JP3861944B2 - Manufacturing method of fuel injection valve - Google Patents

Manufacturing method of fuel injection valve Download PDF

Info

Publication number
JP3861944B2
JP3861944B2 JP12697297A JP12697297A JP3861944B2 JP 3861944 B2 JP3861944 B2 JP 3861944B2 JP 12697297 A JP12697297 A JP 12697297A JP 12697297 A JP12697297 A JP 12697297A JP 3861944 B2 JP3861944 B2 JP 3861944B2
Authority
JP
Japan
Prior art keywords
valve
fuel
cylindrical member
fuel injection
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12697297A
Other languages
Japanese (ja)
Other versions
JPH10318079A (en
Inventor
沢田  行雄
英人 武田
栄二 岩成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP12697297A priority Critical patent/JP3861944B2/en
Priority to US09/019,030 priority patent/US5944262A/en
Publication of JPH10318079A publication Critical patent/JPH10318079A/en
Application granted granted Critical
Publication of JP3861944B2 publication Critical patent/JP3861944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、筒状の弁ハウジングの一端側開口から燃料を供給する燃料噴射弁の製造方法に関するものである。
【0002】
【従来の技術】
燃料噴射弁の取付け位置から吸気弁までの距離はエンジン仕様により異なっており、燃料噴射弁の噴孔から吸気弁までの距離が長いと、噴霧燃料が吸気管の内部で広がり燃料噴霧が吸気管の内壁に付着して液化し易くなる。液化した燃料が燃焼室に流れ込むと、未燃成分としての炭化水素(HC)の発生量が増加する。
【0003】
【発明が解決しようとする課題】
吸気弁に燃料噴射弁を近づけ、吸気弁の近傍で燃料を噴射すれば燃料が吸気管の内壁に付着して液化することを抑制することができる。しかし、通常燃料噴射弁の取付け位置は決まっており、吸気弁に燃料噴射弁を容易に近づけることはできない。
【0004】
燃料噴射弁の噴射側を延長することにより燃料噴射弁の取付け位置を変更しないで吸気弁に噴孔を近づけることも考えられる。しかし、従来の燃料噴射弁の弁ハウジングは軸方向に複数の部材で構成されており、特に弁ボディ等の燃料噴射側の部材は複雑な形状に形成されているので、エンジン仕様等により燃料噴射弁の噴射側の要求長さが異なると、長さの異なる複雑な形状の部材をそれぞれ加工する必要がある。したがって、部品点数が増加するとともに、部品を標準化できないので、製造コストが増加するという問題がある。
【0005】
本発明の目的は、燃料吸入部と弁ボディとの間に非磁性部を有する弁ハウジングを任意の長さに容易に一体成形できる燃料噴射弁の製造方法を提供することにある。
本発明の他の目的は、別体に形成された筒部材と弁ボディとを連結する連結部材を任意の長さに形成し、任意の長さに弁ハウジングを容易に形成できる燃料噴射弁の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明の請求項1または2記載の燃料噴射弁の製造方法によると、一体成形された有底筒部材を所定長さに切断するとともに所定部位を非磁性化することにより燃料噴射弁の弁ハウジングを形成している。したがって、共通部材である有底筒部材から燃料噴射弁の噴射側長さを容易に調整できる切断および非磁性化処理という工程を経て弁ハウジングを形成できるので、種々の噴射側長さを有する燃料噴射弁を、例えば切断によって得られた開口端から一定距離における部位に非磁性部を形成することで容易に製造することができる。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を示す実施例を図面に基づいて説明する。
(第1実施例)
本発明の第1実施例を図1に示す。弁ハウジング11は、噴射側から弁ボディ12、非磁性部としての中間パイプ13、燃料吸入部としての燃料コネクタ14の順で一体成形されている。弁ボディ12および燃料コネクタ14は磁性化されており、中間パイプ13は非磁性化されている。弁ボディ12の外周側に図示しない吸気マニホールドとの連結部をシールするOリング50が嵌合しており、燃料コネクタ14の上部外周側に図示しないデリバリパイプ(燃料配管)との連結部をシールする樹脂製のOリング51が嵌合している。
【0009】
弁ボディ12の内部に弁部材としてのニードル弁20が収容され、弁ボディ12の外側底面に噴孔プレート15がレーザ溶接等で固定されている。樹脂製のスリーブ16は噴孔プレート15および弁ボディ12を覆っている。噴孔プレート15に形成された噴孔15aはニードル弁20が弁座12aから離座、および弁座12aに着座することにより開閉される。
