JP2008094639A - Silica glass crucible - Google Patents

Silica glass crucible Download PDF

Info

Publication number
JP2008094639A
JP2008094639A JP2006275130A JP2006275130A JP2008094639A JP 2008094639 A JP2008094639 A JP 2008094639A JP 2006275130 A JP2006275130 A JP 2006275130A JP 2006275130 A JP2006275130 A JP 2006275130A JP 2008094639 A JP2008094639 A JP 2008094639A
Authority
JP
Japan
Prior art keywords
crucible
silica glass
single crystal
wavelength
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006275130A
Other languages
Japanese (ja)
Inventor
Tomonori Uchimaru
知紀 内丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2006275130A priority Critical patent/JP2008094639A/en
Publication of JP2008094639A publication Critical patent/JP2008094639A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silica glass crucible which is suitable for pulling up a semiconductor single crystal such as silicon or the like in a good yield and by which an impurity contamination caused by the crucible is prevented and a liquid surface vibration of a raw material melt liquid filled in the crucible can be effectively suppressed. <P>SOLUTION: In a silica glass crucible comprising a transparent silica glass layer at the inside surface side and an opaque silica glass layer containing closed bubbles at the outer periphery, the part at 500 μm from the inside surface of the crucible in the thickness direction is composed of having fluorescence intensity at the peak wavelength of 390 nm of 0.15 or lower of the base fluorescence intensity at the wavelength of 560 nm of the 10 ppb ethanol solution of rhodamine B when irradiating an excitation light having the wavelength of 242 nm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、シリコン等の半導体単結晶引上げにおいて、原料を溶融するために好適に用いられるシリカガラスルツボに関する。   The present invention relates to a silica glass crucible suitably used for melting a raw material in pulling a semiconductor single crystal such as silicon.

シリコン等の半導体単結晶は、主に、チョクラルスキー(CZ)法により製造されている。このCZ法によるシリコン単結晶の製造は、シリコン単結晶の種結晶を、多結晶シリコンを溶融したシリコン原料融液に着液させて、回転させながら徐々に引き上げていき、シリコン単結晶インゴットを成長させることにより行われる。   Semiconductor single crystals such as silicon are mainly manufactured by the Czochralski (CZ) method. The production of a silicon single crystal by the CZ method involves growing a silicon single crystal ingot by immersing a seed crystal of a silicon single crystal into a silicon raw material melt obtained by melting polycrystalline silicon and gradually pulling it up while rotating. Is done.

上記のようなCZ法によるシリコン単結晶引上げにおいては、原料を加熱溶融するための容器には、一般に、外層が水晶等の天然質原料を溶融ガラス化した天然シリカガラス、内層が透明な合成シリカガラスからなるシリカガラスルツボが用いられている。
しかしながら、このようなシリカガラスルツボ内で原料シリコンを溶融させると、天然シリカガラスのみからなるルツボに比べて、シリコン原料融液の液面が振動しやすい。特に、単結晶引上げ工程初期における振動が大きく、種結晶を着液させる際の種付け不良を招いたり、メルトバックを引き起こしたりして、生産性を低下させるという課題を有していた。
In the silicon single crystal pulling by the CZ method as described above, the container for heating and melting the raw material is generally a natural silica glass in which the outer layer is melted and vitrified from a natural raw material such as quartz, and the inner layer is a transparent synthetic silica. A silica glass crucible made of glass is used.
However, when the raw material silicon is melted in such a silica glass crucible, the liquid surface of the silicon raw material melt is more likely to vibrate than a crucible made only of natural silica glass. In particular, the vibration at the initial stage of the single crystal pulling process is large, and there is a problem that the seeding is poor when the seed crystal is deposited, or the meltback is caused to reduce the productivity.

