WO2023228918A1 - Light-emitting device and method for producing light-emitting device - Google Patents

Light-emitting device and method for producing light-emitting device Download PDF

Info

Publication number
WO2023228918A1
WO2023228918A1 PCT/JP2023/019032 JP2023019032W WO2023228918A1 WO 2023228918 A1 WO2023228918 A1 WO 2023228918A1 JP 2023019032 W JP2023019032 W JP 2023019032W WO 2023228918 A1 WO2023228918 A1 WO 2023228918A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
region
emitting elements
emitting device
taken out
Prior art date
Application number
PCT/JP2023/019032
Other languages
French (fr)
Japanese (ja)
Inventor
晋 山田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023228918A1 publication Critical patent/WO2023228918A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the present disclosure relates to a light emitting device in which variations in brightness, color, etc. of a light emitting element such as a micro LED (Light Emitting Diode; LED) are suppressed, and a method for manufacturing the same.
  • a light emitting element such as a micro LED (Light Emitting Diode; LED)
  • Patent Documents 1 and 2 Conventional light emitting devices are described, for example, in Patent Documents 1 and 2.
  • a light-emitting device of the present disclosure includes a base and a plurality of light-emitting elements located on the base and arranged along a predetermined direction, and a part of the plurality of light-emitting elements constitutes a first region. , another part of the plurality of light emitting elements constitutes a second region, and the light emitting elements in the first region and the light emitting elements in the second region have different distribution states of light emitting characteristics, and The second regions overlap with each other while being shifted in the predetermined direction.
  • a method for manufacturing a light emitting device includes a first light emitting device that takes out a plurality of first light emitting elements from a semiconductor wafer along one direction, maintains the arrangement state at the time of taking out, and arranges them in a first region on a substrate.
  • a plurality of second light emitting elements are taken out from the semiconductor wafer along a direction different from the one direction, and a second light emitting element is placed in a second region on the substrate while maintaining the arrangement state when taken out. 2 steps, in the second step, the plurality of second light emitting elements are arranged in the second region so that the first region and the second region overlap with each other with a shift in a predetermined direction. .
  • a plurality of first light emitting elements are taken out from a semiconductor wafer along one direction, and the arrangement state when taken out is maintained, and the plurality of first light emitting elements are arranged in a first region on a substrate.
  • a first step of taking out a plurality of second light emitting elements from the semiconductor wafer along the one direction and a second step of taking out a plurality of second light emitting elements from the semiconductor wafer, maintaining the arrangement state when taken out, and placing them in a second region on the substrate.
  • the second region is rotated at a predetermined rotation angle with respect to the first region, and the first region and the second region are oriented in a predetermined direction.
  • the plurality of second light emitting elements are arranged in the second region so that the first region and the second region overlap in a shifted state.
  • FIG. 1 is a plan view schematically showing a light emitting device according to an embodiment of the present disclosure. It is a photograph showing the light emitting state of a display panel manufactured in order to confirm the occurrence of unevenness in light emitting characteristics.
  • 3 is a front view schematically showing the arrangement of light emitting elements of the display panel shown in FIG. 2.
  • FIG. 4 is a cross-sectional view taken along section line IV-IV in FIG. 3.
  • FIG. 2 is a front view showing a light emitting element wafer. 6 is an enlarged view of section VI of FIG. 5.
  • FIG. 3 is a partially enlarged plan view showing a state in which a light emitting element is mounted on a light emitting substrate.
  • FIG. 2 is a plan view schematically showing a light emitting element wafer.
  • FIG. 9 is an enlarged plan view of section IX of FIG. 8;
  • FIG. 3 is a diagram showing a process of picking up a light emitting element using a stamp for mass transfer mounting.
  • FIG. 3 is a diagram showing a process of mounting a light emitting element onto a light emitting substrate using a stamp.
  • FIG. 2 is an enlarged plan view of a portion of the light emitting element wafer.
  • FIG. 2 is a schematic plan view of a light emitting element wafer for checking brightness unevenness of the light emitting element wafer, and an enlarged plan view of a portion thereof.
  • FIG. 2 is a schematic plan view of a light emitting element wafer for checking color unevenness of the light emitting element wafer, and an enlarged plan view of a portion thereof.
  • FIG. 3 is a schematic plan view of a light emitting element wafer for checking brightness unevenness.
  • FIG. 2 is a schematic plan view of a light emitting element wafer for checking color unevenness.
  • FIG. 3 is a plan view of the light-emitting substrate showing a state in which a plurality of light-emitting elements are transferred from the light-emitting element wafer to a transfer area of the light-emitting substrate without changing the orientation using a stamp.
  • FIG. 3 is a plan view schematically showing a mounted state of a light emitting substrate produced by alternately repeating a step of rotating and mounting (also referred to as a rotation mounting step).
  • FIG. 19B is a graph showing the wavelength distribution at the detection position BB' in FIGS. 19A and 19B.
  • 1 is a partial plan view showing an example of a mounting structure of a light emitting device 1 of the present disclosure.
  • 21 is a sectional view taken along the section line C1-C2 in FIG. 20.
  • FIG. FIG. 6 is a diagram showing an arrangement state of light emitting elements when the one-dimensional stamp is shifted in the first direction X and the light emitting elements are mounted.
  • FIG. 3 is a plan view of the light emitting substrate 10 showing the arrangement state of the light emitting elements when the two-dimensional stamp is shifted in the first direction X.
  • FIG. 3 is a plan view of the light emitting substrate 10 showing the arrangement of light emitting elements when the two-dimensional stamp is shifted in the second direction Y.
  • FIG. FIG. 2 is a plan view of the light emitting substrate 10 showing the arrangement of light emitting elements when a two-dimensional stamp is shifted in two directions.
  • FIG. 7 is a plan view of the light-emitting substrate showing the arrangement of light-emitting elements when a plurality of light-emitting elements are transfer-mounted so that a first transfer area and a third transfer area smaller than the first transfer area overlap.
  • a light emitting element such as a micro LED formed on a semiconductor wafer is attached to a stamp and removed from the semiconductor wafer, and the stamp with the light emitting element attached is connected to an electrical contact on the surface of a target substrate. It is described that the electronic components are transferred to the target substrate by aligning the electronic components, bringing the electrodes of the light emitting elements into contact with pads on the surface of the target substrate, and pressing a stamp onto the target substrate.
  • an adhesive base material has a support member and an adhesive layer provided on the support member, and the support member has an uneven pattern having convex portions on one or both sides.
  • the adhesive layer is provided so as to have a curved surface at least on the upper surface of the convex portion of the support member, thereby die-bonding a large number of fine light emitting elements.
  • the light emitting device according to the embodiment of the present disclosure may include a well-known structure such as a circuit board, a wiring conductor, a control IC, and an L26I (not shown).
  • a well-known structure such as a circuit board, a wiring conductor, a control IC, and an L26I (not shown).
  • substantially corresponding parts are given the same reference numerals, and overlapping explanations will be omitted or simplified.
  • FIG. 1 is a plan view schematically showing a light emitting device according to an embodiment of the present disclosure.
  • the light emitting device 1 of the present embodiment includes a base 2, which is located on the base 2, and arranged in alignment along a first direction X, which is a predetermined direction, and a second direction Y, which is perpendicular to the first direction X. and a plurality of light emitting elements 3.
  • some of the light emitting elements 3a constitute a first area A1 (also referred to as a first transfer area A1)
  • some of the other light emitting elements 3b of the plurality of light emitting elements 3 constitute a first area A1 (also referred to as a first transfer area A1).
  • the light emitting element 3a (also referred to as the first light emitting element 3a) in the first transfer area A1 and the light emitting element 3b (also referred to as the second light emitting element 3b) in the second transfer area A2 have different distribution states of light emitting characteristics.
  • the transfer area A1 and the second transfer area A2 overlap with each other by a distance ⁇ X in the first direction X and a distance ⁇ Y in the second direction Y.
  • the other part is constituted by the remaining light emitting elements 3b excluding some of the light emitting elements 3a among the plurality of light emitting elements 3.
  • a configuration in which the light emitting elements 3a in the first transfer area A1 and the light emitting elements 3b in the second transfer area A2 have different distributions of light emission characteristics can be obtained by the following first manufacturing method or second manufacturing method.
  • first manufacturing method a plurality of first light emitting elements 3a to be mounted in the first transfer area A1 are taken out along one direction from a light emitting element wafer (semiconductor wafer), and the arrangement state when taken out is maintained.
  • the first step of arranging the plurality of second light emitting elements 3b in the first transfer area A1 on the base 2 and the plurality of second light emitting elements 3b to be mounted in the second transfer area A2 are performed from the light emitting element wafer along a direction different from the one direction mentioned above.
  • a direction different from one direction in the light emitting device wafer may be, for example, a direction that intersects with one direction within an intersecting angle range of 30° to 330°, or a direction that intersects with one direction within an intersecting angle range of 60° to 300°. However, the range is not limited to these ranges. Note that " ⁇ " represents "to", and the same applies hereinafter.
  • a plurality of first light emitting elements 3a are taken out from a light emitting element wafer along one direction, and the arrangement state when taken out is maintained, and the plurality of first light emitting elements 3a are placed in a first transfer area A1 on the base 2.
  • the first step is to take out the plurality of second light emitting elements 3b from the light emitting element wafer along the above-mentioned one direction, maintain the arrangement state when taken out, and place them in the second transfer area A2 on the base 2.
  • a second step of doing so In the second step, the second transfer area A2 is rotated at a predetermined rotation angle with respect to the first transfer area A1, and the first transfer area A1 and the second transfer area A2 are shifted in a predetermined direction.
  • a plurality of second light emitting elements 3b are arranged in the second transfer area A2 so that the first transfer area A1 and the second transfer area A2 overlap.
  • the predetermined rotation angle may be 90°, 180°, or 270°, but is not limited thereto.
  • the light emitting device 1 achieves the following effects with the above configuration.
  • the plurality of light emitting elements 3a belonging to the first transfer area A1 and the plurality of light emitting elements 3b belonging to the second transfer area A2 have different distribution states of light emitting characteristics, and the plurality of light emitting elements 3a belonging to the first transfer area A1
  • the configuration is such that most of the light emitting elements 3b and most of the plurality of light emitting elements 3b belonging to the second transfer area A2 coexist. As a result, it is possible to effectively prevent the distribution state of specific light emitting characteristics from being visually recognized. Further, it is also possible to effectively prevent the boundaries between adjacent regions from being visually recognized.
  • the base body 2 may have various three-dimensional shapes such as a substrate shape, a flexible film shape, a block shape, and a spherical shape.
  • the base 2 may have a flat surface on which a plurality of light emitting elements 3 can be mounted, a composite surface consisting of a plurality of flat surfaces, a curved surface, or a complex curved surface.
  • the base 2 may be a cylindrical body such as a utility pole, the surface of a building, the inner or outer surface of a vehicle such as a train, or the like.
  • its shape in plan view may be a triangle, a rectangle, a trapezoid, a polygon of pentagon or more, a circle, an ellipse, or the like.
  • the semiconductor wafer may have a base material such as GaAs, GaIn, GaN, GaP, SiC, etc., and may have a trace amount of impurities such as Al, P, In, etc. added to the base material, but is not limited to these.
  • FIG. 2 is a photograph showing the light emitting state of the display panel 1p manufactured in order to confirm the occurrence of unevenness in light emitting characteristics.
  • the inventor of the present invention manufactured a display panel 1p in which light emitting elements 3 were mounted in the same transfer pattern.
  • the display device 1 is manufactured by providing accessory members such as a frame, a housing, operation buttons, and external input terminals to the display panel 1p.
  • the transfer areas A11, A12, A13, A21, A22, A23, A31, A32, and A33 arranged in 3 rows and 3 columns can be distinguished and visually recognized. That is, the boundaries between adjacent transfer areas A11 to A33 are visible. This boundary line is visible because the distribution of the emission wavelengths (colors) of the large number of light emitting elements 3 belonging to each transfer area A11 to A33 is the same, that is, the semiconductor wafer is transferred with the same transfer pattern. It depends. This reduces the display quality of the display device 1.
  • the number of a large number of light emitting elements 3 belonging to one transfer area may be about 100 to 10,000, but It is not limited to this range.
  • FIG. 3 is a front view schematically showing the arrangement of light emitting elements of the display panel 1p shown in FIG. 2.
  • FIG. 4 is a sectional view taken along section line IV-IV in FIG.
  • a plurality of connection pads 13 for mounting a plurality of light emitting elements 3 are provided in a grid pattern at intervals in the first direction X and the second direction Y. It will be done.
  • the transfer areas A11 to A33 in 3 rows and 3 columns of the display panel 1p in the transfer areas A21, A22, A23, and A32, the connection pads 13 and the light emitting elements 3 are transferred to positions shifted by a distance ⁇ X in the first direction X.
  • each pair of light emitting elements 3 superimposed and transferred in A21, A22, A23, and A32 is mounted as a so-called redundant element in which only one is lit and the other is not.
  • Each pair of light emitting elements 3 in the above-mentioned transfer areas A21, A22, A23, and A32, which are transferred in an overlapping manner, are transferred without changing their direction.
  • Each pair of light emitting elements 3 in the transfer areas A21, A22, A23, and A32 may be set to be lit regularly and/or irregularly. As shown in FIG. 3, when lighting is set regularly, one (for example, the left) light emitting element 3 of a certain pair emits light, and the light emitting element 3 adjacent to a certain pair of light emitting elements 3 emits light. In the pair of light emitting elements 3, the other (for example, the right side) light emitting element 3 may emit light. That is, each pair of light emitting elements 3 may be lit alternately. In this case, it is possible to effectively prevent the distribution state of specific light emitting characteristics from being visually recognized.
  • group A causes one (for example, the left side) light emitting element 3 to emit light
  • group B the other (for example, right side) light emitting element 3 may be made to emit light. That is, each of the plurality of pairs of light emitting elements 3 may be lit alternately. In this case as well, it is possible to effectively prevent the distribution state of specific light emitting characteristics from being visually recognized.
  • each pair of light emitting elements 3 in the transfer areas A21, A22, A23, and A32 is set to be turned on irregularly, for example, the pair of light emitting elements 3 in the transfer areas A21, A22, A23, and A32 are set to be turned on by pseudo-random numbers using a pseudo-random number generation program. You may also set which way to emit light for each. In this case as well, it is possible to effectively prevent the distribution state of specific light emitting characteristics from being visually recognized.
  • FIG. 5 is a front view showing the light emitting element wafer.
  • FIG. 6 is an enlarged view of section VI of FIG.
  • the light emitting element wafer 11 is a semiconductor wafer on which a large number of light emitting elements 3 are formed by etching or the like. A large number of light emitting elements 3 can be individually removed from a semiconductor wafer using a stamp or the like having an adhesive part or a suction part. The above-mentioned steps are required to transfer from the light emitting element wafer 11 on which a large number of fine light emitting elements 3 such as micro LEDs are formed to the substrate for the light emitting device 1 (hereinafter also referred to as "light emitting substrate”) by mass transfer mounting processing. stamps are used.
  • the stamp may be made of the silicone elastomer polydimethylsiloxane (PDMS), for example.
  • the stamp has a plate-shaped base layer and a plurality of protrusions, also called pillars, patterned on one or both surfaces of the base layer.
  • the plurality of protrusions are formed to correspond to the pattern of the light emitting elements 3 formed on the light emitting element wafer 11.
  • an adhesive that adheres to the light emitting elements 3 is provided at the tip of each protrusion.
  • the size of the light emitting element wafer 11 is 4 inches, the light emitting element wafer 11 is provided with, for example, several million protrusions of the light emitting elements 3 in a grid pattern.
  • FIG. 7 is a partially enlarged plan view showing a state in which the light emitting element 3 is mounted on the light emitting substrate.
  • connection pads 13 for mounting the light emitting elements 3 are provided in a predetermined wiring pattern.
  • four light emitting elements 3a, 3b, 3c, and 3d are mounted in the same direction.
  • the light emitting substrate 10 is provided with a positioning mark 12 that indicates the position where the stamp is pressed. By positioning the stamp on the positioning mark 12 and pressing it against the light emitting substrate 10, the light emitting elements 3a, 3b, 3c, and 3d adhered to the protrusions of the stamp are transferred to the light emitting substrate 10.
  • red LEDs include AlGaAs, GaAsP, AlGaInP, GaP for red, and GaP; green LEDs include AlGaInP and AlGaP; and blue LEDs include ZnSe, InGaN. , SiC.
  • FIG. 8 is a plan view schematically showing the light emitting element wafer 11
  • FIG. 9 is an enlarged plan view of section IX in FIG.
  • Several million light emitting elements 3 are formed on one light emitting element wafer 11 .
  • six transfer areas A11, A12, A21, A22, A31, and A32 are shown, and the aforementioned positioning marks 12 are provided at the four corners of each transfer area A11 to A32.
  • the stamp pitch in the first direction X of one stamp is L1
  • the stamp pitch in the second direction Y is L2, the element pitch of the light emitting element 3 in the first direction be.
  • a plurality of light emitting elements 3 can be removed from the light emitting element wafer 11 in the same direction for each of the transfer areas A11 to A32 and transferred to the light emitting substrate 10.
  • the process is performed as follows.
  • the number of light emitting elements 3a transferred to the first transfer area A1 is assumed to be four (LD1a, LD1b, LD1c, LD1d)
  • the number of light emitting elements 3b transferred to the second transfer area A2 is assumed to be four (LD2a, LD1d).
  • the four light emitting elements 3a (LD1a, LD1b, LD1c, LD1d) and the four light emitting elements 3b (LD2a, LD2b, LD2c, LD2d) are arranged in a direction along the first direction X (+X direction: FIG. (in the right direction), it is shifted by one light emitting element 3 at a time.
  • the distribution state of the light emission characteristics of the four light emitting elements 3a (LD1a, LD1b, LD1c, LD1d) and the distribution state of the light emission characteristics of the four light emitting elements 3b (LD2a, LD2b, LD2c, LD2d) are as follows. As shown in FIGS.
  • the four light emitting elements 3a (LD1a, LD1b, LD1c, LD1d) are arranged in the first transfer area A1 on the base 2 while maintaining the arrangement state when taken out, and the four light emitting elements 3b (LD2a , LD2b, LD2c, LD2d) are placed in the second transfer area A2 on the base 2 while retaining the arrangement state when taken out, the distribution state of specific light emission characteristics can be easily recognized, and the distribution state between adjacent regions can be easily recognized. The border becomes easier to see.
  • the light emitting device of the present disclosure has a plurality of second light emitting elements 3b (LD2a, LD2b, LD2c, LD2d) mounted in the second transfer area A2 in one direction (for example, first direction X) from the light emitting element wafer. It is taken out along a different direction (for example, second direction Y) and placed in the second transfer area A2 on the substrate 2 while maintaining the arrangement state when taken out. Further, the light emitting device of the present disclosure has a plurality of second light emitting elements 3b (LD2a, LD2b, LD2c, LD2d) is placed in the second transfer area A2 on the substrate 2.
  • LD2a, LD2b, LD2c, LD2d is placed in the second transfer area A2 on the substrate 2.
  • the first direction 3b (LD2a, LD2b, LD2c, LD2d) is different from the distribution state of the light emission characteristics. Therefore, it is possible to prevent the distribution state of a specific light emitting characteristic from being visually recognized, and it is also possible to prevent the boundary between adjacent regions from being visually recognized.
  • FIG. 10A is a diagram showing a process of picking up a light emitting element using a stamp for mass transfer mounting
  • FIG. 10B is a diagram showing a process of mounting a light emitting element 3 onto a light emitting board using a stamp ST.
  • FIG. 11 is an enlarged plan view of a portion of the light emitting element wafer 11. As shown in FIG. In the area where the light emitting element 3 has been removed by the stamp ST, the residue of the adhesive that adhered the light emitting element 3 is exposed, as indicated by reference numeral C1. Furthermore, in the removal area indicated by reference numeral C2, it can be seen from the shape of the residue that the light emitting element 3 has been removed, as indicated by arrow C3.
  • FIG. 12 is a schematic plan view of the light emitting element wafer 11 for checking brightness unevenness of the light emitting element wafer 11, and an enlarged plan view of a part thereof.
  • FIG. 13 is a schematic plan view of the light emitting element wafer 11 for checking color unevenness of the light emitting element wafer 11, and an enlarged plan view of a part thereof.
  • FIG. 14 is a schematic plan view of the light emitting element wafer 11 for checking brightness unevenness
  • FIG. 15 is a schematic plan view of the light emitting element wafer 11 for checking color unevenness.
  • the large number of light emitting elements 3 in the area indicated by reference numeral F are picked up from such a light emitting element wafer 11 by the stamp ST and transferred onto the light emitting substrate 10 without changing the orientation, the large number of light emitting elements 3 after transfer also have uneven brightness. and wavelength unevenness will occur.
  • FIG. 16 is a plan view of the light-emitting substrate 10 showing a state in which a plurality of light-emitting elements 3 have been transferred from the light-emitting element wafer 11 to the transfer area of the light-emitting substrate 10 without changing the orientation by the stamp ST.
  • FIG. 17 shows a process of picking up a plurality of light emitting elements 3 with the stamp ST and mounting them as they are (a process of mounting without rotating the stamp ST by 180 degrees) (also referred to as a non-rotating mounting process), and a process of picking up a plurality of light emitting elements 3 with the stamp ST.
  • FIG. 17 shows a process of picking up a plurality of light emitting elements 3 with the stamp ST and mounting them as they are (a process of mounting without rotating the stamp ST by 180 degrees) (also referred to as a non-rotating mounting process), and a process of picking up a plurality of light emitting elements 3 with the stamp ST.
  • FIG. 3 is a plan view schematically showing a mounted state of a light emitting substrate 10 produced by alternately repeating a process of picking up an element 3 and mounting it by rotating a stamp ST by 180 degrees (also referred to as a rotation mounting process).
  • a large number of light emitting elements 3 indicated by upward reference numeral F are mounted by a non-rotating mounting process, and a large number of light emitting elements 3 indicated by downward reference numeral F are mounted by a rotational mounting process.
  • One pixel consists of three light emitting elements 3 (R, G, B light emitting elements 3) indicated by an upward reference symbol F, and three light emitting elements 3 (R, G, B light emitting elements 3) indicated by a downward reference symbol F.
  • a light emitting element 3 Redundancy in which one of the set of three light emitting elements 3 indicated by the upward reference symbol F and the set of three light emitting elements 3 indicated by the downward reference symbol F is used for constant lighting, and the other is used as a backup. Structure. Further, the sets of light emitting elements 3 that emit light may be different between adjacent pixels.
  • the plurality of transfer areas A11, A12, A13, A14, A21, A22 , A23, A24, A31, A32, A33, A34, A41, A42, A43, A44, respectively, have light emitting elements 3R, 3G, 3B indicated by an upward reference mark F, and light emitting elements 3R, 3G, 3B indicated by a downward reference mark F.
  • the light emitting elements 3R, 3G, and 3B are inverted by 180 degrees.
