WO2023229031A1 - Quartz glass crucible and production method therefor - Google Patents

Quartz glass crucible and production method therefor Download PDF

Info

Publication number
WO2023229031A1
WO2023229031A1 PCT/JP2023/019753 JP2023019753W WO2023229031A1 WO 2023229031 A1 WO2023229031 A1 WO 2023229031A1 JP 2023019753 W JP2023019753 W JP 2023019753W WO 2023229031 A1 WO2023229031 A1 WO 2023229031A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
powder
crucible
quartz glass
aluminum
Prior art date
Application number
PCT/JP2023/019753
Other languages
French (fr)
Japanese (ja)
Inventor
祥貴 八木
Original Assignee
モメンティブ・テクノロジーズ・山形株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モメンティブ・テクノロジーズ・山形株式会社 filed Critical モメンティブ・テクノロジーズ・山形株式会社
Publication of WO2023229031A1 publication Critical patent/WO2023229031A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a quartz glass crucible for pulling a silicon single crystal by the Czochralski method and a method for manufacturing the same.
  • a quartz glass crucible placed in a chamber is filled with polysilicon as a raw material, and a heater placed around the quartz glass crucible heats and melts the polysilicon. , a silicon melt. Thereafter, the seed crystal (seed) attached to the seed chuck is immersed in the silicon melt, and the seed chuck is pulled up while rotating the seed chuck and the quartz glass crucible in the same direction or in opposite directions.
  • the quartz glass crucible used for pulling silicon single crystals is a quartz member that houses a silicon melt, and the inner surface of the crucible (inner crucible layer) that comes into contact with the melt needs to be a highly pure transparent layer.
  • an opaque outer layer (crucible outer layer) containing a large amount of metal elements other than Si is usually formed on the outer surface of the crucible for the purpose of reducing costs and improving high-temperature mechanical properties.
  • synthetic quartz powder is arranged as a raw material to form a transparent layer
  • natural quartz powder is arranged in two or more layers as a raw material to form an opaque layer.
  • a quartz glass crucible is manufactured by melting the formed molded body by arc melting.
  • silica glass crucibles are used for pulling silicon single crystals, but it is known that surface roughness such as brown marks occurs on the inner surface of the crucible that comes into contact with silicon melt during pulling. Due to this surface roughness on the crucible inner surface, fine free substances are likely to be generated in the silicon melt from the crucible inner surface. If fine free substances in the silicon melt adhere to the silicon ingot being pulled, there is a possibility that dislocations may occur.
  • Japanese Patent Application Publication No. 2006-124235 discloses a structure in which a crystallization accelerator-containing layer is sandwiched between an inner layer and an outer layer excluding the bottom in a silica glass crucible.
  • the inner and outer layers can be crystallized during use of the quartz glass crucible to strengthen the deformation resistance and to avoid contamination of the silicon melt by the crystallization accelerator.
  • the present invention has been made under the above circumstances, and in a quartz glass crucible for pulling a silicon single crystal by the Czochralski method, the inner surface of the crucible is crystallized during pulling of the single crystal.
  • a quartz glass crucible and a method for manufacturing the same are capable of preventing the generation of fine free substances from the inner surface of the crucible to the silicon melt, as well as suppressing contamination and cracking of the silicon melt. The purpose is to provide.
  • a quartz glass crucible according to the present invention made to solve the above problem has a bottom, a bottom corner formed around the bottom, and a side extending upward from the bottom corner, and has a silicon melt crucible.
  • a quartz glass crucible for holding a single crystal and pulling a single crystal, the crucible has an inner layer and at least one outer layer disposed outside the inner layer, and the inner layer includes a It is characterized in that a layer containing powder containing aluminum (Al) is formed.
  • the layer containing powder containing aluminum (Al) has an aluminum (Al) amount of 4.7 x 10-8 g or more in 0.45 cm3 of quartz glass (glass density 2.2 g/cm3)6. It is desirable that the weight is .6 ⁇ 10 ⁇ 3 g or less. Further, in the inner layer, it is desirable that a layer containing the aluminum (Al)-containing powder is formed along the crucible shape at least at the side portions and bottom corners. Further, it is preferable that the layer containing powder containing aluminum (Al) is a crystallization promoting layer that forms a crystallized layer in the inner layer when pulling a single crystal.
  • an Al-containing powder layer containing aluminum (Al)-containing powder in the inner layer By forming an Al-containing powder layer containing aluminum (Al)-containing powder in the inner layer in this way, aluminum (Al) contained in the aluminum (Al)-containing powder can be removed during silicon single crystal pulling. Crystallizes as crystal nuclei in the inner layer and reaches the inner surface of the crucible. Thereby, surface roughness of the inner surface of the crucible that comes into contact with the silicon melt can be suppressed. Furthermore, since aluminum (Al) is difficult to move in quartz glass, it does not move from the filled position, so that contamination of the silicon melt can be prevented. Furthermore, by forming an Al-containing powder layer as a crystallization accelerator in the inner layer, crystallization of the outer layer can be suppressed and cracks caused by excessive crystallization can be prevented.
  • a method for manufacturing a quartz glass crucible according to the present invention which has been made to solve the above-mentioned problems, is the method for manufacturing a quartz glass crucible described above, which comprises supplying a raw material powder containing natural quartz powder to a mold, a step of forming at least one outer layer; a step of supplying raw material powder containing synthetic quartz powder to the inside of the outer layer to form a first inner layer; a step of supplying a mixed powder of a powder containing aluminum (Al) and synthetic quartz powder, and forming a layer of the mixed powder of the powder containing aluminum (Al) and synthetic quartz powder; a step of supplying raw material powder containing synthetic quartz powder to the inside of a layer of mixed powder of powder and synthetic quartz powder to form a second inner layer to obtain a crucible compact;
  • the method is characterized by comprising a step of melting the inner layer and the outer layer to form a quartz glass crucible.
  • a mixed powder of a powder containing aluminum (Al) and a synthetic quartz powder is supplied to the inside of the first inner layer, and a mixed powder of the powder containing aluminum (Al) and a synthetic quartz powder is supplied.
  • the aluminum (Al)-containing powder has a smaller particle size than the synthetic quartz powder to be mixed, and has an aluminum (Al) concentration of 50 ppm or more and 1% or less.
  • an Al-containing powder layer containing powder containing aluminum (Al) can be formed in the inner layer.
  • aluminum (Al) contained in the Al-containing powder is crystallized as crystal nuclei in the inner layer during pulling of the silicon single crystal, and reaches the inner surface of the crucible.
  • surface roughness of the inner surface of the crucible that comes into contact with the silicon melt can be suppressed.
  • aluminum (Al) is difficult to move in quartz glass, it does not move from the filled position, so that contamination of the silicon melt can be prevented.
  • an Al-containing powder layer as a crystallization accelerator in the inner layer, crystallization of the outer layer can be suppressed and cracks caused by excessive crystallization can be prevented.
  • the inner surface of the crucible is crystallized (devitrified) when pulling the single crystal, and the crucible is It is possible to provide a silica glass crucible and a method for manufacturing the same, which can prevent the generation of fine free substances from the inner surface of the silicon melt and suppress contamination and cracking of the silicon melt.
  • FIG. 1 is a cross-sectional view of a quartz glass crucible according to the present invention.
  • FIG. 2 is a partially enlarged sectional view of the quartz glass crucible shown in FIG.
  • FIG. 3 is a sectional view further enlarging a part of the partially enlarged sectional view of the quartz glass crucible in FIG. 2.
  • FIG. FIG. 4 is a schematic diagram of an apparatus for manufacturing the quartz glass crucible of FIG. 1.
  • FIG. 1 is a cross-sectional view of a quartz glass crucible 1 according to the present invention.
  • FIG. 2 is a partially enlarged sectional view of the quartz glass crucible shown in FIG.
  • This quartz glass crucible 1 is used, for example, in a single crystal pulling device (not shown), and is used in a state where it is supported by a carbon susceptor (not shown) within the device. That is, in the single crystal pulling apparatus, raw silicon is melted in the quartz glass crucible 1, and a silicon single crystal is pulled from the melt.
  • the quartz glass crucible 1 is formed to have a diameter (aperture) of 32 inches and a height of 500 mm, for example, and has a bottom portion 9 having a predetermined curvature (first curvature) and a bottom portion 9 having a predetermined curvature (first curvature). It has a bottom corner 8 having a curvature of 2.5 mm, and a side portion (straight body portion) 7 extending upward from the bottom corner 8.
  • an opaque outer layer 3 made of natural raw quartz glass is formed on the outer side of the side portion 7. Further, inside this outer layer 3, a transparent inner layer 4 made of high-purity synthetic raw material quartz glass is formed, which comes into contact with the silicon melt during pulling of the silicon single crystal.
  • a natural quartz layer refers to a silica glass layer manufactured by melting natural raw materials such as crystal
  • a synthetic quartz layer refers to a silica glass layer manufactured by melting synthetic raw materials synthesized by hydrolysis of silicon alkoxide, for example. silica glass layer.
  • an outer layer 3 made of natural raw material quartz glass is formed continuously from the outer layer 3 of the side part 7, and an inner layer made of synthetic raw material quartz glass. It has a two-layer structure formed of 4 and 4.
  • the outer layer 3 made of natural raw material quartz glass has a thickness ot1 of 6 mm or more at the side 7 of the quartz glass crucible 1.
  • the thickness dimension ot2 of the bottom corner 8 formed continuously from the outer layer 3 in the outer layer 3 and the thickness dimension ot3 of the bottom part 9 in the outer layer 3 are also formed to be 6 mm or more. This is because if the thickness ot1 of the outer layer 3 at the side 7, the thickness ot2 of the outer layer 3 at the bottom corner 8, and the thickness ot3 of the outer layer 3 at the bottom 9 are smaller than 6 mm, sufficient durability can be obtained. This is because it is difficult.
  • the inner layer 4 is a transparent layer substantially free of bubbles formed by melting synthetic raw material quartz glass.
  • the thickness dimension it1 at the side portion 7 is formed to be 1.5 mm or more and 4 mm or less, preferably 2 mm or more and 3 mm or less. By forming the thickness dimension it1 of the side portion 7 in such a range, it is possible to prevent the crucible opening from deforming (falling down, etc.) and exposing the crucible outer layer.
  • the thickness dimension it2 at the bottom corner 8 is formed to be 1.5 mm or more and 6 mm or less, preferably 2 mm or more and 4 mm or less.
  • the thickness dimension it3 at the bottom part 9 is formed to be 1.5 mm or more and 4 mm or less, preferably 2 mm or more and 3 mm or less, similarly to the side part 7.
  • Al-containing powder layer 2 a layer containing powder containing aluminum (Al) as a crystal nucleus (Al-containing powder) is formed.
  • This Al-containing powder layer 2 is a layer containing the Al-containing powder in a quartz glass layer, and as shown in FIG. It is located at a position of .25 mm or more and 1.75 mm or less, and the thickness W is formed to be 0.1 mm or more and 0.5 mm or less. Thereby, the Al-containing powder layer 2 can be prevented from being exposed even when the inner surface of the crucible is etched by the silicon melt, and it can be devitrified.
  • the Al-containing powder layer 2 is shallower than 1.25 mm from the inner surface of the crucible, there is a risk that the Al-containing powder layer 2 will be exposed due to etching of the crucible by the silicon melt. On the other hand, if the Al-containing powder layer 2 is deeper than 1.75 mm from the crucible inner surface, there is a possibility that the entire crucible inner surface may not be devitrified.
  • the amount of Al in 0.45 cm3 of quartz glass in the Al-containing powder layer 2 is set to be 4.7 x 10-8 g or more and 6.6 x 10-3 g or less. Further, the Al concentration of the Al-containing powder in the Al-containing powder layer 2 is set to 5.0 ⁇ 10 ⁇ 5% (50 ppm) or more and 1% (104 ppm) or less. If the Al concentration in the Al-containing powder in the Al-containing powder layer 2 is thinner than 50 ppm, it will take time to devitrify, and if it is thicker than 1% (104 ppm), devitrification will occur excessively, resulting in a crack occurrence rate. There is a risk that this will increase.
  • the Al-containing powder layer 2 containing powder containing aluminum (Al) in the inner layer 4
  • the aluminum (Al) in the Al-containing powder becomes a crystal nucleus during pulling of the silicon single crystal into the inner layer 4.
  • the Al-containing powder layer 2 functions as a crystallization promoting layer to form a crystallized layer
  • the silicon melt comes into contact with it.
  • Surface roughness on the inner surface of the crucible can be suppressed.
  • aluminum (Al) is difficult to move in quartz glass, it does not move from the filled position, so that contamination of the silicon melt can be prevented.
  • an Al-containing powder layer 2 containing powder containing aluminum (Al) as a crystallization promoter in the inner layer 4 crystallization on the outer layer 3 side is suppressed, and cracks due to excessive crystallization are prevented. Occurrence can be prevented.
  • the quartz glass crucible 1 according to the present embodiment is manufactured using, for example, a quartz glass crucible manufacturing apparatus 10 as shown in FIG. 4.
  • the crucible molding mold 11 of the quartz glass crucible manufacturing apparatus 10 includes an inner member 12 made of a gas permeable member such as a mold having a plurality of through holes or a highly purified porous carbon mold. , and a holder 14 that holds the inner member 12 and has a ventilation portion 13 on its outer periphery.
  • a rotating shaft 15 connected to a rotating means is fixed to the lower part of the holder 14, and rotatably supports the crucible molding mold 11.
  • the ventilation section 13 is connected to an exhaust passage 17 provided at the center of the rotating shaft 15 via an opening 16 provided at the bottom of the holder 14 , and this exhaust passage 17 is connected to a pressure reduction mechanism 18 .
  • An arc electrode 19 for arc discharge, a natural quartz powder supply nozzle 20, an Al-containing powder supply nozzle 21, and a synthetic quartz powder supply nozzle 22 are provided at the upper part facing the inner member 12.
  • a rotation drive source (not shown) is operated to rotate the rotating shaft 18 in the direction of the arrow, thereby rotating the crucible molding mold 11 at high speed.
  • natural quartz powder raw material powder
  • the supplied natural quartz powder is pressed against the inner surface of the inner member 12 by centrifugal force, and is formed as an outer layer 30 having a thickness of 6 mm or more at the sides, bottom corners, and bottom.
  • synthetic quartz powder (raw material powder) is fed through a synthetic quartz powder supply nozzle so that a layer 40a (first inner layer) of synthetic quartz powder with a thickness of, for example, 1.5 mm is formed on the inner surface side of the outer layer 30. Supplied from 23. The supplied synthetic quartz powder is pressed against the inner surface of the outer layer 30 by centrifugal force and is formed into a layer 40a of synthetic quartz powder.
