from the third conduit 7 located at the end of the main channel 3 .
  • the collection container is a transparent container.
  • the transparent shell of the transparent container is conducive to the passage of ultraviolet light. Therefore, in order to solidify the polymer droplets, an ultraviolet lamp can be used to irradiate ultraviolet light into the collection container 10.
  • the ultraviolet light irradiation promotes the generation of polymerized monomers in the prepared droplets. polymerizes, causing the droplets to solidify to form stable polymer microspheres.
  • the microfluidic chip 8 is composed of a chip body and a sealing film.
  • the chip body is provided with a continuous phase flow channel slot 1, a discrete phase flow channel slot 2 and a main flow channel slot 3.
  • the sealing film is attached to the chip body.
  • One side of the flow channel groove is arranged to form a continuous phase flow channel 1, a discrete phase flow channel 2 and a main flow channel 3.
  • a flow channel groove is first prepared on the chip body, and then a sealing film seals the flow channel groove to form a closed flow channel, which can obviously reduce the difficulty of preparing the microfluidic chip 8 .
  • the microfluidic chip 8 is a polydimethylsiloxane chip
  • the sealing film is a polydimethylsiloxane film.
  • the polymer microsphere preparation device 200 further includes an electrical connection pad 11.
  • the electrical connection pad 11 is disposed on the working electrode plate 9 and is located outside the microfluidic chip 8. It is electrically connected to the working electrode 4.
  • the electrical panel 11 is connected to the power supply system 100 , that is, the electrical panel 11 is used for electrical connection between the electrical output end of the power amplifier 102 and the working electrode 4 .
  • the electrical connection plate 11 connects the two working electrodes 4 and is in the shape of a bridge-like structure in the middle with enlarged ends.
  • the electrical output end of the power supply system 100 is in the shape of a clip, and is clamped and connected to the position of the bridge-like structure, so that The connection between the working electrode 4 and the electrical output terminal of the power supply system 100 is convenient and simple.
  • this application also provides an example of a polymer microsphere preparation method.
  • This method uses the above-mentioned polymer microsphere preparation device to prepare polymer microspheres; the polymer microsphere preparation method includes:
  • Step S1 Prepare prepolymerization mixture
  • Step S2 Inject the continuous phase liquid from the first conduit into the continuous phase flow channel, and simultaneously inject the prepolymerization mixed liquid from the second conduit into the discrete phase flow channel;
  • Step S3 Set the voltage intensity and frequency output by the power amplifier, and input current to the second conduit and the working electrode to preset the voltage intensity and frequency applied to the second conduit and the working electrode so that the water , generating a preset alternating current electric field at the intersection of the two oil phases, causing the pre-polymerization mixed liquid to form droplets of the target size in the polymer microsphere preparation device;
  • Step S4 A transparent container collects the solution containing liquid droplets flowing out from the third conduit, and uses an ultraviolet lamp to irradiate ultraviolet light into the transparent container. Under the irradiation of ultraviolet light, the liquid droplets solidify into polymer microspheres.
  • the prepared prepolymerization mixture includes polymer monomer, photoinitiator and solvent.
  • the polymer monomer is the main component of the microsphere; under ultraviolet light irradiation, the photoinitiator promotes the polymerization of the polymer monomer to form microspheres.
  • the prepolymerization mixture also includes a functionalized matrix.
  • the functionalized matrix is a substance that can impart special functions to the polymer microspheres.
  • the functionalized matrix includes a magnetic matrix, a fluorescent matrix, a chemical matrix, and a chemical matrix.
  • a luminescent matrix and a biomolecule matrix One or more of a luminescent matrix and a biomolecule matrix.
  • the magnetic matrix can give the polymer microspheres paramagnetism
  • the fluorescent matrix can give the polymer microspheres the ability to emit fluorescence
  • the chemiluminescent matrix can give the microspheres the function of producing luminescence through a specific oxidation reaction.
  • Different functionalized matrices endow microspheres with different functions.
  • polymer microspheres with different functions can be used in biomedicine, separation, chemical industry, analytical chemistry, etc.
  • the field plays a unique role and is highly irreplaceable.
  • certain types of nanomaterials can also be used as functionalized matrices for polymer microspheres, such as nanocatalytic materials such as nanomanganese and nanotitanium dioxide, which can give polymer microspheres in-situ catalytic functions and have excellent catalytic effects.
  • single-functional microspheres such as magnetic microspheres, fluorescent microspheres, microspheres containing biomolecules or chemiluminescent microspheres can be prepared; when there are multiple functionalized substrates, the above-mentioned functions can be obtained.
  • the chemical matrix can be combined in various types to prepare multifunctional microspheres, such as magnetic fluorescent microspheres, multi-color fluorescent microspheres or fluorescently labeled biomolecule microspheres.
  • the fluorescent matrix includes one or more of fluorescent dyes, fluorescent proteins, and fluorescent nanomaterials.
  • This method can prepare fluorescent microspheres containing a single fluorescent substrate, and can also prepare multi-color fluorescent microspheres containing multiple fluorescent substrates.
  • sodium fluorescein, green fluorescent protein and CdTe quantum dots as three representative fluorescent markers, namely fluorescent dyes, fluorescent proteins and fluorescent nanomaterials respectively, and polyethylene glycol diacrylate (PEGDA) as the encapsulation material, according to this application
  • All polymer microsphere preparation methods can be used to prepare fluorescent polymer microspheres, and the prepared microspheres exhibit excellent particle size uniformity and high fluorescence intensity. Therefore, the preparation method of polymer microspheres in this application is simple, fast, and versatile. good.
