WO2023228718A1 - 絶縁抵抗検出回路 - Google Patents

絶縁抵抗検出回路 Download PDF

Info

Publication number
WO2023228718A1
WO2023228718A1 PCT/JP2023/017394 JP2023017394W WO2023228718A1 WO 2023228718 A1 WO2023228718 A1 WO 2023228718A1 JP 2023017394 W JP2023017394 W JP 2023017394W WO 2023228718 A1 WO2023228718 A1 WO 2023228718A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
insulation resistance
switch
terminal
detection circuit
Prior art date
Application number
PCT/JP2023/017394
Other languages
English (en)
French (fr)
Inventor
功司 吉野
大治郎 有澤
隆資 門田
文智 井腰
貴志 廣部
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023228718A1 publication Critical patent/WO2023228718A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present disclosure relates to an insulation resistance detection circuit for detecting insulation resistance in a path through which current from a battery flows.
  • Patent Document 1 describes a power supply device in which a switch is connected to some of the plurality of resistors, and insulation resistance can be detected by varying the resistance values of the plurality of resistors using the switch.
  • Patent Document 1 requires voltage measurement at two locations to detect insulation resistance.
  • a voltage measurement unit such as a microcomputer is used to measure the voltage applied by a high-voltage battery at two locations.
  • two voltage measurement units are required. This is because when one voltage measurement section measures voltages at two locations, the potential difference at one of the two locations becomes large and may exceed the withstand voltage performance of the voltage measurement section. For this reason, when performing voltage measurement at two locations, voltage measurement sections with different potentials are required, which increases the size and cost of the circuit for detecting insulation resistance.
  • the present disclosure provides an insulation resistance detection circuit that can detect insulation resistance by measuring voltage at one location.
  • An insulation resistance detection circuit is an insulation resistance detection circuit for detecting insulation resistance in a path through which a current from a battery flows, the insulation resistance detection circuit being one of a positive terminal and a negative terminal of the battery. and a ground, a second resistor, a third resistor, and a third resistor connected between the other terminal of the positive terminal and the negative terminal and the ground, and connected in series with each other.
  • a fourth resistor a voltage measuring unit that measures a voltage applied to any one of the second resistor, the third resistor, and the fourth resistor; and a first switch, the first switch , the second resistor, the third resistor, and the fourth resistor are connected in parallel with a resistor whose voltage is measured by the voltage measuring section.
  • insulation resistance can be detected by measuring voltage at one location.
  • FIG. 1 is a configuration diagram showing an example of an insulation resistance detection circuit according to Embodiment 1.
  • FIG. 7 is a configuration diagram showing an example of an insulation resistance detection circuit according to a modification of the first embodiment.
  • FIG. FIG. 2 is a configuration diagram showing an example of an insulation resistance detection circuit according to a second embodiment.
  • FIG. 7 is a configuration diagram showing an example of an insulation resistance detection circuit according to a modification of the second embodiment.
  • Embodiment 1 Insulation resistance detection circuit 1 in Embodiment 1 will be described below with reference to FIG. 1.
  • FIG. 1 is a configuration diagram showing an example of an insulation resistance detection circuit 1 according to the first embodiment.
  • FIG. 1 shows a battery Bat and insulation resistances Riso1 and Riso2 in a path through which a current from the battery Bat flows.
  • the battery Bat may be a component of the insulation resistance detection circuit 1.
  • the insulation resistance detection circuit 1 is installed, for example, in a vehicle such as an electric vehicle that uses electric power for propulsion.
  • a vehicle such as an electric vehicle is equipped with a high-voltage battery Bat, and power is supplied from the battery Bat to a drive load such as a motor to propel the vehicle such as an electric vehicle.
  • the battery Bat is a battery for HV, PHEV, EV, or the like.
  • Insulation resistance refers to the insulation between the path through which current flows and the ground, and if the insulation resistance becomes low, electrical leakage may occur, which may result in electric shock or fire. Therefore, by detecting the insulation resistance, a dangerous state of the vehicle can be detected in advance.
  • FIG. 1 shows an insulation resistance Riso1 between a path connected to the positive terminal t1 of the battery Bat and the ground GND, and an insulation resistance Riso2 between the path connected to the negative terminal t2 of the battery Bat and the ground GND. It is shown.
  • the ground GND is, for example, the chassis of the vehicle.
  • the insulation resistance detection circuit 1 is a circuit for detecting insulation resistances Riso1 and Riso2 in the path through which the current from the battery Bat flows.
  • the insulation resistance detection circuit 1 includes resistors R1, R2, R3, and R4, a voltage measurement section 10, an insulation resistance calculation section 20, and a switch SW1.
  • the resistor R1 is a resistor connected between one terminal (specifically, a path connected to one terminal) of the positive terminal t1 and the negative terminal t2 of the battery Bat and the ground GND.
  • Resistor R1 is an example of a first resistor. In the first embodiment, one terminal is the positive terminal t1 and the other terminal is the negative terminal t2. That is, in the first embodiment, the resistor R1 is connected between the positive terminal t1 and the ground GND.
  • Resistors R2, R3, and R4 are connected between the other terminal (specifically, the path connected to the other terminal) of the positive terminal t1 and the negative terminal t2 and the ground GND, and are connected in series with each other. It is resistance.
  • the resistor R2 is an example of a second resistor
  • the resistor R3 is an example of a third resistor
  • the resistor R4 is an example of a fourth resistor.
  • resistors R2, R3, and R4 are connected between negative terminal t2 and ground GND, and are connected in series from ground GND to negative terminal t2 in the order of resistor R2, resistor R3, and resistor R4. . That is, the resistor R2 is connected between the ground GND and the resistor R3, the resistor R3 is connected between the resistor R2 and the resistor R4, and the resistor R4 is connected between the resistor R3 and the negative terminal t2.
  • the voltage measurement unit 10 measures the voltage applied to any one of the resistors R2, R3, and R4. In the first embodiment, the voltage measurement unit 10 measures the voltage V4 applied to the resistor R4.
  • the voltage measurement unit 10 is, for example, an AD converter, and is realized by a microcontroller (MCU) or the like.
  • the switch SW1 is connected in parallel to one of the resistors R2, R3, and R4, which is different from the resistor whose voltage is measured by the voltage measurement unit 10.
  • the switch SW1 is an example of a first switch.
  • switch SW1 is connected in parallel with resistor R3.
  • the switch SW1 is, for example, an N-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • the switch SW1 is controlled by the insulation resistance calculation section 20.
