WO2023228353A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2023228353A1
WO2023228353A1 PCT/JP2022/021540 JP2022021540W WO2023228353A1 WO 2023228353 A1 WO2023228353 A1 WO 2023228353A1 JP 2022021540 W JP2022021540 W JP 2022021540W WO 2023228353 A1 WO2023228353 A1 WO 2023228353A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
valve
reheater
expansion valve
compressor
Prior art date
Application number
PCT/JP2022/021540
Other languages
French (fr)
Japanese (ja)
Inventor
智典 小島
達也 ▲雑▼賀
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/021540 priority Critical patent/WO2023228353A1/en
Publication of WO2023228353A1 publication Critical patent/WO2023228353A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously

Definitions

  • the present disclosure relates to an air conditioner having a reheater and an evaporator provided indoors and a condenser provided outdoors.
  • Patent Document 1 BACKGROUND ART Conventionally, there has been known an air conditioner having a reheater and an evaporator provided indoors and a condenser provided outdoors (see, for example, Patent Document 1).
  • the air conditioner of Patent Document 1 controls the dehumidifying ability of the evaporator by adjusting the amount of refrigerant flowing into the reheater and the amount of refrigerant flowing into the condenser.
  • the refrigerant distributed in each heat exchanger may be uneven due to the difference in outside air temperature, and liquid back may occur when performing cooling operation or dehumidification operation. Also, there is a possibility of overheating operation. When liquid back occurs, there is a problem that liquid compression occurs in the compressor, which may cause the compressor to malfunction. In addition, when overheating occurs, the amount of refrigerant circulating between the compressor, reheater, expansion valve, and evaporator is insufficient, resulting in a decrease in capacity and an increase in discharge temperature, making operation more efficient. The problem was that it could not be done.
  • the present disclosure has been made to solve the above-mentioned problems, and provides an air conditioner that can suppress the occurrence of imbalance in the refrigerant distributed in each heat exchanger before performing a cooling operation or a dehumidification operation.
  • the purpose is to provide equipment.
  • the air conditioner according to the present disclosure includes a main circuit in which a compressor, a first on-off valve, a reheater, a first expansion valve, and an evaporator are sequentially connected through main piping, and the compressor and the first on-off valve.
  • a refrigerant circuit in which a refrigerant circulates, the refrigerant circuit comprising: a bypass pipe connecting the reheater to the first expansion valve; and a third on-off valve that opens and closes the bypass pipe.
  • the reheater and the evaporator are arranged in an air-conditioned space
  • the condenser is arranged outside the air-conditioned space
  • the control equipment controls the operation of the air-conditioned space.
  • the first on-off valve and the second on-off valve are opened, and the third on-off valve is closed
  • the first expansion valve is used to control the degree of superheating on the suction side of the compressor
  • the second expansion valve is used to control the degree of supercooling of the condenser. be.
  • the control device opens the first on-off valve and the second on-off valve and closes the third on-off valve before switching the operation to the cooling operation or the dehumidification operation.
  • the first expansion valve is used to control the degree of superheating on the suction side of the compressor
  • the second expansion valve is used to control the degree of subcooling of the condenser.
  • FIG. 1 is an overall configuration diagram of an air conditioner according to Embodiment 1.
  • FIG. 2 is a block diagram schematically showing the functional configuration of the control device shown in FIG. 1.
  • FIG. 2 is an explanatory diagram showing the state of a refrigerant circuit during dehumidification operation of the air conditioner shown in FIG. 1.
  • FIG. 2 is an explanatory diagram showing the state of a refrigerant circuit during intermediate operation of the air conditioner shown in FIG. 1.
  • FIG. 2 is an explanatory diagram showing the state of a refrigerant circuit during cooling operation of the air conditioner shown in FIG. 1.
  • FIG. 2 is an explanatory diagram showing the state of a refrigerant circuit during defrosting operation of the air conditioner shown in FIG. 1.
  • FIG. 1 is an overall configuration diagram of an air conditioner according to Embodiment 1.
  • FIG. 2 is a block diagram schematically showing the functional configuration of the control device shown in FIG. 1.
  • FIG. 2 is an explanatory diagram showing the state of a refrigerant circuit
  • FIG. 2 is a flowchart illustrating operation switching control of the air conditioner shown in FIG. 1.
  • FIG. 2 is a flowchart illustrating refrigerant distribution control during cooling operation of the air conditioner shown in FIG. 1.
  • FIG. 2 is a flowchart illustrating refrigerant distribution control during dehumidification operation of the air conditioner shown in FIG. 1.
  • FIG. 3 is a diagram showing an example of the operation contents of each on-off valve and each expansion valve when a refrigerant leaks in the air conditioner according to the first embodiment.
  • FIG. 2 is an overall configuration diagram of an air conditioner according to a second embodiment.
  • FIG. 1 is an overall configuration diagram of an air conditioner 100 according to the first embodiment.
  • Air conditioner 100 according to Embodiment 1 adjusts the temperature and humidity of air in an air-conditioned space such as a room.
  • the air conditioner 100 includes an indoor unit 70 installed within the air-conditioned space and an outdoor unit 80 installed outside the air-conditioned space.
  • the indoor unit 70 and the outdoor unit 80 are connected by a refrigerant pipe 20.
  • the inside of the air-conditioned space will also be referred to as indoors, and the outside of the air-conditioned space will also be referred to as outdoors.
  • the indoor unit 70 is, for example, a floor-standing dehumidifier placed on the floor of an air-conditioned space, a ceiling-mounted dehumidifier or a ceiling-mounted dehumidifier installed on the ceiling, or the like.
  • the indoor unit 70 includes a compressor 1, a first on-off valve 2, a reheater 3, a first expansion valve 4, an indoor heat exchanger 5, a second on-off valve 6, a second expansion valve 9, and a third on-off valve. 10 are accommodated.
  • the outdoor unit 80 is installed outdoors or in a machine room.
  • the outdoor unit 80 houses an outdoor heat exchanger 7 and a liquid reservoir 8 .
  • the air conditioner 100 includes a compressor 1, a first on-off valve 2, a reheater 3, a first expansion valve 4, an indoor heat exchanger 5, a second on-off valve 6, an outdoor heat exchanger 7, and a liquid reservoir 8.
  • the second expansion valve 9, and the third on-off valve 10 are connected by a refrigerant pipe 20, and has a refrigerant circuit 30 in which refrigerant circulates.
  • the indoor heat exchanger 5 will also be referred to as an evaporator
  • the outdoor heat exchanger 7 will also be referred to as a condenser.
  • a single mixed refrigerant, a pseudo-single refrigerant mixture, a non-azeotropic mixed refrigerant, or the like can be used.
  • a non-azeotropic mixed refrigerant for example, a mixed refrigerant of R32, R125, R134a, r1234yf, and CO 2 can be used.
  • This non-azeotropic mixed refrigerant has a composition of R32 of 49 wt% to 55 wt%, a composition of R125 of 16 wt% to 22 wt%, a composition of R134a of 7 wt% to 13 wt%, and a composition of R1234yf of 6 wt%. ⁇ 12 wt%, and the CO 2 composition is 7 wt% to 13 wt%, with a total composition ratio of 100 wt%.
  • R448A, R449A, or R407F which are non-azeotropic mixed refrigerants having compositions other than those mentioned above, may be employed.
  • the refrigerant pipe 20 is composed of a main pipe 21, a cooling pipe 22, and a bypass pipe 23.
  • the main pipe 21 is a pipe that sequentially connects the compressor 1, the first on-off valve 2, the reheater 3, the first expansion valve 4, and the indoor heat exchanger 5 in an annular manner. That is, the refrigerant circuit 30 includes a main circuit 31 formed by connecting the compressor 1 , the first on-off valve 2 , the reheater 3 , the first expansion valve 4 , and the indoor heat exchanger 5 via the main pipe 21 . .
  • the cooling pipe 22 is a pipe that connects between the compressor 1 and the reheater 3 and between the first expansion valve 4 and the indoor heat exchanger 5. More specifically, the cooling pipe 22 connects the main pipe 21 between the compressor 1 and the first on-off valve 2 and the main pipe 21 between the first expansion valve 4 and the indoor heat exchanger 5. , is a pipe connecting the second on-off valve 6, the outdoor heat exchanger 7, the liquid reservoir 8, and the second expansion valve 9. That is, the refrigerant circuit 30 includes a cooling circuit 32 that is an open circuit in which the second on-off valve 6 , the outdoor heat exchanger 7 , the liquid reservoir 8 , and the second expansion valve 9 are connected by the cooling pipe 22 .
  • connection part between the main pipe 21 and the cooling pipe 22 between the compressor 1 and the first on-off valve 2 is referred to as a first connection part M.
  • connection part between the main pipe 21 and the cooling pipe 22 between the first expansion valve 4 and the indoor heat exchanger 5 is referred to as a second connection part N.
  • the bypass pipe 23 is a pipe that connects the discharge side of the compressor 1 to between the reheater 3 and the first expansion valve 4.
  • the discharge side of the compressor 1 is between the compressor 1 and the first connecting portion M.
  • the bypass pipe 23 is a pipe that connects the main pipe 21 between the compressor 1 and the first connection part M and the main pipe 21 between the reheater 3 and the first expansion valve 4.
  • a third on-off valve 10 that opens and closes the bypass pipe 23 is provided. That is, the refrigerant circuit 30 includes a bypass circuit 33 that is an open circuit in which the third on-off valve 10 is provided in the bypass pipe 23.
  • the reheater 3 and the first expansion valve 4, and the outdoor heat exchanger 7 and the second expansion valve 9 are connected in parallel.
  • the compressor 1 takes in refrigerant, compresses it, turns it into a high-temperature, high-pressure gas state, and discharges it.
  • the compressor 1 is a compressor whose rotational speed is controlled by, for example, an inverter circuit, and the amount of refrigerant discharged can be adjusted.
  • the compressor 1 may be a constant speed compressor that operates at a constant rotation speed.
  • the reheater 3, the indoor heat exchanger 5, and the outdoor heat exchanger 7 are, for example, fin-and-tube heat exchangers formed by pipes through which a refrigerant flows and fins attached to the pipes.
  • the reheater 3 condenses the refrigerant by exchanging heat between the refrigerant compressed by the compressor 1 and air.
  • the indoor heat exchanger 5 and the reheater 3 are provided on a common wind path.
  • an indoor heat exchanger 5 with a dehumidifying function is placed on the windward side, and a reheater 3 with a heating function is placed on the leeward side of the indoor heat exchanger 5, and the temperature of the air blown from the indoor unit 70 into the air-conditioned space is adjusted.
  • the indoor heat exchanger 5 is an air heat exchanger that functions as an evaporator (cooler) that evaporates refrigerant. That is, the indoor heat exchanger 5 evaporates the refrigerant by exchanging heat between the refrigerant expanded by at least one of the first expansion valve 4 and the second expansion valve 9 and air.
  • the outdoor heat exchanger 7 is an air heat exchanger that functions as a condenser that condenses refrigerant. That is, the outdoor heat exchanger 7 condenses the refrigerant by exchanging heat between the refrigerant compressed by the compressor 1 and air.
  • the first expansion valve 4 is, for example, an electronic expansion valve, and is arranged downstream of the reheater 3.
  • the first expansion valve 4 expands the refrigerant condensed in the reheater 3.
  • the second expansion valve 9 is, for example, an electronic expansion valve, and is arranged downstream of the outdoor heat exchanger 7.
  • the second expansion valve 9 expands the refrigerant condensed in the outdoor heat exchanger 7.
  • the first on-off valve 2, the second on-off valve 6, and the third on-off valve 10 are, for example, electromagnetic valves that have an open state and a closed state, and allow refrigerant to pass through in the open state.
  • first on-off valve 2 When the first on-off valve 2 is in the closed state, it cuts off the refrigerant that is about to flow into the reheater 3 via the first connection part M.
  • second on-off valve 6 When the second on-off valve 6 is in the closed state, it cuts off the refrigerant that is about to flow into the outdoor heat exchanger 7 via the first connection part M.
  • the third on-off valve 10 cuts off refrigerant flowing into the bypass pipe 23 when in the closed state.
  • the liquid reservoir 8 is a member that stores surplus refrigerant.
  • the indoor unit 70 is provided with an indoor blower 11 that sends air to the indoor heat exchanger 5 and the reheater 3.
  • the outdoor unit 80 is provided with an outdoor blower 12 that is attached to the outdoor heat exchanger 7 and sends air to the outdoor heat exchanger 7 .
  • the indoor blower 11 and the outdoor blower 12 are blowers whose rotational speed is controlled by, for example, an inverter circuit, and whose air flow rate can be adjusted.
  • the indoor unit 70 is provided with an indoor refrigerant leak sensor 41, a control device 50, pressure sensors 61 to 63, refrigerant temperature sensors 65 to 68, and an air temperature sensor 91.
  • the outdoor unit 80 is provided with an outdoor refrigerant leak sensor 42, a pressure sensor 64, a refrigerant temperature sensor 69, and an air temperature sensor 92.
  • the pressure sensor 61 is provided on the suction side of the compressor 1 and measures low pressure, which is the pressure of the refrigerant sucked by the compressor 1.
  • the pressure sensor 62 is provided on the discharge side of the compressor 1 and measures high pressure, which is the pressure of the refrigerant discharged from the compressor 1.
  • the pressure sensor 63 is provided on the outlet side of the reheater 3, that is, at or near the outlet of the reheater 3, and measures the reheater outlet pressure, which is the pressure of the refrigerant flowing out from the reheater 3.
  • the pressure sensor 64 is provided on the outlet side of the outdoor heat exchanger 7, that is, at or near the outlet of the outdoor heat exchanger 7, and measures the condenser outlet pressure, which is the pressure of the refrigerant flowing out from the outdoor heat exchanger 7.
  • the refrigerant temperature sensors 65 to 69 are composed of, for example, thermistors.
  • the refrigerant temperature sensor 65 is provided on the suction side of the compressor 1 and measures the suction temperature, which is the temperature of the refrigerant sucked into the compressor 1.
  • the refrigerant temperature sensor 66 is provided on the discharge side of the compressor 1 and measures the discharge temperature, which is the temperature of the refrigerant discharged from the compressor 1.
  • the refrigerant temperature sensor 67 is provided on the exit side of the reheater 3 and measures the reheater outlet temperature, which is the temperature of the refrigerant flowing out from the reheater 3.
  • the refrigerant temperature sensor 68 is provided on the exit side of the indoor heat exchanger 5 and measures the evaporator exit temperature, which is the temperature of the refrigerant flowing out from the indoor heat exchanger 5.