  • a layer 25 of Al-containing powder mixed quartz powder (mixed powder of Al-containing powder and synthetic quartz powder) having a thickness of 0.1 mm or more and 1.0 mm or less is formed on the inner surface side of the synthetic quartz powder layer 40a.
  • quartz powder mixed with Al-containing powder of 5% or more and 30% or less of the weight of the crucible is supplied from the Al-containing powder supply nozzle 21 so that the crucible is formed.
  • the supplied quartz powder mixed with Al-containing powder is pressed against the inner surface of the layer 40a of synthetic quartz powder by centrifugal force, and is formed into a layer 25 of quartz powder mixed with Al-containing powder.
  • the Al-containing powder mixed quartz powder supplied from the Al-containing powder supply nozzle 21 is formed in advance in the following manner. That is, a solution in which an Al compound is dissolved and quartz powder are mixed and dried to refine the Al-containing powder. Thereafter, Al-containing powder mixed quartz powder is produced by mixing Al-containing powder and synthetic quartz powder.
  • the particle size of the Al-containing powder is smaller than the synthetic quartz powder to be mixed, preferably from 270 mesh (opening 53 ⁇ m) to 18 mesh (opening 1000 ⁇ m), and from 230 mesh (opening 63 ⁇ m) to 45 It is more preferable to use a mesh (opening: 354 ⁇ m) or less. When the particle size is larger than 1.0 mm, bubbles may be generated in the Al-containing layer 2.
  • the Al concentration in the powder containing Al is set to 5.0 ⁇ 10 ⁇ 5% (50 ppm) or more and 1% (104 ppm) or less. Since the Al-containing powder mixed quartz powder contains quartz powder, the amount of Al in 0.45 cm3 of quartz glass at the time of forming the quartz glass crucible is 4.7 x 10-8 g or more 6.6 x 10- 3g or less.
  • a layer 40b of synthetic quartz powder (second inner layer) with a thickness of 1.25 mm or more and 1.75 mm or less is formed on the inner surface of the layer 25 of quartz powder mixed with Al-containing powder. ) is formed from the synthetic quartz powder supply nozzle 23.
  • the supplied synthetic quartz powder is pressed by centrifugal force against the inner surface of the layer 25 of quartz powder mixed with Al-containing powder, and is formed into a layer 40b of synthetic quartz powder.
  • the thickness dimension (thickness of the inner layer 40) between the outer surface of the synthetic quartz powder layer 40a and the inner surface of the synthetic quartz powder layer 40b is, for example, 2 mm.
  • a crucible molded body consisting of the outer layer 30 and the inner layer 40 (including the layer 25 of quartz powder mixed with Al-containing powder) is obtained. Furthermore, the pressure inside the inner member 12 is reduced by the operation of the pressure reducing mechanism 18, and the arc electrode 19 is energized to heat the crucible molded body from the inside, thereby forming the inner layer 40 of the crucible molded body, the layer 25 of the Al-containing powder mixed quartz powder, and the outer layer. 30 is melted to produce a quartz glass crucible 1 having an inner layer 4 and an outer layer 3.
  • the Al-containing powder layer 2 containing powder containing aluminum (Al) in the inner layer 4 aluminum Aluminum (Al) contained in the powder is crystallized as crystal nuclei in the inner layer 4 and reaches the inner surface of the crucible.
  • surface roughness of the inner surface of the crucible that comes into contact with the silicon melt can be suppressed.
  • aluminum (Al) is difficult to move in quartz glass, it does not move from the filled position, so that contamination of the silicon melt can be prevented.
  • the Al-containing powder layer 2 as a crystallization accelerator in the inner layer 4 crystallization on the outer layer 3 side can be suppressed and cracks caused by excessive crystallization can be prevented.
  • the Al-containing powder layer 2 is formed over the entire inner layer 4 of the silica glass crucible 1 (the side portion 7, the bottom corner 8, and the bottom portion 9). is not limited to this configuration. However, the Al-containing powder layer 2 is preferably formed on at least the side portions 7 and bottom corners 8 of the inner layer 4 of the quartz glass crucible 1 . Further, although the silica glass crucible 1 has a two-layer structure of the outer layer 3 and the inner layer 4, the present invention is not limited to this structure, and the outer layer may have two or more layers. .
  • silica glass crucible and the manufacturing method thereof according to the present invention will be further explained based on Examples.
  • a silica glass crucible having the configuration shown in the embodiment described above was manufactured, and the effects of the present invention were verified.
  • the measurement of Al concentration in the following Examples and Comparative Examples was carried out in accordance with JIS M8852 (1998), by taking several grams of samples from the target area of the crucible, and using a sample containing hydrofluoric acid (HF) as the main component. It was dissolved in a mixed solution and measured by Inductively Coupled Plazma Atomic Emission Spectroscopy (ICP-AES).
  • ICP-AES Inductively Coupled Plazma Atomic Emission Spectroscopy
  • Example 1 A quartz glass crucible of 32 inches and a height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG.
  • This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass.
  • An Al-containing powder layer was formed in the inner layer.
  • the size of the powder contained in the Al-containing powder layer was 45 to 230 mesh.
  • the Al-containing powder layer was formed with a thickness of 0.1 mm or more and 0.5 mm or less at a depth of 1.25 mm or more and 1.75 mm or less from the inner surface of the crucible.
  • the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was set to 50 ppm or more and 104 ppm (1%) or less. Further, the weight ratio of the Al-containing powder layer to the entire crucible was set to 5% or more and 30% or less of the crucible weight.
  • Example 1 a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed. As a result, the entire inner surface of the crucible was devitrified, and no surface roughness on the inner surface of the crucible, floating objects in the silicon melt, or contamination of the silicon melt were observed. Further, no adverse effect on single crystal pulling was observed.
  • Comparative example 1 a quartz glass crucible having a size of 32 inches and a height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG. 4 in the same manner as in Example 1.
  • This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass. No Al-containing powder layer was formed in the inner layer.
  • Comparative Example 1 a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed. As a result, no abnormality was observed in the pulling of the silicon single crystal, but no devitrification was observed on the inner surface of the crucible.
  • Comparative example 2 In Comparative Example 2, similarly to Example 1, a quartz glass crucible having a size of 32 inches and a height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG.
  • This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass.
  • An Al-containing powder layer was formed in the inner layer.
  • the size of the powder contained in the Al-containing powder layer was 35 mesh.
  • the Al-containing powder layer was formed with a thickness of 0.1 mm or more and 0.5 mm or less at a depth of 1.25 mm or more and 1.75 mm or less from the inner surface of the crucible.
  • the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was set to 50 ppm or more and 104 ppm (1%) or less. Further, the weight ratio of the Al-containing powder layer to the entire crucible was set to 5% or more and 30% or less of the crucible weight.
  • Comparative Example 2 a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed. As a result, microbubbles were generated in the inner layer of the crucible, resulting in an unfavorable condition.
  • Comparative example 3 In Comparative Example 3, similarly to Example 1, a quartz glass crucible having a size of 32 inches and a height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG.
  • This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass.
  • An Al-containing powder layer was formed in the inner layer.
  • the size of the powder contained in the Al-containing powder layer was 45 to 230 mesh.
  • the Al-containing powder layer was formed at a depth of 1.20 mm from the inner surface of the crucible with a thickness of 0.1 mm or more and 0.5 mm or less.
  • the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was set to 50 ppm or more and 104 ppm (1%) or less. Further, the weight ratio of the Al-containing powder layer to the entire crucible was set to 5% or more and 30% or less of the crucible weight.
  • Comparative Example 3 a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed. As a result, the Al-containing powder layer was exposed on the surface of the inner layer of the crucible.
  • Comparative example 4 In Comparative Example 4, similarly to Example 1, a quartz glass crucible with a size of 32 inches and a height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG.
  • This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass.
  • An Al-containing powder layer was formed in the inner layer.
  • the size of the powder contained in the Al-containing powder layer was 45 to 230 mesh.
  • the Al-containing powder layer was formed at a depth of 1.80 mm from the inner surface of the crucible with a thickness of 0.1 mm or more and 0.5 mm or less.
  • the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was set to 50 ppm or more and 104 ppm (1%) or less. Further, the weight ratio of the Al-containing powder layer to the entire crucible was set to 5% or more and 30% or less of the crucible weight.
  • Comparative Example 4 a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed. As a result, no abnormality was observed in the pulling of the silicon single crystal, but the inner surface of the crucible was partially devitrified.
  • Comparative example 5 In Comparative Example 5, similarly to Example 1, a quartz glass crucible of 32 inches and height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG.
  • This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass.
  • An Al-containing powder layer was formed in the inner layer.
  • the size of the powder contained in the Al-containing powder layer was 45 to 230 mesh.
  • the Al-containing powder layer was formed with a thickness of 0.08 mm at a depth of 1.25 to 1.75 mm from the inner surface of the crucible.
  • the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was set to 50 ppm or more and 104 ppm (1%) or less. Further, the weight ratio of the Al-containing powder layer to the entire crucible was set to 5% or more and 30% or less of the crucible weight.
  • Comparative Example 5 a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed. As a result, no abnormality was observed in the pulling of the silicon single crystal, but the inner surface of the crucible was partially devitrified.
  • Comparative example 6 In Comparative Example 6, similarly to Example 1, a quartz glass crucible of 32 inches and height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG.
  • This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass.
  • An Al-containing powder layer was formed in the inner layer.
  • the size of the powder contained in the Al-containing powder layer was 45 to 230 mesh.
  • the Al-containing powder layer was formed with a thickness of 0.6 mm at a depth of 1.75 mm from the inner surface of the crucible.
  • the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was set to 50 ppm or more and 104 ppm (1%) or less.
  • the weight ratio of the Al-containing powder layer to the entire crucible was set to 5% or more and 30% or less of the crucible weight.
  • Comparative Example 6 a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed. As a result, no abnormality was observed in the pulling of the silicon single crystal, but devitrification reached the outer layer (there is a risk of liquid leakage due to excessive devitrification).
  • Comparative Example 7 In Comparative Example 7, similarly to Example 1, a quartz glass crucible of 32 inches and height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG.
  • This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass.
  • An Al-containing powder layer was formed in the inner layer.
  • the size of the powder contained in the Al-containing powder layer was 45 to 230 mesh.
  • the Al-containing powder layer was formed with a thickness of 0.1 mm or more and 0.5 mm or less at a depth of 1.25 mm or more and 1.75 mm or less from the inner surface of the crucible.
  • the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was 45 ppm.
  • the weight ratio of the Al-containing powder layer to the entire crucible was set to 5% or more and 30% or less of the crucible weight.
  • Comparative Example 7 a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed. As a result, no abnormality was observed in the pulling of the silicon single crystal, but the inner surface of the crucible was partially devitrified.
  • Comparative example 8 In Comparative Example 8, similarly to Example 1, a quartz glass crucible of 32 inches and 500 mm in height was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG.
  • This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass.
  • An Al-containing powder layer was formed in the inner layer.
  • the size of the powder contained in the Al-containing powder layer was 45 to 230 mesh.
  • the Al-containing powder layer was formed with a thickness of 0.1 mm or more and 0.5 mm or less at a depth of 1.25 mm or more and 1.75 mm or less from the inner surface of the crucible.
  • the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was 1.1%.
  • the weight ratio of the Al-containing powder layer to the entire crucible was set to 5% or more and 30% or less of the crucible weight.
  • Comparative Example 8 a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed. As a result, no abnormality was observed in the pulling of the silicon single crystal, and the inner surface of the crucible was completely devitrified, but it was excessively devitrified and a slight crack occurred.
  • Comparative Example 9 In Comparative Example 9, similarly to Example 1, a quartz glass crucible of 32 inches and 500 mm in height was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG.
  • This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass.
  • An Al-containing powder layer was formed in the inner layer.
  • the size of the powder contained in the Al-containing powder layer was 45 to 230 mesh.
  • the Al-containing powder layer was formed with a thickness of 0.1 mm or more and 0.5 mm or less at a depth of 1.25 mm or more and 1.75 mm or less from the inner surface of the crucible.
  • the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was set to 50 ppm or more and 104 ppm (1%) or less. Further, the weight ratio of the Al-containing powder layer to the entire crucible was 4% of the crucible weight.
  • Comparative Example 10 In Comparative Example 10, similarly to Example 1, a quartz glass crucible of 32 inches and height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG. This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass. An Al-containing powder layer was formed in the inner layer. The size of the powder contained in the Al-containing powder layer was 45 to 230 mesh. The Al-containing powder layer was formed with a thickness of 0.1 mm or more and 0.5 mm or less at a depth of 1.25 mm or more and 1.75 mm or less from the inner surface of the crucible.
  • the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was set to 50 ppm or more and 104 ppm (1%) or less. Further, the weight ratio of the Al-containing powder layer to the entire crucible was 31% of the crucible weight.
  • Table 1 shows the conditions and devitrification results of Example 1 and Comparative Examples 1 to 10.
  • Example 1 was able to obtain the effects of the present invention. Therefore, as in Example 1, the powder size is preferably 45 mesh to 230 mesh, the Al-containing powder layer is located at a position of 1.25 mm to 1.75 mm from the inner surface of the crucible, and has a thickness of 0. It was confirmed that .1 mm or more and 0.5 mm or less is preferable. Further, the Al concentration in the powder contained in the Al-containing powder layer is preferably 50 ppm or more and 1% or less, and the weight ratio of the Al-containing powder layer to the entire crucible is preferably 5% or more and 30% or less of the crucible weight. I confirmed.
  • Quartz glass crucible manufacturing device 25 Al-containing powder mixed quartz powder (mixed powder of Al-containing powder and synthetic quartz powder) layer 40a first inner layer 40b second inner layer