  • the insulation resistance calculation unit 20 calculates the voltage from the voltages measured by the voltage measurement unit 10 in two states when the switch SW1 is in the on state and in the off state, and the resistance values of the resistors R1, R2, R3, and R4. , calculate the values of the insulation resistances Riso1 and Riso2 using a predetermined algorithm.
  • the insulation resistance calculation unit 20 is realized by a microcomputer or the like.
  • the predetermined algorithm is not particularly limited, the two unknowns, insulation resistances Riso1 and Riso2, can be obtained from two equations consisting of the voltages in the two states and the resistance values of the resistors R1, R2, R3, and R4. can.
  • each of the resistors R1, R2, R3, and R4 may be composed of one or more resistive elements.
  • the resistor R2 or R3 may be set to a large resistance value in order to reduce the voltage applied to the resistor R4 in accordance with the withstand voltage performance of the voltage measuring section 10, but in order to obtain a large resistance value, the resistor R2 or R3 may be set to a large resistance value. may be configured.
  • switch SW1 may be connected in parallel with the resistor R2.
  • the voltage measurement unit 10 may measure the voltage applied to the resistor R3. However, in this case, switch SW1 is connected in parallel with resistor R4.
  • the insulation resistance detection circuit 1 is a circuit for detecting the insulation resistances Riso1 and Riso2 in the path through which the current from the battery Bat flows, and is a circuit for detecting the insulation resistances Riso1 and Riso2 of the positive terminal t1 and the negative terminal t2 of the battery Bat.
  • a resistor R1 is connected between one terminal and the ground GND, and resistors R2, R3 and R4, a voltage measuring unit 10 that measures the voltage applied to one of the resistors R2, R3, and R4, and a switch SW1. It is connected in parallel with a resistor different from the resistor whose voltage is measured by the measuring unit 10 .
  • the switch SW1 is connected in series with the resistors R2, R3, and R4, when the switch SW1 is in the OFF state, no current flows through the resistors R2, R3, and R4, and the voltage measuring section 10 is connected to the resistors R2, R3, and R4. It is not possible to measure the voltage across either resistor R3 or R4. Therefore, in this case, a separate voltage measuring section is required between the positive electrode terminal t1 and the ground GND.
  • the switch SW1 is connected in parallel to a resistor (for example, resistor R3) that is different from the resistor whose voltage is measured by the voltage measurement unit 10 among the resistors R2, R3, and R4.
  • the switch SW1 Even when the switch SW1 is in the off state, current flows through the resistors R2, R3, and R4, and the voltage measurement unit 10 can measure the voltage applied to any one of the resistors R2, R3, and R4 (for example, the resistor R4). can. Therefore, the insulation resistances Riso1 and Riso2 can be detected by measuring the voltage at one location.
  • the ground GND is connected to the other terminal of the positive terminal t1 and the negative terminal t2 (for example, the negative terminal It is no longer connected to the terminal t2), and the potential of the ground GND fluctuates greatly. Since the potential of the ground GND (chassis) can serve as a reference potential for various devices in the vehicle, if the potential of the ground GND fluctuates, the operations of the various devices may become unstable. Therefore, it is necessary to connect a separate resistor between the ground GND and the other terminal to suppress fluctuations in the potential of the ground GND.
  • one terminal is the positive terminal t1
  • the other terminal is the negative terminal t2
  • the resistors R2, R3, and R4 are connected in series from the ground GND to the negative terminal t2 in the order of resistor R2, resistor R3, and resistor R4.
  • the voltage measuring unit 10 may measure the voltage applied to the resistor R4.
  • the voltage measurement section 10 is realized by a microcomputer, etc., but in the first embodiment, when the reference potential of the microcomputer is set to the potential of the negative terminal t2, the voltage applied to the resistor R4 is also based on the potential of the negative terminal t2. It can be measured by
  • the switch SW1 may be connected in parallel with the resistor R3.
  • the switch SW1 is realized by an N-channel MOSFET or the like.
  • the potential of the source of the switch SW1 is as close as possible to the potential of the negative terminal t2. Therefore, in the first embodiment, by connecting the switch SW1 in parallel with the resistor R3, the potential of the source can be brought closer to the potential of the negative terminal t2 than when the switch SW1 is connected in parallel with the resistor R2. I can do it.
  • FIG. 2 is a configuration diagram showing an example of an insulation resistance detection circuit 1a according to a modification of the first embodiment.
  • FIG. 2 also shows a battery Bat and insulation resistances Riso1 and Riso2 in a path through which a current from the battery Bat flows.
  • the battery Bat may be a component of the insulation resistance detection circuit 1a.
  • the insulation resistance detection circuit 1a is a circuit for detecting insulation resistances Riso1 and Riso2 in the path through which the current from the battery Bat flows.
  • the insulation resistance detection circuit 1a includes resistors R1, R2, R3, and R4, a voltage measurement section 10, an insulation resistance calculation section 20, and a switch SW1.
  • one of the positive terminal t1 and the negative terminal t2 is the negative terminal t2, and the other terminal is the positive terminal t1.
  • the resistor R1 is connected between the negative terminal t2 and the ground GND.
  • the resistors R2, R3, and R4 are connected between the positive terminal t1 and the ground GND, and are connected in series from the positive terminal t1 to the ground GND in the order of the resistor R2, the resistor R3, and the resistor R4. That is, the resistor R2 is connected between the positive terminal t1 and the resistor R3, the resistor R3 is connected between the resistor R2 and the resistor R4, and the resistor R4 is connected between the resistor R3 and the ground GND.
  • the voltage measuring unit 10 measures the voltage applied to the resistor R4, and the switch SW1 is connected in parallel with the resistor R3.
  • one terminal is the negative terminal t2, the other terminal is the positive terminal t1, and the resistors R2, R3, and R4 are connected from the positive terminal t1 to the ground GND. , resistor R2, resistor R3, and resistor R4 are connected in series in this order, and the voltage measurement unit 10 measures the voltage applied to resistor R4.
  • the voltage measurement section 10 is realized by a microcomputer, etc., but in the modification of the first embodiment, when the reference potential of the microcomputer is set to the potential of the ground GND, the voltage applied to the resistor R4 is also set to the potential of the ground GND. It can be measured using a standard.
  • the switch SW1 may be connected in parallel with the resistor R3.
  • the switch SW1 is realized by an N-channel MOSFET or the like.
  • the potential of the source of the switch SW1 be as close as possible to the potential of the ground GND. Therefore, in the modification of the first embodiment, by connecting the switch SW1 in parallel with the resistor R3, the potential of the source of the switch SW1 is lowered to the ground GND than when the switch SW1 is connected in parallel with the resistor R2. The potential can be brought close to that of .