  • the redundant circuit controls one of the two light emitting elements 3 to emit light for each color RGB in each of the transfer areas A11 to A44, and the other of the two light emitting elements 3 to not emit light.
  • FIG. 18A is an enlarged photograph showing the luminance distribution when a boundary line between mounting areas (between stamps ST) is displayed when a large number of light emitting elements 3 are mounted by a non-rotating mounting process.
  • FIG. 18B is an enlarged photograph showing the luminance distribution when a large number of light emitting elements are mounted by rotating the stamp ST, that is, when a large number of light emitting elements 3 are mounted by a rotational mounting process.
  • a boundary line is clearly displayed as indicated by reference numeral m1 in FIG. 18A.
  • the boundary line can hardly be discerned, as indicated by reference numeral m2 in FIG. 18B. It was confirmed.
  • the light emitting element 3 in the first region (the light emitting element 3 indicated by the upward reference symbol F) and the light emitting element 3 in the second region (the light emitting element 3 indicated by the downward reference symbol F) have light emission characteristics.
  • the distribution state is different. This is because the light emitting elements 3 in the second region are mounted by a rotational mounting process. Further, the first region and the second region are configured to overlap with each other while being shifted in a predetermined direction. With this configuration, a large number of light emitting elements 3 having different distribution states of light emitting characteristics coexist in one mounting area.
  • the length of the shift in the predetermined direction may be approximately one to three pixels, but is not limited to this range.
  • FIG. 18C is a graph showing the brightness distribution at the detection position A-A' in FIGS. 18A and 18B.
  • the symbol ⁇ in FIG. 18C indicates the brightness when mounted in a rotational manner as in FIG. 18B, and the symbol ⁇ in FIG. 18C indicates the luminance when mounted in the same direction as in FIG. 18A. It can be seen that when the light emitting elements 3 are mounted in rotation, the maximum brightness difference is 3%, whereas when the light emitting elements 3 are mounted in the same direction, the maximum brightness difference is as large as 17%.
  • the brightness and wavelength of the light emitting element 3 can be measured using a measuring instrument that can measure the brightness and wavelength for each chip.
  • a measuring instrument for example, a spectral radiance meter SR-5000 manufactured by Topcon Corporation can be used. Such a measuring device can measure the brightness and wavelength of all the light emitting elements 3 mounted on the light emitting substrate 10.
  • FIG. 19A is an enlarged photograph showing the distribution of wavelengths (colors) with boundary lines between mounting areas displayed.
  • FIG. 19B is an enlarged photograph showing the wavelength distribution when a large number of light emitting elements are mounted by a rotational mounting process.
  • a boundary line is clearly displayed as indicated by reference numeral m3 in FIG. 19A.
  • the reference numerals in FIG. 19B As shown in m4, it was confirmed that the border line display was relaxed.
  • FIG. 19C is a graph showing the wavelength distribution at detection position B-B' in FIGS. 19A and 19B.
  • the symbol ⁇ in FIG. 19C indicates the wavelength when mounted in a rotational manner as in FIG. 19B, and the symbol ⁇ in FIG. 19C indicates a wavelength when mounted in the same direction as in FIG. 19A. It can be seen that when the light emitting elements 3 are mounted in rotation, the maximum wavelength difference is 2.3 nm, whereas when the light emitting elements 3 are mounted in the same direction, the maximum wavelength difference is as large as 4.0 nm.
  • FIG. 20 is a partial plan view showing an example of a mounting form of the light emitting device 1 of the present disclosure.
  • FIG. 21 is a sectional view taken along the section line C1-C2 in FIG. 20.
  • the drive transistor is an n-channel TFT will be described.
  • the drive transistor may be a p-channel TFT.
  • the light emitting device 1 of this embodiment includes an insulating substrate 22, a drive transistor 23, a power terminal 40, an anode electrode wiring 25, a cathode electrode wiring 26, and a light emitting element 3.
  • the insulating base 22 has a first surface 122a and a second surface 122b, which is the other main surface opposite to the first surface 122a.
  • the insulating base 22 may have a rectangular shape including a triangular shape, a square shape, a rectangular shape, a trapezoidal shape, a hexagonal shape, a circular shape, an elliptical shape, or other shapes.
  • the insulating base 22 may have a single-layer structure consisting of a single insulating layer, or may have a laminated structure in which a plurality of insulating layers are laminated.
  • the insulating base 22 has a laminated structure in which a plurality of insulating layers 22a, 22b, and 22c are laminated, as shown in FIG.
  • the insulating layers 22a, 22b, and 22c may be composed of, for example, an inorganic insulating layer such as silicon oxide (SiO 2 ) or silicon nitride (Si 3 N 4 ), or an organic insulating layer such as acrylic resin, polyimide resin, or polycarbonate resin. good.
  • the insulating layers 22a and 22b on the lower side (substrate 7 side) of the insulating base 22 may be inorganic insulating layers, and the insulating layer 22c on the upper side of the insulating base 22 is thicker than the insulating layers 22a and 22b.
  • An organic insulating layer may be used as a planarization layer.
  • the insulating layers 22a, 22b, 22c may have the same composition, dimensions (thickness), etc., or may differ from each other.
  • the insulating base 22 has internal wirings 24a to 24c.
  • the internal wirings 24a to 24c electrically connect the drive transistor 23, the power supply terminal 40, the anode electrode wiring 25, the cathode electrode wiring 26, the light emitting element 3, etc. to each other.
  • the internal wirings 24a to 24c may be located, for example, between adjacent insulating layers 22a, 22b, and 22c.
  • the internal wirings 24a to 24c may be made of Mo/Al/Mo, MoNd/AlNd/MoNd, or the like.
  • Mo/Al/Mo indicates a stacked structure in which an Al layer is stacked on a Mo layer, and a Mo layer is stacked on an Al layer. The same applies to others.
  • the insulating base 22 has an anode electrode wiring 25 and a cathode electrode wiring 26.
  • the anode electrode wiring 25 electrically connects the internal wiring 24c and the anode terminal 61 of the light emitting element 3.
  • the cathode electrode wiring 26 electrically connects the internal wiring 24b and the cathode terminal 62 of the light emitting element 3.
  • the anode electrode wiring 25 and the cathode electrode wiring 26 may be located on the second surface 2b, or may be located between adjacent insulating layers 22a, 22b, and 22c.
  • the anode electrode wiring 25 may be directly connected to the anode terminal 61, or may be connected to the anode terminal 61 via the transparent conductive layer 25a.
  • the cathode electrode wiring 26 may be directly connected to the cathode terminal 62, or may be connected to the cathode terminal 62 via the transparent conductive layer 26a.
  • FIG. 21 shows an example in which the anode electrode wiring 25 is connected to the anode terminal 61 through the transparent conductive layer 25a, and the cathode electrode wiring 26 is connected to the cathode terminal 62 through the transparent conductive layer 26a.
  • the transparent conductive layers 25a and 26a may be made of a transparent conductor such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the light emitting device 1 may be located on the substrate 7, as shown in FIG. 21, for example.
  • the substrate 7 has a third surface 7a, a fourth surface 7b opposite to the third surface 7a, and a fifth surface (side surface) connecting the third surface 7a and the fourth surface 7b.
  • the light emitting device 1 may be positioned on the substrate 7 such that the first surface 122a of the insulating base 22 faces the third surface 7a of the substrate 7.
  • the substrate 7 may be made of glass material, ceramic material, or resin material.
  • glass material used for the substrate 7 include borosilicate glass, crystallized glass, and quartz.
  • Ceramic materials used for the substrate 7 include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), aluminum nitride (AlN), and the like.
  • the resin material used for the substrate 7 include epoxy resin, polyimide resin, polyamide resin, acrylic resin, and polycarbonate resin.
  • the substrate 7 may be made of a metal material, an alloy material, a semiconductor material, or the like.
  • Metal materials used for the substrate 7 include aluminum (Al), magnesium (Mg) (especially high-purity magnesium with a purity of 99.95% or more), zinc (Zn), tin (Sn), copper (C), Examples include chromium (Cr) and nickel (Ni).
  • the alloy materials used for the substrate 7 include duralumin (Al-Cu alloy, Al-Cu-Mg alloy, Al-Zn alloy, Mg-Cu alloy), which is an aluminum alloy containing aluminum as the main component, and magnesium as the main component.
  • Examples include magnesium alloys (Mg-Al alloy, Mg-Zn alloy, Mg-Al-Zn alloy), titanium boronide, stainless steel, Cu-Zn alloy, etc.
  • Semiconductor materials used for the substrate 7 include silicon (Si), germanium (Ge), gallium arsenide (GaAs), gallium nitride (GaN), and the like.
  • an insulating layer made of silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), etc. is provided between the drive transistor 23 and the substrate 7. May be mediated.
  • the drive transistor 23 is located inside the insulating base 22 or on the first surface 122a of the insulating base 22.
  • the drive transistor 23 controls the light emission operation (light emission, non-light emission, and light emission intensity) of the light emitting element 3.
  • the drive transistor 23 may be, for example, a thin film transistor such as a thin film transistor (TFT).
  • the drive transistor 23 may have a semiconductor film (also referred to as a channel) made of amorphous silicon (a-Si), low-temperature poly silicon (LTPS), or the like.
  • the drive transistor 23 may have a configuration having three terminals: a gate electrode 31, a source electrode 32, and a drain electrode 33.
  • the drive transistor 23 switches conduction (ON) and non-conduction (OFF) between the source electrode 32 and the drain electrode 33 according to the voltage applied to the gate electrode 31, and also controls the source-drain current. do.
  • the drive transistor 23 is a TFT having a semiconductor film (channel), a gate electrode 21, a source electrode 32, and a drain electrode 33.
  • the drive transistor 23 may be an n-channel TFT or a p-channel TFT.
  • the power supply terminal 40 is connected to an external power supply, and a power supply voltage is applied to the power supply terminal 40.
  • the power terminal 40 may be located inside the insulating base 22 or on the second surface 122b of the insulating base 22, or may be located on the third surface 7a of the substrate 7.
  • a plurality of power supply terminals 40 may be provided.
  • the power terminal 40 may have one or more first power terminals 41 and one or more second power terminals 42.
  • a first power supply voltage VDD is applied to the first power supply terminal 41, and a second power supply voltage VSS lower than the first power supply voltage VDD is applied to the second power supply terminal 42.
  • the first power supply voltage VDD and the second power supply voltage VSS are determined in advance according to the type of light emitting element 3.
  • the power supply terminal 40 may be made of Al, AL/Ti, Ti/Al/Ti, Mo/Al/Mo, MoNd/AlNd/MoNd, Cu, Cr, Ni, Ag, or the like.
  • the power supply terminal 40 does not have to have an island-like shape, and may be the end of a wiring or the end of a penetrating conductor such as a through hole.
  • connection conductor layer 51 connects the source electrode 32 of the drive transistor 23 and the power supply terminal 40.
  • the connection conductor layer 51 can supply a power supply voltage to the source electrode 32 of the drive transistor 23 .
  • the connection conductor layer 51 may be located on the second surface 122b or between adjacent insulating layers 22a, 22b, and 22c. A portion of the connection conductor layer 51 may be located on the second surface 122b, and another portion may be located between adjacent insulating layers 22a, 22b, and 22c.
  • the connection conductor layer 51 may be made of a transparent conductor such as ITO or IZO.
  • the light emitting element 3 is located on the second surface 122b of the insulating base 22.
  • the light emitting element 3 may be any self-luminous element such as a light emitting diode (LED) element or a semiconductor laser (laser diode: LD) element.
  • LED light emitting diode
  • LD semiconductor laser
  • ⁇ LED micro light emitting diode
  • the light-emitting element 3 has a rectangular shape with a side length of about 1 ⁇ m or more and about 100 ⁇ m or less, or about 5 ⁇ m or more and about 20 ⁇ m or less, when viewed from the direction perpendicular to the light emitting element 3 (upper direction in FIG. 21).
  • the first power supply voltage VDD may be, for example, about 10V to 15V
  • VSS may be, for example, about 0V to 3V.
  • the light emitting element 3 is a two-terminal element having an anode terminal 61 and a cathode terminal 62.
  • the anode terminal 61 and the cathode terminal 62 are electrically connected to the anode electrode wiring 25 and the cathode electrode wiring 26.
  • the light emitting device 1 includes a plurality of light emitting elements 3 and a plurality of driving transistors 23 that respectively drive the plurality of light emitting elements 3.
  • the plurality of light emitting elements 3 are located on the second surface 122b and arranged in a matrix.
  • FIG. 22 is a diagram showing the arrangement state of the light emitting elements 3 when the one-dimensional stamp is shifted in the first direction X and the light emitting elements 3 are mounted.
  • first transfer area A1 having a plurality of (six in this embodiment) light emitting elements 3 arranged one-dimensionally, each light emitting element 3 is located at equal intervals ⁇ L in one direction.
  • second transfer area A2 similarly to the first transfer area A1, a plurality of (six in this embodiment) light emitting elements 3 are located at equal intervals ⁇ L.
  • the stamp ST is transferred and mounted on the light-emitting substrate 10 while being shifted by ⁇ L/2 in the first direction X with respect to the first transfer area A1.
  • the one-dimensional (line type) light-emitting device 1 is, for example, a head for a photosensitive device equipped with a photosensitive drum, a head for a developing device of a portable camera capable of instant development, a head for a printing device of a copying machine, and a head for three-dimensional printing. It can be applied to equipment heads, etc.
  • the light emitting element 3 may emit invisible light such as visible light or ultraviolet light.
  • the light emitting device 1 shown in FIG. 22 has the following configuration.
  • Arrangement pitch ( ⁇ LX) of the plurality of light emitting elements 3 belonging to the first area A1 in a predetermined direction first direction are the same, and the first area A1 and the second area A2 are p/2 times the arrangement pitch ( ⁇ LX) in a predetermined direction of the plurality of light emitting elements 3 belonging to the first area A1 (p is 1 or more).
  • p may be about 1 to 99, about 1 to 49, or about 1 to 9, but is not limited to these ranges.
  • FIG. 23 is a plan view of the light emitting substrate 10 showing the arrangement state of the light emitting elements 3 when the two-dimensional stamp is shifted in the first direction X.
  • ⁇ LX may be an arrangement pitch
  • ⁇ LY ⁇ LY may be an arrangement pitch
  • the two-dimensional stamp is transferred onto the light emitting substrate 10 while being shifted by ⁇ LX/2 in the first direction X with respect to the first transfer area A1.
  • the light emitting device 1 shown in FIG. 23 has the following configuration (also referred to as configuration X).
  • configuration X When transferring and mounting a plurality of light emitting elements 3 on the second transfer area A2 by shifting them with respect to the first transfer area A1, the predetermined direction of the shift is the row direction (first direction X).
  • the arrangement pitch ( ⁇ LX) in the row direction of the plurality of light emitting elements 3 belonging to the first area A1 is the same as the arrangement pitch ( ⁇ LX) in the row direction of the plurality of light emitting elements 3 belonging to the second area A2, and
  • the first area A1 and the second area A2 are arranged in rows with a deviation amount of q/2 times (q is an odd number of 1 or more) the arrangement pitch ( ⁇ LX) in the row direction of the plurality of light emitting elements 3 belonging to the first area A1.
  • q may be about 1 to 99, about 1 to 49, or about 1 to 9, but is not limited to these ranges.
  • FIG. 24 is a plan view of the light emitting substrate 10 showing the arrangement of the light emitting elements 3 when the two-dimensional stamp is shifted in the second direction Y.
  • the two-dimensional stamp is transferred onto the light emitting substrate 10 while being shifted by ⁇ LY/2 in the second direction Y with respect to the first transfer area A1. Thereby, it is possible to realize the light emitting device 1 in which luminance unevenness and wavelength unevenness are suppressed.
  • the light emitting device 1 shown in FIG. 24 has the following configuration (also referred to as configuration Y).
  • configuration Y When transferring and mounting a plurality of light emitting elements 3 on the second transfer area A2 while shifting them with respect to the first transfer area A1, the predetermined direction of the shift is the column direction (second direction Y).
  • the arrangement pitch ( ⁇ LY) in the column direction of the plurality of light emitting elements 3 belonging to the first area A1 is the same as the arrangement pitch ( ⁇ LY) in the column direction of the plurality of light emitting elements 3 belonging to the second area A2.
  • the first area A1 and the second area A2 are arranged in columns with a deviation amount r/2 times (r is an odd number of 1 or more) the arrangement pitch ( ⁇ LY) in the column direction of the plurality of light emitting elements 3 belonging to the first area A1.
  • r may be about 1 to 99, about 1 to 49, or about 1 to 9, but is not limited to these ranges.
  • FIG. 25 is a plan view of the light emitting substrate 10 showing the arrangement state of the light emitting elements 3 when the two-dimensional stamp is shifted in two directions.
  • the two-dimensional stamp is shifted by ⁇ LX/2 in the first direction X with respect to the first transfer area A1, and ⁇ LY/2 in the second direction Y.
  • the light emitting element 3 is transferred onto the light emitting substrate 10 with a shift of 2. Thereby, it is possible to realize the light emitting device 1 in which luminance unevenness and wavelength unevenness are further suppressed.
  • the light emitting device 1 shown in FIG. 25 has a configuration including the configurations X and Y described above.
  • FIG. 26 shows an arrangement state of the light emitting elements 3 when a plurality of light emitting elements 3 are transfer-mounted so that the first transfer area A1 and the third transfer area A3, which is smaller than the first transfer area A1, overlap.
  • FIG. 26 is a plan view of the light emitting substrate 10.
  • the luminance distribution and/or color distribution (wavelength distribution) of the light emitting element 3 at a portion corresponding to the third transfer area A3 (also referred to as a site where unevenness occurs) is easily visible. It is effective in some cases. That is, when a part of the first transfer area A1 is a site where unevenness occurs, it is possible to suppress the brightness unevenness and color unevenness from being visually recognized at the unevenness occurring site. Therefore, the plurality of light emitting elements 3 located at the unevenness occurrence site in the first transfer area A1 do not emit light, and the plurality of light emitting elements 3 located in the third transfer area A3 emit light.
  • the second transfer area A2 may be rotated by 90 degrees, 180 degrees, or 270 degrees with respect to the first transfer area A1 before being transferred. Even after rotation, the distance between each light emitting element 3 in the first transfer area A1 and each light emitting element 3 in the second transfer area A2 is transferred as designed. Thereby, uneven brightness and wavelength unevenness of the light emitting element 3 can be suppressed.
  • a micro LED was exemplified as an element to be transferred to the mounting board, but other elements other than the micro LED may be transferred to the mounting board.
  • the element is a component used in an electronic circuit, and may be a chip such as a MEMS, a semiconductor element, a resistor, or a capacitor.
  • Semiconductor elements include discrete semiconductors such as transistors, diodes, LEDs, and thyristors, and integrated circuits such as ICs and LSIs. LEDs include mini LEDs and the like.
  • the thickness of the element may be 100 ⁇ m or less.
  • the method for manufacturing a light emitting device of the present disclosure includes the following configuration.
  • a plurality of second light emitting elements are taken out from the light emitting element wafer 11 along a direction different from the above-mentioned one direction, and a plurality of second light emitting elements are placed in a second area on the light emitting substrate 10 while maintaining the arrangement state when taken out. 2 steps.
  • a plurality of second light emitting elements are arranged in the second region so that the first region and the second region overlap with each other while being shifted in a predetermined direction.
  • the light emitting device 1 shown in FIGS. 22 to 26 can be manufactured. That is, the plurality of light emitting elements 3a belonging to the first transfer area A1 and the plurality of light emitting elements 3b belonging to the second transfer area A2 have different distribution states of light emitting characteristics, and the plurality of light emitting elements 3a belonging to the first transfer area A1 have different distribution states of light emitting characteristics.
  • the configuration is such that most of the elements 3a and most of the plurality of light emitting elements 3b belonging to the second transfer area A2 coexist. As a result, it is possible to effectively prevent the distribution state of specific light emitting characteristics from being visually recognized. Further, it is also possible to effectively prevent the boundaries between adjacent regions from being visually recognized.
  • the method for manufacturing a light emitting device of the present disclosure includes the following configuration. a first step of taking out the plurality of first light emitting elements from the light emitting element wafer 11 along one direction, maintaining the arrangement state when taken out, and arranging them in a first region on the light emitting substrate 10; A second step of taking out the second light emitting element from the light emitting element wafer 11 along the above-mentioned one direction and arranging it in a second region on the light emitting substrate 10 while maintaining the arrangement state when taken out.
  • the first region and the second region are rotated at a predetermined rotation angle with respect to the first region, and the first region and the second region are shifted in a predetermined direction.
  • a plurality of second light emitting elements are arranged in the second region so that the second regions overlap.
  • the predetermined rotation angle may be 90°, 180°, or 270°.
  • the present disclosure can be implemented in the following aspects (1) to (18).
  • a base body a plurality of light emitting elements located on the base and arranged along a predetermined direction, Some of the plurality of light emitting elements constitute a first region, Another part of the plurality of light emitting elements constitutes a second region, The light emitting device in the first region and the light emitting device in the second region have different distribution states of light emitting characteristics, The light emitting device, wherein the first region and the second region overlap with each other while being shifted in the predetermined direction.
  • the light emitting element in the first region and the light emitting element in the second region are taken out in different directions from one semiconductor wafer and maintain the arrangement state when taken out.
  • the arrangement pitch in the predetermined direction of the plurality of light emitting elements belonging to the first region is the same as the arrangement pitch in the predetermined direction of the plurality of light emitting elements belonging to the second region;
  • the first region and the second region have a deviation amount of p/2 times (p is an odd number of 1 or more) the arrangement pitch of the plurality of light emitting elements belonging to the first region in the predetermined direction.
  • a base a plurality of light emitting elements located on the base and arranged in a matrix, A part of the plurality of light emitting elements constitutes a first region, and another part of the plurality of light emitting elements forms a second region, The light emitting element in the first region and the light emitting element in the second region have different distribution states of light emitting characteristics, The first region and the second region overlap each other in a predetermined direction.
  • the light emitting element in the first region and the light emitting element in the second region are taken out from different parts of one semiconductor wafer and maintain the arrangement state when taken out.
  • the light emitting element in the first region and the light emitting element in the second region are taken out along the same arrangement direction from a predetermined part of one semiconductor wafer, and the arrangement state when taken out. It holds The light emitting device according to aspect (7) or (8), wherein the first region and the second region overlap with each other with the second region rotated at a predetermined rotation angle with respect to the first region. .
  • the predetermined direction is the row direction;
  • the arrangement pitch in the row direction of the plurality of light emitting elements belonging to the first region is the same as the arrangement pitch in the row direction of the plurality of light emitting elements belonging to the second region,
  • the first region and the second region are arranged in the row with a shift amount of q/2 times the arrangement pitch in the row direction of the plurality of light emitting elements belonging to the first region (q is an odd number of 1 or more).
  • the predetermined direction is the column direction;
  • the arrangement pitch in the column direction of the plurality of light emitting elements belonging to the first region is the same as the arrangement pitch in the column direction of the plurality of light emitting elements belonging to the second region,
  • the first region and the second region are arranged so that the plurality of light emitting elements belonging to the first region are separated from each other in the row by r/2 times the arrangement pitch in the row direction (r is an odd number of 1 or more).
  • the light emitting device of the present disclosure it is possible to provide a light emitting device in which variations in brightness and color tone are suppressed.