Abstract

The present invention provides: a quartz glass crucible in which the inner surface of the crucible is crystallized (devitrified) to prevent the release of fine detached matter from the inner surface of the crucible into a silicon melt, and it is also possible to suppress the contamination of the silicon melt and the formation of cracks when pulling up a single crystal; and a production method therefor. Specifically provided is a quartz glass crucible 1 for holding a silicon melt and pulling up a single crystal, said quartz glass crucible comprising an inner layer 4 and at least one outer layer 3 positioned to the outside of the inner layer, wherein a layer 2 including a powder that contains aluminum (Al) is formed in the shape of the crucible in the inner layer.

Description

石英ガラスルツボ及びその製造方法Quartz glass crucible and its manufacturing method
 本発明は、チョクラルスキー法によって単結晶を引上げるためのシリコン単結晶引上げ用の石英ガラスルツボ及びその製造方法に関する。 The present invention relates to a quartz glass crucible for pulling a silicon single crystal by the Czochralski method and a method for manufacturing the same.
 チョクラルスキー法によるシリコン単結晶の育成は、チャンバ内に設置した石英ガラスルツボに原料であるポリシリコンを充填し、前記石英ガラスルツボの周囲に設けられたヒータによってポリシリコンを加熱して溶融し、シリコン融液とする。その後、シードチャックに取り付けた種結晶(シード)を当該シリコン融液に浸漬し、シードチャックおよび石英ガラスルツボを同方向または逆方向に回転させながらシードチャックを引上げることにより行う。 To grow silicon single crystals using the Czochralski method, a quartz glass crucible placed in a chamber is filled with polysilicon as a raw material, and a heater placed around the quartz glass crucible heats and melts the polysilicon. , a silicon melt. Thereafter, the seed crystal (seed) attached to the seed chuck is immersed in the silicon melt, and the seed chuck is pulled up while rotating the seed chuck and the quartz glass crucible in the same direction or in opposite directions.
 シリコン単結晶の引き上げに用いられる石英ガラスルツボは、シリコン融液を収容する石英部材であり、融液が接触するルツボ内表面(ルツボ内層)は、高純度な透明層とする必要がある。一方、ルツボ外表面側は、通常、コストの低減、及び高温機械特性向上の目的のため、一般にSi以外の金属元素を多く含む不透明外層(ルツボ外層)が形成されている。
 具体的には、ルツボ内層には、透明層を形成するために合成石英粉を原料として配置し、ルツボ外層には、不透明層を形成するために天然石英粉を原料として2層以上に配置し、形成した成型体をアーク溶融により溶融することによって石英ガラスルツボを製造している。
The quartz glass crucible used for pulling silicon single crystals is a quartz member that houses a silicon melt, and the inner surface of the crucible (inner crucible layer) that comes into contact with the melt needs to be a highly pure transparent layer. On the other hand, an opaque outer layer (crucible outer layer) containing a large amount of metal elements other than Si is usually formed on the outer surface of the crucible for the purpose of reducing costs and improving high-temperature mechanical properties.
Specifically, in the inner layer of the crucible, synthetic quartz powder is arranged as a raw material to form a transparent layer, and in the outer layer of the crucible, natural quartz powder is arranged in two or more layers as a raw material to form an opaque layer. A quartz glass crucible is manufactured by melting the formed molded body by arc melting.
 ところで、石英ガラスルツボはシリコン単結晶の引上げ時に使用されているが、引上げ中にシリコン融液と接触しているルツボ内表面にはブラウンマーク等の面荒れが発生することが知られている。このルツボ内表面における面荒れによって、シリコン融液にはルツボ内表面から微細な遊離物が発生しやすくなる。シリコン融液中における微細な遊離物が、引上げ中のシリコンインゴットに付着すると有転位する虞がある。 By the way, silica glass crucibles are used for pulling silicon single crystals, but it is known that surface roughness such as brown marks occurs on the inner surface of the crucible that comes into contact with silicon melt during pulling. Due to this surface roughness on the crucible inner surface, fine free substances are likely to be generated in the silicon melt from the crucible inner surface. If fine free substances in the silicon melt adhere to the silicon ingot being pulled, there is a possibility that dislocations may occur.
 このような課題に対し、従来からルツボ内面を結晶化促進剤でコートし、使用中にルツボ内面を結晶化させる方法が知られている。ルツボ内面を結晶化させることにより、耐変形性を強化し、ルツボ内面の面荒れ発生を抑制するものである。
 しかしながら、ルツボ内面を結晶化促進剤でコートすると、シリコン融液が結晶化促進剤により汚染されるという別の課題があった。
To address this problem, a method has been known in which the inner surface of the crucible is coated with a crystallization accelerator and the inner surface of the crucible is crystallized during use. By crystallizing the inner surface of the crucible, the deformation resistance is strengthened and the occurrence of surface roughness on the inner surface of the crucible is suppressed.
However, when the inner surface of the crucible is coated with a crystallization promoter, another problem arises in that the silicon melt is contaminated by the crystallization promoter.
 この別の課題を解決するものとして、特開2006-124235号公報には、石英ガラスルツボにおいて、底部を除く内層と外層の中間に結晶化促進剤含有層が挟み込まれた構造が開示されている。このような構造とすることで、石英ガラスルツボの使用中に内層、外層を結晶化させて耐変形性を強化し、シリコン融液の結晶化促進剤による汚染を回避することができる。 In order to solve this other problem, Japanese Patent Application Publication No. 2006-124235 discloses a structure in which a crystallization accelerator-containing layer is sandwiched between an inner layer and an outer layer excluding the bottom in a silica glass crucible. . With such a structure, the inner and outer layers can be crystallized during use of the quartz glass crucible to strengthen the deformation resistance and to avoid contamination of the silicon melt by the crystallization accelerator.
 しかしながら、特開2006-124235号公報に開示された、石英ガラスルツボの内層と外層の中間に結晶化促進剤含有層を挟み込む構造にあっては、石英ガラスルツボの使用中に結晶化層が厚くなりすぎ、クラックが発生する虞があった。 However, in the structure disclosed in Japanese Unexamined Patent Publication No. 2006-124235, in which a crystallization accelerator-containing layer is sandwiched between the inner layer and the outer layer of the vitreous silica crucible, the crystallization layer becomes thicker during use of the quartz glass crucible. There was a risk that cracks would occur.
 本発明は、前記事情の下になされたものであり、チョクラルスキー法によって単結晶を引上げるためのシリコン単結晶引上げ用の石英ガラスルツボにおいて、単結晶の引き上げの際、ルツボ内表面を結晶化(失透化)させ、ルツボ内表面からシリコン融液への微細な遊離物の発生を防止するとともに、シリコン融液の汚染やクラック発生を抑制することのできる石英ガラスルツボ及びその製造方法を提供することを目的とする。 The present invention has been made under the above circumstances, and in a quartz glass crucible for pulling a silicon single crystal by the Czochralski method, the inner surface of the crucible is crystallized during pulling of the single crystal. A quartz glass crucible and a method for manufacturing the same are capable of preventing the generation of fine free substances from the inner surface of the crucible to the silicon melt, as well as suppressing contamination and cracking of the silicon melt. The purpose is to provide.
 前記課題を解決するためになされた本発明に係る石英ガラスルツボは、底部と、前記底部の周りに形成された底部コーナーと、前記底部コーナーから上方に延びる側部とを有し、シリコン融液を保持し、単結晶を引上げるための石英ガラスルツボであって、内層と、前記内層よりも外側に配置された少なくとも1層の外層とを有し、前記内層中には、ルツボ形状に沿って、アルミニウム(Al)を含有する粉体を含む層が形成されていることに特徴を有する。 A quartz glass crucible according to the present invention made to solve the above problem has a bottom, a bottom corner formed around the bottom, and a side extending upward from the bottom corner, and has a silicon melt crucible. A quartz glass crucible for holding a single crystal and pulling a single crystal, the crucible has an inner layer and at least one outer layer disposed outside the inner layer, and the inner layer includes a It is characterized in that a layer containing powder containing aluminum (Al) is formed.
 尚、前記アルミニウム(Al)を含有する粉体を含む層は、石英ガラス0.45cm3(ガラス密度2.2g/cm3)中のアルミニウム(Al)量が、4.7×10-8g以 上6.6×10-3g以下であることが望ましい。
 また、前記内層中において、前記アルミニウム(Al)を含有する粉体を含む層は、少なくとも前記側部と底部コーナーとにルツボ形状に沿って形成されていることが望ましい。
 また、前記アルミニウム(Al)を含有する粉体を含む層は、単結晶を引き上げる際に前記内層の中に結晶化層を形成する結晶化促進層であることが望ましい。
In addition, the layer containing powder containing aluminum (Al) has an aluminum (Al) amount of 4.7 x 10-8 g or more in 0.45 cm3 of quartz glass (glass density 2.2 g/cm3)6. It is desirable that the weight is .6×10 −3 g or less.
Further, in the inner layer, it is desirable that a layer containing the aluminum (Al)-containing powder is formed along the crucible shape at least at the side portions and bottom corners.
Further, it is preferable that the layer containing powder containing aluminum (Al) is a crystallization promoting layer that forms a crystallized layer in the inner layer when pulling a single crystal.
 このようにアルミニウム(Al)を含有する粉体を含むAl含有粉体層を内層中に形成することにより、シリコン単結晶引き上げ中にアルミニウム(Al)を含有する粉体に含まれるアルミニウム(Al)が結晶核として内層の肉中で結晶化し、ルツボ内表面まで到達する。これにより、シリコン融液が接するルツボ内表面の面荒れを抑制することができる。
 また、アルミニウム(Al)は、石英ガラス中を移動しにくいことから、充填した位置から移動することが無いため、シリコン融液への汚染を防ぐことができる。更に、内層中に結晶化促進剤としてのAl含有粉層を形成することで外層側の結晶化を抑制し、過剰な結晶化によるクラックの発生を防止することができる。
By forming an Al-containing powder layer containing aluminum (Al)-containing powder in the inner layer in this way, aluminum (Al) contained in the aluminum (Al)-containing powder can be removed during silicon single crystal pulling. crystallizes as crystal nuclei in the inner layer and reaches the inner surface of the crucible. Thereby, surface roughness of the inner surface of the crucible that comes into contact with the silicon melt can be suppressed.
Furthermore, since aluminum (Al) is difficult to move in quartz glass, it does not move from the filled position, so that contamination of the silicon melt can be prevented. Furthermore, by forming an Al-containing powder layer as a crystallization accelerator in the inner layer, crystallization of the outer layer can be suppressed and cracks caused by excessive crystallization can be prevented.
 また、前記課題を解決するためになされた本発明に係る石英ガラスルツボの製造方法は、前記した石英ガラスルツボの製造方法であって、成形型に天然石英粉を含む原料粉を供給して、少なくとも1層の外層を形成する工程と、前記外層の内側に、合成石英粉を含む原料粉を供給し、第1の内層を形成する工程と、第1の内層の内側に、アルミニウム(Al)を含有する粉体と合成石英粉との混合粉を供給し、前記アルミニウム(Al)を含有する粉体と合成石英粉との混合粉の層を形成する工程と、前記アルミニウム(Al)を含有する粉体と合成石英粉との混合粉の層の内側に、合成石英粉を含む原料粉を供給し、第2の内層を形成して、ルツボ成形体を得る工程と、前記ルツボ成形体の内層、及び外層を溶融して、石英ガラスルツボを形成する工程と、を備えることに特徴を有する。
