WO2023228411A1 - Electromagnetic fuel injection valve - Google Patents

Electromagnetic fuel injection valve Download PDF

Info

Publication number
WO2023228411A1
WO2023228411A1 PCT/JP2022/021756 JP2022021756W WO2023228411A1 WO 2023228411 A1 WO2023228411 A1 WO 2023228411A1 JP 2022021756 W JP2022021756 W JP 2022021756W WO 2023228411 A1 WO2023228411 A1 WO 2023228411A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
valve
coil housing
fuel injection
electromagnetic fuel
Prior art date
Application number
PCT/JP2022/021756
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 三浦
正美 菊地
和彌 村上
勇輝 堀
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/021756 priority Critical patent/WO2023228411A1/en
Publication of WO2023228411A1 publication Critical patent/WO2023228411A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures

Definitions

  • the present invention relates to an electromagnetic fuel injection valve in which a movable core is driven by controlling the energization of a coil on the outer periphery of a fixed core to repeatedly open and close the valve.
  • a movable core that faces a fixed core and interlocks with a valve body, a coil housing that functions as a yoke that surrounds a coil provided on the outer periphery of the fixed core and forms a magnetic circuit passing through the fixed core and the movable core;
  • the electromagnetic fuel injection valve is equipped with a resin filled between a coil housing and a coil, and the movable core and valve body are integrally driven by controlling the energization of the coil, and the valve repeats an open state and a closed state. known (for example, see Patent Document 1).
  • the coil housing includes two yokes arranged on both sides in the radial direction with the coil in between.
  • Each yoke includes a partially cylindrical large diameter portion whose inner surface faces the cylindrical side surface of the coil and whose center angle is obtuse.
  • a recessed portion is formed in the large diameter portion. Further, the recessed portion of the large diameter portion is provided with a filling hole that penetrates the recessed portion.
  • the space between the coil housing and the coil is filled with resin when the coating layer that covers the main part of the electromagnetic fuel injection valve, including the coil housing, is injection molded as an insert part. That is, at this time, the space between the two yokes serves as a filling port, and the space is filled with resin. Filling is also performed through the filling hole.
  • the above-mentioned recesses and filling holes have a function of increasing the ability to fill the space with resin. This makes it possible to injection mold the coating layer at lower pressure or in a shorter time, improving production efficiency.
  • a recessed portion is provided in the large diameter portion of the yoke constituting the magnetic circuit, but this measure reduces performance and reduces yield due to injection molding. This is not necessarily appropriate from the perspective of promoting downsizing while avoiding deterioration. That is, although the recessed portion improves the filling property of the resin, there is a risk that it may adversely affect the magnetic path in the yoke, resulting in a decrease in performance or an increase in the diameter of the yoke.
  • an object of the present invention is to provide an electromagnetic fuel injection valve that can ensure good performance and promote miniaturization while avoiding deterioration in yield caused by injection molding. be.
  • the electromagnetic fuel injection valve of the present invention includes: fixed core; a movable core facing the fixed core; a valve body interlocking with the movable core; a coil provided on the outer periphery of the fixed core; a coil housing surrounding the coil and forming a magnetic circuit passing through the fixed core and the movable core; a resin filled between the coil and the coil housing;
  • the coil housing includes a pair of coil housing halves arranged on both sides in the radial direction with the coil sandwiched therebetween, Each coil housing half includes a partial cylindrical portion whose inner surface faces the cylindrical side surface of the coil and whose central angle is obtuse;
  • the partial cylindrical portion of each coil housing half is characterized in that two communication holes having a predetermined diameter and passing through in the radial direction are provided at a predetermined interval in the axial direction.
  • the resin filling for molding the insulating part between the coil housing and the coil is performed by injection molding the main parts including the coil housing of the electromagnetic fuel injection valve as insert parts and the coating layer covering the main parts. Sometimes they can be done at the same time. At this time, the space between the two coil housing halves and the two communication holes serve as ports for filling the resin between the coil housing and the coil.
  • the two communication holes also serve as resin filling ports, which increases the flow rate of resin from the outside to the inside of the coil housing half, and prevents welds from forming at both ends of the coil. can. This prevents the weld from causing disturbance in the windings at both ends of the coil, thereby improving yield.
  • This improvement in yield can be achieved by simply providing two communication holes in the coil housing halves that make up the magnetic circuit, minimizing changes in the cross-sectional area of the coil housing halves, and increasing the diameter of the coil housing. It is achieved without any trouble. Therefore, according to the present invention, it is possible to provide an electromagnetic fuel injection valve that can ensure good performance and promote downsizing while achieving an improvement in yield.
  • the thickness of the coil housing half may be constant. According to this, it is possible to prevent the magnetic force between the fixed core and the movable core from decreasing due to the magnetic flux being restricted by the portions of the coil housing halves with non-uniform thickness.
  • the diameter of the opening on the coil side of each communication hole may be larger than the diameter of the opening on the opposite side. According to this, when resin is filled from the outside of the coil housing half through the communication hole during injection molding of the coating layer of the electromagnetic fuel injection valve, the resin is poured into the coil housing from the opening on the coil side of the communication hole. Since it is well diffused inside the half body, it is possible to more effectively suppress the occurrence of welds at both ends of the coil.
  • FIG. 1 is a sectional view showing an electromagnetic fuel injection valve according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a part of the coil assembly in the electromagnetic fuel injection valve of FIG. 1.
  • FIG. FIG. 2 is a perspective view showing a half coil housing in the electromagnetic fuel injection valve of FIG. 1.
  • FIG. 7 is a diagram showing resin flow analysis results regarding the occurrence of welds when resin is filled between the coil housing and the coil in the case where the coil housing half has no communication hole. It is a figure which shows the resin flow analysis result regarding the generation
  • FIG. 1 shows an electromagnetic fuel injection valve according to an embodiment of the present invention.
  • this electromagnetic fuel injection valve 1 includes a fixed core 2, a movable core 3 facing the fixed core 2, a valve body 4 interlocking with the movable core 3, and a valve body 4 provided on the outer periphery of the fixed core 2. It includes a coil 5, a coil housing 6 that surrounds the coil 5 and forms a magnetic circuit passing through the fixed core 2 and the movable core 3, and a resin 7 filled between the coil 5 and the coil housing 6.
  • the electromagnetic fuel injection valve 1 drives the movable core 3 and the valve body 4 by controlling the energization to the coil 5, thereby repeating the valve open state and the valve closed state.
  • the valve housing 8 of the electromagnetic fuel injection valve 1 includes a cylindrical valve seat member 9, a magnetic cylindrical body 10 that fits onto the outer peripheral surface of the rear end of the valve seat member 9 and is welded liquid-tightly, and a magnetic cylinder.
  • a non-magnetic cylindrical body 11 is abutted against the rear end of the body 10 and welded in a liquid-tight manner, and a hollow cylinder is welded in a liquid-tight manner by fitting the small-diameter front end onto the inner peripheral surface of the non-magnetic cylindrical body 11.
  • the fuel inlet tube 12 is composed of the above-mentioned fixed core 2 having a shape, and a fuel inlet cylinder 12 that is fitted onto the outer periphery of the rear end of the fixed core 2 and welded in a liquid-tight manner.
  • the valve seat member 9 has a valve hole 13 opening on its front end surface, a conical valve seat 14 connected to the inner peripheral end of the valve hole 13, and a cylindrical guide hole 15 connected to the large diameter portion of the valve seat 14. has.
  • An injector plate 16 made of a steel plate and having a plurality of fuel injection holes communicating with the valve hole 13 is welded to the front end surface of the valve seat member 9 in a liquid-tight manner.
  • a portion that does not fit with the fixed core 2 is left at the front end of the non-magnetic cylindrical body 11, and the above-mentioned hollow cylindrical movable core 3 extends from that portion to the magnetic cylindrical body 10 and faces the front end surface of the fixed core 2. is fitted, and the valve body 4 is connected to the movable core 3.
