WO2023228592A1 - バッテリ遮断システムおよび故障検出方法 - Google Patents

バッテリ遮断システムおよび故障検出方法 Download PDF

Info

Publication number
WO2023228592A1
WO2023228592A1 PCT/JP2023/014046 JP2023014046W WO2023228592A1 WO 2023228592 A1 WO2023228592 A1 WO 2023228592A1 JP 2023014046 W JP2023014046 W JP 2023014046W WO 2023228592 A1 WO2023228592 A1 WO 2023228592A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
current sensor
current
sensor
Prior art date
Application number
PCT/JP2023/014046
Other languages
English (en)
French (fr)
Inventor
英一 定行
秀樹 岩城
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023228592A1 publication Critical patent/WO2023228592A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a battery disconnection system and a failure detection method.
  • Patent Document 1 describes a system that causes a fuse to cut off the flow of current based on a detected current detected by a current sensor.
  • the present disclosure provides a battery cutoff system and the like that can detect failure of a current sensor without providing multiple current sensors.
  • a battery cutoff system includes: a main relay connected between a battery and a load; a precharge relay and a precharge resistor connected in parallel with the main relay and connected in series; a current sensor that measures the current of the battery, a pyrotechnic cutoff device that cuts off the current of the battery, a voltage measurement unit that measures the voltage of the precharge resistor, and a control circuit, the control circuit comprising: The pyrotechnic cutoff device is controlled based on the measured value of the current sensor when the main relay is on, and the voltage is controlled when the main relay is off and the precharge relay is on. A failure of the current sensor is detected based on the measured value of the measuring section.
  • a failure detection method includes: a main relay connected between a battery and a load; a precharge relay and a precharge resistor connected in parallel with the main relay and connected in series; A fault detection method for the current sensor carried out by a battery cutoff system comprising a current sensor that measures the current of the battery, and a pyrotechnic cutoff device that cuts off the current of the battery, the main relay being turned off, and , a step of measuring the voltage of the precharge resistor when the precharge relay is on, and a step of detecting a failure of the current sensor based on the measured value measured in the measuring step.
  • a battery cutoff system comprising a current sensor that measures the current of the battery, and a pyrotechnic cutoff device that cuts off the current of the battery, the main relay being turned off, and , a step of measuring the voltage of the precharge resistor when the precharge relay is on, and a step of detecting a failure of the current sensor based on the measured value measured in the measuring step.
  • a failure of a current sensor can be detected without providing a plurality of current sensors.
  • FIG. 1 is a configuration diagram showing an example of a battery cutoff system according to Embodiment 1.
  • FIG. 3 is a configuration diagram showing an example of a battery cutoff system according to a modification of the first embodiment.
  • FIG. 2 is a configuration diagram showing an example of a battery cutoff system according to a second embodiment.
  • FIG. 7 is a configuration diagram showing an example of a battery cutoff system according to a modification of the second embodiment. 7 is a flowchart illustrating an example of a failure detection method according to another embodiment.
  • FIG. 1 is a configuration diagram showing an example of a battery cutoff system 1 according to the first embodiment.
  • a battery 10 a smoothing capacity 20, and an inverter 30 are shown in FIG. Note that the battery 10, the smoothing capacity 20, or the inverter 30 may be components of the battery cutoff system 1.
  • the battery cutoff system 1 is installed, for example, in a vehicle such as an electric vehicle that uses electric power for propulsion.
  • a high-voltage battery 10 is mounted on a vehicle such as an electric vehicle, and power is supplied from the battery 10 to a load to propel the vehicle such as an electric vehicle.
  • a large current due to an abnormality such as a short circuit may flow in the path connecting the battery 10 and the load, causing the battery 10 to emit smoke or catch fire, so the battery disconnection system 1 shuts off the path.
  • the smoothing capacitor 20 and the inverter 30 are shown as an example of a load.
  • the smoothing capacitor 20 smoothes the current from the battery 10, and the inverter 30 converts the direct current from the battery 10 into alternating current. This allows the motor to be driven by alternating current to propel the vehicle.
  • the battery cutoff system 1 includes main relays 40 and 41, a precharge relay 42, a precharge resistor 43, a current sensor 50, a pyrotechnic cutoff device 60, and a control board 70.
  • the control board 70 is provided with an ignition circuit 71, a control circuit 73, an amplifier circuit 74, a voltage measuring section 75, a communication interface 80, and the like.
  • Main relays 40 and 41 are provided on a path connecting battery 10 and a load, and can supply power from battery 10 to the load when main relays 40 and 41 are on. Note that when the relay is on, it means that the relay is in a conductive state, and when the relay is off, it means that the relay is in a non-conductive state.
  • the battery cutoff system 1 is provided with a precharge relay 42 and a precharge resistor 43 as a measure against rush current.
  • the precharge relay 42 and the precharge resistor 43 are connected in series, and the circuit in which the precharge relay 42 and the precharge resistor 43 are connected in series is connected in parallel with the main relay 40.
  • main relay 40 when starting the vehicle, main relay 40 is turned off, main relay 41 is turned on, and precharge relay 42 is turned on.
  • precharge relay 42 is turned on.
  • current flows to the load via the precharge resistor 43 so generation of rush current can be suppressed.
  • the voltage of the smoothing capacitor 20 becomes approximately the same as the voltage of the battery 10
  • the precharge relay 42 is turned off, the main relay 40 is turned on, and normal operation is started.
  • main relays 40 and 41 and precharge relay 42 are controlled by an ECU (Electronic Control Unit) or the like outside battery cutoff system 1.
  • ECU Electronic Control Unit
  • the main relays 40 and 41 and the precharge relay 42 are mechanical relays (contact relays).
  • the main relays 40, 41 and the precharge relay 42 can be replaced by other types of relays (for example, semiconductor relays or non-contact relays), but they are not suitable for hybrid electric vehicles or pure electric vehicles.
  • the main relays 40, 41 and the precharge relay 42 are mechanical relays.
  • the main relays 40 and 41 are mechanical relays than the precharge relay 42.
  • the current sensor 50 measures the current of the battery 10 (specifically, the current flowing through the path connecting the battery 10 and the load).
  • the current sensor 50 is, for example, a shunt resistor, and measures the current of the battery 10 by converting the current flowing through the resistance element of the shunt resistor into a voltage.
  • the resistance value of the resistance element of the shunt resistor is small, about several tens of microohms, and the generated voltage is also small, so the current sensor 50 may include an amplifier circuit.
  • the battery cutoff system 1 includes an amplifier circuit 74 in addition to the amplifier circuit.
  • the current sensor 50 can also use other methods (for example, a current sensor using a Hall element).
  • a shunt resistor shunt type
  • shunt type shunt type
  • the pyrotechnic cutoff device 60 is a device for cutting off the current of the battery 10. Specifically, the pyrotechnic cutoff device 60 is a device that is provided on a path that connects the battery 10 and the load, and is used to cut off the path. The pyrotechnic cutoff device 60 is, for example, a pyrofuse.
  • the voltage measurement unit 75 measures the voltage of the precharge resistor 43.
  • the voltage measuring section 75 includes a first voltage sensor 72 that measures the voltage across the precharge resistor 43 as the voltage of the precharge resistor 43.
  • the communication interface 80 is an interface that communicates with a higher-level system of the battery cutoff system 1.
  • the control circuit 73 is a circuit for cutting off the current of the battery 10, and is also a circuit for detecting a failure of the current sensor 50.
  • the control circuit 73 is realized by, for example, a microcontroller unit (MCU).
  • the control circuit 73 controls the pyrotechnic cutoff device 60 based on the measured value of the current sensor 50 when the main relay 40 is on (that is, during normal operation). Specifically, the control circuit 73 controls the pyrotechnic cutoff device 60 to cut off the path connecting the battery 10 and the load when the measured value of the current sensor 50 satisfies a predetermined condition.
  • the predetermined condition is not particularly limited, it is a condition that the measured value of the current sensor 50 becomes a value corresponding to the current that should interrupt the above-mentioned path.
