WO2023231179A1 - 一种基于海底热液的自供电观测装置 - Google Patents

一种基于海底热液的自供电观测装置 Download PDF

Info

Publication number
WO2023231179A1
WO2023231179A1 PCT/CN2022/111431 CN2022111431W WO2023231179A1 WO 2023231179 A1 WO2023231179 A1 WO 2023231179A1 CN 2022111431 W CN2022111431 W CN 2022111431W WO 2023231179 A1 WO2023231179 A1 WO 2023231179A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
cavity
power generation
heat
heat pipe
Prior art date
Application number
PCT/CN2022/111431
Other languages
English (en)
French (fr)
Inventor
吴世军
郑允超
刘亚辉
杨灿军
孙永超
盖小涛
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2023231179A1 publication Critical patent/WO2023231179A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/026Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/10Cleaning by methods involving the use of tools characterised by the type of cleaning tool
    • B08B1/12Brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/30Cleaning by methods involving the use of tools by movement of cleaning members over a surface
    • B08B1/32Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to the technical field of seafloor observation, and in particular to a self-powered observation device based on seafloor hydrothermal fluid.
  • Deep-sea hydrothermal activity is widely distributed in mid-ocean ridges and back-arc basins, giving birth to unique biological communities and rich sulfide mineral resources in extreme environments. It is known as a natural laboratory for studying the origin and evolution of life, and is currently a major international frontier. and one of the hot research areas. Affected by factors such as submarine volcanoes, earthquakes, and tides, hydrothermal activity varies over time. Hydrothermal activity not only has an initial stage, a development stage, a peak period and a demise period, but its eruption intensity, chemical composition and eruption temperature may also change periodically, corresponding to different periods of hydrothermal eruption activity. There are corresponding differences in the surrounding biological structures. Through long-term continuous observation of hydrothermal fluids, we can understand the changing patterns of hydrothermal activity and hydrothermal ecosystems.
  • Patent document CN113586377A discloses a submarine hydrothermal power generation device, which includes a hydrothermal cover, a thermal evaporator, a turbine generator set, a condenser and a water cooler; the hot liquid outlet of the hydrothermal cover is connected to the inlet of the hydrothermal conduit, and the thermal evaporator
  • the working fluid outlet is connected to the air inlet of the turbine-generator unit through a working fluid pipeline.
  • the air outlet of the turbine-generating unit is connected to the working fluid inlet of the condenser through a working fluid pipeline.
  • the working fluid outlet of the condenser is equipped with a booster pump.
  • the working fluid pipeline is connected to the working fluid inlet of the hot evaporator, and the seawater conduit inlet of the condenser is connected to the seawater outlet of the cold water suction device.
  • This method uses the principle of a steam engine to provide electrical energy for underwater robots, but there is a problem of turbine wear, which leads to a reduction in output power after long-term operation.
  • Patent document CN106230085B discloses a miniature electric energy in-situ collection device for submarine instruments, including a temperature difference power generation unit and a temperature difference energy management unit.
  • the shape of the thermoelectric power generation unit is a cylindrical structure, which is composed of an inner cylinder, an outer cylinder, an upper end cap, a lower end cap, a plug and a pressure block connected to each other.
  • a semiconductor thermoelectric power generation piece is installed between the inner cylinder and the outer cylinder.
  • the temperature difference energy management unit is composed of a DC converter, a battery, a microcontroller and a relay connected to each other, and is connected to the temperature difference power generation unit and hydrothermal instrument through a watertight connector and a watertight cable, thereby using the seawater temperature difference energy for seafloor heating. Self-powering of liquid instruments.
  • the device is designed to be directly installed at the submarine hydrothermal vent, but the seawater temperature outside the submarine hydrothermal vent will also gradually increase over time, thus affecting the power supply efficiency of the device.
  • Patent document CN103944452A discloses a deep sea hydrothermal thermoelectric power generation device, which includes a heat pipe, a vacuum insulated cavity and a heat dissipation cavity fastened together, a thermoelectric power generation sheet, a power generation sheet fixed block, a heat dissipation block, a voltage conversion circuit and a charging circuit.
  • this device adds a vacuum cavity to the heat pipe, thereby preventing the heat pipe's insulated section from being in direct contact with cold seawater.
  • this device is only used as a power generation device and cannot achieve the invention purpose of long-term in-situ observation.
  • the present invention provides a self-powered observation device based on seafloor hydrothermal fluid. Based on the traditional thermoelectric power generation device, the device adds a heat pipe with an evaporation section located at the seafloor hydrothermal outlet to avoid thermoelectric power generation. The cold end of the device is affected by the temperature of the seafloor hydrothermal vent. At the same time, a sensor probe is added at the evaporation section, and data is transmitted to the remote observation device through the data line in the heat pipe, thereby achieving long-term original measurement of the seafloor hydrothermal vent. bit observation.