  • FIG. 3 is a configuration diagram showing an example of the insulation resistance detection circuit 2 according to the second embodiment.
  • FIG. 3 shows a battery Bat and insulation resistances Riso1 and Riso2 in a path through which a current from the battery Bat flows. Note that the battery Bat may be a component of the insulation resistance detection circuit 2.
  • the insulation resistance detection circuit 2 is a circuit for detecting insulation resistances Riso1 and Riso2 in the path through which the current from the battery Bat flows.
  • the insulation resistance detection circuit 2 includes resistors R1, R2, R3, R4, and R5, a voltage measurement section 10, an insulation resistance calculation section 20, and switches SW1 and SW2.
  • the insulation resistance detection circuit 2 includes a resistor R5 connected between one of the positive terminal t1 and the negative terminal t2 and the ground GND, and connected in series with the resistor R1.
  • Resistor R5 is an example of a fifth resistor.
  • one terminal is the positive terminal t1
  • the other terminal is the negative terminal t2. That is, in the second embodiment, the resistor R5 is connected between the positive terminal t1 and the ground GND, and is connected in series with the resistor R1.
  • the insulation resistance detection circuit 2 includes a switch SW2 connected in parallel to one of the resistors R1 and R5.
  • Switch SW2 is an example of a second switch.
  • switch SW2 is connected in parallel with resistor R5.
  • the switch SW2 is, for example, an N-channel MOSFET.
  • the switch SW2 is controlled by the insulation resistance calculation section 20.
  • the insulation resistance calculation unit 20 calculates the insulation resistances Riso1 and Riso2 using the voltages measured by the voltage measurement unit 10 when the switches SW1 and SW2 are switched to the on state and the off state, respectively. For example, the insulation resistance calculation unit 20 calculates that when the switch SW1 is on and the switch SW2 is on, when the switch SW1 is on and the switch SW2 is off, the switch SW1 is off and the switch SW2 is on. is in the on state, the insulation resistances Riso1 and Riso2 are calculated using voltages in two states: the switch SW1 is in the off state and the switch SW2 is in the off state.
  • the insulation resistance calculation unit 20 uses voltages in two states: when the switch SW1 is in the on state and the switch SW2 is in the off state, and when the switch SW1 is in the off state and the switch SW2 is in the on state. Calculate insulation resistances Riso1 and Riso2.
  • the predetermined algorithm is not particularly limited, the two unknowns, insulation resistances Riso1 and Riso2, are obtained from two equations consisting of the voltages in the two states and the resistance values of the resistors R1, R2, R3, R4, and R5. be able to.
  • each of the resistors R1, R2, R3, R4, and R5 may be composed of one or more resistive elements.
  • switch SW2 may be connected in parallel with the resistor R1.
  • the insulation resistance detection circuit 2 further includes a resistor R5 connected between one terminal and the ground GND and connected in series with the resistor R1, and a resistor R5 connected in series with the resistor R1.
  • the switch SW2 is connected in parallel with one of the resistors.
  • the voltage measuring section 10 is in two states. It is possible to increase the difference in voltage fluctuation between two states when measuring the voltage (for example, about 100 mV). In other words, the effects of noise and errors can be reduced, and the insulation resistances Riso1 and Riso2 can be detected more accurately.
  • the voltage measuring section 10 is realized by a microcomputer, etc., but in the second embodiment, as in the first embodiment, when the reference potential of the microcomputer is set to the potential of the negative terminal t2, the voltage applied to the resistor R4 is The voltage can also be measured based on the potential of the negative terminal t2. Also, in the second embodiment, as in the first embodiment, the switch SW1 (for example, an N-channel MOSFET) is connected in parallel with the resistor R3, so that the switch SW1 is connected in parallel with the resistor R2. , the potential of the source of the switch SW1 can be brought close to the potential of the negative terminal t2.
  • the switch SW1 for example, an N-channel MOSFET
  • FIG. 4 is a configuration diagram showing an example of an insulation resistance detection circuit 2a according to a modification of the second embodiment. Note that, in addition to the insulation resistance detection circuit 2a, FIG. 4 shows a battery Bat and insulation resistances Riso1 and Riso2 in a path through which a current from the battery Bat flows. Note that the battery Bat may be a component of the insulation resistance detection circuit 2a.
  • the insulation resistance detection circuit 2a is a circuit for detecting insulation resistances Riso1 and Riso2 in the path through which the current from the battery Bat flows.
  • the insulation resistance detection circuit 2a includes resistors R1, R2, R3, R4, and R5, a voltage measurement section 10, an insulation resistance calculation section 20, and switches SW1 and SW2.
  • one of the positive terminal t1 and the negative terminal t2 is the negative terminal t2, and the other terminal is the positive terminal t1.
  • resistors R1 and R5 are connected between the negative terminal t2 and the ground GND.
  • the resistors R2, R3, and R4 are connected between the positive terminal t1 and the ground GND, and are connected in series from the positive terminal t1 to the ground GND in the order of the resistor R2, the resistor R3, and the resistor R4. That is, the resistor R2 is connected between the positive terminal t1 and the resistor R3, the resistor R3 is connected between the resistor R2 and the resistor R4, and the resistor R4 is connected between the resistor R3 and the ground GND.
  • the voltage measuring section 10 measures the voltage applied to the resistor R4, and the switch SW1 is connected in parallel with the resistor R3.
  • the voltage measurement unit 10 is realized by a microcomputer, etc., but in the modified example of the second embodiment, as in the modified example of the first embodiment, when the reference potential of the microcomputer is set to the potential of the ground GND, a resistor is used. The voltage applied to R4 can also be measured with reference to the potential of the ground GND. Further, in the modification of the second embodiment, as in the modification of the first embodiment, the switch SW1 (for example, an N-channel MOSFET) is connected in parallel with the resistor R3, so that the switch SW1 is connected in parallel with the resistor R2. The potential of the source can be brought closer to the potential of the ground GND than when connected.
  • the switch SW1 for example, an N-channel MOSFET
  • the insulation resistance detection circuits 1, 1a, 2, and 2a include the insulation resistance calculation section 20; 20 may not be provided.
  • a circuit different from the insulation resistance detection circuits 1, 1a, 2, and 2a may calculate the insulation resistance using the voltages measured by the insulation resistance detection circuits 1, 1a, 2, and 2a.
  • the present disclosure can be applied to a device that detects insulation resistance in a path through which current flows from a high-voltage battery mounted on a vehicle or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