これに対しては、例えば、特許文献1には、ルツボ直胴部の特定範囲の内層を天然シリカガラスとすることにより、シリコン原料融液表面の振動を抑制することができることが記載されている。
また、特許文献2には、ルツボ内層の一部に、特定サイズの気泡が所定量含まれる領域を形成したシリカガラスルツボにより、シリコン原料融液表面の振動を抑制することができることが記載されている。
特開2004−59140号公報 特開2005−206446号公報
On the other hand, for example, Patent Document 1 describes that the vibration of the surface of the silicon raw material melt can be suppressed by using natural silica glass for the inner layer in a specific range of the crucible straight body portion. .
Patent Document 2 describes that the vibration of the silicon raw material melt surface can be suppressed by a silica glass crucible in which a region containing a predetermined amount of bubbles of a specific size is formed in a part of the inner layer of the crucible. Yes.
JP 2004-59140 A JP 2005-206446 A

しかしながら、上記特許文献1に記載されているような、内層に天然シリカガラスを含むルツボは、一般に、天然シリカガラスには、合成シリカガラスよりも不純物が多く含まれていることから、引き上げられるシリコン単結晶に対する不純物汚染を生じやすい。このため、高純度かつ高品質が求められるシリコン単結晶の引上げには、好ましい態様のルツボとは言い難いものであった。   However, the crucible containing the natural silica glass in the inner layer as described in the above-mentioned Patent Document 1 generally has a larger amount of impurities than the synthetic silica glass. Impurity contamination of single crystal is likely to occur. For this reason, it is difficult to say that the crucible is a preferred embodiment for pulling up a silicon single crystal that requires high purity and high quality.

また、ルツボ内のシリコン単結晶原料融液の液面振動の根本的な発生原因は明らかになっておらず、上記特許文献2に記載されているように、ルツボを構成するシリカガラス中の含有気泡密度を特定することのみによっては、必ずしも、シリコン単結晶原料融液の液面振動を抑制することは困難であった。   Moreover, the fundamental cause of the liquid level vibration of the silicon single crystal raw material melt in the crucible has not been clarified, and as described in Patent Document 2, the inclusion in the silica glass constituting the crucible It was not always possible to suppress the liquid level vibration of the silicon single crystal raw material melt only by specifying the bubble density.

したがって、シリコン等の半導体単結晶の引上げに用いられるシリカガラスルツボにおいては、ルツボ自体が引き上げられる単結晶の不純物汚染源とならず、かつ、原料融液表面の振動を効果的に抑制することができるものが求められている。   Therefore, in a silica glass crucible used for pulling up a semiconductor single crystal such as silicon, the crucible itself does not become a source of impurity contamination of the single crystal to be pulled up, and vibration of the surface of the raw material melt can be effectively suppressed. Things are sought.

本発明は、上記技術的課題を解決するためになされたものであり、ルツボに起因する不純物汚染を招くことなく、かつ、ルツボ内に充填された単結晶原料融液の液面の振動を効果的に抑制することができ、シリコン等の半導体単結晶を歩留まりよく引き上げるのに好適なシリカガラスルツボを提供することを目的とするものである。   The present invention has been made to solve the above technical problem, and does not cause impurity contamination caused by the crucible, and is effective for vibration of the liquid surface of the single crystal raw material melt filled in the crucible. An object of the present invention is to provide a silica glass crucible suitable for pulling up a semiconductor single crystal such as silicon with high yield.