【0010】
ニードル弁20は、スプリング26の付勢力により弁座12aに向けて付勢されており、ニードル弁20の先端部に形成された当接部21が弁座12aに着座可能である。摺動部22は当接部21の反噴孔12a側に形成されており、弁ボディ12の内壁に往復移動可能に支持されている。摺動部22の外側壁に、弁ボディ12の内周壁との間に燃料通路を形成するために四面取りが施されている。ニードル弁20の上部に可動コア24と結合する接合部23が形成されている。
【0011】
可動コア24は中空状に形成され、ニードル弁20の接合部23と圧入等により結合している。可動コア24は弁ボディ12の上部および中間パイプ13のほぼ中間に位置しており、可動コア24の上端面は固定コア25の下端面と対向している。可動コア24は、固定コア25内に収容されたスプリング26によって弁座12aに向けて付勢されている。中間パイプ13の内周部の可動コア24と固定コア25とのギャップに対応する位置に、可動コア24の摺動を円滑にするための逃げ溝部13aが形成されている。
【0012】
固定コア25は、磁性化された燃料コネクタ14と非磁性化された中間パイプ13とに跨がって弁ハウジング11に圧入されている。固定コア25にはすり割り25aが形成されており、圧入時にすり割り25aが縮むことにより固定コア25の圧入が容易になるとともに、圧入後は固定コア25自身のスプリングバック作用により固定コア25が弁ハウジング11内に圧入固定される。
【0013】
固定コア25の下端面と可動コア24の上端面との双方に非磁性の硬質クロムめっきが施され、このめっき被膜がソリッドギャップとして利用される。また、ニードル弁20の接合部23に二つの面取部23aが形成されており、固定コア25の内部を流れる燃料が可動コア24と上記二つの面取部23aの間を通過して弁ボディ12の内部に流入するようになっている。
【0014】
パイプ状のアジャスタ27は固定コア25の内周側に圧入等により装着されている。アジャスタ27の圧入量を調整することによりスプリング26の付勢力を調整することができる。燃料フィルタ28は固定コア25の上方に配設されており、デリバリパイプから送られてくる燃料を濾過する。燃料フィルタ28を通過した燃料はアジャスタ27およびスプリング26の内周を通過して噴孔12aに向けて流入する。
【0015】
ソレノイド30は弁ハウジング11の外周に取付けられている。ソレノイド30は、電磁コイル31、電磁コイル31を巻回した樹脂製のスプール32、ヨーク33、および樹脂製のコネクタ40を磁性材製のハウジング34内に組付けて一体化したものである。電磁コイル31に通電するためのターミナル41はコネクタ40にインサート成形されている。弁ハウジング11の外周にソレノイド30を装着して中間パイプ13の外周部に電磁コイル31を位置させるとともに、燃料コネクタ14とハウジング34との間にヨーク33を挟み込んだ状態とし、この状態でハウジング34の下端部を弁ボディ12にスポット溶接して固定する。
【0016】
以上のように構成した燃料噴射弁10において、電磁コイル31への通電がオフされると、スプリング26によって可動コア24が図1の下方、つまり閉弁方向に移動してニードル弁20の当接部21が弁座12aに着座し、噴孔15aが閉塞される。
電磁コイル31への通電をオンすると、電磁コイル31の周囲に磁束が発生し、発生した磁束が電磁コイル31の周囲を取り囲む磁気回路を流れる。この磁気回路は、ハウジング34、ヨーク33、燃料コネクタ14、固定コア25、可動コア24、弁ボディ12、ハウジング34の経路で構成されている。非磁性部である中間パイプ13は燃料コネクタ14と弁ボディ12との間で磁束が短絡することを防ぐ役割を果たしている。この磁気回路に磁束が流れると、固定コア25と可動コア24との間に磁気吸引力が発生し、可動コア24が固定コア25側に吸引されてニードル弁20が弁座12aから離れる。これにより、弁ボディ12内の燃料が噴孔15aからスリーブ16の通孔16aを通って噴射される。
【0017】
次に、弁ハウジング11の製造工程について説明する。
図2の(A)に示す円板状の基材100として、オーステナイト系ステンレス鋼等を用いる。基材100は図2の(A)に示す加工前の状態では磁性化していない。プレスによる絞り加工により図2の(B)、(C)、(D)の順に基材100を加工し、円筒部材101を成形する。さらに、円筒部材101の底部からしごき加工により図2の(E)、(F)の順に加工し、円筒部材101よりも肉薄で軸長の長い有底筒部材としての円筒部材102を成形する。このように絞り加工、しごき加工を経て円筒部材102は磁性化される。
【0018】
次に、円筒部材102を要求長さに合わせて切断して図3の(A)に示す円筒部材103を形成し、コイル104による電磁誘導加熱により円筒部材103の開口端103aから所定距離離隔した部位を非磁性化する。このようにして形成された図3の(B)に示す円筒部材105は、底部側から磁性部110、非磁性部111、磁性部112の順に構成される。磁性部110、112はそれぞれ弁ハウジング11の弁ボディ12、燃料コネクタ14を構成し、非磁性部111は弁ハウジング11の中間パイプ13を構成する。非磁性部111を設けた円筒部材105の細部を加工して弁ハウジング11を形成する。
【0019】
以上説明した本発明の第1実施例によれば、円筒部材102を一体成形した後、円筒部材102を所定の長さに切断して円筒部材103を形成し、電磁誘導加熱等の後加工により円筒部材103の開口端103aから所定距離離隔した部位に非磁性部である中間パイプ13を形成できる。吸気弁近くに燃料噴射弁を近づけるにあたり、スリーブ16を除いた燃料噴射弁の構成部材としてニードル弁20および弁ボディ12の長さのみを変えるだけでよく、開口端103aから非磁性部までの距離は燃料噴射弁長に関わらず一定である。そのため、種々の長さの燃料噴射弁において中間パイプ13を形成するに際し、常に開口端103aから一定の距離に非磁性部を形成できることが製造上都合がよい。