Abstract

The present invention comprises: a substrate; and a plurality of light-emitting elements positioned on the substrate and arrayed along a predetermined direction. A portion of the plurality of light-emitting elements constitutes a first transfer region, while another portion of the plurality of light-emitting elements constitutes a second transfer region. The light-emitting characteristic distribution-states of the light-emitting elements in the first transfer region and the light-emitting elements in the second transfer region are different. The first transfer region and the second transfer region overlap in a state where the same are offset in the predetermined direction.

Description

発光装置および発光装置の製造方法Light-emitting device and method for manufacturing the light-emitting device
 本開示は、マイクロLED(Light Emitting Diode;LED)等の発光素子の輝度および色等のばらつきが抑制された発光装置、およびその製造方法に関する。 The present disclosure relates to a light emitting device in which variations in brightness, color, etc. of a light emitting element such as a micro LED (Light Emitting Diode; LED) are suppressed, and a method for manufacturing the same.
 従来技術の発光装置は、例えば特許文献1,2に記載されている。 Conventional light emitting devices are described, for example, in Patent Documents 1 and 2.
米国特許第10748793号明細書US Patent No. 10748793 特開2019-104785号公報JP2019-104785A
 本開示の発光装置は、基体と、前記基体上に位置し、所定の方向に沿って配列された複数の発光素子と、を備え、前記複数の発光素子の一部が第1領域を構成し、前記複数の発光素子の他の一部が第2領域を構成し、前記第1領域の発光素子と前記第2領域の発光素子とは、発光特性の分布状態が異なり、前記第1領域および前記第2領域は、前記所定の方向にずれた状態で重なっている。 A light-emitting device of the present disclosure includes a base and a plurality of light-emitting elements located on the base and arranged along a predetermined direction, and a part of the plurality of light-emitting elements constitutes a first region. , another part of the plurality of light emitting elements constitutes a second region, and the light emitting elements in the first region and the light emitting elements in the second region have different distribution states of light emitting characteristics, and The second regions overlap with each other while being shifted in the predetermined direction.
 本開示の発光装置の製造方法は、複数の第1発光素子を、半導体ウエハから一つの方向に沿って取り出すとともに取り出したときの配置状態を保持して、基体上の第1領域に配置する第1工程と、複数の第2発光素子を、前記半導体ウエハから前記一つの方向と異なる方向に沿って取り出すとともに取り出したときの配置状態を保持して、前記基体上の第2領域に配置する第2工程と、を備え、前記第2工程において、前記第1領域および前記第2領域が所定の方向にずれた状態で重なるように、前記複数の第2発光素子を前記第2領域に配置する。 A method for manufacturing a light emitting device according to the present disclosure includes a first light emitting device that takes out a plurality of first light emitting elements from a semiconductor wafer along one direction, maintains the arrangement state at the time of taking out, and arranges them in a first region on a substrate. a plurality of second light emitting elements are taken out from the semiconductor wafer along a direction different from the one direction, and a second light emitting element is placed in a second region on the substrate while maintaining the arrangement state when taken out. 2 steps, in the second step, the plurality of second light emitting elements are arranged in the second region so that the first region and the second region overlap with each other with a shift in a predetermined direction. .
 また、本開示の発光装置の製造方法は、複数の第1発光素子を、半導体ウエハから一つの方向に沿って取り出すとともに取り出したときの配置状態を保持して、基体上の第1領域に配置する第1工程と、複数の第2発光素子を、前記半導体ウエハから前記一つの方向に沿って取り出すとともに取り出したときの配置状態を保持して、前記基体上の第2領域に配置する第2工程と、を備え、前記第2工程において、前記第1領域に対して前記第2領域が所定の回転角度で回転した状態であり、かつ前記第1領域および前記第2領域が所定の方向にずれた状態で、前記第1領域および前記第2領域が重なるように、前記複数の第2発光素子を前記第2領域に配置する。 Further, in the method for manufacturing a light emitting device of the present disclosure, a plurality of first light emitting elements are taken out from a semiconductor wafer along one direction, and the arrangement state when taken out is maintained, and the plurality of first light emitting elements are arranged in a first region on a substrate. a first step of taking out a plurality of second light emitting elements from the semiconductor wafer along the one direction, and a second step of taking out a plurality of second light emitting elements from the semiconductor wafer, maintaining the arrangement state when taken out, and placing them in a second region on the substrate. and, in the second step, the second region is rotated at a predetermined rotation angle with respect to the first region, and the first region and the second region are oriented in a predetermined direction. The plurality of second light emitting elements are arranged in the second region so that the first region and the second region overlap in a shifted state.
 本開示の目的、特色、及び利点は、下記の詳細な説明と図面とからより明確になるであろう。
本開示の一実施形態の発光装置を模式的に示す平面図である。 発光特性のむらの発生状態を確認するために作製された表示パネルの発光状態を示す写真である。 図2に示される表示パネルの発光素子の配設状態を模式的に示す正面図である。 図3の切断面線IV-IVから見た断面図である。 発光素子ウエハを示す正面図である。 図5のセクションVIの拡大図である。 発光基板に発光素子が実装された状態を示す一部の拡大平面図である。 発光素子ウエハを模式的に示す平面図である。 図8のセクションIXの拡大平面図である。 マストランスファー実装用のスタンプによる発光素子のピックアップ工程を示す図である。 スタンプによる発光素子の発光基板への実装工程を示す図である。 発光素子ウエハの一部を拡大した拡大平面図である。 発光素子ウエハの輝度むらを確認するための発光素子ウエハの模式的平面図、およびその一部の拡大平面図である。 発光素子ウエハの色むらを確認するための発光素子ウエハの模式的平面図、およびその一部の拡大平面図である。 輝度むらを確認するための発光素子ウエハの模式的平面図である。 色むらを確認するための発光素子ウエハの模式的平面図である。 発光素子ウエハからスタンプによって向きを変えずに、複数の発光素子が発光基板の転写領域に転写された状態を示す、発光基板の平面図である。 スタンプで複数の発光素子をピックアップし、そのまま実装する工程(スタンプを180°回転させずに実装する工程)(非回転実装工程ともいう)と、スタンプで多数の発光素子をピックアップし、スタンプを180°回転させて実装する工程(回転実装工程ともいう)と、を交互に繰り返して作製した発光基板の実装状態を模式的に示す平面図である。 非回転実装工程によって多数の発光素子を実装した場合に、実装領域間(スタンプ間)の境界線が表示された場合の輝度の分布を示す拡大写真である。 スタンプを回転させて多数の発光素子を実装した場合、即ち回転実装工程によって多数の発光素子を実装した場合の、輝度の分布を示す拡大写真である。 図18Aおよび図18Bの検出位置A-A’の輝度分布を示すグラフである。 実装領域間の境界線が表示された波長(色)の分布を示す拡大写真である。 回転実装工程によって多数の発光素子を実装した場合の波長の分布を示す拡大写真である。 図19Aおよび図19Bの検出位置B-B’の波長分布を示すグラフである。 本開示の発光装置1の実装構造の一例を示す一部の平面図である。 図20の切断面線C1-C2から見た断面図である。 一次元スタンプを第1方向Xにシフトさせて発光素子を実装した場合の、発光素子の配列状態を示す図である。 二次元スタンプを第1方向Xにシフトさせた場合の発光素子の配列状態を示す、発光基板10の平面図である。 二次元スタンプを第2方向Yにシフトさせた場合の発光素子の配置状態を示す、発光基板10の平面図である。 二次元スタンプを二方向にシフトさせた場合の発光素子の配列状態を示す、発光基板10の平面図である。 第1転写領域と、第1転写領域よりも小さい第3転写領域と、が重なるように、複数の発光素子を転写実装した場合の発光素子の配置状態を示す、発光基板の平面図である。
Objects, features, and advantages of the present disclosure will become more apparent from the following detailed description and drawings.
FIG. 1 is a plan view schematically showing a light emitting device according to an embodiment of the present disclosure. It is a photograph showing the light emitting state of a display panel manufactured in order to confirm the occurrence of unevenness in light emitting characteristics. 3 is a front view schematically showing the arrangement of light emitting elements of the display panel shown in FIG. 2. FIG. 4 is a cross-sectional view taken along section line IV-IV in FIG. 3. FIG. FIG. 2 is a front view showing a light emitting element wafer. 6 is an enlarged view of section VI of FIG. 5. FIG. FIG. 3 is a partially enlarged plan view showing a state in which a light emitting element is mounted on a light emitting substrate. FIG. 2 is a plan view schematically showing a light emitting element wafer. FIG. 9 is an enlarged plan view of section IX of FIG. 8; FIG. 3 is a diagram showing a process of picking up a light emitting element using a stamp for mass transfer mounting. FIG. 3 is a diagram showing a process of mounting a light emitting element onto a light emitting substrate using a stamp. FIG. 2 is an enlarged plan view of a portion of the light emitting element wafer. FIG. 2 is a schematic plan view of a light emitting element wafer for checking brightness unevenness of the light emitting element wafer, and an enlarged plan view of a portion thereof. FIG. 2 is a schematic plan view of a light emitting element wafer for checking color unevenness of the light emitting element wafer, and an enlarged plan view of a portion thereof. FIG. 3 is a schematic plan view of a light emitting element wafer for checking brightness unevenness. FIG. 2 is a schematic plan view of a light emitting element wafer for checking color unevenness. FIG. 3 is a plan view of the light-emitting substrate showing a state in which a plurality of light-emitting elements are transferred from the light-emitting element wafer to a transfer area of the light-emitting substrate without changing the orientation using a stamp. There is a process of picking up multiple light emitting elements with a stamp and mounting them as is (a process of mounting without rotating the stamp 180 degrees) (also called a non-rotating mounting process), and a process of picking up a large number of light emitting elements with a stamp and mounting the stamp 180 degrees. FIG. 3 is a plan view schematically showing a mounted state of a light emitting substrate produced by alternately repeating a step of rotating and mounting (also referred to as a rotation mounting step). It is an enlarged photograph showing the luminance distribution when a boundary line between mounting areas (between stamps) is displayed when a large number of light emitting elements are mounted by a non-rotating mounting process. This is an enlarged photograph showing the luminance distribution when a large number of light emitting elements are mounted by rotating the stamp, that is, when a large number of light emitting elements are mounted by a rotational mounting process. 18A and 18B are graphs showing the brightness distribution at the detection position AA' in FIGS. 18A and 18B. It is an enlarged photograph showing the distribution of wavelengths (colors) with boundaries between mounting areas displayed. It is an enlarged photograph showing the wavelength distribution when a large number of light emitting elements are mounted by a rotational mounting process. 19B is a graph showing the wavelength distribution at the detection position BB' in FIGS. 19A and 19B. 1 is a partial plan view showing an example of a mounting structure of a light emitting device 1 of the present disclosure. 21 is a sectional view taken along the section line C1-C2 in FIG. 20. FIG. FIG. 6 is a diagram showing an arrangement state of light emitting elements when the one-dimensional stamp is shifted in the first direction X and the light emitting elements are mounted. FIG. 3 is a plan view of the light emitting substrate 10 showing the arrangement state of the light emitting elements when the two-dimensional stamp is shifted in the first direction X. FIG. FIG. 3 is a plan view of the light emitting substrate 10 showing the arrangement of light emitting elements when the two-dimensional stamp is shifted in the second direction Y. FIG. FIG. 2 is a plan view of the light emitting substrate 10 showing the arrangement of light emitting elements when a two-dimensional stamp is shifted in two directions. FIG. 7 is a plan view of the light-emitting substrate showing the arrangement of light-emitting elements when a plurality of light-emitting elements are transfer-mounted so that a first transfer area and a third transfer area smaller than the first transfer area overlap.
 上記特許文献1の従来技術では、半導体ウエハ上に形成されたマイクロLED等の発光素子をスタンプに粘着させて半導体ウエハから取外し、発光素子を貼着したスタンプを、目標基板の表面の電気接点と位置合わせし、発光素子の電極を、目標基板の表面上のパッドに接触させ、目標基板にスタンプを押し付け、電子部品を目標基板に転写することが記載されている。 In the prior art disclosed in Patent Document 1, a light emitting element such as a micro LED formed on a semiconductor wafer is attached to a stamp and removed from the semiconductor wafer, and the stamp with the light emitting element attached is connected to an electrical contact on the surface of a target substrate. It is described that the electronic components are transferred to the target substrate by aligning the electronic components, bringing the electrodes of the light emitting elements into contact with pads on the surface of the target substrate, and pressing a stamp onto the target substrate.
 上記特許文献2の他の従来技術では、粘着性基材は、支持部材と、該支持部材に設けられた粘着層とを有し、支持部材は片面又は両面に凸部を有する凹凸パターンを有し、粘着層は、少なくとも支持部材の凸部の上面に曲面を有するように設けられることによって、大量の微細な発光素子をダイボンドすることが記載されている。 In another conventional technique disclosed in Patent Document 2, an adhesive base material has a support member and an adhesive layer provided on the support member, and the support member has an uneven pattern having convex portions on one or both sides. However, it is described that the adhesive layer is provided so as to have a curved surface at least on the upper surface of the convex portion of the support member, thereby die-bonding a large number of fine light emitting elements.
 上記の特許文献1,2に記載される各従来技術では、マイクロLED等の微細な発光素子が大量に転写された目標基板の輝度および色(波長)にばらつきがあり、表示品位が低下するという問題がある。したがって、輝度および色のばらつきが抑制された発光装置が求められている。 In each of the conventional technologies described in Patent Documents 1 and 2 above, there are variations in the brightness and color (wavelength) of the target substrate onto which a large number of microscopic light emitting elements such as micro LEDs are transferred, resulting in a decrease in display quality. There's a problem. Therefore, there is a need for a light emitting device in which variations in brightness and color are suppressed.
 以下、添付図面を参照して、本開示の発光装置の実施形態について説明する。本開示の実施形態に係る発光装置は、図示されていない回路基板、配線導体、制御IC,L26I等の周知の構成を備えていてもよい。各図において、実質的に対応する部分には同一の符号を付しており、重複する説明は省略または簡略化する。 Hereinafter, embodiments of the light emitting device of the present disclosure will be described with reference to the accompanying drawings. The light emitting device according to the embodiment of the present disclosure may include a well-known structure such as a circuit board, a wiring conductor, a control IC, and an L26I (not shown). In each figure, substantially corresponding parts are given the same reference numerals, and overlapping explanations will be omitted or simplified.
 図1は、本開示の一実施形態の発光装置を模式的に示す平面図である。本実施形態の発光装置1は、基体2と、基体2上に位置し、所定の方向である第1方向Xおよび第1方向Xに垂直な第2方向Yに沿って整列して配設された複数の発光素子3と、を備える。基体2上の複数の発光素子3は、一部の発光素子3aが第1領域A1(第1転写領域A1ともいう)を構成し、複数の発光素子3のうち他の一部の発光素子3bが第2領域A2(第2転写領域A2ともいう)を構成する。第1転写領域A1の発光素子3a(第1発光素子3aともいう)と第2転写領域A2の発光素子3b(第2発光素子3bともいう)とは、発光特性の分布状態が異なり、第1転写領域A1および第2転写領域A2は、第1方向Xに距離ΔXおよび第2方向Yに距離ΔYだけずれた状態で重なっている。本実施形態において、他の一部は、複数の発光素子3のうち一部の発光素子3aを除く残余の発光素子3bによって構成される。 FIG. 1 is a plan view schematically showing a light emitting device according to an embodiment of the present disclosure. The light emitting device 1 of the present embodiment includes a base 2, which is located on the base 2, and arranged in alignment along a first direction X, which is a predetermined direction, and a second direction Y, which is perpendicular to the first direction X. and a plurality of light emitting elements 3. Among the plurality of light emitting elements 3 on the base 2, some of the light emitting elements 3a constitute a first area A1 (also referred to as a first transfer area A1), and some of the other light emitting elements 3b of the plurality of light emitting elements 3 constitute a first area A1 (also referred to as a first transfer area A1). constitutes a second area A2 (also referred to as a second transfer area A2). The light emitting element 3a (also referred to as the first light emitting element 3a) in the first transfer area A1 and the light emitting element 3b (also referred to as the second light emitting element 3b) in the second transfer area A2 have different distribution states of light emitting characteristics. The transfer area A1 and the second transfer area A2 overlap with each other by a distance ΔX in the first direction X and a distance ΔY in the second direction Y. In this embodiment, the other part is constituted by the remaining light emitting elements 3b excluding some of the light emitting elements 3a among the plurality of light emitting elements 3.
 第1転写領域A1の発光素子3aと第2転写領域A2の発光素子3bとが、発光特性の分布状態が異なる構成は、以下の第1の製造方法または第2の製造方法によって得られる。第1の製造方法は、第1転写領域A1に実装される複数の第1発光素子3aを、発光素子ウエハ(半導体ウエハ)から一つの方向に沿って取り出すとともに取り出したときの配置状態を保持して、基体2上の第1転写領域A1に配置する第1工程と、第2転写領域A2に実装される複数の第2発光素子3bを、発光素子ウエハから上記一つの方向と異なる方向に沿って取り出すとともに取り出したときの配置状態を保持して、基体2上の第2転写領域A2に配置する第2工程と、を備える。そして、第2工程において、第1転写領域A1および第2転写領域A2が所定の方向にずれた状態で重なるように、複数の第2発光素子を第2転写領域A2に配置する。発光素子ウエハにおける一つの方向と異なる方向は、例えば、一つの方向と30°~330°の交差角度の範囲内で交差する方向であってもよく、60°~300°の交差角度の範囲内で交差する方向であってもよいが、これらの範囲に限らない。なお、「~」は「乃至」を表し、以下同様とする。 A configuration in which the light emitting elements 3a in the first transfer area A1 and the light emitting elements 3b in the second transfer area A2 have different distributions of light emission characteristics can be obtained by the following first manufacturing method or second manufacturing method. In the first manufacturing method, a plurality of first light emitting elements 3a to be mounted in the first transfer area A1 are taken out along one direction from a light emitting element wafer (semiconductor wafer), and the arrangement state when taken out is maintained. The first step of arranging the plurality of second light emitting elements 3b in the first transfer area A1 on the base 2 and the plurality of second light emitting elements 3b to be mounted in the second transfer area A2 are performed from the light emitting element wafer along a direction different from the one direction mentioned above. and a second step of taking it out and arranging it in the second transfer area A2 on the base 2 while maintaining the arrangement state when it was taken out. Then, in the second step, a plurality of second light emitting elements are arranged in the second transfer area A2 so that the first transfer area A1 and the second transfer area A2 overlap with each other while being shifted in a predetermined direction. A direction different from one direction in the light emitting device wafer may be, for example, a direction that intersects with one direction within an intersecting angle range of 30° to 330°, or a direction that intersects with one direction within an intersecting angle range of 60° to 300°. However, the range is not limited to these ranges. Note that "~" represents "to", and the same applies hereinafter.
 第2の製造方法は、複数の第1発光素子3aを、発光素子ウエハから一つの方向に沿って取り出すとともに取り出したときの配置状態を保持して、基体2上の第1転写領域A1に配置する第1工程と、複数の第2発光素子3bを、発光素子ウエハから上記一つの方向に沿って取り出すとともに取り出したときの配置状態を保持して、基体2上の第2転写領域A2に配置する第2工程と、を備える。そして、第2工程において、第1転写領域A1に対して第2転写領域A2が所定の回転角度で回転した状態であり、かつ第1転写領域A1および第2転写領域A2が所定の方向にずれた状態で、第1転写領域A1および第2転写領域A2が重なるように、複数の第2発光素子3bを第2転写領域A2に配置する。上記所定の回転角度は、90°、180°、または270°であってもよいが、これらに限らない。 In the second manufacturing method, a plurality of first light emitting elements 3a are taken out from a light emitting element wafer along one direction, and the arrangement state when taken out is maintained, and the plurality of first light emitting elements 3a are placed in a first transfer area A1 on the base 2. The first step is to take out the plurality of second light emitting elements 3b from the light emitting element wafer along the above-mentioned one direction, maintain the arrangement state when taken out, and place them in the second transfer area A2 on the base 2. A second step of doing so. In the second step, the second transfer area A2 is rotated at a predetermined rotation angle with respect to the first transfer area A1, and the first transfer area A1 and the second transfer area A2 are shifted in a predetermined direction. In this state, a plurality of second light emitting elements 3b are arranged in the second transfer area A2 so that the first transfer area A1 and the second transfer area A2 overlap. The predetermined rotation angle may be 90°, 180°, or 270°, but is not limited thereto.
 本開示の一実施形態に係る発光装置1は、上記の構成により以下の効果を奏する。第1転写領域A1に属する複数の発光素子3aと、第2転写領域A2に属する複数の発光素子3bとは、発光特性の分布状態が異なり、かつ第1転写領域A1に属する複数の発光素子3aの大部分と、第2転写領域A2に属する複数の発光素子3bの大部分と、が混在する構成となる。その結果、特定の発光特性の分布状態が視認されることを効果的に抑えることができる。また、隣接する領域間の境界部が視認されることを効果的に抑えることもできる。 The light emitting device 1 according to an embodiment of the present disclosure achieves the following effects with the above configuration. The plurality of light emitting elements 3a belonging to the first transfer area A1 and the plurality of light emitting elements 3b belonging to the second transfer area A2 have different distribution states of light emitting characteristics, and the plurality of light emitting elements 3a belonging to the first transfer area A1 The configuration is such that most of the light emitting elements 3b and most of the plurality of light emitting elements 3b belonging to the second transfer area A2 coexist. As a result, it is possible to effectively prevent the distribution state of specific light emitting characteristics from being visually recognized. Further, it is also possible to effectively prevent the boundaries between adjacent regions from being visually recognized.
 基体2は、基板状、可撓性を有するフィルム状、ブロック状及び球体状等の各種の立体形状等の形状であってもよい。基体2は、複数の発光素子3を実装可能な平面、複数の平面から成る複合面、曲面、複雑曲面を有していればよい。例えば、基体2は、電柱等の円柱体、建築物の表面、電車等の乗物の内面または外面等であってもよい。基体2が基板状である場合、その平面視形状は三角形、矩形、台形、五角形以上の多角形、円形、楕円形等の形状であってもよい。 The base body 2 may have various three-dimensional shapes such as a substrate shape, a flexible film shape, a block shape, and a spherical shape. The base 2 may have a flat surface on which a plurality of light emitting elements 3 can be mounted, a composite surface consisting of a plurality of flat surfaces, a curved surface, or a complex curved surface. For example, the base 2 may be a cylindrical body such as a utility pole, the surface of a building, the inner or outer surface of a vehicle such as a train, or the like. When the base body 2 is in the shape of a substrate, its shape in plan view may be a triangle, a rectangle, a trapezoid, a polygon of pentagon or more, a circle, an ellipse, or the like.
 半導体ウエハは、GaAs,GaIn,GaN,GaP,SiC等を母材とし、母材にAl,P,In等の不純物を微量添加したものであってもよいが、これらに限らない。 The semiconductor wafer may have a base material such as GaAs, GaIn, GaN, GaP, SiC, etc., and may have a trace amount of impurities such as Al, P, In, etc. added to the base material, but is not limited to these.
 図2は、発光特性のむらの発生状態を確認するために作製された表示パネル1pの発光状態を示す写真である。本件発明者は、複数の発光素子3の発光特性のむらの発生状態を確認するため、発光素子3が同じ転写パターンで実装された表示パネル1pを作製した。なお、表示装置1は、表示パネル1pに枠体、筐体、操作ボタン、外部入力端子等の付属部材を設けることによって作製される。この表示パネル1pの全ての発光素子3を発光させたところ、3行3列の転写領域A11,A12,A13,A21,A22,A23,A31,A32,A33を、区別して視認することができる。即ち、転写領域A11~A33の隣接間の境界線が視認される。この境界線が視認されるのは、各転写領域A11~A33に属する多数の発光素子3の発光波長(色)の分布状態が同じであること、即ち半導体ウエハから同じ転写パターンで転写されていることによる。これにより、表示装置1の表示品位を低下させている。互いに隣接する2つの転写領域A13と転写領域A23との境界線上の任意の領域9を確認したところ、領域9内の境界線(縦方向の境界線)の両側の小領域9a,9bの波長差が4nmであり、色むらのあることが分かる。このような僅かな波長差であっても、視認者には境界線として視認され、表示品位を低下させていることが確認された。このような従来技術の課題を本開示の表示装置1は解決する。 FIG. 2 is a photograph showing the light emitting state of the display panel 1p manufactured in order to confirm the occurrence of unevenness in light emitting characteristics. In order to confirm the occurrence of unevenness in the light emitting characteristics of a plurality of light emitting elements 3, the inventor of the present invention manufactured a display panel 1p in which light emitting elements 3 were mounted in the same transfer pattern. Note that the display device 1 is manufactured by providing accessory members such as a frame, a housing, operation buttons, and external input terminals to the display panel 1p. When all the light emitting elements 3 of this display panel 1p are made to emit light, the transfer areas A11, A12, A13, A21, A22, A23, A31, A32, and A33 arranged in 3 rows and 3 columns can be distinguished and visually recognized. That is, the boundaries between adjacent transfer areas A11 to A33 are visible. This boundary line is visible because the distribution of the emission wavelengths (colors) of the large number of light emitting elements 3 belonging to each transfer area A11 to A33 is the same, that is, the semiconductor wafer is transferred with the same transfer pattern. It depends. This reduces the display quality of the display device 1. When we checked an arbitrary region 9 on the boundary line between the two mutually adjacent transfer areas A13 and A23, we found that there was a wavelength difference between the small areas 9a and 9b on both sides of the boundary line (vertical boundary line) within the area 9. is 4 nm, and it can be seen that there is color unevenness. It has been confirmed that even such a slight wavelength difference is visible to the viewer as a boundary line, degrading the display quality. The display device 1 of the present disclosure solves the problems of the prior art.