バッテリ(Bat)からの電流が流れる経路における絶縁抵抗(Riso1およびRiso2)を検出するための絶縁抵抗検出回路(1)は、バッテリ(Bat)の正極端子(t1)および負極端子(t2)のうちの一方の端子とグランド(GND)との間に接続された第1抵抗(R1)と、正極端子(t1)および負極端子(t2)のうちの他方の端子とグランド(GND)との間に接続され、互いに直列接続された第2抵抗(R2)、第3抵抗(R3)および第4抵抗(R4)と、第2抵抗(R2)、第3抵抗(R3)および第4抵抗(R4)のうちのいずれかの抵抗にかかる電圧を計測する電圧計測部(10)と、第1スイッチ(SW1)と、を備え、第1スイッチ(SW1)は、第2抵抗(R2)、第3抵抗(R3)および第4抵抗(R4)のうちの、電圧計測部(10)によって電圧が計測される抵抗とは異なる抵抗と並列に接続される。

Description

絶縁抵抗検出回路
 本開示は、バッテリからの電流が流れる経路における絶縁抵抗を検出するための絶縁抵抗検出回路に関する。
 特許文献1には、複数の抵抗のうちの一部の抵抗にスイッチが接続され、当該スイッチによって複数の抵抗の抵抗値を可変とすることで絶縁抵抗を検出できる電源装置が記載されている。
特開2010-19603号公報
 しかしながら、特許文献1に記載された装置では、絶縁抵抗を検出するのに2箇所での電圧計測が必要となっている。例えば高電圧のバッテリによって印加される電圧を2箇所で計測する場合に、マイコンなどの電圧計測部を用いるときには、2つの電圧計測部が必要となる。1つの電圧計測部で2箇所の電圧を計測する場合には、2箇所のうちの一方の電位差が大きくなり、電圧計測部の耐圧性能を超えてしまうおそれがあるためである。このため、2箇所での電圧計測を行う場合には、それぞれ電位の異なる電圧計測部が必要となり、絶縁抵抗を検出するための回路が大型化および高コスト化してしまう。
 そこで、本開示は、1箇所での電圧計測によって絶縁抵抗を検出できる絶縁抵抗検出回路を提供する。
 本開示の一態様に係る絶縁抵抗検出回路は、バッテリからの電流が流れる経路における絶縁抵抗を検出するための絶縁抵抗検出回路であって、前記バッテリの正極端子および負極端子のうちの一方の端子とグランドとの間に接続された第1抵抗と、前記正極端子および前記負極端子のうちの他方の端子と前記グランドとの間に接続され、互いに直列接続された第2抵抗、第3抵抗および第4抵抗と、前記第2抵抗、前記第3抵抗および前記第4抵抗のうちのいずれかの抵抗にかかる電圧を計測する電圧計測部と、第1スイッチと、を備え、前記第1スイッチは、前記第2抵抗、前記第3抵抗および前記第4抵抗のうちの、前記電圧計測部によって電圧が計測される抵抗とは異なる抵抗と並列に接続される。
 本開示の一態様に係る絶縁抵抗検出回路によれば、1箇所での電圧計測によって絶縁抵抗を検出できる。
実施の形態1に係る絶縁抵抗検出回路の一例を示す構成図である。 実施の形態1の変形例に係る絶縁抵抗検出回路の一例を示す構成図である。 実施の形態2に係る絶縁抵抗検出回路の一例を示す構成図である。 実施の形態2の変形例に係る絶縁抵抗検出回路の一例を示す構成図である。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態などは、一例であり、本開示を限定する主旨ではない。
 (実施の形態1)
 以下、実施の形態1における絶縁抵抗検出回路1について図1を用いて説明する。
 図1は、実施の形態1に係る絶縁抵抗検出回路1の一例を示す構成図である。なお、図1には、絶縁抵抗検出回路1の他にバッテリBat、ならびに、バッテリBatからの電流が流れる経路における絶縁抵抗Riso1およびRiso2が示されている。なお、バッテリBatは、絶縁抵抗検出回路1の構成要素であってもよい。
 絶縁抵抗検出回路1は、例えば、推進駆動に電力が用いられる電気自動車などの車両に搭載される。電気自動車などの車両には、高電圧のバッテリBatが搭載され、バッテリBatからモータなどの駆動負荷に電力が供給されることで、電気自動車などの車両の推進駆動が行われる。バッテリBatは、HV、PHEVまたはEVなどのバッテリである。
 絶縁抵抗とは、電流が流れる経路における経路とグランドとの間の絶縁性のことであり、絶縁抵抗が低くなると漏電が発生し、感電および火災などが発生するおそれがある。このため、絶縁抵抗の検出が行われることで、車両の危険な状態を事前に検出することができる。図1には、バッテリBatの正極端子t1に接続された経路とグランドGNDとの間の絶縁抵抗Riso1、および、バッテリBatの負極端子t2に接続された経路とグランドGNDとの間の絶縁抵抗Riso2が示されている。グランドGNDは、例えば、車両のシャーシである。
 絶縁抵抗検出回路1は、バッテリBatからの電流が流れる経路における絶縁抵抗Riso1およびRiso2を検出するための回路である。絶縁抵抗検出回路1は、抵抗R1、R2、R3およびR4、電圧計測部10、絶縁抵抗算出部20ならびにスイッチSW1を備える。
 抵抗R1は、バッテリBatの正極端子t1および負極端子t2のうちの一方の端子(具体的には一方の端子に接続された経路)とグランドGNDとの間に接続された抵抗である。抵抗R1は、第1抵抗の一例である。実施の形態1では、一方の端子は正極端子t1であり、他方の端子は負極端子t2である。つまり、実施の形態1では、抵抗R1は、正極端子t1とグランドGNDとの間に接続される。