  • control circuit 73 controls pyrotechnic shutoff device 60 via ignition circuit 71 .
  • the ignition circuit 71 is a circuit that controls the pyrotechnic cutoff device 60 according to the output signal from the control circuit 73 when the output signal from the control circuit 73 is small and the pyrotechnic cutoff device 60 cannot be driven by the control circuit 73 alone. It is. Note that if the pyrotechnic cutoff device 60 can be controlled by the control circuit 73 alone, the ignition circuit 71 may not be provided.
  • the control circuit 73 also measures the voltage of the voltage measuring unit 75 when the main relay 40 is off and the precharge relay 42 is on (that is, when inrush current countermeasures are being taken before the start of normal operation). A failure of the current sensor 50 is detected based on the value. The control circuit 73 recognizes that the precharge relay 42 is turned on and the main relay is turned off when a current flows through the precharge resistor 43 and the voltage measuring section 75 measures a voltage equal to or higher than a predetermined value. be able to.
  • the control circuit 73 adjusts the measured value of the first voltage sensor 72 and the value of the precharge resistor 43 after the precharge relay 42 turns on from off until it turns off after a certain period of time (for example, 0.1 seconds).
  • a failure of the current sensor 50 is detected by calculating the current from the resistance value and comparing the calculated current with the measured value of the current sensor 50. For example, if the calculated current (that is, the current that flows through the precharge resistor 43) and the measured value of the current sensor 50 (that is, the current that flows through the current sensor 50 (shunt resistor)) substantially match, the control circuit 73 It is determined that the current sensor 50 is not out of order.
  • the control circuit 73 detects a failure of the current sensor 50. This is because the current flowing through the current sensor 50 and the current flowing through the precharge resistor 43 substantially match if the current sensor 50 is not malfunctioning.
  • the measured value of the first voltage sensor 72 and the measured value of the current sensor 50 are values measured at approximately the same timing.
  • the timing of measuring the measured value of the first voltage sensor 72 and the measured value of the current sensor 50 is not particularly limited, but after the precharge relay 42 is turned on from off, the smoothing capacitor 20 is gradually charged and the current flows. , the timing may be as early as possible after the precharge relay 42 is turned on from off. Further, as the measured value of the first voltage sensor 72 and the measured value of the current sensor 50, an average value at a plurality of timings may be used.
  • control circuit 73 detects a failure of the current sensor 50 by comparing the measured value of the current sensor 50 and the current calculated from the measured value of the voltage measurement section 75
  • the control circuit 73 is not limited to this. do not have.
  • the control circuit 73 may detect a failure of the current sensor 50 by comparing the slope of the time change of the measured value of the current sensor 50 and the slope of the time change of the measured value of the voltage measuring section 75. .
  • the detection accuracy of the current sensor 50 may be lowered due to the influence of resistance value errors, etc., but in the case of comparing the slope of the time change of the measured value, the slope of the time change is This is because the current sensor 50 is less susceptible to the effects of value errors and the like, and a decrease in detection accuracy of the current sensor 50 can be suppressed.
  • the amplifier circuit 74 amplifies the signal of the current sensor 50 when detecting a failure of the current sensor 50.
  • the amplifier circuit 74 receives the signal from the current sensor 50 when the main relay 40 is off and the precharge relay 42 is on (that is, when inrush current countermeasures are being taken before the start of normal operation). amplify.
  • inrush current countermeasures When inrush current countermeasures are being taken, the current flowing through the current sensor 50 is small, unlike large currents during abnormal conditions, and the measurement accuracy of the current sensor 50 is poor. is amplified.
  • the signal of the current sensor 50 amplified by the amplifier circuit 74 is input to the control circuit 73, and the control circuit 73 outputs the signal of the current sensor 50 based on the signal of the current sensor 50 amplified as the measurement value of the current sensor 50. Detect failure. However, if the signal from the current sensor 50 is amplified and input to the control circuit 73 during normal operation, there is a risk that the measurement range of the control circuit 73 will be exceeded, so the amplification circuit 74 is not used during normal operation.
  • control circuit 73 detects a failure of the current sensor 50, it notifies the higher-level system of the abnormality via the communication interface 80. As a result, it is possible to notify the driver of the vehicle of the abnormality and improve safety.
  • the battery cutoff system 1 includes a main relay 40 connected between the battery 10 and the load, a precharge relay 42 and a precharge resistor 43 connected in parallel and in series with the main relay 40. , a current sensor 50 that measures the current of the battery 10 , a pyrotechnic cutoff device 60 that cuts off the current of the battery 10 , a voltage measuring section 75 that measures the voltage of the precharge resistor 43 , and a control circuit 73 .
  • the control circuit 73 controls the pyrotechnic cutoff device 60 based on the measured value of the current sensor 50 when the main relay 40 is on, and when the main relay 40 is off and the precharge relay 42 is on. A failure of the current sensor 50 is detected based on the measured value of the voltage measuring section 75 when it is turned on.
  • a precharge relay 42 and a precharge resistor 43 are provided, and the precharge relay 42 is turned on before the main relay 40 is turned on, and current flows through the precharge resistor 43. This will take measures against inrush current.
  • the precharge resistor 43 used as a countermeasure against inrush current to also detect a failure of the current sensor 50, a failure of the current sensor 50 can be detected without providing a plurality of current sensors 50.
  • control circuit 73 may control the pyrotechnic cutoff device 60 to cut off the path connecting the battery 10 and the load when the measured value of the current sensor 50 satisfies a predetermined condition.
  • the battery cutoff system 1 uses the pyrotechnic cutoff device 60 to perform the following operations when the measured value of the current sensor 50 satisfies a predetermined condition (specifically, when a large current flows through the current sensor 50).
  • a predetermined condition specifically, when a large current flows through the current sensor 50.
  • the path connecting the battery 10 and the load can be cut off.
  • the voltage measurement unit 75 may include a first voltage sensor 72 that measures the voltage across the precharge resistor 43 as the voltage of the precharge resistor 43.
  • the voltage across the precharge resistor 43 may be measured as the voltage of the precharge resistor 43.
  • control circuit 73 calculates a current from the measured value of the first voltage sensor 72 and the resistance value of the precharge resistor 43, and compares the calculated current with the measured value of the current sensor 50, so that the current sensor 50 failures may be detected.
  • the current flowing through the precharge resistor 43 can be calculated from the voltage across the precharge resistor 43 and the resistance value of the precharge resistor 43, and the current flowing through the calculated precharge resistor 43 and the current sensor 50 can be measured. By comparing the values (specifically, the current flowing through the current sensor 50), if they do not substantially match, it can be detected that the current sensor 50 is out of order.
  • the battery cutoff system 1 may further include a communication interface 80 that communicates with a higher-level system.
  • the control circuit 73 may notify the higher-level system of the abnormality via the communication interface 80.
  • the failure of the current sensor 50 can be notified to the higher-level system.
  • the battery cutoff system 1 may further include an amplifier circuit 74 that amplifies the signal of the current sensor 50 when detecting a failure of the current sensor 50.
  • the signal of the current sensor 50 amplified by the amplifier circuit 74 is input to the control circuit 73, and the control circuit 73 uses the current sensor 50 as a measurement value of the current sensor 50 based on the amplified signal of the current sensor 50. It may also be possible to detect a failure in the
  • the current flowing through the precharge resistor 43 when detecting a failure of the current sensor 50 is small. Therefore, there is a problem that the current measured by the current sensor 50 is also small, and the accuracy of detecting a failure of the current sensor 50 is reduced. Therefore, by amplifying the signal of the current sensor 50 using the amplification circuit 74, it is possible to improve the accuracy of detecting a failure of the current sensor 50.