本発明に係るシリカガラスルツボは、内表面側に透明シリカガラス層を有し、その外周に閉気孔を含む不透明シリカガラス層を有するシリカガラスルツボであって、厚さ方向の断面においてルツボ内表面から500μmの部分に、波長242nmの励起光を照射したときのピーク波長390nmの蛍光強度が、ローダミンBの10ppbエタノール溶液の波長560nmにおける基準蛍光強度の0.15以下であることを特徴とする。
内表面のシリカガラスの物性を上記のように規定したルツボによれば、半導体単結晶引上げ過程において、ルツボ内に充填される単結晶原料融液の液面振動を抑制することができ、また、ルツボを構成するシリカガラス中に含まれる不純物による単結晶原料融液の汚染を抑制することができる。
A silica glass crucible according to the present invention is a silica glass crucible having a transparent silica glass layer on the inner surface side and an opaque silica glass layer including closed pores on the outer periphery thereof, and the crucible inner surface in the cross section in the thickness direction To 500 μm, the fluorescence intensity at a peak wavelength of 390 nm when irradiated with excitation light having a wavelength of 242 nm is 0.15 or less of the reference fluorescence intensity at a wavelength of 560 nm of a 10 ppb ethanol solution of rhodamine B.
According to the crucible that defines the physical properties of the silica glass on the inner surface as described above, in the process of pulling up the semiconductor single crystal, the liquid surface vibration of the single crystal raw material melt filled in the crucible can be suppressed, Contamination of the single crystal raw material melt due to impurities contained in the silica glass constituting the crucible can be suppressed.

上述したとおり、本発明に係るシリカガラスルツボによれば、このルツボ内に充填した単結晶原料融液から引き上げるシリコン単結晶に対して、ルツボに起因する不純物汚染を生じることなく、ルツボ内に充填されたシリコン単結晶原料融液の液面振動を効果的に抑制することができる。
したがって、本発明に係るシリカガラスルツボは、シリコン等の半導体単結晶を歩留まりよく引上げるのに好適に用いることができる。
As described above, according to the silica glass crucible according to the present invention, the silicon single crystal pulled from the single crystal raw material melt filled in the crucible is filled in the crucible without causing impurity contamination due to the crucible. It is possible to effectively suppress the liquid level vibration of the melted silicon single crystal raw material.
Therefore, the silica glass crucible according to the present invention can be suitably used to pull up a semiconductor single crystal such as silicon with a high yield.

以下、本発明をより詳細に説明する。
本発明に係るシリカガラスルツボは、内表面が合成シリカガラスからなる透明シリカガラス層、その外周部が多数の閉気孔を含む不透明シリカガラス層である複層構造からなるものである。
外周部に閉気孔を有していることにより、単結晶引上げ時に、ルツボ外部のヒータからの赤外線透過率を低下させることができ、ルツボ内に充填されたシリコン単結晶原料融液の液面振動を抑制する作用を奏する。
Hereinafter, the present invention will be described in more detail.
The silica glass crucible according to the present invention has a multilayer structure in which the inner surface is a transparent silica glass layer made of synthetic silica glass, and the outer peripheral portion is an opaque silica glass layer containing many closed pores.
By having closed pores on the outer periphery, the infrared transmittance from the heater outside the crucible can be reduced when pulling up the single crystal, and the liquid level vibration of the silicon single crystal raw material melt filled in the crucible The effect which suppresses is produced.

ただし、ルツボ内表面まで閉気孔を含む不透明シリカガラスにより構成すると、ルツボ内表面のシリカガラスとシリコン単結晶原料融液との反応により、該ルツボ内表面のシリカガラス中の気孔が開放され、それにより生じる径の大きい気泡が、引上げられる単結晶の無転位化率を低下させる。
このため、ルツボ内表面は、閉気孔を含まない透明シリカガラス層とする。また、この透明シリカガラス層を高純度の合成シリカガラスで形成することにより、ルツボ内表面からシリコン単結晶原料融液への不純物汚染を抑制することができる。
However, if the inner surface of the crucible is made of opaque silica glass containing closed pores, the reaction between the silica glass on the inner surface of the crucible and the silicon single crystal raw material melt releases the pores in the silica glass on the inner surface of the crucible. Due to the large diameter of the bubbles, the dislocation-free rate of the pulled single crystal is lowered.
For this reason, the crucible inner surface is a transparent silica glass layer that does not contain closed pores. Moreover, by forming this transparent silica glass layer with high-purity synthetic silica glass, impurity contamination from the inner surface of the crucible to the silicon single crystal raw material melt can be suppressed.