  • the hollow cylindrical fixed core 2 and movable core 3 are thicker than the magnetic cylindrical body 10 and the non-magnetic cylindrical body 11.
  • the valve element 4 includes a spherical valve part 17 that can slide through the guide hole 15 to open and close the valve hole 13 in cooperation with the valve seat 14, and a valve rod 18 whose front end is fixed to the valve part 17.
  • the rear end of the valve rod 18 is press-fitted into the inner peripheral surface of the movable core 3 and welded. Therefore, the valve body 4 can move up and down within the valve housing 8 integrally with the movable core 3.
  • the valve rod 18 is made of a pipe material with a slot 19, and the inside thereof communicates with the hollow part of the movable core 3, and the inside and outside of the valve rod 18 communicate with each other via the slot 19. Further, a plurality of flat surfaces are formed around the spherical valve portion 17 to allow passage of fuel.
  • the fuel inlet cylinder 12, the fixed core 2, the retainer 20 (described later), the movable core 3, and each hollow part of the valve rod 18, the slot 19 of the valve rod 18, the guide hole 15 of the valve seat member 9, and the valve hole 13. , and the fuel injection holes of the injector plate 16 constitute a series of fuel flow paths F within the valve housing 8.
  • a retainer 20 made of a slotted pipe material is press-fitted and fixed in the hollow part of the fixed core 2 at its intermediate part, and its front end becomes a first spring seat.
  • the rear end of the valve rod 18 ends midway in the hollow part of the movable core 3, and its upper end becomes a second spring seat.
  • a valve spring 21 is compressed between the first spring seat and the second spring seat. The set load of the valve spring 21 urges the movable core 3 downwardly away from the fixed core 2, that is, in the direction in which the valve body 4 is seated on the valve seat 14. The set load of the valve spring 21 is adjusted by the depth of engagement of the retainer 20 into the fixed core 2.
  • a ring-shaped stopper member 22 made of a non-magnetic material is embedded in the inner peripheral surface of the movable core 3 and slightly protrudes from the rear end surface.
  • a coil assembly 23 is fitted around the outer periphery of the valve housing 8 in correspondence with the fixed core 2 and the movable core 3.
  • the coil assembly 23 consists of a synthetic resin bobbin 24 that extends from the rear end of the magnetic cylindrical body 10 to the fixed core 2 and is fitted onto the outer peripheral surface thereof, and the above-mentioned coil 5 that is wound around the bobbin 24. .
  • a terminal support arm 26 is integrally formed at the rear end of the bobbin 24 to support the base end of the power supply terminal 25 protruding to one side thereof.
  • the terminal of the coil 5 is connected to the power supply terminal 25 .
  • the coil assembly 23 is covered approximately half its circumferential surface with the above-mentioned coil housing (yoke) 6.
  • a synthetic resin coating layer 27 is injection molded from the magnetic cylindrical body 10 to the fuel inlet cylinder 12, covering the outer peripheral surfaces thereof and embedding the coil assembly 23. At this time, a coupler 28 that accommodates and holds the power supply terminal 25 and projects to one side of the coil assembly 23 is integrally molded with the covering layer 27.
  • the above-mentioned resin 7 filled between the coil 5 and the coil housing 6 is formed as part of the covering layer 27.
  • a fuel filter 29 is attached to the inlet of the fuel inlet cylinder 12. Further, a fuel cap connected to a fuel pump (not shown) is fitted onto the outer periphery of the upper end of the fuel inlet cylinder 12 via a seal member 30.
  • FIG. 2 shows an enlarged view of the vicinity of the coil assembly 23.
  • the coil housing 6 is composed of a pair of coil housing halves 31 arranged on both sides in the radial direction with the coil assembly 23 in between.
  • the above-mentioned resin 7 is filled between the coil 5 and the coil housing half 31 to form an insulating portion therebetween.
  • FIG. 3 shows the coil housing half 31.
  • the coil housing half 31 includes a partial cylindrical portion 32 whose inner surface faces the cylindrical side surface of the coil and whose central angle ⁇ is an obtuse angle. For example, 145° can be adopted as the central angle.
  • the thickness t of the coil housing half 31 is constant. For example, 1 mm is adopted as the thickness t.
  • the partial cylindrical portion 32 has two communication holes 33 that penetrate in the radial direction and have a predetermined diameter ⁇ , with a predetermined distance d in the axial direction, and a center point between them.
  • the position is located at the center of the partial cylindrical portion 32.
  • 2 mm is adopted as the predetermined diameter ⁇ .
  • 8.4 mm is adopted as the predetermined interval d. .
  • the resin is filled between the coil housing 6 and the coil 5 at the same time as the coating layer 27 is injection molded.
  • This injection molding is performed using the main parts of the electromagnetic fuel injection valve 1, including the assembled coil housing 6, valve housing 8, power supply terminal 25, etc., as insert parts.
  • the space between the two coil housing halves 31 and the two communication holes 33 serve as resin filling ports.
  • the valve portion 17 is pressed toward the tip by the valve spring 21, and the valve portion 17 is pressed toward the distal end by the valve spring 21, and the valve portion 17 is closed when seated on the valve seat 14. It is in a valve state. In this state, when fuel is force-fed from a fuel pump (not shown) to the fuel inlet cylinder 12 via the fuel distribution pipe, the fuel fills the fuel flow path F in the valve housing 8 and further flows toward the valve portion 17. Apply fluid pressure.
  • valve portion 17 is removed from the valve seat 14, and the electromagnetic fuel injection valve 1 is placed in an open state.
  • the high-pressure fuel in the fuel flow path F is injected into the intake pipe of the internal combustion engine in the form of mist from the fuel nozzle of the injector plate 16 through the valve hole 13. Then, when the coil 5 is de-energized, the valve portion 17 returns to the closed state in which it is seated on the valve seat 14.
  • the electromagnetic fuel injection valve 1 repeats a closed state and an open state, thereby appropriately supplying fuel to the internal combustion engine to which the electromagnetic fuel injection valve 1 is attached. I can do it.
  • the two communication holes 33 are provided in the coil housing half body 31, the negative influence on the magnetic circuit in the coil housing half body 31 can be minimized, and the coil housing 6 Yield is improved without increasing the diameter. Therefore, it is possible to provide an electromagnetic fuel injection valve that can ensure good performance and promote miniaturization while improving yield.
  • the resin is filled between the coil housing 6 and the coil 5 when the coating layer 27 is formed of resin by injection molding using the main parts of the electromagnetic fuel injection valve 1 including the coil housing 6 etc. as insert parts. Can be done concurrently.
  • the space between the two coil housing halves 31 and the respective two communication holes 33 serve as ports for filling the space between the coil housing 6 and the coil 5 with the resin.
  • This improvement in yield can be achieved by simply providing two communication holes 33 in the coil housing half 31 without providing any recesses or the like. Therefore, it is possible to avoid increasing the diameter of the coil housing 6 while minimizing the adverse effect on the magnetic circuit in the coil housing half 31.
  • 4A to 4D are diagrams showing resin flow analysis results for explaining the effects of these two communication holes 33.
  • 4A to 4D show how a weld 34 occurs when resin is filled between the coil housing 6 and the coil 5 when injection molding the above-mentioned coating layer 27.
  • the occurrence status of this weld 34 is shown as "0" (absent), "1", and “2" (in this embodiment, the number of communication holes 33 provided in the coil housing half 31). ), and “3”.
  • the magnetic flux is restricted in the portions of the coil housing half body where the thickness is uneven, so that the fixed core 2 and the movable core 3 can be prevented from decreasing.
  • the present invention is not limited thereto.
  • the diameter of the opening on the coil 5 side may be larger than the diameter of the opening on the opposite side. According to this, when the resin is filled from the outside of the coil housing half body 31 through the communication hole 33, the resin diffuses well from the communication hole 33 into the inside of the coil housing half body 31, so that the weld 34 is This can be more effectively suppressed from occurring at both ends of the coil 5.
  • Electromagnetic fuel injection valve 2... Fixed core, 3... Movable core, 4... Valve body, 5... Coil, 6... Coil housing, 7... Resin, 8... Valve housing, 9... Valve seat member, 10... Magnetism Cylindrical body, 11... Non-magnetic cylindrical body, 12... Fuel inlet cylinder, 13... Valve hole, 14... Valve seat, 15... Guide hole, 16... Injector plate, 17... Valve part, 18... Valve rod, 19... Slot , 20... retainer, 21... valve spring, 22... stopper member, 23... coil assembly, 24... bobbin, 25... power supply terminal, 26... terminal support arm, 27... coating layer, 28... coupler, 29... fuel filter, 30... Seal member, 31... Coil housing half, 32... Partial cylindrical part, 33... Communication hole, 34... Weld, 35... Both ends, F... Fuel flow path.