  • a self-powered observation device based on seafloor hydrothermal fluids including a sealed cavity integrated with an energy storage unit and a data storage unit.
  • a temperature difference power generation unit is provided outside the sealed cavity for providing electrical energy and for acquiring images of seafloor hydrothermal vents.
  • the camera unit of the data, the thermoelectric power generation unit is externally connected to a heat pipe, the heat pipe includes a condensation section fixed to the hot end of the thermoelectric power generation unit, an evaporation section located in the seafloor hydrothermal vent, and a thermal insulation for connecting the condensation section and the evaporation section. section, the evaporation section is equipped with a sensor probe for acquiring monitoring data of seafloor hydrothermal vents.
  • the sensor probe transmits data through a data line integrated in the heat pipe and a data storage unit in the sealed cavity.
  • the present invention uses a structure that combines heat pipes and sensors, in which the heat pipe extends into the seafloor hydrothermal vent to ensure that the device body can be far away from the submarine hydrothermal vent (if it is too close, the temperature difference between the cold seawater near the device and the seafloor hydrothermal vent will not be large.
  • the data in the seafloor hydrothermal vent is collected through the sensor probe set up in the evaporation section of the heat pipe, and the sensor probe transmits data with the remote device body through the data line integrated in the heat pipe, thereby solving the problem
  • the temperature of cold seawater near the submarine hydrothermal vent will increase with time, making it impossible to provide long-term power supply.
  • the sensor probe is extended into the submarine hydrothermal vent through the guidance of the heat pipe. The invention goal of long-term in-situ observation has been achieved.
  • the horizontal distance between the sealed cavity and the seafloor hydrothermal vent is 25-30cm, so as to prevent the hydrothermal fluid ejected from the seafloor hydrothermal vent from affecting the seawater temperature at the cold end of the thermoelectric power generation unit, and also to avoid standing in the seafloor hydrothermal vent for a long time. mouth, causing particle impurities to adhere to the surface of the cavity, thus affecting the normal operation of the device.
  • the thermoelectric power generation unit is fixed at one end of the sealed cavity and is in direct contact with the cold seawater in a heat dissipation cavity.
  • the heat dissipation cavity is provided with a heat-conducting copper sleeve covering the condensation section of the heat pipe, as well as cold and hot electrodes for power generation. plate, the outer surface of the heat-conducting copper sleeve is provided with a plurality of fixing slots that are installed in conjunction with the hot plate, and a heat-dissipating copper sheet for heat conduction is provided between the cold-plate and the inner wall of the heat dissipation cavity.
  • the heat-conducting copper sleeve and the heat dissipation The setting of copper sheets can improve the flow capacity of heat, thereby improving the power supply efficiency of the thermoelectric power generation unit.
  • the outer surface of the heat dissipation cavity is also provided with multiple heat dissipation fins, thereby increasing the contact area between the heat dissipation cavity and cold seawater.
  • the thermally conductive copper sleeve adopts a regular hexagonal prism structure, and each prism surface is provided with a fixing groove to increase the contact surface between the hot plate and the thermally conductive copper sleeve, thereby improving the thermal conductivity effect.
  • the contact surfaces between the thermally conductive copper sleeve and the hot plate and the condensation section are coated with thermally conductive silicone grease, and the contact surfaces between the heat dissipation copper sheet and the cold electrode plate and the inner wall of the heat dissipation cavity are all coated with thermally conductive silicone grease.
  • thermal conductive silicone grease is thermal conductive silicone grease to improve the flow of heat.
  • the outer side of the heat insulation section is covered with polytetrafluoroethylene tape for heat insulation to avoid the problem of heat loss during the transfer process of heat in the heat pipe.
  • both the condensation section and the heat insulation section adopt a tube core structure with a return groove.
  • This structural feature can ensure that the condensed and liquefied working liquid can flow back to the evaporation section independently, preventing the working liquid from stagnating in the condensation section or
  • the heat insulation section causes the problem of dry burning in the evaporation section.
  • distilled water is used as the working liquid in the heat pipe to avoid impurities adhering to the inner wall of the heat pipe and affecting the heat transfer effect.
  • the heat pipe is made of titanium alloy material. Since submarine hydrothermal vents are located deep under the sea and have high pressure, materials with high strength and strong corrosion resistance must be selected.
  • the camera unit is installed above the sealed cavity, and the camera unit is also equipped with a cleaning device for regularly cleaning the cavity surface and lens. Due to long-term standing near the seafloor hydrothermal vent, some impurities will inevitably be deposited on the cavity surface. Particles, therefore, the camera unit arranged above the sealed cavity is used to resist the impurity particles ejected from the seafloor hydrothermal fluid and slowly falling. At the same time, it is cleaned regularly by the cleaning device to avoid excessive deposition that affects the normal operation of the device.