  • step S2 a proportional valve is used to accurately output air pressure, and the continuous phase liquid and the prepared prepolymerization mixture solution are driven into the microfluidic chip through air pressure, and a slight adjustment is required to stably form droplets.
  • step S3 the voltage intensity and frequency output by the power amplifier are set, and current is input to the second conduit and the working electrode to preset the voltage intensity and frequency applied to the second conduit and the working electrode, so as to A preset alternating current electric field is generated at the intersection of the water and oil phases, so that the prepolymerized mixed liquid forms droplets of a target size in the microsphere generating assembly.
  • the high-voltage AC power supply, oscilloscope and power amplifier constitute the power supply system of the polymer microsphere preparation device, and the power amplifier is the electrical output end of the power supply system.
  • the high-voltage AC power supply and the oscilloscope are jointly connected to a power amplifier.
  • the power amplifier has two electrical output lines, and the two electrical output lines are respectively used to connect to the second conduit and the working electrode. Since the power amplifier is directly connected to the second conduit and the working electrode, the voltage intensity and frequency applied to the second conduit and the working electrode can be preset by adjusting the output voltage and frequency of the power amplifier, so that both water and oil can A preset AC electric field is generated at the intersection. Therefore, setting the output voltage intensity and frequency of the power amplifier output line can control the size of the droplets formed by the prepolymerization mixture in the polymer microsphere preparation device. Therefore, the prepolymerization mixture can be formed into droplets of a target size in the microsphere generating assembly by adjusting and setting the voltage intensity and frequency of the power amplifier output.
  • step S4 droplets formed from the prepolymerization mixture are collected through a transparent container, and an ultraviolet lamp is used to irradiate ultraviolet light into the transparent container. Since the liquid droplets formed in step S3 will flow into the transparent container together with the continuous phase liquid along the third conduit under the pressure of air pressure, the liquid droplets will be irradiated by ultraviolet light while dripping from the top of the transparent container. The irradiation of ultraviolet light can promote the polymerization of polymer monomers in the droplets formed from the prepolymerized mixture, thereby solidifying the droplets into polymer microspheres.