 なお、1つの転写領域(例えば、転写領域A11)に属する多数の発光素子3の数、即ち1度に転写される発光素子3の数は、100個~10000個程度であってもよいが、この範囲に限らない。 Note that the number of a large number of light emitting elements 3 belonging to one transfer area (for example, transfer area A11), that is, the number of light emitting elements 3 transferred at one time, may be about 100 to 10,000, but It is not limited to this range.
 図3は、図2に示される表示パネル1pの発光素子の配置状態を模式的に示す正面図である。図4は、図3の切断面線IV-IVから見た断面図である。図2に示される表示パネル1pの第1面には、複数の発光素子3を実装するための複数の接続パッド13が第1方向Xおよび第2方向Yに互い間隔をあけて格子状に設けられる。表示パネル1pの3行3列の転写領域A11~A33のうち、転写領域A21,A22,A23,A32は、接続パッド13および発光素子3が第1方向Xに距離ΔXだけずれた位置に転写位置をずらせて、マストランスファー実装処理用のスタンプによって転写される。また上記の転写領域A21,A22,A23,A32以外の転写領域A11,A12,A13,A31,A33は、スタンプによって一度だけ発光素子3が転写される。A21,A22,A23,A32において重ねて転写された各一対の発光素子3は、一方だけが点灯され、他方は点灯されない、いわゆる冗長素子として実装される。重ねて転写される上記の転写領域A21,A22,A23,A32の各一対の発光素子3は、向きを変えずに転写されている。 FIG. 3 is a front view schematically showing the arrangement of light emitting elements of the display panel 1p shown in FIG. 2. FIG. 4 is a sectional view taken along section line IV-IV in FIG. On the first surface of the display panel 1p shown in FIG. 2, a plurality of connection pads 13 for mounting a plurality of light emitting elements 3 are provided in a grid pattern at intervals in the first direction X and the second direction Y. It will be done. Of the transfer areas A11 to A33 in 3 rows and 3 columns of the display panel 1p, in the transfer areas A21, A22, A23, and A32, the connection pads 13 and the light emitting elements 3 are transferred to positions shifted by a distance ΔX in the first direction X. is transferred by a stamp for mass transfer mounting processing. Further, in the transfer areas A11, A12, A13, A31, and A33 other than the above-mentioned transfer areas A21, A22, A23, and A32, the light emitting element 3 is transferred only once by the stamp. Each pair of light emitting elements 3 superimposed and transferred in A21, A22, A23, and A32 is mounted as a so-called redundant element in which only one is lit and the other is not. Each pair of light emitting elements 3 in the above-mentioned transfer areas A21, A22, A23, and A32, which are transferred in an overlapping manner, are transferred without changing their direction.
 転写領域A21,A22,A23,A32の各一対の発光素子3は、点灯される方が規則的および/または不規則的に設定されてもよい。図3に示すように、点灯する方を規則的に設定する場合、或る一対の発光素子3は、一方(例えば、左側)の発光素子3を発光させ、或る一対の発光素子3に隣接する一対の発光素子3は、他方(例えば、右側)の発光素子3を発光させてもよい。即ち、一対の発光素子3ごとに、交互に点灯させてもよい。この場合、特定の発光特性の分布状態が視認されることを効果的に抑えることができる。また、複数の一対の発光素子3をA群とし、A群に隣接する複数の一対の発光素子3をB群とした場合、A群は一方(例えば、左側)の発光素子3を発光させ、B群は他方(例えば、右側)の発光素子3を発光させてもよい。即ち、複数の一対の発光素子3ごとに、交互に点灯させてもよい。この場合にも、特定の発光特性の分布状態が視認されることを効果的に抑えることができる。 Each pair of light emitting elements 3 in the transfer areas A21, A22, A23, and A32 may be set to be lit regularly and/or irregularly. As shown in FIG. 3, when lighting is set regularly, one (for example, the left) light emitting element 3 of a certain pair emits light, and the light emitting element 3 adjacent to a certain pair of light emitting elements 3 emits light. In the pair of light emitting elements 3, the other (for example, the right side) light emitting element 3 may emit light. That is, each pair of light emitting elements 3 may be lit alternately. In this case, it is possible to effectively prevent the distribution state of specific light emitting characteristics from being visually recognized. Further, when a plurality of pairs of light emitting elements 3 are set as group A, and a plurality of pairs of light emitting elements 3 adjacent to group A are set as group B, group A causes one (for example, the left side) light emitting element 3 to emit light, In group B, the other (for example, right side) light emitting element 3 may be made to emit light. That is, each of the plurality of pairs of light emitting elements 3 may be lit alternately. In this case as well, it is possible to effectively prevent the distribution state of specific light emitting characteristics from being visually recognized.
 転写領域A21,A22,A23,A32の各一対の発光素子3は、点灯される方が不規則的に設定される場合、例えば、疑似乱数発生プログラムを用いた疑似乱数によって、一対の発光素子3ごとに発光させる方を設定してもよい。この場合にも、特定の発光特性の分布状態が視認されることを効果的に抑えることができる。 When each pair of light emitting elements 3 in the transfer areas A21, A22, A23, and A32 is set to be turned on irregularly, for example, the pair of light emitting elements 3 in the transfer areas A21, A22, A23, and A32 are set to be turned on by pseudo-random numbers using a pseudo-random number generation program. You may also set which way to emit light for each. In this case as well, it is possible to effectively prevent the distribution state of specific light emitting characteristics from being visually recognized.
 転写領域A21,A22,A23,A32の各一対の発光素子3は、点灯される方が規則的に設定される群と、点灯される方が不規則的に設定される群と、が混在していてもよい。この場合にも、特定の発光特性の分布状態が視認されることを効果的に抑えることができる。 For each pair of light emitting elements 3 in the transfer areas A21, A22, A23, and A32, there is a mixture of a group in which the lighting is set regularly and a group in which the lighting is set irregularly. You can leave it there. In this case as well, it is possible to effectively prevent the distribution state of specific light emitting characteristics from being visually recognized.
 図5は、発光素子ウエハを示す正面図である。図6は、図5のセクションVIの拡大図である。発光素子ウエハ11は、半導体ウエハ上において、多数の発光素子3がエッチング法等によって作り込まれたものである。多数の発光素子3は、粘着部または吸着部を有するスタンプ等によって、半導体ウエハから個々に取り外すことが可能とされている。マストランスファー実装処理によって、微細で多数のマイクロLED等の発光素子3が形成された発光素子ウエハ11から、発光装置1用の基板(以下、「発光基板」とも称する)への転写には、上記のスタンプが用いられる。スタンプは、例えばシリコーンエラストマであるポリジメチルシロキサン(PDMS)によって作製されてもよい。スタンプは、板状の基層と、その一表面または両表面にパターニングされた、ピラーとも称される複数の突起とを有する。複数の突起は、発光素子ウエハ11に形成された発光素子3のパターンに対応させて形成されている。発光素子ウエハ11から、微細な発光素子3を大量に選択的に取り外すために、各突起の先端部には発光素子3に粘着する粘着剤が設けられている。発光素子ウエハ11には、該発光素子ウエハ11のサイズが4インチである場合、例えば数百万個/枚の発光素子3の突起が格子状に設けられる。 FIG. 5 is a front view showing the light emitting element wafer. FIG. 6 is an enlarged view of section VI of FIG. The light emitting element wafer 11 is a semiconductor wafer on which a large number of light emitting elements 3 are formed by etching or the like. A large number of light emitting elements 3 can be individually removed from a semiconductor wafer using a stamp or the like having an adhesive part or a suction part. The above-mentioned steps are required to transfer from the light emitting element wafer 11 on which a large number of fine light emitting elements 3 such as micro LEDs are formed to the substrate for the light emitting device 1 (hereinafter also referred to as "light emitting substrate") by mass transfer mounting processing. stamps are used. The stamp may be made of the silicone elastomer polydimethylsiloxane (PDMS), for example. The stamp has a plate-shaped base layer and a plurality of protrusions, also called pillars, patterned on one or both surfaces of the base layer. The plurality of protrusions are formed to correspond to the pattern of the light emitting elements 3 formed on the light emitting element wafer 11. In order to selectively remove a large number of fine light emitting elements 3 from the light emitting element wafer 11, an adhesive that adheres to the light emitting elements 3 is provided at the tip of each protrusion. When the size of the light emitting element wafer 11 is 4 inches, the light emitting element wafer 11 is provided with, for example, several million protrusions of the light emitting elements 3 in a grid pattern.
 図7は、発光基板に発光素子3が実装された状態を示す一部の拡大平面図である。発光装置1に用いられる発光基板10の第1面には、発光素子3を実装するための接続パッド13が、所定の配線パターンで設けられている。同図では、4つの発光素子3a,3b,3c,3dが同一方向に実装されている。発光基板10には、スタンプの押し付け位置を示す位置決めマーク12が設けられる。位置決めマーク12にスタンプを位置決めして発光基板10に押し付けることによって、スタンプの突起に粘着している発光素子3a,3b,3c,3dが発光基板10に転写される。1つの画素Pは、赤色R、緑色G、青色Bの各色の3つ発光素子3が冗長構造によって2列配設され、合計6つの発光素子3が搭載される。発光素子3としてマイクロLEDを用いる場合、赤色用LEDは、AlGaAs、GaAsP、AlGaInP、GaP for red、GaPが挙げられ、緑色用LEDは、AlGaInP、AlGaPが挙げられ、青色用LEDは、ZnSe、InGaN、SiCが挙げられる。 FIG. 7 is a partially enlarged plan view showing a state in which the light emitting element 3 is mounted on the light emitting substrate. On the first surface of the light emitting substrate 10 used in the light emitting device 1, connection pads 13 for mounting the light emitting elements 3 are provided in a predetermined wiring pattern. In the figure, four light emitting elements 3a, 3b, 3c, and 3d are mounted in the same direction. The light emitting substrate 10 is provided with a positioning mark 12 that indicates the position where the stamp is pressed. By positioning the stamp on the positioning mark 12 and pressing it against the light emitting substrate 10, the light emitting elements 3a, 3b, 3c, and 3d adhered to the protrusions of the stamp are transferred to the light emitting substrate 10. In one pixel P, three light emitting elements 3 of each color of red R, green G, and blue B are arranged in two rows in a redundant structure, and a total of six light emitting elements 3 are mounted. When a micro LED is used as the light emitting element 3, red LEDs include AlGaAs, GaAsP, AlGaInP, GaP for red, and GaP; green LEDs include AlGaInP and AlGaP; and blue LEDs include ZnSe, InGaN. , SiC.
 図8は、発光素子ウエハ11を模式的に示す平面図であり、図9は、図8のセクションIXの拡大平面図である。1つの発光素子ウエハ11には数百万個の発光素子3が形成されている。同図では6つの転写領域A11,A12,A21,A22,A31,A32が示されており、各転写領域A11~A32の4隅には、前述の位置決めマーク12が設けられる。1つのスタンプの第1方向XのスタンプピッチがL1、第2方向YのスタンプピッチがL2であり、発光素子3の第1方向Xの素子ピッチがL3、第2方向Yの素子ピッチがL4である。このとき、発光素子ウエハ11から各転写領域A11~A32ごとに複数の発光素子3を同一方向に取り外し、発光基板10に転写することができる。 FIG. 8 is a plan view schematically showing the light emitting element wafer 11, and FIG. 9 is an enlarged plan view of section IX in FIG. Several million light emitting elements 3 are formed on one light emitting element wafer 11 . In the figure, six transfer areas A11, A12, A21, A22, A31, and A32 are shown, and the aforementioned positioning marks 12 are provided at the four corners of each transfer area A11 to A32. The stamp pitch in the first direction X of one stamp is L1, the stamp pitch in the second direction Y is L2, the element pitch of the light emitting element 3 in the first direction be. At this time, a plurality of light emitting elements 3 can be removed from the light emitting element wafer 11 in the same direction for each of the transfer areas A11 to A32 and transferred to the light emitting substrate 10.
 例えば、転写領域A21において、第1方向Xに沿った方向に、複数の発光素子3を取り出していく場合、以下のように行う。簡略化のために、第1転写領域A1に転写される発光素子3aを4個(LD1a,LD1b,LD1c,LD1d)とし、第2転写領域A2に転写される発光素子3bを4個(LD2a,LD2b,LD2c,LD2d)とする。即ち、4個の発光素子3a(LD1a,LD1b,LD1c,LD1d)と、4個の発光素子3b(LD2a,LD2b,LD2c,LD2d)は、第1方向Xに沿った方向(+X方向:図9では右方向)に、発光素子3の1個分ずつずれて位置している。この場合、4個の発光素子3a(LD1a,LD1b,LD1c,LD1d)の発光特性の分布状態と、4個の発光素子3b(LD2a,LD2b,LD2c,LD2d)の発光特性の分布状態とは、図12,13に示すように、ほぼ同じである。そして、4個の発光素子3a(LD1a,LD1b,LD1c,LD1d)を取り出したときの配置状態を保持して基体2上の第1転写領域A1に配置し、かつ4個の発光素子3b(LD2a,LD2b,LD2c,LD2d)を取り出したときの配置状態を保持して基体2上の第2転写領域A2に配置すると、特定の発光特性の分布状態が視認されやすくなり、また隣接する領域間の境界部が視認されやすくなる。 For example, when taking out a plurality of light emitting elements 3 in the direction along the first direction X in the transfer area A21, the process is performed as follows. For simplification, the number of light emitting elements 3a transferred to the first transfer area A1 is assumed to be four (LD1a, LD1b, LD1c, LD1d), and the number of light emitting elements 3b transferred to the second transfer area A2 is assumed to be four (LD2a, LD1d). LD2b, LD2c, LD2d). That is, the four light emitting elements 3a (LD1a, LD1b, LD1c, LD1d) and the four light emitting elements 3b (LD2a, LD2b, LD2c, LD2d) are arranged in a direction along the first direction X (+X direction: FIG. (in the right direction), it is shifted by one light emitting element 3 at a time. In this case, the distribution state of the light emission characteristics of the four light emitting elements 3a (LD1a, LD1b, LD1c, LD1d) and the distribution state of the light emission characteristics of the four light emitting elements 3b (LD2a, LD2b, LD2c, LD2d) are as follows. As shown in FIGS. 12 and 13, they are almost the same. Then, the four light emitting elements 3a (LD1a, LD1b, LD1c, LD1d) are arranged in the first transfer area A1 on the base 2 while maintaining the arrangement state when taken out, and the four light emitting elements 3b (LD2a , LD2b, LD2c, LD2d) are placed in the second transfer area A2 on the base 2 while retaining the arrangement state when taken out, the distribution state of specific light emission characteristics can be easily recognized, and the distribution state between adjacent regions can be easily recognized. The border becomes easier to see.
 本開示の発光装置は、第2転写領域A2に実装される複数の第2発光素子3b(LD2a,LD2b,LD2c,LD2d)を、発光素子ウエハから一つの方向(例えば、第1方向X)と異なる方向(例えば、第2方向Y)に沿って取り出すとともに取り出したときの配置状態を保持して、基体2上の第2転写領域A2に配置する。また本開示の発光装置は、第1転写領域A1に対して第2転写領域A2が所定の回転角度で回転した状態となるようにして、複数の第2発光素子3b(LD2a,LD2b,LD2c,LD2d)を、基体2上の第2転写領域A2に配置する。これらの場合、転写した後には、一つの方向(例えば、第1方向X)において、4個の発光素子3a(LD1a,LD1b,LD1c,LD1d)の発光特性の分布状態と、4個の発光素子3b(LD2a,LD2b,LD2c,LD2d)の発光特性の分布状態とは、異なる。従って、特定の発光特性の分布状態が視認されることを抑えることができ、また隣接する領域間の境界部が視認されることを抑えることができる。 The light emitting device of the present disclosure has a plurality of second light emitting elements 3b (LD2a, LD2b, LD2c, LD2d) mounted in the second transfer area A2 in one direction (for example, first direction X) from the light emitting element wafer. It is taken out along a different direction (for example, second direction Y) and placed in the second transfer area A2 on the substrate 2 while maintaining the arrangement state when taken out. Further, the light emitting device of the present disclosure has a plurality of second light emitting elements 3b (LD2a, LD2b, LD2c, LD2d) is placed in the second transfer area A2 on the substrate 2. In these cases, after the transfer, in one direction (for example, the first direction 3b (LD2a, LD2b, LD2c, LD2d) is different from the distribution state of the light emission characteristics. Therefore, it is possible to prevent the distribution state of a specific light emitting characteristic from being visually recognized, and it is also possible to prevent the boundary between adjacent regions from being visually recognized.
 図10Aは、マストランスファー実装用のスタンプによる発光素子のピックアップ工程を示す図であり、図10Bは、スタンプSTによる発光素子3の発光基板への実装工程を示す図である。図11は、発光素子ウエハ11の一部を拡大した拡大平面図である。スタンプSTによって発光素子3が取り外された領域は、参照符C1で示されるように、発光素子3を粘着していた粘着剤の残渣が露出している。また、参照符C2で示す取り外し領域では、残渣の形状から矢符C3で示されるように、発光素子3が取り外されていることが分かる。 FIG. 10A is a diagram showing a process of picking up a light emitting element using a stamp for mass transfer mounting, and FIG. 10B is a diagram showing a process of mounting a light emitting element 3 onto a light emitting board using a stamp ST. FIG. 11 is an enlarged plan view of a portion of the light emitting element wafer 11. As shown in FIG. In the area where the light emitting element 3 has been removed by the stamp ST, the residue of the adhesive that adhered the light emitting element 3 is exposed, as indicated by reference numeral C1. Furthermore, in the removal area indicated by reference numeral C2, it can be seen from the shape of the residue that the light emitting element 3 has been removed, as indicated by arrow C3.
 図12は、発光素子ウエハ11の輝度むらを確認するための発光素子ウエハ11の模式的平面図、およびその一部の拡大平面図である。図13は、発光素子ウエハ11の色むらを確認するための発光素子ウエハ11の模式的平面図、およびその一部の拡大平面図である。発光素子ウエハ11の表面に形成された転写用の発光素子3を点灯させたところ、図12および図13に示されるように、輝度むらおよび色(波長)むらがあることが確認された。このような輝度むらおよび色むらがあると、発光素子3を発光基板10へ実装すると、前述したように、転写領域A11~A33間の境界線が認識可能となり、表示品位が低下することが確認された。 FIG. 12 is a schematic plan view of the light emitting element wafer 11 for checking brightness unevenness of the light emitting element wafer 11, and an enlarged plan view of a part thereof. FIG. 13 is a schematic plan view of the light emitting element wafer 11 for checking color unevenness of the light emitting element wafer 11, and an enlarged plan view of a part thereof. When the light emitting elements 3 for transfer formed on the surface of the light emitting element wafer 11 were turned on, it was confirmed that there were uneven brightness and color (wavelength) as shown in FIGS. 12 and 13. When there is such uneven brightness and color, when the light emitting element 3 is mounted on the light emitting substrate 10, the boundary line between the transfer areas A11 to A33 becomes recognizable as described above, and it is confirmed that the display quality deteriorates. It was done.
 図14は、輝度むらを確認するための発光素子ウエハ11の模式的平面図であり、図15は、色むらを確認するための発光素子ウエハ11の模式的平面図である。発光素子ウエハ11の発光素子3に励起光を照射して発光素子3を発光させたところ、図14に示されるように、輝度むらがあることが判明した。また、発光素子ウエハ11の発光素子3に駆動電圧を印加して発光素子を発光させたところ、図15に示されるように、波長(色)むらがあることが判明した。このような発光素子ウエハ11からスタンプSTによって参照符号Fの領域の多数の発光素子3をピックアップし、向きを変えずに発光基板10に転写すると、転写後の多数の発光素子3も、輝度むらおよび波長むらが生じることになる。 FIG. 14 is a schematic plan view of the light emitting element wafer 11 for checking brightness unevenness, and FIG. 15 is a schematic plan view of the light emitting element wafer 11 for checking color unevenness. When the light emitting elements 3 of the light emitting element wafer 11 were irradiated with excitation light to cause the light emitting elements 3 to emit light, it was found that there was uneven brightness as shown in FIG. Further, when a driving voltage was applied to the light emitting elements 3 of the light emitting element wafer 11 to cause the light emitting elements to emit light, it was found that there was wavelength (color) unevenness as shown in FIG. When a large number of light emitting elements 3 in the area indicated by reference numeral F are picked up from such a light emitting element wafer 11 by the stamp ST and transferred onto the light emitting substrate 10 without changing the orientation, the large number of light emitting elements 3 after transfer also have uneven brightness. and wavelength unevenness will occur.
 このような輝度むらおよび色(波長)むらが発生するのは、以下の理由によると考えられる。例えば、GaAsウエハ基板上に、GaAs活性層をGaAlAsクラッド層で挟んだPN接合構造を、有機金属気相成長法(Metal Organic Chemical Vapor Deposition:MOCVD)法等の気相成長法によって形成する際に、ウエハ基板面内で活性層およびクラッド層の成分の含有量の分布(むら)が生じることに起因する。 The reason why such brightness unevenness and color (wavelength) unevenness occurs is considered to be due to the following reasons. For example, when forming a PN junction structure in which a GaAs active layer is sandwiched between GaAlAs cladding layers on a GaAs wafer substrate by a vapor phase growth method such as a metal organic chemical vapor deposition (MOCVD) method, This is due to unevenness in the content distribution (unevenness) of the components of the active layer and cladding layer within the plane of the wafer substrate.
 図16は、発光素子ウエハ11からスタンプSTによって向きを変えずに、複数の発光素子3が発光基板10の転写領域に転写された状態を示す、発光基板10の平面図である。図17は、スタンプSTで複数の発光素子3をピックアップし、そのまま実装する工程(スタンプSTを180°回転させずに実装する工程)(非回転実装工程ともいう)と、スタンプSTで多数の発光素子3をピックアップし、スタンプSTを180°回転させて実装する工程(回転実装工程ともいう)と、を交互に繰り返して作製した発光基板10の実装状態を模式的に示す平面図である。例えば、図17において、上向きの参照符号Fで示される多数の発光素子3は、非回転実装工程によって実装されており、下向きの参照符号Fで示される多数の発光素子3は、回転実装工程によって実装されている。 FIG. 16 is a plan view of the light-emitting substrate 10 showing a state in which a plurality of light-emitting elements 3 have been transferred from the light-emitting element wafer 11 to the transfer area of the light-emitting substrate 10 without changing the orientation by the stamp ST. FIG. 17 shows a process of picking up a plurality of light emitting elements 3 with the stamp ST and mounting them as they are (a process of mounting without rotating the stamp ST by 180 degrees) (also referred to as a non-rotating mounting process), and a process of picking up a plurality of light emitting elements 3 with the stamp ST. FIG. 3 is a plan view schematically showing a mounted state of a light emitting substrate 10 produced by alternately repeating a process of picking up an element 3 and mounting it by rotating a stamp ST by 180 degrees (also referred to as a rotation mounting process). For example, in FIG. 17, a large number of light emitting elements 3 indicated by upward reference numeral F are mounted by a non-rotating mounting process, and a large number of light emitting elements 3 indicated by downward reference numeral F are mounted by a rotational mounting process. Implemented.
 1つの画素は、上向きの参照符号Fで示される3つの発光素子3(R,G,Bの発光素子3)と、下向きの参照符号Fで示される3つの発光素子3(R,G,Bの発光素子3)と、を備える。上向きの参照符号Fで示される3つの発光素子3の組と、下向きの参照符号Fで示される3つの発光素子3の組と、のいずれか一方を常時点灯用とし、他方を予備とする冗長構造とする。そして、隣接する画素間で発光する発光素子3の組が異なるようにしてもよい。 One pixel consists of three light emitting elements 3 (R, G, B light emitting elements 3) indicated by an upward reference symbol F, and three light emitting elements 3 (R, G, B light emitting elements 3) indicated by a downward reference symbol F. A light emitting element 3). Redundancy in which one of the set of three light emitting elements 3 indicated by the upward reference symbol F and the set of three light emitting elements 3 indicated by the downward reference symbol F is used for constant lighting, and the other is used as a backup. Structure. Further, the sets of light emitting elements 3 that emit light may be different between adjacent pixels.
 赤色光を発生する発光素子を3Rとし、緑色光を発生する発光素子を3Gとし、青色光を発生する発光素子を3Bとしたとき、複数の転写領域A11,A12,A13,A14,A21,A22,A23,A24,A31,A32,A33,A34、A41,A42,A43,A44のそれぞれは、上向きの参照符Fで示される発光素子3R,3G,3Bと、下向きの参照符Fで示されている180°反転した発光素子3R,3G,3Bとによって構成される。冗長回路によって、各転写領域A11~A44内の各色RGBのそれぞれについて2つの発光素子3のうちのいずれかが発光され、2つの発光素子3のいずれか他方が非発光に制御される。 When the light emitting element that generates red light is 3R, the light emitting element that generates green light is 3G, and the light emitting element that generates blue light is 3B, the plurality of transfer areas A11, A12, A13, A14, A21, A22 , A23, A24, A31, A32, A33, A34, A41, A42, A43, A44, respectively, have light emitting elements 3R, 3G, 3B indicated by an upward reference mark F, and light emitting elements 3R, 3G, 3B indicated by a downward reference mark F. The light emitting elements 3R, 3G, and 3B are inverted by 180 degrees. The redundant circuit controls one of the two light emitting elements 3 to emit light for each color RGB in each of the transfer areas A11 to A44, and the other of the two light emitting elements 3 to not emit light.
 図18Aは、非回転実装工程によって多数の発光素子3を実装した場合に、実装領域間(スタンプST間)の境界線が表示された場合の輝度の分布を示す拡大写真である。図18Bは、スタンプSTを回転させて多数の発光素子を実装した場合、即ち回転実装工程によって多数の発光素子3を実装した場合の、輝度の分布を示す拡大写真である。各実装領域において、スタンプSTを回転させないで同じ向きに多数の発光素子3を実装した場合、図18Aの参照符号m1で示されるように、明瞭に境界線が表示される。これに対し、図17のように、スタンプSTによって半分の発光素子3を180°回転させて実装した場合、図18Bの参照符号m2で示されるように、境界線はほとんど判別することができないことを確認した。 FIG. 18A is an enlarged photograph showing the luminance distribution when a boundary line between mounting areas (between stamps ST) is displayed when a large number of light emitting elements 3 are mounted by a non-rotating mounting process. FIG. 18B is an enlarged photograph showing the luminance distribution when a large number of light emitting elements are mounted by rotating the stamp ST, that is, when a large number of light emitting elements 3 are mounted by a rotational mounting process. In each mounting area, when a large number of light emitting elements 3 are mounted in the same direction without rotating the stamp ST, a boundary line is clearly displayed as indicated by reference numeral m1 in FIG. 18A. On the other hand, when half of the light emitting elements 3 are rotated by 180 degrees and mounted using the stamp ST as shown in FIG. 17, the boundary line can hardly be discerned, as indicated by reference numeral m2 in FIG. 18B. It was confirmed.
 上記の効果は、以下の構成による。即ち、第1領域の発光素子3(上向きの参照符号Fで示される発光素子3)と、第2領域の発光素子3(下向きの参照符号Fで示される発光素子3)とは、発光特性の分布状態が異なる。これは、第2領域の発光素子3は、回転実装工程によって実装されているからである。そして、第1領域および第2領域は、所定の方向にずれた状態で重なっている構成である。この構成により、1つの実装領域において、発光特性の分布状態が異なる多数の発光素子3が混在することになる。所定の方向のずれの長さは、1画素分~3画素分程度の長さであってもよいが、この範囲に限らない。 The above effects are due to the following configuration. That is, the light emitting element 3 in the first region (the light emitting element 3 indicated by the upward reference symbol F) and the light emitting element 3 in the second region (the light emitting element 3 indicated by the downward reference symbol F) have light emission characteristics. The distribution state is different. This is because the light emitting elements 3 in the second region are mounted by a rotational mounting process. Further, the first region and the second region are configured to overlap with each other while being shifted in a predetermined direction. With this configuration, a large number of light emitting elements 3 having different distribution states of light emitting characteristics coexist in one mounting area. The length of the shift in the predetermined direction may be approximately one to three pixels, but is not limited to this range.