  • FIG. 2 is a configuration diagram showing an example of a battery cutoff system 1a according to a modification of the first embodiment.
  • the voltage measuring unit 75 uses a first voltage sensor 72 that measures the voltage across the precharge relay 42 and the precharge resistor 43 connected in series as the voltage of the precharge resistor 43.
  • the configuration provided is different from the first embodiment.
  • the other configurations are the same as those in Embodiment 1, so the explanation will be omitted.
  • the voltage across the precharge relay 42 and the precharge resistor 43 connected in series may be measured as the voltage of the precharge resistor 43. This is because the on-resistance of the precharge relay 42 is small and can be ignored, and the voltage across the precharge relay 42 and the precharge resistor 43 connected in series can be regarded as the voltage across the precharge resistor 43.
  • control circuit 73 calculates a current from the measured value of the first voltage sensor 72 and the resistance value of the precharge resistor 43, and compares the calculated current with the measured value of the current sensor 50. A failure of the current sensor 50 is detected.
  • the current flowing through the precharge resistor 43 can be calculated from the voltage across the precharge relay 42 and the precharge resistor 43 connected in series and the resistance value of the precharge resistor 43.
  • the current flowing through the current sensor 50 is compared with the measured value of the current sensor 50 (specifically, the current flowing through the current sensor 50), and if they do not substantially match, it is detected that the current sensor 50 is malfunctioning. be able to.
  • FIG. 3 is a configuration diagram showing an example of the battery cutoff system 2 according to the second embodiment.
  • the voltage measurement unit 75 has a configuration that is different from the first embodiment in that it includes a first voltage sensor 72a that measures the voltage of the battery 10 and a second voltage sensor 72b that measures the voltage of the load. different from.
  • the other configurations are the same as those in Embodiment 1, so the explanation will be omitted.
  • the first voltage sensor 72a measures the voltage between the nodes of the main relay 40 and precharge relay 42 on the battery 10 side and the node of the main relay 41 on the battery 10 side, as the voltage of the battery 10.
  • the first voltage sensor 72a may measure the voltage between the node of the pyrotechnic cutoff device 60 on the battery 10 side and the node of the main relay 41 on the battery 10 side, as the voltage of the battery 10.
  • the second voltage sensor 72b measures the voltage between the load-side node of the main relay 40 and precharge resistor 43 and the load-side node of the main relay 41 as the voltage of the load.
  • the voltage of the precharge resistor 43 is determined by the measurement value of the first voltage sensor 72a (voltage of the battery 10) and the measurement value of the second voltage sensor 72b. (load voltage). Therefore, the voltage measuring section 75 measuring the voltage of the battery 10 and the voltage of the load is equivalent to measuring the voltage of the precharge resistor 43.
  • the voltage of the battery 10 and the voltage of the load may be measured as the voltage of the precharge resistor 43.
  • control circuit 73 calculates the voltage of the precharge resistor 43 from the above difference, calculates the current from the calculated voltage of the precharge resistor 43 and the resistance value of the precharge resistor 43, and calculates the calculated current and the current. By comparing the measured value of the sensor 50, a failure of the current sensor 50 is detected.
  • the current flowing through the precharge resistor 43 can be calculated from the above difference and the resistance value of the precharge resistor 43, and the calculated current flowing through the precharge resistor 43 and the measured value of the current sensor 50 (specifically, (current flowing through the current sensor 50), and if they do not substantially match, it can be detected that the current sensor 50 is malfunctioning.
  • FIG. 4 is a configuration diagram showing an example of a battery cutoff system 2a according to a modification of the second embodiment.
  • the modification of the second embodiment differs from the second embodiment in that the reference potential of the first voltage sensor 72a and the reference potential of the second voltage sensor 72b are common. Other points are the same as those in Embodiment 2, so explanations will be omitted.
  • the reference potential of the first voltage sensor 72a and the reference potential of the second voltage sensor 72b may be common. Specifically, as shown in FIG. 4, even if the reference potential of the first voltage sensor 72a and the reference potential of the second voltage sensor 72b are the potential of the node of the main relay 41 on the battery 10 side, good.
  • the reference potential of the first voltage sensor 72a and the reference potential of the second voltage sensor 72b may each be the potential of a node on the load side of the main relay 41.
  • the reference potential of the first voltage sensor 72a and the reference potential of the second voltage sensor 72b may each be the ground potential of the control board 70.
  • the reference potential of the first voltage sensor 72a and the reference potential of the second voltage sensor 72b may be common.
  • the control circuit 73 calculates the voltage of the precharge resistor 43 from the difference between the measured value of the first voltage sensor 72a (voltage of the battery 10) and the measured value of the second voltage sensor 72b (voltage of the load).
  • a failure of the current sensor 50 is detected by calculating the current from the calculated voltage of the precharge resistor 43 and the resistance value of the precharge resistor 43, and comparing the calculated current with the measured value of the current sensor 50. do.
  • the current flowing through the precharge resistor 43 can be calculated from the above difference and the resistance value of the precharge resistor 43, and the calculated current flowing through the precharge resistor 43 and the measured value of the current sensor 50 (specifically, (current flowing through the current sensor 50), and if they do not substantially match, it can be detected that the current sensor 50 is malfunctioning.
  • the battery cutoff system includes the amplifier circuit 74, but the battery cutoff system does not need to include the amplifier circuit 74.
  • the battery cutoff system includes the communication interface 80, but the battery cutoff system does not need to include the communication interface 80.
  • the present disclosure can be realized not only as a battery cutoff system, but also as a failure detection method including steps (processing) performed by the components that make up the battery cutoff system.
  • FIG. 5 is a flowchart illustrating an example of a failure detection method according to another embodiment.
  • the failure detection method includes a main relay connected between the battery and the load, a precharge relay and a precharge resistor connected in parallel with the main relay and connected in series, and a current sensor that measures the battery current.
  • a fault detection method for a current sensor carried out by a battery cutoff system comprising: a pyrotechnic cutoff device for cutting off battery current; as shown in FIG. 5, the main relay is turned off and the precharge relay a step of measuring the voltage of the precharge resistor when the is on (step S11), and a step of detecting a failure of the current sensor based on the measured value measured in the measuring step (step S12).
  • the steps in the fault detection method may be performed by a computer (computer system).
  • the present disclosure can be realized as a program for causing a computer to execute the steps included in the failure detection method.
  • the present disclosure can be realized as a non-transitory computer-readable recording medium such as a CD-ROM on which the program is recorded.
  • each step is executed by executing the program using hardware resources such as a computer's CPU, memory, and input/output circuits. . That is, each step is executed by the CPU acquiring data from a memory or input/output circuit, etc., and performing calculations, and outputting the calculation results to the memory, input/output circuit, etc.
  • hardware resources such as a computer's CPU, memory, and input/output circuits.
  • each component included in the battery cutoff system of the above embodiment may be realized as a dedicated or general-purpose circuit.
  • each component included in the battery cutoff system of the above embodiment may be realized as an LSI (Large Scale Integration) that is an integrated circuit (IC).
  • LSI Large Scale Integration
  • IC integrated circuit
  • the integrated circuit is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • a programmable FPGA (Field Programmable Gate Array) or a reconfigurable processor in which connections and settings of circuit cells inside the LSI can be reconfigured may be used.
  • the present disclosure can be applied to a device that interrupts current flowing in a current path.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