【0020】
したがって、燃料噴射側、つまり弁ボディの長さを延ばした種々の長さを有する弁ハウジングを容易に形成することができる。弁ハウジングの長さに合わせて弁部材およびスリーブの長さを変更する必要がある。このようにして製造された燃料噴射弁10は、従来と同じ取付け位置であってもより吸気弁に近い位置で燃料を噴射することができるので、燃料噴射弁10から噴射された微粒化した噴霧燃料が吸気管の内壁に付着して液化することを抑制し、未燃成分としてのHCの発生量を低減することができる。
【0021】
また第1実施例では、成形前に磁性化していないオーステナイト系ステンレス鋼を用いて円筒部材102を一体成形したが、成形前に磁性化している材質で円筒部材102を一体成形し、円筒部材102を所定長さに切断後、所定部位を非磁性化して弁ハウジング11を形成してもよい。また、円筒部材102の所定部位を非磁性化してから円筒部材102を所定長さに切断してもよい。
【0022】
さらに、磁性化した弁ボディ12、非磁性化した中間パイプ13および磁性化した燃料コネクタ14を一体成形された一本の弁ハウジング11によって構成しているので、これら三者をろう付けやレーザ溶接等で結合する面倒な工程が不要となり、組立工数が減少し、製造コストを低減できる。しかも、弁ボディ12、中間パイプ13および燃料コネクタ14を一体成形することで、これら三者間の組立時の位置ずれがなくなる。したがって、組立精度を容易に向上できて、噴射量特性のばらつきを少なくすることができる。
【0023】
第1実施例では、固定コア25にすり割り25aを設け、燃料コネクタ14の内周に固定コア25を圧入により固定している。固定コア25の圧入量を調整することにより、固定コア25と可動コア24との間のギャップ量、つまりニードル弁20のリフト量を簡単に調整できる。また、かしめ等の圧入以外の手段で燃料コネクタ14に固定コア25を装着してもよい。
【0024】
(第2実施例)
本発明の第2実施例を図4に示す。第1実施例と実質的に同一構成部分には同一符号を付す。
弁ハウジング60は、筒部材としての円筒部材61、弁ボディ65、および円筒部材61と弁ボディ65とを連結する連結部材としてのスリーブ66からなる。噴孔プレート15は、弁ボディ65とスリーブ66との間に挟持されている。ニードル弁20の当接部21は弁ボディ65に形成した弁座65aに着座可能である。
【0025】
円筒部材61は、噴孔15a側から弁収容部62、非磁性部としての中間パイプ63、および燃料吸入部としての燃料コネクタ64からなり、両端が開口した円筒状に形成されている。円筒部材61は、円筒状に一体成形した筒部材を所定長さに切断してから所定部位を非磁性化して形成されている。円筒部材61および弁ボディ65はそれぞれスリーブ66とレーザ溶接されており、スリーブ66により連結されている。スリーブ66は有底円筒状の簡単な形状を呈している。
【0026】
第2実施例では、円筒部材61の長さおよび非磁性化された中間パイプ64の位置、ならびに弁ボディ65の形状を変更することなく、スリーブの長さを変更することにより種々の噴射側長さを有する弁ハウジングを容易に形成することができる。したがって、吸気弁に近い位置で燃料を噴射できるので、燃料噴射弁から噴射された微粒化した噴霧燃料が吸気管の内壁に付着して液化することを抑制し、未燃成分としてのHCの発生量を低減できる、
第2実施例では、所定長さに切断してから所定部位を非磁性化して円筒部材61を形成したが、所定部位を非磁性化してから所定長さに切断して円筒部材61を形成してもよい。
【0027】
また第2実施例では、円筒部材61を一体成形したが、弁ボディ、中間パイプおよび燃料コネクタをそれぞれ別部材で構成し、円筒部材を形成することも可能である。
以上説明した上記複数の実施例では、可動コア24および固定コア25の対向面にめっき処理を施してソリッドギャップを構成しているが、可動コアまたは固定コアの一部を非磁性化することによりソリッドギャップを構成してもよい。ソリッドギャップは中間パイプ部の内側に位置していればよいので、可動コアまたは固定コアの対向面を非磁性化する必要はない。磁性化した部分は非磁性化した部分よりも硬度が高いという特性があるので、可動コアまたは固定コアの対向面から離れた位置を非磁性化してソリッドギャップを形成すれば、可動コアと固定コアとの衝突面は磁性化されているので、可動コアと固定コアとが繰り返し衝突しても、可動コアおよび固定コアの摩耗や変形を防ぐことができる。
【0028】
また上記複数の実施例では、ニードル弁20は一体成形されたものを用いるが、弁ハウジングの長さに容易に合わせてニードル弁を加工できるように、例えば当接部側部材、ロッドおよび接合部の別部材でニードル弁を構成し、当接部側部材および接合部を共通部材とし、ロッドの長さだけを変更してニードル弁を製造することも可能である。
【図面の簡単な説明】
【図1】本発明の第1実施例による燃料噴射弁を示す縦断面図である。
【図2】第1実施例の弁ハウジングの製造工程を示す説明図である。
【図3】第1実施例の弁ハウジングの製造工程を示す説明図である。
【図4】本発明の第2実施例による燃料噴射弁を示す縦断面図である。
【符号の説明】
10 燃料噴射弁
11 弁ハウジング
12 弁ボディ
13 中間パイプ(非磁性部)
14 燃料コネクタ(燃料吸入部)
15 噴孔プレート
15a 噴孔
20 ニードル弁(弁部材)
24 可動コア
25 固定コア
30 ソレノイド
31 電磁コイル
60 弁ハウジング