また、シリコン単結晶引上げの際、上記のように、ルツボ内に充填されたシリコン単結晶原料融液とルツボ内表面のシリカガラスとが反応し、ルツボ内表面が侵食される。
したがって、ルツボ内表面から厚さ方向に500μm以内の領域のガラス構造が、ルツボ内に充填されたシリコン単結晶原料融液の液面振動に影響を及ぼす。
本発明は、このルツボ内表面部分が特定の蛍光スペクトルを示すシリカガラスで形成されていることにより、前記液面振動を効果的に抑制可能なルツボとすることができることを見出したことに基づくものである。
すなわち、本発明に係るシリカガラスルツボは、厚さ方向の断面においてルツボ内表面から500μmの部分に、波長242nmの励起光を照射したときのピーク波長390nmの蛍光強度が、ローダミンBの10ppbエタノール溶液の波長560nmにおける基準蛍光強度の0.15以下であることを特徴とするものである。
Further, when pulling up the silicon single crystal, as described above, the silicon single crystal raw material melt filled in the crucible reacts with the silica glass on the inner surface of the crucible, and the inner surface of the crucible is eroded.
Therefore, the glass structure in the region within 500 μm in the thickness direction from the inner surface of the crucible affects the liquid level vibration of the silicon single crystal raw material melt filled in the crucible.
The present invention is based on the finding that the inner surface portion of the crucible is formed of silica glass exhibiting a specific fluorescence spectrum, whereby the crucible capable of effectively suppressing the liquid surface vibration can be obtained. It is.
That is, the silica glass crucible according to the present invention has a 10 ppb ethanol solution of rhodamine B having a fluorescence intensity of a peak wavelength of 390 nm when a portion of 500 μm from the inner surface of the crucible is irradiated with excitation light having a wavelength of 242 nm in the cross section in the thickness direction. The reference fluorescence intensity at a wavelength of 560 nm is 0.15 or less.

シリカガラスは、波長242nmにB2βと呼ばれる光吸収帯を示し、波長390nmをピークとする青色発光を生じる。これは、酸素欠乏のSi、SiOに起因するものと考えられている(「非晶質シリカ材料応用ハンドブック」,株式会社リアライズ社,1999,p.211、Philipp,J.Phys Chem.Solids,1971,32,p.1935参照)。
ルツボ内表面のシリカガラス中に、これらの酸素欠乏Si、SiOが存在すると、ルツボ内表面に対するシリコン単結晶原料融液の濡れ性が大きく変化し、ルツボ内に充填されたシリコン単結晶原料融液に液面振動を生じさせる原因となる。
したがって、本発明に係るシリカガラスルツボは、厚さ方向の断面においてルツボ内表面から500μmまでの領域内には、上記のような酸素欠乏Si、SiOが存在しないものであることが好ましい。
本発明においては、このような酸素欠乏Si、SiOの検出手段として、波長242nmの励起光を照射したときの蛍光スペクトルにおいて、ピーク波長390nmの蛍光強度測定を行う。
Silica glass exhibits a light absorption band called B2β at a wavelength of 242 nm, and emits blue light having a peak at a wavelength of 390 nm. This is considered to be caused by oxygen-deficient Si and SiO (“Amorphous Silica Material Application Handbook”, Realize Inc., 1999, p. 211, Philipp, J. Phys Chem. Solids, 1971. 32, p. 1935).
When these oxygen-deficient Si and SiO are present in the silica glass on the inner surface of the crucible, the wettability of the silicon single crystal raw material melt with respect to the inner surface of the crucible greatly changes, and the silicon single crystal raw material melt filled in the crucible Cause liquid level vibration.
Therefore, it is preferable that the silica glass crucible according to the present invention does not contain oxygen-deficient Si and SiO as described above in a region from the inner surface of the crucible to 500 μm in the cross section in the thickness direction.
In the present invention, as a means for detecting such oxygen-deficient Si and SiO, fluorescence intensity measurement at a peak wavelength of 390 nm is performed in a fluorescence spectrum when irradiated with excitation light having a wavelength of 242 nm.