 抵抗R2、R3およびR4は、正極端子t1および負極端子t2のうちの他方の端子(具体的には他方の端子に接続された経路)とグランドGNDとの間に接続され、互いに直列接続された抵抗である。抵抗R2は第2抵抗の一例であり、抵抗R3は第3抵抗の一例であり、抵抗R4は第4抵抗の一例である。実施の形態1では、抵抗R2、R3およびR4は、負極端子t2とグランドGNDとの間に接続され、グランドGNDから負極端子t2へ、抵抗R2、抵抗R3、抵抗R4の順序で直列接続される。つまり、グランドGNDと抵抗R3との間に抵抗R2が接続され、抵抗R2と抵抗R4との間に抵抗R3が接続され、抵抗R3と負極端子t2との間に抵抗R4が接続される。
 電圧計測部10は、抵抗R2、R3およびR4のうちのいずれかの抵抗にかかる電圧を計測する。実施の形態1では、電圧計測部10は、抵抗R4にかかる電圧V4を計測する。電圧計測部10は、例えばADコンバータであり、マイコン(MCU:Micro Controller Unit)などによって実現される。
 スイッチSW1は、抵抗R2、R3およびR4のうちの、電圧計測部10によって電圧が計測される抵抗とは異なる抵抗と並列に接続される。スイッチSW1は、第1スイッチの一例である。実施の形態1では、スイッチSW1は、抵抗R3と並列に接続される。スイッチSW1は、例えばNチャネルMOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。例えば、スイッチSW1は、絶縁抵抗算出部20によって制御される。
 絶縁抵抗算出部20は、電圧計測部10によって計測された、スイッチSW1がオン状態の場合とオフ状態の場合とにおける2状態の電圧と、抵抗R1、R2、R3およびR4の各抵抗値とから、所定のアルゴリズムを用いて絶縁抵抗Riso1およびRiso2の値を算出する。絶縁抵抗算出部20は、マイコンなどによって実現される。なお、所定のアルゴリズムは特に限定されないが、2つの未知数である絶縁抵抗Riso1およびRiso2は、上記2状態の電圧ならびに抵抗R1、R2、R3およびR4の各抵抗値からなる2つの方程式から求めることができる。
 なお、抵抗R1、R2、R3およびR4は、それぞれ、1つ以上の抵抗素子から構成されていてもよい。例えば、抵抗R2またはR3は、抵抗R4にかかる電圧を電圧計測部10の耐圧性能に合わせて小さくするために、大きな抵抗値に設定され得るが、大きな抵抗値とするために複数の抵抗素子から構成されてもよい。
 なお、スイッチSW1は、抵抗R2と並列に接続されていてもよい。
 また、電圧計測部10は、抵抗R3にかかる電圧を計測してもよい。ただし、この場合には、スイッチSW1は抵抗R4と並列に接続される。
 以上説明したように、絶縁抵抗検出回路1は、バッテリBatからの電流が流れる経路における絶縁抵抗Riso1およびRiso2を検出するための回路であって、バッテリBatの正極端子t1および負極端子t2のうちの一方の端子とグランドGNDとの間に接続された抵抗R1と、正極端子t1および負極端子t2のうちの他方の端子とグランドGNDとの間に接続され、互いに直列接続された抵抗R2、R3およびR4と、抵抗R2、R3およびR4のうちのいずれかの抵抗にかかる電圧を計測する電圧計測部10と、スイッチSW1と、を備え、スイッチSW1は、抵抗R2、R3およびR4のうちの、電圧計測部10によって電圧が計測される抵抗とは異なる抵抗と並列に接続される。
 例えば、スイッチSW1が抵抗R2、R3およびR4と直列に接続されている場合には、スイッチSW1がオフ状態のときに、抵抗R2、R3およびR4に電流が流れず電圧計測部10は抵抗R2、R3およびR4のうちのいずれかの抵抗にかかる電圧を計測することができない。このため、この場合には、正極端子t1とグランドGNDとの間などに別途電圧計測部が必要となる。これに対して、本開示では、スイッチSW1が抵抗R2、R3およびR4のうちの電圧計測部10によって電圧が計測される抵抗とは異なる抵抗(例えば抵抗R3)と並列に接続されているため、スイッチSW1がオフ状態の場合でも、抵抗R2、R3およびR4に電流が流れ電圧計測部10は抵抗R2、R3およびR4のうちのいずれかの抵抗(例えば抵抗R4)にかかる電圧を計測することができる。よって、1箇所での電圧計測によって絶縁抵抗Riso1およびRiso2を検出できる。
 また、スイッチSW1が抵抗R2、R3およびR4と直列に接続されている場合には、スイッチSW1がオフ状態のときに、グランドGNDが正極端子t1および負極端子t2のうちの他方の端子(例えば負極端子t2)と接続されなくなり、グランドGNDの電位が大きく変動する。グランドGND(シャーシ)の電位は車両における様々な装置の基準電位となり得るため、グランドGNDの電位が変動すると様々な装置の動作が不安定となるおそれがある。このため、グランドGNDと他方の端子との間を別途抵抗で接続してグランドGNDの電位の変動を抑制する必要がある。これに対して、本開示では、スイッチSW1がオフ状態の場合でも、グランドGNDと他方の端子とは接続されたままとなるため、グランドGNDと他方の端子との間を別途抵抗で接続する必要がない。言い換えると、本開示では、グランドGNDの電位の変動を抑制するための抵抗と、電圧計測部10が計測する電圧を変動させるための抵抗(スイッチSW1と並列に接続された抵抗)とを一体化することができる。
 例えば、一方の端子は正極端子t1であり、他方の端子は負極端子t2であり、抵抗R2、R3およびR4は、グランドGNDから負極端子t2へ、抵抗R2、抵抗R3、抵抗R4の順序で直列接続され、電圧計測部10は、抵抗R4にかかる電圧を計測してもよい。
 例えば、電圧計測部10はマイコンなどにより実現されるが、実施の形態1では、マイコンの基準電位を負極端子t2の電位としている場合に、抵抗R4にかかる電圧も、負極端子t2の電位を基準にして計測することができる。
 例えば、スイッチSW1は、抵抗R3と並列に接続されてもよい。