尚、前記第1の内層の内側に、アルミニウム(Al)を含有する粉体と合成石英粉との混合粉を供給し、前記アルミニウム(Al)を含有する粉体と合成石英粉との混合粉の層を形成する工程において、前記アルミニウム(Al)を含有する粉体は、混合する合成石英粉よりも粒径が小さく、アルミニウム(Al)濃度が、50ppm以上1%以下であることが望ましい。
Further, a method for manufacturing a quartz glass crucible according to the present invention, which has been made to solve the above-mentioned problems, is the method for manufacturing a quartz glass crucible described above, which comprises supplying a raw material powder containing natural quartz powder to a mold, a step of forming at least one outer layer; a step of supplying raw material powder containing synthetic quartz powder to the inside of the outer layer to form a first inner layer; a step of supplying a mixed powder of a powder containing aluminum (Al) and synthetic quartz powder, and forming a layer of the mixed powder of the powder containing aluminum (Al) and synthetic quartz powder; a step of supplying raw material powder containing synthetic quartz powder to the inside of a layer of mixed powder of powder and synthetic quartz powder to form a second inner layer to obtain a crucible compact; The method is characterized by comprising a step of melting the inner layer and the outer layer to form a quartz glass crucible.
Furthermore, a mixed powder of a powder containing aluminum (Al) and a synthetic quartz powder is supplied to the inside of the first inner layer, and a mixed powder of the powder containing aluminum (Al) and a synthetic quartz powder is supplied. In the step of forming the layer, it is desirable that the aluminum (Al)-containing powder has a smaller particle size than the synthetic quartz powder to be mixed, and has an aluminum (Al) concentration of 50 ppm or more and 1% or less.
 このような方法によれば、アルミニウム(Al)を含有する粉体を含むAl含有粉層を内層中に形成することができる。その結果、シリコン単結晶引き上げ中にAl含有粉に含まれるアルミニウム(Al)が結晶核として内層の肉中で結晶化し、ルツボ内表面まで到達する。これにより、シリコン融液が接するルツボ内表面の面荒れを抑制することができる。
 また、アルミニウム(Al)は、石英ガラス中を移動しにくいことから、充填した位置から移動することが無いため、シリコン融液への汚染を防ぐことができる。更に、内層中に結晶化促進剤としてのAl含有粉層を形成することで外層側の結晶化を抑制し、過剰な結晶化によるクラックの発生を防止することができる。
According to such a method, an Al-containing powder layer containing powder containing aluminum (Al) can be formed in the inner layer. As a result, aluminum (Al) contained in the Al-containing powder is crystallized as crystal nuclei in the inner layer during pulling of the silicon single crystal, and reaches the inner surface of the crucible. Thereby, surface roughness of the inner surface of the crucible that comes into contact with the silicon melt can be suppressed.
Furthermore, since aluminum (Al) is difficult to move in quartz glass, it does not move from the filled position, so that contamination of the silicon melt can be prevented. Furthermore, by forming an Al-containing powder layer as a crystallization accelerator in the inner layer, crystallization of the outer layer can be suppressed and cracks caused by excessive crystallization can be prevented.
 本発明によれば、チョクラルスキー法によって単結晶を引上げるためのシリコン単結晶引上げ用の石英ガラスルツボにおいて、単結晶の引き上げの際、ルツボ内表面を結晶化( 失透化)させ、ルツボ内表面からシリコン融液への微細な遊離物の発生を防止するとともに、シリコン融液の汚染やクラック発生を抑制することのできる石英ガラスルツボ及びその製造方法を提供することができる。 According to the present invention, in a quartz glass crucible for pulling a silicon single crystal for pulling a single crystal by the Czochralski method, the inner surface of the crucible is crystallized (devitrified) when pulling the single crystal, and the crucible is It is possible to provide a silica glass crucible and a method for manufacturing the same, which can prevent the generation of fine free substances from the inner surface of the silicon melt and suppress contamination and cracking of the silicon melt.
図1は、本発明に係る石英ガラスルツボの断面図である。FIG. 1 is a cross-sectional view of a quartz glass crucible according to the present invention. 図2は、図1の石英ガラスルツボの一部拡大断面図である。FIG. 2 is a partially enlarged sectional view of the quartz glass crucible shown in FIG. 図3は、図2の石英ガラスルツボの一部拡大断面図の一部をさらに拡大して示す断面図である。FIG. 3 is a sectional view further enlarging a part of the partially enlarged sectional view of the quartz glass crucible in FIG. 2. FIG. 図4は、図1の石英ガラスルツボを製造するための装置の概略図である。FIG. 4 is a schematic diagram of an apparatus for manufacturing the quartz glass crucible of FIG. 1.
 以下、本発明に係る石英ガラスルツボ及びその製造方法の実施の形態について図面に基づき説明する。図1は本発明に係る石英ガラスルツボ1の断面図である。図2は、図1の石英ガラスルツボの一部拡大断面図である。
 この石英ガラスルツボ1は、例えば単結晶引上装置(図示せず)において用いられ、装置内でカーボンサセプタ(図示せず)によって抱持された状態で使用される。即ち、単結晶引上装置では、石英ガラスルツボ1内に原料シリコンが溶融され、溶融液からシリコン単結晶が引上げられる。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a silica glass crucible and a manufacturing method thereof according to the present invention will be described based on the drawings. FIG. 1 is a cross-sectional view of a quartz glass crucible 1 according to the present invention. FIG. 2 is a partially enlarged sectional view of the quartz glass crucible shown in FIG.
This quartz glass crucible 1 is used, for example, in a single crystal pulling device (not shown), and is used in a state where it is supported by a carbon susceptor (not shown) within the device. That is, in the single crystal pulling apparatus, raw silicon is melted in the quartz glass crucible 1, and a silicon single crystal is pulled from the melt.
 石英ガラスルツボ1は、例えば直径(口径)32インチ、高さ500mmに形成され、所定の曲率(第一の曲率)を有する底部9と、前記底部9の周りに形成され、所定の曲率(第二の曲率)を有する底部コーナー8と、前記底部コーナー8から上方に延びる側部( 直胴部)7とを有する。
 図1に示すように、側部7において外側には、天然原料石英ガラスからなる不透明の外層3が形成されている。また、この外層3より内側には、シリコン単結晶引上げ時にシリコン融液と接する高純度の合成原料石英ガラスからなる透明の内層4が形成されている。
The quartz glass crucible 1 is formed to have a diameter (aperture) of 32 inches and a height of 500 mm, for example, and has a bottom portion 9 having a predetermined curvature (first curvature) and a bottom portion 9 having a predetermined curvature (first curvature). It has a bottom corner 8 having a curvature of 2.5 mm, and a side portion (straight body portion) 7 extending upward from the bottom corner 8.
As shown in FIG. 1, an opaque outer layer 3 made of natural raw quartz glass is formed on the outer side of the side portion 7. Further, inside this outer layer 3, a transparent inner layer 4 made of high-purity synthetic raw material quartz glass is formed, which comes into contact with the silicon melt during pulling of the silicon single crystal.
 ここで不透明とは、石英ガラス中に多数の気泡(気孔)が内在し、見かけ上、白濁した状態を意味する。また、天然石英層とは水晶等の天然質原料を溶融して製造されるシリカガラス層を意味し、合成石英層とは、例えばシリコンアルコキシドの加水分解により合成された合成原料を溶融して製造されるシリカガラス層を意味する。 Here, opaque means that the quartz glass contains many air bubbles (pores) and appears cloudy. Furthermore, a natural quartz layer refers to a silica glass layer manufactured by melting natural raw materials such as crystal, and a synthetic quartz layer refers to a silica glass layer manufactured by melting synthetic raw materials synthesized by hydrolysis of silicon alkoxide, for example. silica glass layer.
 また、図示するように石英ガラスルツボ1の底部コーナー8及び底部9においても、側部7の外層3から連続して形成された天然原料石英ガラスからなる外層3と、合成原料石英ガラスからなる内層4とで形成された2層構造となされている。 Further, as shown in the figure, at the bottom corners 8 and 9 of the vitreous silica crucible 1, an outer layer 3 made of natural raw material quartz glass is formed continuously from the outer layer 3 of the side part 7, and an inner layer made of synthetic raw material quartz glass. It has a two-layer structure formed of 4 and 4.
 図2に示すように、天然原料石英ガラスからなる外層3は、石英ガラスルツボ1の側部7における厚さ寸法ot1が6mm以上となされる。また、外層3から連続して形成された底部コーナー8の外層3における厚さ寸法ot2、及び底部9の外層3における厚さ寸法ot3も6mm以上に形成される。
 これは、側部7における外層3の厚さot1、底部コーナー8における外層3の厚さ寸法ot2、及び底部9における外層3の厚さ寸法ot3が6mmより小さいと、充分な耐久性が得られ難いためである。
As shown in FIG. 2, the outer layer 3 made of natural raw material quartz glass has a thickness ot1 of 6 mm or more at the side 7 of the quartz glass crucible 1. Moreover, the thickness dimension ot2 of the bottom corner 8 formed continuously from the outer layer 3 in the outer layer 3 and the thickness dimension ot3 of the bottom part 9 in the outer layer 3 are also formed to be 6 mm or more.
This is because if the thickness ot1 of the outer layer 3 at the side 7, the thickness ot2 of the outer layer 3 at the bottom corner 8, and the thickness ot3 of the outer layer 3 at the bottom 9 are smaller than 6 mm, sufficient durability can be obtained. This is because it is difficult.
 また、内層4は、合成原料石英ガラスを溶融して形成した実質的に気泡の存在しない透明層である。内層4において、側部7における厚さ寸法it1は、1.5mm以上4mm 以下、好ましくは2mm以上3mm以下に形成されている。
 このような範囲に側部7における厚さ寸法it1を形成することにより、ルツボ開口部の変形(倒れこみなど)やルツボ外層露出を防止することができる。
 また、内層4において、底部コーナー8における厚さ寸法it2は、1.5mm以上6mm以下、好ましくは2mm以上4mm以下に形成されている。また、内層4において、底部9における厚さ寸法it3は、側部7と同様に、1.5mm以上4mm以下、好ましくは2mm以上3mm以下に形成されている。
The inner layer 4 is a transparent layer substantially free of bubbles formed by melting synthetic raw material quartz glass. In the inner layer 4, the thickness dimension it1 at the side portion 7 is formed to be 1.5 mm or more and 4 mm or less, preferably 2 mm or more and 3 mm or less.
By forming the thickness dimension it1 of the side portion 7 in such a range, it is possible to prevent the crucible opening from deforming (falling down, etc.) and exposing the crucible outer layer.
Further, in the inner layer 4, the thickness dimension it2 at the bottom corner 8 is formed to be 1.5 mm or more and 6 mm or less, preferably 2 mm or more and 4 mm or less. Further, in the inner layer 4, the thickness dimension it3 at the bottom part 9 is formed to be 1.5 mm or more and 4 mm or less, preferably 2 mm or more and 3 mm or less, similarly to the side part 7.
 また、内層4中には、結晶核としてアルミニウム(Al)を含有する粉体(Al含有粉)を含む層(Al含有粉層と呼ぶ)2が形成されている。このAl含有粉層2は、石英ガラス層中に前記Al含有粉を含む層であり、図3に示すように、ルツボ内表面(内層4の表面)から寸法Lの位置、具体的には1.25mm以上1.75mm以下の位置にあり、厚さWは0.1mm以上0.5mm以下に形成されている。
 これにより、シリコン融液によるルツボ内面へのエッチングに対してもAl含有粉層2が露出することを防止し、且つ失透させることができる。Al含有粉層2がルツボ内表面から1.25mmよりも浅いと、シリコン融液によるルツボのエッチングによりAl含有粉層2が露出する虞がある。一方、Al含有粉層2がルツボ内表面から1.75mmよりも深い場合、ルツボ内表面の全体が失透しない虞がある。
