WO2023231053A1 - 采用双层气道复合材料管的中高压气体输送系统及方法 - Google Patents

采用双层气道复合材料管的中高压气体输送系统及方法 Download PDF

Info

Publication number
WO2023231053A1
WO2023231053A1 PCT/CN2022/097272 CN2022097272W WO2023231053A1 WO 2023231053 A1 WO2023231053 A1 WO 2023231053A1 CN 2022097272 W CN2022097272 W CN 2022097272W WO 2023231053 A1 WO2023231053 A1 WO 2023231053A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
pressure gas
pressure
gas
pipe
Prior art date
Application number
PCT/CN2022/097272
Other languages
English (en)
French (fr)
Inventor
夏小军
李敏立
黄福和
王生劳
郭恪静
丁学光
Original Assignee
上海飞舟博源石油装备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海飞舟博源石油装备股份有限公司 filed Critical 上海飞舟博源石油装备股份有限公司
Publication of WO2023231053A1 publication Critical patent/WO2023231053A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • F17D1/065Arrangements for producing propulsion of gases or vapours
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/34Hydrogen distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the invention relates to a medium and high pressure gas transportation equipment, and in particular to a medium and high pressure gas transportation system using a double-layer air channel composite material pipe.
  • the invention also relates to a medium and high-pressure gas transportation method using a double-layer air channel composite material pipe.
  • Hydrogen is the cleanest energy and the hope for the future of civilization.
  • the proposal of the dual carbon (abbreviation for carbon peak and carbon neutrality) goals has accelerated the research on hydrogen energy technology and the development of the hydrogen energy industry.
  • Both the front-end hydrogen production technology and the back-end hydrogen consumption technology of the hydrogen energy industry chain are developing in full swing.
  • hydrogen transportation has always been a bottleneck restricting the development of the hydrogen industry.
  • Hydrogen transportation mainly includes the following methods: container racks, long-tube trailer structures, liquid hydrogen tank trucks and pipeline transportation. Although the first three transportation methods are not very efficient, they are currently the mainstream transportation methods, and the market share of pipeline hydrogen transportation, which is highly anticipated, is still very small. Without reliable and low-cost pipeline hydrogen transportation conditions, it is almost impossible for hydrogen energy to be widely used on a large scale.
  • polymer materials such as plastics
  • polymer materials have better "permeability" at the molecular level.
  • hydrogen molecules will penetrate into the material body of the pipe body and gradually move toward the outside of the pipe body. Therefore, when the polymer material pipe body is transporting high-pressure hydrogen, the permeated hydrogen will gradually accumulate in the trench containing the pipe body, which can easily cause explosion and combustion. Therefore, there are also great safety risks in using plastic pipes to transport high-pressure hydrogen.
  • plastic pipes to transport high-pressure hydrogen.
  • the technical problem to be solved by the present invention is to provide a medium- and high-pressure gas transportation system using double-layer air channel composite material pipes, which can completely solve the problems of gas leakage and gas escape caused by non-metallic pipes in the process of transporting medium- and high-pressure gases.
  • the technical solution of the present invention for a medium and high pressure gas delivery system using a double-layer air channel composite material pipe is:
  • the main pipeline 11 is composed of N composite material pipes connected by connecting fittings 12; the composite material pipes include multi-layer pipes
  • the pipe body is formed with a hollow main channel 10; the pipe body at least includes an outer structural layer 2 and an inner structural layer 4, and a low-pressure gas conductive layer 3 is provided between the outer structural layer 2 and the inner structural layer 4; the low-pressure
  • the gas guide layer 3 forms a low-pressure gas channel; the inlet of the low-pressure gas outlet pipe 15 is connected with the low-pressure gas guide layer 3 of the main pipe 11; the outlet of the gas reinjection pipe 16 is connected with the main channel 10 of the main pipe 11; a booster pump
  • the inlet of 14 is connected to the outlet of the low-pressure gas derivation pipe 15, and the outlet of the booster pump 14 is connected to the inlet of the gas reinjection pipe 16; the low-pressure gas derivation pipe 15, the gas reinjection pipe 16 and the booster pump 14 form a low-pressure
  • it also includes a low-pressure accompanying pipeline 13, which is disposed on one side of the main pipeline 11; one end of the low-pressure accompanying pipeline 13 is connected to the outlet of the low-pressure gas outlet pipeline 15, so The other end of the low-pressure accompanying pipeline 13 is connected to the inlet of the booster pump 14 .
  • the length of the low-pressure accompanying pipeline 13 is less than the length of the main pipeline 11; there are multiple low-pressure gas circuits; the multiple low-pressure gas circuits are distributed along the length direction of the main pipeline 11; the plurality of low-pressure gas circuits are distributed along the length direction of the main pipeline 11;
  • the low-pressure gas circuit has a separate gas reinjection pipe 16 or shares the same gas reinjection pipe 16 .
  • the pipe body is composed of an outer protective layer 1, an outer structural layer 2, a low-pressure gas conductive layer 3, an inner structural layer 4, a barrier layer 5 and an inner protective layer 6 in order from the outside to the inside.
  • the outer structural layer 2 and/or the inner structural layer 4 are made of a composite of polymer materials and fibers; the fibers are polyester fiber, aramid fiber, glass fiber, carbon fiber or basalt fiber. one or more of them.
  • the low-pressure air-conducting layer 3 is a hollow layer with a supporting material inside.
  • the low-pressure air-conducting layer 3 achieves a fixed connection between the outer structural layer 2 and the inner structural layer 4 through the supporting material.
  • the support material of the low-pressure air conductive layer 3 is a reinforced fiber bundle, a fiberglass strip or a metal strip impregnated with resin.
  • the connecting fitting 12 is made of hydrogen embrittlement-resistant alloy material.
  • the inlet of the low-pressure gas outlet pipe 15 and the outlet of the gas return pipe 16 are connected to the main pipe 11 through the connecting fitting 12 of the main pipe 11 .
  • a plurality of data communication cables extending along the length direction of the pipe body are laid outside the outer structural layer 2 .
  • a plurality of pressure sensors 21 are arranged outside the outer structural layer 2 at intervals along the length direction of the pipe body.
  • the present invention also provides a medium and high-pressure gas transportation method using a double-layer air channel composite material pipe.
  • the technical solution includes the following steps:
  • the medium and high pressure gas is input into the main channel 10 of the main pipeline 11.
  • a small amount of hydrogen molecules in the medium and high pressure gas penetrates beyond the material of the inner structural layer 4 and enters the low pressure conductor.
  • Gas layer 3 forms low-pressure permeable gas; the low-pressure permeable gas entering the low-pressure gas conductive layer 3 flows axially toward one or both ends of the main pipeline 11 in the low-pressure gas channel of the low-pressure gas conductive layer 3; the low-pressure permeable gas is exported through the low-pressure gas
  • the pipeline 15 flows into the booster pump 14.
  • the booster pump 14 pressurizes the low-pressure permeate gas and then inputs the gas back into the pipeline 16.
  • the permeate gas finally flows back to the main channel 10 of the main pipeline 11 and is transported forward together with the medium and high-pressure gas. Actively managed long-distance transport of medium and high pressure gases.
  • the invention is provided with a low-pressure air-conducting layer between the outer structural layer and the inner structural layer, and the outer structural layer and the inner structural layer are fixedly connected into one through the supporting material of the low-pressure air-conducting layer, which can leave a gap in the pipe wall structure of the main pipeline.
  • the gap should be as large as possible to form an annular space where gases can communicate and move axially.
  • the present invention uses a double-layer air channel of the main pipeline, in which the low-pressure gas conductive layer of the main pipeline serves as an annular hollow interlayer to accept the high-pressure permeating gas, and the permeating gas carries the permeating pressure. Gathered in the low-pressure gas-conducting layer, under the constraints of the outer structural layer and the outer protective layer, the permeable gas mainly flows forward or backward along the axial direction in the low-pressure gas-conducting layer, so that the amount of continued penetration into the outer structure can be absorbed.
  • Figure 1 is a schematic diagram of a medium- and high-pressure gas delivery system using double-layer airway composite material pipes according to the present invention
  • Figure 2 is a schematic cross-sectional view of a composite pipe with double-layer air channels of the present invention
  • Figure 3 is a schematic diagram of another embodiment of the medium and high pressure gas delivery system of the present invention.
  • Figure 4 is a schematic diagram of the third embodiment of the medium and high pressure gas delivery system of the present invention.
  • Words such as “include” and similar means that the elements or things appearing before the word include the elements or things listed after the word and their equivalents, without excluding other elements or things.
  • Words such as “connected” or “connected” are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. "Up”, “down”, “left”, “right”, etc. are only used to express relative positional relationships. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.
  • the present invention adopts a medium- and high-pressure gas transportation system with double-layer airway composite material pipes, including a main pipe 11.
  • a low-pressure accompanying pipe 13 is provided on one side of the main pipe 11.
  • the low-pressure accompanying pipe 13 is connected to the main pipe. 11Lay at intervals;
  • the main pipeline 11 is composed of multiple composite material pipes connected through connecting fittings 12; as shown in Figure 2, the composite material pipe includes a multi-layered pipe body, and the pipe body is formed with a hollow main channel 10, and the main channel 10 is used for central The passage of high-pressure gas; from outside to inside, the pipe body is composed of outer protective layer 1, outer structural layer 2, low-pressure gas conductive layer 3, inner structural layer 4, barrier layer 5, and inner protective layer 6;
  • the low-pressure gas conducting layer 3 is a hollow layer, and the annular space formed by the hollow layer serves as a low-pressure gas channel for the passage of low-pressure permeable gas;
  • the low-pressure air-conducting layer 3 achieves a fixed connection between the outer structural layer 2 and the inner structural layer 4 through the supporting material;
  • the supporting material of the low-pressure air conductive layer 3 is reinforced fiber bundles, fiberglass strips or metal strips impregnated with resin.
  • the reinforcing fibers may be one or more of glass fibers, carbon fibers or basalt fibers. Reinforced fiber bundles can improve the pressure-bearing capacity of the pipe body.
  • the barrier layer 5 can slow down the penetration of medium and high pressure gas
  • the outer structural layer 2 and/or the inner structural layer 4 are made of polymer materials, such as thermoplastic resin PVC (polyvinyl chloride), HDPE (high density polyethylene) or PA12 (nylon);
  • the connecting fittings 12 are made of nickel alloy (such as "Monel”) or other hydrogen embrittlement-resistant alloy materials to improve the hydrogen resistance of the joint material.
  • a low-pressure gas outlet pipeline 15 and a gas reinjection pipeline 16 are provided between the low-pressure accompanying pipeline 13 and the main pipeline 11; the inlet of the low-pressure gas outlet pipeline 15 is connected with the low-pressure gas conducting layer 3 of the main pipeline 11, and the low-pressure gas outlet pipeline 15
  • the outlet of the gas reinjection pipe 16 is connected with the inner cavity of the low-pressure accompanying pipe 13; the inlet of the gas reinjection pipe 16 is connected with the inner cavity of the low-pressure accompanying pipe 13, and the outlet of the gas reinjection pipe 16 is connected with the main channel 10 of the main pipe 11 ;
  • the low-pressure gas outlet pipe 15 connects the low-pressure gas conducting layer 3 of the main pipe 11 with the low-pressure accompanying pipe 13, and the gas reinjection pipe 16 connects the low-pressure accompanying pipe 13 with the main channel 10 of the main pipe 11, thereby forming a low-pressure gas loop;
  • the inlet of the low-pressure gas outlet pipe 15 and the outlet of the gas return pipe 16 are connected to the main pipe 11 through the connecting fittings 12 of the main pipe 11;
  • multiple low-pressure gas loops can be provided between the low-pressure accompanying pipeline 13 and the main pipeline 11; the multiple low-pressure gas loops are distributed along the length direction of the main pipeline 11; the multiple low-pressure gas loops can share the same gas reinjection pipeline 16 ;
  • the low-pressure gas outlet pipe 15 and the gas return pipe 16 are respectively provided with one-way valves;
  • a booster pump 14 is provided at the inlet of the gas reinjection pipeline 16;
  • pressure loss will inevitably occur during the long-distance transportation of medium and high-pressure gas.
  • the booster pump 14 used to collect low-pressure permeate gas can be set up separately, or the booster station can be shared.