  • the polymer microsphere solution irradiated by an ultraviolet lamp in a transparent container must first be sucked into a centrifuge tube, centrifuged at low speed to allow the polymer microspheres to sink to the bottom under the action of centrifugal force, and the upper continuous phase liquid must be sucked away.
  • For a single washing operation first add detergent to the centrifuge tube with polymer microspheres settled at the bottom, shake to mix evenly, and centrifuge at low speed. The polymer microspheres will sink to the bottom of the solution (i.e., the bottom of the centrifuge tube) under the action of centrifugal force and be sucked away.
  • the detergent on the top layer of the centrifuge tube completes one wash.
  • the volume of washing liquid required to be added should be approximately equal to the volume of liquid sucked out before washing.
  • polymer microspheres suspended in water can finally be obtained.
  • Detergent can wash away the residual continuous phase liquid and surfactant on the surface of polymer microspheres. This application completes the washing process in three steps, so that the polymer microspheres are transferred from the oil phase to the water phase and have good monodispersity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

一种聚合物微球制备装置(300)和制备方法。聚合物微球制备装置(300)包括微球生成组件(200)和收集容器(10);微球生成组件(200)包括连续相流道(1)、离散相流道(2)、主流道(3)、第一导管(5)、第二导管(6)、第三导管(7)和工作电极(4);连续相流道(1)和离散相流道(2)交叉汇集到主流道(3);工作电极(4)设置于主流道(3)的两侧,并靠近主流道(3)的起始端;第一导管(5)插入至连续相流道(1)中,第二导管(6)插入至离散相流道(2)中,第三导管(7)插入主流道(3)的末端;第二导管(6)为导电结构;收集容器(10)通过导管连接第三导管(7)。制备方法将微流控芯片和电喷雾技术耦合,制备的微球不仅尺寸可控范围大且分散性、单分散性良好且具有均一性,能适用于多种荧光基质荧光微球的制备。

Description

聚合物微球制备装置和制备方法
本申请要求于2022年05月30日提交中国专利局、申请号为202210602401.9、发明名称为“聚合物微球制备装置和制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及聚合物微球制备的技术领域,尤其涉及一种聚合物微球制备装置和制备方法。
背景技术
聚合物微球较其他材料相比,因具有独特的物理、化学性能,近年来被广泛应用于光子晶体、药物靶向输送载体、催化剂、环境保护材料以及仿生材料等领域,而在聚合物中加入荧光标记的荧光聚合物微球则被广泛应用于医学成像、生物传感、环境监测和荧光仪器校正等多个领域。但目前大多数荧光聚合物微球的制备过程分为微球制备和荧光修饰两个步骤,不仅耗时费力,并且存在由多步反应引入的多种试剂对标记物的荧光活性造成不可逆的损伤问题。
随着微流控技术的发展,借助微流控技术对微尺度流体的高精度操控,可获得尺寸可控,粒径均一性的聚合物单体液滴,但由于成品微流控芯片的流道结构和喷口尺寸是固定的,目前多数基于微流控技术的合成方法仍然无法突破芯片几何结构对液滴尺寸调节所带来限制。
申请内容
本申请的主要目的在于提供一种聚合物微球制备装置和制备方法,旨在解决聚合物微球尺寸控制范围小以及荧光聚合物微球制备复杂且通用性低的技术问题。
为实现上述目的,本申请提供一种聚合物微球制备装置,其特征在于,所述聚合物微球制备装置包括微球生成组件和收集容器;
所述微球生成组件包括连续相流道、离散相流道、主流道、第一导管、第二导管、第三导管和工作电极;所述第二导管为导电结构;
所述连续相流道和所述离散相流道交叉汇集到所述主流道;按照流向,所述工作电极设置于所述主流道的两侧,并靠近所述主流道的起始端;所述第一导管插入至所述连续相流道中,所述第二导管插入至所述离散相流道中,所述第三导管插入所述主流道的末端;
所述收集容器以导管连接所述第三导管。
可选的,在一实施例中,所述收集容器为透明容器。
可选的,在一实施例中,所述微球生成组件包括微流控芯片和工作电极盘;
所述连续相流道、所述离散相流道和所述主流道设置于所述微流控芯片内部;
所述工作电极设置于所述工作电极盘的表面;
所述微流控芯片贴附于所述工作电极盘上,所述工作电极位于所述微流控芯片与所述工作电极盘之间。
可选的,在一实施例中,所述微流控芯片包括芯片主体和封闭薄膜,所述芯片主体上设有连续相流道槽、离散相流道槽和主流道槽,所述封闭薄膜贴合于所述芯片主体设置流道槽的一侧,以形成所述连续相流道、所述离散相流道和所述主流道。