 例えば、スイッチSW1は、NチャネルMOSFETなどにより実現される。この場合、スイッチSW1のソースの電位は、負極端子t2の電位となるべく近い方が好ましい。このため、実施の形態1では、スイッチSW1が抵抗R3と並列に接続されることで、スイッチSW1が抵抗R2と並列に接続される場合よりも、ソースの電位を負極端子t2の電位に近づけることができる。
 (実施の形態1の変形例)
 次に、実施の形態1の変形例における絶縁抵抗検出回路1aについて図2を用いて説明する。以下では、実施の形態1に係る絶縁抵抗検出回路1と異なる点を中心に説明し、同じ点については説明を省略する。
 図2は、実施の形態1の変形例に係る絶縁抵抗検出回路1aの一例を示す構成図である。なお、図2には、絶縁抵抗検出回路1aの他にバッテリBat、ならびに、バッテリBatからの電流が流れる経路における絶縁抵抗Riso1およびRiso2が示されている。なお、バッテリBatは、絶縁抵抗検出回路1aの構成要素であってもよい。
 絶縁抵抗検出回路1aは、バッテリBatからの電流が流れる経路における絶縁抵抗Riso1およびRiso2を検出するための回路である。絶縁抵抗検出回路1aは、抵抗R1、R2、R3およびR4、電圧計測部10、絶縁抵抗算出部20ならびにスイッチSW1を備える。
 実施の形態1の変形例では、正極端子t1および負極端子t2のうちの一方の端子は負極端子t2であり、他方の端子は正極端子t1である。
 実施の形態1の変形例では、抵抗R1は、負極端子t2とグランドGNDとの間に接続される。また、抵抗R2、R3およびR4は、正極端子t1とグランドGNDとの間に接続され、正極端子t1からグランドGNDへ、抵抗R2、抵抗R3、抵抗R4の順序で直列接続される。つまり、正極端子t1と抵抗R3との間に抵抗R2が接続され、抵抗R2と抵抗R4との間に抵抗R3が接続され、抵抗R3とグランドGNDとの間に抵抗R4が接続される。
 また、実施の形態1の変形例では、電圧計測部10は、抵抗R4にかかる電圧を計測し、スイッチSW1は、抵抗R3と並列に接続される。
 以上説明したように、実施の形態1の変形例では、一方の端子は負極端子t2であり、他方の端子は正極端子t1であり、抵抗R2、R3およびR4は、正極端子t1からグランドGNDへ、抵抗R2、抵抗R3、抵抗R4の順序で直列接続され、電圧計測部10は、抵抗R4にかかる電圧を計測する。
 例えば、電圧計測部10はマイコンなどにより実現されるが、実施の形態1の変形例では、マイコンの基準電位をグランドGNDの電位としている場合に、抵抗R4にかかる電圧も、グランドGNDの電位を基準にして計測することができる。
 例えば、スイッチSW1は、抵抗R3と並列に接続されてもよい。
 例えば、スイッチSW1は、NチャネルMOSFETなどにより実現される。この場合、スイッチSW1のソースの電位は、グランドGNDの電位となるべく近い方が好ましい。このため、実施の形態1の変形例では、スイッチSW1が抵抗R3と並列に接続されることで、スイッチSW1が抵抗R2と並列に接続される場合よりも、スイッチSW1のソースの電位をグランドGNDの電位に近づけることができる。
 (実施の形態2)
 次に、実施の形態2における絶縁抵抗検出回路2について図3を用いて説明する。以下では、実施の形態1に係る絶縁抵抗検出回路1と異なる点を中心に説明し、同じ点については説明を省略する。
 図3は、実施の形態2に係る絶縁抵抗検出回路2の一例を示す構成図である。なお、図3には、絶縁抵抗検出回路2の他にバッテリBat、ならびに、バッテリBatからの電流が流れる経路における絶縁抵抗Riso1およびRiso2が示されている。なお、バッテリBatは、絶縁抵抗検出回路2の構成要素であってもよい。
 絶縁抵抗検出回路2は、バッテリBatからの電流が流れる経路における絶縁抵抗Riso1およびRiso2を検出するための回路である。絶縁抵抗検出回路2は、抵抗R1、R2、R3、R4およびR5、電圧計測部10、絶縁抵抗算出部20ならびにスイッチSW1およびSW2を備える。
 実施の形態2では、絶縁抵抗検出回路2は、正極端子t1および負極端子t2のうちの一方の端子とグランドGNDとの間に接続され、抵抗R1と直列接続された抵抗R5を備える。抵抗R5は第5抵抗の一例である。実施の形態2では、実施の形態1と同じように、一方の端子は正極端子t1であり、他方の端子は負極端子t2である。つまり、実施の形態2では、抵抗R5は、正極端子t1とグランドGNDとの間に接続され、抵抗R1と直列接続される。
 また、実施の形態2では、絶縁抵抗検出回路2は、抵抗R1およびR5のうちのいずれかの抵抗と並列に接続されたスイッチSW2を備える。スイッチSW2は第2スイッチの一例である。実施の形態2では、スイッチSW2は、抵抗R5と並列に接続される。スイッチSW2は、例えばNチャネルMOSFETである。例えば、スイッチSW2は、絶縁抵抗算出部20によって制御される。
 絶縁抵抗算出部20は、電圧計測部10によって計測された、スイッチSW1およびSW2がそれぞれオン状態とオフ状態とに切り替えられた際の電圧を用いて絶縁抵抗Riso1およびRiso2を算出する。例えば、絶縁抵抗算出部20は、スイッチSW1がオン状態でありスイッチSW2がオン状態である場合、スイッチSW1がオン状態でありスイッチSW2がオフ状態である場合、スイッチSW1がオフ状態でありスイッチSW2がオン状態である場合、スイッチSW1がオフ状態でありスイッチSW2がオフ状態である場合のうちの2状態の電圧を用いて絶縁抵抗Riso1およびRiso2を算出する。例えば、絶縁抵抗算出部20は、スイッチSW1がオン状態でありスイッチSW2がオフ状態である場合と、スイッチSW1がオフ状態でありスイッチSW2がオン状態である場合とにおける2状態の電圧を用いて絶縁抵抗Riso1およびRiso2を算出する。なお、所定のアルゴリズムは特に限定されないが、2つの未知数である絶縁抵抗Riso1およびRiso2は、上記2状態の電圧および抵抗R1、R2、R3、R4およびR5の各抵抗値からなる2つの方程式から求めることができる。