  • a plurality of data communication cables extending along the length direction of the pipe body are laid outside the outer structural layer 2; the data communication cables can be arranged between the outer structural layer 2 and the outer protective layer 1, or within the outer protective layer 1 .
  • a plurality of pressure sensors 21 are provided in the outer structural layer 2 , and the plurality of pressure sensors 21 are distributed along the length direction of the main pipeline 11 ; the pressure sensors 21 are used to monitor the pressure in the low-pressure gas conducting layer 3 .
  • the length of the low-pressure accompanying pipeline 13 is smaller than the length of the main pipeline 11; multiple low-pressure accompanying pipelines 13 can be provided on one side of the main pipeline 11 at intervals along its length direction, so that the main pipeline 11 has multiple low-pressure gas circuits. .
  • the supporting material of the low-pressure air conductive layer 3 of the present invention adopts reinforced fiber bundles, fiberglass strips or metal strips impregnated with resin.
  • the low-pressure air-conducting layer 3 may be provided with metal strips at intervals along the length direction of the pipe body to support the annular space.
  • the present invention adopts a medium-high pressure gas transportation method using a double-layer air channel composite material pipe, which includes the following steps:
  • the low-pressure permeate gas entering the low-pressure gas-conducting layer 3 flows axially toward one or both ends of the main pipe 11 in the low-pressure gas channel of the low-pressure gas-conducting layer 3;
  • the low-pressure permeate gas flows along the axial direction in the low-pressure accompanying pipe 13, it is collected at the booster pump 14.
  • the low-pressure permeate gas is boosted by the booster pump 14 and flows into the gas reinjection pipe 16, and finally flows back to the main pipe.
  • the main channel 10 of 11 is transported forward together with the medium and high pressure gas.
  • the present invention utilizes the double-layer air channel of the main pipe 11.
  • the low-pressure gas conducting layer 3 of the main pipe 11 serves as an annular hollow interlayer for receiving high-pressure permeating gas.
  • the permeating gas collects in the low-pressure gas conducting layer 3 with the permeating pressure, and the outer structural layer 2 Under the constraints of the outer protective layer 1 and the outer protective layer 1, the permeate gas flows forward or backward along the axial direction in the low-pressure gas guide layer 3; because the connecting fittings 12 are distributed at intervals on the main pipe 11, the permeate gas flows in the low-pressure gas guide layer 3 at intervals.
  • the low-pressure gas outlet pipe 15 will inevitably be encountered, thereby realizing the collection of extravasated gas;
  • the permeate gas returns to the main channel 10 through the low-pressure gas loop formed by the low-pressure accompanying pipeline 13, thereby minimizing the flow loss and safety hazards caused by extravasation of the medium and high-pressure gas during transportation along the main channel 10.
  • a pressure sensor is provided outside the outer structural layer 2 , and the pressure sensor can monitor the pressure in the low-pressure gas conductive layer 3 ; the pressure sensor can be disposed between the outer structural layer 2 and the outer protective layer 1 , or in the outer protective layer 1 Inside;
  • the gas will enter the low-pressure gas conduction layer 3 from the leakage point, causing the local pressure of the low-pressure gas conduction layer 3 to be high; or any part of the outer protective layer 1 will be damaged and leak, resulting in a low-pressure gas conduction layer.
  • the local pressure in layer 3 is low; at this time, the pressure sensor can detect the leak point so that repair operations can be carried out in time.
  • the online real-time monitoring function of pressure sensors can provide the most important technical means for "oil and gas pipeline system integrity management".
  • the present invention uses composite material pipes instead of metal pipes as transportation pipelines to avoid the phenomenon of "hydrogen embrittlement".
  • the present invention uses a composite material pipe with a double-layer air channel. Since the outer structural layer 2 and the inner structure A low-pressure gas-conducting layer 3 is formed between the layers 4.
  • the inner structural layer 4 enables the pipe body to withstand high pressure, and the low-pressure gas-conducting layer 3 provided between the outer structural layer 2 and the inner structural layer 4 forms a gas channel, which can withstand medium and high pressure.
  • the penetration of gas allows the hydrogen molecules that have passed through the inner structural layer 4 to enter the low-pressure gas conducting layer 3 and then enter the low-pressure gas loop formed by the low-pressure gas conducting layer 3 and the booster pump 14 or the low-pressure accompanying pipeline 13, and finally The main channel 10 that flows back to the main pipeline 11 continues to be transported forward, thereby completely solving the leakage problem of high-pressure gas in non-metallic pipe transportation.
  • multiple main pipelines 11 can share the same low-pressure accompanying pipeline 13 .
  • the low-pressure accompanying pipeline 13 can be eliminated and the low-pressure gas outlet pipeline 15
  • the inlet of the gas return pipe 16 is connected with the low-pressure gas conductive layer 3 of the main pipe 11, the outlet of the low-pressure gas outlet pipe 15 is connected with the inlet of the booster pump 14; the inlet of the gas reinjection pipe 16 is connected with the outlet of the booster pump 14, and the gas
  • the outlet of the reinjection pipe 16 is connected with the main channel 10 of the main pipe 11; the low-pressure gas outlet pipe 15, the gas reinjection pipe 16 and the booster pump 14 form a low-pressure gas circuit.
  • the characteristic of the third embodiment is that the leaked gas is collected through the low-pressure gas conductive layer 3, and then the leaked gas is pressurized through the booster pump 14 and returned to the main channel 10 for continued transportation. Especially suitable for branch pipelines.
  • the medium-pressure gas in the present invention refers to the gas between 1.6 and 10 MPa, and the high-pressure gas refers to the gas above 10 MPa.
  • the present invention solves the problem of medium and high-pressure gas through a low-pressure gas circuit formed by a low-pressure gas conductive layer installed in the pipe body and a gas booster pump or low-pressure accompanying pipeline installed outside the pipe, through product characteristics and active management during system operation.
  • Gas leakage problems in long-distance pipeline transportation thereby completely overcoming the gas leakage problems faced by hydrogen in medium- and high-pressure long-distance transportation.
  • the invention can be used for long-distance pipeline transportation of hydrogen, and can also be used for medium- and high-pressure transportation of other gases such as oxygen.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Pipeline Systems (AREA)