バッテリ遮断システムは、バッテリと負荷との間に接続されるメインリレーと、メインリレーと並列に接続され、直列接続されたプリチャージリレーおよびプリチャージ抵抗と、バッテリの電流を測定する電流センサーと、バッテリの電流を遮断するための火工遮断装置と、プリチャージ抵抗の電圧を測定する電圧測定部と、制御回路と、を備え、制御回路は、メインリレーがオンしているときの電流センサーの測定値に基づいて火工遮断装置を制御し、メインリレーがオフし、かつ、プリチャージリレーがオンしているときの電圧測定部の測定値に基づいて電流センサーの故障を検出する。

Description

バッテリ遮断システムおよび故障検出方法
 本開示は、バッテリ遮断システムおよび故障検出方法に関する。
 特許文献1には、電流センサーによって検出された検出電流に基づいて、ヒューズに電流の流れを遮断させるシステムが記載されている。
特開2015-91199号公報
 特許文献1に記載されたシステムでは、電流センサーが故障した場合、電流の誤検出により、過電流が流れていないのに誤って遮断されたり、過電流が流れているのに遮断されなかったりする場合がある。例えば、電流センサーの故障を検出するために、電流センサーを複数設けて冗長化することも考えられるが、高コスト化してしまう。
 そこで、本開示は、電流センサーを複数設けることなく、電流センサーの故障を検出できるバッテリ遮断システムなどを提供する。
 本開示の一態様に係るバッテリ遮断システムは、バッテリと負荷との間に接続されるメインリレーと、前記メインリレーと並列に接続され、直列接続されたプリチャージリレーおよびプリチャージ抵抗と、前記バッテリの電流を測定する電流センサーと、前記バッテリの電流を遮断するための火工遮断装置と、前記プリチャージ抵抗の電圧を測定する電圧測定部と、制御回路と、を備え、前記制御回路は、前記メインリレーがオンしているときの前記電流センサーの測定値に基づいて前記火工遮断装置を制御し、前記メインリレーがオフし、かつ、前記プリチャージリレーがオンしているときの前記電圧測定部の測定値に基づいて前記電流センサーの故障を検出する。
 本開示の一態様に係る故障検出方法は、バッテリと負荷との間に接続されるメインリレーと、前記メインリレーと並列に接続され、直列接続されたプリチャージリレーおよびプリチャージ抵抗と、前記バッテリの電流を測定する電流センサーと、前記バッテリの電流を遮断する火工遮断装置と、を備えるバッテリ遮断システムにより実行される前記電流センサーの故障検出方法であって、前記メインリレーがオフし、かつ、前記プリチャージリレーがオンしているときの前記プリチャージ抵抗の電圧を測定するステップと、前記測定するステップで測定された測定値に基づいて、前記電流センサーの故障を検出するステップと、を含む。
 本開示の一態様に係るバッテリ遮断システムなどによれば、電流センサーを複数設けることなく、電流センサーの故障を検出できる。
実施の形態1に係るバッテリ遮断システムの一例を示す構成図である。 実施の形態1の変形例に係るバッテリ遮断システムの一例を示す構成図である。 実施の形態2に係るバッテリ遮断システムの一例を示す構成図である。 実施の形態2の変形例に係るバッテリ遮断システムの一例を示す構成図である。 その他の実施の形態に係る故障検出方法の一例を示すフローチャートである。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態などは、一例であり、本開示を限定する主旨ではない。
 (実施の形態1)
 以下、実施の形態1に係るバッテリ遮断システム1について図1を用いて説明する。
 図1は、実施の形態1に係るバッテリ遮断システム1の一例を示す構成図である。なお、図1には、バッテリ遮断システム1の他に、バッテリ10、平滑容量20およびインバータ30が示されている。なお、バッテリ10、平滑容量20またはインバータ30は、バッテリ遮断システム1の構成要素であってもよい。
 バッテリ遮断システム1は、例えば、推進駆動に電力が用いられる電気自動車などの車両に搭載される。電気自動車などの車両には、高電圧のバッテリ10が搭載され、バッテリ10から負荷に電力が供給されることで、電気自動車などの車両の推進駆動が行われる。事故などが発生したときにバッテリ10と負荷とを接続する経路に短絡などの異常による大電流が流れ、バッテリ10が発煙、発火するおそれがあるため、バッテリ遮断システム1は、当該経路を遮断するために設けられる。以下では、負荷の一例として平滑容量20およびインバータ30を示している。
 平滑容量20は、バッテリ10からの電流を平滑化し、インバータ30は、バッテリ10からの直流電流を交流電流に変換する。これにより、交流電流によってモーターを駆動し車両を推進させることができる。
 バッテリ遮断システム1は、メインリレー40および41、プリチャージリレー42、プリチャージ抵抗43、電流センサー50、火工遮断装置60および制御基板70を備える。制御基板70には、点火回路71、制御回路73、増幅回路74、電圧測定部75および通信インタフェース80などが設けられる。
 メインリレー40および41は、バッテリ10と負荷とを接続する経路上に設けられ、メインリレー40および41がオンしているときに負荷にバッテリ10からの電力を供給することができる。なお、リレーがオンしているとは、リレーが導通状態となっていることを意味し、リレーがオフしているとは、リレーが非導通状態となっていることを意味する。
 なお、車両の起動時などに、メインリレー40および41を両方オンにすると、突入電流が流れてしまう。そこで、バッテリ遮断システム1には、突入電流対策として、プリチャージリレー42およびプリチャージ抵抗43が設けられている。
 プリチャージリレー42およびプリチャージ抵抗43は、直列接続されており、かつ、プリチャージリレー42とプリチャージ抵抗43とが直列接続された回路は、メインリレー40と並列に接続される。例えば、車両の起動時などには、メインリレー40がオフされ、メインリレー41がオンされ、プリチャージリレー42がオンされる。これにより、負荷へプリチャージ抵抗43を介して電流が流れるため、突入電流の発生を抑制できる。例えば、0.1s程度で平滑容量20の電圧がバッテリ10の電圧と同程度になり、プリチャージリレー42がオフされ、メインリレー40がオンされて通常動作が開始される。例えば、メインリレー40および41ならびにプリチャージリレー42は、バッテリ遮断システム1外のECU(Electronic Control Unit)などによって制御される。
 メインリレー40、41、及びプリチャージリレー42は、メカニカルリレー(有接点リレー)である。なお、本実施の形態において、メインリレー40、41、及びプリチャージリレー42は、その他方式のリレー(一例として、半導体リレー、無接点リレー)を用いることも出来るが、ハイブリッド電気自動車又は純粋電気自動車等の電気自動車に搭載される大容量のバッテリからの大電流を、確実に遮断と供給を切り替えるためには、メインリレー40、41、及びプリチャージリレー42は、メカニカルリレーであることがより好ましい。特に、メインリレー40、41は、プリチャージリレー42よりも、メカニカルリレーであることが、より好ましい。