  • the cleaning device includes a cavity sweep rod driven by a motor to clean the upper surface of the sealed cavity, and a lens sweep rod with one end set on the cavity sweep rod for cleaning the lens.
  • the edge of the lens is provided with There is a fulcrum rotating shaft.
  • the edge of the lens is provided with a fulcrum rotating shaft.
  • the lens sweeping rod takes the fulcrum rotating shaft as the swing center.
  • the cavity sweeping rod drives the lens sweeping rod to swing periodically. Only a single motor is needed to realize two sweeping rods. of joint work.
  • the cleaning device also includes a fin sweep rod for cleaning the fins on the outer side of the heat dissipation cavity to avoid accumulation of impurity particles and affecting the heat exchange effect.
  • the sealed cavity adopts a split design, with seals inserted between the upper and lower cavities, and the two cavities are fixed by clamps.
  • the modular structure facilitates subsequent equipment improvements or additional equipment to provide reserved interfaces.
  • an expanded watertight joint outside the sealed cavity which can be used to read data after recovery, or to cooperate with the submarine base station.
  • a heat pipe is added to the traditional temperature difference device.
  • the heat pipe can keep the device body away from the submarine hydrothermal vent, thereby avoiding the occurrence of a smaller temperature difference between the temperature at the submarine hydrothermal vent and the seawater temperature near the device body after long-term standing. The problem of reduced power supply efficiency.
  • a cleaning device is added to clean the cavity regularly to avoid the accumulation of impurities ejected from the seafloor hydrothermal vents and affect the normal operation of the device.
  • Figure 1 is a schematic structural diagram of the self-powered observation device provided by the present invention resting on the seabed;
  • FIG. 2 is a schematic diagram of the specific structure of the thermoelectric power generation unit
  • FIG. 3 is an exploded view of the structure of the thermoelectric power generation unit
  • Figure 4 is a schematic structural diagram of the cleaning device
  • Figure 5 is a schematic diagram of the working of the cleaning device
  • This device uses the heat pipe 3 to capture the thermal energy of the submarine hydrothermal vent 1.
  • the sensor probe 2 integrated in the heat pipe 3 can measure the temperature and other parameters of the submarine hydrothermal vent 1.
  • the heat pipe 3 transfers heat to the thermoelectric power generation unit 4 through thermal conduction.
  • the seawater outside the thermoelectric power generation unit 4 is used to cool the cold end of the thermoelectric power generation unit 4, thereby forming a temperature difference between the cold and hot ends.
  • the thermoelectric material converts thermal energy into electrical energy.
  • the electric energy in the thermoelectric power generation unit 4 is transmitted to the energy storage unit in the sealed cavity 6 to provide electric energy for the sensor probe 2 and the camera unit 5.
  • the seafloor hydrothermal vent data obtained through the sensor probe 2 and the camera unit 5 are stored in In the sealed cavity 6, the device is also equipped with an expanded watertight joint 7, which can be used to read data after recovery, or to cooperate with the submarine base station. At the same time, the balance buoy 8 fixed on the outside of the expanded watertight joint 7 ensures that the device can be static position to prevent the working liquid in the heat pipe 3 from flowing back.
  • thermoelectric power generation unit 4 As shown in Figure 2, it is a schematic diagram of the specific structure of the thermoelectric power generation unit 4. It includes a heat dissipation cavity 12 fixed at one end of the sealed cavity 6 and in direct contact with seawater.
  • the heat dissipation cavity 12 is provided with a thermal conductive copper sleeve 15 covering the heat pipe condensation section 11, and cold and hot plates 14 for power generation.
  • the 15 sets of heat-conducting copper adopt a regular hexagonal prism structure.
  • Each prism surface is provided with a fixing groove 22 for fixing the hot plate.
  • the heat insulation section 10 of the heat pipe 3 is bent to facilitate the evaporation section 9 to extend into the seafloor hydrothermal vent, and also to facilitate the liquefied working liquid to flow back to the evaporation section 9 .
  • the sensor probe 2 is provided at the tip of the evaporation section 9, and the data line 21 of the sensor probe 2 is connected along the inside of the heat pipe 3 to the remote sealed cavity 6.
  • the sealed chamber 6 is also equipped with a cleaning device that can clean the upper surface of the sealed chamber 6 and the camera unit 5 at the same time, as shown in Figure 4:
  • the cleaning device includes a cavity sweep bar 17 driven by a motor to clean the upper surface of the sealed cavity 6, and a lens sweep bar 18 with one end set on the cavity sweep bar 17 and used for cleaning the lens.
  • the edge of the lens 20 is provided with There is a fulcrum shaft, and the lens sweep rod 18 is provided with a limit slot for swinging in conjunction with the fulcrum shaft.
  • the cavity sweep rod 17 will drive the lens sweep rod 18 to swing periodically, as shown in Figure 5.
  • graphite bearings are used at the fulcrum of the lens sweep rod 18 to reduce frictional resistance due to rolling friction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Telescopes (AREA)