  • the refrigerant temperature sensor 69 is provided on the outlet side of the outdoor heat exchanger 7 and measures the condenser outlet temperature, which is the temperature of the refrigerant flowing out from the outdoor heat exchanger 7.
  • the air temperature sensors 91 and 92 are composed of, for example, thermistors.
  • the air temperature sensor 91 is provided at the suction port of the indoor unit 70, and measures the temperature of the air-conditioned space as the indoor temperature.
  • the air temperature sensor 92 is provided in the outdoor unit 80 and measures the temperature outdoors or in a machine room as outside air temperature.
  • the indoor refrigerant leak sensor 41 is provided within the air-conditioned space and detects refrigerant leakage.
  • the outdoor refrigerant leak sensor 42 is provided outside the air-conditioned space and detects refrigerant leakage.
  • the indoor refrigerant leak sensor 41 and the outdoor refrigerant leak sensor 42 detect refrigerant leak, they output a leak signal indicating the occurrence of refrigerant leak to the control device 50.
  • Each pressure sensor outputs measured pressure data to the control device 50.
  • Each temperature sensor outputs measured temperature data to the control device 50. That is, each refrigerant leak sensor, each pressure sensor, and each temperature sensor are electrically or optically connected to the control device 50.
  • the indoor unit 70 is provided with an abnormality alarm 45 that includes at least one of a speaker and a light emitter.
  • an LED light emitting diode
  • the abnormality alarm 45 notifies the occurrence of an abnormality by outputting sound, voice, light, or the like in response to an instruction from the control device 50.
  • the control device 50 controls the refrigerant circuit 30. That is, the control device 50 acquires the output of each pressure sensor and each temperature sensor, and controls the compressor 1, the first on-off valve 2, the first expansion valve 4, the second on-off valve 6, the second expansion valve 9, and Controls various actuators such as the third on-off valve 10. Further, when an abnormality occurs, the control device 50 causes the abnormality alarm 45 to notify the occurrence of the abnormality.
  • the control device 50 according to the first embodiment causes the abnormality alarm 45 to output sound, voice, light, etc. when each refrigerant leakage sensor detects an abnormality of refrigerant leakage.
  • the control device 50 is configured to include, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory).
  • RAM is a volatile storage medium that stores various data.
  • the ROM is a non-volatile storage medium that stores operation programs for causing the control device 50 to execute operation control according to each operation mode, which will be described later.
  • the control device 50 appropriately controls the compressor 1, the first on-off valve 2, the first expansion valve 4, the second on-off valve 6, the second expansion valve 9, the third on-off valve 10, etc. according to the operation program in the ROM. control and perform air conditioning according to each operation mode. That is, the control device 50 can be configured by a calculation device such as a CPU, and an operation program that cooperates with such a calculation device to realize the various functions described below.
  • the flow of air in the indoor unit 70 will be schematically explained.
  • the indoor blower 11 operates, air is taken into the indoor unit 70.
  • the air taken into the indoor unit 70 passes through the indoor heat exchanger 5, which functions as an evaporator, and its absolute humidity is reduced. That is, when the air containing moisture passes through the indoor heat exchanger 5, the moisture in the air condenses on the indoor heat exchanger 5, so that the absolute humidity of the air decreases.
  • the absolute humidity decreases, and the air whose temperature has decreased becomes cold air with high relative humidity.
  • the air that has passed through the indoor heat exchanger 5 is reheated by passing through the reheater 3, and its relative humidity is reduced.
  • the air that has passed through the reheater 3 and has lowered relative humidity is blown into the room.
  • the air taken into the indoor unit 70 is blown out into the room with its relative humidity reduced, so the relative humidity in the room is reduced. This is the air flow in the indoor unit 70 during dehumidification operation or intermediate operation, which will be described later.
  • FIG. 2 is a block diagram schematically showing the functional configuration of the control device 50 shown in FIG. 1.
  • the control device 50 includes a calculation processing section 51 and a storage section 52.
  • the calculation processing section 51 includes a setting processing section 51a, an operation control section 51b, a surplus refrigerant detection section 51c, and a leakage processing section 51d.
  • the setting processing unit 51a receives an operation signal indicating the contents of the user's operation and settings from a remote controller (not shown) for operating the air conditioner 100 or the like. The setting processing unit 51a then sets the operating mode, target temperature, target humidity, etc. according to the operation signal.
  • the surplus refrigerant detection unit 51c detects the generation of surplus refrigerant using one of the following methods, and outputs a detection signal to the operation control unit 51b when detecting the generation of surplus refrigerant.
  • the surplus refrigerant detection unit 51c can be configured to determine the degree of subcooling and determine whether the determined degree of subcooling is greater than a degree of subcooling threshold. This determination utilizes the fact that the degree of supercooling increases when surplus refrigerant is generated. That is, the surplus refrigerant detection section 51c outputs a detection signal to the operation control section 51b when the obtained degree of subcooling is larger than the degree of subcooling threshold.
  • the fact that the discharge temperature of the refrigerant becomes low when surplus refrigerant is generated may be used to detect surplus refrigerant. That is, the surplus refrigerant detection unit 51c may acquire the discharge temperature from the refrigerant temperature sensor 66, and determine whether the acquired discharge temperature is smaller than the discharge threshold. The surplus refrigerant detection section 51c may output a detection signal to the operation control section 51b when the discharge temperature is lower than the discharge threshold.
  • the increase in high pressure when surplus refrigerant is generated may be used to detect surplus refrigerant. That is, the surplus refrigerant detection unit 51c may acquire the high pressure from the pressure sensor 62 and determine whether the acquired high pressure is greater than the high pressure threshold. The surplus refrigerant detection section 51c may output a detection signal to the operation control section 51b when the high pressure is higher than the high pressure threshold.
  • the increase in low pressure when surplus refrigerant is generated may be used to detect surplus refrigerant. That is, the surplus refrigerant detection unit 51c may acquire the low pressure from the pressure sensor 61 and determine whether the acquired low pressure is greater than the low pressure threshold. The surplus refrigerant detection section 51c may output a detection signal to the operation control section 51b when the low pressure is greater than the low pressure threshold.
  • the leak processing unit 51d acquires leak signals from each of the indoor refrigerant leak sensor 41 and the outdoor refrigerant leak sensor 42.
  • the leak processing section 51d When a leak signal is output from the indoor refrigerant leak sensor 41, the leak processing section 51d outputs an indoor leak signal indicating the occurrence of indoor refrigerant leak to the operation control section 51b.
  • the leakage processing section 51d When a leakage signal is output from the outdoor refrigerant leakage sensor 42, the leakage processing section 51d outputs an outdoor leakage signal indicating the occurrence of refrigerant leakage outdoors to the operation control section 51b.
  • the leak processing unit 51d causes the abnormality alarm 45 to output sound, voice, light, etc.
  • the leak processing unit 51d sends different sounds, sounds, lights, etc. to the abnormality alarm 45 depending on whether a leak signal is acquired from the indoor refrigerant leak sensor 41 or when a leak signal is acquired from the outdoor refrigerant leak sensor 42. You may also output it.
  • the operation control unit 51b periodically acquires measurement data from each pressure sensor and each temperature sensor. Then, the operation control section 51b controls the operation of each actuator of the air conditioner 100 using the acquired measurement data according to the settings made by the setting processing section 51a.
  • the operation control unit 51b controls, for example, the rotation speeds of the compressor motor 1a of the compressor 1, the fan motor 11a of the indoor blower 11, and the fan motor 12a of the outdoor blower 12.
  • the operation control unit 51b causes the air conditioner 100 to perform a dehumidification operation to dehumidify the air in the air-conditioned space.
  • the operation control unit 51b causes the air conditioner 100 to perform an intermediate operation in which the air in the conditioned space is simultaneously dehumidified and cooled.
  • the operation control unit 51b causes the air conditioner 100 to perform a cooling operation to cool the air in the air-conditioned space.
  • the operation control unit 51b causes the air conditioner 100 to perform a defrosting operation to melt the frost attached to the indoor heat exchanger 5.
  • the operation control unit 51b closes the second on-off valve 6 during dehumidification operation.
  • the operation control unit 51b may fully close the second expansion valve 9 during the dehumidification operation. In this way, it is possible to prevent the refrigerant from flowing into the main circuit 31 from the cooling circuit 32.
  • the operation control unit 51b closes the first on-off valve 2 during the cooling operation.
  • the operation control unit 51b may fully close the first expansion valve 4 during the cooling operation. In this way, the refrigerant remaining in the reheater 3 or the like can be prevented from flowing into the indoor heat exchanger 5.
  • the operation control unit 51b causes the air conditioner 100 to perform a refrigerant amount adjustment operation, which will be described later. That is, when the detection signal is output from the surplus refrigerant detection part 51c, the operation control part 51b performs refrigerant amount adjustment control to store the surplus refrigerant in the liquid reservoir 8 while maintaining the performance of the reheater 3. Furthermore, when the refrigerant does not move due to a pressure difference between the outside and the inside, the operation control unit 51b performs refrigerant amount adjustment control according to each situation.
  • the operation control section 51b closes the first on-off valve 2 and closes the second on-off valve 2. Fully close the expansion valve 9. As a result, the refrigerant flowing from the first connection part M to the reheater 3 can be cut off, and the indoor refrigerant can be stored in the outdoor heat exchanger 7 and the liquid reservoir 8 via the second on-off valve 6. It is possible to suppress leakage of refrigerant to.
  • the operation control unit 51b may fully close the first expansion valve 4 when the indoor refrigerant leak sensor 41 detects refrigerant leakage.
  • the operation control section 51b closes the second on-off valve 6 and closes the first on-off valve 6. Fully close the expansion valve 4. Thereby, the flow of the refrigerant to the outdoors can be blocked and the outdoor refrigerant can be stored in the indoor heat exchanger 5, so that leakage of the refrigerant outdoors can be suppressed.
  • the operation control unit 51b fully closes the second on-off valve 6 and the second expansion valve 9, and closes the second on-off valve 6 of the refrigerant circuit 30.
  • the storage unit 52 stores an operation program for the control device 50.
  • the storage unit 52 also stores various data related to air conditioning control.
  • the storage unit 52 stores data on settings such as an operating mode, target temperature, and target humidity.
  • the storage unit 52 also stores information on thresholds that serve as standards for detecting generation of surplus refrigerant, such as a subcooling degree threshold, a discharge threshold, a high pressure threshold, or a low pressure threshold. Note that the supercooling degree threshold, the discharge threshold, the high pressure threshold, and the low pressure threshold are set in advance, and can be changed as appropriate.
  • FIG. 3 is an explanatory diagram showing the state of the refrigerant circuit 30 during dehumidification operation of the air conditioner 100 shown in FIG. 1.
  • FIG. 4 is an explanatory diagram showing the state of the refrigerant circuit 30 during intermediate operation of the air conditioner 100 shown in FIG. 1.
  • FIG. 5 is an explanatory diagram showing the state of the refrigerant circuit 30 during cooling operation of the air conditioner 100 shown in FIG. 1.
  • FIG. 6 is an explanatory diagram showing the state of the refrigerant circuit 30 during defrosting operation of the air conditioner 100 shown in FIG. 1.
  • on-off valves in an open state are shown in white, and on-off valves in a closed state are shown in black.
  • FIGS. 3 to 6 the flow of the refrigerant is shown by broken lines with arrows. Valve control and refrigerant flow in each operation mode will be explained with reference to FIGS. 3 to 6.
  • the high temperature and high pressure gas refrigerant discharged from the compressor 1 flows into the reheater 3 via the discharge pipe (the pipe between the compressor 1 and the outdoor heat exchanger 7).
  • indoor air blown by the indoor blower 11 and passed through the indoor heat exchanger 5 passes through the reheater 3. Therefore, the high-temperature, high-pressure gas refrigerant that has flowed into the reheater 3 exchanges heat with the indoor air passing through the reheater 3, radiates heat, and is condensed and liquefied.
  • the refrigerant flowing out from the reheater 3 passes through the liquid pipe (the pipe between the reheater 3 and the first expansion valve 4), is depressurized at the first expansion valve 4, and becomes a gas-liquid two-phase refrigerant. It flows into the indoor heat exchanger 5.
  • the gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 5 absorbs heat by exchanging heat with the indoor air blown by the indoor blower 11, becomes gasified, and returns to the compressor 1 as a low-temperature, low-pressure gas refrigerant.
  • the air circulating through the indoor unit 70 by the indoor blower 11 is cooled by the low-temperature, low-pressure gas-liquid two-phase refrigerant flowing through the indoor heat exchanger 5, and its temperature drops to below the dew point.
  • moisture in the indoor air condenses on the surface of the indoor heat exchanger 5, and the indoor air is dehumidified.
  • the air that has passed through the indoor heat exchanger 5 is heated by a high-temperature, high-pressure gas refrigerant in the reheater 3, increasing its temperature and decreasing its relative humidity.
  • the air conditioner 100 radiates all of the heat within the refrigeration cycle indoors by closing the second on-off valve 6 during the dehumidification operation. That is, the air conditioner 100 operates to heat indoor air by the amount of heat added to the refrigerant by the compressor 1 and the latent heat of condensation of water vapor in the air. Therefore, the indoor air sucked into the air conditioner 100 during dehumidification operation is heated and dehumidified at the same time.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 7 and the reheater 3 via the discharge pipe. Then, the refrigerant that has radiated heat and liquefied in the outdoor heat exchanger 7 and the reheater 3 is transferred to liquid piping (the piping between the outdoor heat exchanger 7 and the second expansion valve 9, and the piping between the reheater 3 and the first expansion valve). The pressure is reduced by the second expansion valve 9 and the first expansion valve 4, which are installed downstream of the piping between 4 and 4, respectively, and the refrigerant becomes a gas-liquid two-phase refrigerant. flows into.
  • the gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 5 absorbs heat and is gasified by the indoor heat exchanger 5, and then passes through the suction pipe (the pipe between the indoor heat exchanger 5 and the compressor 1) to the compressor 1. is inhaled.
  • the control device 50 performs on/off control on the outdoor blower 12 according to the outdoor temperature and high pressure, and also controls the indoor blower 11 to be turned on at all times.
  • the fan rotation speed is controlled according to the internal liquid SC and external liquid SC.
  • the internal liquid SC refers to the degree of subcooling of the reheater 3
  • the external liquid SC refers to the degree of subcooling of the outdoor heat exchanger 7.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 7 through the discharge pipe, exchanges heat with the outdoor air blown by the outdoor blower 12, radiates heat, and condenses to liquefy. do. Then, the refrigerant flowing out from the outdoor heat exchanger 7 passes through the liquid pipe (the pipe between the outdoor heat exchanger 7 and the second expansion valve 9), is depressurized at the second expansion valve 9, and becomes a gas-liquid two-phase refrigerant. , flows into the indoor heat exchanger 5.