この蛍光強度の判定は、典型的な蛍光色素であるローダミンB(C2831ClN23)の10ppbエタノール溶液に、波長242nmの励起光を照射したときの波長560nmにおける蛍光強度を基準として行う。
シリカガラスによる標準試料の調製は困難であるため、上記のような入手および調製容易である蛍光色素の溶液を標準試料とする。
The determination of the fluorescence intensity is based on the fluorescence intensity at a wavelength of 560 nm when a 10 ppb ethanol solution of rhodamine B (C 28 H 31 ClN 2 O 3 ), which is a typical fluorescent dye, is irradiated with excitation light having a wavelength of 242 nm. Do.
Since it is difficult to prepare a standard sample using silica glass, a fluorescent dye solution that is easily obtained and prepared as described above is used as the standard sample.

そして、厚さ方向の断面においてルツボ内表面から500μmの部分に、波長242nmの励起光を照射したときのピーク波長390nmの蛍光強度が、前記蛍光色素による基準蛍光強度に対して0.15以下であるシリカガラスルツボであれば、ルツボ内に充填されたシリコン単結晶原料融液の液面振動を効果的に抑制することができる。   The fluorescence intensity at the peak wavelength of 390 nm when the excitation light having the wavelength of 242 nm is irradiated to the 500 μm portion from the inner surface of the crucible in the cross section in the thickness direction is 0.15 or less with respect to the reference fluorescence intensity by the fluorescent dye. If it is a certain silica glass crucible, the liquid level vibration of the silicon single crystal raw material melt filled in the crucible can be effectively suppressed.

上記のような本発明に係るシリカガラスルツボは、例えば、以下に示すような方法により製造することができる。
まず、複数の貫通孔を有するルツボ成形型に、水晶等の天然シリカ原料粉を入れ、回転させ、ルツボ形状の外層を成形する。この外層の内表面を覆うように、シリコンアルコキシドまたは四塩化ケイ素の加水分解等により得られる合成シリカ原料粉を導入する。この中にアーク電極を挿入し、所定量の水蒸気を導入しながら、減圧アーク溶融によりガラス化することにより、内側が透明シリカガラス層、その外周部が多数の閉気孔を含む不透明シリカガラス層であるシリカガラスルツボが得られる。さらに、このルツボに、還元雰囲気下でアニール処理を施すことにより、本発明に係るシリカガラスルツボが得られる。
The silica glass crucible according to the present invention as described above can be produced by, for example, the following method.
First, natural silica raw material powder such as crystal is put into a crucible mold having a plurality of through holes and rotated to form a crucible-shaped outer layer. Synthetic silica raw material powder obtained by hydrolysis of silicon alkoxide or silicon tetrachloride is introduced so as to cover the inner surface of the outer layer. By inserting an arc electrode into this and vitrifying by vacuum arc melting while introducing a predetermined amount of water vapor, the inner side is a transparent silica glass layer, and the outer peripheral part is an opaque silica glass layer containing many closed pores. A silica glass crucible is obtained. Furthermore, the silica glass crucible according to the present invention is obtained by subjecting this crucible to annealing treatment in a reducing atmosphere.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
まず、複数の貫通孔を有するルツボ成形型に、天然シリカ原料粉を入れ、回転させ、ルツボ形状の外層を成形した。この外層の内表面を覆うように、合成シリカ原料粉を導入した。この中にアーク電極を挿入し、所定量の水蒸気を導入しながら、減圧アーク溶融によりガラス化した。
このときの水蒸気導入量を変化させ、内側が透明シリカガラス層、その外周部が多数の閉気孔を含む不透明シリカガラス層である直径24インチのシリカガラスルツボを15点作製した。
さらに、各ルツボに、還元雰囲気下でアニール処理を施し、シリコン単結晶引上げに供するシリカガラスルツボとした。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
First, natural silica raw material powder was put into a crucible mold having a plurality of through holes and rotated to form a crucible-shaped outer layer. Synthetic silica raw material powder was introduced so as to cover the inner surface of the outer layer. An arc electrode was inserted therein, and vitrification was performed by reduced-pressure arc melting while introducing a predetermined amount of water vapor.
The amount of water vapor introduced at this time was changed, and 15 silica glass crucibles having a diameter of 24 inches, which was a transparent silica glass layer on the inner side and an opaque silica glass layer containing a large number of closed pores on the inner side, were produced.
Further, each crucible was annealed in a reducing atmosphere to obtain a silica glass crucible used for pulling a silicon single crystal.