Abstract

采用双层气道复合材料管的中高压气体输送系统及方法,该系统包括主管道(11)、低压伴行管道(13)、低压气体导出管道(15)、气体回注管道(16),主管道(11)由多根复合材料管通过连接金具(12)续接而成;所述复合材料管包括多层式管体,所述管体至少包括外结构层(2)和内结构层(4),外结构层(2)与内结构层(4)之间设置有低压导气层(3);低压气体导出管道(15)和气体回注管道(16)设置于所述低压伴行管道(13)与所述主管道(11)之间;所述低压气体导出管道(15)和气体回注管道(16)与低压伴行管道(13)组成低压气体回路。该系统和方法通过产品特性和系统运行中的主动管理,解决了中高压气体长途管输中的气体渗透问题,从而克服氢气中高压长输面临的气体渗漏问题。

Description

采用双层气道复合材料管的中高压气体输送系统及方法 技术领域
本发明涉及一种中高压气体输送设备,具体涉及一种采用双层气道复合材料管的中高压气体输送系统。本发明还涉及一种采用双层气道复合材料管的中高压气体输送方法。
背景技术
氢是最清洁的能源,是人类未来的希望。双碳(即碳达峰与碳中和的简称) 目标的提出,更加快了对氢能技术的研究和氢能产业的发展。氢能产业链前端氢的生产技术和后端氢的消费技术,都在如火如荼地发展。但是,氢的运输,始终是一个制约氢产业发展的瓶颈。
氢的运输主要有以下几种方式:集装格、长管拖车结构、液氢槽罐车和管道输送。前三种运输方式虽然运输效率不高,但却是目前主流的运输方式,而被寄予厚望的管道输氢的市场占比还很小。没有可靠且低成本的管道输氢条件,氢能源几乎不可能大规模普及应用。
管道输氢技术没有得到快速发展,其主要原因是金属管道的“氢脆”现象很难克服。用于输送氢气的无缝钢管管体以及其续接处的焊缝都容易出现脆裂(即“氢脆”现象)和泄漏,尤其在高压环境下。因此,氢的管输,特别是管输设备的长期安全有效性,是很大的技术挑战。业界一直试图通过改变输送管道的材料来解决氢气的高压管输难题,采用高分子材料作为输送高压氢气的管道材料就是主要的解决办法。高分子材料不存在“氢脆”现象,但是也有明显的缺点。比起金属材料,高分子材料(如塑料)在分子层面具有更好的“通透性”,在一定压力作用下,氢分子会渗透到管体的材料机体中,并逐步向管体的外层低压区域渗透,因此,高分子材料管体在输送高压氢气的途中,这些渗透出来的氢气会在容置管体的管沟内逐步堆积,极易造成爆炸燃烧。所以,采用塑料管输送高压氢气也存在很大的安全隐患。另外,现有的塑料管要实现远距离长途输送氢气,需要将一节节复合塑料短管续接起来,而接头金具仍需使用金属材料,氢脆现象还是难以规避。只要整个管道存在几处薄弱环节,长管高压输送就会失败。
技术问题
本发明所要解决的技术问题是提供一种采用双层气道复合材料管的中高压气体输送系统,它可以彻底解决非金属管在输送中高压气体过程所产生的气体渗漏和气体逃逸问题。
技术解决方案
为解决上述技术问题,本发明采用双层气道复合材料管的中高压气体输送系统的技术解决方案为:
包括主管道11、低压气体导出管道15、气体回注管道16以及增压泵14,主管道11由N根复合材料管通过连接金具12续接而成;所述复合材料管包括多层式管体,管体形成有中空的主通道10;所述管体至少包括外结构层2和内结构层4,外结构层2与内结构层4之间设置有低压导气层3;所述低压导气层3形成低压气体通道;低压气体导出管道15的入口与主管道11的低压导气层3相连通;气体回注管道16的出口与主管道11的主通道10相连通;增压泵14的入口连接所述低压气体导出管道15的出口,增压泵14的出口连接气体回注管道16的入口;所述低压气体导出管道15、气体回注管道16与增压泵14组成低压气体回路。
在另一实施例中,还包括低压伴行管道13,低压伴行管道13设置于所述主管道11的一侧;所述低压伴行管道13的一端连接低压气体导出管道15的出口,所述低压伴行管道13的另一端连接所述增压泵14的入口。
在另一实施例中,所述主管道11为多条;多条主管道11共用同一低压伴行管道13。
在另一实施例中,所述低压伴行管道13的长度小于主管道11的长度;所述低压气体回路为多个;多个低压气体回路沿主管道11的长度方向分布;所述多个低压气体回路单独具有气体回注管道16或者共用同一气体回注管道16。
在另一实施例中,所述管体由外至内依次为外保护层1、外结构层2、低压导气层3、内结构层4、阻隔层5、内保护层6。
在另一实施例中,所述外结构层2和/或内结构层4的材料由高分子材料和纤维复合而成;所述纤维为涤纶纤维、芳纶纤维、玻璃纤维、碳纤维或玄武岩纤维中的一种或多种。
在另一实施例中,所述低压导气层3为中空层,中空层内具有支撑材料,低压导气层3通过支撑材料实现所述外结构层2与内结构层4之间的固定连接;所述低压导气层3的支撑材料为由树脂浸润的增强纤维束、玻璃钢带或金属条。
在另一实施例中,所述连接金具12采用耐氢脆的合金材料。
在另一实施例中,所述低压气体导出管道15的入口和气体回注管道16的出口通过主管道11的连接金具12实现与主管道11的连通。
在另一实施例中,所述外结构层2外铺设有多根沿管体的长度方向延伸的数据通讯电缆。