 図18Cは、図18Aおよび図18Bの検出位置A-A’の輝度分布を示すグラフである。図18Cにおける符号●は、図18Bの回転実装した場合の輝度を示し、図18Cにおける符号▲は、図18Aの同じ向きに実装した場合の輝度を示す。発光素子3を回転実装した場合は、最大輝度差が3%であるのに対し、同じ向きに実装した場合には、最大輝度差が17%と大きいことが判る。 FIG. 18C is a graph showing the brightness distribution at the detection position A-A' in FIGS. 18A and 18B. The symbol ● in FIG. 18C indicates the brightness when mounted in a rotational manner as in FIG. 18B, and the symbol ▲ in FIG. 18C indicates the luminance when mounted in the same direction as in FIG. 18A. It can be seen that when the light emitting elements 3 are mounted in rotation, the maximum brightness difference is 3%, whereas when the light emitting elements 3 are mounted in the same direction, the maximum brightness difference is as large as 17%.
 発光素子3の輝度および波長の測定は、1チップごとに輝度および波長を測定可能な測定器を用いることができる。測定器としては、例えばTopcon社製、分光放射輝度計SR-5000を用いることができる。このような測定器によって、発光基板10上に実装された全ての発光素子3の輝度および波長を測定することができる。 The brightness and wavelength of the light emitting element 3 can be measured using a measuring instrument that can measure the brightness and wavelength for each chip. As a measuring device, for example, a spectral radiance meter SR-5000 manufactured by Topcon Corporation can be used. Such a measuring device can measure the brightness and wavelength of all the light emitting elements 3 mounted on the light emitting substrate 10.
 図19Aは、実装領域間の境界線が表示された波長(色)の分布状態を示す拡大写真である。図19Bは、回転実装工程によって多数の発光素子を実装した場合の波長の分布を示す拡大写真である。非回転実装工程によって多数の発光素子3を実装した場合、図19Aの参照符号m3で示されるように、境界線が明瞭に表示される。これに対し、各転写領域において、スタンプSTを回転させずに半分の発光素子3を転写実装し、スタンプSTを180°回転させて残余の発光素子3を転送実装した場合、図19Bの参照符号m4で示されるように、境界線の表示は緩和されることを確認した。 FIG. 19A is an enlarged photograph showing the distribution of wavelengths (colors) with boundary lines between mounting areas displayed. FIG. 19B is an enlarged photograph showing the wavelength distribution when a large number of light emitting elements are mounted by a rotational mounting process. When a large number of light emitting elements 3 are mounted by a non-rotating mounting process, a boundary line is clearly displayed as indicated by reference numeral m3 in FIG. 19A. On the other hand, in each transfer area, if half of the light emitting elements 3 are transfer-mounted without rotating the stamp ST, and the remaining light-emitting elements 3 are transfer-mounted by rotating the stamp ST by 180 degrees, the reference numerals in FIG. 19B As shown in m4, it was confirmed that the border line display was relaxed.
 図19Cは、図19Aおよび図19Bの検出位置B-B’の波長分布を示すグラフである。図19Cにおける符号●は図19Bの回転実装した場合の波長を示し、図19Cにおける符号▲は、図19Aの同じ向きに実装した場合の波長を示す。発光素子3を回転実装した場合は、最大波長差が2.3nmであるのに対し、同じ向きに実装した場合には、最大波長差が4.0nmと大きいことが判る。 FIG. 19C is a graph showing the wavelength distribution at detection position B-B' in FIGS. 19A and 19B. The symbol ● in FIG. 19C indicates the wavelength when mounted in a rotational manner as in FIG. 19B, and the symbol ▲ in FIG. 19C indicates a wavelength when mounted in the same direction as in FIG. 19A. It can be seen that when the light emitting elements 3 are mounted in rotation, the maximum wavelength difference is 2.3 nm, whereas when the light emitting elements 3 are mounted in the same direction, the maximum wavelength difference is as large as 4.0 nm.
 図20は、本開示の発光装置1の実装形態の一例を示す一部の平面図である。図21は、図20の切断面線C1-C2から見た断面図である。本実施形態では、駆動トランジスタがnチャネル型TFTである場合について説明する。駆動トランジスタはpチャネル型TFTであってもよい。 FIG. 20 is a partial plan view showing an example of a mounting form of the light emitting device 1 of the present disclosure. FIG. 21 is a sectional view taken along the section line C1-C2 in FIG. 20. In this embodiment, a case where the drive transistor is an n-channel TFT will be described. The drive transistor may be a p-channel TFT.
 本実施形態の発光装置1は、絶縁基体22、駆動トランジスタ23、電源端子40、アノード電極配線25、カソード電極配線26および発光素子3を含む。 The light emitting device 1 of this embodiment includes an insulating substrate 22, a drive transistor 23, a power terminal 40, an anode electrode wiring 25, a cathode electrode wiring 26, and a light emitting element 3.
 絶縁基体22は、第1面122aおよび第1面122aとは反対側の他方主面である第2面122bを有する。絶縁基体22は、三角形状、正方形状および長方形状を含む矩形形状、台形形状、六角形状、円形状、楕円形状等の形状であってもよく、その他の形状であってもよい。絶縁基体22は、単一の絶縁層から成る単層構造を有していてもよく、複数の絶縁層が積層された積層構造を有していてもよい。 The insulating base 22 has a first surface 122a and a second surface 122b, which is the other main surface opposite to the first surface 122a. The insulating base 22 may have a rectangular shape including a triangular shape, a square shape, a rectangular shape, a trapezoidal shape, a hexagonal shape, a circular shape, an elliptical shape, or other shapes. The insulating base 22 may have a single-layer structure consisting of a single insulating layer, or may have a laminated structure in which a plurality of insulating layers are laminated.
 本実施形態では、絶縁基体22は、図21に示すように、複数の絶縁層22a,22b,22cが積層されて成る積層構造を有している。絶縁層22a,22b,22cは、例えば、酸化シリコン(SiO)、窒化シリコン(Si)等の無機絶縁層、アクリル樹脂、ポリイミド樹脂、ポリカーボネート樹脂等の有機絶縁層から構成されてもよい。例えば絶縁基体22の下側(基板7側)にある絶縁層22a,22bは無機絶縁層であってもよく、絶縁基体22の上側にある絶縁層22cは、絶縁層22a,22bよりも厚い、平坦化層としての有機絶縁層であってもよい。絶縁層22a,22b,22cは、組成、寸法(厚み)等が互いに同一であってもよく、互いに異なっていてもよい。 In this embodiment, the insulating base 22 has a laminated structure in which a plurality of insulating layers 22a, 22b, and 22c are laminated, as shown in FIG. The insulating layers 22a, 22b, and 22c may be composed of, for example, an inorganic insulating layer such as silicon oxide (SiO 2 ) or silicon nitride (Si 3 N 4 ), or an organic insulating layer such as acrylic resin, polyimide resin, or polycarbonate resin. good. For example, the insulating layers 22a and 22b on the lower side (substrate 7 side) of the insulating base 22 may be inorganic insulating layers, and the insulating layer 22c on the upper side of the insulating base 22 is thicker than the insulating layers 22a and 22b. An organic insulating layer may be used as a planarization layer. The insulating layers 22a, 22b, 22c may have the same composition, dimensions (thickness), etc., or may differ from each other.
 絶縁基体22は、内部配線24a~24cを有している。内部配線24a~24cは、駆動トランジスタ23、電源端子40、アノード電極配線25、カソード電極配線26、発光素子3等を互いに電気的に接続する。内部配線24a~24cは、例えば隣り合う絶縁層22a,22b,22c同士の層間に位置してもよい。内部配線24a~24cは、Mo/Al/Mo、MoNd/AlNd/MoNd等から構成されてもよい。ここで、Mo/Al/Moは、Mo層上にAl層が積層され、Al層上にMo層が積層された積層構造を示す。その他についても同様である。 The insulating base 22 has internal wirings 24a to 24c. The internal wirings 24a to 24c electrically connect the drive transistor 23, the power supply terminal 40, the anode electrode wiring 25, the cathode electrode wiring 26, the light emitting element 3, etc. to each other. The internal wirings 24a to 24c may be located, for example, between adjacent insulating layers 22a, 22b, and 22c. The internal wirings 24a to 24c may be made of Mo/Al/Mo, MoNd/AlNd/MoNd, or the like. Here, Mo/Al/Mo indicates a stacked structure in which an Al layer is stacked on a Mo layer, and a Mo layer is stacked on an Al layer. The same applies to others.
 絶縁基体22は、アノード電極配線25およびカソード電極配線26を有している。アノード電極配線25は、内部配線24cと発光素子3のアノード端子61とを電気的に接続している。カソード電極配線26は、内部配線24bと発光素子3のカソード端子62とを電気的に接続している。アノード電極配線25およびカソード電極配線26は、第2面2b上に位置してもよく、隣り合う絶縁層22a,22b,22c同士の層間に位置してもよい。アノード電極配線25は、アノード端子61に直接に接続されてもよく、アノード端子61に透明導電層25a介して接続されてもよい。カソード電極配線26は、カソード端子62に直接に接続されてもよく、カソード端子62に透明導電層26aを介して接続されてもよい。図21では、アノード電極配線25が透明導電層25aを介してアノード端子61に接続され、カソード電極配線26が透明導電層26aを介してカソード端子62に接続される例を示している。透明導電層25a,26aは、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)等の透明導電体から構成されてもよい。 The insulating base 22 has an anode electrode wiring 25 and a cathode electrode wiring 26. The anode electrode wiring 25 electrically connects the internal wiring 24c and the anode terminal 61 of the light emitting element 3. The cathode electrode wiring 26 electrically connects the internal wiring 24b and the cathode terminal 62 of the light emitting element 3. The anode electrode wiring 25 and the cathode electrode wiring 26 may be located on the second surface 2b, or may be located between adjacent insulating layers 22a, 22b, and 22c. The anode electrode wiring 25 may be directly connected to the anode terminal 61, or may be connected to the anode terminal 61 via the transparent conductive layer 25a. The cathode electrode wiring 26 may be directly connected to the cathode terminal 62, or may be connected to the cathode terminal 62 via the transparent conductive layer 26a. FIG. 21 shows an example in which the anode electrode wiring 25 is connected to the anode terminal 61 through the transparent conductive layer 25a, and the cathode electrode wiring 26 is connected to the cathode terminal 62 through the transparent conductive layer 26a. The transparent conductive layers 25a and 26a may be made of a transparent conductor such as indium tin oxide (ITO) or indium zinc oxide (IZO).
 発光装置1は、例えば図21に示すように、基板7上に位置してもよい。基板7は、第3面7a、第3面7aとは反対側の第4面7b、および第3面7aと第4面7bとを繋ぐ第5面(側面)を有している。発光装置1は、絶縁基体22の第1面122aが基板7の第3面7aに対向するように、基板7上に位置してもよい。 The light emitting device 1 may be located on the substrate 7, as shown in FIG. 21, for example. The substrate 7 has a third surface 7a, a fourth surface 7b opposite to the third surface 7a, and a fifth surface (side surface) connecting the third surface 7a and the fourth surface 7b. The light emitting device 1 may be positioned on the substrate 7 such that the first surface 122a of the insulating base 22 faces the third surface 7a of the substrate 7.
 基板7は、ガラス材料、セラミック材料、樹脂材料から構成されてもよい。基板7に用いられるガラス材料としては、ホウケイ酸ガラス、結晶化ガラス、石英等が上げられる。基板7に用いられるセラミック材料としては、アルミナ(Al)、ジルコニア(ZrO)、窒化シリコン(Si)、炭化シリコン(SiC)、窒化アルミニウム(AlN)等が挙げられる。基板7に用いられる樹脂材料としては、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、アクリル樹脂、ポリカーボネート樹脂等が挙げられる。 The substrate 7 may be made of glass material, ceramic material, or resin material. Examples of the glass material used for the substrate 7 include borosilicate glass, crystallized glass, and quartz. Ceramic materials used for the substrate 7 include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), aluminum nitride (AlN), and the like. Examples of the resin material used for the substrate 7 include epoxy resin, polyimide resin, polyamide resin, acrylic resin, and polycarbonate resin.
 基板7は、金属材料、合金材料、半導体材料等から構成されてもよい。基板7に用いられる金属材料としては、アルミニウム(Al)、マグネシウム(Mg)(特に、純度99.95%以上の高純度マグネシウム)、亜鉛(Zn)、錫(Sn)、銅(Cう)、クロム(Cr)、ニッケル(Ni)等が挙げられる。基板7に用いられる合金材料としては、アルミニウムを主成分とするアルミニウム合金であるジュラルミン(Al-Cu合金、Al-Cu-Mg合金、Al-Zn合金、Mg-Cu合金)、マグネシウムを主成分とするマグネシウム合金(Mg-Al合金、Mg-Zn合金、Mg-Al-Zn合金)、ボロン化チタン、ステンレススチール、Cu-Zn合金等が挙げられる。基板7に用いられる半導体材料としては、シリコン(Si)、ゲルマニウム(Ge)、ガリウムヒ素(GaAs)、窒化ガリウム(GaN)等が挙げられる。 The substrate 7 may be made of a metal material, an alloy material, a semiconductor material, or the like. Metal materials used for the substrate 7 include aluminum (Al), magnesium (Mg) (especially high-purity magnesium with a purity of 99.95% or more), zinc (Zn), tin (Sn), copper (C), Examples include chromium (Cr) and nickel (Ni). The alloy materials used for the substrate 7 include duralumin (Al-Cu alloy, Al-Cu-Mg alloy, Al-Zn alloy, Mg-Cu alloy), which is an aluminum alloy containing aluminum as the main component, and magnesium as the main component. Examples include magnesium alloys (Mg-Al alloy, Mg-Zn alloy, Mg-Al-Zn alloy), titanium boronide, stainless steel, Cu-Zn alloy, etc. Semiconductor materials used for the substrate 7 include silicon (Si), germanium (Ge), gallium arsenide (GaAs), gallium nitride (GaN), and the like.
 基板7が金属材料、合金材料または半導体材料から構成されている場合、駆動トランジスタ23と基板7との間に、酸化シリコン(SiO)、窒化シリコン(Si)等から成る絶縁層が介在されてもよい。 When the substrate 7 is made of a metal material, an alloy material, or a semiconductor material, an insulating layer made of silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), etc. is provided between the drive transistor 23 and the substrate 7. May be mediated.
 駆動トランジスタ23は、絶縁基体22の内部または絶縁基体22の第1面122a上に位置している。駆動トランジスタ23は、発光素子3の発光動作(発光、非発光、発光強度)を制御する。駆動トランジスタ23は、例えば薄膜トランジスタ(Thin Film Transistor:TFT)等の薄膜トランジスタであってもよい。駆動トランジスタ23は、アモルファスシリコン(a-Si)、低温他結晶シリコン(Low-temperature Poly Silicon:LTPS)等から構成される半導体膜(チャネルともいう)を有していてもよい。駆動トランジスタ23は、ゲート電極31、ソース電極32およびドレイン電極33の3端子を有する構成であってもよい。駆動トランジスタ23は、ゲート電極31に印加される電圧に応じて、ソース電極32とドレイン電極33との間の導通(ON)と非導通(OFF)とを切り換え、またソース-ドレイン間電流を制御する。 The drive transistor 23 is located inside the insulating base 22 or on the first surface 122a of the insulating base 22. The drive transistor 23 controls the light emission operation (light emission, non-light emission, and light emission intensity) of the light emitting element 3. The drive transistor 23 may be, for example, a thin film transistor such as a thin film transistor (TFT). The drive transistor 23 may have a semiconductor film (also referred to as a channel) made of amorphous silicon (a-Si), low-temperature poly silicon (LTPS), or the like. The drive transistor 23 may have a configuration having three terminals: a gate electrode 31, a source electrode 32, and a drain electrode 33. The drive transistor 23 switches conduction (ON) and non-conduction (OFF) between the source electrode 32 and the drain electrode 33 according to the voltage applied to the gate electrode 31, and also controls the source-drain current. do.
 以下では、駆動トランジスタ23が、半導体膜(チャネル)と、ゲート電極21、ソース電極32およびドレイン電極33とを有するTFTである場合について説明する。駆動トランジスタ23は、nチャネル型TFTであってもよく、pチャネル型TFTであってもよい。 In the following, a case will be described in which the drive transistor 23 is a TFT having a semiconductor film (channel), a gate electrode 21, a source electrode 32, and a drain electrode 33. The drive transistor 23 may be an n-channel TFT or a p-channel TFT.
 電源端子40は、外部電源と接続しており、電源端子40には電源電圧が印加される。電源端子40は、絶縁基体22の内部または絶縁基体22の第2面122b上に位置してもよく、基板7の第3面7a上に位置してもよい。電源端子40は、複数設けられてもよい。電源端子40は、1または複数の第1電源端子41と、1または複数の第2電源端子42とを有していてもよい。第1電源端子41には、第1電源電圧VDDが印加され、第2電源端子42には、第1電源電圧VDDよりも低電圧の第2電源電圧VSSが印加される。第1電源電圧VDDおよび第2電源電圧VSSは、発光素子3の種類に応じて予め決定される。電源端子40は、Al、AL/Ti、Ti/Al/Ti、Mo/Al/Mo、MoNd/AlNd/MoNd、Cu、Cr、Ni、Ag等から構成されてもよい。 The power supply terminal 40 is connected to an external power supply, and a power supply voltage is applied to the power supply terminal 40. The power terminal 40 may be located inside the insulating base 22 or on the second surface 122b of the insulating base 22, or may be located on the third surface 7a of the substrate 7. A plurality of power supply terminals 40 may be provided. The power terminal 40 may have one or more first power terminals 41 and one or more second power terminals 42. A first power supply voltage VDD is applied to the first power supply terminal 41, and a second power supply voltage VSS lower than the first power supply voltage VDD is applied to the second power supply terminal 42. The first power supply voltage VDD and the second power supply voltage VSS are determined in advance according to the type of light emitting element 3. The power supply terminal 40 may be made of Al, AL/Ti, Ti/Al/Ti, Mo/Al/Mo, MoNd/AlNd/MoNd, Cu, Cr, Ni, Ag, or the like.
 電源端子40は、島状の形状でなくてもよく、配線の端部であってもよく、スルーホール等の貫通導体の端部であってもよい。 The power supply terminal 40 does not have to have an island-like shape, and may be the end of a wiring or the end of a penetrating conductor such as a through hole.
 接続導体層51は、駆動トランジスタ23のソース電極32と電源端子40とを接続している。接続導体層51は、駆動トランジスタ23のソース電極32に電源電圧を供給し得る。接続導体層51は第2面122b上に位置してもよく、隣り合う絶縁層22a,22b,22cの層間に位置してもよい。接続導体層51は、一部が第2面122b上に位置してもよく、他の一部が隣り合う絶縁層22a,22b,22cの層間に位置してもよい。接続導体層51は、ITO、IZO等の透明導電体から構成されてもよい。 The connection conductor layer 51 connects the source electrode 32 of the drive transistor 23 and the power supply terminal 40. The connection conductor layer 51 can supply a power supply voltage to the source electrode 32 of the drive transistor 23 . The connection conductor layer 51 may be located on the second surface 122b or between adjacent insulating layers 22a, 22b, and 22c. A portion of the connection conductor layer 51 may be located on the second surface 122b, and another portion may be located between adjacent insulating layers 22a, 22b, and 22c. The connection conductor layer 51 may be made of a transparent conductor such as ITO or IZO.
 発光素子3は、絶縁基体22の第2面122b上に位置している。発光素子3は、発光ダイオード(Light Emitting Diode;LED)素子、半導体レーザ(Laser Diode:LD)素子等の自発光素子であればよい。本実施形態では、発光素子3として、LED素子が用いられるが、マイクロ発光素子(Micro Light Emitting Diode:μLED)素子であってもよい。この場合、発光素子3に直交する方向(図21の上方向)から見て、一辺の長さが1μm程度以上100μm程度以下または5μm程度以上20μm程度以下である矩形状の形状を有していてもよい。発光素子3がμLED素子である場合、第1電源電圧VDDは、例えば10V~15V程度であってもよく、第2電源電圧VSSは、例えば0V~3V程度であってもよい。 The light emitting element 3 is located on the second surface 122b of the insulating base 22. The light emitting element 3 may be any self-luminous element such as a light emitting diode (LED) element or a semiconductor laser (laser diode: LD) element. In this embodiment, an LED element is used as the light emitting element 3, but a micro light emitting diode (μLED) element may also be used. In this case, the light-emitting element 3 has a rectangular shape with a side length of about 1 μm or more and about 100 μm or less, or about 5 μm or more and about 20 μm or less, when viewed from the direction perpendicular to the light emitting element 3 (upper direction in FIG. 21). Good too. When the light emitting element 3 is a μLED element, the first power supply voltage VDD may be, for example, about 10V to 15V, and the second power supply voltage VSS may be, for example, about 0V to 3V.
 発光素子3は、アノード端子61およびカソード端子62を有する2端子素子である。アノード端子61およびカソード端子62は、アノード電極配線25およびカソード電極配線26に電気的に接続されている。 The light emitting element 3 is a two-terminal element having an anode terminal 61 and a cathode terminal 62. The anode terminal 61 and the cathode terminal 62 are electrically connected to the anode electrode wiring 25 and the cathode electrode wiring 26.
 発光装置1は、複数の発光素子3と、複数の発光素子3をそれぞれ駆動する複数の駆動トランジスタ23とを含んで構成される。複数の発光素子3は、第2面122b上に位置し、マトリクス状に配列される。 The light emitting device 1 includes a plurality of light emitting elements 3 and a plurality of driving transistors 23 that respectively drive the plurality of light emitting elements 3. The plurality of light emitting elements 3 are located on the second surface 122b and arranged in a matrix.
 図22は、一次元スタンプを第1方向Xにシフトさせて発光素子3を実装した場合の、発光素子3の配列状態を示す図である。一次元に整列した複数(本実施形態では6個)の発光素子3を有する第1転写領域A1には、各発光素子3が一方向に等間隔ΔLをあけて位置している。第2転写領域A2には、第1転写領域A1と同様に、複数(本実施形態では6個)の発光素子3が等間隔ΔLをあけて位置している。第2転写領域A2に複数の発光素子3を転写実装する場合、スタンプSTを、第1転写領域A1に対して第1方向XにΔL/2だけずらして発光基板10上に転写実装する。これによって、輝度むらおよび波長むらが抑制された、1次元(ライン型)の発光装置1を実現することができる。 FIG. 22 is a diagram showing the arrangement state of the light emitting elements 3 when the one-dimensional stamp is shifted in the first direction X and the light emitting elements 3 are mounted. In the first transfer area A1 having a plurality of (six in this embodiment) light emitting elements 3 arranged one-dimensionally, each light emitting element 3 is located at equal intervals ΔL in one direction. In the second transfer area A2, similarly to the first transfer area A1, a plurality of (six in this embodiment) light emitting elements 3 are located at equal intervals ΔL. When a plurality of light emitting elements 3 are transfer-mounted on the second transfer area A2, the stamp ST is transferred and mounted on the light-emitting substrate 10 while being shifted by ΔL/2 in the first direction X with respect to the first transfer area A1. Thereby, it is possible to realize a one-dimensional (line type) light emitting device 1 in which luminance unevenness and wavelength unevenness are suppressed.
 1次元(ライン型)の発光装置1は、例えば、感光ドラムを備えた感光装置用ヘッド、インスタント現像が可能な携帯型写真機の現像装置用ヘッド、複写機の印刷装置用ヘッド、3次元印刷装置用ヘッドなどに適用できる。発光素子3は、可視光または紫外光等の不可視光を発光するものであってもよい。 The one-dimensional (line type) light-emitting device 1 is, for example, a head for a photosensitive device equipped with a photosensitive drum, a head for a developing device of a portable camera capable of instant development, a head for a printing device of a copying machine, and a head for three-dimensional printing. It can be applied to equipment heads, etc. The light emitting element 3 may emit invisible light such as visible light or ultraviolet light.
 図22に示す発光装置1は、換言すれば以下の構成を備える。第1領域A1に属する複数の発光素子3の所定の方向(第1方向X)における配列ピッチ(ΔLX)と、第2領域A2に属する複数の発光素子3の所定の方向における配列ピッチ(ΔLX)と、が同じであり、第1領域A1および第2領域A2は、第1領域A1に属する複数の発光素子3の所定の方向における配列ピッチ(ΔLX)のp/2倍(pは1以上の奇数)のずれ量でもって、所定の方向にずれた状態で重なっている構成である。pは、1~99程度であってもよく、1~49程度であってもよく、1~9程度であってもよいが、これらの範囲に限らない。 In other words, the light emitting device 1 shown in FIG. 22 has the following configuration. Arrangement pitch (ΔLX) of the plurality of light emitting elements 3 belonging to the first area A1 in a predetermined direction (first direction are the same, and the first area A1 and the second area A2 are p/2 times the arrangement pitch (ΔLX) in a predetermined direction of the plurality of light emitting elements 3 belonging to the first area A1 (p is 1 or more). This is a configuration in which they are overlapped with a deviation in a predetermined direction by an amount of deviation (odd number). p may be about 1 to 99, about 1 to 49, or about 1 to 9, but is not limited to these ranges.
 図23は、二次元スタンプを第1方向Xにシフトさせた場合の発光素子3の配列状態を示す、発光基板10の平面図である。第1転写領域A1には、二次元に整列した複数(本実施形態では、11×8=88個)の発光素子3が第1方向Xに等間隔ΔLX(ΔLXは配列ピッチであってもよい)をあけて位置し、第2方向Yに等間隔ΔLY(ΔLYは配列ピッチであってもよい)をあけて位置している。第2転写領域A2には、第1転写領域A1と同様に、複数(本実施形態では、11×8=88個)の発光素子3が第1方向Xに等間隔ΔLXをあけて位置し、第2方向Yに等間隔ΔLYをあけて位置している。第2転写領域A2に複数の発光素子3を転写実装する場合、二次元スタンプを、第1転写領域A1に対して第1方向XにΔLX/2だけずらして発光基板10上に転写する。これによって、輝度むらおよび波長むらが抑制された発光装置1を実現することができる。 FIG. 23 is a plan view of the light emitting substrate 10 showing the arrangement state of the light emitting elements 3 when the two-dimensional stamp is shifted in the first direction X. In the first transfer area A1, a plurality of light emitting elements 3 (in this embodiment, 11×8=88 pieces) arranged two-dimensionally are arranged at equal intervals ΔLX in the first direction X (ΔLX may be an arrangement pitch). ), and are located at equal intervals ΔLY (ΔLY may be an arrangement pitch) in the second direction Y. In the second transfer area A2, similarly to the first transfer area A1, a plurality of (in this embodiment, 11×8=88) light emitting elements 3 are located at equal intervals ΔLX in the first direction X, They are located at equal intervals ΔLY in the second direction Y. When transferring and mounting a plurality of light emitting elements 3 on the second transfer area A2, the two-dimensional stamp is transferred onto the light emitting substrate 10 while being shifted by ΔLX/2 in the first direction X with respect to the first transfer area A1. Thereby, it is possible to realize the light emitting device 1 in which luminance unevenness and wavelength unevenness are suppressed.
 図23に示す発光装置1は、換言すれば以下の構成(構成Xともいう)を備える。第2転写領域A2に複数の発光素子3を、第1転写領域A1に対してずらして転写実装する場合の、ずらす所定の方向は行方向(第1方向X)である。第1領域A1に属する複数の発光素子3の行方向における配列ピッチ(ΔLX)と、第2領域A2に属する複数の発光素子3の行方向における配列ピッチ(ΔLX)と、が同じであり、第1領域A1および第2領域A2は、第1領域A1に属する複数の発光素子3の行方向における配列ピッチ(ΔLX)のq/2倍(qは1以上の奇数)のずれ量でもって、行方向にずれた状態で重なっている構成である。qは、1~99程度であってもよく、1~49程度であってもよく、1~9程度であってもよいが、これらの範囲に限らない。 In other words, the light emitting device 1 shown in FIG. 23 has the following configuration (also referred to as configuration X). When transferring and mounting a plurality of light emitting elements 3 on the second transfer area A2 by shifting them with respect to the first transfer area A1, the predetermined direction of the shift is the row direction (first direction X). The arrangement pitch (ΔLX) in the row direction of the plurality of light emitting elements 3 belonging to the first area A1 is the same as the arrangement pitch (ΔLX) in the row direction of the plurality of light emitting elements 3 belonging to the second area A2, and The first area A1 and the second area A2 are arranged in rows with a deviation amount of q/2 times (q is an odd number of 1 or more) the arrangement pitch (ΔLX) in the row direction of the plurality of light emitting elements 3 belonging to the first area A1. This is a configuration in which they are overlapped with deviations in the directions. q may be about 1 to 99, about 1 to 49, or about 1 to 9, but is not limited to these ranges.