 電流センサー50は、バッテリ10の電流(具体的には、バッテリ10と負荷とを接続する経路に流れる電流)を測定する。電流センサー50は、例えば、シャント抵抗であり、シャント抵抗の抵抗素子に流れる電流を電圧に変換することで、バッテリ10の電流を測定する。例えば、シャント抵抗の抵抗素子の抵抗値は、数10マイクロオーム程度と小さく、発生する電圧も小さいため、電流センサー50は増幅回路を備えていてもよい。なお、バッテリ遮断システム1は、当該増幅回路とは別に、増幅回路74を備える。
 電流センサー50は、シャント抵抗(シャント方式)以外にもその他方式(一例として、ホール素子を用いる電流センサー)を用いることもできる。しかし、バッテリ遮断システム1への搭載容易性から、ホール素子を用いる電流センサーよりも小型化ができるシャント抵抗(シャント方式)を用いることが、より好ましい。
 火工遮断装置60は、バッテリ10の電流を遮断するための装置である。具体的には、火工遮断装置60は、バッテリ10と負荷とを接続する経路上に設けられ、当該経路を遮断するための装置である。火工遮断装置60は、例えばパイロヒューズである。
 電圧測定部75は、プリチャージ抵抗43の電圧を測定する。実施の形態1では、図1に示されるように、電圧測定部75は、プリチャージ抵抗43の電圧として、プリチャージ抵抗43の両端電圧を測定する第1の電圧センサー72を備える。
 通信インタフェース80は、バッテリ遮断システム1の上位のシステムと通信を行うインタフェースである。
 制御回路73は、バッテリ10の電流を遮断するための回路であり、また、電流センサー50の故障を検出するための回路である。制御回路73は、例えば、マイコン(MCU:Micro Controller Unit)などにより実現される。
 制御回路73は、メインリレー40がオンしているとき(すなわち、通常動作時)の電流センサー50の測定値に基づいて火工遮断装置60を制御する。具体的には、制御回路73は、電流センサー50の測定値が所定条件を満たしたときに、バッテリ10と負荷とを接続する経路の遮断を実行するように火工遮断装置60を制御する。所定条件は、特に限定されないが、電流センサー50の測定値が、上記経路を遮断すべき電流に相当する値となるといった条件である。例えば、制御回路73は、点火回路71を介して火工遮断装置60を制御する。点火回路71は、制御回路73からの出力信号が小さく、制御回路73だけでは火工遮断装置60を駆動できない場合に、制御回路73からの出力信号に応じて火工遮断装置60を制御する回路である。なお、制御回路73単独で火工遮断装置60を制御できる場合には、点火回路71が設けられていなくてもよい。
 また、制御回路73は、メインリレー40がオフし、かつ、プリチャージリレー42がオンしているとき(すなわち通常動作開始前の突入電流対策が行われているとき)の電圧測定部75の測定値に基づいて電流センサー50の故障を検出する。制御回路73は、プリチャージ抵抗43に電流が流れて電圧測定部75が所定値以上の電圧を測定している場合に、プリチャージリレー42がオンし、かつ、メインリレーがオフしたと認識することができる。
 制御回路73は、プリチャージリレー42がオフからオンした後、一定時間(例えば0.1sなど)後にオンからオフするまでの間に、第1の電圧センサー72の測定値とプリチャージ抵抗43の抵抗値とから電流を算出し、算出した電流と電流センサー50の測定値とを比較することで、電流センサー50の故障を検出する。例えば、制御回路73は、算出した電流(すなわちプリチャージ抵抗43に流れる電流)と、電流センサー50の測定値(すなわち電流センサー50(シャント抵抗)を流れる電流)とが略一致した場合には、電流センサー50が故障していないと判定する。一方で、制御回路73は、略一致しない場合には、電流センサー50の故障を検出する。電流センサー50が故障していない場合には、電流センサー50に流れる電流とプリチャージ抵抗43に流れる電流とが略一致するためである。
 なお、第1の電圧センサー72の測定値と電流センサー50の測定値とは、略同じタイミングに測定された値である。第1の電圧センサー72の測定値および電流センサー50の測定値の測定のタイミングは、特に限定されないが、プリチャージリレー42がオフからオンした後、徐々に平滑容量20が充電されていき流れる電流が小さくなっていくため、プリチャージリレー42がオフからオンした後、なるべく早いタイミングであってもよい。また、第1の電圧センサー72の測定値および電流センサー50の測定値として、複数タイミングでの平均値が用いられてもよい。
 なお、制御回路73は、電流センサー50の測定値と電圧測定部75の測定値から算出された電流とを比較することで、電流センサー50の故障を検出する例を説明したが、これに限らない。例えば、制御回路73は、電流センサー50の測定値の時間変化の勾配と、電圧測定部75の測定値の時間変化の勾配とを比較することで、電流センサー50の故障を検出してもよい。測定値自体の比較の場合には、抵抗値の誤差などの影響により電流センサー50の検出精度が低くなり得るが、測定値の時間変化の勾配の比較の場合には、時間変化の勾配は抵抗値の誤差などの影響を受けにくく、電流センサー50の検出精度の低下を抑制できるためである。
 また、増幅回路74は、電流センサー50の故障を検出する際に電流センサー50の信号を増幅する。つまり、増幅回路74は、メインリレー40がオフし、かつ、プリチャージリレー42がオンしているとき(すなわち通常動作開始前の突入電流対策が行われているとき)に、電流センサー50の信号を増幅する。突入電流対策が行われているときは、異常時の大電流と異なり、電流センサー50に流れる電流は小さく、電流センサー50の測定精度が悪いため、このときには、増幅回路74によって電流センサー50の信号が増幅される。そして、増幅回路74により増幅された電流センサー50の信号は制御回路73へ入力され、制御回路73は、電流センサー50の測定値として増幅された電流センサー50の信号に基づいて、電流センサー50の故障を検出する。ただし、通常動作時に電流センサー50の信号が増幅されて制御回路73に入力された場合には、制御回路73の測定範囲を超えるおそれがあるため、通常動作時には、増幅回路74は用いられない。
 また、例えば、制御回路73は、電流センサー50の故障を検出したとき、通信インタフェース80を介して上位のシステムに異常の通知を行う。これにより、車両の運転者などに異常を通知でき、安全性を高めることができる。