可选的,在一实施例中,所述聚合物微球生成组件还包括接电盘,所述接电盘设置于所述工作电极盘表面,并位于所述微流控芯片外侧;所述接电盘与所述工作电极电性连接,所述接电盘与所述功率放大器交流电输出端电连接。
可选的,在一实施例中,所述第一导管、第二导管和第三导管外径为0.1mm-10mm;
所述第一导管、第二导管和第三导管处于一条直线上。
为实现上述目的,本申请提供了一种聚合物微球制备方法,应用于上述任一所述的聚合物微球制备装置;所述聚合物微球制备方法步骤包括:
配制预聚合混合液;
从所述第一导管向所述连续相流道内注入连续相液体,同时从所述第二导管向所述离散相流道内注入所述预聚合混合液;
设定功率放大器输出的电压强度和频率,输入电流至所述第二导管和所述工作电极,用以预设施加在第二导管和工作电极上的电压强度和频率,以使水、油两相交汇处产生预设交流电场,使所述预聚合混合液在所述微球生成组件中形成目标尺寸的液滴;
透明容器收集从所述第三导管流出的含有液滴的溶液,并用紫外灯向所述透明容器内照射紫外光,在紫外光的照射下液滴固化为聚合物微球。
可选的,在一实施例中,所述在紫外光的照射下液滴固化为聚合物微球后,所述聚合物微球制备方法还包括聚合物微球洗涤;
所述聚合物微球洗涤步骤如下:
a)、使用环己烷通过低速离心法对所述聚合物微球洗涤2次,获得环己烷洗涤后的聚合物微球;
b)、使用乙醇通过低速离心法对所述环己烷洗涤后的聚合物微球洗涤2次,获得乙醇洗涤后的聚合物微球;
c)、使用水通过低速离心法对所述乙醇洗涤后的聚合物微球洗涤2次,获得水洗涤后的聚合物微球,向所述水洗涤后的聚合物微球中加入水,获得悬浮于水中的聚合物微球。
可选的,在一实施例中,所述预聚合混合液中包括聚合物单体、光引发剂和溶剂。
可选的,在一实施例中,所述预聚合混合液中还包括功能化基质,所述功能化基质包括磁性基质、荧光基质、化学发光基质和生物分子基质中的一种或多种。
可选的,在一实施例中,所述荧光基质包括荧光染料、荧光蛋白和荧光纳米材料中的一种或多种。
本申请提供的技术方案中,聚合物微球制备装置将交流电喷雾技术和微流控技术巧妙耦合,通过所述功率放大器对交流电电压和频率的调节,从而调控生成的聚合物液滴的尺寸大小,液滴尺寸调控范围大,达到近三个数量级。使用上述聚合物微球制备装置进行聚合物微球制备。由于预聚合混合液中可以直接添加荧光基质或者其他功能化基质如磁性基质,可以直接一步完成荧光微球、或磁性微球的制备,简化荧光微球制备流程。并且本申请方法对不同种类的基质(如有机小分子、蛋白质和纳米材料)具有良好的适用性,应用潜力大。此外,本方法制备获得微球洗涤方法简单,效果良好。使用本方法制备获得聚合物微球单分散性良好且具有出色的均一性。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请聚合物微球制备装置的一个实施例结构示意图与供电系统的连接关系示意图;
图2为本申请聚合物微球制备装置实施例中微球生成组件俯视示意图;
图3为本申请聚合物微球制备方法的一个实施例的流程示意图。
附图说明:
1、连续相流道;2、离散相流道;3、主流道;4、工作电极;5、第一导管;6、第二导管;7、第三导管;8、微流控芯片;9、工作电极盘;10、透明容器;11、接电盘;100、供电系统;101高压交流电源;102、功率放大器;103、示波器;200、微球生成组件;300、聚合物微球制备装置。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。在本申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示相对重要性,或者隐含指明所指示的技术特征的数量。由此,除非另有说明,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征;“多个”的含义是两个或两个以上。术语“包括”及其任何变形,意为不排他的包含,可能存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,或是两个元件内部的连通。本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外本申请中所述“液滴”是对油包水形成的微小的不相容的液滴的称谓,不是对其尺寸大小的描述,不能将其理解为对液滴的尺寸的限制。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请参照图1、图2,本申请提供了一种聚合物微球制备装置300实施例,聚合物微球制备装置300包括微球生成组件200和收集容器10;其中微球生成组件200包括微流控芯片8、工作电极4、工作电极盘9、第一导管5、第二导管6和第三导管7;其中第二导管6为导电结构;所述微流控芯片8内部设置有连续相流道1、离散相流道2和主流道3;连续相流道1和离散相流道2交叉汇集到主流道3,连续相流道1呈口字形,离散相流道2和主流道3呈一字形,且离散相流道2末端与连续相流道1垂直交叉。第一导管5插入至连续相流道1中,第二导管6插入至离散相流道中,第三导管7插入主流道3的末端,第一导管5、第二导管6、第三导管7处于一条直线上,收集容器10通过导管连接至所述第三导管7。
所述工作电极4通过磁共振溅射方式设置在工作电极盘9的表面,工作电极4的形状可以根据需要预定。微流控芯片8贴附于工作电极盘9上,工作电极4位于微流控芯片8与工作电极盘9之间,且贴附微流控芯片8时要保证按离散相流道2液体流向,工作电极4位于主流道3的两侧,并靠近主流道3的起始端。微流控芯片8和工作电极4非一体结构,使得二者能够分开制作然后再进行组装,能够有效降低微球生成组件200的制作复杂度,有利于本装置的大量生产,从而有利于其应用的推广。
本申请第二导管6为导电结构,向第二导管6通电,第二导管6通电后能在离散相流道2起始端产生电场;位于主流道3起始端工作电极4接通电源后,在主流道3起始端产生另一电场。在离散相流道2与连续相流道1交叉汇合处,由于预聚合混合液的液体表面张力与从第二导管6施加的外加电场所产生静电力相互平衡,使预聚合混合液在交汇处形成泰勒锥,锥尖液体随后在工作电极4产生的电场力的高速拉伸下被甩脱成为离散的液滴,即离散相流道2内的样品溶液在电场力和表面张力的作用下生成液滴。因此调节第二导管6和工作电极4通电电压的强度和频率能够改变形成的液滴的尺寸。