 なお、抵抗R1、R2、R3、R4およびR5は、それぞれ、1つ以上の抵抗素子から構成されていてもよい。
 なお、スイッチSW2は、抵抗R1と並列に接続されていてもよい。
 以上説明したように、実施の形態2では、絶縁抵抗検出回路2は、さらに、一方の端子とグランドGNDとの間に接続され、抵抗R1と直列接続された抵抗R5と、抵抗R1およびR5のうちのいずれかの抵抗と並列に接続されたスイッチSW2と、を備える。
 例えば、グランドGNDと正極端子t1との間、および、グランドGNDと負極端子t2との間のいずれかにのみスイッチが設けられて、電圧計測部10が2状態の電圧を計測する場合には、2状態の電圧の変動差は小さい(例えば1mV程度)。この変動差が小さい場合、ノイズおよび誤差の影響により、絶縁抵抗Riso1およびRiso2の検出精度が劣化する。これに対して、実施の形態2では、グランドGNDと正極端子t1との間、および、グランドGNDと負極端子t2との間の両方にスイッチが設けられているため、電圧計測部10が2状態の電圧を計測する際の2状態の電圧の変動差を大きくすることができる(例えば100mV程度)。つまり、ノイズおよび誤差の影響を小さくすることができ、絶縁抵抗Riso1およびRiso2をより正確に検出できる。
 また、例えば、電圧計測部10はマイコンなどにより実現されるが、実施の形態2では実施の形態1と同じように、マイコンの基準電位を負極端子t2の電位としている場合に、抵抗R4にかかる電圧も、負極端子t2の電位を基準にして計測することができる。また、実施の形態2では実施の形態1と同じように、スイッチSW1(例えばNチャネルMOSFET)が抵抗R3と並列に接続されることで、スイッチSW1が抵抗R2と並列に接続される場合よりも、スイッチSW1のソースの電位を負極端子t2の電位に近づけることができる。
 (実施の形態2の変形例)
 次に、実施の形態2の変形例における絶縁抵抗検出回路2aについて図4を用いて説明する。以下では、実施の形態2に係る絶縁抵抗検出回路2と異なる点を中心に説明し、同じ点については説明を省略する。
 図4は、実施の形態2の変形例に係る絶縁抵抗検出回路2aの一例を示す構成図である。なお、図4には、絶縁抵抗検出回路2aの他にバッテリBat、ならびに、バッテリBatからの電流が流れる経路における絶縁抵抗Riso1およびRiso2が示されている。なお、バッテリBatは、絶縁抵抗検出回路2aの構成要素であってもよい。
 絶縁抵抗検出回路2aは、バッテリBatからの電流が流れる経路における絶縁抵抗Riso1およびRiso2を検出するための回路である。絶縁抵抗検出回路2aは、抵抗R1、R2、R3、R4およびR5、電圧計測部10、絶縁抵抗算出部20ならびにスイッチSW1およびSW2を備える。
 実施の形態2の変形例では、正極端子t1および負極端子t2のうちの一方の端子は負極端子t2であり、他方の端子は正極端子t1である。
 実施の形態2の変形例では、抵抗R1およびR5は、負極端子t2とグランドGNDとの間に接続される。また、抵抗R2、R3およびR4は、正極端子t1とグランドGNDとの間に接続され、正極端子t1からグランドGNDへ、抵抗R2、抵抗R3、抵抗R4の順序で直列接続される。つまり、正極端子t1と抵抗R3との間に抵抗R2が接続され、抵抗R2と抵抗R4との間に抵抗R3が接続され、抵抗R3とグランドGNDとの間に抵抗R4が接続される。
 また、実施の形態2の変形例では、電圧計測部10は、抵抗R4にかかる電圧を計測し、スイッチSW1は、抵抗R3と並列に接続される。
 例えば、電圧計測部10はマイコンなどにより実現されるが、実施の形態2の変形例では実施の形態1の変形例と同じように、マイコンの基準電位をグランドGNDの電位としている場合に、抵抗R4にかかる電圧も、グランドGNDの電位を基準にして計測することができる。また、実施の形態2の変形例では実施の形態1の変形例と同じように、スイッチSW1(例えばNチャネルMOSFET)が抵抗R3と並列に接続されることで、スイッチSW1が抵抗R2と並列に接続される場合よりも、ソースの電位をグランドGNDの電位に近づけることができる。
 (その他の実施の形態)
 以上のように、本開示に係る技術の例示として実施の形態を説明した。しかしながら、本開示に係る技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。例えば、以下のような変形例も本開示の一実施の形態に含まれる。
 例えば、上記実施の形態では、絶縁抵抗検出回路1、1a、2、2aが絶縁抵抗算出部20を備える例を説明したが、絶縁抵抗検出回路1、1a、2、2aは、絶縁抵抗算出部20を備えていなくてもよい。例えば、絶縁抵抗検出回路1、1a、2、2aとは別の回路が、絶縁抵抗検出回路1、1a、2、2aによって計測された電圧を用いて絶縁抵抗を算出してもよい。
 その他、実施の形態に対して当業者が思いつく各種変形を施して得られる形態、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示は、車両などに搭載される高電圧のバッテリからの電流が流れる経路における絶縁抵抗を検出する装置に適用できる。
 1、1a、2、2a 絶縁抵抗検出回路
 10 電圧計測部
 20 絶縁抵抗算出部
 Bat バッテリ
 GND グランド
 R1、R2、R3、R4、R5 抵抗
 Riso1、Riso2 絶縁抵抗
 SW1、SW2 スイッチ
 t1 正極端子
 t2 負極端子