61 円筒部材
62 弁収容部
63 中間パイプ(非磁性部)
64 燃料吸入部(燃料コネクタ)
65 弁ボディ
66 スリーブ(連結部材)
102 円筒部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a fuel injection valve that supplies fuel from one end side opening of a cylindrical valve housing.
[0002]
[Prior art]
The distance from the fuel injection valve mounting position to the intake valve varies depending on the engine specifications. If the distance from the injection hole to the intake valve is long, the sprayed fuel spreads inside the intake pipe and the fuel spray is drawn into the intake pipe. It becomes easy to adhere to the inner wall and liquefy. When the liquefied fuel flows into the combustion chamber, the amount of hydrocarbon (HC) generated as an unburned component increases.
[0003]
[Problems to be solved by the invention]
If the fuel injection valve is brought close to the intake valve and fuel is injected in the vicinity of the intake valve, it is possible to suppress the fuel from adhering to the inner wall of the intake pipe and liquefying. However, the mounting position of the fuel injection valve is usually determined, and the fuel injection valve cannot be easily brought close to the intake valve.
[0004]
It is also conceivable to extend the injection side of the fuel injection valve to bring the injection hole closer to the intake valve without changing the mounting position of the fuel injection valve. However, the valve housing of the conventional fuel injection valve is composed of a plurality of members in the axial direction, and particularly the members on the fuel injection side such as the valve body are formed in a complicated shape. When the required length on the injection side of the valve is different, it is necessary to process the members having complicated shapes having different lengths. Therefore, there is a problem that the manufacturing cost increases because the number of parts increases and the parts cannot be standardized.
[0005]
An object of the present invention is to provide a method for manufacturing a fuel injection valve, in which a valve housing having a nonmagnetic portion between a fuel suction portion and a valve body can be easily integrally formed to an arbitrary length.
Another object of the present invention is to provide a fuel injection valve in which a connecting member for connecting a cylindrical member formed separately and a valve body is formed to an arbitrary length, and a valve housing can be easily formed to an arbitrary length. It is to provide a manufacturing method.