为了便于第一导管5、第二导管6、第三导管7的插入,微球生成组件200在连续相流道1入口、离散相流道2入口和主流道出口均设有通孔,第一导管5、第二导管6和第三导管7分别插入到对应通孔内,从而使得第一导管5插入至连续相流道1中、第二导管6插入至离散相流道中、第三导管7插入主流道3中。第一导管5、第二导管6、第三导管7的外径与各自的通孔内径紧贴以形成密封,其中,第一导管5、第二导管6和第三导管7外径为0.1mm-10mm。通孔为第一导管5、第二导管6、第三导管7提供了准确的插入位置,使得微球生成组件200的组装更简单。
特别地第二导管6为导电结构,一些实施例中第二导管6可为中空钢针,钢针不仅能方便其插入到离散相流道中,并且具有良好的导电性,材料低廉易得。第一导管5和第三导管7也可同样为中空的钢针。
参考图1,在聚合物微球制备装置进行聚合物微球制备时,高压交流电源101、示波器103和功率放大器102构成聚合物微球制备装置的供电系统100;高压交流电源101、示波器103分别与功率放大器102电连接,功率放大器102有两个输出线,一条输出线连接到第二导管6,另一条输出线连接到工作电极4上,其中输出线端口可以为夹子状,直接夹持到第二导管6上,使得连接简单方便。其中高压交流电源101提供高压交流电,功率放大器102能够调整输出交流电的电压和频率,示波器103能够显示功率放大器102输出的交流电的频率、电压或者其他参数。通过功率放大器对输出电压和频率进行调整,即通过功率放大器对输出电压和频率的调整,预设施加在第二导管6和工作电极4上的电压强度和频率,以使水、油两相交汇处产生预设交流电场。本申请聚合物微球制备装置300能对聚合物微球生成组件200中形成的液滴尺寸实现大幅调节,在最优条件下本申请能产生近三个数量级的范围内的超均一液滴,能得到目标所需尺寸的聚和物液滴,具有高通用性,同时也能够将微球制备参数可视化。
本申请聚合物微球制备装置中,聚合物微球的连续相液体从第一导管5中注入到连续相流道1内,聚合物微球的离散相即预聚合混合液从第二导管6中注入到离散相流道2内,并且在气压推动下,连续相液体沿连续相流道1流向连续相流道1与离散相流道2的交叉处,预聚合混合液沿离散相流道2流向连续相流道1与离散相流道2的交叉处。连续相液体为不溶于水的液体即“油相”,预聚合混合液为“水相”样品,由于“油相”和“水相”样品的液体表面张力差与从第二导管6施加的外加电场所产生静电力平衡,使预聚合混合液在交汇处形成泰勒锥,锥尖液体随后在工作电极4产生的电场力的高速拉伸下被甩脱成为离散的液滴,即离散相流道2内的样品溶液在电场力和表面张力的作用下生成液滴。因此调节第二导管6和工作电极4通电电压的强度和频率能够改变形成的液滴的尺寸。液滴和连续相液体在主流道3中流动,并从位于主流道3尾端的第三导管7中流出。
在一实施例中,收集容器为透明容器。透明容器的透明外壳有利于紫外光穿过,因此可以为了对聚合物液滴固化,可以用紫外灯向收集容器10内照射紫外光,紫外光照射促进制备获得的液滴中的聚合单体发生聚合,从而引起液滴被固化,形成稳定的聚合物微球。
在一实施例中,微流控芯片8由芯片主体和封闭薄膜构成,芯片主体上设有连续相流道1槽、离散相流道2槽和主流道3槽,封闭薄膜贴合于芯片主体设置流道槽的一侧,以形成连续相流道1、离散相流道2和主流道3。本申请在制作封闭的流道时,先在芯片主体制备出流道槽,然后封闭薄膜封闭流道槽从而形成封闭的流道,明显能降低微流控芯片8的制备的难度。实施例中微流控芯片8为聚二甲基硅氧烷芯片,封闭薄膜为聚二甲基硅氧烷薄膜。
在一实施例中,聚合物微球制备装置200还包括接电盘11,接电盘11设置于工作电极盘9上,且位于微流控芯片8外侧,与工作电极4电性连接,接电盘11与供电系统100连接,即接电盘11用于功率放大器102电输出端和工作电极4的电连接。所述接电盘11接通两工作电极4,为两端膨大中间具有桥状结构的形状,所述供电系统100的电输出端为夹子状,夹持连接到所述桥状结构位置,使得工作电极4与供电系统100电输出端的连接的连接方便简单。
如图3所示,本申请还提供了一种聚合物微球制备方法实施例,本方法使用上述聚合物微球制备装置进行聚合物微球的制备;所述聚合物微球制备方法包括:
步骤S1:配制预聚合混合液;
步骤S2:从所述第一导管向所述连续相流道内注入连续相液体,同时从所述第二导管向所述离散相流道内注入所述预聚合混合液;
步骤S3:设定功率放大器输出的电压强度和频率,输入电流至所述第二导管和所述工作电极,用以预设施加在第二导管和工作电极上的电压强度和频率,以使水、油两相交汇处产生预设交流电场,使所述预聚合混合液在所述聚合物微球制备装置中形成目标尺寸的液滴;
步骤S4:透明容器收集从所述第三导管流出的含有液滴的溶液,并用紫外灯向所述透明容器内照射紫外光,在紫外光的照射下液滴固化为聚合物微球。
在步骤S1中,配制的预聚合混合液中包括聚合物单体、光引发剂和溶剂。其中聚合物单体为微球的主要组成成分;在紫外光照射下,光引发剂促进聚合物单体发生聚合,从而形成微球。
在一些实施例中,所述预聚合混合液中还包括功能化基质,所述功能化基质为能够赋予聚合物微球特殊功能作用的物质,所述功能化基质包括磁性基质、荧光基质、化学发光基质和生物分子基质中的一种或多种。其中磁性基质能够赋予聚合物微球顺磁性,而荧光基质能够赋予聚合物微球荧光发射能力,化学发光基质能赋予微球经特定氧化反应产生冷光的功能等。不同的功能化基质赋予了微球各异的功能,与聚合物微球本身的性质相结合后,可使得功能各异的聚合物微球在生物医学、分离、化学工业、分析化学等多个领域发挥独特的作用,具有较高的不可替代性。除上述几类物质,某些种类纳米材料也可以作为聚合物微球的功能化基质,如纳米锰、纳米二氧化钛等纳米催化材料,可以赋予聚合物微球原位催化功能,且催化效果优异。
当功能化基质为一种时,可制备获得单功能的微球如磁性微球、荧光微球、含有生物分子的微球或者化学发光微球等;当功能化基质为多种时,上述功能化基质可以进行多种类组合,制备获得多功能的微球,比如磁性荧光微球、多色荧光微球或者荧光标记的生物分子微球等。
在一些实施例中,所述荧光基质包括荧光染料、荧光蛋白和荧光纳米材料中的一种或多种。本方法能制备含有单一荧光基质的荧光微球,也可以制备含有多种荧光基质的多色荧光微球。以荧光素钠、绿色荧光蛋白和CdTe量子点分别作为荧光染料、荧光蛋白和荧光纳米材料这三类代表性荧光标记物,聚乙二醇二丙烯酸酯(PEGDA)作为包封材料,按照本申请聚合物微球制备方法均可进行荧光聚合物微球的制备,且所制备的微球展现出优异的粒径均一性和高荧光强度,因此本申请聚合物微球制备方法简单快速,通用性好。
在步骤S2中,以比例阀精准输出气压,将连续相液体和配制好的预聚合混合物溶液通过气压驱动的方式通入微流控芯片中,略作调节使其能够稳定形成液滴即可。