Abstract

一种基于海底热液的自供电观测装置,包括集成有储能单元与数据存储单元的密封腔(6),密封腔(6)外部设有用于提供电能的温差发电单元(4),以及用于获取海底热液口(1)图像数据的摄像单元(5),温差发电单元(4)外接有热管(3),热管(3)包括与温差发电单元(4)热端固定的冷凝段(11)、位于海底热液口(1)内的蒸发段(9)以及用于连接冷凝段(11)和蒸发段(9)的隔热段(10),蒸发段(9)带有用于获取海底热液口(1)监测数据的传感器探头(2),传感器探头(2)通过集成在热管(3)内的数据线(21)与密封腔(6)内的数据存储单元进行数据传输。该装置通过热管(3)与传感器相结合的温差发电单元(4),从而实现了海底热液口(1)的长时间原位观测。

Description

一种基于海底热液的自供电观测装置 技术领域
本发明涉及海底观测的技术领域,尤其涉及一种基于海底热液的自供电观测装置。
背景技术
深海热液活动广泛分布于洋中脊和弧后盆地,孕育了极端环境下独特的生物群落和丰富的硫化物矿产资源,被喻为研究生命起源与进化的天然实验室,是目前国际上重大前沿和热点研究领域之一。受海底火山、地震及潮汐等因素的影响,热液活动存在随时间的变化性。热液活动不仅有起始阶段、发展阶段、鼎盛期和消亡期,而且其喷发强弱、化学成分和喷发温度也可能发生周期性的变化,对应于热液喷发活动的不同时期,热液口周围的生物结构也有相应的差别。通过对热液进行长期连续观测,可以掌握热液活动及热液生态系统的变化规律。
现有观测技术包括利用电池供电的自容式观测与海底有缆观测网供电观测。对于现有的这两种方式,目前还存在一些不足之处。电池容量有限,不能为深海设备提供可持续电能;而海底有缆观测网供电成本高,不适合远距离供电。除了极个别热液区(比如Juan de Fuca洋脊热液区)离大陆较近外,绝大多数热液区,包括我国在西南印度洋的多金属硫化物勘 探合同区,都分布于远离大陆的洋中脊地带,这使得海底有缆观测网络很难应用于洋中脊热液区。
专利文献CN113586377A公开了一种海底热液发电装置,包括热液罩、热蒸发器、汽轮发电机组、冷凝器和冷水器;热液罩的热液出口连接至热液导管进口,热蒸发器的工质出口通过工质管道连接至汽轮发电机组的入气口,汽轮发电机组的出气口通过工质管道连接至冷凝器的工质入口,冷凝器的工质出口通过增设有增压泵的工质管道连接至热蒸发器的工质入口,冷凝器的海水导管入口连接至冷水吸水器的海水出口。该方法利用蒸汽机的原理为水下机器人提供电能,但是存在汽轮机磨损的问题从而导致长时间工作后输出功率降低。
专利文献CN106230085B公开了一种用于海底仪器的微型电能量原位收集装置,包括温差发电单元和温差能量管理单元。所述温差发电单元外形为圆柱体结构,由内筒、外筒、上端盖、下端盖、堵头和压块相互连接而成,内筒和外筒之间装有半导体温差发电片。所述温差能量管理单元由直流变换器、蓄电池、微控制器和继电器相互连接而成,并通过水密连接器和水密电缆连接到温差发电单元和热液仪器,从而将海水温差能用于海底热液仪器的自供电。该装置用于直接套设在海底热液口处,但是海底热液口外的海水温度也会随时间的推移逐渐变高,从而影响该装置的供电效率。
专利文献CN103944452A公开了一种深海热液温差发电装置,包括热 管、紧固成一体的真空绝热腔体和散热腔体、温差发电片、发电片固定块、散热块、电压转换电路以及充电电路。该装置了避免热量的流失,为热管增设了真空腔,从而避免热管的隔热段直接与冷海水接触。但是该装置仅作为发电装置,并不能实现长时间原位观测的发明目的。
发明内容
为了解决上述问题,本发明提供了一种基于海底热液的自供电观测装置,该装置在传统温差发电装置的基础上,增设了一根蒸发段位于海底热液口处的热管,避免温差发电装置的冷端受到海底热液口温度的影响,同时在蒸发段处增设传感器探头,并通过热管内的数据线与远处的观测装置进行数据传输,从而实现了海底热液口的长时间原位观测。