[0006]
[Means for Solving the Problems]
According to the method for manufacturing a fuel injection valve according to claim 1 or 2, the valve housing of the fuel injection valve is obtained by cutting the integrally formed bottomed cylindrical member into a predetermined length and making the predetermined portion non-magnetic. Is forming. Therefore, since the valve housing can be formed from the bottomed cylindrical member, which is a common member, through a process of cutting and demagnetization that can easily adjust the injection side length of the fuel injection valve, fuel having various injection side lengths can be formed. An injection valve can be easily manufactured by forming a nonmagnetic part in the site | part in a fixed distance from the opening end obtained, for example by cutting | disconnection.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, examples showing embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
A first embodiment of the present invention is shown in FIG. The valve housing 11 is integrally formed from the injection side in the order of a valve body 12, an intermediate pipe 13 as a nonmagnetic part, and a fuel connector 14 as a fuel suction part. The valve body 12 and the fuel connector 14 are magnetized, and the intermediate pipe 13 is non-magnetic. An O-ring 50 that seals a connection portion with an intake manifold (not shown) is fitted on the outer peripheral side of the valve body 12, and a connection portion with a delivery pipe (fuel pipe) (not shown) is sealed on the upper outer peripheral side of the fuel connector 14. An O-ring 51 made of resin is fitted.
[0009]
A needle valve 20 as a valve member is accommodated inside the valve body 12, and an injection hole plate 15 is fixed to the outer bottom surface of the valve body 12 by laser welding or the like. A resin sleeve 16 covers the nozzle hole plate 15 and the valve body 12. The nozzle hole 15a formed in the nozzle hole plate 15 is opened and closed when the needle valve 20 is separated from the valve seat 12a and seated on the valve seat 12a.
[0010]
The needle valve 20 is urged toward the valve seat 12a by the urging force of the spring 26, and a contact portion 21 formed at the tip of the needle valve 20 can be seated on the valve seat 12a. The sliding portion 22 is formed on the side of the contact portion 21 opposite to the injection hole 12a, and is supported on the inner wall of the valve body 12 so as to be able to reciprocate. In order to form a fuel passage between the outer wall of the sliding portion 22 and the inner peripheral wall of the valve body 12, four chamfers are provided. A joint portion 23 that is coupled to the movable core 24 is formed on the needle valve 20.
[0011]
The movable core 24 is formed in a hollow shape and is coupled to the joint 23 of the needle valve 20 by press-fitting or the like. The movable core 24 is located at the upper part of the valve body 12 and substantially in the middle of the intermediate pipe 13, and the upper end surface of the movable core 24 faces the lower end surface of the fixed core 25. The movable core 24 is urged toward the valve seat 12 a by a spring 26 accommodated in the fixed core 25. An escape groove portion 13 a for smooth sliding of the movable core 24 is formed at a position corresponding to the gap between the movable core 24 and the fixed core 25 on the inner peripheral portion of the intermediate pipe 13.
[0012]
The fixed core 25 is press-fitted into the valve housing 11 across the magnetized fuel connector 14 and the non-magnetized intermediate pipe 13. The fixed core 25 is formed with a slit 25a. When the slit 25a is compressed during press-fitting, the fixed core 25 can be easily press-fitted, and after the press-fitting, the fixed core 25 is spring-backed. It is press-fitted and fixed in the valve housing 11.
[0013]
Nonmagnetic hard chrome plating is applied to both the lower end surface of the fixed core 25 and the upper end surface of the movable core 24, and this plating film is used as a solid gap. Further, two chamfered portions 23a are formed in the joint portion 23 of the needle valve 20, and the fuel flowing inside the fixed core 25 passes between the movable core 24 and the two chamfered portions 23a to be the valve body. 12 flows into the interior.
[0014]
The pipe-shaped adjuster 27 is attached to the inner peripheral side of the fixed core 25 by press fitting or the like. The urging force of the spring 26 can be adjusted by adjusting the press-fitting amount of the adjuster 27. The fuel filter 28 is disposed above the fixed core 25 and filters the fuel sent from the delivery pipe. The fuel that has passed through the fuel filter 28 passes through the inner periphery of the adjuster 27 and the spring 26 and flows toward the nozzle hole 12a.
[0015]
The solenoid 30 is attached to the outer periphery of the valve housing 11. The solenoid 30 is formed by assembling an electromagnetic coil 31, a resin spool 32 around which the electromagnetic coil 31 is wound, a yoke 33, and a resin connector 40 into a magnetic material housing 34. A terminal 41 for energizing the electromagnetic coil 31 is insert-molded in the connector 40. A solenoid 30 is mounted on the outer periphery of the valve housing 11 so that the electromagnetic coil 31 is positioned on the outer peripheral portion of the intermediate pipe 13, and the yoke 33 is sandwiched between the fuel connector 14 and the housing 34. Is fixed to the valve body 12 by spot welding.
[0016]
In the fuel injection valve 10 configured as described above, when the energization to the electromagnetic coil 31 is turned off, the movable core 24 is moved downward in FIG. The portion 21 is seated on the valve seat 12a, and the nozzle hole 15a is closed.