Further, in the inner layer 4, a layer (referred to as an Al-containing powder layer) 2 containing powder containing aluminum (Al) as a crystal nucleus (Al-containing powder) is formed. This Al-containing powder layer 2 is a layer containing the Al-containing powder in a quartz glass layer, and as shown in FIG. It is located at a position of .25 mm or more and 1.75 mm or less, and the thickness W is formed to be 0.1 mm or more and 0.5 mm or less.
Thereby, the Al-containing powder layer 2 can be prevented from being exposed even when the inner surface of the crucible is etched by the silicon melt, and it can be devitrified. If the Al-containing powder layer 2 is shallower than 1.25 mm from the inner surface of the crucible, there is a risk that the Al-containing powder layer 2 will be exposed due to etching of the crucible by the silicon melt. On the other hand, if the Al-containing powder layer 2 is deeper than 1.75 mm from the crucible inner surface, there is a possibility that the entire crucible inner surface may not be devitrified.
 Al含有粉層2における石英ガラス0.45cm3中のAl量は、4.7×10-8g 以上6.6×10-3g以下に形成されている。
 また、Al含有粉層2中のAlを含有する粉体におけるAl濃度は、5.0×10-5%(50ppm)以上1%(104ppm)以下に形成されている。Al含有粉層2中のAlを含有する粉体におけるAl濃度が50ppmよりも薄いと、失透までに時間が掛かり、1%(104ppm)よりも濃いと過剰に失透し、クラックの発生率が上昇する虞がある。
The amount of Al in 0.45 cm3 of quartz glass in the Al-containing powder layer 2 is set to be 4.7 x 10-8 g or more and 6.6 x 10-3 g or less.
Further, the Al concentration of the Al-containing powder in the Al-containing powder layer 2 is set to 5.0×10 −5% (50 ppm) or more and 1% (104 ppm) or less. If the Al concentration in the Al-containing powder in the Al-containing powder layer 2 is thinner than 50 ppm, it will take time to devitrify, and if it is thicker than 1% (104 ppm), devitrification will occur excessively, resulting in a crack occurrence rate. There is a risk that this will increase.
 このようにアルミニウム(Al)を含有する粉体を含むAl含有粉層2を内層4中に形成することにより、シリコン単結晶引き上げ中にAl含有粉中のアルミニウム(Al)が結晶核として内層4の肉中で結晶化し(即ち、Al含有粉層2は、結晶化層を形成するための結晶化促進層として機能する)、結晶化がルツボ内表面まで到達することで、シリコン融液が接するルツボ内表面の面荒れを抑制することができる。
 また、アルミニウム(Al)は、石英ガラス中を移動しにくいことから、充填した位置から移動することが無いため、シリコン融液への汚染を防ぐことができる。更に、内層4 中に結晶化促進剤としてのアルミニウム(Al)を含有する粉体を含むAl含有粉層2を形成することで外層3側の結晶化を抑制し、過剰な結晶化によるクラックの発生を防止することができる。
By forming the Al-containing powder layer 2 containing powder containing aluminum (Al) in the inner layer 4, the aluminum (Al) in the Al-containing powder becomes a crystal nucleus during pulling of the silicon single crystal into the inner layer 4. (that is, the Al-containing powder layer 2 functions as a crystallization promoting layer to form a crystallized layer), and as the crystallization reaches the inner surface of the crucible, the silicon melt comes into contact with it. Surface roughness on the inner surface of the crucible can be suppressed.
Furthermore, since aluminum (Al) is difficult to move in quartz glass, it does not move from the filled position, so that contamination of the silicon melt can be prevented. Furthermore, by forming an Al-containing powder layer 2 containing powder containing aluminum (Al) as a crystallization promoter in the inner layer 4, crystallization on the outer layer 3 side is suppressed, and cracks due to excessive crystallization are prevented. Occurrence can be prevented.
 次に、前記構造を有する石英ガラスルツボ1の製造方法について説明する。
 本実施の形態に係る石英ガラスルツボ1は、例えば、図4に示すような石英ガラスルツボ製造装置10を用いて製造する。
 石英ガラスルツボ製造装置10のルツボ成形用型11は、例えば複数の貫通孔が穿設された金型、もしくは高純化処理した多孔質カーボン型などのガス透過性部材で構成された内側部材12と、その外周に通気部13を設けて、前記内側部材12を保持する保持体14とから構成されている。
Next, a method for manufacturing the silica glass crucible 1 having the above structure will be explained.
The quartz glass crucible 1 according to the present embodiment is manufactured using, for example, a quartz glass crucible manufacturing apparatus 10 as shown in FIG. 4.
The crucible molding mold 11 of the quartz glass crucible manufacturing apparatus 10 includes an inner member 12 made of a gas permeable member such as a mold having a plurality of through holes or a highly purified porous carbon mold. , and a holder 14 that holds the inner member 12 and has a ventilation portion 13 on its outer periphery.
 また、保持体14の下部には、図示しない回転手段と連結されている回転軸15が固着されていて、ルツボ成形用型11を回転可能に支持している。通気部13は、保持体14 の下部に設けられた開口部16を介して、回転軸15の中央に設けられた排気路17と連結されており、この排気路17は、減圧機構18と連結されている。
 内側部材12に対向する上部にはアーク放電用のアーク電極19と、天然石英粉供給ノズル20と、Al含有粉供給ノズル21と、合成石英粉供給ノズル22とが設けられている。
Further, a rotating shaft 15 connected to a rotating means (not shown) is fixed to the lower part of the holder 14, and rotatably supports the crucible molding mold 11. The ventilation section 13 is connected to an exhaust passage 17 provided at the center of the rotating shaft 15 via an opening 16 provided at the bottom of the holder 14 , and this exhaust passage 17 is connected to a pressure reduction mechanism 18 . has been done.
An arc electrode 19 for arc discharge, a natural quartz powder supply nozzle 20, an Al-containing powder supply nozzle 21, and a synthetic quartz powder supply nozzle 22 are provided at the upper part facing the inner member 12.
 石英ガラスルツボ製造装置10により石英ガラスルツボの製造を行う場合、図示しない回転駆動源を稼働させて回転軸18を矢印の方向に回転させ、これによりルツボ成形用型11を高速で回転させる。
 次いで、ルツボ成形用型11内に天然石英粉供給ノズル20から天然石英粉(原料粉) を供給する。供給された天然石英粉は、遠心力によって内側部材12の内面側に押圧され、側部、底部コーナー、及び底部における厚さ6mm以上の外層30として形成される。
When manufacturing a quartz glass crucible using the quartz glass crucible manufacturing apparatus 10, a rotation drive source (not shown) is operated to rotate the rotating shaft 18 in the direction of the arrow, thereby rotating the crucible molding mold 11 at high speed.
Next, natural quartz powder (raw material powder) is supplied into the crucible mold 11 from the natural quartz powder supply nozzle 20 . The supplied natural quartz powder is pressed against the inner surface of the inner member 12 by centrifugal force, and is formed as an outer layer 30 having a thickness of 6 mm or more at the sides, bottom corners, and bottom.
 続いて、先ず、外層30の内面側に、例えば厚さ1.5mmの合成石英粉の層40a(第1の内層)が形成されるように合成石英粉(原料粉)を合成石英粉供給ノズル23から供給する。
 供給された合成石英粉は、遠心力によって外層30の内面側に押圧されて、合成石英粉の層40aとして成形される。
Next, first, synthetic quartz powder (raw material powder) is fed through a synthetic quartz powder supply nozzle so that a layer 40a (first inner layer) of synthetic quartz powder with a thickness of, for example, 1.5 mm is formed on the inner surface side of the outer layer 30. Supplied from 23.
The supplied synthetic quartz powder is pressed against the inner surface of the outer layer 30 by centrifugal force and is formed into a layer 40a of synthetic quartz powder.
 次いで、合成石英粉の層40aの内面側に、厚さ0.1mm以上1.0mm以下のAl 含有粉混合石英粉(Alを含有する粉体と合成石英粉との混合粉)の層25が形成されるように、ルツボ重量の5%以上30%以下のAl含有粉混合石英粉をAl含有粉供給ノズル21から供給する。
 供給されたAl含有粉混合石英粉は、遠心力によって合成石英粉の層40aの内面側に押圧されて、Al含有粉混合石英粉の層25として成形される。
Next, a layer 25 of Al-containing powder mixed quartz powder (mixed powder of Al-containing powder and synthetic quartz powder) having a thickness of 0.1 mm or more and 1.0 mm or less is formed on the inner surface side of the synthetic quartz powder layer 40a. quartz powder mixed with Al-containing powder of 5% or more and 30% or less of the weight of the crucible is supplied from the Al-containing powder supply nozzle 21 so that the crucible is formed.
The supplied quartz powder mixed with Al-containing powder is pressed against the inner surface of the layer 40a of synthetic quartz powder by centrifugal force, and is formed into a layer 25 of quartz powder mixed with Al-containing powder.
 尚、前記Al含有粉供給ノズル21から供給するAl含有粉混合石英粉は、予め次のようにして形成する。
 即ち、Al化合物を溶解させた溶液と石英粉とを混ぜ、乾燥させてAl含有粉を精製する。その後、Al含有粉と合成石英粉を混合したAl含有粉混合石英粉を作製する。Al含有粉のサイズは、混合する合成石英粉よりも粒子径が小さく、270メッシュ(目開き53μm)以上18メッシュ(目開き1000μm)以下であることが好ましく、230 メッシュ(目開き63μm)以上45メッシュ(目開き354μm)以下とすることがさらに好ましい。粒子径が1.0mmよりも大きい場合、Al含有層2に気泡が発生する可能性がある。一方、粒子径が0.1mmよりも小さい場合、石英原料と混合させた場合に偏りが発生する。また、Alを含有する粉体におけるAl濃度は、5.0×10-5%(50ppm)以上1%(104ppm)以下に形成する。前記Al含有粉混合石英粉は石英粉を含むことから、石英ガラスルツボを形成した時点での、石英ガラス0.45cm3 中のAl量は、4.7×10-8g以上6.6×10-3g以下となされる。
The Al-containing powder mixed quartz powder supplied from the Al-containing powder supply nozzle 21 is formed in advance in the following manner.
That is, a solution in which an Al compound is dissolved and quartz powder are mixed and dried to refine the Al-containing powder. Thereafter, Al-containing powder mixed quartz powder is produced by mixing Al-containing powder and synthetic quartz powder. The particle size of the Al-containing powder is smaller than the synthetic quartz powder to be mixed, preferably from 270 mesh (opening 53 μm) to 18 mesh (opening 1000 μm), and from 230 mesh (opening 63 μm) to 45 It is more preferable to use a mesh (opening: 354 μm) or less. When the particle size is larger than 1.0 mm, bubbles may be generated in the Al-containing layer 2. On the other hand, if the particle size is smaller than 0.1 mm, unevenness will occur when mixed with the quartz raw material. Further, the Al concentration in the powder containing Al is set to 5.0×10 −5% (50 ppm) or more and 1% (104 ppm) or less. Since the Al-containing powder mixed quartz powder contains quartz powder, the amount of Al in 0.45 cm3 of quartz glass at the time of forming the quartz glass crucible is 4.7 x 10-8 g or more 6.6 x 10- 3g or less.
 Al含有粉混合石英粉の層25の形成後、このAl含有粉混合石英粉の層25の内面側に、厚さ1.25mm以上1.75mm以下の合成石英粉の層40b(第2の内層)が形成されるように合成石英粉(原料粉)を合成石英粉供給ノズル23から供給する。
 供給された合成石英粉は、遠心力によってAl含有粉混合石英粉の層25の内面側に押圧されて、合成石英粉の層40bとして成形される。
 ここで、合成石英粉の層40aの外面と合成石英粉の層40bの内面との間の厚さ寸法(内層40の厚さ)は、例えば2mmに形成される。
After forming the layer 25 of quartz powder mixed with Al-containing powder, a layer 40b of synthetic quartz powder (second inner layer) with a thickness of 1.25 mm or more and 1.75 mm or less is formed on the inner surface of the layer 25 of quartz powder mixed with Al-containing powder. ) is formed from the synthetic quartz powder supply nozzle 23.