 図24は、二次元スタンプを第2方向Yにシフトさせた場合の発光素子3の配置状態を示す、発光基板10の平面図である。第1転写領域a1には、二次元に整列した複数(本実施形態では、11×8=88個)の発光素子3が第1方向Xに等間隔ΔLXをあけて位置し、第2方向Yに等間隔ΔLYをあけて位置している。第2転写領域A2には、第1転写領域A1と同様に、複数の(本実施形態では、11×8=88個)の発光素子3が第1方向Xに等間隔ΔLXをあけて位置し、第2方向Yに等間隔ΔLYをあけて位置している。第2転写領域A2に複数の発光素子3を転写実装する場合、二次元スタンプを、第1転写領域A1に対して第2方向YにΔLY/2だけずらして発光基板10上に転写する。これによって、輝度むらおよび波長むらが抑制された発光装置1を実現することができる。 FIG. 24 is a plan view of the light emitting substrate 10 showing the arrangement of the light emitting elements 3 when the two-dimensional stamp is shifted in the second direction Y. In the first transfer area a1, a plurality of two-dimensionally aligned light emitting elements 3 (in this embodiment, 11×8=88 pieces) are located at equal intervals ΔLX in the first direction X, and in the second direction Y. They are located at equal intervals ΔLY. In the second transfer area A2, similarly to the first transfer area A1, a plurality of (in this embodiment, 11×8=88) light emitting elements 3 are located at equal intervals ΔLX in the first direction X. , are located at equal intervals ΔLY in the second direction Y. When transferring and mounting a plurality of light emitting elements 3 on the second transfer area A2, the two-dimensional stamp is transferred onto the light emitting substrate 10 while being shifted by ΔLY/2 in the second direction Y with respect to the first transfer area A1. Thereby, it is possible to realize the light emitting device 1 in which luminance unevenness and wavelength unevenness are suppressed.
 図24に示す発光装置1は、換言すれば以下の構成(構成Yともいう)を備える。第2転写領域A2に複数の発光素子3を、第1転写領域A1に対してずらして転写実装する場合の、ずらす所定の方向は列方向(第2方向Y)である。第1領域A1に属する複数の発光素子3の列方向における配列ピッチ(ΔLY)と、第2領域A2に属する複数の発光素子3の列方向における配列ピッチ(ΔLY)と、が同じであり、第1領域A1および第2領域A2は、第1領域A1に属する複数の発光素子3の列方向における配列ピッチ(ΔLY)のr/2倍(rは1以上の奇数)のずれ量でもって、列方向にずれた状態で重なっている構成である。rは、1~99程度であってもよく、1~49程度であってもよく、1~9程度であってもよいが、これらの範囲に限らない。 In other words, the light emitting device 1 shown in FIG. 24 has the following configuration (also referred to as configuration Y). When transferring and mounting a plurality of light emitting elements 3 on the second transfer area A2 while shifting them with respect to the first transfer area A1, the predetermined direction of the shift is the column direction (second direction Y). The arrangement pitch (ΔLY) in the column direction of the plurality of light emitting elements 3 belonging to the first area A1 is the same as the arrangement pitch (ΔLY) in the column direction of the plurality of light emitting elements 3 belonging to the second area A2. The first area A1 and the second area A2 are arranged in columns with a deviation amount r/2 times (r is an odd number of 1 or more) the arrangement pitch (ΔLY) in the column direction of the plurality of light emitting elements 3 belonging to the first area A1. This is a configuration in which they are overlapped with deviations in the directions. r may be about 1 to 99, about 1 to 49, or about 1 to 9, but is not limited to these ranges.
 図25は、二次元スタンプを二方向にシフトさせた場合の発光素子3の配列状態を示す、発光基板10の平面図である。二次元に整列した複数(本実施形態では、11×8=88個)の発光素子3が第1方向Xに等間隔ΔLXをあけて位置し、第2方向Yに等間隔ΔLYをあけて位置している。第2転写領域A2には、第1転写領域A1と同様に、複数(本実施形態では、11×8=88個)の発光素子3が第1方向Xに等間隔ΔLXをあけて位置し、第2方向Yに等間隔ΔLYをあけて位置している。第2転写領域A2に複数の発光素子3を転写実装する場合、二次元スタンプを、第1転写領域A1に対して第1方向XにはΔLX/2だけずらし、かつ第2方向YにΔLY/2だけずらして、発光基板10上に発光素子3を転写する。これによって、輝度むらおよび波長むらがより一層抑制された発光装置1を実現することができる。 FIG. 25 is a plan view of the light emitting substrate 10 showing the arrangement state of the light emitting elements 3 when the two-dimensional stamp is shifted in two directions. A plurality of light emitting elements 3 (in this embodiment, 11×8=88 pieces) arranged two-dimensionally are located at equal intervals ΔLX in the first direction X, and at equal intervals ΔLY in the second direction Y. are doing. In the second transfer area A2, similarly to the first transfer area A1, a plurality of (in this embodiment, 11×8=88) light emitting elements 3 are located at equal intervals ΔLX in the first direction X, They are located at equal intervals ΔLY in the second direction Y. When transferring and mounting a plurality of light emitting elements 3 on the second transfer area A2, the two-dimensional stamp is shifted by ΔLX/2 in the first direction X with respect to the first transfer area A1, and ΔLY/2 in the second direction Y. The light emitting element 3 is transferred onto the light emitting substrate 10 with a shift of 2. Thereby, it is possible to realize the light emitting device 1 in which luminance unevenness and wavelength unevenness are further suppressed.
 図25に示す発光装置1は、換言すれば上記の構成Xおよび構成Yを備える構成である。 In other words, the light emitting device 1 shown in FIG. 25 has a configuration including the configurations X and Y described above.
 図26は、第1転写領域A1と、第1転写領域A1よりも小さい第3転写領域A3と、が重なるように、複数の発光素子3を転写実装した場合の発光素子3の配置状態を示す、発光基板10の平面図である。この構成は、例えば、第1転写領域A1において、第3転写領域A3に相当する部位(ムラ発生部位ともいう)の発光素子3の輝度分布および/または色分布(波長分布)が、視認されやすい場合に有効である。即ち、第1転写領域A1の一部がムラ発生部位である場合、ムラ発生部位の輝度ムラ、色ムラが視認されることを抑えることができる。従って、第1転写領域A1のムラ発生部位に位置する複数の発光素子3は発光させず、第3転写領域A3に位置する複数の発光素子3を発光させる。 FIG. 26 shows an arrangement state of the light emitting elements 3 when a plurality of light emitting elements 3 are transfer-mounted so that the first transfer area A1 and the third transfer area A3, which is smaller than the first transfer area A1, overlap. , is a plan view of the light emitting substrate 10. With this configuration, for example, in the first transfer area A1, the luminance distribution and/or color distribution (wavelength distribution) of the light emitting element 3 at a portion corresponding to the third transfer area A3 (also referred to as a site where unevenness occurs) is easily visible. It is effective in some cases. That is, when a part of the first transfer area A1 is a site where unevenness occurs, it is possible to suppress the brightness unevenness and color unevenness from being visually recognized at the unevenness occurring site. Therefore, the plurality of light emitting elements 3 located at the unevenness occurrence site in the first transfer area A1 do not emit light, and the plurality of light emitting elements 3 located in the third transfer area A3 emit light.
 前述の各実施形態では、第1転写領域A1に対して第2転写領域A2を第1方向Xのみにシフトさせとき、または第1方向Xおよび第2方向Yにシフトさせる場合について述べたが、本発明の他の実施形態では、第2転写領域A2を第1転写領域A1に対して90°、180°、または270°回転させて転写するようにしてもよい。回転後においても、第1転写領域A1の各発光素子3と第2転写領域A2の各発光素子3の間隔は、設計どおりの間隔で転写される。これによって、発光素子3の輝度むらおよび波長むらを抑制することができる。 In each of the above embodiments, the case where the second transfer area A2 is shifted only in the first direction X with respect to the first transfer area A1, or the case where it is shifted in the first direction X and the second direction Y has been described. In other embodiments of the present invention, the second transfer area A2 may be rotated by 90 degrees, 180 degrees, or 270 degrees with respect to the first transfer area A1 before being transferred. Even after rotation, the distance between each light emitting element 3 in the first transfer area A1 and each light emitting element 3 in the second transfer area A2 is transferred as designed. Thereby, uneven brightness and wavelength unevenness of the light emitting element 3 can be suppressed.
 前述の実施形態では、実装基板に転写される素子としてマイクロLEDを例示したが、マイクロLED以外の他の素子が実装基板に転写されてもよい。例えば素子は、電子回路に使用される部品であり、MEMS、半導体素子、抵抗およびコンデンサ等のチップであってもよい。半導体素子としては、トランジスタ、ダイオード、LED、サイリスタ等のディスクリート半導体、またはIC、LSI等の集積回路が含まれる。LEDには、ミニLED等が含まれる。素子の厚みは100μm以下であってもよい。 In the above-described embodiment, a micro LED was exemplified as an element to be transferred to the mounting board, but other elements other than the micro LED may be transferred to the mounting board. For example, the element is a component used in an electronic circuit, and may be a chip such as a MEMS, a semiconductor element, a resistor, or a capacitor. Semiconductor elements include discrete semiconductors such as transistors, diodes, LEDs, and thyristors, and integrated circuits such as ICs and LSIs. LEDs include mini LEDs and the like. The thickness of the element may be 100 μm or less.
 本開示の発光装置の製造方法は、以下の構成を備える。複数の第1発光素子を、発光素子ウエハ11(半導体ウエハ)から一つの方向に沿って取り出すとともに取り出したときの配置状態を保持して、発光基板10上の第1領域に配置する第1工程と、複数の第2発光素子を、発光素子ウエハ11から上記一つの方向と異なる方向に沿って取り出すとともに取り出したときの配置状態を保持して、発光基体10上の第2領域に配置する第2工程と、を備える。そして、第2工程において、第1領域および第2領域が所定の方向にずれた状態で重なるように、複数の第2発光素子を第2領域に配置する。 The method for manufacturing a light emitting device of the present disclosure includes the following configuration. A first step of taking out a plurality of first light emitting elements from a light emitting element wafer 11 (semiconductor wafer) along one direction, maintaining the arrangement state when taken out, and arranging them in a first area on the light emitting substrate 10. Then, a plurality of second light emitting elements are taken out from the light emitting element wafer 11 along a direction different from the above-mentioned one direction, and a plurality of second light emitting elements are placed in a second area on the light emitting substrate 10 while maintaining the arrangement state when taken out. 2 steps. Then, in the second step, a plurality of second light emitting elements are arranged in the second region so that the first region and the second region overlap with each other while being shifted in a predetermined direction.
 上記の構成により、図22~図26に示す発光装置1を作製できる。即ち、第1転写領域A1に属する複数の発光素子3aと、第2転写領域A2に属する複数の発光素子3bとは、発光特性の分布状態が異なり、かつ第1転写領域A1に属する複数の発光素子3aの大部分と、第2転写領域A2に属する複数の発光素子3bの大部分と、が混在する構成となる。その結果、特定の発光特性の分布状態が視認されることを効果的に抑えることができる。また、隣接する領域間の境界部が視認されることを効果的に抑えることもできる。 With the above configuration, the light emitting device 1 shown in FIGS. 22 to 26 can be manufactured. That is, the plurality of light emitting elements 3a belonging to the first transfer area A1 and the plurality of light emitting elements 3b belonging to the second transfer area A2 have different distribution states of light emitting characteristics, and the plurality of light emitting elements 3a belonging to the first transfer area A1 have different distribution states of light emitting characteristics. The configuration is such that most of the elements 3a and most of the plurality of light emitting elements 3b belonging to the second transfer area A2 coexist. As a result, it is possible to effectively prevent the distribution state of specific light emitting characteristics from being visually recognized. Further, it is also possible to effectively prevent the boundaries between adjacent regions from being visually recognized.
 また、本開示の発光装置の製造方法は、以下の構成を備える。複数の第1発光素子を、発光素子ウエハ11から一つの方向に沿って取り出すとともに取り出したときの配置状態を保持して、発光基板10上の第1領域に配置する第1工程と、複数の第2発光素子を、発光素子ウエハ11から上記一つの方向に沿って取り出すとともに取り出したときの配置状態を保持して、発光基板10上の第2領域に配置する第2工程と、を備える。そして、第2工程において、第1領域に対して第2領域が所定の回転角度で回転した状態であり、かつ第1領域および第2領域が所定の方向にずれた状態で、第1領域および第2領域が重なるように、複数の第2発光素子を第2領域に配置する。上記所定の回転角度は、90°、180°、または270°であってもよい。この構成により、図22~図26に示す発光装置1を作製できる。 Furthermore, the method for manufacturing a light emitting device of the present disclosure includes the following configuration. a first step of taking out the plurality of first light emitting elements from the light emitting element wafer 11 along one direction, maintaining the arrangement state when taken out, and arranging them in a first region on the light emitting substrate 10; A second step of taking out the second light emitting element from the light emitting element wafer 11 along the above-mentioned one direction and arranging it in a second region on the light emitting substrate 10 while maintaining the arrangement state when taken out. In the second step, the first region and the second region are rotated at a predetermined rotation angle with respect to the first region, and the first region and the second region are shifted in a predetermined direction. A plurality of second light emitting elements are arranged in the second region so that the second regions overlap. The predetermined rotation angle may be 90°, 180°, or 270°. With this configuration, the light emitting device 1 shown in FIGS. 22 to 26 can be manufactured.
 以上、本発明の実施形態について詳細に説明したが、また、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。上記各実施形態をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせ可能であることは、言うまでもない。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various changes, improvements, etc. can be made without departing from the gist of the present invention. It is possible. It goes without saying that all or part of the above embodiments can be combined as appropriate to the extent that they do not contradict each other.
 本開示は、以下の態様(1)~(18)で実施可能である。
(1)基体と、
 前記基体上に位置し、所定の方向に沿って配列された複数の発光素子と、を備え、
 前記複数の発光素子のうちの一部が第1領域を構成し、
 前記複数の発光素子の他の一部が第2領域を構成し、
 前記第1領域の発光素子と前記第2領域の発光素子とは、発光特性の分布状態が異なり、
 前記第1領域および前記第2領域は、前記所定の方向にずれた状態で重なっている、発光装置。
The present disclosure can be implemented in the following aspects (1) to (18).
(1) A base body;
a plurality of light emitting elements located on the base and arranged along a predetermined direction,
Some of the plurality of light emitting elements constitute a first region,
Another part of the plurality of light emitting elements constitutes a second region,
The light emitting device in the first region and the light emitting device in the second region have different distribution states of light emitting characteristics,
The light emitting device, wherein the first region and the second region overlap with each other while being shifted in the predetermined direction.
(2)前記第1領域内の前記発光素子と、前記第2領域内の前記発光素子とは、前記所定の方向に沿って交互に位置している、上記態様(1)に記載の発光装置。 (2) The light emitting device according to aspect (1), wherein the light emitting elements in the first region and the light emitting elements in the second region are alternately located along the predetermined direction. .
(3)前記第1領域内の前記発光素子と、前記第2領域内の前記発光素子とは、1つの半導体ウエハから異なる方向に取り出されるとともに取り出されたときの配置状態を保持している、上記態様(1)または(2)に記載の発光装置。 (3) The light emitting element in the first region and the light emitting element in the second region are taken out in different directions from one semiconductor wafer and maintain the arrangement state when taken out. The light emitting device according to aspect (1) or (2) above.
(4)前記第1領域内の前記発光素子と、前記第2領域内の前記発光素子とは、1つの半導体ウエハから一つの方向に沿って取り出されるとともに取り出されたときの配置状態を保持しており、
 前記第1領域に対して前記第2領域が180°回転した状態で、前記第1領域および前記第2領域が重なっている、上記態様(1)または(2)に記載の発光装置。
(4) The light emitting elements in the first area and the light emitting elements in the second area are taken out along one direction from one semiconductor wafer and maintain the arrangement state when taken out. and
The light emitting device according to aspect (1) or (2), wherein the first region and the second region overlap with each other with the second region rotated by 180 degrees with respect to the first region.
(5)前記発光特性は、輝度および発光波長の少なくとも一方を含む、上記態様(1)~(4)のいずれか1つに記載の発光装置。 (5) The light emitting device according to any one of aspects (1) to (4) above, wherein the light emission characteristic includes at least one of brightness and emission wavelength.
(6)前記第1領域に属する前記複数の発光素子の前記所定の方向における配列ピッチと、前記第2領域に属する前記複数の発光素子の前記所定の方向における配列ピッチと、が同じであり、
 前記第1領域および前記第2領域は、前記第1領域に属する前記複数の発光素子の前記所定の方向における配列ピッチのp/2倍(pは1以上の奇数)のずれ量でもって、前記所定の方向にずれた状態で重なっている、上記態様(1)~(5)のいずれか1つに記載の発光装置。
(6) the arrangement pitch in the predetermined direction of the plurality of light emitting elements belonging to the first region is the same as the arrangement pitch in the predetermined direction of the plurality of light emitting elements belonging to the second region;
The first region and the second region have a deviation amount of p/2 times (p is an odd number of 1 or more) the arrangement pitch of the plurality of light emitting elements belonging to the first region in the predetermined direction. The light emitting device according to any one of aspects (1) to (5) above, which overlap in a state shifted in a predetermined direction.
(7)基体と、
 前記基体上に位置し、行列状に配列された複数の発光素子と、を備え、
 前記複数の発光素子のうちの一部が第1領域を構成し、前記複数の発光素子の他の一部が第2領域を形成し、
 前記第1領域の発光素子と前記第2領域に発光素子とは、発光特性の分布状態が異なり、
 前記第1領域および前記第2領域は、所定の方向にずれた状態で重なっている、発光装置。
(7) a base;
a plurality of light emitting elements located on the base and arranged in a matrix,
A part of the plurality of light emitting elements constitutes a first region, and another part of the plurality of light emitting elements forms a second region,
The light emitting element in the first region and the light emitting element in the second region have different distribution states of light emitting characteristics,
The first region and the second region overlap each other in a predetermined direction.
(8)前記第1領域内の前記発光素子と、前記第2領域内の前記発光素子とは、交互に位置するとともに全体として行列状に配列されている、上記態様(7)に記載の発光装置。 (8) The light emitting device according to the above aspect (7), wherein the light emitting device in the first region and the light emitting device in the second region are arranged alternately and in a matrix as a whole. Device.
(9)前記第1領域内の前記発光素子と、前記第2領域内の前記発光素子とは、1つの半導体ウエハの異なる部位から取り出されるとともに取り出されたときの配置状態を保持している、上記態様(7)または(8)に記載の発光装置。 (9) The light emitting element in the first region and the light emitting element in the second region are taken out from different parts of one semiconductor wafer and maintain the arrangement state when taken out. The light emitting device according to aspect (7) or (8) above.
(10)前記第1領域内の前記発光素子と、前記第2領域内の前記発光素子とは、1つの半導体ウエハの所定部位から同じ配列方向に沿って取り出されるとともに取り出されたときの配置状態を保持しており、
 前記第1領域に対して前記第2領域が所定の回転角度で回転した状態で、前記第1領域および前記第2領域が重なっている、上記態様(7)または(8)に記載の発光装置。
(10) The light emitting element in the first region and the light emitting element in the second region are taken out along the same arrangement direction from a predetermined part of one semiconductor wafer, and the arrangement state when taken out. It holds
The light emitting device according to aspect (7) or (8), wherein the first region and the second region overlap with each other with the second region rotated at a predetermined rotation angle with respect to the first region. .
(11)前記所定の回転角度は、90°、180°、または270°である、(10)に記載の発光装置。 (11) The light emitting device according to (10), wherein the predetermined rotation angle is 90°, 180°, or 270°.
(12)前記発光特性は、輝度および発光波長の少なくとも一方を含む、上記態様(7)~(11)のいずれか1つに記載の発光装置。 (12) The light emitting device according to any one of aspects (7) to (11), wherein the light emitting property includes at least one of brightness and light emission wavelength.
(13)前記所定の方向は、行方向および/または列方向である、上記態様(7)~(12)のいずれか1つに記載の発光装置。 (13) The light emitting device according to any one of aspects (7) to (12), wherein the predetermined direction is a row direction and/or a column direction.
(14)前記所定の方向は、前記行方向であり、
 前記第1領域に属する前記複数の発光素子の前記行方向における配列ピッチと、前記第2領域に属する前記複数の発光素子の前記行方向における配列ピッチと、が同じであり、
 前記第1領域および前記第2領域は、前記第1領域に属する前記複数の発光素子の前記行方向における配列ピッチのq/2倍(qは1以上の奇数)のずれ量でもって、前記行方向にずれた状態で重なっている、上記態様(13)に記載の発光装置。
(14) the predetermined direction is the row direction;
The arrangement pitch in the row direction of the plurality of light emitting elements belonging to the first region is the same as the arrangement pitch in the row direction of the plurality of light emitting elements belonging to the second region,
The first region and the second region are arranged in the row with a shift amount of q/2 times the arrangement pitch in the row direction of the plurality of light emitting elements belonging to the first region (q is an odd number of 1 or more). The light emitting device according to the above aspect (13), wherein the light emitting devices overlap in a direction shifted from each other.
(15)前記所定の方向は、前記列方向であり、
 前記第1領域に属する前記複数の発光素子の前記列方向における配列ピッチと、前記第2領域に属する前記複数の発光素子の前記列方向における配列ピッチと、が同じであり、
 前記第1領域および前記第2領域は、前記第1領域に属する前記複数の発光素子の前記列方向における配列ピッチのr/2倍(rは1以上の奇数)のずれ量でもって、前記列方向にずれた状態で重なっている、上記態様(13)または(14)に記載の発光装置。
(15) the predetermined direction is the column direction;
The arrangement pitch in the column direction of the plurality of light emitting elements belonging to the first region is the same as the arrangement pitch in the column direction of the plurality of light emitting elements belonging to the second region,
The first region and the second region are arranged so that the plurality of light emitting elements belonging to the first region are separated from each other in the row by r/2 times the arrangement pitch in the row direction (r is an odd number of 1 or more). The light emitting devices according to the above aspect (13) or (14), which overlap in a state shifted in the direction.
(16)複数の第1発光素子を、半導体ウエハから一つの方向に沿って取り出すとともに取り出したときの配置状態を保持して、基体上の第1領域に配置する第1工程と、
 複数の第2発光素子を、前記半導体ウエハから前記一つの方向と異なる方向に沿って取り出すとともに取り出したときの配置状態を保持して、前記基体上の第2領域に配置する第2工程と、を備え、
 前記第2工程において、前記第1領域および前記第2領域が所定の方向にずれた状態で重なるように、前記複数の第2発光素子を前記第2領域に配置する発光装置の製造方法。
(16) a first step of taking out the plurality of first light emitting elements from the semiconductor wafer along one direction, maintaining the arrangement state when taken out, and placing them in a first region on the base;
a second step of taking out a plurality of second light emitting elements from the semiconductor wafer along a direction different from the one direction, maintaining the arrangement state when taken out, and placing them in a second region on the base; Equipped with
In the second step, the plurality of second light emitting elements are arranged in the second region so that the first region and the second region overlap in a predetermined direction.
(17)複数の第1発光素子を、半導体ウエハから一つの方向に沿って取り出すとともに取り出したときの配置状態を保持して、基体上の第1領域に配置する第1工程と、
 複数の第2発光素子を、前記半導体ウエハから前記一つの方向に沿って取り出すとともに取り出したときの配置状態を保持して、前記基体上の第2領域に配置する第2工程と、を備え、
 前記第2工程において、前記第1領域に対して前記第2領域が所定の回転角度で回転した状態であり、かつ前記第1領域および前記第2領域が所定の方向にずれた状態で、前記第1領域および前記第2領域が重なるように、前記複数の第2発光素子を前記第2領域に配置する発光装置の製造方法。
(17) a first step of taking out the plurality of first light emitting elements from the semiconductor wafer along one direction, maintaining the arrangement state when taken out, and placing them in a first region on the base;
a second step of taking out a plurality of second light emitting elements from the semiconductor wafer along the one direction, maintaining the arrangement state when taken out, and placing them in a second region on the base;
In the second step, the second region is rotated at a predetermined rotation angle with respect to the first region, and the first region and the second region are shifted in a predetermined direction; A method for manufacturing a light emitting device, wherein the plurality of second light emitting elements are arranged in the second region so that the first region and the second region overlap.
(18)前記所定の回転角度は、90°、180°、または270°である、上記態様(17)に記載の発光装置の製造方法。 (18) The method for manufacturing a light emitting device according to aspect (17), wherein the predetermined rotation angle is 90°, 180°, or 270°.
 本開示の発光装置によれば、輝度および色調のばらつきが抑制された発光装置を提供することができる。 According to the light emitting device of the present disclosure, it is possible to provide a light emitting device in which variations in brightness and color tone are suppressed.
 1 発光装置
 2 基体
 3,3a,3b,3c,3d 発光素子
 7 基板
 9,9a,9b 境界線上の小領域
 10 基板
 11 発光素子ウエハ
 12 位置決めマーク
 13 接続パッド
 22 絶縁基体
 23 駆動トランジスタ
 25 接続導体
 22 絶縁基体
 22a,22b,22c 絶縁層
 23 駆動トランジスタ
 24a~24c 内部配線
 24a~24c アノード電極配線
 25a 透明導電層
 26 カソード電極配線
 26a 透明導電層
 31 アノード端子
 32 ソース電極
 32 カソード端子
 40 電源端子
 41 第1電源端子
 41 第2電源端子
 42 第1電源電圧
 51 接続導体層
 61 アノード端子
 62 カソード端子
 122a 第1面
 122B 第2面
 A1 第1領域
 A2 第2領域
 A2 距離
 C2 取り外し領域
 L1 第1方向Xのスタンプピッチ
 L2 第2方向Yのスタンプピッチ
 L3 第1方向Xの素子ピッチ
 L4 第2方向Yの素子ピッチ
 ST スタンプ
 X 第1方向
 Y 第2方向
 VSS 第2電源電圧
 ΔX,ΔY 距離
1 Light-emitting device 2 Base 3, 3a, 3b, 3c, 3d Light-emitting element 7 Substrate 9, 9a, 9b Small area on the boundary line 10 Substrate 11 Light-emitting element wafer 12 Positioning mark 13 Connection pad 22 Insulating base 23 Drive transistor 25 Connection conductor 22 Insulating base 22a, 22b, 22c Insulating layer 23 Drive transistor 24a-24c Internal wiring 24a-24c Anode electrode wiring 25a Transparent conductive layer 26 Cathode electrode wiring 26a Transparent conductive layer 31 Anode terminal 32 Source electrode 32 Cathode terminal 40 Power supply terminal 41 First Power supply terminal 41 Second power supply terminal 42 First power supply voltage 51 Connection conductor layer 61 Anode terminal 62 Cathode terminal 122a First surface 122B Second surface A1 First area A2 Second area A2 Distance C2 Removal area L1 Stamp in first direction X Pitch L2 Stamp pitch in second direction Y L3 Element pitch in first direction X L4 Element pitch in second direction Y ST Stamp X First direction Y Second direction VSS Second power supply voltage ΔX, ΔY Distance