When energization of the electromagnetic coil 31 is turned on, a magnetic flux is generated around the electromagnetic coil 31, and the generated magnetic flux flows through a magnetic circuit surrounding the electromagnetic coil 31. This magnetic circuit includes a path of the housing 34, the yoke 33, the fuel connector 14, the fixed core 25, the movable core 24, the valve body 12, and the housing 34. The intermediate pipe 13, which is a nonmagnetic part, plays a role of preventing the magnetic flux from being short-circuited between the fuel connector 14 and the valve body 12. When magnetic flux flows through this magnetic circuit, a magnetic attractive force is generated between the fixed core 25 and the movable core 24, the movable core 24 is attracted toward the fixed core 25, and the needle valve 20 is separated from the valve seat 12a. Thereby, the fuel in the valve body 12 is injected from the injection hole 15a through the through hole 16a of the sleeve 16.
[0017]
Next, the manufacturing process of the valve housing 11 will be described.
As the disk-shaped substrate 100 shown in FIG. 2A, austenitic stainless steel or the like is used. The substrate 100 is not magnetized in the state before processing shown in FIG. The base material 100 is processed in the order of (B), (C), and (D) of FIG. Further, the cylindrical member 101 is processed in the order of FIGS. 2E and 2F by ironing from the bottom of the cylindrical member 101 to form the cylindrical member 102 as a bottomed cylindrical member that is thinner than the cylindrical member 101 and has a long axial length. In this way, the cylindrical member 102 is magnetized through drawing and ironing.
[0018]
Next, the cylindrical member 102 is cut to the required length to form the cylindrical member 103 shown in FIG. 3A, and is separated from the opening end 103a of the cylindrical member 103 by a predetermined distance by electromagnetic induction heating by the coil 104. Demagnetize the site. The cylindrical member 105 shown in FIG. 3B formed in this way is configured in the order of the magnetic part 110, the nonmagnetic part 111, and the magnetic part 112 from the bottom side. The magnetic parts 110 and 112 constitute the valve body 12 and the fuel connector 14 of the valve housing 11, respectively, and the nonmagnetic part 111 constitutes the intermediate pipe 13 of the valve housing 11. The valve housing 11 is formed by processing the details of the cylindrical member 105 provided with the nonmagnetic portion 111.
[0019]
According to the first embodiment of the present invention described above, after the cylindrical member 102 is integrally formed, the cylindrical member 102 is cut into a predetermined length to form the cylindrical member 103, and then subjected to post-processing such as electromagnetic induction heating. The intermediate pipe 13 that is a non-magnetic portion can be formed at a position separated from the opening end 103a of the cylindrical member 103 by a predetermined distance. When the fuel injection valve is brought close to the intake valve, it is only necessary to change the lengths of the needle valve 20 and the valve body 12 as constituent members of the fuel injection valve excluding the sleeve 16, and the distance from the opening end 103a to the nonmagnetic portion. Is constant regardless of the length of the fuel injection valve. Therefore, when forming the intermediate pipe 13 in fuel injection valves of various lengths, it is convenient in manufacturing that the nonmagnetic part can always be formed at a constant distance from the opening end 103a.
[0020]
Therefore, it is possible to easily form a valve housing having various lengths by extending the length of the fuel injection side, that is, the valve body. It is necessary to change the lengths of the valve member and the sleeve in accordance with the length of the valve housing. Since the fuel injection valve 10 manufactured in this way can inject fuel at a position closer to the intake valve even at the same mounting position as the conventional one, the atomized spray injected from the fuel injection valve 10 It is possible to suppress the fuel from adhering to the inner wall of the intake pipe and liquefying, and to reduce the amount of HC generated as an unburned component.
[0021]
In the first embodiment, the cylindrical member 102 is integrally molded using austenitic stainless steel that has not been magnetized before molding. However, the cylindrical member 102 is integrally molded with a material that is magnetized before molding. After cutting into a predetermined length, the valve housing 11 may be formed by demagnetizing a predetermined portion. Alternatively, the cylindrical member 102 may be cut into a predetermined length after demagnetizing a predetermined portion of the cylindrical member 102.
[0022]
Furthermore, since the magnetized valve body 12, the non-magnetized intermediate pipe 13 and the magnetized fuel connector 14 are formed by a single valve housing 11, these three members are brazed or laser welded. This eliminates the troublesome process of joining together, reduces the number of assembly steps, and reduces the manufacturing cost. In addition, the valve body 12, the intermediate pipe 13, and the fuel connector 14 are integrally formed, so that there is no positional deviation during assembly between the three. Therefore, the assembly accuracy can be easily improved, and variations in the injection amount characteristics can be reduced.