 以上説明したように、バッテリ遮断システム1は、バッテリ10と負荷との間に接続されるメインリレー40と、メインリレー40と並列に接続され、直列接続されたプリチャージリレー42およびプリチャージ抵抗43と、バッテリ10の電流を測定する電流センサー50と、バッテリ10の電流を遮断するための火工遮断装置60と、プリチャージ抵抗43の電圧を測定する電圧測定部75と、制御回路73と、を備え、制御回路73は、メインリレー40がオンしているときの電流センサー50の測定値に基づいて火工遮断装置60を制御し、メインリレー40がオフし、かつ、プリチャージリレー42がオンしているときの電圧測定部75の測定値に基づいて電流センサー50の故障を検出する。
 バッテリ遮断システム1では、プリチャージリレー42およびプリチャージ抵抗43が設けられており、メインリレー40がオンされる前にプリチャージリレー42がオンされて、プリチャージ抵抗43を介して電流が流されることで、突入電流対策が行われる。本開示では、突入電流対策として用いられるプリチャージ抵抗43を電流センサー50の故障の検出にも用いることで、電流センサー50を複数設けることなく、電流センサー50の故障を検出できる。
 例えば、制御回路73は、電流センサー50の測定値が所定条件を満たしたときに、バッテリ10と負荷とを接続する経路の遮断を実行するように火工遮断装置60を制御してもよい。
 このように、バッテリ遮断システム1は、電流センサー50の測定値が所定条件を満たしたときに(具体的には、電流センサー50に大きな電流が流れたときに)、火工遮断装置60により、バッテリ10と負荷とを接続する経路を遮断することができる。
 例えば、電圧測定部75は、プリチャージ抵抗43の電圧として、プリチャージ抵抗43の両端電圧を測定する第1の電圧センサー72を備えていてもよい。
 このように、プリチャージ抵抗43の電圧として、プリチャージ抵抗43の両端電圧が測定されてもよい。
 例えば、制御回路73は、第1の電圧センサー72の測定値とプリチャージ抵抗43の抵抗値とから電流を算出し、算出した電流と電流センサー50の測定値とを比較することで、電流センサー50の故障を検出してもよい。
 このように、プリチャージ抵抗43に流れる電流を、プリチャージ抵抗43の両端電圧とプリチャージ抵抗43の抵抗値とから算出でき、算出されたプリチャージ抵抗43に流れる電流と、電流センサー50の測定値(具体的には電流センサー50に流れる電流)とを比較して、略一致していない場合には、電流センサー50が故障していることを検出することができる。
 例えば、バッテリ遮断システム1は、更に、上位のシステムと通信を行う通信インタフェース80を備えていてもよい。例えば、制御回路73は、電流センサー50の故障を検出したとき、通信インタフェース80を介して上位のシステムに異常の通知を行ってもよい。
 これによれば、電流センサー50の故障を上位のシステムに通知することができる。
 例えば、バッテリ遮断システム1は、更に、電流センサー50の故障を検出する際に電流センサー50の信号を増幅する増幅回路74を備えていてもよい。例えば、増幅回路74により増幅された電流センサー50の信号は制御回路73へ入力され、制御回路73は、電流センサー50の測定値として、増幅された電流センサー50の信号に基づいて、電流センサー50の故障を検出してもよい。
 電流センサー50の故障を検出する際にプリチャージ抵抗43を介して流れる電流は小さい。このため、電流センサー50が測定する電流も小さく、電流センサー50の故障の検出精度が低下するという問題がある。そこで、増幅回路74によって電流センサー50の信号を増幅することで、電流センサー50の故障の検出精度を上げることができる。
 (実施の形態1の変形例)
 次に、実施の形態1の変形例に係るバッテリ遮断システム1aについて図2を用いて説明する。
 図2は、実施の形態1の変形例に係るバッテリ遮断システム1aの一例を示す構成図である。
 実施の形態1の変形例では、電圧測定部75は、プリチャージ抵抗43の電圧として、直列接続されたプリチャージリレー42とプリチャージ抵抗43との両端電圧を測定する第1の電圧センサー72を備える構成が、実施の形態1と異なる。その他の構成は、実施の形態1と同様であるため、説明は省略する。
 実施の形態1の変形例のように、プリチャージ抵抗43の電圧として、直列接続されたプリチャージリレー42とプリチャージ抵抗43との両端電圧が測定されてもよい。プリチャージリレー42のオン抵抗は小さく無視することができ、直列接続されたプリチャージリレー42とプリチャージ抵抗43との両端電圧をプリチャージ抵抗43の両端電圧とみなすことができるためである。
 これに伴い、制御回路73は、第1の電圧センサー72の測定値とプリチャージ抵抗43の抵抗値とから電流を算出し、算出した電流と電流センサー50の測定値とを比較することで、電流センサー50の故障を検出する。
 このように、プリチャージ抵抗43に流れる電流を、直列接続されたプリチャージリレー42とプリチャージ抵抗43との両端電圧とプリチャージ抵抗43の抵抗値とから算出でき、算出されたプリチャージ抵抗43に流れる電流と、電流センサー50の測定値(具体的には電流センサー50に流れる電流)とを比較して、略一致していない場合には、電流センサー50が故障していることを検出することができる。
 (実施の形態2)
 次に、実施の形態2に係るバッテリ遮断システム2について図3を用いて説明する。
 図3は、実施の形態2に係るバッテリ遮断システム2の一例を示す構成図である。
 実施の形態2では、電圧測定部75は、バッテリ10の電圧を測定する第1の電圧センサー72aと、負荷の電圧を測定する第2の電圧センサー72bと、を備える構成が、実施の形態1と異なる。その他の構成は、実施の形態1と同様であるため、説明は省略する。
 例えば、第1の電圧センサー72aは、バッテリ10の電圧として、メインリレー40およびプリチャージリレー42のバッテリ10側のノードと、メインリレー41のバッテリ10側のノードとの間の電圧を測定する。なお、第1の電圧センサー72aは、バッテリ10の電圧として、火工遮断装置60のバッテリ10側のノードと、メインリレー41のバッテリ10側のノードとの間の電圧を測定してもよい。
 また、例えば、第2の電圧センサー72bは、負荷の電圧として、メインリレー40およびプリチャージ抵抗43の負荷側のノードと、メインリレー41の負荷側のノードとの間の電圧を測定する。
 プリチャージリレー42およびメインリレー41のオン抵抗は小さく無視できることから、プリチャージ抵抗43の電圧は、第1の電圧センサー72aの測定値(バッテリ10の電圧)と第2の電圧センサー72bの測定値(負荷の電圧)との差分に対応する。このため、電圧測定部75がバッテリ10の電圧および負荷の電圧を測定することは、プリチャージ抵抗43の電圧を測定することに等しい。
 このように、プリチャージ抵抗43の電圧として、バッテリ10の電圧と負荷の電圧とが測定されてもよい。