  • the gas-liquid two-phase refrigerant flowing into the indoor heat exchanger 5 exchanges heat with the indoor air blown by the indoor blower 11, absorbs heat, becomes gasified, and returns to the compressor 1 as a low-temperature, low-pressure gas refrigerant. That is, the air circulated by the indoor blower 11 is cooled in the indoor heat exchanger 5 by a low-temperature, low-pressure gas-liquid two-phase refrigerant. Note that the surplus refrigerant during the cooling operation is stored in the liquid reservoir 8 as appropriate.
  • the cooling operation is preferably performed when the indoor absolute humidity is low or when lowering the indoor temperature is a high priority. This is because when the temperature of the air decreases due to cooling operation, the relative humidity increases. This is because, as the relative humidity increases, comfort decreases and dew condensation tends to occur indoors. Also, for example, when the temperature of the air decreases to below the dew point due to cooling operation, moisture in the indoor air condenses on the surface of the indoor heat exchanger 5, increasing ventilation resistance and reducing heat exchange capacity. It is.
  • the defrosting operation is an operation performed when frost forms on the indoor heat exchanger 5 and its performance as a heat exchanger deteriorates.
  • the first on-off valve 2 and the second on-off valve 6 are in a closed state, and the third on-off valve 10 is in an open state. That is, when the control device 50 is set to the defrosting operation mode, the first on-off valve 2 and the second on-off valve 6 are closed, and the third on-off valve 10 is opened. Therefore, the high temperature and high pressure gas refrigerant discharged from the compressor 1 passes through the discharge pipe and the bypass circuit 33, is depressurized by the first expansion valve 4, and flows into the indoor heat exchanger 5.
  • the indoor heat exchanger 5 is heated by the refrigerant and exchanges heat with the frost that has formed to melt the frost.
  • the refrigerant that has flowed into the indoor heat exchanger 5 is lowered in temperature by heat exchange with the frost, and then exchanges heat with the suction pipe to absorb heat and gasify, becoming a low-temperature, low-pressure gas refrigerant that is compressed.
  • the control device 50 adjusts the amount of refrigerant passing through the indoor heat exchanger 5 by setting the first expansion valve 4 to the minimum opening degree, thereby preventing liquefied refrigerant from entering the compressor 1. Further, the control device 50 turns off the indoor blower 11. Therefore, during the defrosting operation, only heat exchange between the refrigerant passing through the indoor heat exchanger 5 and the frost adhering to the indoor heat exchanger 5 is performed.
  • the intermediate operation shown in FIG. 4 requires a relatively large amount of refrigerant because the refrigerant flows through the reheater 3 and the outdoor heat exchanger 7.
  • the dehumidifying operation shown in FIG. 3 requires less refrigerant than the intermediate operation. This is because, in the dehumidifying operation, refrigerant flows into the reheater 3 but does not flow into the outdoor heat exchanger 7. Therefore, during dehumidification operation, surplus refrigerant may be generated. When excess refrigerant is generated, there is a risk that abnormalities such as an increase in high pressure may occur. Further, when there is a large temperature difference between the outdoors and the indoors, there is a risk that surplus refrigerant will be generated during cooling operation and dehumidification operation due to unevenness of refrigerant.
  • the air conditioner 100 performs operation switching control for the purpose of leveling the refrigerant before shifting to the cooling operation or the dehumidifying operation. Furthermore, after each operation is started, refrigerant distribution control is performed based on the state values during operation. First, the operation switching control performed by the operation control section 51b before shifting to the cooling operation or the dehumidification operation will be described.
  • FIG. 7 is a flowchart illustrating operation switching control of the air conditioner 100 shown in FIG. 1.
  • the operation control unit 51b performs operation switching control for the purpose of leveling the refrigerant when switching to cooling operation or dehumidification operation.
  • An example of the timing to perform the operation switching control is the timing to shift from the cooling operation to the dehumidifying operation or from the dehumidifying operation to the cooling operation.
  • the operation control unit 51b executes the intermediate operation shown in FIG. 4, opens both the first on-off valve 2 and the second on-off valve 6, and closes the third on-off valve 10 (step S101).
  • the operation control unit 51b then performs operation switching control using the first expansion valve 4 provided downstream of the reheater 3 and the second expansion valve 9 provided downstream of the outdoor heat exchanger 7. do.
  • the operation control unit 51b performs SH control on the first expansion valve 4 and performs internal liquid SC control on the second expansion valve 9, for example.
  • the operation control unit 51b controls the degree of supercooling of the refrigerant condensed in the outdoor heat exchanger 7 using the second expansion valve 9 provided downstream of the outdoor heat exchanger 7, thereby reducing the outdoor heat.
  • the amount of refrigerant distributed in the exchanger 7 is brought into an appropriate state.
  • SH degree of superheating
  • the operation control unit 51b ends the operation switching control and shifts to the cooling operation or the dehumidification operation when the external liquid SC and the intake SH satisfy the determination values or when the operation time has elapsed for a predetermined time. Specifically, the operation control unit 51b ends the operation switching control when the external liquid SC ⁇ 5K and the suction SH ⁇ 5K are satisfied (YES in step S102) or when the operating time has elapsed for 5 minutes (YES in step S103). and shifts to cooling operation or dehumidification operation (step S104). At this time, regarding step S102, the determination values for the external fluid SC and the inhalation SH are 5K, but may have a range of ⁇ .
  • the external fluid SC and the inhaled SH do not have to completely match the determination value of 5K, and the conditions are also satisfied even if 5- ⁇ K ⁇ external solution SC and SH ⁇ 5+ ⁇ K.
  • the suction SH refers to the degree of superheat on the suction side of the compressor 1.
  • FIG. 8 is a flowchart illustrating refrigerant distribution control during cooling operation of the air conditioner 100 shown in FIG. 1. Next, the refrigerant distribution control performed based on the state value during operation after shifting to each operation will be explained.
  • Refrigerant distribution control is determined from the state value during operation and executed when the above-mentioned operation switching control is executed and the operation is switched to cooling operation or dehumidification operation.
  • the operation control unit 51b determines whether the amount of refrigerant in the cooling operation is excessive or insufficient using the external liquid SC (step S201).
  • the operation control unit 51b determines that there is a refrigerant shortage, and moves to the next determination formula.
  • the outdoor condensing temperature CTout which is the condensing temperature of the outdoor heat exchanger 7
  • CTout_max a value of which high pressure protection control, which is control to lower the frequency of the compressor 1 or stop the compressor 1, is implemented. It is determined whether the internal liquid temperature, which is the temperature of the refrigerant flowing through the reheater 3, is higher than the evaporation temperature ET, which is the evaporation temperature of the indoor heat exchanger 5 (step S209). ).
  • the determination formula for the outdoor condensing temperature CTout is intended to prevent high pressure abnormalities when the distribution of refrigerant is increased toward the outdoor side
  • the determination formula for the evaporation temperature ET is intended to prevent high pressure abnormalities from occurring from the indoor side described below.
  • the second expansion valve 9 performs SH control
  • the first expansion valve 4 performs internal liquid SC control
  • the rotational speed of the outdoor blower 12 is lowered to increase the external liquid SC.
  • This is done by performing internal liquid SC control with the first expansion valve 4, which opens the refrigerant and discharges the refrigerant accumulated in the reheater 3, and by performing SH control with the second expansion valve 9, the refrigerant
  • the purpose is to make it easier to store the refrigerant in the liquid reservoir 8 and the outdoor heat exchanger 7, and to forcibly circulate the refrigerant that could not be discharged due to the pressure difference. If the operation control unit 51b determines that the external liquid SC ⁇ 5K is satisfied (YES in step S214), it ends this control (step S215).
  • the operation control unit 51b determines that the above-mentioned determination formula is satisfied and the refrigerant can be discharged from the indoor side (YES in step S209)
  • the operation control unit 51b changes the control target of the first expansion valve 4 to external liquid SC ⁇ 5K (step S210).
  • the first expansion valve 4 is opened from the closed state to the minimum opening degree, and control is performed so that the external liquid SC ⁇ 5K.
  • the operation control unit 51b determines that the external liquid SC ⁇ 5K is satisfied (YES in step S211)
  • the operation control unit 51b fully closes the first expansion valve 4 and ends this control (step S212). Note that by not executing this control for a certain period of time after executing this control, it is possible to prevent deterioration of the first expansion valve 4 caused by frequently adjusting the opening from fully closed, and to reduce reliability. prevent.
  • step S201 When external liquid SC>5K (excessive refrigerant)
  • the operation control unit 51b determines that there is an excess of refrigerant, and moves to the next determination formula.
  • the next determination formula it is determined whether the outdoor condensation temperature CTout satisfies the requirement that it is higher than the internal liquid temperature (step S202). This is to determine whether or not the refrigerant can be discharged based on the differential pressure when discharging the refrigerant from the outdoor side, which will be described next.
  • step S206 the operation control unit 51b determines that it is difficult to discharge the refrigerant from the indoor side without satisfying the above-mentioned determination formula (NO in step S202).
  • step S206 the operation control unit 51b performs further refrigerant amount adjustment operation by intermediate operation. This is to forcibly circulate the refrigerant that has become difficult to discharge due to the differential pressure, so that it becomes the intended external liquid SC.
  • the second expansion valve 9 performs SC control of the external liquid
  • the first expansion valve 4 performs SH control.
  • the rotation speed of the indoor blower 11 is lowered to increase the internal liquid SC.
  • This is achieved by performing external liquid SC control with the second expansion valve 9, which opens the second expansion valve 9 and discharges the refrigerant accumulated in the outdoor heat exchanger 7, and by performing SH control with the first expansion valve 4.
  • the purpose of this system is to facilitate the storage of refrigerant in the reheater 3 and to forcefully circulate the refrigerant that could not be discharged due to the pressure difference. If the operation control unit 51b determines that the external liquid SC ⁇ 5K has been filled (YES in step S207), it ends this control (step S208).
  • the operation control unit 51b determines that the above-mentioned determination formula is satisfied and the refrigerant can be discharged from the indoor side (YES in step S202), the operation control unit 51b opens the first on-off valve 2 (step S203). This is intended to store refrigerant in the reheater 3. Then, the operation control unit 51b performs control to open the first expansion valve 4 from the closed state to the minimum opening degree so that the external liquid SC ⁇ 5K. When the operation control unit 51b determines that the external liquid SC ⁇ 5K is satisfied (YES in step S204), the operation control unit 51b fully closes the first on-off valve 2 and ends this control (step S205). Note that by not executing this control for a certain period of time after executing this control, it is possible to prevent deterioration of the first on-off valve 2 due to frequent opening and closing, and to prevent deterioration of reliability.
  • FIG. 9 is a flowchart illustrating refrigerant distribution control during dehumidification operation of the air conditioner 100 shown in FIG. 1.
  • the operation control unit 51b determines whether the amount of refrigerant in the dehumidifying operation is excessive or insufficient in the internal liquid SC (step S301).
  • the operation control unit 51b determines that there is a refrigerant shortage, and moves to the next determination formula.
  • the indoor condensing temperature CTin which is the condensing temperature of the reheater 3
  • CTin_max - 5K the value of the refrigerant flowing through the outdoor heat exchanger 7. It is determined whether the external liquid temperature is higher than the evaporation temperature ET (step S309).
  • the determination formula for the indoor condensation temperature CTin is intended to prevent high pressure abnormalities when the distribution of refrigerant is increased indoors
  • the determination formula for the evaporation temperature ET is intended to prevent high pressure abnormalities from occurring when the refrigerant is distributed indoors.
  • the second expansion valve 9 performs SC control of the external liquid
  • the first expansion valve 4 performs SH control.
  • the rotation speed of the indoor blower 11 is lowered to increase the internal liquid SC.
  • This is done by performing external liquid SC control with the second expansion valve 9, which opens the second expansion valve 9 and discharges the refrigerant accumulated in the outdoor heat exchanger 7, and by performing SH control with the first expansion valve 4.
  • the purpose is to facilitate the circulation of a large amount of refrigerant to the reheater 3, and to forcibly circulate the refrigerant that could not be discharged due to the pressure difference. If the operation control unit 51b determines that the internal liquid SC ⁇ 5K is satisfied (YES in step S314), it ends this control (step S315).
  • the operation control unit 51b determines that the above-mentioned determination formula is satisfied and the refrigerant can be discharged from the outdoor side (YES in step S309)
  • the operation control unit 51b changes the control target of the second expansion valve 9 to internal liquid SC ⁇ 5K (step S310).
  • the second expansion valve 9 is opened from the closed state to the minimum opening degree, and control is performed so that the internal liquid SC ⁇ 5K.
  • the operation control unit 51b determines that the internal liquid SC ⁇ 5K is satisfied (YES in step S311)
  • the operation control unit 51b fully closes the second expansion valve 9 and ends this control (step S312). Note that by not executing this control for a certain period of time after executing this control, it is possible to prevent deterioration of the second expansion valve 9 caused by frequently adjusting the opening from fully closed, and to reduce reliability. prevent.
  • step S301 the operation control unit 51b determines that there is an excess of refrigerant, and moves on to the next determination formula.
  • the next determination formula it is determined whether the indoor condensation temperature CTin is higher than the outside liquid temperature (step S302). This is to determine whether or not the refrigerant can be discharged based on the differential pressure when discharging the refrigerant from the outdoor side, which will be described next.
  • step S302 When the operation control unit 51b determines that it is difficult to discharge the refrigerant from the outdoor side without satisfying the above-mentioned determination formula (NO in step S302), the operation control unit 51b performs further refrigerant amount adjustment operation by intermediate operation (step S306). This is to forcibly circulate the refrigerant that has become difficult to discharge due to the differential pressure, so that it becomes the intended internal liquid SC.
  • the second expansion valve 9 performs SH control
  • the first expansion valve 4 performs internal liquid SC control.
  • the rotation speed of the indoor blower 11 is increased to reduce the internal liquid SC.
  • the rotational speed of the outdoor blower 12 is lowered to increase the external liquid SC.
  • This is done by performing internal liquid SC control with the first expansion valve 4, which opens the refrigerant and discharges the refrigerant accumulated in the reheater 3, and by performing SH control with the second expansion valve 9, the refrigerant
  • the purpose is to make it easier to store the refrigerant in the liquid reservoir 8 and the outdoor heat exchanger 7, and to forcibly circulate the refrigerant that could not be discharged due to the pressure difference. If the operation control unit 51b determines that the internal liquid SC ⁇ 5K is satisfied (YES in step S307), it ends this control (step S308).