一种基于海底热液的自供电观测装置,包括集成有储能单元与数据存储单元的密封腔,所述密封腔外部设有用于提供电能的温差发电单元,以及用于获取海底热液口图像数据的摄像单元,所述温差发电单元外接有热管,所述热管包括与温差发电单元热端固定的冷凝段,位于海底热液口内的蒸发段,以及用于连接冷凝段和蒸发段的隔热段,所述蒸发段带有用于获取海底热液口监测数据的传感器探头,所述传感器探头通过集成在热管内的数据线与密封腔内的数据存储单元进行数据传输。
由于海底热液口的变化周期非常漫长,包括很多个时期,所以常规的观测设备必须要配合海底基站的供电才能实现。本发明通过利用热管与传感器相结合的结构,其中热管伸入海底热液口保证装置本体可以远离海底 热液口(如果靠太近了,装置附近的冷海水与海底热液口温度差距不大,会影响供电效率),同时通过热管蒸发段设置的传感器探头,对海底热液口内的数据进行采集,而传感器探头通过集成在热管管内的数据线与远处的装置本体进行数据传输,从而解决现有海底热液发电装置的通病(海底热液口附近的冷海水温度会随时间变化而升高,无法实现长时间的供电),通过热管的引导,将传感器探头伸入海底热液口内,实现了长时间原位观测的发明目的。
优选的,所述密封腔与海底热液口之间水平相距25~30cm,避免海底热液口喷出的热液影响温差发电单元冷端海水温度,同时也避免长时间静置在海底热液口处,导致颗粒杂质附着在腔体表面,从而影响装置的正常工作。
优选的,所述温差发电单元固定在密封腔一端、与冷海水直接接触的散热腔体,所述散热腔体内设有套在热管冷凝段的导热铜套,以及用于发电的冷、热极板,所述导热铜套外表面设有多个与热极板配合安装的固定槽,所述冷极板与散热腔体内壁之间设有用于导热的散热铜片,通过导热铜套与散热铜片的设置,可以提高热量的流动能力,从而提高温差发电单元的供电效率。
优选的,所述散热腔体外侧面还设有多散热翅片,从而提高散热腔体与冷海水的接触面积。
优选的,所述导热铜套采用正六棱柱结构,每个棱柱面均设有固定槽, 增大热极板与导热铜套之间的接触面,从而提高导热效果。
优选的,所述导热铜套与热极板,以及与冷凝段的接触面均涂覆有导热硅脂,所述散热铜片与冷极板,以及与散热腔体内壁的接触面均涂覆有导热硅脂,从而提高热量的流动能力。
优选的,所述隔热段外侧包覆有用于隔热的聚四氟乙烯胶带,避免热管内热量在转移过程中出现热量流失的问题。
优选的,所述冷凝段与隔热段均采用带有回流沟槽的管芯结构,通过该结构特点可以保证冷凝液化后的工作液体可以自主往蒸发段回流,避免工作液体停滞在冷凝段或隔热段,而导致蒸发段干烧的问题。
具体的,所述热管内的工作液体选用蒸馏水,避免存在杂质附着在热管内壁,影响传热效果。
具体的,所述热管采用钛合金材料,由于海底热液口均处于海底深处压力较大,必须选用强度大且抗腐蚀能力强的材料。
优选的,所述摄像单元安装在密封腔上方,且摄像单元还带有用于定时清理腔体表面和镜头的清扫装置,由于长期静置在海底热液口附近,腔体表面必然会沉积一些杂质颗粒,因此通过布置在密封腔上方的摄像单元来抵挡从海底热液出喷射出来,缓慢下落的杂质颗粒,同时通过清扫装置定期清理,避免沉积过多影响装置的正常运行。
具体的,所述清扫装置包括由电机驱动、对密封腔上表面进行清扫的腔体扫杆,以及一端套设在腔体扫杆、用于清扫镜头的镜头扫杆,所述镜 头的边缘设有支点转轴,所述镜头的边缘设有支点转轴,镜头扫杆以所述支点转轴为摆动中心,通过腔体扫杆带动镜头扫杆做周期摆动,仅需单一电机即可实现两个扫杆的共同工作。
具体的,所述清扫装置还包括用于清扫散热腔体外侧面翅片的翅片扫杆,避免杂质颗粒堆积,影响换热效果。
优选的,所述密封腔采用分体设计,上下两个腔体之间采用密封件插装,两个腔体通过卡箍固定,模块化结构便于后续设备改进或者加装设备做预留接口。
优选的,所述密封腔外还带有拓展水密接头,可以用于回收后数据的读取,或与海底基站进行协同工作。