Claims (18)

  1.  基体と、
     前記基体上に位置し、所定の方向に沿って配列された複数の発光素子と、を備え、
     前記複数の発光素子のうちの一部が第1領域を構成し、
     前記複数の発光素子の他の一部が第2領域を構成し、
     前記第1領域の発光素子と前記第2領域の発光素子とは、発光特性の分布状態が異なり、
     前記第1領域および前記第2領域は、前記所定の方向にずれた状態で重なっている、発光装置。
    A base body;
    a plurality of light emitting elements located on the base and arranged along a predetermined direction,
    Some of the plurality of light emitting elements constitute a first region,
    Another part of the plurality of light emitting elements constitutes a second region,
    The light emitting device in the first region and the light emitting device in the second region have different distribution states of light emitting characteristics,
    The light emitting device, wherein the first region and the second region overlap with each other while being shifted in the predetermined direction.
  2.  前記第1領域内の前記発光素子と、前記第2領域内の前記発光素子とは、前記所定の方向に沿って交互に位置している、請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the light emitting elements in the first region and the light emitting elements in the second region are alternately located along the predetermined direction.
  3.  前記第1領域内の前記発光素子と、前記第2領域内の前記発光素子とは、1つの半導体ウエハから異なる方向に取り出されるとともに取り出されたときの配置状態を保持している、請求項1または2に記載の発光装置。 1 . The light emitting device in the first region and the light emitting device in the second region are taken out in different directions from one semiconductor wafer and maintain the arrangement state when taken out. Or the light emitting device according to 2.
  4.  前記第1領域内の前記発光素子と、前記第2領域内の前記発光素子とは、1つの半導体ウエハから一つの方向に沿って取り出されるとともに取り出されたときの配置状態を保持しており、
     前記第1領域に対して前記第2領域が180°回転した状態で、前記第1領域および前記第2領域が重なっている、請求項1または2に記載の発光装置。
    The light emitting element in the first region and the light emitting element in the second region are taken out along one direction from one semiconductor wafer and maintain the arrangement state when taken out,
    The light emitting device according to claim 1 or 2, wherein the first region and the second region overlap with each other with the second region rotated by 180 degrees with respect to the first region.
  5.  前記発光特性は、輝度および発光波長の少なくとも一方を含む、請求項1~4のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 4, wherein the light emitting characteristics include at least one of brightness and light emission wavelength.
  6.  前記第1領域に属する前記複数の発光素子の前記所定の方向における配列ピッチと、前記第2領域に属する前記複数の発光素子の前記所定の方向における配列ピッチと、が同じであり、
     前記第1領域および前記第2領域は、前記第1領域に属する前記複数の発光素子の前記所定の方向における配列ピッチのp/2倍(pは1以上の奇数)のずれ量でもって、前記所定の方向にずれた状態で重なっている、請求項1~5のいずれか1項に記載の発光装置。
    The arrangement pitch in the predetermined direction of the plurality of light emitting elements belonging to the first region is the same as the arrangement pitch in the predetermined direction of the plurality of light emitting elements belonging to the second region,
    The first region and the second region have a deviation amount of p/2 times (p is an odd number of 1 or more) the arrangement pitch of the plurality of light emitting elements belonging to the first region in the predetermined direction. The light emitting device according to claim 1, wherein the light emitting devices overlap in a predetermined direction.
  7.  基体と、
     前記基体上に位置し、行列状に配列された複数の発光素子と、を備え、
     前記複数の発光素子のうちの一部が第1領域を構成し、前記複数の発光素子の他の一部が第2領域を形成し、
     前記第1領域の発光素子と前記第2領域に発光素子とは、発光特性の分布状態が異なり、
     前記第1領域および前記第2領域は、所定の方向にずれた状態で重なっている、発光装置。
    A base body;
    a plurality of light emitting elements located on the base and arranged in a matrix,
    A part of the plurality of light emitting elements constitutes a first region, and another part of the plurality of light emitting elements forms a second region,
    The light emitting element in the first region and the light emitting element in the second region have different distribution states of light emitting characteristics,
    The first region and the second region overlap each other in a predetermined direction.
  8.  前記第1領域内の前記発光素子と、前記第2領域内の前記発光素子とは、交互に位置するとともに全体として行列状に配列されている、請求項7に記載の発光装置。 The light emitting device according to claim 7, wherein the light emitting elements in the first region and the light emitting elements in the second region are alternately located and arranged in a matrix as a whole.
  9.  前記第1領域内の前記発光素子と、前記第2領域内の前記発光素子とは、1つの半導体ウエハの異なる部位から取り出されるとともに取り出されたときの配置状態を保持している、請求項7または8に記載の発光装置。 7. The light emitting element in the first region and the light emitting element in the second region are taken out from different parts of one semiconductor wafer and maintain the arrangement state when taken out. or 8. The light emitting device according to 8.
  10.  前記第1領域内の前記発光素子と、前記第2領域内の前記発光素子とは、1つの半導体ウエハの所定部位から同じ配列方向に沿って取り出されるとともに取り出されたときの配置状態を保持しており、
     前記第1領域に対して前記第2領域が所定の回転角度で回転した状態で、前記第1領域および前記第2領域が重なっている、請求項7または8に記載の発光装置。
    The light emitting device in the first region and the light emitting device in the second region are taken out along the same arrangement direction from a predetermined portion of one semiconductor wafer, and maintain the arrangement state when taken out. and
    The light emitting device according to claim 7 or 8, wherein the first region and the second region overlap with each other with the second region rotated at a predetermined rotation angle with respect to the first region.
  11.  前記所定の回転角度は、90°、180°、または270°である、請求項10に記載の発光装置。 The light emitting device according to claim 10, wherein the predetermined rotation angle is 90°, 180°, or 270°.
  12.  前記発光特性は、輝度および発光波長の少なくとも一方を含む、請求項7~11のいずれか1つに記載の発光装置。 The light emitting device according to any one of claims 7 to 11, wherein the light emitting characteristics include at least one of brightness and light emission wavelength.
  13.  前記所定の方向は、行方向および/または列方向である、請求項7~12のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 7 to 12, wherein the predetermined direction is a row direction and/or a column direction.
  14.  前記所定の方向は、前記行方向であり、
     前記第1領域に属する前記複数の発光素子の前記行方向における配列ピッチと、前記第2領域に属する前記複数の発光素子の前記行方向における配列ピッチと、が同じであり、
     前記第1領域および前記第2領域は、前記第1領域に属する前記複数の発光素子の前記行方向における配列ピッチのq/2倍(qは1以上の奇数)のずれ量でもって、前記行方向にずれた状態で重なっている、請求項13に記載の発光装置。
    The predetermined direction is the row direction,
    The arrangement pitch in the row direction of the plurality of light emitting elements belonging to the first region is the same as the arrangement pitch in the row direction of the plurality of light emitting elements belonging to the second region,
    The first region and the second region are arranged in the row with a shift amount of q/2 times the arrangement pitch in the row direction of the plurality of light emitting elements belonging to the first region (q is an odd number of 1 or more). 14. The light emitting device according to claim 13, wherein the light emitting devices overlap in a direction shifted state.
  15.  前記所定の方向は、前記列方向であり、
     前記第1領域に属する前記複数の発光素子の前記列方向における配列ピッチと、前記第2領域に属する前記複数の発光素子の前記列方向における配列ピッチと、が同じであり、
     前記第1領域および前記第2領域は、前記第1領域に属する前記複数の発光素子の前記列方向における配列ピッチのr/2倍(rは1以上の奇数)のずれ量でもって、前記列方向にずれた状態で重なっている、請求項13または14に記載の発光装置。
    the predetermined direction is the column direction,
    The arrangement pitch in the column direction of the plurality of light emitting elements belonging to the first region is the same as the arrangement pitch in the column direction of the plurality of light emitting elements belonging to the second region,
    The first region and the second region are arranged so that the plurality of light emitting elements belonging to the first region are separated from each other in the row by r/2 times the arrangement pitch in the row direction (r is an odd number of 1 or more). The light emitting device according to claim 13 or 14, wherein the light emitting devices overlap in a state shifted in a direction.
  16.  複数の第1発光素子を、半導体ウエハから一つの方向に沿って取り出すとともに取り出したときの配置状態を保持して、基体上の第1領域に配置する第1工程と、
     複数の第2発光素子を、前記半導体ウエハから前記一つの方向と異なる方向に沿って取り出すとともに取り出したときの配置状態を保持して、前記基体上の第2領域に配置する第2工程と、を備え、
     前記第2工程において、前記第1領域および前記第2領域が所定の方向にずれた状態で重なるように、前記複数の第2発光素子を前記第2領域に配置する発光装置の製造方法。
    a first step of taking out the plurality of first light emitting elements from the semiconductor wafer along one direction, maintaining the arrangement state when taken out, and placing them in a first region on the base;
    a second step of taking out a plurality of second light emitting elements from the semiconductor wafer along a direction different from the one direction, maintaining the arrangement state when taken out, and placing them in a second region on the base; Equipped with
    In the second step, the plurality of second light emitting elements are arranged in the second region so that the first region and the second region overlap in a predetermined direction.
  17.  複数の第1発光素子を、半導体ウエハから一つの方向に沿って取り出すとともに取り出したときの配置状態を保持して、基体上の第1領域に配置する第1工程と、
     複数の第2発光素子を、前記半導体ウエハから前記一つの方向に沿って取り出すとともに取り出したときの配置状態を保持して、前記基体上の第2領域に配置する第2工程と、を備え、
     前記第2工程において、前記第1領域に対して前記第2領域が所定の回転角度で回転した状態であり、かつ前記第1領域および前記第2領域が所定の方向にずれた状態で、前記第1領域および前記第2領域が重なるように、前記複数の第2発光素子を前記第2領域に配置する発光装置の製造方法。
    a first step of taking out the plurality of first light emitting elements from the semiconductor wafer along one direction, maintaining the arrangement state when taken out, and placing them in a first region on the base;
    a second step of taking out a plurality of second light emitting elements from the semiconductor wafer along the one direction, maintaining the arrangement state when taken out, and placing them in a second region on the base;
    In the second step, the second region is rotated at a predetermined rotation angle with respect to the first region, and the first region and the second region are shifted in a predetermined direction; A method for manufacturing a light emitting device, wherein the plurality of second light emitting elements are arranged in the second region so that the first region and the second region overlap.
  18.  前記所定の回転角度は、90°、180°、または270°である、請求項17に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 17, wherein the predetermined rotation angle is 90°, 180°, or 270°.
PCT/JP2023/019032 2022-05-27 2023-05-22 Light-emitting device and method for producing light-emitting device WO2023228918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-086822 2022-05-27
JP2022086822 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023228918A1 true WO2023228918A1 (en) 2023-11-30