  • the operation control unit 51b determines that the above-mentioned determination formula is satisfied and the refrigerant can be discharged from the outdoor side (YES in step S302)
  • the operation control unit 51b opens the second on-off valve 6 (step S303). This is intended to store refrigerant in the outdoor heat exchanger 7.
  • the operation control unit 51b performs control to open the second expansion valve 9 from the closed state to the minimum opening degree so that the internal liquid SC ⁇ 5K.
  • the operation control unit 51b determines that the internal liquid SC ⁇ 5K is satisfied (YES in step S304)
  • the operation control unit 51b fully closes the second on-off valve 6 and ends this control (step S305). Note that by not executing this control for a certain period of time after executing this control, it is possible to prevent deterioration of the second on-off valve 6 due to frequent opening and closing, and to prevent deterioration in reliability.
  • a range is set as a target for the SC determination value at the end, and it is assumed that they do not need to match completely. That is, for steps S204, S207, S211, S214, S304, S307, S311, and S314, the determination value of external fluid SC or internal fluid SC is 5K, but may have a range of ⁇ . In other words, the external fluid SC or the internal fluid SC does not have to completely match the determination value of 5K, and the condition is satisfied even if 5- ⁇ K ⁇ external fluid SC or internal fluid SC ⁇ 5+ ⁇ K.
  • the operation control unit 51b adjusts the amount of refrigerant to an appropriate value through the operation switching control and refrigerant distribution control described above. Therefore, in the dehumidifying operation, the reheat amount of the reheater 3 required during the dehumidifying operation can be secured and the necessary and sufficient dehumidifying capacity can be demonstrated, and in the cooling operation, the condensation of the outdoor heat exchanger 7 required during the cooling operation can be It is possible to secure sufficient amount of cooling capacity and exhibit the necessary and sufficient cooling capacity. In addition, even in situations where it is determined that it is difficult to discharge the refrigerant from the outside or inside due to the pressure difference, the refrigerant is forcibly circulated in intermediate operation to transition the state to the intended refrigeration cycle and maintain the ideal cooling capacity. able to demonstrate.
  • the operation control unit 51b controls the opening degree of the second expansion valve 9 by using, for example, the temperature of the refrigerant at the outlet of the outdoor heat exchanger 7. That is, the operation control unit 51b uses the outdoor heat exchanger outlet temperature measured by the refrigerant temperature sensor 69 to determine the degree of subcooling of the outdoor heat exchanger 7.
  • the operation control unit 51b acquires the high pressure from the pressure sensor 62 and also acquires the outdoor heat exchanger outlet temperature measured by the refrigerant temperature sensor 69.
  • the operation control unit 51b calculates the condensation temperature by converting the high pressure into saturation, and subtracts the outdoor heat exchanger outlet temperature from the condensation temperature to determine the degree of supercooling of the outdoor heat exchanger 7.
  • the operation control unit 51b then controls the second expansion valve 9 according to the obtained degree of supercooling. Thereby, the amount of refrigerant distributed in the outdoor heat exchanger 7 is adjusted.
  • the condensation temperature may be a value converted to saturation from the pressure sensor 64.
  • the operation control unit 51b performs SH control of the first expansion valve 4 so as to maintain the degree of superheating by the reheater 3 at or above the determination value. As a result, surplus refrigerant is stored in the liquid reservoir 8, and liquid backflow to the compressor 1 is suppressed.
  • the operation control unit 51b acquires the low pressure from the pressure sensor 61 and the suction temperature from the refrigerant temperature sensor 65. Then, the operation control unit 51b calculates the evaporation temperature ET by converting the low pressure into saturation, and subtracts the evaporation temperature ET from the suction temperature to calculate the degree of superheating of the indoor heat exchanger 5.
  • a refrigerant temperature sensor (not shown) may be provided in the middle of the indoor heat exchanger 5, and the temperature measured by the refrigerant temperature sensor may be used as the evaporation temperature ET.
  • the operation control unit 51b controls the opening degree of the second expansion valve 9 by using, for example, the temperature of the refrigerant at the outlet of the outdoor heat exchanger 7. That is, the operation control unit 51b uses the outdoor heat exchanger outlet temperature measured by the refrigerant temperature sensor 69 to determine the degree of subcooling of the outdoor heat exchanger 7.
  • the operation control unit 51 b acquires the high pressure from the pressure sensor 62 and acquires the outdoor heat exchanger outlet temperature from the refrigerant temperature sensor 69 .
  • the operation control unit 51b calculates the condensation temperature by converting the high pressure into saturation, and subtracts the outdoor heat exchanger outlet temperature from the condensation temperature to determine the degree of supercooling of the outdoor heat exchanger 7. Then, the operation control unit 51b controls the second expansion valve 9 according to the obtained degree of supercooling, and also controls the first on-off valve 2, the second on-off valve 6, and the first expansion valve 4. The amount of refrigerant distributed in the outdoor heat exchanger 7 is adjusted.
  • the condensation temperature may be a value converted to saturation from the pressure sensor 64.
  • the operation control unit 51b controls the opening degree of the first expansion valve 4 using, for example, the temperature of the refrigerant at the outlet of the reheater 3. That is, the operation control unit 51b uses the reheater outlet temperature measured by the refrigerant temperature sensor 67 to determine the degree of subcooling of the reheater 3.
  • the operation control unit 51b acquires the high pressure from the pressure sensor 62 and acquires the reheater outlet temperature from the refrigerant temperature sensor 67.
  • the operation control unit 51b calculates the condensation temperature by converting the high pressure into saturation, and subtracts the reheater outlet temperature from the condensation temperature to determine the degree of supercooling of the reheater 3. Then, the operation control unit 51b controls the first expansion valve 4 according to the obtained degree of supercooling, and also controls the second on-off valve 6, the third on-off valve 10, and the second expansion valve 9. The amount of refrigerant distributed in the reheater 3 is adjusted. Note that the condensation temperature may be a value converted to saturation from the pressure sensor 63.
  • FIG. 10 is a diagram illustrating an example of the operation details of each on-off valve and each expansion valve when a refrigerant leaks in the air conditioner 200 according to the first embodiment.
  • the control device 50 closes the first on-off valve 2, opens the second on-off valve 6, and closes the third on-off valve 10. is closed, the first expansion valve 4 is fully opened, the second expansion valve 9 is fully closed, and the compressor 1 is operated to perform pump-down operation.
  • the control device 50 preferably makes the rotation speeds of the indoor blower 11 and the outdoor blower 12 larger than the rotation speeds during normal operation. This is to increase the amount of air flow and diffuse the leaked refrigerant so that the leaked refrigerant does not create a high concentration area.
  • the refrigerant when refrigerant leaks indoors, the refrigerant is transferred to the pipes from the second on-off valve 6 to the outdoor heat exchanger 7, the outdoor heat exchanger 7, and the outdoor heat exchanger.
  • the liquid can be stored in the piping from the liquid reservoir 7 to the liquid reservoir 8, the liquid reservoir 8, and the piping from the liquid reservoir 8 to the second expansion valve 9.
  • the control device 50 also controls the operation of the compressor 1 when the pressure on the suction side of the compressor 1 becomes lower than the set value or when the pressure on the discharge side of the compressor 1 becomes higher than the set value. to stop. After stopping the operation of the compressor 1, the control device 50 closes the second on-off valve 6. In this way, by closing the second on-off valve 6 after the compressor 1 is stopped, it is possible to suppress the backflow of the refrigerant. As described above, safety can be improved by stopping the operation of the air conditioner 100 in stages.
  • the second on-off valve 6 is turned on. Cooling operation can be carried out by opening. By performing the cooling operation, it is possible to prevent a rise in the temperature of the air-conditioned space, so it is possible to suppress a decrease in comfort.
  • the control device 50 opens the first on-off valve 2, closes the second on-off valve 6, and closes the third on-off valve 10. is closed, the first expansion valve 4 is fully closed, the second expansion valve 9 is fully open, and the compressor 1 is operated to perform pump-down operation.
  • the control device 50 preferably makes the rotation speeds of the indoor blower 11 and the outdoor blower 12 larger than the rotation speeds during normal operation.
  • the control device 50 also controls the operation of the compressor 1 when the pressure on the suction side of the compressor 1 becomes lower than the set value or when the pressure on the discharge side of the compressor 1 becomes higher than the set value. to stop. After stopping the operation of the compressor 1, the control device 50 closes the first on-off valve 2. In this way, by closing the first on-off valve 2 after the compressor 1 is stopped, it is possible to suppress the backflow of the refrigerant. As described above, safety can be improved by stopping the operation of the air conditioner 100 in stages.
  • the first on-off valve 2 is turned on. It is possible to carry out dehumidification operation by opening the door. By continuing the dehumidifying operation, it is possible to prevent an increase in the humidity in the air-conditioned space, so it is possible to suppress a decrease in comfort. Note that in a situation where there is no problem even if the refrigerant is circulated among the compressor 1, reheater 3, first expansion valve 4, and indoor heat exchanger 5, the refrigerant leakage point is between the second on-off valve 6 and the second on-off valve 6. A case is assumed in which it is specified between the two expansion valves 9, etc.
  • the control device 50 closes the second on-off valve 6 during the dehumidification operation, so that the refrigerant does not accumulate in the outdoor heat exchanger 7. Since this can be prevented, dehumidification ability can be suppressed from decreasing, and dehumidification operation can be performed efficiently. Further, the control device 50 may fully close the second expansion valve 9 during the dehumidification operation. In this way, it is possible to prevent the refrigerant from flowing into the main circuit 31 from the cooling circuit 32, thereby increasing the efficiency of the dehumidifying operation.
  • the main circuit 31 performs an opening/closing operation between the first connection part M, which is the connection part between the main pipe 21 and the cooling pipe 22 between the compressor 1 and the reheater 3, and the reheater 3. It has a first opening/closing valve 2 that operates.
  • the control device 50 is configured to close the first on-off valve 2 during cooling operation. Therefore, since it is possible to prevent the refrigerant from flowing into the reheater 3, it is possible to smooth the refrigerant circulation during the cooling operation and improve the operating efficiency. In addition, the control device 50 may fully close the first expansion valve 4 during the cooling operation.
  • the control device 50 closes the first on-off valve 2 and fully closes the second expansion valve 9. Therefore, the refrigerant can be prevented from flowing into the main circuit 31 provided indoors, and the refrigerant can be stored in the outdoor heat exchanger 7 and the liquid reservoir 8, so that leakage of the refrigerant into the room can be suppressed.
  • the control device 50 may fully close the first expansion valve 4 when the indoor refrigerant leak sensor 41 detects refrigerant leakage. In this way, it is possible to prevent the refrigerant stagnant in the reheater 3 etc.
  • the refrigerant leakage point is from the first on-off valve 2 to the reheater 3. If the refrigerant is not on the flow path leading to the first expansion valve 4, leakage of the refrigerant into the room can be reduced. In addition, by closing the first on-off valve 2, the third on-off valve 10, and the first expansion valve 4, and making the part of the refrigerant circuit 30 from the first on-off valve 2 to the first expansion valve 4 independent, the refrigerant The process of identifying the location of the leak may be facilitated.
  • the control device 50 closes the second on-off valve 6 and fully closes the first expansion valve 4. Thereby, the flow of the refrigerant to the outside can be blocked, and the refrigerant from the outside can be stored in the indoor heat exchanger 5, so that leakage of the refrigerant to the outside can be suppressed.
  • the control device 50 may fully close the second expansion valve 9 when the outdoor refrigerant leak sensor 42 detects refrigerant leakage. In this way, the portion of the refrigerant circuit 30 from the second on-off valve 6 to the second expansion valve 9 can be made independent, and the location of the refrigerant leak can be quickly identified.
  • the control device 50 can adjust the refrigerant distribution to an appropriate amount as described above. Therefore, the amount of heating by the reheater 3 can be ensured, and the indoor unit 70 can exhibit its dehumidifying ability.
  • the control device 50 executes the SH control of the first expansion valve 4 so as to maintain the degree of superheating by the reheater 3 at or above the determination value, and adjusts the degree of superheating by the outdoor heat exchanger 7 to the determination value.
  • SH control only part of the refrigerant amount adjustment control
  • the surplus refrigerant is stored in the liquid reservoir 8, the refrigerant can be stored in the outdoor heat exchanger 7, and it can also be stored in the reheater 3 (only part of the refrigerant amount adjustment control).
  • the occurrence of liquid back can be suppressed. That is, according to the air conditioner 100 according to the first embodiment, the SC control and the SH control (only part of the refrigerant amount adjustment control) at the second expansion valve 9 and the SH control at the first expansion valve 4 are performed. By combining the control and the SC control (only part of the refrigerant amount adjustment control), it is possible to suppress a decrease in reheating capacity and avoid damage to the compressor 1 due to liquid back.
  • the temperature at the inlet side of the refrigerant in the indoor heat exchanger 5 becomes lower than the temperature at the outlet side of the refrigerant. Further, in the reheater 3, the temperature on the refrigerant inlet side is higher than the temperature on the refrigerant outlet side.
  • the air that has passed through the refrigerant inlet side of the indoor heat exchanger 5 passes through the refrigerant outlet side of the reheater 3, and the indoor heat exchanger 5 and the reheater 3
  • the reheater 3 is arranged so that the air that has passed through the refrigerant outlet side of the reheater 5 passes through the refrigerant inlet side of the reheater 3.
  • a portion of the indoor heat exchanger 5 where the refrigerant temperature is relatively low is opposed to a portion of the reheater 3 where the refrigerant temperature is relatively high, and the refrigerant temperature of the indoor heat exchanger 5 is relatively high.
  • a portion of the reheater 3 where the refrigerant temperature is relatively low are arranged so as to face each other.
  • the indoor heat exchanger 5 and the reheater 3 are both provided so that the refrigerant flows from the top to the bottom.
  • variations in the blowout temperature which is the temperature of the air blown out from the indoor unit 70 into the air-conditioned space, and unevenness in humidity caused by the dispersion in the blowout temperature are reduced. and can be reduced. Therefore, variations in the humidity of the air blown out from the indoor unit 70 into the air-conditioned space can be suppressed, and the state of the indoor air can be stabilized.
  • the air conditioner 100 includes a main circuit 31 in which the compressor 1 , the first on-off valve 2 , the reheater 3 , the first expansion valve 4 , and the evaporator are sequentially connected by the main pipe 21 .