[0023]
In the first embodiment, a slit 25 a is provided in the fixed core 25, and the fixed core 25 is fixed to the inner periphery of the fuel connector 14 by press-fitting. By adjusting the press-fitting amount of the fixed core 25, the gap amount between the fixed core 25 and the movable core 24, that is, the lift amount of the needle valve 20 can be easily adjusted. Further, the fixed core 25 may be attached to the fuel connector 14 by means other than press fitting such as caulking.
[0024]
(Second embodiment)
A second embodiment of the present invention is shown in FIG. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals.
The valve housing 60 includes a cylindrical member 61 as a cylindrical member, a valve body 65, and a sleeve 66 as a connecting member that connects the cylindrical member 61 and the valve body 65. The nozzle hole plate 15 is sandwiched between the valve body 65 and the sleeve 66. The contact portion 21 of the needle valve 20 can be seated on a valve seat 65 a formed on the valve body 65.
[0025]
The cylindrical member 61 includes a valve accommodating portion 62, an intermediate pipe 63 as a non-magnetic portion, and a fuel connector 64 as a fuel suction portion from the nozzle hole 15a side, and is formed in a cylindrical shape having both ends opened. The cylindrical member 61 is formed by cutting a cylindrical member integrally formed in a cylindrical shape into a predetermined length and then demagnetizing a predetermined portion. The cylindrical member 61 and the valve body 65 are laser welded to the sleeve 66 and are connected by the sleeve 66. The sleeve 66 has a simple shape with a bottomed cylinder.
[0026]
In the second embodiment, various lengths on the injection side can be obtained by changing the length of the sleeve without changing the length of the cylindrical member 61, the position of the non-magnetic intermediate pipe 64, and the shape of the valve body 65. A valve housing having a thickness can be easily formed. Therefore, since fuel can be injected at a position close to the intake valve, the atomized fuel spray injected from the fuel injection valve is prevented from adhering to the inner wall of the intake pipe and liquefying, and generation of HC as an unburned component is generated. Can reduce the amount,
In the second embodiment, the cylindrical member 61 is formed by demagnetizing a predetermined portion after being cut to a predetermined length, but the cylindrical member 61 is formed by demagnetizing the predetermined portion and then cutting to a predetermined length. May be.
[0027]
In the second embodiment, the cylindrical member 61 is integrally formed. However, the valve body, the intermediate pipe, and the fuel connector may be formed of separate members, and the cylindrical member may be formed.
In the plurality of embodiments described above, the solid gap is formed by plating the opposing surfaces of the movable core 24 and the fixed core 25, but by making a part of the movable core or the fixed core non-magnetic. A solid gap may be configured. Since the solid gap only needs to be positioned inside the intermediate pipe portion, it is not necessary to demagnetize the facing surface of the movable core or the fixed core. Since the magnetized part has a characteristic that the hardness is higher than the non-magnetic part, if the solid gap is formed by demagnetizing the position away from the opposed surface of the movable core or fixed core, the movable core and fixed core Since the collision surface is magnetized, even if the movable core and the fixed core repeatedly collide, wear and deformation of the movable core and the fixed core can be prevented.
[0028]
In the above-described embodiments, the needle valve 20 is integrally molded. For example, the abutting portion side member, the rod, and the joint portion are formed so that the needle valve can be easily processed according to the length of the valve housing. It is also possible to construct the needle valve with the other member, and to make the needle valve by changing the length of the rod only with the contact member and the joint as the common member.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a fuel injection valve according to a first embodiment of the present invention.
FIG. 2 is an explanatory view showing a manufacturing process of the valve housing of the first embodiment.
FIG. 3 is an explanatory view showing a manufacturing process of the valve housing of the first embodiment.
FIG. 4 is a longitudinal sectional view showing a fuel injection valve according to a second embodiment of the present invention.