在另一实施例中,外结构层2外沿管体的长度方向间隔设置有多个压力传感器21。
本发明还提供一种采用双层气道复合材料管的中高压气体输送方法,其技术解决方案为,包括以下步骤:
将中高压气体输入主管道11的主通道10,在中高压气体沿主管道11向前输送的过程中,中高压气体中的少量氢分子越过内结构层4的材料向外渗透,进入低压导气层3,形成低压渗透气体;进入低压导气层3的低压渗透气体在低压导气层3的低压气体通道内向主管道11的一端或两端沿轴向流动;低压渗透气体通过低压气体导出管道15流入增压泵14,增压泵14将低压渗透气体增压后输入气体回注管道16,渗透气体最后流回主管道11的主通道10,与中高压气体一起向前输送,从而实现主动管理型中高压气体的远距离输送。
有益效果
本发明可以达到的技术效果是:
本发明在外结构层与内结构层之间设置有低压导气层,并通过低压导气层的支撑材料将外结构层与内结构层固定连接为一体,能够在主管道的管壁结构留有尽可能大的空隙,从而能够形成气体可以互通并且轴向运动的环形空间。
由于气体渗透率与压力大小和材料的抗渗透能力相关,本发明利用主管道的双层气道,其中主管道的低压导气层作为承接高压渗透气体的环形中空夹层,渗透气体带着渗透压力汇集于低压导气层内,在外结构层和外保护层的约束下,渗透气体在低压导气层内主要沿轴向向前或向后流动,从而使向外层结构继续渗透的量能够被严格限制在一定的范围之内;由于连接金具在主管道上每隔一段距离间隔分布,渗透气体在低压导气层内流动的过程中,必然会遇到低压气体导出管道,从而实现外渗的气体的收集;被收集的渗透气体经增压泵所形成的低压气体回路返回主通道,从而能够从根本上解决非金属管道输送中高压气体的渗漏问题。
附图说明
本领域的技术人员应理解,以下说明仅是示意性地说明本发明的原理,所述原理可按多种方式应用,以实现许多不同的可替代实施方式。这些说明仅用于示出本发明的教导内容的一般原理,不意味着限制在此所公开的发明构思。
结合在本说明书中并构成本说明书的一部分的附图示出了本发明的实施方式,并且与上文的总体说明和下列附图的详细说明一起用于解释本发明的原理。
下面结合附图和具体实施方式对本发明作进一步详细的说明:
图1是本发明采用双层气道复合材料管的中高压气体输送系统的示意图;
图2是本发明的具有双层气道的复合材料管的截面示意图;
图3是本发明的中高压气体输送系统的另一实施例的示意图;
图4是本发明的中高压气体输送系统的第三实施例的示意图。
本发明的最佳实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。除非另外定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本文中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
如图1所示,本发明采用双层气道复合材料管的中高压气体输送系统,包括主管道11,主管道11的一侧设置有低压伴行管道13,低压伴行管道13与主管道11间隔一距离铺设;
主管道11由多根复合材料管通过连接金具12续接而成;如图2所示,复合材料管包括多层式管体,管体形成有中空的主通道10,主通道10用于中高压气体的通过;管体由外至内依次为外保护层1、外结构层2、低压导气层3、内结构层4、阻隔层5、内保护层6;
低压导气层3为中空层,中空层所形成的环形空间作为低压气体通道,用于低压渗透气体的通过;
中空层内具有支撑材料,低压导气层3通过支撑材料实现所述外结构层2与内结构层4之间的固定连接;
低压导气层3的支撑材料为由树脂浸润的增强纤维束、玻璃钢带或金属条。增强纤维可以是玻璃纤维、碳纤维或玄武岩纤维中的一种或多种。增强纤维束能够提高管体的承压能力。
阻隔层5能够减缓中高压气体渗透的程度;
优选地,外结构层2和/或内结构层4的材料采用高分子材料,如热塑性树脂PVC(聚氯乙烯)、HDPE(高密度聚乙烯)或PA12(尼龙);
优选地,连接金具12采用镍合金(如“蒙耐尔合金”)或其它耐氢脆的合金材料,以提高接头材料的耐氢性能。
低压伴行管道13与主管道11之间设置有低压气体导出管道15和气体回注管道16;低压气体导出管道15的入口与主管道11的低压导气层3相连通,低压气体导出管道15的出口与低压伴行管道13的内腔相连通;气体回注管道16的入口与低压伴行管道13的内腔相连通,气体回注管道16的出口与主管道11的主通道10相连通;
低压气体导出管道15将主管道11的低压导气层3与低压伴行管道13进行连通,气体回注管道16将低压伴行管道13与主管道11的主通道10进行连通,从而形成低压气体回路;
低压气体导出管道15的入口和气体回注管道16的出口通过主管道11的连接金具12实现与主管道11的连通;
优选地,低压伴行管道13与主管道11之间可以设置有多个低压气体回路;多个低压气体回路沿主管道11的长度方向分布;多个低压气体回路可以共用同一气体回注管道16;
优选地,低压气体导出管道15和气体回注管道16上分别设置有单向阀;
优选地,气体回注管道16的入口处设置有增压泵14;