Abstract

Provided is an electromagnetic fuel injection valve with which good performance can be ensured and size reduction can be facilitated while avoiding deterioration in yield. An electromagnetic fuel injection valve (1) comprises a coil housing (6) surrounding a coil (5) provided around the outer periphery of a fixed core (2), and a resin (7) filled between the coil (5) and the coil housing (6). The coil housing (6) comprises a pair of coil housing halves (31) each having a partial cylindrical part (32). Two communication holes (33) having a predetermined diameter φ and penetrating in the radial direction are provided in the cylindrical parts (32) at a predetermined gap d apart in the axial direction.

Description

電磁式燃料噴射弁electromagnetic fuel injection valve
 本発明は、固定コア外周のコイルへの通電制御により可動コアが駆動されて開閉弁を繰り返す電磁式燃料噴射弁に関する。 The present invention relates to an electromagnetic fuel injection valve in which a movable core is driven by controlling the energization of a coil on the outer periphery of a fixed core to repeatedly open and close the valve.
 従来、固定コアに対向して弁体と連動する可動コアと、固定コアの外周に設けられたコイルを囲い、固定コア及び可動コアを通る磁気回路を形成するヨークとして機能するコイルハウジングと、このコイルハウジングとコイルとの間に充填された樹脂とを備え、コイルへの通電制御により可動コア及び弁体が一体的に駆動され、開弁状態と閉弁状態とを繰り返す電磁式燃料噴射弁が知られている(例えば、特許文献1参照)。 Conventionally, a movable core that faces a fixed core and interlocks with a valve body, a coil housing that functions as a yoke that surrounds a coil provided on the outer periphery of the fixed core and forms a magnetic circuit passing through the fixed core and the movable core; The electromagnetic fuel injection valve is equipped with a resin filled between a coil housing and a coil, and the movable core and valve body are integrally driven by controlling the energization of the coil, and the valve repeats an open state and a closed state. known (for example, see Patent Document 1).
 特許文献1の電磁式燃料噴射弁では、コイルハウジングは、コイルを挟んで径方向両側に配置される2枚のヨークを備える。各ヨークは、内面がコイルの円筒状の側面に対向し、中心角が鈍角である部分円筒状の大径部を備える。大径部には、凹み部が形成される。また、大径部の凹み部には、凹み部を貫通する充填孔が設けられる。 In the electromagnetic fuel injection valve of Patent Document 1, the coil housing includes two yokes arranged on both sides in the radial direction with the coil in between. Each yoke includes a partially cylindrical large diameter portion whose inner surface faces the cylindrical side surface of the coil and whose center angle is obtuse. A recessed portion is formed in the large diameter portion. Further, the recessed portion of the large diameter portion is provided with a filling hole that penetrates the recessed portion.
 コイルハウジングとコイルとの間の空間への樹脂の充填は、電磁式燃料噴射弁におけるコイルハウジング等を含む主要部を覆う被覆層を、該主要部をインサート部品として射出成形するときに行われる。すなわち、このとき、2枚のヨークの間が充填口となって、上記空間への樹脂の充填が行われる。また、充填孔を通しても充填が行われる。 The space between the coil housing and the coil is filled with resin when the coating layer that covers the main part of the electromagnetic fuel injection valve, including the coil housing, is injection molded as an insert part. That is, at this time, the space between the two yokes serves as a filling port, and the space is filled with resin. Filling is also performed through the filling hole.
 この空間への樹脂の充填が行われるに際し、上述の凹み部及び充填孔は、該空間への樹脂の充填性を高める機能を有する。これによって、より低い圧力あるいはより短時間での被覆層の射出成形を可能とし、生産効率を向上させている。 When this space is filled with resin, the above-mentioned recesses and filling holes have a function of increasing the ability to fill the space with resin. This makes it possible to injection mold the coating layer at lower pressure or in a shorter time, improving production efficiency.
特許第5546667号公報Patent No. 5546667
 しかしながら、上記特許文献1の電磁式燃料噴射弁によれば、磁気回路を構成するヨークの大径部に凹み部を設けているが、この措置は、性能の低下と射出成形に起因する歩留まりの悪化を回避しつつ小型化を促進するという観点からは、必ずしも妥当とはいえない。すなわち、この凹み部は、樹脂の充填性を高めるけれども、ヨークにおける磁気通路に悪影響を及ぼして性能を低下させ、あるいはヨークの径を大きくするおそれがある。 However, according to the electromagnetic fuel injection valve of Patent Document 1, a recessed portion is provided in the large diameter portion of the yoke constituting the magnetic circuit, but this measure reduces performance and reduces yield due to injection molding. This is not necessarily appropriate from the perspective of promoting downsizing while avoiding deterioration. That is, although the recessed portion improves the filling property of the resin, there is a risk that it may adversely affect the magnetic path in the yoke, resulting in a decrease in performance or an increase in the diameter of the yoke.
 本発明の目的は、かかる従来技術の課題に鑑み、射出成形に起因する歩留まりの悪化を回避しつつ、良好な性能の確保と小型化の促進が可能な電磁式燃料噴射弁を提供することにある。 In view of the problems of the prior art, an object of the present invention is to provide an electromagnetic fuel injection valve that can ensure good performance and promote miniaturization while avoiding deterioration in yield caused by injection molding. be.
 本発明の電磁式燃料噴射弁は、
 固定コアと、
 前記固定コアに対向する可動コアと、
 前記可動コアと連動する弁体と、
 前記固定コアの外周に設けられるコイルと、
 前記コイルを囲い、前記固定コア及び前記可動コアを通る磁気回路を形成するコイルハウジングと、
 前記コイルと前記コイルハウジングとの間に充填された樹脂とを備え、
 前記コイルハウジングは、前記コイルを挟んで径方向両側に配置される1対のコイルハウジング半体を備え、
 各コイルハウジング半体は、内面が前記コイルの円筒状の側面に対向し、中心角が鈍角である部分円筒部を備え、
 前記コイルへの通電を制御することにより、前記可動コア及び前記弁体を駆動して開弁状態と閉弁状態とを繰り返す電磁式燃料噴射弁において、
 各コイルハウジング半体の前記部分円筒部には、所定の径を有して径方向に貫通する2つの連通孔が軸方向に所定の間隔を置いて設けられることを特徴とする。
The electromagnetic fuel injection valve of the present invention includes:
fixed core;
a movable core facing the fixed core;
a valve body interlocking with the movable core;
a coil provided on the outer periphery of the fixed core;
a coil housing surrounding the coil and forming a magnetic circuit passing through the fixed core and the movable core;
a resin filled between the coil and the coil housing;
The coil housing includes a pair of coil housing halves arranged on both sides in the radial direction with the coil sandwiched therebetween,
Each coil housing half includes a partial cylindrical portion whose inner surface faces the cylindrical side surface of the coil and whose central angle is obtuse;
In an electromagnetic fuel injection valve that repeats a valve open state and a valve closed state by driving the movable core and the valve body by controlling energization to the coil,
The partial cylindrical portion of each coil housing half is characterized in that two communication holes having a predetermined diameter and passing through in the radial direction are provided at a predetermined interval in the axial direction.
 この構成において、コイルハウジングとコイルとの間の絶縁部を成形する樹脂の充填は、電磁式燃料噴射弁のコイルハウジング等を含む要部をインサート部品として該要部を覆う被覆層を射出成形するときに同時に行うことができる。このとき、2つのコイルハウジング半体の間、及び2つの連通孔が、コイルハウジングとコイルとの間への樹脂の充填口となる。 In this configuration, the resin filling for molding the insulating part between the coil housing and the coil is performed by injection molding the main parts including the coil housing of the electromagnetic fuel injection valve as insert parts and the coating layer covering the main parts. Sometimes they can be done at the same time. At this time, the space between the two coil housing halves and the two communication holes serve as ports for filling the resin between the coil housing and the coil.
 このように2つの連通孔も樹脂の充填口となることにより、コイルハウジング半体の外側から内側への樹脂の流入速度が速まるとともに、ウェルドがコイルの両端部に発生するのを回避することができる。これにより、ウェルドがコイルの両端部で巻き線の乱れを生じさせるのを回避し、歩留まりを向上させることができる。 In this way, the two communication holes also serve as resin filling ports, which increases the flow rate of resin from the outside to the inside of the coil housing half, and prevents welds from forming at both ends of the coil. can. This prevents the weld from causing disturbance in the windings at both ends of the coil, thereby improving yield.
 そして、この歩留まりの向上は、磁気回路を構成するコイルハウジング半体に2つの連通孔を設けるだけで、コイルハウジング半体の断面積の変化を最小限に抑え、かつコイルハウジングの径を大きくすることなく、達成される。したがって、本発明によれば、歩留まりの向上を達成しつつ、良好な性能の確保と小型化の促進が可能な電磁式燃料噴射弁を提供することができる。 This improvement in yield can be achieved by simply providing two communication holes in the coil housing halves that make up the magnetic circuit, minimizing changes in the cross-sectional area of the coil housing halves, and increasing the diameter of the coil housing. It is achieved without any trouble. Therefore, according to the present invention, it is possible to provide an electromagnetic fuel injection valve that can ensure good performance and promote downsizing while achieving an improvement in yield.