在步骤S3中,设定功率放大器输出的电压强度和频率,输入电流至所述第二导管和所述工作电极,用以预设施加在第二导管和工作电极上的电压强度和频率,以使水、油两相交汇处产生预设交流电场,使预聚合混合液在所述微球生成组件中形成目标尺寸的液滴。在进行聚合物微球制备时,高压交流电源、示波器和功率放大器构成了聚合物微球制备装置的供电系统,功率放大器为供电系统的电输出端。供电系统中高压交流电源与示波器共同连接于功率放大器上,功率放大器上具有两个电输出线,所述两个电输出线分别用于连接到第二导管和工作电极上。由于功率放大器直接连接在第二导管和工作电极上,因此通过功率放大器对输出电压和频率的调整,能够预设施加在第二导管和工作电极上的电压强度和频率,以使水、油两相交汇处产生预设交流电场。因此设定功率放大器输出线输出电压强度和频率可以控制预聚合混合液在聚合物微球制备装置中形成液滴的尺寸大小。所以可以通过调整设定功率放大器输出的电压强度和频率,使预聚合混合液在所述微球生成组件中形成目标尺寸的液滴。在生产前,往往需要通过预实验获得本申请方法中功率放大器输出电压强度和频率与制备获得的聚合物微球的尺寸之间的具体函数关系,从而保证在进行聚合物微球制备时,正确设定功率放大器的输出参数,以使第二导管和工作电极激发出合适的电场,从而获得目标尺寸的预聚合混合液液滴。
在步骤S4中,通过透明容器对预聚合混合液形成的液滴进行收集,并用紫外灯向所述透明容器内照射紫外光。由于步骤S3中形成的液滴在气压驱动下会和连续相液体一起沿第三导管流入到透明容器内,液滴在从透明容器顶部下滴的过程中被紫外光照射。紫外光的照射能够促进预聚合混合液形成的液滴中的聚合物单体发生聚合,从而使得液滴被固化成聚合物微球。
在所述在紫外光的照射下液滴固化为聚合物微球后,聚合物微球表面会残留有连续相液体和表面活性剂,因此还需要对聚合物微球进行洗涤,以获得能够单分散于水中的聚合物微球。所述聚合物微球洗涤步骤如下:
a)、使用环己烷通过低速离心法对所述聚合物微球洗涤2次,获得环己烷洗涤后的聚合物微球;
b)、使用乙醇通过低速离心法对所述环己烷洗涤后的聚合物微球洗涤2次,获得乙醇洗涤后的聚合物微球;
c)、使用水通过低速离心法对所述乙醇洗涤后的聚合物微球洗涤2次,获得水洗涤后的聚合物微球,向所述水洗涤后的聚合物微球中加入水,获得悬浮于水中的聚合物微球。
具体而言,进行洗涤前,首先要吸取透明容器内经紫外灯照射的聚合物微球溶液到离心管,低速离心以使聚合物微球在离心力作用下沉入底部,吸去上层连续相液体,获得待清洗的聚合物微球。单次洗涤操作首先向底部沉降有聚合物微球的离心管中加入洗涤剂,摇晃混合均匀,低速离心,聚合物微球在离心力作用下沉入溶液底部(即离心管底端),吸去离心管上层洗涤剂即完成一次洗涤。在进行洗涤时,要求加入洗涤液的体积应约等于洗涤前吸出的液体体积。按照上述洗涤操作依次进行环己烷、乙醇和水各两次洗涤后,最终能获得悬浮于水中的聚合物微球。洗涤剂能够洗去聚合物微球表面残留的连续相液体和表面活性剂。本申请三步洗涤就完成了洗涤过程,使聚合物微球由油相中转移到水相中,并具备良好的单分散性。
以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (20)

  1. 一种聚合物微球制备装置,其特征在于,所述聚合物微球制备装置包括微球生成组件和收集容器;
    所述微球生成组件包括连续相流道、离散相流道、主流道、第一导管、第二导管、第三导管和工作电极;所述第二导管为导电结构;
    所述连续相流道和所述离散相流道交叉汇集到所述主流道;按照流向,所述工作电极设置于所述主流道的两侧,并靠近所述主流道的起始端;所述第一导管插入至所述连续相流道中,所述第二导管插入至所述离散相流道中,所述第三导管插入所述主流道的末端;
    所述收集容器导管连接所述第三导管。
  2. 根据权利要求1所述的聚合物微球制备装置,其特征在于,所述微球生成组件包括微流控芯片和工作电极盘;
    所述连续相流道、所述离散相流道和所述主流道设置于所述微流控芯片内部;
    所述工作电极设置于所述工作电极盘的表面;
    所述微流控芯片贴附于所述工作电极盘上,所述工作电极位于所述微流控芯片与所述工作电极盘之间。
  3. 根据权利要求3所述的聚合物微球制备装置,其特征在于,所述微流控芯片包括芯片主体和封闭薄膜,所述芯片主体上设有连续相流道槽、离散相流道槽和主流道槽,所述封闭薄膜贴合于所述芯片主体设置流道槽的一侧,以形成所述连续相流道、所述离散相流道和所述主流道。
  4. 根据权利要求3所述的聚合物微球制备装置,其特征在于,高压交流电源、示波器和功率放大器构成聚合物微球制备装置的供电系统;通过所述供电系统能够预设施加在第二导管和工作电极上的电压强度和频率,以使水、油两相交汇处产生预设交流电场。
  5. 根据权利要求4所述的聚合物微球制备装置,其特征在于,所述高压交流电源、示波器分别与功率放大器电连接,功率放大器有两个输出线,一条输出线连接到第二导管,另一条输出线连接到工作电极上;其中高压交流电源提供高压交流电,功率放大器能够调整输出交流电的电压和频率,示波器能够显示功率放大器输出的交流电的频率、电压或者其他参数;通过功率放大器对输出电压和频率进行调整,即通过功率放大器对输出电压和频率的调整,预设施加在第二导管和工作电极上的电压强度和频率。
  6. 根据权利要求5所述的聚合物微球制备装置,其特征在于,所述微球生成组件还包括接电盘,所述接电盘设置于所述工作电极盘表面,并位于所述微流控芯片外侧;所述接电盘与所述工作电极电性连接,所述接电盘与所述功率放大器交流电输出端电连接。
  7. 根据权利要求6所述的聚合物微球制备装置,其特征在于,所述接电盘接通两工作电极,所述接电盘为两端膨大中间具有桥状结构的形状,所述供电系统的电输出端为夹子状,夹持连接到所述桥状结构位置。
  8. 根据权利要求1所述的聚合物微球制备装置,其特征在于,所述工作电极通过磁共振溅射方式设置在工作电极盘的表面。
  9. 根据权利要求1所述的聚合物微球制备装置,其特征在于,所述微流控芯片和所述工作电极之间采用拼装式连接。
  10. 根据权利要求1所述的聚合物微球制备装置,其特征在于,所述微球生成组件在连续相流道入口、离散相流道入口和主流道出口均设有通孔,第一导管、第二导管和第三导管分别插入到对应通孔内,从而使得第一导管插入至连续相流道中、第二导管插入至离散相流道中、第三导管插入主流道中。