 これに伴い、制御回路73は、上記差分からプリチャージ抵抗43の電圧を算出し、算出したプリチャージ抵抗43の電圧とプリチャージ抵抗43の抵抗値とから電流を算出し、算出した電流と電流センサー50の測定値とを比較することで、電流センサー50の故障を検出する。
 このように、プリチャージ抵抗43に流れる電流を、上記差分とプリチャージ抵抗43の抵抗値とから算出でき、算出されたプリチャージ抵抗43に流れる電流と、電流センサー50の測定値(具体的には電流センサー50に流れる電流)とを比較して、略一致していない場合には、電流センサー50が故障していることを検出することができる。
 (実施の形態2の変形例)
 次に、実施の形態2の変形例に係るバッテリ遮断システム2aについて図4を用いて説明する。
 図4は、実施の形態2の変形例に係るバッテリ遮断システム2aの一例を示す構成図である。
 実施の形態2の変形例では、第1の電圧センサー72aの基準電位と、第2の電圧センサー72bの基準電位とは共通である点が、実施の形態2と異なる。その他の点は、実施の形態2におけるものと同じであるため、説明は省略する。
 実施の形態2の構成に対して、回路を簡素化するため、第1の電圧センサー72aの基準電位と、第2の電圧センサー72bの基準電位とは共通であってもよい。具体的には、図4に示されるように、第1の電圧センサー72aの基準電位および第2の電圧センサー72bの基準電位がそれぞれ、メインリレー41のバッテリ10側のノードの電位であってもよい。あるいは、第1の電圧センサー72aの基準電位および第2の電圧センサー72bの基準電位がそれぞれ、メインリレー41の負荷側のノードの電位であってもよい。また、第1の電圧センサー72aの基準電位および第2の電圧センサー72bの基準電位がそれぞれ、制御基板70のグランドの電位であってもよい。
 このように、第1の電圧センサー72aの基準電位と、第2の電圧センサー72bの基準電位とは共通であってもよい。
 これに伴い、制御回路73は、第1の電圧センサー72aの測定値(バッテリ10の電圧)と第2の電圧センサー72bの測定値(負荷の電圧)との差分からプリチャージ抵抗43の電圧を算出し、算出したプリチャージ抵抗43の電圧とプリチャージ抵抗43の抵抗値とから電流を算出し、算出した電流と電流センサー50の測定値とを比較することで、電流センサー50の故障を検出する。
 このように、プリチャージ抵抗43に流れる電流を、上記差分とプリチャージ抵抗43の抵抗値とから算出でき、算出されたプリチャージ抵抗43に流れる電流と、電流センサー50の測定値(具体的には電流センサー50に流れる電流)とを比較して、略一致していない場合には、電流センサー50が故障していることを検出することができる。
 (その他の実施の形態)
 以上のように、本開示に係る技術の例示として実施の形態を説明した。しかしながら、本開示に係る技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。例えば、以下のような変形例も本開示の一実施の形態に含まれる。
 例えば、上記実施の形態では、バッテリ遮断システムが増幅回路74を備える例について説明したが、バッテリ遮断システムは、増幅回路74を備えていなくてもよい。
 例えば、上記実施の形態では、バッテリ遮断システムが通信インタフェース80を備える例について説明したが、バッテリ遮断システムは、通信インタフェース80を備えていなくてもよい。
 例えば、本開示は、バッテリ遮断システムとして実現できるだけでなく、バッテリ遮断システムを構成する構成要素が行うステップ(処理)を含む故障検出方法として実現できる。
 図5は、その他の実施の形態に係る故障検出方法の一例を示すフローチャートである。
 故障検出方法は、バッテリと負荷との間に接続されるメインリレーと、メインリレーと並列に接続され、直列接続されたプリチャージリレーおよびプリチャージ抵抗と、バッテリの電流を測定する電流センサーと、バッテリの電流を遮断する火工遮断装置と、を備えるバッテリ遮断システムにより実行される電流センサーの故障検出方法であって、図5に示されるように、メインリレーがオフし、かつ、プリチャージリレーがオンしているときのプリチャージ抵抗の電圧を測定するステップ(ステップS11)と、測定するステップで測定された測定値に基づいて、電流センサーの故障を検出するステップ(ステップS12)と、を含む。
 例えば、故障検出方法におけるステップは、コンピュータ(コンピュータシステム)によって実行されてもよい。そして、本開示は、故障検出方法に含まれるステップを、コンピュータに実行させるためのプログラムとして実現できる。
 さらに、本開示は、そのプログラムを記録したCD-ROMなどである非一時的なコンピュータ読み取り可能な記録媒体として実現できる。
 例えば、本開示が、プログラム(ソフトウェア)で実現される場合には、コンピュータのCPU、メモリおよび入出力回路などのハードウェア資源を利用してプログラムが実行されることによって、各ステップが実行される。つまり、CPUがデータをメモリまたは入出力回路などから取得して演算したり、演算結果をメモリまたは入出力回路などに出力したりすることによって、各ステップが実行される。
 また、上記実施の形態のバッテリ遮断システムに含まれる各構成要素は、専用または汎用の回路として実現されてもよい。
 また、上記実施の形態のバッテリ遮断システムに含まれる各構成要素は、集積回路(IC:Integrated Circuit)であるLSI(Large Scale Integration)として実現されてもよい。
 また、集積回路はLSIに限られず、専用回路または汎用プロセッサで実現されてもよい。プログラム可能なFPGA(Field Programmable Gate Array)、または、LSI内部の回路セルの接続および設定が再構成可能なリコンフィギュラブル・プロセッサが、利用されてもよい。
 さらに、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて、バッテリ遮断システムに含まれる各構成要素の集積回路化が行われてもよい。
 その他、実施の形態に対して当業者が思いつく各種変形を施して得られる形態、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示は、電流経路に流れる電流を遮断する装置に適用できる。
 1、1a、2、2a バッテリ遮断システム
 10 バッテリ
 20 平滑容量
 30 インバータ
 40、41 メインリレー
 42 プリチャージリレー
 43 プリチャージ抵抗
 50 電流センサー
 60 火工遮断装置
 70 制御基板
 71 点火回路
 72、72a 第1の電圧センサー
 72b 第2の電圧センサー
 73 制御回路
 74 増幅回路
 75 電圧測定部
 80 通信インタフェース