 本発明において、前記コイルハウジング半体の厚さは一定であってもよい。これによれば、コイルハウジング半体において厚さが不均一な部分で磁束が制限されることにより、固定コアと可動コア間の磁力が低下するのを防止することができる。 In the present invention, the thickness of the coil housing half may be constant. According to this, it is possible to prevent the magnetic force between the fixed core and the movable core from decreasing due to the magnetic flux being restricted by the portions of the coil housing halves with non-uniform thickness.
 本発明において、各連通孔は、前記コイル側の開口部の径が反対側の開口部の径よりも大きくてもよい。これによれば、電磁式燃料噴射弁の被覆層の射出成形時にコイルハウジング半体の外側から連通孔を介して樹脂が充填される際に、連通孔のコイル側の開口部から樹脂がコイルハウジング半体の内側に良好に拡散するので、ウェルドがコイルの両端部に発生するのをより効果的に抑制することができる。 In the present invention, the diameter of the opening on the coil side of each communication hole may be larger than the diameter of the opening on the opposite side. According to this, when resin is filled from the outside of the coil housing half through the communication hole during injection molding of the coating layer of the electromagnetic fuel injection valve, the resin is poured into the coil housing from the opening on the coil side of the communication hole. Since it is well diffused inside the half body, it is possible to more effectively suppress the occurrence of welds at both ends of the coil.
本発明の一実施形態に係る電磁式燃料噴射弁を示す断面図である。1 is a sectional view showing an electromagnetic fuel injection valve according to an embodiment of the present invention. 図1の電磁式燃料噴射弁におけるコイル組立体の一部を拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view of a part of the coil assembly in the electromagnetic fuel injection valve of FIG. 1. FIG. 図1の電磁式燃料噴射弁におけるコイルハウジング半体を示す斜視図である。FIG. 2 is a perspective view showing a half coil housing in the electromagnetic fuel injection valve of FIG. 1. FIG. コイルハウジング半体に連通孔が無い場合におけるコイルハウジングとコイルとの間に樹脂が充填されるときのウェルドの発生状況に関する樹脂流動解析結果を示す図である。FIG. 7 is a diagram showing resin flow analysis results regarding the occurrence of welds when resin is filled between the coil housing and the coil in the case where the coil housing half has no communication hole. コイルハウジング半体に連通孔が1つ存在する場合における上記ウェルドの発生状況に関する樹脂流動解析結果を示す図である。It is a figure which shows the resin flow analysis result regarding the generation|occurrence|production situation of the said weld in the case where one communicating hole exists in the coil housing half. コイルハウジング半体に連通孔が2つ存在する本発明の一実施形態の場合における上記ウェルドの発生状況に関する樹脂流動解析結果を示す図である。It is a figure which shows the resin flow analysis result regarding the generation|occurrence|production state of the said weld in the case of one Embodiment of this invention in which two communicating holes exist in the coil housing half. コイルハウジング半体に連通孔が3つ存在する場合における上記ウェルドの発生状況に関する樹脂流動解析結果を示す図である。It is a figure which shows the resin flow analysis result regarding the generation|occurrence|production situation of the said weld when three communicating holes exist in a coil housing half.
 以下、図面を用いて本発明の実施形態を説明する。図1は、本発明の一実施形態に係る電磁式燃料噴射弁を示す。図1に示すように、この電磁式燃料噴射弁1は、固定コア2及び固定コア2に対向する可動コア3と、可動コア3と連動する弁体4と、固定コア2の外周に設けられるコイル5と、コイル5を囲い、固定コア2及び可動コア3を通る磁気回路を形成するコイルハウジング6と、コイル5とコイルハウジング6との間に充填された樹脂7とを備える。そして、電磁式燃料噴射弁1は、コイル5への通電が制御されることにより、可動コア3及び弁体4を駆動して開弁状態と閉弁状態とを繰り返す。 Hereinafter, embodiments of the present invention will be described using the drawings. FIG. 1 shows an electromagnetic fuel injection valve according to an embodiment of the present invention. As shown in FIG. 1, this electromagnetic fuel injection valve 1 includes a fixed core 2, a movable core 3 facing the fixed core 2, a valve body 4 interlocking with the movable core 3, and a valve body 4 provided on the outer periphery of the fixed core 2. It includes a coil 5, a coil housing 6 that surrounds the coil 5 and forms a magnetic circuit passing through the fixed core 2 and the movable core 3, and a resin 7 filled between the coil 5 and the coil housing 6. The electromagnetic fuel injection valve 1 drives the movable core 3 and the valve body 4 by controlling the energization to the coil 5, thereby repeating the valve open state and the valve closed state.
 電磁式燃料噴射弁1の弁ハウジング8は、円筒状の弁座部材9と、弁座部材9の後端部外周面に嵌合して液密に溶接される磁性円筒体10と、磁性円筒体10の後端に突き当てて液密に溶接される非磁性円筒体11と、非磁性円筒体11の内周面に、小径の前端部を嵌合して液密に溶接される中空円筒状の上記の固定コア2と、固定コア2の後端部外周に嵌合して液密に溶接される燃料入口筒12とで構成される。 The valve housing 8 of the electromagnetic fuel injection valve 1 includes a cylindrical valve seat member 9, a magnetic cylindrical body 10 that fits onto the outer peripheral surface of the rear end of the valve seat member 9 and is welded liquid-tightly, and a magnetic cylinder. A non-magnetic cylindrical body 11 is abutted against the rear end of the body 10 and welded in a liquid-tight manner, and a hollow cylinder is welded in a liquid-tight manner by fitting the small-diameter front end onto the inner peripheral surface of the non-magnetic cylindrical body 11. The fuel inlet tube 12 is composed of the above-mentioned fixed core 2 having a shape, and a fuel inlet cylinder 12 that is fitted onto the outer periphery of the rear end of the fixed core 2 and welded in a liquid-tight manner.
 弁座部材9は、その前端面に開口する弁孔13と、弁孔13の内周端に連なる円錐状の弁座14と、弁座14の大径部に連なる円筒状のガイド孔15とを有する。弁座部材9の前端面には、弁孔13と連通する複数の燃料噴孔を有する鋼板製のインジェクタプレート16が液密に溶接される。 The valve seat member 9 has a valve hole 13 opening on its front end surface, a conical valve seat 14 connected to the inner peripheral end of the valve hole 13, and a cylindrical guide hole 15 connected to the large diameter portion of the valve seat 14. has. An injector plate 16 made of a steel plate and having a plurality of fuel injection holes communicating with the valve hole 13 is welded to the front end surface of the valve seat member 9 in a liquid-tight manner.
 非磁性円筒体11の前端部には、固定コア2と嵌合しない部分が残され、その部分から磁性円筒体10にわたり、固定コア2の前端面に対向する中空円筒状の上述の可動コア3が嵌装され、可動コア3に弁体4が連結される。中空円筒状の固定コア2及び可動コア3は、磁性円筒体10及び非磁性円筒体11よりも厚肉である。 A portion that does not fit with the fixed core 2 is left at the front end of the non-magnetic cylindrical body 11, and the above-mentioned hollow cylindrical movable core 3 extends from that portion to the magnetic cylindrical body 10 and faces the front end surface of the fixed core 2. is fitted, and the valve body 4 is connected to the movable core 3. The hollow cylindrical fixed core 2 and movable core 3 are thicker than the magnetic cylindrical body 10 and the non-magnetic cylindrical body 11.
 弁体4は、弁座14と協働して弁孔13を開閉するようにガイド孔15を摺動し得る球状の弁部17と、弁部17に前端部が固着される弁杆18とで構成され、弁杆18の後端部が可動コア3の内周面に圧入されて溶接される。したがって、弁体4は可動コア3と一体となって弁ハウジング8内で昇降が可能である。 The valve element 4 includes a spherical valve part 17 that can slide through the guide hole 15 to open and close the valve hole 13 in cooperation with the valve seat 14, and a valve rod 18 whose front end is fixed to the valve part 17. The rear end of the valve rod 18 is press-fitted into the inner peripheral surface of the movable core 3 and welded. Therefore, the valve body 4 can move up and down within the valve housing 8 integrally with the movable core 3.
 上記弁杆18は、すり割19付きのパイプ材からなり、その内部が可動コア3の中空部と連通するとともに、すり割19を介して弁杆18の内外が連通する。また球状の弁部17の周囲には、燃料の通過を許容する複数の平坦面が形成される。 The valve rod 18 is made of a pipe material with a slot 19, and the inside thereof communicates with the hollow part of the movable core 3, and the inside and outside of the valve rod 18 communicate with each other via the slot 19. Further, a plurality of flat surfaces are formed around the spherical valve portion 17 to allow passage of fuel.
 而して、燃料入口筒12、固定コア2、後述のリテーナ20、可動コア3及び弁杆18の各中空部、弁杆18のすり割19、弁座部材9のガイド孔15、弁孔13、及びインジェクタプレート16の燃料噴孔は、弁ハウジング8内の一連の燃料流路Fを構成する。 The fuel inlet cylinder 12, the fixed core 2, the retainer 20 (described later), the movable core 3, and each hollow part of the valve rod 18, the slot 19 of the valve rod 18, the guide hole 15 of the valve seat member 9, and the valve hole 13. , and the fuel injection holes of the injector plate 16 constitute a series of fuel flow paths F within the valve housing 8.
 固定コア2の中空部には、その中間部において、すり割付きパイプ材からなるリテーナ20が圧入、固着され、その前端部が第1ばね座となる。一方、弁杆18の後端部は、可動コア3の中空部の途中で終わっており、その上端部が第2ばね座となる。第1ばね座と第2ばね座の間に弁ばね21が縮設される。弁ばね21のセット荷重によって、可動コア3が固定コア2から下方へ離反する方向、即ち弁体4の弁座14への着座方向へ付勢される。弁ばね21のセット荷重は、リテーナ20の固定コア2への嵌合深さにより調整される。 A retainer 20 made of a slotted pipe material is press-fitted and fixed in the hollow part of the fixed core 2 at its intermediate part, and its front end becomes a first spring seat. On the other hand, the rear end of the valve rod 18 ends midway in the hollow part of the movable core 3, and its upper end becomes a second spring seat. A valve spring 21 is compressed between the first spring seat and the second spring seat. The set load of the valve spring 21 urges the movable core 3 downwardly away from the fixed core 2, that is, in the direction in which the valve body 4 is seated on the valve seat 14. The set load of the valve spring 21 is adjusted by the depth of engagement of the retainer 20 into the fixed core 2.