The supplied synthetic quartz powder is pressed by centrifugal force against the inner surface of the layer 25 of quartz powder mixed with Al-containing powder, and is formed into a layer 40b of synthetic quartz powder.
Here, the thickness dimension (thickness of the inner layer 40) between the outer surface of the synthetic quartz powder layer 40a and the inner surface of the synthetic quartz powder layer 40b is, for example, 2 mm.
このようにして外層30、および内層40(Al含有粉混合石英粉の層25を含む)からなるルツボ成形体が得られる。
 さらに、減圧機構18の作動により内側部材12内を減圧し、アーク電極19に通電してルツボ成形体の内側から加熱し、ルツボ成形体の内層40、Al含有粉混合石英粉の層25及び外層30を溶融して、内層4及び外層3を備える石英ガラスルツボ1を製造する。
In this way, a crucible molded body consisting of the outer layer 30 and the inner layer 40 (including the layer 25 of quartz powder mixed with Al-containing powder) is obtained.
Furthermore, the pressure inside the inner member 12 is reduced by the operation of the pressure reducing mechanism 18, and the arc electrode 19 is energized to heat the crucible molded body from the inside, thereby forming the inner layer 40 of the crucible molded body, the layer 25 of the Al-containing powder mixed quartz powder, and the outer layer. 30 is melted to produce a quartz glass crucible 1 having an inner layer 4 and an outer layer 3.
 以上のように本実施の形態によれば、アルミニウム(Al)を含有する粉体を含むAl 含有粉層2を内層4中に形成することにより、シリコン単結晶引き上げ中にアルミニウム(Al)を含有する粉体に含まれるアルミニウム(Al)が結晶核として内層4の肉中で結晶化し、ルツボ内表面まで到達する。これにより、シリコン融液が接するルツボ内表面の面荒れを抑制することができる。
 また、アルミニウム(Al)は、石英ガラス中を移動しにくいことから、充填した位置から移動することが無いため、シリコン融液への汚染を防ぐことができる。更に、内層4 中に結晶化促進剤としてのAl含有粉層2を形成することで外層3側の結晶化を抑制し、過剰な結晶化によるクラックの発生を防止することができる。
As described above, according to the present embodiment, by forming the Al-containing powder layer 2 containing powder containing aluminum (Al) in the inner layer 4, aluminum Aluminum (Al) contained in the powder is crystallized as crystal nuclei in the inner layer 4 and reaches the inner surface of the crucible. Thereby, surface roughness of the inner surface of the crucible that comes into contact with the silicon melt can be suppressed.
Furthermore, since aluminum (Al) is difficult to move in quartz glass, it does not move from the filled position, so that contamination of the silicon melt can be prevented. Furthermore, by forming the Al-containing powder layer 2 as a crystallization accelerator in the inner layer 4, crystallization on the outer layer 3 side can be suppressed and cracks caused by excessive crystallization can be prevented.
 尚、前記実施の形態においては、Al含有粉層2を石英ガラスルツボ1の内層4中の全体(側部7、底部コーナー8、底部9)にわたり形成するものとしたが、本発明にあっては、その構成に限定されるものではない。但し、Al含有粉層2は、石英ガラスルツボ1 の内層4中の少なくとも側部7と底部コーナー8に形成するのが好ましい。
 また、石英ガラスルツボ1を外層3と、内層4との2層構造としたが、本発明にあっては、この構成に限定されるものではなく、外層を2層以上に形成してもよい。
In the embodiment described above, the Al-containing powder layer 2 is formed over the entire inner layer 4 of the silica glass crucible 1 (the side portion 7, the bottom corner 8, and the bottom portion 9). is not limited to this configuration. However, the Al-containing powder layer 2 is preferably formed on at least the side portions 7 and bottom corners 8 of the inner layer 4 of the quartz glass crucible 1 .
Further, although the silica glass crucible 1 has a two-layer structure of the outer layer 3 and the inner layer 4, the present invention is not limited to this structure, and the outer layer may have two or more layers. .
 続いて、本発明に係る石英ガラスルツボ及びその製造方法について、実施例に基づきさらに説明する。本実施例では、前記実施の形態に示した構成の石英ガラスルツボを製造し、本発明の効果を検証した。
 尚、以下の実施例及び比較例におけるAl濃度の測定は、JIS M8852(1998)に従い、ルツボの対象領域から数グラムのサンプリングを採取し、これをフッ化水素酸(HF)を主成分とする混合溶液で溶解し、ICP発光分光分析法(Inductively Coupled Plazma Atomic Emission Spectroscopy:ICP-AES)により測定した。
Next, the silica glass crucible and the manufacturing method thereof according to the present invention will be further explained based on Examples. In this example, a silica glass crucible having the configuration shown in the embodiment described above was manufactured, and the effects of the present invention were verified.
In addition, the measurement of Al concentration in the following Examples and Comparative Examples was carried out in accordance with JIS M8852 (1998), by taking several grams of samples from the target area of the crucible, and using a sample containing hydrofluoric acid (HF) as the main component. It was dissolved in a mixed solution and measured by Inductively Coupled Plazma Atomic Emission Spectroscopy (ICP-AES).
(実施例1)
 図4に示した石英ガラスルツボ製造装置を用い、32インチ、高さ500mmの石英ガラスルツボを製造した。この石英ガラスルツボは、合成原料石英ガラスからなる内層と、天然原料石英ガラスからなる外層の2層構造とした。内層中には、Al含有粉層を形成した。
 Al含有粉層に含まれる粉体のサイズは、45~230メッシュとした。Al含有粉層は、ルツボ内表面から1.25mm以上1.75mm以下の深さ位置に、0.1mm以上0.5mm以下の厚さで形成した。
 また、Al含有粉層に含まれる粉体中のアルミニウム(Al)濃度は、50ppm以上104ppm(1%)以下とした。
 また、ルツボ全体に対するAl含有粉層の重量割合は、ルツボ重量の5%以上30%以下とした。
(Example 1)
A quartz glass crucible of 32 inches and a height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG. This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass. An Al-containing powder layer was formed in the inner layer.
The size of the powder contained in the Al-containing powder layer was 45 to 230 mesh. The Al-containing powder layer was formed with a thickness of 0.1 mm or more and 0.5 mm or less at a depth of 1.25 mm or more and 1.75 mm or less from the inner surface of the crucible.
Further, the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was set to 50 ppm or more and 104 ppm (1%) or less.
Further, the weight ratio of the Al-containing powder layer to the entire crucible was set to 5% or more and 30% or less of the crucible weight.
 実施例1では、製造した石英ガラスルツボを用いてシリコン単結晶の引き上げを行い、ルツボ内面の失透状態の観察を行った。
 その結果、ルツボ内面は全面が失透し、ルツボ内面の面荒れ、シリコン融液中への浮遊物、シリコン融液の汚染はいずれも認められなかった。また、単結晶引き上げへの悪影響は認められなかった。
In Example 1, a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed.
As a result, the entire inner surface of the crucible was devitrified, and no surface roughness on the inner surface of the crucible, floating objects in the silicon melt, or contamination of the silicon melt were observed. Further, no adverse effect on single crystal pulling was observed.
(比較例1)
 比較例1では、実施例1と同様に図4に示した石英ガラスルツボ製造装置を用い、32 インチ、高さ500mmの石英ガラスルツボを製造した。この石英ガラスルツボは、合成原料石英ガラスからなる内層と、天然原料石英ガラスからなる外層の2層構造とした。内層中には、Al含有粉層を形成しなかった。
(Comparative example 1)
In Comparative Example 1, a quartz glass crucible having a size of 32 inches and a height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG. 4 in the same manner as in Example 1. This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass. No Al-containing powder layer was formed in the inner layer.
 比較例1では、製造した石英ガラスルツボを用いてシリコン単結晶の引き上げを行い、ルツボ内面の失透状態の観察を行った。
 その結果、シリコン単結晶の引き上げに異常は認められなかったが、ルツボ内面の失透は確認できなかった。
In Comparative Example 1, a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed.
As a result, no abnormality was observed in the pulling of the silicon single crystal, but no devitrification was observed on the inner surface of the crucible.
(比較例2)
 比較例2では、実施例1と同様に、図4に示した石英ガラスルツボ製造装置を用い、32インチ、高さ500mmの石英ガラスルツボを製造した。この石英ガラスルツボは、合成原料石英ガラスからなる内層と、天然原料石英ガラスからなる外層の2層構造とした。内層中には、Al含有粉層を形成した。
 Al含有粉層に含まれる粉体のサイズは、35メッシュとした。Al含有粉層は、ルツボ内表面から1.25mm以上1.75mm以下の深さ位置に、0.1mm以上0.5mm以下の厚さで形成した。
 また、Al含有粉層に含まれる粉体中のアルミニウム(Al)濃度は、50ppm以上104ppm(1%)以下とした。
 また、ルツボ全体に対するAl含有粉層の重量割合は、ルツボ重量の5%以上30%以下とした。
(Comparative example 2)
In Comparative Example 2, similarly to Example 1, a quartz glass crucible having a size of 32 inches and a height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG. This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass. An Al-containing powder layer was formed in the inner layer.
The size of the powder contained in the Al-containing powder layer was 35 mesh. The Al-containing powder layer was formed with a thickness of 0.1 mm or more and 0.5 mm or less at a depth of 1.25 mm or more and 1.75 mm or less from the inner surface of the crucible.
Further, the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was set to 50 ppm or more and 104 ppm (1%) or less.
Further, the weight ratio of the Al-containing powder layer to the entire crucible was set to 5% or more and 30% or less of the crucible weight.
 比較例2では、製造した石英ガラスルツボを用いてシリコン単結晶の引き上げを行い、ルツボ内面の失透状態の観察を行った。
 その結果、ルツボ内層の肉中に微泡が発生し、好ましくない状態となった。
In Comparative Example 2, a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed.
As a result, microbubbles were generated in the inner layer of the crucible, resulting in an unfavorable condition.
(比較例3)
 比較例3では、実施例1と同様に、図4に示した石英ガラスルツボ製造装置を用い、32インチ、高さ500mmの石英ガラスルツボを製造した。この石英ガラスルツボは、合成原料石英ガラスからなる内層と、天然原料石英ガラスからなる外層の2層構造とした。内層中には、Al含有粉層を形成した。
 Al含有粉層に含まれる粉体のサイズは、45~230メッシュとした。Al含有粉層は、ルツボ内表面から1.20mmの深さ位置に、0.1mm以上0.5mm以下の厚さで形成した。
 また、Al含有粉層に含まれる粉体中のアルミニウム(Al)濃度は、50ppm以上104ppm(1%)以下とした。
また、ルツボ全体に対するAl含有粉層の重量割合は、ルツボ重量の5%以上30%以下とした。
(Comparative example 3)
In Comparative Example 3, similarly to Example 1, a quartz glass crucible having a size of 32 inches and a height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG. This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass. An Al-containing powder layer was formed in the inner layer.
The size of the powder contained in the Al-containing powder layer was 45 to 230 mesh. The Al-containing powder layer was formed at a depth of 1.20 mm from the inner surface of the crucible with a thickness of 0.1 mm or more and 0.5 mm or less.
Further, the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was set to 50 ppm or more and 104 ppm (1%) or less.
Further, the weight ratio of the Al-containing powder layer to the entire crucible was set to 5% or more and 30% or less of the crucible weight.
 