[Explanation of symbols]
10 Fuel Injection Valve 11 Valve Housing 12 Valve Body 13 Intermediate Pipe (Nonmagnetic Part)
14 Fuel connector (fuel inlet)
15 Injection hole plate 15a Injection hole 20 Needle valve (valve member)
24 movable core 25 fixed core 30 solenoid 31 electromagnetic coil 60 valve housing 61 cylindrical member 62 valve accommodating part 63 intermediate pipe (non-magnetic part)
64 Fuel inlet (fuel connector)
65 Valve body 66 Sleeve (connecting member)
102 Cylindrical member

Claims (2)

燃料吸入部を開口側に設け、噴孔を開閉する弁部材を往復移動可能に収容する弁ボディを底部側に設け、前記燃料吸入部と前記弁ボディとの間に非磁性部を設けた有底筒状の弁ハウジングを有する燃料噴射弁の製造方法であって、有底筒部材を一体に成形する工程と、前記有底筒部材の開口側を切断し、前記有底筒部材を所定長さにする工程と、前記有底筒部材の開口端から底部側に所定距離離隔した部位を非磁性化する工程とから前記弁ハウジングを形成することを特徴とする燃料噴射弁の製造方法。  A fuel suction part is provided on the opening side, a valve body that accommodates a valve member that opens and closes the nozzle hole is provided on the bottom side, and a nonmagnetic part is provided between the fuel suction part and the valve body. A method for manufacturing a fuel injection valve having a bottom cylindrical valve housing, comprising a step of integrally forming a bottomed cylindrical member, cutting an opening side of the bottomed cylindrical member, and extending the bottomed cylindrical member to a predetermined length. A method of manufacturing a fuel injection valve, comprising: forming the valve housing from a step of reducing the height and a step of demagnetizing a portion separated from the opening end of the bottomed cylindrical member by a predetermined distance toward the bottom side. 前記有底筒部材は、成形前に磁性化している材質、または成形過程で磁性化する材質のいずれかで成形されることを特徴とする請求項1記載の燃料噴射弁の製造方法 2. The method of manufacturing a fuel injection valve according to claim 1, wherein the bottomed cylindrical member is formed of either a material that is magnetized before molding or a material that is magnetized in a molding process .
JP12697297A 1997-02-14 1997-05-16 Manufacturing method of fuel injection valve Expired - Lifetime JP3861944B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12697297A JP3861944B2 (en) 1997-05-16 1997-05-16 Manufacturing method of fuel injection valve
US09/019,030 US5944262A (en) 1997-02-14 1998-02-05 Fuel injection valve and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12697297A JP3861944B2 (en) 1997-05-16 1997-05-16 Manufacturing method of fuel injection valve

Publications (2)

Publication Number Publication Date
JPH10318079A JPH10318079A (en) 1998-12-02
JP3861944B2 true JP3861944B2 (en) 2006-12-27

Family

ID=14948462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12697297A Expired - Lifetime JP3861944B2 (en) 1997-02-14 1997-05-16 Manufacturing method of fuel injection valve

Country Status (1)

Country Link
JP (1) JP3861944B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120463A (en) * 2001-10-16 2003-04-23 Hitachi Ltd Manufacturing method of fuel injection valve, nozzle body, and cylindrical parts having fluid passage
EP1724463B1 (en) 2004-03-09 2008-09-24 Keihin Corporation Electromagnetic fuel injection valve
JP2006043776A (en) * 2005-09-05 2006-02-16 Hitachi Ltd Cylindrical parts and method for manufacturing them
JP4750624B2 (en) * 2006-05-29 2011-08-17 カヤバ工業株式会社 Manufacturing apparatus and manufacturing method of tube in solenoid
JP4211814B2 (en) 2006-07-13 2009-01-21 株式会社日立製作所 Electromagnetic fuel injection valve
JP5321473B2 (en) * 2010-01-13 2013-10-23 株式会社デンソー Fuel injection valve
EP2832867B1 (en) * 2013-08-02 2016-06-01 Continental Automotive GmbH Method for producing a valve body for an electromechanically operable valve, a valve body, and an electromechanically operable valve comprising the valve body

Also Published As

Publication number Publication date
JPH10318079A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US5996910A (en) Fuel injection valve and method of manufacturing the same
EP0776422B1 (en) Fuel injector having improved parallelism of impacting armature surface to impacted stop surface
EP0776417B1 (en) Coil for small diameter welded fuel injector
JP3625831B2 (en) Improved basin mover for fuel injectors
JP4226478B2 (en) Fuel injector having a ferromagnetic coil bobbin
KR0167110B1 (en) Electronic operative valve
JP3861944B2 (en) Manufacturing method of fuel injection valve
JP2004518849A (en) Fuel injection valve
JP5014090B2 (en) Electromagnetic fuel injection valve and manufacturing method thereof
EP0776420B1 (en) Angled terminal/coil design for small diameter fuel injector
JP3732723B2 (en) Electromagnetic fuel injection valve
US5823445A (en) Fuel injector with electromagnetically autonomous sub assembly
JPH02240477A (en) Magnet needle
US6889919B2 (en) Fuel injection device having stationary core and movable core
JP2008509334A (en) Fuel injector and component connection method
KR20050043595A (en) Fuel injection valve
US7061144B2 (en) Fuel injection valve having internal pipe
JPH05502491A (en) Electromagnetically operated fuel injection valve
JP3712589B2 (en) Injector response adjustment method
JP3702145B2 (en) Unitized injector
JP2003293899A (en) Fuel injection device
JPH07103837B2 (en) Electromagnetic fuel injection valve
JPH11200980A (en) Fuel injection valve
JP2000320430A (en) Fuel injection valve and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term