Claims (6)

  1.  バッテリからの電流が流れる経路における絶縁抵抗を検出するための絶縁抵抗検出回路であって、
     前記バッテリの正極端子および負極端子のうちの一方の端子とグランドとの間に接続された第1抵抗と、
     前記正極端子および前記負極端子のうちの他方の端子と前記グランドとの間に接続され、互いに直列接続された第2抵抗、第3抵抗および第4抵抗と、
     前記第2抵抗、前記第3抵抗および前記第4抵抗のうちのいずれかの抵抗にかかる電圧を計測する電圧計測部と、
     第1スイッチと、を備え、
     前記第1スイッチは、前記第2抵抗、前記第3抵抗および前記第4抵抗のうちの、前記電圧計測部によって電圧が計測される抵抗とは異なる抵抗と並列に接続される、
     絶縁抵抗検出回路。
  2.  さらに、前記一方の端子と前記グランドとの間に接続され、前記第1抵抗と直列接続された第5抵抗と、
     前記第1抵抗および前記第5抵抗のうちのいずれかの抵抗と並列に接続された第2スイッチと、を備える、
     請求項1に記載の絶縁抵抗検出回路。
  3.  前記一方の端子は前記正極端子であり、前記他方の端子は前記負極端子であり、
     前記第2抵抗、前記第3抵抗および前記第4抵抗は、前記グランドから前記負極端子へ、前記第2抵抗、前記第3抵抗、前記第4抵抗の順序で直列接続され、
     前記電圧計測部は、前記第4抵抗にかかる電圧を計測する、
     請求項1または2に記載の絶縁抵抗検出回路。
  4.  前記第1スイッチは、前記第3抵抗と並列に接続される、
     請求項3に記載の絶縁抵抗検出回路。
  5.  前記一方の端子は前記負極端子であり、前記他方の端子は前記正極端子であり、
     前記第2抵抗、前記第3抵抗および前記第4抵抗は、前記正極端子から前記グランドへ、前記第2抵抗、前記第3抵抗、前記第4抵抗の順序で直列接続され、
     前記電圧計測部は、前記第4抵抗にかかる電圧を計測する、
     請求項1または2に記載の絶縁抵抗検出回路。
  6.  前記第1スイッチは、前記第3抵抗と並列に接続される、
     請求項5に記載の絶縁抵抗検出回路。
PCT/JP2023/017394 2022-05-24 2023-05-09 絶縁抵抗検出回路 WO2023228718A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-084731 2022-05-24
JP2022084731 2022-05-24

Publications (1)

Publication Number Publication Date
WO2023228718A1 true WO2023228718A1 (ja) 2023-11-30

Family

ID=88919032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017394 WO2023228718A1 (ja) 2022-05-24 2023-05-09 絶縁抵抗検出回路

Country Status (1)

Country Link
WO (1) WO2023228718A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308185A (ja) * 1993-04-23 1994-11-04 Matsushita Electric Ind Co Ltd 漏電検出装置
JPH09274062A (ja) * 1996-04-08 1997-10-21 Matsushita Electric Ind Co Ltd 漏電検出装置
JP2006220520A (ja) * 2005-02-10 2006-08-24 Honda Motor Co Ltd 非接地直流電源の絶縁抵抗測定装置及びその方法
KR20150081988A (ko) * 2014-01-07 2015-07-15 에스케이배터리시스템즈 주식회사 배터리의 절연 저항 측정 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308185A (ja) * 1993-04-23 1994-11-04 Matsushita Electric Ind Co Ltd 漏電検出装置
JPH09274062A (ja) * 1996-04-08 1997-10-21 Matsushita Electric Ind Co Ltd 漏電検出装置
JP2006220520A (ja) * 2005-02-10 2006-08-24 Honda Motor Co Ltd 非接地直流電源の絶縁抵抗測定装置及びその方法
KR20150081988A (ko) * 2014-01-07 2015-07-15 에스케이배터리시스템즈 주식회사 배터리의 절연 저항 측정 장치 및 방법

Similar Documents

Publication Publication Date Title
US8760168B2 (en) Assembled battery total voltage detection circuit
EP2700958A1 (en) Switch circuit, selection circuit, and voltage measurement device
WO2001063306A1 (en) Circuit for detecting leakage in power supply
WO2013094148A1 (ja) 電流検出回路および半導体集積回路装置
US10288694B2 (en) Secondary battery monitoring device and method for diagnosing failure
JP2012159407A (ja) 電池電圧監視装置
US9653912B2 (en) Inrush current limiter
JP5629016B2 (ja) 自立的なセルバランシング
US10135234B2 (en) Preventive apparatus
JP2017096628A (ja) 電流検出装置、電源システム
JP2020122688A (ja) 電流検出システム
JP2021016246A (ja) パワー半導体モジュール及びその漏れ電流試験方法
CN108226794B (zh) 二次电池监视装置及故障诊断方法
US20240230761A1 (en) Monitoring assembly for an electrical component, semiconductor switch assembly having a monitoring function, and energy system
JP2019103318A (ja) 充放電制御装置、及びバッテリ装置
WO2023228718A1 (ja) 絶縁抵抗検出回路
JP4804514B2 (ja) 非接地回路の絶縁性検出装置
JP6658269B2 (ja) 過電流検出回路
JP2019017128A (ja) 逆接続保護装置の状態検出回路
CN111971564B (zh) 车载用的电压检测电路
JP4686356B2 (ja) 絶縁検出装置
JP7297549B2 (ja) 電圧電流変換回路、及び充放電制御装置
JP5989171B1 (ja) 電流検出回路、及びその回路を備えた車両用電子制御装置
JP2017225049A (ja) 半導体物理量センサ装置
US20240170956A1 (en) Signal output circuit and semiconductor integrated circuit device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024523010

Country of ref document: JP

Kind code of ref document: A