Claims (15)

  1.  バッテリと負荷との間に接続されるメインリレーと、
     前記メインリレーと並列に接続され、直列接続されたプリチャージリレーおよびプリチャージ抵抗と、
     前記バッテリの電流を測定する電流センサーと、
     前記バッテリの電流を遮断するための火工遮断装置と、
     前記プリチャージ抵抗の電圧を測定する電圧測定部と、
     制御回路と、を備え、
     前記制御回路は、前記メインリレーがオンしているときの前記電流センサーの測定値に基づいて前記火工遮断装置を制御し、前記メインリレーがオフし、かつ、前記プリチャージリレーがオンしているときの前記電圧測定部の測定値に基づいて前記電流センサーの故障を検出する
     バッテリ遮断システム。
  2.  前記制御回路は、前記電流センサーの測定値が所定条件を満たしたときに、前記バッテリと前記負荷とを接続する経路の遮断を実行するように前記火工遮断装置を制御する
     請求項1記載のバッテリ遮断システム。
  3.  前記電圧測定部は、前記プリチャージ抵抗の電圧として、前記プリチャージ抵抗の両端電圧を測定する第1の電圧センサーを備える
     請求項1または2記載のバッテリ遮断システム。
  4.  前記制御回路は、前記第1の電圧センサーの測定値と前記プリチャージ抵抗の抵抗値とから電流を算出し、算出した電流と前記電流センサーの測定値とを比較することで、前記電流センサーの故障を検出する
     請求項3記載のバッテリ遮断システム。
  5.  前記電圧測定部は、前記プリチャージ抵抗の電圧として、直列接続された前記プリチャージリレーと前記プリチャージ抵抗との両端電圧を測定する第1の電圧センサーを有する
     請求項1または2記載のバッテリ遮断システム。
  6.  前記制御回路は、前記第1の電圧センサーの測定値と前記プリチャージ抵抗の抵抗値とから電流を算出し、算出した電流と前記電流センサーの測定値とを比較することで、前記電流センサーの故障を検出する
     請求項5記載のバッテリ遮断システム。
  7.  前記電圧測定部は、
      前記バッテリの電圧を測定する第1の電圧センサーと、
      前記負荷の電圧を測定する第2の電圧センサーと、
    を有し、
     前記プリチャージ抵抗の電圧は、前記第1の電圧センサーの測定値と前記第2の電圧センサーの測定値との差分に対応する
     請求項1または2記載のバッテリ遮断システム。
  8.  前記制御回路は、前記差分から前記プリチャージ抵抗の電圧を算出し、算出した前記プリチャージ抵抗の電圧と前記プリチャージ抵抗の抵抗値とから電流を算出し、算出した電流と前記電流センサーの測定値とを比較することで、前記電流センサーの故障を検出する
     請求項7記載のバッテリ遮断システム。
  9.  前記第1の電圧センサーの基準電位と、前記第2の電圧センサーの基準電位とは共通である
     請求項7記載のバッテリ遮断システム。
  10.  前記制御回路は、前記差分から前記プリチャージ抵抗の電圧を算出し、算出した前記プリチャージ抵抗の電圧と前記プリチャージ抵抗の抵抗値とから電流を算出し、算出した電流と前記電流センサーの測定値とを比較することで、前記電流センサーの故障を検出する
     請求項9記載のバッテリ遮断システム。
  11.  前記バッテリ遮断システムは、更に、上位のシステムと通信を行う通信インタフェースを備える
     請求項1~9のいずれか1項に記載のバッテリ遮断システム。
  12.  前記制御回路は、前記電流センサーの故障を検出したとき、前記通信インタフェースを介して前記上位のシステムに異常の通知を行う
     請求項11記載のバッテリ遮断システム。
  13.  前記バッテリ遮断システムは、更に、前記電流センサーの故障を検出する際に前記電流センサーの信号を増幅する増幅回路を備える
     請求項1~12のいずれか1項に記載のバッテリ遮断システム。
  14.  前記増幅回路により増幅された前記電流センサーの信号は前記制御回路へ入力され、
     前記制御回路は、前記電流センサーの測定値として、増幅された前記電流センサーの信号に基づいて、前記電流センサーの故障を検出する
     請求項13記載のバッテリ遮断システム。
  15.  バッテリと負荷との間に接続されるメインリレーと、前記メインリレーと並列に接続され、直列接続されたプリチャージリレーおよびプリチャージ抵抗と、前記バッテリの電流を測定する電流センサーと、前記バッテリの電流を遮断する火工遮断装置と、を備えるバッテリ遮断システムにより実行される前記電流センサーの故障検出方法であって、
     前記メインリレーがオフし、かつ、前記プリチャージリレーがオンしているときの前記プリチャージ抵抗の電圧を測定するステップと、
     前記測定するステップで測定された測定値に基づいて、前記電流センサーの故障を検出するステップと、を含む
     故障検出方法。
PCT/JP2023/014046 2022-05-26 2023-04-05 バッテリ遮断システムおよび故障検出方法 WO2023228592A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-086313 2022-05-26
JP2022086313 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023228592A1 true WO2023228592A1 (ja) 2023-11-30

Family

ID=88919091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014046 WO2023228592A1 (ja) 2022-05-26 2023-04-05 バッテリ遮断システムおよび故障検出方法

Country Status (1)

Country Link
WO (1) WO2023228592A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006131A (ja) * 2002-05-31 2004-01-08 Fuji Heavy Ind Ltd 組電池ユニット
JP2010183679A (ja) * 2009-02-03 2010-08-19 Sanyo Electric Co Ltd バッテリシステム
JP2020099112A (ja) * 2018-12-17 2020-06-25 株式会社デンソー プリチャージ制御装置
KR20220023082A (ko) * 2020-08-20 2022-03-02 충북대학교 산학협력단 돌입전류 예측을 이용한 배터리 병렬연결 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006131A (ja) * 2002-05-31 2004-01-08 Fuji Heavy Ind Ltd 組電池ユニット
JP2010183679A (ja) * 2009-02-03 2010-08-19 Sanyo Electric Co Ltd バッテリシステム
JP2020099112A (ja) * 2018-12-17 2020-06-25 株式会社デンソー プリチャージ制御装置
KR20220023082A (ko) * 2020-08-20 2022-03-02 충북대학교 산학협력단 돌입전류 예측을 이용한 배터리 병렬연결 방법 및 장치

Similar Documents

Publication Publication Date Title
US10861663B2 (en) Relay device and a method to detect open-circuit failures
JP4643419B2 (ja) 自己診断機能を備えた負荷駆動装置
US10399518B2 (en) Relay device and power supply device
US8847605B2 (en) Connection diagnostic apparatus for ground fault detector
CN108725351B (zh) 车辆用继电器的故障诊断系统
US10811897B2 (en) Relay device and power supply device
US9341665B2 (en) Method and apparatus for high voltage isolation monitor for a vehicle
US20120098470A1 (en) Electronic control unit including discharging circuit with plurality of resistors connected in series
US10153632B2 (en) Device and method for protecting an electrical system component of a vehicle electrical system
JP6629463B2 (ja) 車両の少なくとも1つの負荷のためのヒューズシステム
KR101769650B1 (ko) 게이트 전압 감지를 통한 igbt 고장 확인 회로
JP6748935B2 (ja) 電流センス付き半導体スイッチの保護回路
WO2022259764A1 (ja) 車載用遮断装置および遮断方法
KR20090012456A (ko) 고전압 사용 차량의 절연내력 측정 시스템 및 방법
KR102642100B1 (ko) 릴레이의 고장 진단 방법
CN113273047A (zh) 用于致动机电机动车辆转向系统的电动机的具有短路保护的电子控制装置
JP2012244895A (ja) 電気自動車のコンバータ制御方法及びその装置
US20240175909A1 (en) Vehicle, fault monitoring device for a vehicle and semiconductor device for detecting an overvoltage and/or an overcurrent
EP2503849A2 (en) Discrete input signal generation via output short-circuit detection
WO2023228592A1 (ja) バッテリ遮断システムおよび故障検出方法
CN110884558B (zh) 用于向车辆中的eps供应电力的控制装置和方法
TWI502853B (zh) 用於高電流脈衝電源供應器的短路控制
JP2013126361A (ja) 車載用電子制御装置
JP2015142452A (ja) モータ駆動装置
WO2021039177A1 (ja) 通電制御装置および電源ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024522960

Country of ref document: JP

Kind code of ref document: A