 可動コア3の内周面には、その後端面より僅かに突出する非磁性材製でリング状のストッパ部材22が埋設される。弁ハウジング8の外周には、固定コア2及び可動コア3に対応してコイル組立体23が嵌装される。 A ring-shaped stopper member 22 made of a non-magnetic material is embedded in the inner peripheral surface of the movable core 3 and slightly protrudes from the rear end surface. A coil assembly 23 is fitted around the outer periphery of the valve housing 8 in correspondence with the fixed core 2 and the movable core 3.
 コイル組立体23は、磁性円筒体10の後端部から固定コア2に亙りそれらの外周面に嵌装される合成樹脂製のボビン24と、これに巻装される上述のコイル5とからなる。ボビン24の後端部には、その一側方に突出する給電端子25の基端部を支持する端子支持腕26が一体に形成される。給電端子25にはコイル5の端末が接続される。コイル組立体23は、その略半周面を上述のコイルハウジング(ヨーク)6で覆われる。 The coil assembly 23 consists of a synthetic resin bobbin 24 that extends from the rear end of the magnetic cylindrical body 10 to the fixed core 2 and is fitted onto the outer peripheral surface thereof, and the above-mentioned coil 5 that is wound around the bobbin 24. . A terminal support arm 26 is integrally formed at the rear end of the bobbin 24 to support the base end of the power supply terminal 25 protruding to one side thereof. The terminal of the coil 5 is connected to the power supply terminal 25 . The coil assembly 23 is covered approximately half its circumferential surface with the above-mentioned coil housing (yoke) 6.
 磁性円筒体10から燃料入口筒12にわたり、それらの外周面を被覆するとともにコイル組立体23を埋封する合成樹脂製の被覆層27が射出成形される。その際、給電端子25を収容、保持してコイル組立体23の一側方に突出するカプラ28が被覆層27と一体に成形される。コイル5とコイルハウジング6との間に充填された上述の樹脂7は、被覆層27の一部として形成される。 A synthetic resin coating layer 27 is injection molded from the magnetic cylindrical body 10 to the fuel inlet cylinder 12, covering the outer peripheral surfaces thereof and embedding the coil assembly 23. At this time, a coupler 28 that accommodates and holds the power supply terminal 25 and projects to one side of the coil assembly 23 is integrally molded with the covering layer 27. The above-mentioned resin 7 filled between the coil 5 and the coil housing 6 is formed as part of the covering layer 27.
 燃料入口筒12の入口には燃料フィルタ29が装着される。また、燃料入口筒12の上端部外周には、図示していない燃料ポンプに接続された燃料キャップがシール部材30を介して嵌装される。 A fuel filter 29 is attached to the inlet of the fuel inlet cylinder 12. Further, a fuel cap connected to a fuel pump (not shown) is fitted onto the outer periphery of the upper end of the fuel inlet cylinder 12 via a seal member 30.
 図2は、コイル組立体23の近傍を拡大して示す。図2に示すように、コイルハウジング6は、コイル組立体23を挟んで径方向両側に配置される1対のコイルハウジング半体31で構成される。コイル5とコイルハウジング半体31との間には、これらの間の絶縁部を形成する上述の樹脂7が充填される。 FIG. 2 shows an enlarged view of the vicinity of the coil assembly 23. As shown in FIG. 2, the coil housing 6 is composed of a pair of coil housing halves 31 arranged on both sides in the radial direction with the coil assembly 23 in between. The above-mentioned resin 7 is filled between the coil 5 and the coil housing half 31 to form an insulating portion therebetween.
 図3は、コイルハウジング半体31を示す。図3に示すように、コイルハウジング半体31は、内面がコイルの円筒状の側面に対向し、中心角θが鈍角の部分円筒状の部分である部分円筒部32を備える。中心角としては、例えば、145°を採用することができる。コイルハウジング半体31の厚さtは一定である。厚さtとしては、例えば、1mmが採用される。 FIG. 3 shows the coil housing half 31. As shown in FIG. 3, the coil housing half 31 includes a partial cylindrical portion 32 whose inner surface faces the cylindrical side surface of the coil and whose central angle θ is an obtuse angle. For example, 145° can be adopted as the central angle. The thickness t of the coil housing half 31 is constant. For example, 1 mm is adopted as the thickness t.
 部分円筒部32には、図2に示すように、径方向に貫通し、所定の径φを有する2つの連通孔33が軸方向に所定の間隔dを置いて、これらの間の中心点の位置が、部分円筒部32の中心位置に位置するように設けられる。所定の径φとしては、例えば、2mmが採用される。所定の間隔dとしては、例えば、8.4mmが採用される。。 As shown in FIG. 2, the partial cylindrical portion 32 has two communication holes 33 that penetrate in the radial direction and have a predetermined diameter φ, with a predetermined distance d in the axial direction, and a center point between them. The position is located at the center of the partial cylindrical portion 32. For example, 2 mm is adopted as the predetermined diameter φ. For example, 8.4 mm is adopted as the predetermined interval d. .
 コイルハウジング6とコイル5との間への樹脂の充填は、被覆層27を射出成形する際に同時に行われる。この射出成形は、組立が完了したコイルハウジング6、弁ハウジング8、給電端子25等を含む電磁式燃料噴射弁1の要部をインサート部品として行われる。このとき、コイルハウジング6とコイル5との間への樹脂の充填については、2つのコイルハウジング半体31の間、及び2つの連通孔33が樹脂の充填口となる。 The resin is filled between the coil housing 6 and the coil 5 at the same time as the coating layer 27 is injection molded. This injection molding is performed using the main parts of the electromagnetic fuel injection valve 1, including the assembled coil housing 6, valve housing 8, power supply terminal 25, etc., as insert parts. At this time, when filling the space between the coil housing 6 and the coil 5 with resin, the space between the two coil housing halves 31 and the two communication holes 33 serve as resin filling ports.
 かくして被覆層27が形成され、完成した電磁式燃料噴射弁1において、コイル5に通電されていない場合には、弁部17が弁ばね21により先端方向に押圧され、弁座14に着座した閉弁状態にある。この状態において、図示していない燃料ポンプから燃料分配管を経て燃料入口筒12に燃料が圧送されると、燃料は、弁ハウジング8内の燃料流路Fを満たし、弁部17に対してさらに流体圧を付与する。 In the completed electromagnetic fuel injection valve 1 in which the coating layer 27 is formed in this manner, when the coil 5 is not energized, the valve portion 17 is pressed toward the tip by the valve spring 21, and the valve portion 17 is pressed toward the distal end by the valve spring 21, and the valve portion 17 is closed when seated on the valve seat 14. It is in a valve state. In this state, when fuel is force-fed from a fuel pump (not shown) to the fuel inlet cylinder 12 via the fuel distribution pipe, the fuel fills the fuel flow path F in the valve housing 8 and further flows toward the valve portion 17. Apply fluid pressure.
 この状態において、コイル5がカプラ28を介した通電により励磁されると、それにより生ずる磁束がコイルハウジング6、磁性円筒体10、可動コア3、固定コア2を通り、可動コア3及び固定コア2間に磁気吸引力が発生する。これにより、可動コア3が弁ばね21のセット荷重に抗して固定コア2に吸引され、可動コア3が固定コア2に当接する。 In this state, when the coil 5 is excited by energization through the coupler 28, the magnetic flux generated thereby passes through the coil housing 6, the magnetic cylinder 10, the movable core 3, and the fixed core 2, and then passes through the movable core 3 and the fixed core 2. A magnetic attraction force is generated between them. As a result, the movable core 3 is attracted to the fixed core 2 against the set load of the valve spring 21, and the movable core 3 comes into contact with the fixed core 2.
 これにより、弁部17が弁座14から離座し、電磁式燃料噴射弁1は開弁状態となる。これに応じて、燃料流路F内の高圧燃料が、弁孔13を経て、インジェクタプレート16の燃料噴口から、内燃機関の吸気管に対して霧状に噴射される。そして、コイル5に対する通電を遮断すると、弁部17が弁座14に着座した閉弁状態に戻る。 As a result, the valve portion 17 is removed from the valve seat 14, and the electromagnetic fuel injection valve 1 is placed in an open state. In response, the high-pressure fuel in the fuel flow path F is injected into the intake pipe of the internal combustion engine in the form of mist from the fuel nozzle of the injector plate 16 through the valve hole 13. Then, when the coil 5 is de-energized, the valve portion 17 returns to the closed state in which it is seated on the valve seat 14.
 したがって、コイル5に対する通電を制御することにより、電磁式燃料噴射弁1は閉弁状態と開弁状態を繰り返し、電磁式燃料噴射弁1が取り付けられた内燃機関に対する適切な燃料の供給を行うことができる。 Therefore, by controlling the energization to the coil 5, the electromagnetic fuel injection valve 1 repeats a closed state and an open state, thereby appropriately supplying fuel to the internal combustion engine to which the electromagnetic fuel injection valve 1 is attached. I can do it.
 以上説明したように、本実施形態によれば、コイルハウジング半体31に2つの連通孔33を設けたので、コイルハウジング半体31における磁気回路への悪影響を最小限に抑え、かつコイルハウジング6の径を大きくすることなく、歩留まりが向上する。したがって、歩留まりを向上させつつ、良好な性能の確保と小型化の促進が可能な電磁式燃料噴射弁を提供することができる。 As explained above, according to the present embodiment, since the two communication holes 33 are provided in the coil housing half body 31, the negative influence on the magnetic circuit in the coil housing half body 31 can be minimized, and the coil housing 6 Yield is improved without increasing the diameter. Therefore, it is possible to provide an electromagnetic fuel injection valve that can ensure good performance and promote miniaturization while improving yield.