  • the second on-off valve 6, the condenser, and the second expansion valve 9 are sequentially operated by the cooling pipe 22 that connects between the compressor 1 and the first on-off valve 2 and between the first expansion valve 4 and the evaporator.
  • a bypass circuit having a connected cooling circuit 32, a bypass pipe 23 connecting from the discharge side of the compressor 1 to between the reheater 3 and the first expansion valve 4, and a third on-off valve 10 that opens and closes the bypass pipe 23.
  • a refrigerant circuit 30 in which refrigerant circulates and a control device 50 for controlling the refrigerant circuit 30, the reheater 3 and the evaporator are arranged in the air-conditioned space, and the condenser is arranged in the air-conditioned space.
  • the control device 50 controls the first on-off valve 2 and the second on-off valve 6 before switching the operation to a cooling operation that cools the air in the air-conditioned space or a dehumidification operation that dehumidifies the air in the air-conditioned space.
  • the third on-off valve 10 is closed, the first expansion valve 4 is used to control the degree of superheating on the suction side of the compressor 1, and the second expansion valve 9 is used to control the degree of supercooling of the condenser. This is to perform operation switching control.
  • the control device 50 opens the first on-off valve 2 and the second on-off valve 6 and opens the third on-off valve before switching the operation to the cooling operation or the dehumidification operation.
  • this operation switching control the amount of refrigerant is adjusted to an appropriate value, so it is possible to prevent uneven distribution of refrigerant in each heat exchanger before performing cooling operation or dehumidification operation. .
  • control device 50 controls, when the degree of subcooling of the condenser and the degree of superheating of the suction side of the compressor 1 reach preset values during operation switching control. Alternatively, after a preset time has elapsed, the operation is switched to cooling operation or dehumidification operation.
  • the operation can be switched to the cooling operation or the dehumidification operation at an appropriate timing.
  • the control device 50 controls, during the cooling operation, when the degree of subcooling of the condenser is equal to or less than a preset value, and the condensation temperature of the condenser is If the internal liquid temperature is lower than the value at which high-pressure protection is implemented, which is control to lower the frequency of compressor 1 or stop compressor 1, and higher than the evaporation temperature of the evaporator, the condenser is overheated.
  • Refrigerant distribution control is performed to control the first expansion valve 4 so that the degree of cooling becomes a preset value.
  • the air conditioner 100 during the cooling operation, the amount of condensation of the outdoor heat exchanger 7 required during the cooling operation can be ensured, and the necessary and sufficient cooling capacity can be exhibited.
  • the amount of refrigerant when adjusting the amount of refrigerant to an appropriate value, it is possible to discharge the refrigerant from the indoor side using differential pressure, and by discharging the refrigerant from the indoor side, the refrigerant distribution can be adjusted to the outdoor side. High pressure abnormalities do not occur when the amount is increased.
  • the control device 50 controls, during the cooling operation, when the degree of subcooling of the condenser is equal to or less than a preset value, and the condensation temperature of the condenser is If the internal liquid temperature is not lower than the value at which high pressure protection, which is control to lower the frequency of the compressor 1 or stop the compressor 1, is implemented, or if the internal liquid temperature is not higher than the evaporation temperature of the evaporator, the first The on-off valve 2 and the second on-off valve 6 are opened, the third on-off valve 10 is closed, the first expansion valve 4 is used to control the degree of supercooling of the reheater 3, and the second expansion valve 9 is closed. This is used to control the degree of superheating on the suction side of the compressor 1, thereby implementing refrigerant distribution control.
  • the air conditioner 100 even in a situation where it is determined that it is difficult to discharge the refrigerant from the indoor side due to the pressure difference during the cooling operation, the intended refrigerant is forcibly circulated in the intermediate operation.
  • the state can be changed to the refrigeration cycle and the ideal cooling capacity can be demonstrated.
  • the control device 50 controls, during the cooling operation, when the degree of subcooling of the condenser is larger than a preset value, the condensation temperature of the condenser is When the temperature is higher than the internal liquid temperature, the first on-off valve 2 is opened and the first expansion valve 4 is controlled so that the degree of supercooling of the condenser becomes a preset value. It is.
  • the air conditioner 100 during the cooling operation, the amount of condensation of the outdoor heat exchanger 7 required during the cooling operation can be ensured, and the necessary and sufficient cooling capacity can be exhibited. Further, in adjusting the amount of refrigerant to an appropriate value, the refrigerant can be discharged from the indoor side using a differential pressure.
  • the control device 50 controls, during the cooling operation, when the degree of subcooling of the condenser is larger than a preset value, the condensation temperature of the condenser is If the temperature is not higher than the internal liquid temperature, the first on-off valve 2 and the second on-off valve 6 are opened, the third on-off valve 10 is closed, and the first expansion valve 4 is used to open the suction side of the compressor 1.
  • the refrigerant distribution control is performed by controlling the degree of superheating and controlling the degree of subcooling of the condenser using the second expansion valve 9.
  • the air conditioner 100 even in a situation where it is determined that it is difficult to discharge the refrigerant from the indoor side due to the pressure difference during the cooling operation, the intended refrigerant is forcibly circulated in the intermediate operation.
  • the state can be changed to the refrigeration cycle and the ideal cooling capacity can be demonstrated.
  • the control device 50 controls the reheater 3 when the degree of subcooling of the reheater 3 is less than or equal to a preset value during the dehumidifying operation. If the condensing temperature is lower than the value at which high pressure protection is implemented, which is control to lower the frequency of the compressor 1 or stop the compressor 1, and the external liquid temperature is higher than the evaporation temperature of the evaporator, Refrigerant distribution control is performed to control the second expansion valve 9 so that the degree of subcooling of the reheater 3 becomes a preset value.
  • the air conditioner 100 during the dehumidifying operation, the reheat amount of the reheater 3 required during the dehumidifying operation can be ensured, and the necessary and sufficient dehumidifying ability can be exhibited.
  • the amount of refrigerant when adjusting the amount of refrigerant to an appropriate value, it is possible to discharge the refrigerant from the outdoor side using differential pressure, and also to adjust the distribution of the refrigerant to the indoor side by discharging the refrigerant from the outdoor side. High pressure abnormalities do not occur when the amount is increased.
  • the control device 50 controls the reheater 3 when the degree of subcooling of the reheater 3 is less than or equal to a preset value during the dehumidifying operation.
  • the condensing temperature is not lower than the value at which high pressure protection is implemented, which is control to lower the frequency of compressor 1 or stop compressor 1, or the external liquid temperature is not higher than the evaporation temperature of the evaporator.
  • the first on-off valve 2 and the second on-off valve 6 are opened, the third on-off valve 10 is closed, and the first expansion valve 4 is used to control the degree of superheat on the suction side of the compressor 1.
  • the second expansion valve 9 is used to control the degree of subcooling of the condenser, thereby implementing refrigerant distribution control.
  • the air conditioner 100 even in a situation where it is determined that it is difficult to discharge the refrigerant from the outdoor side due to the pressure difference during the dehumidification operation, the intended refrigerant is forcibly circulated in the intermediate operation.
  • the state can be changed to the refrigeration cycle and the ideal cooling capacity can be demonstrated.
  • the control device 50 controls the reheater 3 when the degree of subcooling of the reheater 3 is larger than a preset value during dehumidification operation.
  • the second on-off valve 6 is opened and the second expansion valve 9 is controlled so that the degree of subcooling of the reheater 3 becomes a preset value. This is to implement distribution control.
  • the air conditioner 100 during the dehumidification operation, the amount of condensation of the reheater 3 required during the dehumidification operation can be ensured, and the necessary and sufficient cooling capacity can be exhibited. Further, in adjusting the amount of refrigerant to an appropriate value, the refrigerant can be discharged from the outdoor side using a differential pressure.
  • the control device 50 controls the reheater 3 when the degree of subcooling of the reheater 3 is larger than a preset value during dehumidification operation.
  • the first on-off valve 2 and the second on-off valve 6 are opened, the third on-off valve 10 is closed, and the first expansion valve 4 is used to operate the reheater.
  • the second expansion valve 9 controls the degree of supercooling on the suction side of the compressor 1, thereby implementing refrigerant distribution control.
  • the air conditioner 100 even in a situation where it is determined that it is difficult to discharge the refrigerant from the outdoor side due to the pressure difference during the dehumidification operation, the intended refrigerant is forcibly circulated in the intermediate operation.
  • the state can be changed to the refrigeration cycle and the ideal cooling capacity can be demonstrated.
  • the air conditioner 100 includes an indoor refrigerant leak sensor 41 that is provided in an air-conditioned space and detects refrigerant leakage, and the control device 50 detects refrigerant leakage at the indoor refrigerant leakage sensor 41. When detected, the first on-off valve 2 is closed.
  • control device 50 brings the second expansion valve 9 into a fully closed state when a refrigerant leak is detected by the indoor refrigerant leak sensor 41.
  • the air conditioner 100 it is possible to prevent the refrigerant from flowing into the main circuit 31 provided indoors, and the refrigerant can be stored in the outdoor heat exchanger 7 and the liquid reservoir 8. It is possible to suppress leakage of refrigerant to.
  • the air conditioner 100 includes an outdoor refrigerant leak sensor 42 that is provided outside the air-conditioned space and detects refrigerant leakage, and the control device 50 controls the refrigerant leakage sensor 42 in the outdoor refrigerant leakage sensor 42. When leakage is detected, the second on-off valve 6 is closed.
  • control device 50 brings the first expansion valve 4 into a fully closed state when refrigerant leakage is detected by the outdoor refrigerant leakage sensor 42.
  • the air conditioner 100 it is possible to block the flow of refrigerant to the outdoors, and the outdoor refrigerant can be stored in the indoor heat exchanger 5, thereby preventing leakage of the refrigerant outdoors. Can be suppressed.
  • a non-azeotropic mixed refrigerant is used as the refrigerant that circulates in the refrigerant circuit 30.
  • the evaporator and the reheater 3 are such that air that has passed through the refrigerant inlet side of the evaporator passes through the refrigerant outlet side of the reheater 3,
  • the air passing through the refrigerant outlet side of the evaporator is arranged so as to pass through the refrigerant inlet side of the reheater 3.
  • both the evaporator and the reheater 3 are provided so that the refrigerant flows from the top to the bottom.
  • the temperature at the inlet side of the refrigerant in the indoor heat exchanger 5 is lower than that at the outlet of the refrigerant. lower than the temperature on the side. Further, in the reheater 3, the temperature on the refrigerant inlet side is higher than the temperature on the refrigerant outlet side.
  • the air that has passed through the refrigerant inlet side of the indoor heat exchanger 5 passes through the refrigerant outlet side of the reheater 3, and the indoor heat exchanger 5 and the reheater 3
  • the reheater 3 is arranged so that the air that has passed through the refrigerant outlet side of the reheater 5 passes through the refrigerant inlet side of the reheater 3.
  • a portion of the indoor heat exchanger 5 where the refrigerant temperature is relatively low is opposed to a portion of the reheater 3 where the refrigerant temperature is relatively high, and the refrigerant temperature of the indoor heat exchanger 5 is relatively high.
  • a portion of the reheater 3 where the refrigerant temperature is relatively low are arranged so as to face each other.
  • the indoor heat exchanger 5 and the reheater 3 are both provided so that the refrigerant flows from the top to the bottom.
  • variations in the blowout temperature which is the temperature of the air blown out from the indoor unit 70 into the air-conditioned space, and unevenness in humidity caused by the dispersion in the blowout temperature are reduced. and can be reduced. Therefore, variations in the humidity of the air blown out from the indoor unit 70 into the air-conditioned space can be suppressed, and the state of the indoor air can be stabilized.
  • Embodiment 2 will be described below, but the description of parts that overlap with Embodiment 1 will be omitted, and the same or corresponding parts as in Embodiment 1 will be given the same reference numerals.
  • FIG. 11 is an overall configuration diagram of an air conditioner 200 according to the second embodiment.
  • the air conditioner 200 according to the second embodiment is different from the air conditioner 100 according to the first embodiment in a part of the configuration of the refrigerant circuit 30.
  • the refrigerant circuit 30 according to the second embodiment is different from the first embodiment in that the liquid reservoir 8 is not provided and an accumulator 18 is provided instead.
  • the other configurations are the same as in the first embodiment.
  • the air conditioner 200 can store refrigerant in the accumulator 18 provided between the compressor 1 and the indoor heat exchanger 5 during a transient liquid back-up, and can further reduce the risk of damage to the compressor 1. do.
  • the reheater 3 and the outdoor heat exchanger 7 are controlled by implementing the operation switching control described in the first embodiment, the refrigerant distribution control during the cooling operation, or the refrigerant distribution during the dehumidifying operation. It is possible to operate with the optimum amount of refrigerant in each case. Therefore, the capacity of the air conditioner 200 can be maintained appropriately, and surplus refrigerant generated transiently can be stored in the inexpensive accumulator 18. In other words, even if the refrigerant returns to the compressor 1 due to liquid backing, the action of the accumulator 18 can suppress liquid compression in the compressor 1, providing a highly reliable air conditioner 200. can do.
  • the degree of subcooling of the reheater 3 is determined from the high pressure obtained from the pressure sensor 62 and the reheater outlet temperature obtained from the refrigerant temperature sensor 67.
  • the degree of supercooling of the reheater 3 can be determined by converting the high pressure into saturation to determine the condensation temperature, and subtracting the reheater outlet temperature from the condensation temperature.
  • the degree of subcooling of the outdoor heat exchanger 7 is determined from the high pressure obtained from the pressure sensor 64 and the outdoor heat exchanger outlet temperature obtained from the refrigerant temperature sensor 69.
  • the degree of supercooling at the outlet of the outdoor heat exchanger can be determined by converting the high pressure into saturation to determine the condensation temperature, and subtracting the outdoor heat exchanger outlet temperature from the condensation temperature. Note that when determining the degree of subcooling of the outdoor heat exchanger 7, the pressure acquired from the pressure sensor 62 may be used as the high pressure.
  • each on-off valve and each expansion valve when refrigerant leaks indoors or outdoors is the same as in the first embodiment described above.
  • the air conditioner 200 of Embodiment 2 can also suppress a decrease in dehumidification ability and efficiently perform dehumidification operation.
  • the refrigerant circuit 30 including the liquid reservoir 8 it is necessary to operate the second expansion valve 9 to ensure the degree of superheating in order to protect against liquid back. . Therefore, in order to store the surplus refrigerant, an expensive high-pressure container such as the liquid reservoir 8 with a large capacity is required.
  • the air conditioner 200 even if the refrigerant returns toward the compressor 1 due to the liquid back, the action of the accumulator 18 will cause the liquid in the compressor 1 to flow even if there is no liquid reservoir. Since compression can be suppressed, the reliability of the air conditioner 200 can be improved.