  11. 根据权利要求10所述的聚合物微球制备装置,其特征在于,所述第一导管、第二导管、第三导管的外径与各自的通孔内径紧贴以形成密封。
  12. 根据权利要求11所述的聚合物微球制备装置,其特征在于,所述第一导管、第二导管和第三导管外径为0.1mm-10mm;
    或,所述第一导管、第二导管和第三导管处于一条直线上。
  13. 根据权利要求12所述的聚合物微球制备装置,其特征在于,所述第一导管、第二导管和第三导管外径为0.1mm-10mm;
    和,所述第一导管、第二导管和第三导管处于一条直线上。
  14. 根据权利要求13所述的聚合物微球制备装置,其特征在于,所述第一导管、第二导管和第三导管均为中空钢针。
  15. 一种聚合物微球制备方法,其特征在于,由如权利要求1-14任一所述的聚合物微球制备装置执行;所述聚合物微球制备方法步骤包括:
    配制预聚合混合液;
    从所述第一导管向所述连续相流道内注入连续相液体,同时从所述第二导管向所述离散相流道内注入所述预聚合混合液;
    设定功率放大器输出的电压强度和频率,输入电流至所述第二导管和所述工作电极,用以预设施加在第二导管和工作电极上的电压强度和频率,以使水、油两相交汇处产生预设交流电场,使所述预聚合混合液在所述微球生成组件中形成目标尺寸的液滴;
    透明容器收集从所述第三导管流出的含有液滴的溶液,并用紫外灯向所述透明容器内照射紫外光,在紫外光的照射下液滴固化为聚合物微球。
  16. 根据权利要求15所述的聚合物微球制备方法,其特征在于,所述在紫外光的照射下液滴固化为聚合物微球后,所述聚合物微球制备方法还包括聚合物微球洗涤;
    所述聚合物微球洗涤步骤如下:
    a)、使用环己烷通过低速离心法对所述聚合物微球洗涤2次,获得环己烷洗涤后的聚合物微球;
    b)、使用乙醇通过低速离心法对所述环己烷洗涤后的聚合物微球洗涤2次,获得乙醇洗涤后的聚合物微球;
    c)、使用水通过低速离心法对所述乙醇洗涤后的聚合物微球洗涤2次,获得水洗涤后的聚合物微球,向所述水洗涤后的聚合物微球中加入水,获得悬浮于水中的聚合物微球。
  17. 根据权利要求15所述的聚合物微球制备方法,其特征在于,所述预聚合混合液包括聚合物单体、光引发剂和溶剂。
  18. 根据权利要求15或17所述的聚合物微球制备方法,其特征在于,所述预聚合混合液中还包括功能化基质,所述功能化基质包括磁性基质、荧光基质、化学发光基质和生物分子基质中的一种或多种。
  19. 根据权利要求15或17所述的聚合物微球制备方法,其特征在于,所述功能化基质包括纳米锰、纳米二氧化钛中的一种或多种。
  20. 根据权利要求18所述的聚合物微球制备方法,其特征在于,所述荧光基质包括荧光染料、荧光蛋白和荧光纳米材料中的一种或多种。
PCT/CN2022/142096 2022-05-30 2022-12-26 聚合物微球制备装置和制备方法 WO2023231397A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210602401.9A CN115178198B (zh) 2022-05-30 2022-05-30 聚合物微球制备装置和制备方法
CN202210602401.9 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023231397A1 true WO2023231397A1 (zh) 2023-12-07

Family

ID=83513315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142096 WO2023231397A1 (zh) 2022-05-30 2022-12-26 聚合物微球制备装置和制备方法

Country Status (2)

Country Link
CN (1) CN115178198B (zh)
WO (1) WO2023231397A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115178198B (zh) * 2022-05-30 2023-11-03 中国科学院深圳先进技术研究院 聚合物微球制备装置和制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100018584A1 (en) * 2008-07-28 2010-01-28 Technion Research & Development Foundation Ltd. Microfluidic system and method for manufacturing the same
US20140021049A1 (en) * 2007-10-16 2014-01-23 Tony R. JOAQUIM Microfluidic systems
CN104689775A (zh) * 2015-03-16 2015-06-10 武汉大学 一种液滴型微流控芯片及利用其制备PVDF-Fe3O4磁电复合微球的方法
CN110394129A (zh) * 2019-08-13 2019-11-01 南京理工大学 一种自动控制的超均匀空心微球制备方法
WO2021007710A1 (zh) * 2019-07-12 2021-01-21 中国科学院深圳先进技术研究院 基于微流控电喷雾的单细胞全基因组扩增系统和方法
CN113248338A (zh) * 2021-05-12 2021-08-13 中北大学 一种基于液滴微流控技术的hmx基含能微球制备系统及其方法
CN114160218A (zh) * 2021-11-15 2022-03-11 大连理工大学 一种制备单分散非牛顿微液滴的微流控装置及方法
CN115178198A (zh) * 2022-05-30 2022-10-14 中国科学院深圳先进技术研究院 聚合物微球制备装置和制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533798A (ja) * 2004-04-23 2007-11-22 クマチェヴァ、ユージニア 特定の粒径、形状、形態および組成を有するポリマー粒子の製造方法
CN103374141B (zh) * 2012-04-25 2015-04-22 中国科学院大连化学物理研究所 一种基于微流控芯片制备蜂窝状聚合物微球的方法