 すなわち、コイルハウジング6とコイル5との間への樹脂の充填は、コイルハウジング6等を含む電磁式燃料噴射弁1の要部をインサート部品として被覆層27を射出成形により樹脂で形成するときに同時並行的に行うことができる。このとき、2つのコイルハウジング半体31の間、及びそれぞれの2つの連通孔33が、コイルハウジング6とコイル5との間への樹脂の充填口となる。 That is, the resin is filled between the coil housing 6 and the coil 5 when the coating layer 27 is formed of resin by injection molding using the main parts of the electromagnetic fuel injection valve 1 including the coil housing 6 etc. as insert parts. Can be done concurrently. At this time, the space between the two coil housing halves 31 and the respective two communication holes 33 serve as ports for filling the space between the coil housing 6 and the coil 5 with the resin.
 これにより、コイルハウジング半体31の外側から内側へのコイルハウジング半体31内への樹脂の流入速度が速まるとともに、コイル5の両端部におけるウェルドの発生を回避できるので、ウェルドによりコイル5両端部で巻き線の乱れが生じるのを回避し、歩留まりを向上させることができる。 This increases the speed at which the resin flows into the coil housing half 31 from the outside to the inside of the coil housing half 31, and also avoids welding at both ends of the coil 5. It is possible to avoid winding disturbances and improve yield.
 この歩留まりの向上は、コイルハウジング半体31に2つの連通孔33を設けるだけで、凹部などを設けることなく達成することができる。したがって、コイルハウジング半体31における磁気回路への悪影響を最小限に抑えつつ、コイルハウジング6の径の拡大を回避することができる。 This improvement in yield can be achieved by simply providing two communication holes 33 in the coil housing half 31 without providing any recesses or the like. Therefore, it is possible to avoid increasing the diameter of the coil housing 6 while minimizing the adverse effect on the magnetic circuit in the coil housing half 31.
 図4A~図4Dは、この2つの連通孔33による効果を説明するための樹脂流動解析結果を示す図である。図4A~図4Dでは、コイルハウジング6とコイル5との間への樹脂の充填が、上述の被覆層27を射出成形するときに行われる際のウェルド34の発生状況が示されている。図4A~図4Dでは、このウェルド34の発生状況を、それぞれ、コイルハウジング半体31設けた連通孔33の数が「0」(無い)、「1」、「2」(本実施形態の場合)、及び「3」である場合について示している。 4A to 4D are diagrams showing resin flow analysis results for explaining the effects of these two communication holes 33. 4A to 4D show how a weld 34 occurs when resin is filled between the coil housing 6 and the coil 5 when injection molding the above-mentioned coating layer 27. 4A to 4D, the occurrence status of this weld 34 is shown as "0" (absent), "1", and "2" (in this embodiment, the number of communication holes 33 provided in the coil housing half 31). ), and “3”.
 図4Aに示すように、連通孔33の数が「0」(無い)である場合には、2つのコイルハウジング半体31の間のみから樹脂が充填されるので、コイルハウジング半体31の長さ方向に沿ってほぼ直線状にウェルド34が生じる。このため、このウェルド34の端部が、コイル5の端部におけるコイル線乗り換え位置に一致するので、コイル線に乱れが生じる原因となることが理解される。 As shown in FIG. 4A, when the number of communication holes 33 is "0" (absent), the resin is filled only from between the two coil housing halves 31, so the length of the coil housing halves 31 is A weld 34 is formed substantially linearly along the width direction. Therefore, it is understood that the end of this weld 34 coincides with the coil wire switching position at the end of the coil 5, which causes disturbance in the coil wire.
 図4Bに示すように、連通孔33の数が「1」である場合には、この連通孔33から充填される樹脂によってウェルド34が連通孔33の周りに押し広げられたような状況を呈するが、この押し広げられた状態のウェルド34がコイル5の両端部において閉じるような状況となっている。したがって、コイル5の両端部におけるコイル線乗り換え位置ではウェルド34の生成が回避されず、コイル線に乱れが生じる原因となることが理解される。 As shown in FIG. 4B, when the number of communication holes 33 is "1", the weld 34 appears to be expanded around the communication hole 33 by the resin filled from the communication hole 33. However, the weld 34 in this expanded state is closed at both ends of the coil 5. Therefore, it is understood that the formation of the weld 34 is not avoided at the coil wire switching positions at both ends of the coil 5, which causes disturbances in the coil wire.
 図4Cに示すように、連通孔33の数が「2」である場合には、ウェルド34が各連通孔33から充填される樹脂によって、コイル5の一方及び他方の端部側において各連通孔33の周りに押し広げられたような状況を呈し、この状況がコイル5の両端部35にまで及んでいる。このため、コイル5の両端部35におけるコイル線乗り換え位置でのウェルド34の生成が回避され、コイル線における乱れの発生が阻止されることが理解される。 As shown in FIG. 4C, when the number of communication holes 33 is "2", the weld 34 is filled with the resin from each communication hole 33, so that the weld 34 is 33, and this situation extends to both ends 35 of the coil 5. Therefore, it is understood that the formation of the weld 34 at the coil wire switching position at both ends 35 of the coil 5 is avoided, and the occurrence of disturbance in the coil wire is prevented.
 図4Dに示すように、連通孔33の数が「3」である場合には、ウェルド34が各連通孔33から充填される樹脂によって各連通孔33の周りに押し広げられたような状況を呈し、連通孔33の数が「2」である場合と同様に、コイル5の両端部におけるコイル線乗り換え位置でのウェルド34の生成が回避されることがわかる。 As shown in FIG. 4D, when the number of communication holes 33 is "3", a situation where the weld 34 is forced and expanded around each communication hole 33 by the resin filled from each communication hole 33 is created. It can be seen that, similarly to the case where the number of communicating holes 33 is "2", the generation of welds 34 at the coil wire switching positions at both ends of the coil 5 is avoided.
 一方、連通孔33の数が多いほど、コイルハウジング半体31における磁気特性が悪化し、固定コア2と可動コア3との間の吸引力が低下することが確認されている。 On the other hand, it has been confirmed that the larger the number of communication holes 33, the worse the magnetic properties in the coil housing half 31, and the lower the attraction force between the fixed core 2 and the movable core 3.
 以上から、適切な径φを有する2つの連通孔33を、コイルハウジング半体31の長さ方向に沿って適切な間隔dを置いてコイルハウジング半体31の中間位置に配置することによって、磁気特性の悪化を招来することなく、コイル5の両端部におけるウェルド34の生成が回避できることがわかる。ただし、2つの連通孔33の径φ及び間隔dは、図4Cのように、コイル5端部におけるコイル線乗り換え位置にウェルドが生じないように選択される。 From the above, by arranging two communication holes 33 having an appropriate diameter φ at an intermediate position of the coil housing half body 31 with an appropriate interval d along the length direction of the coil housing half body 31, the magnetic It can be seen that the formation of welds 34 at both ends of the coil 5 can be avoided without deteriorating the characteristics. However, the diameter φ and the interval d of the two communication holes 33 are selected so that welds do not occur at the coil wire change position at the end of the coil 5, as shown in FIG. 4C.
 さらに、本実施形態によれば、コイルハウジング半体31の厚さが一定であるため、コイルハウジング半体において厚さが不均一な部分で磁束が制限されることにより、固定コア2と可動コア3との間の磁力が低下するのを防止することができる。 Furthermore, according to the present embodiment, since the thickness of the coil housing half body 31 is constant, the magnetic flux is restricted in the portions of the coil housing half body where the thickness is uneven, so that the fixed core 2 and the movable core 3 can be prevented from decreasing.
 以上,本発明の実施形態について説明したが,本発明はこれに限定されない。例えば、各連通孔33は、コイル5側の開口部の径が反対側の開口部の径より大きくてもよい。これによれば、コイルハウジング半体31の外側から連通孔33を介して樹脂が充填される際に、樹脂が連通孔33からコイルハウジング半体31の内側に良好に拡散するので、ウェルド34がコイル5の両端部に発生するのをより効果的に抑制することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited thereto. For example, in each communication hole 33, the diameter of the opening on the coil 5 side may be larger than the diameter of the opening on the opposite side. According to this, when the resin is filled from the outside of the coil housing half body 31 through the communication hole 33, the resin diffuses well from the communication hole 33 into the inside of the coil housing half body 31, so that the weld 34 is This can be more effectively suppressed from occurring at both ends of the coil 5.
 1…電磁式燃料噴射弁、2…固定コア、3…可動コア、4…弁体、5…コイル、6…コイルハウジング、7…樹脂、8…弁ハウジング、9…弁座部材、10…磁性円筒体、11…非磁性円筒体、12…燃料入口筒、13…弁孔、14…弁座、15…ガイド孔、16…インジェクタプレート、17…弁部、18…弁杆、19…すり割、20…リテーナ、21…弁ばね、22…ストッパ部材、23…コイル組立体、24…ボビン、25…給電端子、26…端子支持腕、27…被覆層、28…カプラ、29…燃料フィルタ、30…シール部材、31…コイルハウジング半体、32…部分円筒部、33…連通孔、34…ウェルド、35…両端部、F…燃料流路。 DESCRIPTION OF SYMBOLS 1... Electromagnetic fuel injection valve, 2... Fixed core, 3... Movable core, 4... Valve body, 5... Coil, 6... Coil housing, 7... Resin, 8... Valve housing, 9... Valve seat member, 10... Magnetism Cylindrical body, 11... Non-magnetic cylindrical body, 12... Fuel inlet cylinder, 13... Valve hole, 14... Valve seat, 15... Guide hole, 16... Injector plate, 17... Valve part, 18... Valve rod, 19... Slot , 20... retainer, 21... valve spring, 22... stopper member, 23... coil assembly, 24... bobbin, 25... power supply terminal, 26... terminal support arm, 27... coating layer, 28... coupler, 29... fuel filter, 30... Seal member, 31... Coil housing half, 32... Partial cylindrical part, 33... Communication hole, 34... Weld, 35... Both ends, F... Fuel flow path.