  • the air conditioner 200 then uses the accumulator 18 to separate the non-azeotropic mixed refrigerant into gas and liquid, stores the high boiling point refrigerant in the accumulator 18, and uses the low boiling point refrigerant during defrosting operation. Increase heat capacity.
  • the air conditioner 200 stores the high boiling point refrigerant included in the non-azeotropic mixed refrigerant in the accumulator 18 and transfers the low boiling point refrigerant included in the non-azeotropic refrigerant mixture to the refrigerant circuit 30. Circulate. Therefore, the defrosting time can be shortened.
  • Other effects and the like are the same as in the first embodiment.
  • each on-off valve and each expansion valve at the time of refrigerant leak illustrated in FIG. 10 can also be applied to the configuration of Embodiment 2.
  • the air conditioners 100, 200 may not have the function of performing cooling operation and defrosting operation, and in this case, the first on-off valve 2 is not required. Therefore, in the main circuit 31, the compressor 1, the reheater 3, the first expansion valve 4, and the indoor heat exchanger 5 are sequentially connected by the main pipe 21. Further, in the first embodiment, an example in which the liquid reservoir 8 is provided in the refrigerant circuit 30 is shown, but the refrigerant circuit 30 according to the first embodiment does not need to have the liquid reservoir 8. good.
  • the main circuit 31 is arranged in an air-conditioned space, but the main circuit 31 is not limited to this. 5 may be placed in an air-conditioned space.
  • the refrigerant circuit 30 according to the first embodiment does not need to include the bypass circuit 33. However, unless the bypass circuit 33 is provided in the refrigerant circuit 30, the defrosting operation in the flow path as in the first embodiment is not possible.
  • FIG. 1 and FIG. 11 show an example in which the indoor refrigerant leak sensor 41 is provided inside the indoor unit 70, the indoor refrigerant leak sensor 41 is provided inside the air-conditioned space, and is not limited to this. It may be provided outside of 70.
  • FIGS. 1 and 11 show an example in which the outdoor refrigerant leak sensor 42 is provided inside the outdoor unit 80, the outdoor refrigerant leak sensor 42 is not limited to this. It may be provided externally.
  • FIGS. 1 and 11 show an example in which the control device 50 is provided inside the indoor unit 70
  • the control device 50 is not limited to this, and may be provided inside the outdoor unit 80.
  • the outdoor unit 80 is provided with an outdoor control device that controls the operation of each actuator of the outdoor unit 80 such as the outdoor blower 12, and the control device 50 and the outdoor control device cooperate to control the air conditioners 100 and 200. You may.
  • the refrigerant circuit 30 includes the accumulator 18 provided between the compressor 1 and the evaporator.
  • the air conditioner 200 even if the refrigerant returns toward the compressor 1 due to the liquid back, the action of the accumulator 18 can suppress liquid compression in the compressor 1. Therefore, the reliability of the air conditioner 200 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioning device comprises: a refrigerant circuit in which a refrigerant circulates, and a control device that controls the refrigerant circuit. The refrigerant circuit includes: a main circuit in which a compressor, a first open/close valve, a reheater, a first expansion valve, and an evaporator are sequentially linked by main piping; a cooling circuit in which a second open/close valve, a condenser, and a second expansion valve are sequentially linked by cooling piping connecting an area spanning from between the compressor and the first open/close circuit to between the first expansion valve and the evaporator; and a bypass circuit including bypass piping bypass piping connecting an area spanning from a discharge side of the compressor to between the reheater and the first expansion valve, and a third open/close valve that opens and closes the bypass piping. The reheater and the evaporator are disposed in an air conditioning space, and the condenser is disposed outside of the air conditioning space. The control device, before switching operation to a cooling operation for cooling the air in the air conditioning space or to a dehumidifying operation for dehumidifying the air in the air conditioning space, performs operation switching control in which the first open/close valve and the second open/close valve are set to an open state, the third open/close valve is set to a closed state, and the first expansion valve is used to control overheating of an intake side of the compressor and the second expansion valve is used to control overcooling of the condenser.

Description

空気調和装置air conditioner
 本開示は、室内に設けられた再熱器及び蒸発器と室外に設けられた凝縮器とを有する空気調和装置に関するものである。 The present disclosure relates to an air conditioner having a reheater and an evaporator provided indoors and a condenser provided outdoors.
 従来から、室内に設けられた再熱器及び蒸発器と室外に設けられた凝縮器とを有する空気調和装置が知られている(例えば、特許文献1参照)。特許文献1の空気調和装置は、再熱器に流す冷媒の量と、凝縮器に流す冷媒の量とを調整することにより、蒸発器の除湿能力を制御するようになっている。 BACKGROUND ART Conventionally, there has been known an air conditioner having a reheater and an evaporator provided indoors and a condenser provided outdoors (see, for example, Patent Document 1). The air conditioner of Patent Document 1 controls the dehumidifying ability of the evaporator by adjusting the amount of refrigerant flowing into the reheater and the amount of refrigerant flowing into the condenser.
特開2011-133171号公報Japanese Patent Application Publication No. 2011-133171
 しかしながら、特許文献1の空気調和装置は、外気温度の差異により、各熱交換器に分布する冷媒に偏りが発生し、冷却運転または除湿運転を行うとき、液バックが発生する可能性があり、また、過熱運転となる可能性がある。そして、液バックが発生すると、圧縮機での液圧縮が発生し、圧縮機が故障する可能性があるという課題があった。また、過熱運転となった場合、圧縮機、再熱器、膨張弁、及び蒸発器の間を循環する冷媒の量が不足するため、能力が低下し、吐出温度が上昇して運転を効率よく行うことができないという課題があった。 However, in the air conditioner of Patent Document 1, the refrigerant distributed in each heat exchanger may be uneven due to the difference in outside air temperature, and liquid back may occur when performing cooling operation or dehumidification operation. Also, there is a possibility of overheating operation. When liquid back occurs, there is a problem that liquid compression occurs in the compressor, which may cause the compressor to malfunction. In addition, when overheating occurs, the amount of refrigerant circulating between the compressor, reheater, expansion valve, and evaporator is insufficient, resulting in a decrease in capacity and an increase in discharge temperature, making operation more efficient. The problem was that it could not be done.
 本開示は、以上のような課題を解決するためになされたもので、冷却運転または除湿運転を行う前に各熱交換器に分布する冷媒に偏りが発生するのを抑制することができる空気調和装置を提供することを目的としている。 The present disclosure has been made to solve the above-mentioned problems, and provides an air conditioner that can suppress the occurrence of imbalance in the refrigerant distributed in each heat exchanger before performing a cooling operation or a dehumidification operation. The purpose is to provide equipment.
 本開示に係る空気調和装置は、主配管によって圧縮機、第1開閉弁、再熱器、第1膨張弁、及び蒸発器が順次連結された主回路と、前記圧縮機と前記第1開閉弁との間から前記第1膨張弁と前記蒸発器との間までをつなぐ冷却配管によって第2開閉弁、凝縮器、及び第2膨張弁が順次連結された冷却回路と、前記圧縮機の吐出側から前記再熱器と前記第1膨張弁との間までをつなぐバイパス配管及び前記バイパス配管を開閉する第3開閉弁を有するバイパス回路と、を含み、冷媒が循環する冷媒回路と、前記冷媒回路を制御する制御装置と、備え、前記再熱器及び前記蒸発器は、空調空間に配置され、前記凝縮器は、前記空調空間の外部に配置され、前記制御装置は、運転を前記空調空間の空気の冷却を行う冷却運転または前記空調空間の空気の除湿を行う除湿運転に切り替える前に、前記第1開閉弁及び前記第2開閉弁を開状態にし、前記第3開閉弁を閉状態にし、前記第1膨張弁を用いて前記圧縮機の吸入側の過熱度の制御を行い、前記第2膨張弁を用いて前記凝縮器の過冷却度の制御を行う、運転切替え制御を実施するものである。 The air conditioner according to the present disclosure includes a main circuit in which a compressor, a first on-off valve, a reheater, a first expansion valve, and an evaporator are sequentially connected through main piping, and the compressor and the first on-off valve. a cooling circuit in which a second on-off valve, a condenser, and a second expansion valve are sequentially connected by a cooling pipe connecting between the first expansion valve and the evaporator; and a discharge side of the compressor. a refrigerant circuit in which a refrigerant circulates, the refrigerant circuit comprising: a bypass pipe connecting the reheater to the first expansion valve; and a third on-off valve that opens and closes the bypass pipe. the reheater and the evaporator are arranged in an air-conditioned space, the condenser is arranged outside the air-conditioned space, and the control equipment controls the operation of the air-conditioned space. Before switching to a cooling operation that cools the air or a dehumidification operation that dehumidifies the air in the air-conditioned space, the first on-off valve and the second on-off valve are opened, and the third on-off valve is closed, The first expansion valve is used to control the degree of superheating on the suction side of the compressor, and the second expansion valve is used to control the degree of supercooling of the condenser. be.
 本開示に係る空気調和装置によれば、制御装置は、運転を冷却運転または除湿運転に切り替える前に、第1開閉弁及び前記第2開閉弁を開状態にし、第3開閉弁を閉状態にし、第1膨張弁を用いて圧縮機の吸入側の過熱度の制御を行い、第2膨張弁を用いて凝縮器の過冷却度の制御を行う、運転切替え制御を実施するものである。この運転切替え制御を実施することにより、冷媒量が適正値に調整されるため、冷却運転または除湿運転を行う前に各熱交換器に分布する冷媒に偏りが発生するのを抑制することができる。 According to the air conditioner according to the present disclosure, the control device opens the first on-off valve and the second on-off valve and closes the third on-off valve before switching the operation to the cooling operation or the dehumidification operation. The first expansion valve is used to control the degree of superheating on the suction side of the compressor, and the second expansion valve is used to control the degree of subcooling of the condenser. By implementing this operation switching control, the amount of refrigerant is adjusted to an appropriate value, so it is possible to prevent uneven distribution of refrigerant in each heat exchanger before performing cooling operation or dehumidification operation. .
実施の形態1に係る空気調和装置の全体的な構成図である。1 is an overall configuration diagram of an air conditioner according to Embodiment 1. FIG. 図1に示す制御装置の機能的構成を概略的に示すブロック図である。2 is a block diagram schematically showing the functional configuration of the control device shown in FIG. 1. FIG. 図1に示す空気調和装置の除湿運転時における冷媒回路の状態を示す説明図である。FIG. 2 is an explanatory diagram showing the state of a refrigerant circuit during dehumidification operation of the air conditioner shown in FIG. 1. FIG. 図1に示す空気調和装置の中間運転時における冷媒回路の状態を示す説明図である。2 is an explanatory diagram showing the state of a refrigerant circuit during intermediate operation of the air conditioner shown in FIG. 1. FIG. 図1に示す空気調和装置の冷却運転時における冷媒回路の状態を示す説明図である。2 is an explanatory diagram showing the state of a refrigerant circuit during cooling operation of the air conditioner shown in FIG. 1. FIG. 図1に示す空気調和装置の除霜運転時における冷媒回路の状態を示す説明図である。2 is an explanatory diagram showing the state of a refrigerant circuit during defrosting operation of the air conditioner shown in FIG. 1. FIG. 図1に示す空気調和装置の運転切替え制御を例示したフローチャートである。2 is a flowchart illustrating operation switching control of the air conditioner shown in FIG. 1. FIG. 図1に示す空気調和装置の冷却運転時の冷媒分布制御を例示したフローチャートである。2 is a flowchart illustrating refrigerant distribution control during cooling operation of the air conditioner shown in FIG. 1. FIG. 図1に示す空気調和装置の除湿運転時の冷媒分布制御を例示したフローチャートである。2 is a flowchart illustrating refrigerant distribution control during dehumidification operation of the air conditioner shown in FIG. 1. FIG. 実施の形態1に係る空気調和装置の冷媒漏洩時の各開閉弁及び各膨張弁の動作内容の一例を示す図である。FIG. 3 is a diagram showing an example of the operation contents of each on-off valve and each expansion valve when a refrigerant leaks in the air conditioner according to the first embodiment. 実施の形態2に係る空気調和装置の全体的な構成図である。FIG. 2 is an overall configuration diagram of an air conditioner according to a second embodiment.
 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present disclosure will be described based on the drawings. Note that the present disclosure is not limited to the embodiments described below. Further, in the following drawings, the size relationship of each component may differ from the actual one.
 実施の形態1.
 図1は、実施の形態1に係る空気調和装置100の全体的な構成図である。実施の形態1に係る空気調和装置100は、部屋などの空調空間における空気の温度及び湿度を調整するものである。空気調和装置100は、図1に示すように、空調空間内に設置される室内機70と、空調空間の外部に設置される室外機80と、を有している。室内機70と室外機80とは、冷媒配管20によって接続されている。なお、以降では、空調空間内のことを室内とも称し、空調空間の外部のことを室外とも称する。
Embodiment 1.
FIG. 1 is an overall configuration diagram of an air conditioner 100 according to the first embodiment. Air conditioner 100 according to Embodiment 1 adjusts the temperature and humidity of air in an air-conditioned space such as a room. As shown in FIG. 1, the air conditioner 100 includes an indoor unit 70 installed within the air-conditioned space and an outdoor unit 80 installed outside the air-conditioned space. The indoor unit 70 and the outdoor unit 80 are connected by a refrigerant pipe 20. Note that hereinafter, the inside of the air-conditioned space will also be referred to as indoors, and the outside of the air-conditioned space will also be referred to as outdoors.