优选地,为中高压气体在远距离输送过程中,不可避免会发生压力损失的现象,为保持长途管输过程中中高压气体的压力,需要在主管道11上每间隔一定距离设置增压站;用于收集低压渗透气体的增压泵14可以单独设置,也可以共用增压站。
优选地,外结构层2外铺设有多根沿管体的长度方向延伸的数据通讯电缆;数据通讯电缆可以设置于外结构层2与外保护层1之间,或者设置于外保护层1内。
外结构层2内设置有多个压力传感器21,多个压力传感器21沿主管道11的长度方向分布;压力传感器21用于监测低压导气层3内的压力。
优选地,低压伴行管道13的长度小于主管道11的长度;可以在主管道11的一侧沿其长度方向间隔设置多条低压伴行管道13,以使主管道11具有多个低压气体回路。
本发明的低压导气层3的支撑材料采用由树脂浸润的增强纤维束、玻璃钢带或金属条。
优选地,低压导气层3沿管体的长度方向可以间隔设置有金属条,从而对环形空间进行支撑。
本发明采用双层气道复合材料管的中高压气体输送方法,包括以下步骤:
将中高压气体(如氢气)输入主管道11的主通道10,在中高压气体沿主管道11向前输送的过程中,中高压气体中的少量氢分子越过内保护层6、阻隔层5和内结构层4的材料向外渗透,进入低压导气层3,形成低压渗透气体;
进入低压导气层3的低压渗透气体在低压导气层3的低压气体通道内向主管道11的一端或两端沿轴向流动;
低压渗透气体在低压导气层3内沿轴向流动的过程中,遇到低压气体导出管道15时,由于低压气体导出管道15内的压力较低,因此能够进入低压气体导出管道15并流入低压伴行管道13;
低压渗透气体在低压伴行管道13内沿轴向流动的过程中,被汇集至增压泵14处,低压渗透气体经过增压泵14的增压流入气体回注管道16,最后流回主管道11的主通道10,与中高压气体一起向前输送。
本发明利用主管道11的双层气道,主管道11的低压导气层3作为承接高压渗透气体的环形中空夹层,渗透气体带着渗透压力汇集于低压导气层3内,在外结构层2和外保护层1的约束下,渗透气体在低压导气层3内沿轴向向前或向后流动;由于连接金具12在主管道11上每隔一段距离间隔分布,渗透气体在低压导气层3内流动的过程中,必然会遇到低压气体导出管道15,从而实现外渗的气体的收集;
渗透气体经低压伴行管道13所形成的低压气体回路返回主通道10,从而能够尽可能地减少中高压气体在沿主通道10输送的过程中因外渗而导致的流量损失和安全隐患。
优选地,外结构层2外设置有压力传感器,压力传感器能够监测低压导气层3内的压力;压力传感器可以设置于外结构层2与外保护层1之间,或者设置于外保护层1内;
如果主管道11的任意一处发生泄漏,气体会从泄漏点进入低压导气层3,导致低压导气层3的局部压力偏高;或者外保护层1的任意一处破损泄漏导致低压导气层3的局部压力偏低;此时压力传感器能够监测到泄漏点,以便及时进行修复操作。显然,压力传感器的在线即时监测功能能够为“油气管道系统完整性管理”提供最重要的技术手段。
本发明为了解决远距离管道输送中高压气体的技术问题,采用复合材料管代替金属管作为输送管道,以避免“氢脆”现象。同时,为了解决非金属管在输送中高压气体过程中,由于氢分子会穿过管壁而产生的渗透现象,本发明采用具有双层气道的复合材料管,由于外结构层2与内结构层4之间形成低压导气层3,内结构层4使管体能够承受高压,而设置于外结构层2与内结构层4之间的低压导气层3形成气体通道,能够承接中高压气体的渗透,使得穿过内结构层4的氢分子在进入低压导气层3后,能够进入低压导气层3与增压泵14或低压伴行管道13所形成低压气体回路内,并最终流回主管道11的主通道10继续向前输送,从而彻底解决了非金属管输送中高压气体的泄漏问题。
作为本发明的另一实施例,如图3所示,多条主管道11可以共用同一低压伴行管道13。
作为本发明的第三实施例,如图4所示,如果中高压气体的压力较低,气体在输送过程中的渗漏量较少,可以取消低压伴行管道13,使低压气体导出管道15的入口与主管道11的低压导气层3相连通,低压气体导出管道15的出口与增压泵14的入口相连通;气体回注管道16的入口与增压泵14的出口相连通,气体回注管道16的出口与主管道11的主通道10相连通;低压气体导出管道15、气体回注管道16与增压泵14形成低压气体回路。
第三实施例的特点是,通过低压导气层3对渗漏的气体进行收集,再通过增压泵14将渗漏的气体增压后打回主通道10继续进行输送。尤其适用于支线管道。
本发明中的中压气体是指1.6~10MPa的气体,高压气体是指10MPa以上的气体。
显然,本领域的技术人员可以对本发明进行各种改动和变形,而不脱离本发明的精神和范围。这样,倘若本发明的这些修改属于本发明权利要求及其同等技术的范围之内,则本发明也意图包含这些改动和变形在内。
工业实用性
本发明通过设置于管体内的低压导气层和设置于管体外的气体增压泵或低压伴行管道所形成的低压气体回路,通过产品特性和系统运行中的主动管理,解决了中高压气体长途管输中的气体渗透问题,从而彻底克服氢气中高压长输面临的气体渗漏难题。
本发明能够用于氢气的长途管输,也能够用于氧气等其他气体的中高压输送。