Claims (3)

  1.  固定コアと、
     前記固定コアに対向する可動コアと、
     前記可動コアと連動する弁体と、
     前記固定コアの外周に設けられるコイルと、
     前記コイルを囲い、前記固定コア及び前記可動コアを通る磁気回路を形成するコイルハウジングと、
     前記コイルと前記コイルハウジングとの間に充填された樹脂とを備え、
     前記コイルハウジングは、前記コイルを挟んで径方向両側に配置される1対のコイルハウジング半体を備え、
     各コイルハウジング半体は、内面が前記コイルの円筒状の側面に対向し、中心角が鈍角である部分円筒部を備え、
     前記コイルへの通電を制御することにより、前記可動コア及び前記弁体を駆動して開弁状態と閉弁状態とを繰り返す電磁式燃料噴射弁において、
     各コイルハウジング半体の前記部分円筒部には、所定の径を有して径方向に貫通する2つの連通孔が軸方向に所定の間隔を置いて設けられることを特徴とする電磁式燃料噴射弁。
    fixed core;
    a movable core facing the fixed core;
    a valve body interlocking with the movable core;
    a coil provided on the outer periphery of the fixed core;
    a coil housing surrounding the coil and forming a magnetic circuit passing through the fixed core and the movable core;
    a resin filled between the coil and the coil housing;
    The coil housing includes a pair of coil housing halves arranged on both sides in the radial direction with the coil sandwiched therebetween,
    Each coil housing half includes a partial cylindrical portion whose inner surface faces the cylindrical side surface of the coil and whose central angle is obtuse;
    In an electromagnetic fuel injection valve that repeats a valve open state and a valve closed state by driving the movable core and the valve body by controlling energization to the coil,
    An electromagnetic fuel injection system characterized in that the partial cylindrical portion of each coil housing half is provided with two communication holes having a predetermined diameter and penetrating in the radial direction at a predetermined interval in the axial direction. valve.
  2.  前記コイルハウジング半体の厚さは一定であることを特徴とする請求項1に記載の電磁式燃料噴射弁。 The electromagnetic fuel injection valve according to claim 1, wherein the thickness of the coil housing half is constant.
  3.  各連通孔は、前記コイル側の開口部の径が反対側の開口部の径よりも大きいことを特徴とする請求項1に記載の電磁式燃料噴射弁。
     