各ルツボから、2mm×4mm、厚さ1mmの測定試料を切り出し、厚さ方向の断面においてルツボ内表面から500μmの部分に、波長242nmの励起光を照射したときのピーク波長390nmの蛍光強度を測定した。
この蛍光強度は、ローダミンBの10ppbエタノール溶液の波長560nmにおける基準蛍光強度に対する相対強度として求めた。これらの結果を表1に示す。
A 2 mm × 4 mm, 1 mm thick measurement sample is cut out from each crucible, and the fluorescence intensity at a peak wavelength of 390 nm is measured when excitation light having a wavelength of 242 nm is irradiated to a 500 μm portion from the inner surface of the crucible in the cross section in the thickness direction. did.
This fluorescence intensity was determined as a relative intensity with respect to the reference fluorescence intensity at a wavelength of 560 nm of a 10 ppb ethanol solution of rhodamine B. These results are shown in Table 1.

また、各ルツボを用いて、CZ法によりシリコン単結晶引上げを行う際のルツボ内の原料融液の液面振動の状態を調べた。これらの結果を表1に示す。
なお、表1における評価においては、液面振動がない、または、液面振動がほとんどなく、種付けをスムーズに行うことができた場合を○とし、種付けが困難なほど液面振動が大きい場合を×とした。
Moreover, the state of the liquid surface vibration of the raw material melt in the crucible when the silicon single crystal was pulled by the CZ method was investigated using each crucible. These results are shown in Table 1.
In the evaluation in Table 1, the case where there is no liquid level vibration or there is almost no liquid level vibration and the seeding can be performed smoothly is indicated by ○, and the case where the liquid level vibration is so large that the seeding is difficult. X.

Figure 2008094639
Figure 2008094639

表1に示したように、厚さ方向の断面においてルツボ内表面から500μmの部分に、波長242nmの励起光を照射したときのピーク波長390nmの相対蛍光強度(ローダミンBの10ppbエタノール溶液の波長560nmにおける蛍光強度基準)が0.15以下である本発明に係るシリカガラスルツボにおいては、ルツボ内に充填したシリコン単結晶原料融液の液面振動が抑制されていることが認められた。   As shown in Table 1, the relative fluorescence intensity at a peak wavelength of 390 nm (wavelength 560 nm of a 10 ppb ethanol solution of rhodamine B) when a portion of 500 μm from the inner surface of the crucible is irradiated with excitation light having a wavelength of 242 nm in the cross section in the thickness direction. In the silica glass crucible according to the present invention having a fluorescence intensity standard) of 0.15 or less, it was confirmed that the liquid level vibration of the silicon single crystal raw material melt filled in the crucible was suppressed.

Claims (1)

内表面側に透明シリカガラス層を有し、その外周に閉気孔を含む不透明シリカガラス層を有するシリカガラスルツボであって、厚さ方向の断面においてルツボ内表面から500μmの部分に、波長242nmの励起光を照射したときのピーク波長390nmの蛍光強度が、ローダミンBの10ppbエタノール溶液の波長560nmにおける基準蛍光強度の0.15以下であることを特徴とするシリカガラスルツボ。   A silica glass crucible having a transparent silica glass layer on the inner surface side and an opaque silica glass layer including closed pores on the outer periphery thereof, and having a wavelength of 242 nm at a portion of 500 μm from the inner surface of the crucible in the cross section in the thickness direction A silica glass crucible, wherein the fluorescence intensity at a peak wavelength of 390 nm when irradiated with excitation light is 0.15 or less of the reference fluorescence intensity at a wavelength of 560 nm of a 10 ppb ethanol solution of rhodamine B.
JP2006275130A 2006-10-06 2006-10-06 Silica glass crucible Pending JP2008094639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006275130A JP2008094639A (en) 2006-10-06 2006-10-06 Silica glass crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006275130A JP2008094639A (en) 2006-10-06 2006-10-06 Silica glass crucible