Claims (10)

  1. 一种采用双层气道复合材料管的中高压气体输送系统,其特征在于,包括主管道(11),主管道(11)由N根复合材料管通过连接金具(12)续接而成;所述复合材料管包括多层式管体,管体形成有中空的主通道(10);所述管体至少包括外结构层(2)和内结构层(4),外结构层(2)与内结构层(4)之间设置有低压导气层(3);所述低压导气层(3)形成低压气体通道;
    低压气体导出管道(15),所述低压气体导出管道(15)的入口与主管道(11)的低压导气层(3)相连通;
    气体回注管道(16),所述气体回注管道(16)的出口与主管道(11)的主通道(10)相连通;以及
    增压泵(14),所述增压泵(14)的入口连接所述低压气体导出管道(15)的出口,增压泵(14)的出口连接气体回注管道(16)的入口;
    所述低压气体导出管道(15)、气体回注管道(16)与增压泵(14)组成低压气体回路。
  2. 根据权利要求1所述的采用双层气道复合材料管的中高压气体输送系统,其特征在于,还包括低压伴行管道(13),低压伴行管道(13)设置于所述主管道(11)的一侧;所述低压伴行管道(13)的一端连接低压气体导出管道(15)的出口,所述低压伴行管道(13)的另一端连接所述增压泵(14)的入口。
  3. 根据权利要求2所述的采用双层气道复合材料管的中高压气体输送系统,其特征在于,所述主管道(11)为多条;多条主管道(11)共用同一低压伴行管道(13)。
  4. 根据权利要求2所述的采用双层气道复合材料管的中高压气体输送系统,其特征在于,所述低压伴行管道(13)的长度小于主管道(11)的长度;所述低压气体回路为多个;多个低压气体回路沿主管道(11)的长度方向分布;所述多个低压气体回路单独具有气体回注管道(16)或者共用同一气体回注管道(16)。
  5. 根据权利要求1所述的采用双层气道复合材料管的中高压气体输送系统,其特征在于,所述管体由外至内依次为外保护层(1)、外结构层(2)、低压导气层(3)、内结构层(4)、阻隔层(5)、内保护层(6)。
  6. 根据权利要求1所述的采用双层气道复合材料管的中高压气体输送系统,其特征在于,所述外结构层(2)和/或内结构层(4)的材料由高分子材料和纤维复合而成;所述纤维为涤纶纤维、芳纶纤维、玻璃纤维、碳纤维或玄武岩纤维中的一种或多种;
    和/或,所述低压导气层(3)为中空层,中空层内具有支撑材料,低压导气层(3)通过支撑材料实现所述外结构层(2)与内结构层(4)之间的固定连接;所述低压导气层(3)的支撑材料为由树脂浸润的增强纤维束、玻璃钢带或金属条。
  7. 根据权利要求1所述的采用双层气道复合材料管的中高压气体输送系统,其特征在于,所述连接金具(12)采用耐氢脆的合金材料。
  8. 根据权利要求1或7所述的采用双层气道复合材料管的中高压气体输送系统,其特征在于,所述低压气体导出管道(15)的入口和气体回注管道(16)的出口通过主管道(11)的连接金具(12)实现与主管道(11)的连通。
  9. 根据权利要求1所述的采用双层气道复合材料管的中高压气体输送系统,其特征在于,所述外结构层(2)外铺设有多根沿管体的长度方向延伸的数据通讯电缆;
    和/或,所述外结构层(2)外沿管体的长度方向间隔设置有多个压力传感器(21)。
  10. 一种采用双层气道复合材料管的中高压气体输送方法,其特征在于,包括以下步骤:
    将中高压气体输入主管道(11)的主通道(10),在中高压气体沿主管道(11)向前输送的过程中,中高压气体中的少量氢分子越过内结构层(4)的材料向外渗透,进入低压导气层(3),形成低压渗透气体;
    进入低压导气层(3)的低压渗透气体在低压导气层(3)的低压气体通道内向主管道(11)的一端或两端沿轴向流动;
    低压渗透气体通过低压气体导出管道(15)流入增压泵(14),增压泵(14)将低压渗透气体增压后输入气体回注管道(16),渗透气体最后流回主管道(11)的主通道(10),与中高压气体一起向前输送,从而实现主动管理型中高压气体的远距离输送。
PCT/CN2022/097272 2022-06-01 2022-06-07 采用双层气道复合材料管的中高压气体输送系统及方法 WO2023231053A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210615014.9A CN115013729B (zh) 2022-06-01 2022-06-01 采用双层气道复合材料管的中高压气体输送系统及方法
CN202210615014.9 2022-06-01

Publications (1)

Publication Number Publication Date
WO2023231053A1 true WO2023231053A1 (zh) 2023-12-07