 室内機70は、例えば、空調空間の床に置かれる床置型除湿機、または天井に設けられた天埋型除湿機もしくは天吊型除湿機などである。室内機70には、圧縮機1、第1開閉弁2、再熱器3、第1膨張弁4、室内熱交換器5、第2開閉弁6、第2膨張弁9、及び第3開閉弁10が収容されている。室外機80は、屋外または機械室などに設置されるものである。室外機80には、室外熱交換器7及び液溜め8が収容されている。すなわち、空気調和装置100は、圧縮機1、第1開閉弁2、再熱器3、第1膨張弁4、室内熱交換器5、第2開閉弁6、室外熱交換器7、液溜め8、第2膨張弁9、及び第3開閉弁10が冷媒配管20により接続され、冷媒が循環する冷媒回路30を有している。なお、以降では、室内熱交換器5は蒸発器とも称し、室外熱交換器7は凝縮器とも称する。 The indoor unit 70 is, for example, a floor-standing dehumidifier placed on the floor of an air-conditioned space, a ceiling-mounted dehumidifier or a ceiling-mounted dehumidifier installed on the ceiling, or the like. The indoor unit 70 includes a compressor 1, a first on-off valve 2, a reheater 3, a first expansion valve 4, an indoor heat exchanger 5, a second on-off valve 6, a second expansion valve 9, and a third on-off valve. 10 are accommodated. The outdoor unit 80 is installed outdoors or in a machine room. The outdoor unit 80 houses an outdoor heat exchanger 7 and a liquid reservoir 8 . That is, the air conditioner 100 includes a compressor 1, a first on-off valve 2, a reheater 3, a first expansion valve 4, an indoor heat exchanger 5, a second on-off valve 6, an outdoor heat exchanger 7, and a liquid reservoir 8. , the second expansion valve 9, and the third on-off valve 10 are connected by a refrigerant pipe 20, and has a refrigerant circuit 30 in which refrigerant circulates. Note that, hereinafter, the indoor heat exchanger 5 will also be referred to as an evaporator, and the outdoor heat exchanger 7 will also be referred to as a condenser.
 冷媒回路30を循環させる冷媒としては、単一混合冷媒、擬似単一混合冷媒、または非共沸混合冷媒などを用いることができる。非共沸混合冷媒としては、例えば、R32、R125、R134a、r1234yf、及びCOの混合冷媒を用いることができる。この非共沸混合冷媒は、R32の組成が49wt%~55wt%であり、R125の組成が16wt%~22wt%であり、R134aの組成が7wt%~13wt%であり、R1234yfの組成が6wt%~12wt%であり、COの組成が7wt%~13wt%であり、合計が100wt%となる組成比をもつ。また、非共沸混合冷媒としては、上記以外の組成をもつ非共沸混合冷媒であるR448A、R449A、またはR407Fなどを採用してもよい。 As the refrigerant to be circulated through the refrigerant circuit 30, a single mixed refrigerant, a pseudo-single refrigerant mixture, a non-azeotropic mixed refrigerant, or the like can be used. As the non-azeotropic mixed refrigerant, for example, a mixed refrigerant of R32, R125, R134a, r1234yf, and CO 2 can be used. This non-azeotropic mixed refrigerant has a composition of R32 of 49 wt% to 55 wt%, a composition of R125 of 16 wt% to 22 wt%, a composition of R134a of 7 wt% to 13 wt%, and a composition of R1234yf of 6 wt%. ~12 wt%, and the CO 2 composition is 7 wt% to 13 wt%, with a total composition ratio of 100 wt%. Further, as the non-azeotropic mixed refrigerant, R448A, R449A, or R407F, which are non-azeotropic mixed refrigerants having compositions other than those mentioned above, may be employed.
 冷媒配管20は、主配管21と、冷却配管22と、バイパス配管23と、により構成されている。主配管21は、圧縮機1と第1開閉弁2と再熱器3と第1膨張弁4と室内熱交換器5とを順次環状に連結する配管である。つまり、冷媒回路30は、圧縮機1、第1開閉弁2、再熱器3、第1膨張弁4、及び室内熱交換器5が主配管21により接続されて形成された主回路31を含む。 The refrigerant pipe 20 is composed of a main pipe 21, a cooling pipe 22, and a bypass pipe 23. The main pipe 21 is a pipe that sequentially connects the compressor 1, the first on-off valve 2, the reheater 3, the first expansion valve 4, and the indoor heat exchanger 5 in an annular manner. That is, the refrigerant circuit 30 includes a main circuit 31 formed by connecting the compressor 1 , the first on-off valve 2 , the reheater 3 , the first expansion valve 4 , and the indoor heat exchanger 5 via the main pipe 21 . .
 冷却配管22は、圧縮機1と再熱器3との間から第1膨張弁4と室内熱交換器5との間までをつなぐ配管である。より具体的に、冷却配管22は、圧縮機1と第1開閉弁2との間の主配管21と、第1膨張弁4と室内熱交換器5との間の主配管21とを接続し、第2開閉弁6と室外熱交換器7と液溜め8と第2膨張弁9とを連結する配管である。つまり、冷媒回路30は、第2開閉弁6、室外熱交換器7、液溜め8、及び第2膨張弁9が冷却配管22により連結された開回路である冷却回路32を含む。ここで、圧縮機1と第1開閉弁2との間の主配管21と、冷却配管22との接続部分を、第1接続部Mという。また、第1膨張弁4と室内熱交換器5との間の主配管21と、冷却配管22との接続部分を、第2接続部Nという。 The cooling pipe 22 is a pipe that connects between the compressor 1 and the reheater 3 and between the first expansion valve 4 and the indoor heat exchanger 5. More specifically, the cooling pipe 22 connects the main pipe 21 between the compressor 1 and the first on-off valve 2 and the main pipe 21 between the first expansion valve 4 and the indoor heat exchanger 5. , is a pipe connecting the second on-off valve 6, the outdoor heat exchanger 7, the liquid reservoir 8, and the second expansion valve 9. That is, the refrigerant circuit 30 includes a cooling circuit 32 that is an open circuit in which the second on-off valve 6 , the outdoor heat exchanger 7 , the liquid reservoir 8 , and the second expansion valve 9 are connected by the cooling pipe 22 . Here, the connection part between the main pipe 21 and the cooling pipe 22 between the compressor 1 and the first on-off valve 2 is referred to as a first connection part M. Moreover, the connection part between the main pipe 21 and the cooling pipe 22 between the first expansion valve 4 and the indoor heat exchanger 5 is referred to as a second connection part N.
 バイパス配管23は、圧縮機1の吐出側から再熱器3と第1膨張弁4との間までをつなぐ配管である。本実施の形態1において、圧縮機1の吐出側とは、圧縮機1と第1接続部Mとの間のことである。より具体的に、バイパス配管23は、圧縮機1と第1接続部Mとの間の主配管21と、再熱器3と第1膨張弁4との間の主配管21とを接続する配管であり、バイパス配管23を開閉する第3開閉弁10が設けられている。つまり、冷媒回路30は、バイパス配管23に第3開閉弁10が設けられた開回路であるバイパス回路33を含む。ここで、図1に示すように、再熱器3及び第1膨張弁4と、室外熱交換器7及び第2膨張弁9とは、並列に接続されている。 The bypass pipe 23 is a pipe that connects the discharge side of the compressor 1 to between the reheater 3 and the first expansion valve 4. In the first embodiment, the discharge side of the compressor 1 is between the compressor 1 and the first connecting portion M. More specifically, the bypass pipe 23 is a pipe that connects the main pipe 21 between the compressor 1 and the first connection part M and the main pipe 21 between the reheater 3 and the first expansion valve 4. A third on-off valve 10 that opens and closes the bypass pipe 23 is provided. That is, the refrigerant circuit 30 includes a bypass circuit 33 that is an open circuit in which the third on-off valve 10 is provided in the bypass pipe 23. Here, as shown in FIG. 1, the reheater 3 and the first expansion valve 4, and the outdoor heat exchanger 7 and the second expansion valve 9 are connected in parallel.
 圧縮機1は、冷媒を吸入して圧縮し、高温高圧のガス状態にして吐出する。圧縮機1は、例えば、インバータ回路等によって回転数が制御され、冷媒の吐出量の調整が可能な圧縮機である。もっとも、圧縮機1は、一定の回転数で動作する一定速の圧縮機であってもよい。 The compressor 1 takes in refrigerant, compresses it, turns it into a high-temperature, high-pressure gas state, and discharges it. The compressor 1 is a compressor whose rotational speed is controlled by, for example, an inverter circuit, and the amount of refrigerant discharged can be adjusted. However, the compressor 1 may be a constant speed compressor that operates at a constant rotation speed.
 再熱器3、室内熱交換器5、及び室外熱交換器7は、例えば、冷媒が流れる配管と、該配管に取り付けられたフィンとにより形成されたフィンアンドチューブ型熱交換器である。再熱器3は、圧縮機1で圧縮された冷媒と空気との間で熱交換させることにより、冷媒を凝縮させる。空気調和装置100では、室内熱交換器5と再熱器3とが共通する風路上に設けられている。そして、同じ風路上で、除湿機能を有する室内熱交換器5が風上側、その風下側に加熱機能を有する再熱器3が配置され、室内機70から空調空間に吹き出される空気の温度である吹出し温度を調整した運転が行われる。室内熱交換器5は、冷媒を蒸発させる蒸発器(冷却器)として機能する空気熱交換器である。つまり、室内熱交換器5は、第1膨張弁4及び第2膨張弁9のうちの少なくとも一方で膨張された冷媒と空気との間で熱交換させることにより、冷媒を蒸発させる。室外熱交換器7は、冷媒を凝縮させる凝縮器として機能する空気熱交換器である。つまり、室外熱交換器7は、圧縮機1で圧縮された冷媒と空気との間で熱交換させることにより、冷媒を凝縮させる。 The reheater 3, the indoor heat exchanger 5, and the outdoor heat exchanger 7 are, for example, fin-and-tube heat exchangers formed by pipes through which a refrigerant flows and fins attached to the pipes. The reheater 3 condenses the refrigerant by exchanging heat between the refrigerant compressed by the compressor 1 and air. In the air conditioner 100, the indoor heat exchanger 5 and the reheater 3 are provided on a common wind path. On the same wind path, an indoor heat exchanger 5 with a dehumidifying function is placed on the windward side, and a reheater 3 with a heating function is placed on the leeward side of the indoor heat exchanger 5, and the temperature of the air blown from the indoor unit 70 into the air-conditioned space is adjusted. An operation is performed with a certain blowout temperature adjusted. The indoor heat exchanger 5 is an air heat exchanger that functions as an evaporator (cooler) that evaporates refrigerant. That is, the indoor heat exchanger 5 evaporates the refrigerant by exchanging heat between the refrigerant expanded by at least one of the first expansion valve 4 and the second expansion valve 9 and air. The outdoor heat exchanger 7 is an air heat exchanger that functions as a condenser that condenses refrigerant. That is, the outdoor heat exchanger 7 condenses the refrigerant by exchanging heat between the refrigerant compressed by the compressor 1 and air.
 第1膨張弁4は、例えば電子膨張弁からなり、再熱器3の下流に配置されている。第1膨張弁4は、再熱器3で凝縮された冷媒を膨張させる。第2膨張弁9は、例えば電子膨張弁からなり、室外熱交換器7の下流に配置されている。第2膨張弁9は、室外熱交換器7で凝縮された冷媒を膨張させる。 The first expansion valve 4 is, for example, an electronic expansion valve, and is arranged downstream of the reheater 3. The first expansion valve 4 expands the refrigerant condensed in the reheater 3. The second expansion valve 9 is, for example, an electronic expansion valve, and is arranged downstream of the outdoor heat exchanger 7. The second expansion valve 9 expands the refrigerant condensed in the outdoor heat exchanger 7.
 第1開閉弁2、第2開閉弁6、及び第3開閉弁10は、例えば、開状態と閉状態とを有する電磁弁であり、開状態において冷媒を通過させる。第1開閉弁2は、閉状態のとき、第1接続部Mを経由して再熱器3に流れようとする冷媒を遮断する。第2開閉弁6は、閉状態のとき、第1接続部Mを経由して室外熱交換器7に流れようとする冷媒を遮断する。第3開閉弁10は、閉状態のとき、バイパス配管23に流れようとする冷媒を遮断する。液溜め8は、余剰冷媒を貯留する部材である。 The first on-off valve 2, the second on-off valve 6, and the third on-off valve 10 are, for example, electromagnetic valves that have an open state and a closed state, and allow refrigerant to pass through in the open state. When the first on-off valve 2 is in the closed state, it cuts off the refrigerant that is about to flow into the reheater 3 via the first connection part M. When the second on-off valve 6 is in the closed state, it cuts off the refrigerant that is about to flow into the outdoor heat exchanger 7 via the first connection part M. The third on-off valve 10 cuts off refrigerant flowing into the bypass pipe 23 when in the closed state. The liquid reservoir 8 is a member that stores surplus refrigerant.
 また、室内機70には、室内熱交換器5及び再熱器3に風を送る室内送風機11が設けられている。室外機80には、室外熱交換器7に付設され、室外熱交換器7に風を送る室外送風機12が設けられている。本実施の形態1において、室内送風機11および室外送風機12は、例えばインバータ回路等によって回転数を制御され、送風量の調整が可能な送風機である。 Further, the indoor unit 70 is provided with an indoor blower 11 that sends air to the indoor heat exchanger 5 and the reheater 3. The outdoor unit 80 is provided with an outdoor blower 12 that is attached to the outdoor heat exchanger 7 and sends air to the outdoor heat exchanger 7 . In the first embodiment, the indoor blower 11 and the outdoor blower 12 are blowers whose rotational speed is controlled by, for example, an inverter circuit, and whose air flow rate can be adjusted.
 さらに、室内機70には、室内冷媒漏洩センサ41と、制御装置50と、圧力センサ61~63と、冷媒温度センサ65~68と、空気温度センサ91と、が設けられている。室外機80には、室外冷媒漏洩センサ42と、圧力センサ64と、冷媒温度センサ69と、空気温度センサ92と、が設けられている。 Furthermore, the indoor unit 70 is provided with an indoor refrigerant leak sensor 41, a control device 50, pressure sensors 61 to 63, refrigerant temperature sensors 65 to 68, and an air temperature sensor 91. The outdoor unit 80 is provided with an outdoor refrigerant leak sensor 42, a pressure sensor 64, a refrigerant temperature sensor 69, and an air temperature sensor 92.
 圧力センサ61は、圧縮機1の吸入側に設けられ、圧縮機1によって吸入される冷媒の圧力である低圧圧力を計測する。圧力センサ62は、圧縮機1の吐出側に設けられ、圧縮機1から吐出される冷媒の圧力である高圧圧力を計測する。圧力センサ63は、再熱器3の出口側、すなわち再熱器3の出口または出口近傍に設けられ、再熱器3から流出する冷媒の圧力である再熱器出口圧力を計測する。圧力センサ64は、室外熱交換器7の出口側、すなわち室外熱交換器7の出口または出口近傍に設けられ、室外熱交換器7から流出する冷媒の圧力である凝縮器出口圧力を計測する。 The pressure sensor 61 is provided on the suction side of the compressor 1 and measures low pressure, which is the pressure of the refrigerant sucked by the compressor 1. The pressure sensor 62 is provided on the discharge side of the compressor 1 and measures high pressure, which is the pressure of the refrigerant discharged from the compressor 1. The pressure sensor 63 is provided on the outlet side of the reheater 3, that is, at or near the outlet of the reheater 3, and measures the reheater outlet pressure, which is the pressure of the refrigerant flowing out from the reheater 3. The pressure sensor 64 is provided on the outlet side of the outdoor heat exchanger 7, that is, at or near the outlet of the outdoor heat exchanger 7, and measures the condenser outlet pressure, which is the pressure of the refrigerant flowing out from the outdoor heat exchanger 7.