Publications (1)

Publication Number Publication Date
JP2008094639A true JP2008094639A (en) 2008-04-24

Family

ID=39377877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006275130A Pending JP2008094639A (en) 2006-10-06 2006-10-06 Silica glass crucible

Country Status (1)

Country Link
JP (1) JP2008094639A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030884A (en) * 2008-06-30 2010-02-12 Japan Siper Quarts Corp Quartz glass crucible and method for pulling silicon single crystal with quartz glass crucible
WO2022186067A1 (en) * 2021-03-05 2022-09-09 信越石英株式会社 Method for evaluating quartz glass crucible and method for producing said quartz glass crucible, and quartz glass crucible

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030884A (en) * 2008-06-30 2010-02-12 Japan Siper Quarts Corp Quartz glass crucible and method for pulling silicon single crystal with quartz glass crucible
EP2141266A3 (en) * 2008-06-30 2010-11-24 Japan Super Quartz Corporation Silica glass crucible and method of pulling silicon single crystal with silica glass crucible
KR101100667B1 (en) 2008-06-30 2012-01-03 쟈판 스파 쿼츠 가부시키가이샤 Silica glass crucible and method of pulling silicon single crystal with silica glass crucible
WO2022186067A1 (en) * 2021-03-05 2022-09-09 信越石英株式会社 Method for evaluating quartz glass crucible and method for producing said quartz glass crucible, and quartz glass crucible

Similar Documents

Publication Publication Date Title
JP4086283B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP4166241B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP5069663B2 (en) Quartz glass crucible with multilayer structure
EP2267192B1 (en) Method of pulling single crystal silicon using a vitreous silica crucible and method for manufacturing quartz glass crucible
EP2385157B1 (en) Silica glass crucible
US9719188B2 (en) Method of manufacturing a vitreous silica crucible having a transparent layer, bubble-containing layers, and a semi-transparent layer in its wall
JP4975012B2 (en) Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
JP5473878B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP4678667B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP2005162549A (en) Silica glass crucible
JP2005231986A (en) Quartz glass crucible for pulling up silicon single crystal and method for manufacturing the same
JP2008094639A (en) Silica glass crucible
JP2007191393A (en) Large-caliber quartz glass crucible for pulling silicon single crystal, and its production method
JP4726138B2 (en) Quartz glass crucible
JP4931106B2 (en) Silica glass crucible
KR20210095674A (en) Quartz glass crucible, manufacturing method of silicon single crystal using same, and infrared transmittance measurement method and manufacturing method of quartz glass crucible
US9328009B2 (en) Vitreous silica crucible for pulling silicon single crystal, and method for manufacturing the same
JP7280160B2 (en) Silica glass crucible
JP2000072594A5 (en)
JP2000072594A (en) Large aperture quartz glass crucible for pulling single silicon crystal and its production
WO2024043030A1 (en) Quartz glass crucible for single-crystal silicon pulling and method for producing single-crystal silicon using same
JP2005060152A (en) Manufacturing method for quartz crucible, quartz crucible, and manufacturing method for silicon single crystal using the same
WO2024090073A1 (en) Quartz glass crucible for silicon single-crystal pulling, and silicon single-crystal manufacturing method utilizing same
JP7172844B2 (en) Silica glass crucible for pulling silicon single crystal and its manufacturing method
JP2000103694A (en) Quartz glass crucible and its production