Family

ID=83071899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097272 WO2023231053A1 (zh) 2022-06-01 2022-06-07 采用双层气道复合材料管的中高压气体输送系统及方法

Country Status (2)

Country Link
CN (1) CN115013729B (zh)
WO (1) WO2023231053A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080121643A1 (en) * 2006-09-11 2008-05-29 Hydrogen Discoveries, Inc. Mitigating Hydrogen Flux Through Solid and Liquid Barrier Materials
US20160053945A1 (en) * 2010-11-29 2016-02-25 Quantum Fuel Systems Technologies Worldwide, Inc. Breather layer for exhausting permeate from pressure vessels
WO2018000091A1 (en) * 2016-06-27 2018-01-04 Shawcor Ltd. Polymeric pipe with axial venting elements
CN110454139A (zh) * 2019-09-16 2019-11-15 上海飞舟博源石油装备股份有限公司 气液两相分流采油系统
CN110805832A (zh) * 2019-11-22 2020-02-18 绵阳科大久创科技有限公司 一种高压氢储存与管道输送安全系统
CN114413186A (zh) * 2022-03-29 2022-04-29 浙江大学 一种氢气输送用复合管道及氢气泄漏监测方法
CN114484098A (zh) * 2022-01-24 2022-05-13 临海伟星新型建材有限公司 一种氢气天然气混合能源传输管道及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1475891B1 (de) * 1965-08-06 1971-02-04 Gerard F Wittgenstein Anordnung zum Lokalisieren von Rissen oder dergleichen Leckstellen an einer Rohrleitung fuer Kohlenwasserstoffe
JPH07127762A (ja) * 1993-11-05 1995-05-16 Ogata Kanagata Seisakusho:Kk 土中埋設二重管の配管施工方法および外殻構造
CN102200219A (zh) * 2011-04-15 2011-09-28 中国石油大学(北京) 天然气管道内颗粒物采样后增压回注方法及装置
CN102797974A (zh) * 2012-07-31 2012-11-28 张立永 氢脉
CN107781545A (zh) * 2016-08-30 2018-03-09 安徽万安环境科技股份有限公司 一种具有高密封性的夹层塑料管道
CN110360388A (zh) * 2019-07-15 2019-10-22 广州天河胶管制品有限公司 一种环保燃油软管及制作方法
CN114383056A (zh) * 2022-01-12 2022-04-22 中海石油气电集团有限责任公司 一种用于液化天然气长距离输送的管道系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080121643A1 (en) * 2006-09-11 2008-05-29 Hydrogen Discoveries, Inc. Mitigating Hydrogen Flux Through Solid and Liquid Barrier Materials
US20160053945A1 (en) * 2010-11-29 2016-02-25 Quantum Fuel Systems Technologies Worldwide, Inc. Breather layer for exhausting permeate from pressure vessels
WO2018000091A1 (en) * 2016-06-27 2018-01-04 Shawcor Ltd. Polymeric pipe with axial venting elements
CN110454139A (zh) * 2019-09-16 2019-11-15 上海飞舟博源石油装备股份有限公司 气液两相分流采油系统
CN110805832A (zh) * 2019-11-22 2020-02-18 绵阳科大久创科技有限公司 一种高压氢储存与管道输送安全系统
CN114484098A (zh) * 2022-01-24 2022-05-13 临海伟星新型建材有限公司 一种氢气天然气混合能源传输管道及其制备方法
CN114413186A (zh) * 2022-03-29 2022-04-29 浙江大学 一种氢气输送用复合管道及氢气泄漏监测方法

Also Published As

Publication number Publication date
CN115013729A (zh) 2022-09-06
CN115013729B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
CN104334950B (zh) 环形多层管道、制造管道的机器组件及形成管道的方法
US10221983B2 (en) Subsea pipe-in-pipe structures
US9322495B2 (en) Connection for a thermoplastic pipe, assembly and method
CN111396644A (zh) 连续纤维预浸带增强同质化耐高压管道系统及其制造方法
CN106838494A (zh) 一种连续柔性增强粘合型复合管
CN206539786U (zh) 一种复合材料油气管道
EP4244514A1 (en) Methods and materials for intelligent composite renewal system for standalone, storage, and renewed pipelines, including for reduced carbon emission and for conversion of in place pipelines for conveyance of hydrogen and other clean fuels
CN107606488A (zh) 一种热塑性塑料内衬钢管环空内渗透气体检测控制系统
WO2023231053A1 (zh) 采用双层气道复合材料管的中高压气体输送系统及方法
CN113400696B (zh) 大口径高压纤维增强柔性复合管连接方法
WO2023185011A1 (zh) 一种耐高温隔热保温柔性复合管
US20130092316A1 (en) Reinforced Liners For Pipelines
CN204254065U (zh) 一种纤维增强耐蚀合金复合管
CN216407980U (zh) 一种连续纤维点阵结构增强热塑性压力复合管
US20140305535A1 (en) Reinforced Liners for Pipelines
CN219082482U (zh) 一种耐高压、耐低温管道
CN216789471U (zh) 一种lng低温软管管体
CN116753368B (zh) 一种防止氢渗透鼓包的复合管及其设计方法、输氢管网
CN218935552U (zh) 一种煤矿用钢纤、玻纤增强聚乙烯复合管
CN114382957A (zh) 一种lng低温软管管体成型方法
US20230417354A1 (en) Universal high-pressure fittings for composite pipes
CN213332853U (zh) 一种柔性高压管线
CN217153339U (zh) 一种连续纤维增强热塑性复合大口径给排水压力管
US20240093815A1 (en) Universal high-pressure fittings for composite pipes
US11226057B1 (en) Multiple tubing annuli pipeline systems and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944380

Country of ref document: EP

Kind code of ref document: A1