与现有技术相比,本发明的有益效果:
(1)为传统温差装置增设了一根热管,通过热管可以使装置本体远离海底热液口,从而避免出现长期静置后,海底热液口处温度与装置本体附近的海水温差变小,导致供电效果下降的问题。
(2)采用热管与传感器探头相结合的结构,在探测海底热液口数据时,可以利用海底热液口与外界冷海水的之间的温差进行发电,从而实现长时间的原位观测。
(3)增设了清扫装置,对腔体进行定期清扫,从而避免海底热液口喷出的杂质堆积,影响装置的正常工作。
附图说明
图1为本发明提供的自供电观测装置在海底静置的结构示意图;
图2为温差发电单元的具体结构示意图;
图3为温差发电单元的结构爆炸图;
图4为清扫装置的结构示意图;
图5为清扫装置的工作示意图;
图中,1、海底热液口;2、传感器探头;3、热管;4、温差发电单元;5、摄像单元;6、密封腔;7、拓展水密接头;8、平衡浮标;9、蒸发段;10、隔热段;11、冷凝段;12、散热腔体;13散热铜片;14冷、热极板;15、导热铜套;16、翅片;17、腔体扫杆;18、镜头扫杆;19、弹簧压板;20、镜头;21、数据线;22、固定槽。
具体实施方式
关于深海热液活动的研究,是目前国际上重大前沿和热点研究领域之一。但是,热液活动的时间变化周期很长,包括启示阶段、发展阶段、鼎盛期以及消亡期,其喷发强度、化学成分和喷发温度都会随着时间变化而变化,短期观测的海底设备并不适合该领域的研究,因此,本发明提供了一种基于海底热液的自供电观测装置,如图1所示。
本装置利用热管3捕获海底热液口1的热能,热管3中集成的传感器探头2可以对海底热液口1的温度等参数进行测量,其中,热管3通过热传导将热量传递到温差发电单元4的热端,同时利用温差发电单元4外侧的海水对温差发电单元4的冷端进行冷却,从而在冷热两端形成温差,在 温差作用下热电材料将热能转化为电能。然后温差发电单元4中的电能传输到密封腔6中储能单元中,为传感器探头2与摄像单元5提供电能,而通过传感器探头2与摄像单元5获取的海底热液口数据,均存储在密封腔6内,而装置还带有拓展水密接头7,可以用于回收后数据的读取,或与海底基站进行协同工作,同时通过固定在拓展水密接头7外侧的平衡浮标8保证装置可以静置,避免热管3内的工作液体不会逆流。
如图2所示,为温差发电单元4的具体结构示意图。包括固定在密封腔6一端、与海水直接接触的散热腔体12,而散热腔体12内设有套在热管冷凝段11的导热铜套15,以及用于发电的冷、热极板14。
如图3所示,导热铜15套采用正六棱柱结构,每个棱柱面均设有用于固定热极板的固定槽22,冷极板与散热腔体12内壁之间设有用于导热的散热铜片13,当热管的蒸发段9在通过海底热液的加热后,管内的蒸馏水变成水蒸气,并通过包覆有聚四氟乙烯胶带的隔热段10,进入与温差发热单元4进行热量交换的冷凝段11中,其中,隔热段10与冷凝段11的内管壁采用带有回流沟槽的管芯结构,避免出现液化后的蒸馏水滞留在管段内,导致蒸发段9无蒸馏水干烧的问题。
其中,热管3的隔热段10做弯折处理,方便蒸发段9伸入海底热液口内,同时也便于液化后的工作液体能回流至蒸发段9。
而蒸发段9的尖端处设有传感器探头2,而传感器探头2的数据线21沿热管3内部与远处的密封腔6进行连接。
此外,由于深海热液口喷发落下的灰尘容易使装置积灰,密封腔6还设有清扫装置可以同时对密封腔6上表面以及摄像单元5进行清扫,如图4所示:
清扫装置包括由电机驱动、对密封腔6上表面进行清扫的腔体扫杆17,以及一端套设在腔体扫杆17、用于清扫镜头的镜头扫杆18,其中,镜头20的边缘设有支点转轴,镜头扫杆18上设有用于与支点转轴配合摆动的限位槽,当电机工作时,腔体扫杆17会带动镜头扫杆18做周期摆动,如图5所示。同时,镜头扫杆18的支点转轴处采用石墨轴承,滚动摩擦减小摩擦阻力。
同时,还带有用于清扫散热腔体12外侧面翅片16的翅片扫杆,也有电机直接驱动。