CN108514896B (zh) * 2018-03-23 2020-10-20 西南交通大学 一种微流控双水相单分散海藻酸钙微球的制备方法及装置
CN110317728A (zh) * 2019-07-12 2019-10-11 中国科学院深圳先进技术研究院 基于微流控电喷雾的单细胞全基因组扩增系统和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140021049A1 (en) * 2007-10-16 2014-01-23 Tony R. JOAQUIM Microfluidic systems
US20100018584A1 (en) * 2008-07-28 2010-01-28 Technion Research & Development Foundation Ltd. Microfluidic system and method for manufacturing the same
CN104689775A (zh) * 2015-03-16 2015-06-10 武汉大学 一种液滴型微流控芯片及利用其制备PVDF-Fe3O4磁电复合微球的方法
WO2021007710A1 (zh) * 2019-07-12 2021-01-21 中国科学院深圳先进技术研究院 基于微流控电喷雾的单细胞全基因组扩增系统和方法
CN110394129A (zh) * 2019-08-13 2019-11-01 南京理工大学 一种自动控制的超均匀空心微球制备方法
CN113248338A (zh) * 2021-05-12 2021-08-13 中北大学 一种基于液滴微流控技术的hmx基含能微球制备系统及其方法
CN114160218A (zh) * 2021-11-15 2022-03-11 大连理工大学 一种制备单分散非牛顿微液滴的微流控装置及方法
CN115178198A (zh) * 2022-05-30 2022-10-14 中国科学院深圳先进技术研究院 聚合物微球制备装置和制备方法

Also Published As

Publication number Publication date
CN115178198B (zh) 2023-11-03
CN115178198A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
Shao et al. Droplet microfluidics-based biomedical microcarriers
US20230405591A1 (en) Multi-channel integrated microfluidic chip and method for high-throughput preparation of monodisperse microgels using the same
JP2018537414A (ja) ゲルマイクロスフェアの作製及び使用のためのシステム及び方法
US20090026080A1 (en) Apparatus and method for separating particles
WO2023231397A1 (zh) 聚合物微球制备装置和制备方法
Ji et al. Integrated parallel microfluidic device for simultaneous preparation of multiplex optical-encoded microbeads with distinct quantum dot barcodes
CN109709035B (zh) 一种微流控芯片的sers检测方法及系统
CN109913352B (zh) 一种基于非接触式介电电泳力操控捕获微颗粒和细胞的微流控装置及方法
JP2006523142A (ja) 流体種の形成および制御
WO2020249130A1 (zh) 细胞或微囊泡的分离方法及设备
WO2022048374A1 (zh) 液滴微流控芯片及微液滴的制备方法
CN105932151B (zh) 用于粘度测试的微流控芯片及制作方法
CN109603930A (zh) 基于微流控装置的脂质体囊泡的可控制备方法
Bian et al. Quantum-dot-encapsulated core–shell barcode particles from droplet microfluidics
WO2023213266A1 (zh) 微流控芯片及基于微流控技术的高通量纳米颗粒合成系统
CN111132765B (zh) 微流体系统中的颗粒分选
Pawinanto et al. Micropillar based active microfluidic mixer for the detection of glucose concentration
WO2023077764A1 (zh) 一种微流控混合器及其应用
KR20090128287A (ko) 단방향 전단력을 이용한 미세유체 칩을 사용한 단분산성알지네이트 비드의 합성방법 및 세포의 캡슐화방법
KR20130109876A (ko) 고분자 기반 마이크로 액적 제조 초미세 유체칩 및 이를 이용한 고분자 기반 마이크로 액적 제조 방법
Wu et al. Multicompartmental hydrogel microspheres as a tool for multicomponent analysis
CN106345543A (zh) 一种基于固定电势的感应电荷电渗的微混合芯片
Shen et al. A simple 3-D microelectrode fabrication process and its application in microfluidic impedance cytometry
Lin et al. Glass capillary assembled microfluidic three-dimensional hydrodynamic focusing device for fluorescent particle detection
CN114231397B (zh) 高通量药物测试离心式微流控系统及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944698

Country of ref document: EP

Kind code of ref document: A1