 比較例3では、製造した石英ガラスルツボを用いてシリコン単結晶の引き上げを行い、ルツボ内面の失透状態の観察を行った。
その結果、ルツボ内層の表面にAl含有粉層が露出した状態となった。

In Comparative Example 3, a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed.
As a result, the Al-containing powder layer was exposed on the surface of the inner layer of the crucible.
(比較例4)
 比較例4では、実施例1と同様に、図4に示した石英ガラスルツボ製造装置を用い、32インチ、高さ500mmの石英ガラスルツボを製造した。この石英ガラスルツボは、合成原料石英ガラスからなる内層と、天然原料石英ガラスからなる外層の2層構造とした。内層中には、Al含有粉層を形成した。
 Al含有粉層に含まれる粉体のサイズは、45~230メッシュとした。Al含有粉層は、ルツボ内表面から1.80mmの深さ位置に、0.1mm以上0.5mm以下の厚さで形成した。
 また、Al含有粉層に含まれる粉体中のアルミニウム(Al)濃度は、50ppm以上104ppm(1%)以下とした。
 また、ルツボ全体に対するAl含有粉層の重量割合は、ルツボ重量の5%以上30%以下とした。
(Comparative example 4)
In Comparative Example 4, similarly to Example 1, a quartz glass crucible with a size of 32 inches and a height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG. This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass. An Al-containing powder layer was formed in the inner layer.
The size of the powder contained in the Al-containing powder layer was 45 to 230 mesh. The Al-containing powder layer was formed at a depth of 1.80 mm from the inner surface of the crucible with a thickness of 0.1 mm or more and 0.5 mm or less.
Further, the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was set to 50 ppm or more and 104 ppm (1%) or less.
Further, the weight ratio of the Al-containing powder layer to the entire crucible was set to 5% or more and 30% or less of the crucible weight.
 比較例4では、製造した石英ガラスルツボを用いてシリコン単結晶の引き上げを行い、ルツボ内面の失透状態の観察を行った。
 その結果、シリコン単結晶の引き上げに異常は認められなかったが、ルツボ内面は部分的に失透した。
In Comparative Example 4, a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed.
As a result, no abnormality was observed in the pulling of the silicon single crystal, but the inner surface of the crucible was partially devitrified.
(比較例5)
 比較例5では、実施例1と同様に、図4に示した石英ガラスルツボ製造装置を用い、32インチ、高さ500mmの石英ガラスルツボを製造した。この石英ガラスルツボは、合成原料石英ガラスからなる内層と、天然原料石英ガラスからなる外層の2層構造とした。内層中には、Al含有粉層を形成した。
 Al含有粉層に含まれる粉体のサイズは、45~230メッシュとした。Al含有粉層は、ルツボ内表面から1.25~1.75mmの深さ位置に、0.08mmの厚さで形成した。
 また、Al含有粉層に含まれる粉体中のアルミニウム(Al)濃度は、50ppm以上104ppm(1%)以下とした。
 また、ルツボ全体に対するAl含有粉層の重量割合は、ルツボ重量の5%以上30%以下とした。
(Comparative example 5)
In Comparative Example 5, similarly to Example 1, a quartz glass crucible of 32 inches and height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG. This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass. An Al-containing powder layer was formed in the inner layer.
The size of the powder contained in the Al-containing powder layer was 45 to 230 mesh. The Al-containing powder layer was formed with a thickness of 0.08 mm at a depth of 1.25 to 1.75 mm from the inner surface of the crucible.
Further, the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was set to 50 ppm or more and 104 ppm (1%) or less.
Further, the weight ratio of the Al-containing powder layer to the entire crucible was set to 5% or more and 30% or less of the crucible weight.
 比較例5では、製造した石英ガラスルツボを用いてシリコン単結晶の引き上げを行い、ルツボ内面の失透状態の観察を行った。
 その結果、シリコン単結晶の引き上げに異常は認められなかったが、ルツボ内面は部分的に失透した。
In Comparative Example 5, a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed.
As a result, no abnormality was observed in the pulling of the silicon single crystal, but the inner surface of the crucible was partially devitrified.
(比較例6)
 比較例6では、実施例1と同様に、図4に示した石英ガラスルツボ製造装置を用い、32インチ、高さ500mmの石英ガラスルツボを製造した。この石英ガラスルツボは、合成原料石英ガラスからなる内層と、天然原料石英ガラスからなる外層の2層構造とした。内層中には、Al含有粉層を形成した。
 Al含有粉層に含まれる粉体のサイズは、45~230メッシュとした。Al含有粉層は、ルツボ内表面から1.75mmの深さ位置に、0.6mmの厚さで形成した。
 また、Al含有粉層に含まれる粉体中のアルミニウム(Al)濃度は、50ppm以上104ppm(1%)以下とした。
 また、ルツボ全体に対するAl含有粉層の重量割合は、ルツボ重量の5%以上30%以下とした。
(Comparative example 6)
In Comparative Example 6, similarly to Example 1, a quartz glass crucible of 32 inches and height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG. This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass. An Al-containing powder layer was formed in the inner layer.
The size of the powder contained in the Al-containing powder layer was 45 to 230 mesh. The Al-containing powder layer was formed with a thickness of 0.6 mm at a depth of 1.75 mm from the inner surface of the crucible.
Further, the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was set to 50 ppm or more and 104 ppm (1%) or less.
Further, the weight ratio of the Al-containing powder layer to the entire crucible was set to 5% or more and 30% or less of the crucible weight.
 比較例6では、製造した石英ガラスルツボを用いてシリコン単結晶の引き上げを行い、ルツボ内面の失透状態の観察を行った。
 その結果、シリコン単結晶の引き上げに異常は認められなかったが、外層に失透が到達した(過剰な失透による液漏れの虞が生じる)。
In Comparative Example 6, a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed.
As a result, no abnormality was observed in the pulling of the silicon single crystal, but devitrification reached the outer layer (there is a risk of liquid leakage due to excessive devitrification).
(比較例7)
 比較例7では、実施例1と同様に、図4に示した石英ガラスルツボ製造装置を用い、32インチ、高さ500mmの石英ガラスルツボを製造した。この石英ガラスルツボは、合成原料石英ガラスからなる内層と、天然原料石英ガラスからなる外層の2層構造とした。内層中には、Al含有粉層を形成した。
 Al含有粉層に含まれる粉体のサイズは、45~230メッシュとした。Al含有粉層は、ルツボ内表面から1.25mm以上1.75mm以下の深さ位置に、0.1mm以上0.5mm以下の厚さで形成した。
 また、Al含有粉層に含まれる粉体中のアルミニウム(Al)濃度は、45ppmとした。
 また、ルツボ全体に対するAl含有粉層の重量割合は、ルツボ重量の5%以上30%以下とした。
(Comparative Example 7)
In Comparative Example 7, similarly to Example 1, a quartz glass crucible of 32 inches and height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG. This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass. An Al-containing powder layer was formed in the inner layer.
The size of the powder contained in the Al-containing powder layer was 45 to 230 mesh. The Al-containing powder layer was formed with a thickness of 0.1 mm or more and 0.5 mm or less at a depth of 1.25 mm or more and 1.75 mm or less from the inner surface of the crucible.
Further, the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was 45 ppm.
Further, the weight ratio of the Al-containing powder layer to the entire crucible was set to 5% or more and 30% or less of the crucible weight.
 比較例7では、製造した石英ガラスルツボを用いてシリコン単結晶の引き上げを行い、ルツボ内面の失透状態の観察を行った。
 その結果、シリコン単結晶の引き上げに異常は認められなかったが、ルツボ内面は部分的に失透した。
In Comparative Example 7, a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed.
As a result, no abnormality was observed in the pulling of the silicon single crystal, but the inner surface of the crucible was partially devitrified.
(比較例8)
 比較例8では、実施例1と同様に、図4に示した石英ガラスルツボ製造装置を用い、32インチ、高さ500mmの石英ガラスルツボを製造した。この石英ガラスルツボは、合成原料石英ガラスからなる内層と、天然原料石英ガラスからなる外層の2層構造とした。内層中には、Al含有粉層を形成した。
 Al含有粉層に含まれる粉体のサイズは、45~230メッシュとした。Al含有粉層は、ルツボ内表面から1.25mm以上1.75mm以下の深さ位置に、0.1mm以上0.5mm以下の厚さで形成した。
 また、Al含有粉層に含まれる粉体中のアルミニウム(Al)濃度は、1.1%とした。
また、ルツボ全体に対するAl含有粉層の重量割合は、ルツボ重量の5%以上30%以下とした。
(Comparative example 8)
In Comparative Example 8, similarly to Example 1, a quartz glass crucible of 32 inches and 500 mm in height was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG. This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass. An Al-containing powder layer was formed in the inner layer.
The size of the powder contained in the Al-containing powder layer was 45 to 230 mesh. The Al-containing powder layer was formed with a thickness of 0.1 mm or more and 0.5 mm or less at a depth of 1.25 mm or more and 1.75 mm or less from the inner surface of the crucible.
Further, the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was 1.1%.
Further, the weight ratio of the Al-containing powder layer to the entire crucible was set to 5% or more and 30% or less of the crucible weight.
 比較例8では、製造した石英ガラスルツボを用いてシリコン単結晶の引き上げを行い、ルツボ内面の失透状態の観察を行った。
 その結果、シリコン単結晶の引き上げに異常は認められず、ルツボ内面は全面失透したが、過剰に失透し、僅かにクラックが発生した。
In Comparative Example 8, a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed.
As a result, no abnormality was observed in the pulling of the silicon single crystal, and the inner surface of the crucible was completely devitrified, but it was excessively devitrified and a slight crack occurred.
(比較例9)
 比較例9では、実施例1と同様に、図4に示した石英ガラスルツボ製造装置を用い、32インチ、高さ500mmの石英ガラスルツボを製造した。この石英ガラスルツボは、合成原料石英ガラスからなる内層と、天然原料石英ガラスからなる外層の2層構造とした。内層中には、Al含有粉層を形成した。
 Al含有粉層に含まれる粉体のサイズは、45~230メッシュとした。Al含有粉層は、ルツボ内表面から1.25mm以上1.75mm以下の深さ位置に、0.1mm以上0.5mm以下の厚さで形成した。
 また、Al含有粉層に含まれる粉体中のアルミニウム(Al)濃度は、50ppm以上104ppm(1%)以下とした。
 また、ルツボ全体に対するAl含有粉層の重量割合は、ルツボ重量の4%とした。
(Comparative Example 9)
In Comparative Example 9, similarly to Example 1, a quartz glass crucible of 32 inches and 500 mm in height was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG. This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass. An Al-containing powder layer was formed in the inner layer.
The size of the powder contained in the Al-containing powder layer was 45 to 230 mesh. The Al-containing powder layer was formed with a thickness of 0.1 mm or more and 0.5 mm or less at a depth of 1.25 mm or more and 1.75 mm or less from the inner surface of the crucible.
Further, the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was set to 50 ppm or more and 104 ppm (1%) or less.
Further, the weight ratio of the Al-containing powder layer to the entire crucible was 4% of the crucible weight.
 比較例9では、製造した石英ガラスルツボを用いてシリコン単結晶の引き上げを行い、ルツボ内面の失透状態の観察を行った。
 その結果、ルツボ内表面まで失透せず、本発明の効果は得られなかった。
In Comparative Example 9, a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed.
As a result, devitrification did not occur to the inner surface of the crucible, and the effects of the present invention could not be obtained.
(比較例10)
 比較例10では、実施例1と同様に、図4に示した石英ガラスルツボ製造装置を用い、32インチ、高さ500mmの石英ガラスルツボを製造した。この石英ガラスルツボは、合成原料石英ガラスからなる内層と、天然原料石英ガラスからなる外層の2層構造とした。内層中には、Al含有粉層を形成した。
 Al含有粉層に含まれる粉体のサイズは、45~230メッシュとした。Al含有粉層は、ルツボ内表面から1.25mm以上1.75mm以下の深さ位置に、0.1mm以上0.5mm以下の厚さで形成した。
 また、Al含有粉層に含まれる粉体中のアルミニウム(Al)濃度は、50ppm以上104ppm(1%)以下とした。
 また、ルツボ全体に対するAl含有粉層の重量割合は、ルツボ重量の31%とした。
(Comparative Example 10)
In Comparative Example 10, similarly to Example 1, a quartz glass crucible of 32 inches and height of 500 mm was manufactured using the quartz glass crucible manufacturing apparatus shown in FIG. This quartz glass crucible had a two-layer structure: an inner layer made of synthetic raw material quartz glass and an outer layer made of natural raw material quartz glass. An Al-containing powder layer was formed in the inner layer.
The size of the powder contained in the Al-containing powder layer was 45 to 230 mesh. The Al-containing powder layer was formed with a thickness of 0.1 mm or more and 0.5 mm or less at a depth of 1.25 mm or more and 1.75 mm or less from the inner surface of the crucible.
Further, the aluminum (Al) concentration in the powder contained in the Al-containing powder layer was set to 50 ppm or more and 104 ppm (1%) or less.
Further, the weight ratio of the Al-containing powder layer to the entire crucible was 31% of the crucible weight.
 比較例9では、製造した石英ガラスルツボを用いてシリコン単結晶の引き上げを行い、ルツボ内面の失透状態の観察を行った。
 その結果、ルツボ内表面は全面が失透したが、過剰に失透し、僅かにクラックが発生した。
In Comparative Example 9, a silicon single crystal was pulled using the manufactured silica glass crucible, and the devitrification state of the inner surface of the crucible was observed.
As a result, the entire inner surface of the crucible was devitrified, but it was excessively devitrified and cracks were slightly generated.
上記実施例1、及び比較例1~10の条件及び失透状態の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the conditions and devitrification results of Example 1 and Comparative Examples 1 to 10.
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果より、実施例1では本発明の効果を得ることができた。よって、実施例1のように、粉体のサイズは、45メッシュ~230メッシュが好ましく、Al含有粉層は、ルツボ内表面から1.25mm以上1.75mm以下の位置にあり、厚さは0.1mm以上0.5mm以下が好ましいことを確認した。
 また、Al含有粉層が含む粉体中におけるAl濃度は、50ppm以上1%以下が好ましく、ルツボ全体に対するAl含有粉層の重量割合は、ルツボ重量の5%以上30%以下であることが好ましいと確認した。
From the results shown in Table 1, Example 1 was able to obtain the effects of the present invention. Therefore, as in Example 1, the powder size is preferably 45 mesh to 230 mesh, the Al-containing powder layer is located at a position of 1.25 mm to 1.75 mm from the inner surface of the crucible, and has a thickness of 0. It was confirmed that .1 mm or more and 0.5 mm or less is preferable.
Further, the Al concentration in the powder contained in the Al-containing powder layer is preferably 50 ppm or more and 1% or less, and the weight ratio of the Al-containing powder layer to the entire crucible is preferably 5% or more and 30% or less of the crucible weight. I confirmed.
1 石英ガラスルツボ
2 Al含有粉層
3 外層
4 内層
7 側部
8 底部コーナー
9 底部
10 石英ガラスルツボ製造装置
25 Al含有粉混合石英粉(Alを含有する粉体と合成石英粉との混合粉)の層
40a 第1の内層
40b 第2の内層