Claims (10)

  1. 一种基于海底热液的自供电观测装置,其特征在于,包括集成有储能单元与数据存储单元的密封腔,所述密封腔外部设有用于提供电能的温差发电单元,以及用于获取海底热液口图像数据的摄像单元,所述温差发电单元外接有热管,所述热管包括与温差发电单元热端固定的冷凝段,位于海底热液口内的蒸发段,以及用于连接冷凝段和蒸发段的隔热段,所述蒸发段带有用于获取海底热液口监测数据的传感器探头,所述传感器探头通过集成在热管内的数据线与密封腔内的数据储存单元进行数据传输。
  2. 根据权利要求1所述的基于海底热液的自供电观测装置,其特征在于,所述密封腔与海底热液口之间水平相距为25~30cm。
  3. 根据权利要求1所述的基于海底热液的自供电观测装置,其特征在于,所述温差发电单元包括固定在密封腔一端、与海水直接接触的散热腔体,所述散热腔体内设有套在热管冷凝段的导热铜套,以及用于发电的冷、热极板,所述导热铜套外表面设有多个与热极板配合安装的固定槽,所述冷极板与散热腔体内壁之间设有用于导热的散热铜片。
  4. 根据权利要求3所述的基于海底热液的自供电观测装置,其特征在于,所述导热铜套采用正六棱柱结构,每个棱柱面均设有固定槽。
  5. 根据权利要求3所述的基于海底热液的自供电观测装置,其特征在于,所述导热铜套与热端极板,以及与冷凝段的接触面均涂覆有导热硅 脂,所述散热铜片与冷端极板,以及与散热腔体内壁的接触面均涂覆有导热硅脂。
  6. 根据权利要求1所述的基于海底热液的自供电观测装置,其特征在于,所述隔热段外侧包覆有用于隔热的聚四氟乙烯胶带。
  7. 根据权利要求1所述的基于海底热液的自供电观测装置,其特征在于,所述冷凝段与隔热段均采用带有回流沟槽的管芯结构。
  8. 根据权利要求1所述的基于海底热液的自供电观测装置,其特征在于,所述热管采用钛合金材料。
  9. 根据权利要求1所述的基于海底热液的自供电观测装置,其特征在于,所述摄像单元安装在密封腔上方,且摄像单元还带有用于定时清理腔体表面与镜头的清扫装置。
  10. 根据权利要求9所述的基于海底热液的自供电观测装置,其特征在于,所述清扫装置包括由电机驱动、对密封腔上表面进行清扫的腔体扫杆,以及一端套设在腔体扫杆、用于清扫镜头的镜头扫杆,所述镜头的边缘设有支点转轴,镜头扫杆以所述支点转轴为摆动中心,通过腔体扫杆带动镜头扫杆做周期摆动。
PCT/CN2022/111431 2022-05-31 2022-08-10 一种基于海底热液的自供电观测装置 WO2023231179A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210614060.7 2022-05-31
CN202210614060.7A CN114878023A (zh) 2022-05-31 2022-05-31 一种基于海底热液的自供电观测装置

Publications (1)

Publication Number Publication Date
WO2023231179A1 true WO2023231179A1 (zh) 2023-12-07