Family

ID=88919279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019032 WO2023228918A1 (en) 2022-05-27 2023-05-22 Light-emitting device and method for producing light-emitting device

Country Status (1)

Country Link
WO (1) WO2023228918A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518208A (en) * 2009-02-17 2012-08-09 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー Chiplet driver pair for 2D display
JP2016001704A (en) * 2014-06-12 2016-01-07 三菱電機株式会社 Image display device, large size display and manufacturing method of image display device
JP2017054092A (en) * 2015-09-11 2017-03-16 株式会社東芝 Display panel, display device and display panel manufacturing method
US20180240378A1 (en) * 2017-02-21 2018-08-23 Shenzhen China Star Optoelectronics Technology Co., Ltd. Micro light-emitting diode display panel and manufacturing method
US20190157501A1 (en) * 2017-11-20 2019-05-23 Lg Display Co., Ltd. Display device and method of manufacturing the same
JP2019534565A (en) * 2016-10-24 2019-11-28 グロ アーベーGlo Ab Indium gallium nitride red light emitting diode and manufacturing method thereof
WO2019243286A1 (en) * 2018-06-22 2019-12-26 Basf Se Photostable cyano-substituted boron-dipyrromethene dye as green emitter for display and illumination applications
JP2020174128A (en) * 2019-04-10 2020-10-22 大日本印刷株式会社 Holding member, transfer member, manufacturing method of transfer member, and manufacturing method of light emitting substrate
WO2022071371A1 (en) * 2020-09-30 2022-04-07 信越化学工業株式会社 Lifting method for optical device, lifting device, production method for receptor substrate to which optical device has been transferred, and display production method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518208A (en) * 2009-02-17 2012-08-09 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー Chiplet driver pair for 2D display
JP2016001704A (en) * 2014-06-12 2016-01-07 三菱電機株式会社 Image display device, large size display and manufacturing method of image display device
JP2017054092A (en) * 2015-09-11 2017-03-16 株式会社東芝 Display panel, display device and display panel manufacturing method
JP2019534565A (en) * 2016-10-24 2019-11-28 グロ アーベーGlo Ab Indium gallium nitride red light emitting diode and manufacturing method thereof
US20180240378A1 (en) * 2017-02-21 2018-08-23 Shenzhen China Star Optoelectronics Technology Co., Ltd. Micro light-emitting diode display panel and manufacturing method
US20190157501A1 (en) * 2017-11-20 2019-05-23 Lg Display Co., Ltd. Display device and method of manufacturing the same
WO2019243286A1 (en) * 2018-06-22 2019-12-26 Basf Se Photostable cyano-substituted boron-dipyrromethene dye as green emitter for display and illumination applications
JP2020174128A (en) * 2019-04-10 2020-10-22 大日本印刷株式会社 Holding member, transfer member, manufacturing method of transfer member, and manufacturing method of light emitting substrate
WO2022071371A1 (en) * 2020-09-30 2022-04-07 信越化学工業株式会社 Lifting method for optical device, lifting device, production method for receptor substrate to which optical device has been transferred, and display production method

Similar Documents

Publication Publication Date Title
US20230335577A1 (en) Display device and method of fabricating the same
US11798954B2 (en) Display device
KR20180071743A (en) Light emitting diode chip and light emitting diode display apparatus comprising the same
CN114639697A (en) Display device
KR20200076581A (en) Display module and manufacturing method of display module
US11436950B2 (en) Stretchable display device
US20160172562A1 (en) Method for forming Circuit-on-Wire
WO2020203702A1 (en) Display device
US20220399473A1 (en) Method of manufacturing display device
KR20190114738A (en) Electronic device
CN114902409A (en) Display device
WO2023228918A1 (en) Light-emitting device and method for producing light-emitting device
KR20220009249A (en) Display device and method of manufacturing the same
US20220037303A1 (en) Display device
CN112771674B (en) Electronic device substrate, manufacturing method thereof and electronic device
WO2024004541A1 (en) Light-emitting device
KR20220079170A (en) Light emitting element and display device
CN111162102A (en) Organic light emitting diode display device
US11948908B2 (en) Electronic device and manufacturing method of electronic device
US20220399320A1 (en) Display device
US20220399319A1 (en) Display device and method for manufacturing the same
US20230128273A1 (en) Thin film transistor substrate and display module comprising same
US20230005962A1 (en) Display device
KR101931315B1 (en) Method of manufacturing a display having a hybrid pixel structure
KR20240031459A (en) Lighting inspection method for display panel and manufacturing method for display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811790

Country of ref document: EP

Kind code of ref document: A1