    2. The electromagnetic fuel injection valve according to claim 1, wherein each communication hole has an opening on the coil side having a larger diameter than an opening on the opposite side.
PCT/JP2022/021756 2022-05-27 2022-05-27 Electromagnetic fuel injection valve WO2023228411A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021756 WO2023228411A1 (en) 2022-05-27 2022-05-27 Electromagnetic fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021756 WO2023228411A1 (en) 2022-05-27 2022-05-27 Electromagnetic fuel injection valve

Publications (1)

Publication Number Publication Date
WO2023228411A1 true WO2023228411A1 (en) 2023-11-30

Family

ID=88918793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021756 WO2023228411A1 (en) 2022-05-27 2022-05-27 Electromagnetic fuel injection valve

Country Status (1)

Country Link
WO (1) WO2023228411A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208389A (en) * 2008-03-05 2009-09-17 Nagoya City Polylactic acid-based resin molding and its molding method
JP2011047161A (en) * 2009-08-26 2011-03-10 Nifco Inc Glass holder
JP2014125972A (en) * 2012-12-26 2014-07-07 Denso Corp Fuel injection valve
JP5546667B1 (en) * 2013-05-08 2014-07-09 三菱電機株式会社 Fuel injection valve
JP2017126756A (en) * 2017-01-30 2017-07-20 ダイキョーニシカワ株式会社 Resin molding
JP2018154102A (en) * 2017-03-21 2018-10-04 キヤノン株式会社 Method for manufacturing molded article, molded article, cartridge and image forming apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208389A (en) * 2008-03-05 2009-09-17 Nagoya City Polylactic acid-based resin molding and its molding method
JP2011047161A (en) * 2009-08-26 2011-03-10 Nifco Inc Glass holder
JP2014125972A (en) * 2012-12-26 2014-07-07 Denso Corp Fuel injection valve
JP5546667B1 (en) * 2013-05-08 2014-07-09 三菱電機株式会社 Fuel injection valve
JP2017126756A (en) * 2017-01-30 2017-07-20 ダイキョーニシカワ株式会社 Resin molding
JP2018154102A (en) * 2017-03-21 2018-10-04 キヤノン株式会社 Method for manufacturing molded article, molded article, cartridge and image forming apparatus

Similar Documents

Publication Publication Date Title
JP4703697B2 (en) Electromagnetic actuator
JP2006194237A (en) Electromagnetic actuator
JP2007016774A (en) Fuel injection valve and its manufacturing method
KR20070103077A (en) Fuel injection valve
US7344093B2 (en) Fuel injection valve having stationary core and movable core
JP4577654B2 (en) Electromagnetic drive device and fuel injection valve using the same
JP5321473B2 (en) Fuel injection valve
JP2006307831A (en) Fuel injection valve
JP4120632B2 (en) Fuel injection valve
WO2023228411A1 (en) Electromagnetic fuel injection valve
JP5857952B2 (en) Fuel injection valve
US7061144B2 (en) Fuel injection valve having internal pipe
JP3899937B2 (en) Fuel injection valve
JP3861944B2 (en) Manufacturing method of fuel injection valve
CN108779747B (en) Fuel injection device
JP4767795B2 (en) Electromagnetic fuel injection valve
US10233884B2 (en) Fuel injection valve with resin-covered terminal-lead wire
JP4134937B2 (en) Fuel injection valve
JP2005307750A (en) Fuel injection valve
JP6554955B2 (en) Fuel injection valve
JP6834707B2 (en) Actuator
JP7291585B2 (en) fuel injector
JP6061074B2 (en) Fuel injection valve
JP3915347B2 (en) Fuel injection valve
JP5995073B2 (en) Fuel injection valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943811

Country of ref document: EP

Kind code of ref document: A1