Family

ID=82678702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111431 WO2023231179A1 (zh) 2022-05-31 2022-08-10 一种基于海底热液的自供电观测装置

Country Status (2)

Country Link
CN (1) CN114878023A (zh)
WO (1) WO2023231179A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114878023A (zh) * 2022-05-31 2022-08-09 浙江大学 一种基于海底热液的自供电观测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944452A (zh) * 2014-04-10 2014-07-23 浙江大学 一种深海热液温差能发电装置
CN104852634A (zh) * 2015-05-07 2015-08-19 浙江大学 一种海底热液口温差能发电装置
JP2017166834A (ja) * 2016-03-14 2017-09-21 国立大学法人高知大学 海底地下状況モニタリング装置
CN109283179A (zh) * 2018-11-19 2019-01-29 国家海洋局第二海洋研究所 自容式海底热液羽状流原位探测装置
CN209212404U (zh) * 2018-11-22 2019-08-06 湖州双快新能源科技有限公司 一种高稳定的醇氢动力燃烧余力回收装置
CN110927124A (zh) * 2019-12-18 2020-03-27 福州大学 一种深海热液生物群落微光观测装置
CN114878023A (zh) * 2022-05-31 2022-08-09 浙江大学 一种基于海底热液的自供电观测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944452A (zh) * 2014-04-10 2014-07-23 浙江大学 一种深海热液温差能发电装置
CN104852634A (zh) * 2015-05-07 2015-08-19 浙江大学 一种海底热液口温差能发电装置
JP2017166834A (ja) * 2016-03-14 2017-09-21 国立大学法人高知大学 海底地下状況モニタリング装置
CN109283179A (zh) * 2018-11-19 2019-01-29 国家海洋局第二海洋研究所 自容式海底热液羽状流原位探测装置
CN209212404U (zh) * 2018-11-22 2019-08-06 湖州双快新能源科技有限公司 一种高稳定的醇氢动力燃烧余力回收装置
CN110927124A (zh) * 2019-12-18 2020-03-27 福州大学 一种深海热液生物群落微光观测装置
CN114878023A (zh) * 2022-05-31 2022-08-09 浙江大学 一种基于海底热液的自供电观测装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU, HUAICHAO ET AL.: "Electromechanical integration and implementation of in-situ multi-point temperature measurement system for submarine hydrothermal vents", SCIENCE IN CHINA (SERIES E: INFORMATION SCIENCES), vol. 37, no. 03, 31 March 2007 (2007-03-31), pages 438 - 445, XP009551001, ISSN: 1674-7259 *

Also Published As

Publication number Publication date
CN114878023A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
Sun et al. Liquid-solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protection
WO2023231179A1 (zh) 一种基于海底热液的自供电观测装置
Liu et al. A 1 KW thermoelectric generator for low-temperature geothermal resources
Xie et al. Generation of electricity from deep-sea hydrothermal vents with a thermoelectric converter
CN102427320B (zh) 一种超导液传热温差发电机
CN104811092A (zh) 一种利用液体热电效应进行发电的系统
CN106230085A (zh) 用于海底仪器的微型热电能量原位收集装置
JP5611739B2 (ja) 熱電発電システム
CN208971414U (zh) 基于火力发电厂的温差发电器及其系统、测试系统
WO2023284079A1 (zh) 一种蜂窝状颗粒换热器及储热发电系统
CN104314780A (zh) 一种新型太阳能热量转换蒸汽热能的发电系统
CN109231326A (zh) 一种太阳能全光谱利用的水电联产系统
US20140261633A1 (en) Composite photothermal electric generating device
CN212390335U (zh) 一种直热式紫铜管石墨烯热水装置
TWI608205B (zh) Insulation pipe assembly and application thereof
CN118168612B (zh) 深部地热原位发电多参数集成测试系统
CN105508123A (zh) 圆形铜面自然能发电装置
CN202393020U (zh) 一种太阳能热量分级传递系统
CN209310813U (zh) 便携式冰川融化强度观测杆热融布设装置
CN213334337U (zh) 一种火力发电用蒸汽余热回收装置
CN218545374U (zh) 一种余热回收用发电机组
CN202586822U (zh) 一种超导液传热温差发电机
TWI854266B (zh) 潛入式地熱發電系統
CN213937769U (zh) 一种冷却介质余热发电用循环装置
CN107883595A (zh) 一种太阳能热能传递系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944491

Country of ref document: EP

Kind code of ref document: A1