 
1 Quartz glass crucible 2 Al-containing powder layer 3 Outer layer 4 Inner layer 7 Side part 8 Bottom corner 9 Bottom part 10 Quartz glass crucible manufacturing device 25 Al-containing powder mixed quartz powder (mixed powder of Al-containing powder and synthetic quartz powder) layer 40a first inner layer 40b second inner layer

Claims (6)

  1.  底部と、前記底部の周りに形成された底部コーナーと、前記底部コーナーから上方に延びる側部とを有し、シリコン融液を保持し、単結晶を引上げるための石英ガラスルツボであって、
     内層と、前記内層よりも外側に配置された少なくとも1層の外層とを有し、
     前記内層中には、ルツボ形状に沿って、アルミニウム(Al)を含有する粉体を含む層が形成されていることを特徴とする石英ガラスルツボ。
    A quartz glass crucible for holding a silicon melt and for pulling a single crystal, the crucible having a bottom, a bottom corner formed around the bottom, and a side extending upward from the bottom corner, the crucible comprising:
    comprising an inner layer and at least one outer layer disposed outside the inner layer,
    A quartz glass crucible, wherein a layer containing powder containing aluminum (Al) is formed in the inner layer along the shape of the crucible.
  2.  前記アルミニウム(Al)を含有する粉体を含む層は、石英ガラス0.45cm3(ガラス密度2.2g/cm3)中のアルミニウム(Al)量が、4.7×10-8g以上6.6×10-3g以下であることを特徴とする請求項1に記載された石英ガラスルツボ。 In the layer containing powder containing aluminum (Al), the amount of aluminum (Al) in 0.45 cm3 of quartz glass (glass density 2.2 g/cm3) is 4.7 x 10-8 g or more 6.6 x The quartz glass crucible according to claim 1, characterized in that the weight is 10-3 g or less.
  3.  前記内層中において、前記アルミニウム(Al)を含有する粉体を含む層は、少なくとも前記側部と底部コーナーとにルツボ形状に沿って形成されていることを特徴とする請求項1に記載された石英ガラスルツボ。 2. The inner layer according to claim 1, wherein the layer containing the aluminum (Al)-containing powder is formed along the shape of the crucible at least at the side and bottom corners. Quartz glass crucible.
  4.  前記アルミニウム(Al)を含有する粉体を含む層は、単結晶を引き上げる際に前記内層の中に結晶化層を形成する結晶化促進層であることを特徴とする請求項1に記載された石英ガラスルツボ。 The layer containing powder containing aluminum (Al) is a crystallization promoting layer that forms a crystallized layer in the inner layer when pulling a single crystal. Quartz glass crucible.
  5.  前記請求項1乃至請求項4のいずれかに記載された石英ガラスルツボの製造方法であって、
     成形型に天然石英粉を含む原料粉を供給して、少なくとも1層の外層を形成する工程と、
     前記外層の内側に、合成石英粉を含む原料粉を供給し、第1の内層を形成する工程と、第1の内層の内側に、アルミニウム(Al)を含有する粉体と合成石英粉との混合粉を供給し、前記アルミニウム(Al)を含有する粉体と合成石英粉との混合粉の層を形成する工程と、
     前記アルミニウムを含有する粉体と合成石英粉との混合粉の層の内側に、合成石英粉を含む原料粉を供給し、第2の内層を形成して、ルツボ成形体を得る工程と、
     前記ルツボ成形体の内層、及び外層を溶融して、石英ガラスルツボを形成する工程と、を備えることを特徴とする石英ガラスルツボの製造方法。
    A method for manufacturing a silica glass crucible according to any one of claims 1 to 4, comprising:
    supplying raw material powder containing natural quartz powder to a mold to form at least one outer layer;
    a step of supplying raw material powder containing synthetic quartz powder to the inside of the outer layer to form a first inner layer; and a step of supplying powder containing aluminum (Al) and synthetic quartz powder to the inner side of the first inner layer. supplying a mixed powder and forming a layer of the mixed powder of the aluminum (Al)-containing powder and synthetic quartz powder;
    supplying raw material powder containing synthetic quartz powder inside the layer of mixed powder of the aluminum-containing powder and synthetic quartz powder to form a second inner layer to obtain a crucible molded body;
    A method for manufacturing a quartz glass crucible, comprising the step of melting an inner layer and an outer layer of the crucible molded body to form a quartz glass crucible.
  6.  前記第1の内層の内側に、アルミニウム(Al)を含有する粉体と合成石英粉との混合粉を供給し、前記アルミニウムを含有する粉体と合成石英粉との混合粉の層を形成する工程において、
     前記アルミニウム(Al)を含有する粉体は、混合する合成石英粉よりも粒径が小さく、アルミニウム(Al)濃度が、50ppm以上1%以下であることを特徴とする請求項5に記載された石英ガラスルツボの製造方法。

     
    A mixed powder of aluminum (Al)-containing powder and synthetic quartz powder is supplied inside the first inner layer to form a layer of the mixed powder of the aluminum-containing powder and synthetic quartz powder. In the process,
    The powder containing aluminum (Al) has a smaller particle size than the synthetic quartz powder to be mixed, and has an aluminum (Al) concentration of 50 ppm or more and 1% or less. A method for manufacturing a quartz glass crucible.

PCT/JP2023/019753 2022-05-27 2023-05-26 Quartz glass crucible and production method therefor WO2023229031A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022086566A JP2023173983A (en) 2022-05-27 2022-05-27 Quartz glass crucible and production method therefor
JP2022-086566 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023229031A1 true WO2023229031A1 (en) 2023-11-30

Family

ID=88919494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019753 WO2023229031A1 (en) 2022-05-27 2023-05-26 Quartz glass crucible and production method therefor

Country Status (2)

Country Link
JP (1) JP2023173983A (en)
WO (1) WO2023229031A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255476A (en) * 1996-03-18 1997-09-30 Shinetsu Quartz Prod Co Ltd Quartz glass crucible for puling single crystal and its production
WO2007063996A1 (en) * 2005-11-29 2007-06-07 Japan Super Quartz Corporation Quartz glass crucible, process for producing the same, and use
JP2010111524A (en) * 2008-11-05 2010-05-20 Shinetsu Quartz Prod Co Ltd Silica container and method of manufacturing the same
JP2013121902A (en) * 2011-12-12 2013-06-20 Shinetsu Quartz Prod Co Ltd Silica container for pulling up single crystal silicon, and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255476A (en) * 1996-03-18 1997-09-30 Shinetsu Quartz Prod Co Ltd Quartz glass crucible for puling single crystal and its production
WO2007063996A1 (en) * 2005-11-29 2007-06-07 Japan Super Quartz Corporation Quartz glass crucible, process for producing the same, and use
JP2010111524A (en) * 2008-11-05 2010-05-20 Shinetsu Quartz Prod Co Ltd Silica container and method of manufacturing the same
JP2013121902A (en) * 2011-12-12 2013-06-20 Shinetsu Quartz Prod Co Ltd Silica container for pulling up single crystal silicon, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2023173983A (en) 2023-12-07

Similar Documents

Publication Publication Date Title
US6136092A (en) Quart crucible with large diameter for pulling single crystal and method of producing the same
JP4086283B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP4447738B2 (en) Method for producing a quartz glass crucible having a multilayer structure
KR101081994B1 (en) Quartz glass crucible with multi-layered structure
KR101104673B1 (en) High-purity vitreous silica crucible used for pulling large-diameter single-crystal silicon ingot
JP2010275151A (en) Silica glass crucible
WO2007063996A1 (en) Quartz glass crucible, process for producing the same, and use
US10822716B2 (en) Quartz glass crucible and manufacturing method thereof
KR101165703B1 (en) Silica glass crucible for pulling up silicon single crystal and method for manufacturing thereof
JP5121923B2 (en) Quartz glass crucible and manufacturing method thereof
JP4814855B2 (en) Silica glass crucible
JP4678667B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP2008081374A (en) Silica glass crucible
JP2010138005A (en) Quartz glass crucible for pulling up silicon single crystal and method for manufacturing the same
WO2023229031A1 (en) Quartz glass crucible and production method therefor
WO2013171955A1 (en) Silica vessel for drawing up monocrystalline silicon and method for producing same
JP6855358B2 (en) Quartz glass crucible for pulling silicon single crystal
JP7280160B2 (en) Silica glass crucible
KR20200073152A (en) Vitreous silica crucible and manufacturing method thereof
TWI808756B (en) Quartz glass crucible, manufacturing method thereof, and silicon single crystal manufacturing method
JP2005219997A (en) Silica glass crucible
WO2024090073A1 (en) Quartz glass crucible for silicon single-crystal pulling, and silicon single-crystal manufacturing method utilizing same
WO2024043030A1 (en) Quartz glass crucible for single-crystal silicon pulling and method for producing single-crystal silicon using same
WO2020031481A1 (en) Quartz glass crucible
JP2008094639A (en) Silica glass crucible

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811903

Country of ref document: EP

Kind code of ref document: A1