 冷媒温度センサ65~69は、例えばサーミスタにより構成される。冷媒温度センサ65は、圧縮機1の吸入側に設けられ、圧縮機1に吸入される冷媒の温度である吸入温度を計測する。冷媒温度センサ66は、圧縮機1の吐出側に設けられ、圧縮機1から吐出される冷媒の温度である吐出温度を計測する。冷媒温度センサ67は、再熱器3の出口側に設けられ、再熱器3から流出する冷媒の温度である再熱器出口温度を計測する。冷媒温度センサ68は、室内熱交換器5の出口側に設けられ、室内熱交換器5から流出する冷媒の温度である蒸発器出口温度を計測する。冷媒温度センサ69は、室外熱交換器7の出口側に設けられ、室外熱交換器7から流出する冷媒の温度である凝縮器出口温度を計測する。 The refrigerant temperature sensors 65 to 69 are composed of, for example, thermistors. The refrigerant temperature sensor 65 is provided on the suction side of the compressor 1 and measures the suction temperature, which is the temperature of the refrigerant sucked into the compressor 1. The refrigerant temperature sensor 66 is provided on the discharge side of the compressor 1 and measures the discharge temperature, which is the temperature of the refrigerant discharged from the compressor 1. The refrigerant temperature sensor 67 is provided on the exit side of the reheater 3 and measures the reheater outlet temperature, which is the temperature of the refrigerant flowing out from the reheater 3. The refrigerant temperature sensor 68 is provided on the exit side of the indoor heat exchanger 5 and measures the evaporator exit temperature, which is the temperature of the refrigerant flowing out from the indoor heat exchanger 5. The refrigerant temperature sensor 69 is provided on the outlet side of the outdoor heat exchanger 7 and measures the condenser outlet temperature, which is the temperature of the refrigerant flowing out from the outdoor heat exchanger 7.
 空気温度センサ91及び92は、例えばサーミスタにより構成される。空気温度センサ91は、室内機70の吸込口などに設けられ、空調空間の温度を室内温度として計測する。空気温度センサ92は、室外機80に設けられ、屋外または機械室などの温度を外気温度として計測する。 The air temperature sensors 91 and 92 are composed of, for example, thermistors. The air temperature sensor 91 is provided at the suction port of the indoor unit 70, and measures the temperature of the air-conditioned space as the indoor temperature. The air temperature sensor 92 is provided in the outdoor unit 80 and measures the temperature outdoors or in a machine room as outside air temperature.
 室内冷媒漏洩センサ41は、空調空間内に設けられ、冷媒の漏洩を検知する。室外冷媒漏洩センサ42は、空調空間の外部に設けられ、冷媒の漏洩を検知する。室内冷媒漏洩センサ41及び室外冷媒漏洩センサ42は、冷媒の漏洩を検知したとき、冷媒漏洩の発生を示す漏洩信号を制御装置50へ出力する。各圧力センサは、それぞれ、計測した圧力のデータを制御装置50へ出力する。各温度センサは、それぞれ、計測した温度のデータを制御装置50へ出力する。すなわち、各冷媒漏洩センサ、各圧力センサ、及び各温度センサは、電気的または光学的に制御装置50と接続されている。 The indoor refrigerant leak sensor 41 is provided within the air-conditioned space and detects refrigerant leakage. The outdoor refrigerant leak sensor 42 is provided outside the air-conditioned space and detects refrigerant leakage. When the indoor refrigerant leak sensor 41 and the outdoor refrigerant leak sensor 42 detect refrigerant leak, they output a leak signal indicating the occurrence of refrigerant leak to the control device 50. Each pressure sensor outputs measured pressure data to the control device 50. Each temperature sensor outputs measured temperature data to the control device 50. That is, each refrigerant leak sensor, each pressure sensor, and each temperature sensor are electrically or optically connected to the control device 50.
 また、室内機70には、スピーカ及び発光体のうちの少なくとも1つを含んで構成された異常報知器45が設けられている。発光体としては、LED(発光ダイオード)などを用いることができる。異常報知器45は、制御装置50からの指示に応じて、音、音声、または光などを出力することにより、異常の発生を報知する。 Furthermore, the indoor unit 70 is provided with an abnormality alarm 45 that includes at least one of a speaker and a light emitter. As the light emitter, an LED (light emitting diode) or the like can be used. The abnormality alarm 45 notifies the occurrence of an abnormality by outputting sound, voice, light, or the like in response to an instruction from the control device 50.
 制御装置50は、冷媒回路30を制御するものである。すなわち、制御装置50は、各圧力センサ及び各温度センサの出力を取得して、圧縮機1、第1開閉弁2、第1膨張弁4、第2開閉弁6、第2膨張弁9、及び第3開閉弁10などの各種アクチュエータを制御する。また、制御装置50は、異常が生じたときに異常報知器45に異常発生の旨を報知させる。本実施の形態1に係る制御装置50は、各冷媒漏洩センサにより、冷媒漏洩の異常を検知したとき、異常報知器45に、音、音声、または光などを出力させる。 The control device 50 controls the refrigerant circuit 30. That is, the control device 50 acquires the output of each pressure sensor and each temperature sensor, and controls the compressor 1, the first on-off valve 2, the first expansion valve 4, the second on-off valve 6, the second expansion valve 9, and Controls various actuators such as the third on-off valve 10. Further, when an abnormality occurs, the control device 50 causes the abnormality alarm 45 to notify the occurrence of the abnormality. The control device 50 according to the first embodiment causes the abnormality alarm 45 to output sound, voice, light, etc. when each refrigerant leakage sensor detects an abnormality of refrigerant leakage.
 制御装置50は、例えば、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、を含んで構成される。RAMは、各種データを記憶する揮発性の記憶媒体である。ROMは、後述する各運転モードによる運転制御を制御装置50に実行させるための動作プログラムなどを記憶する不揮発性の記憶媒体である。制御装置50は、ROM内の動作プログラムにしたがって、圧縮機1、第1開閉弁2、第1膨張弁4、第2開閉弁6、第2膨張弁9、及び第3開閉弁10などを適宜制御し、各運転モードによる空調を実施する。すなわち、制御装置50は、CPUなどの演算装置と、こうした演算装置と協働して下記の各種機能を実現させる動作プログラムとによって構成することができる。 The control device 50 is configured to include, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory). RAM is a volatile storage medium that stores various data. The ROM is a non-volatile storage medium that stores operation programs for causing the control device 50 to execute operation control according to each operation mode, which will be described later. The control device 50 appropriately controls the compressor 1, the first on-off valve 2, the first expansion valve 4, the second on-off valve 6, the second expansion valve 9, the third on-off valve 10, etc. according to the operation program in the ROM. control and perform air conditioning according to each operation mode. That is, the control device 50 can be configured by a calculation device such as a CPU, and an operation program that cooperates with such a calculation device to realize the various functions described below.
 ここで、室内機70における空気の流れについて概略的に説明する。室内送風機11が動作すると、室内機70に空気が取り込まれる。室内機70に取り込まれた空気は、蒸発器として機能する室内熱交換器5を通過して、絶対湿度が低下する。つまり、水分を含んだ空気が室内熱交換器5を通過することで、空気中の水分が室内熱交換器5に結露するため、空気の絶対湿度が低下する。室内熱交換器5を通過することで絶対湿度が低下し、温度が低下した空気は、相対湿度が高い冷たい空気となっている。室内熱交換器5を通過した空気は、再熱器3を通過することにより再加熱され、相対湿度が低下する。そして、再熱器3を通過して相対湿度が低下した空気は、室内に吹き出される。上記の通り、室内機70に取り込まれた空気は、相対湿度が低下した状態で室内に吹き出されるため、室内の相対湿度が低下する。これは、後述する除湿運転時または中間運転時の室内機70における空気の流れである。 Here, the flow of air in the indoor unit 70 will be schematically explained. When the indoor blower 11 operates, air is taken into the indoor unit 70. The air taken into the indoor unit 70 passes through the indoor heat exchanger 5, which functions as an evaporator, and its absolute humidity is reduced. That is, when the air containing moisture passes through the indoor heat exchanger 5, the moisture in the air condenses on the indoor heat exchanger 5, so that the absolute humidity of the air decreases. By passing through the indoor heat exchanger 5, the absolute humidity decreases, and the air whose temperature has decreased becomes cold air with high relative humidity. The air that has passed through the indoor heat exchanger 5 is reheated by passing through the reheater 3, and its relative humidity is reduced. Then, the air that has passed through the reheater 3 and has lowered relative humidity is blown into the room. As described above, the air taken into the indoor unit 70 is blown out into the room with its relative humidity reduced, so the relative humidity in the room is reduced. This is the air flow in the indoor unit 70 during dehumidification operation or intermediate operation, which will be described later.
 図2は、図1に示す制御装置50の機能的構成を概略的に示すブロック図である。制御装置50は、演算処理部51と、記憶部52と、を有している。演算処理部51は、設定処理部51aと、動作制御部51bと、余剰冷媒検出部51cと、漏洩処理部51dと、を有している。設定処理部51aは、空気調和装置100の操作用のリモートコントローラ(図示せず)などから、ユーザによる操作及び設定の内容を示す操作信号を受け付ける。そして、設定処理部51aは、操作信号に応じて、運転モード、目標温度、及び目標湿度などの設定を行う。 FIG. 2 is a block diagram schematically showing the functional configuration of the control device 50 shown in FIG. 1. The control device 50 includes a calculation processing section 51 and a storage section 52. The calculation processing section 51 includes a setting processing section 51a, an operation control section 51b, a surplus refrigerant detection section 51c, and a leakage processing section 51d. The setting processing unit 51a receives an operation signal indicating the contents of the user's operation and settings from a remote controller (not shown) for operating the air conditioner 100 or the like. The setting processing unit 51a then sets the operating mode, target temperature, target humidity, etc. according to the operation signal.
 余剰冷媒検出部51cは、下記の何れかの方法により余剰冷媒の発生を検出するものであり、余剰冷媒の発生を検出したときに、動作制御部51bへ検出信号を出力する。例えば、余剰冷媒検出部51cは、過冷却度を求めると共に、求めた過冷却度が過冷却度閾値よりも大きいか否かを判定するように構成することができる。この判定は、余剰冷媒が発生しているときに過冷却度が大きくなることを利用したものである。つまり、余剰冷媒検出部51cは、求めた過冷却度が過冷却度閾値よりも大きい場合に、動作制御部51bへ検出信号を出力する。 The surplus refrigerant detection unit 51c detects the generation of surplus refrigerant using one of the following methods, and outputs a detection signal to the operation control unit 51b when detecting the generation of surplus refrigerant. For example, the surplus refrigerant detection unit 51c can be configured to determine the degree of subcooling and determine whether the determined degree of subcooling is greater than a degree of subcooling threshold. This determination utilizes the fact that the degree of supercooling increases when surplus refrigerant is generated. That is, the surplus refrigerant detection section 51c outputs a detection signal to the operation control section 51b when the obtained degree of subcooling is larger than the degree of subcooling threshold.
 また、余剰冷媒の検出には、余剰冷媒が発生しているときに冷媒の吐出温度が低くなることを利用してもよい。つまり、余剰冷媒検出部51cは、冷媒温度センサ66から吐出温度を取得し、取得した吐出温度が吐出閾値よりも小さいか否かを判定してもよい。そして、余剰冷媒検出部51cは、吐出温度が吐出閾値よりも小さいときに、動作制御部51bへ検出信号を出力してもよい。 Additionally, the fact that the discharge temperature of the refrigerant becomes low when surplus refrigerant is generated may be used to detect surplus refrigerant. That is, the surplus refrigerant detection unit 51c may acquire the discharge temperature from the refrigerant temperature sensor 66, and determine whether the acquired discharge temperature is smaller than the discharge threshold. The surplus refrigerant detection section 51c may output a detection signal to the operation control section 51b when the discharge temperature is lower than the discharge threshold.
 さらに、余剰冷媒の検出には、余剰冷媒が発生しているときに高圧圧力が上昇することを利用してもよい。つまり、余剰冷媒検出部51cは、圧力センサ62から高圧圧力を取得し、取得した高圧圧力が高圧閾値よりも大きいか否かを判定してもよい。そして、余剰冷媒検出部51cは、高圧圧力が高圧閾値よりも大きいときに、動作制御部51bへ検出信号を出力してもよい。 Furthermore, the increase in high pressure when surplus refrigerant is generated may be used to detect surplus refrigerant. That is, the surplus refrigerant detection unit 51c may acquire the high pressure from the pressure sensor 62 and determine whether the acquired high pressure is greater than the high pressure threshold. The surplus refrigerant detection section 51c may output a detection signal to the operation control section 51b when the high pressure is higher than the high pressure threshold.
 加えて、余剰冷媒の検出には、余剰冷媒が発生しているときに低圧圧力が上昇することを利用してもよい。つまり、余剰冷媒検出部51cは、圧力センサ61から低圧圧力を取得し、取得した低圧圧力が低圧閾値よりも大きいか否かを判定してもよい。そして、余剰冷媒検出部51cは、低圧圧力が低圧閾値よりも大きいときに、動作制御部51bへ検出信号を出力してもよい。 In addition, the increase in low pressure when surplus refrigerant is generated may be used to detect surplus refrigerant. That is, the surplus refrigerant detection unit 51c may acquire the low pressure from the pressure sensor 61 and determine whether the acquired low pressure is greater than the low pressure threshold. The surplus refrigerant detection section 51c may output a detection signal to the operation control section 51b when the low pressure is greater than the low pressure threshold.
 漏洩処理部51dは、室内冷媒漏洩センサ41及び室外冷媒漏洩センサ42のそれぞれから漏洩信号を取得する。漏洩処理部51dは、室内冷媒漏洩センサ41から漏洩信号が出力された場合、室内での冷媒漏洩の発生を示す室内漏洩信号を動作制御部51bへ出力する。漏洩処理部51dは、室外冷媒漏洩センサ42から漏洩信号が出力された場合、室外での冷媒漏洩の発生を示す室外漏洩信号を動作制御部51bへ出力する。 The leak processing unit 51d acquires leak signals from each of the indoor refrigerant leak sensor 41 and the outdoor refrigerant leak sensor 42. When a leak signal is output from the indoor refrigerant leak sensor 41, the leak processing section 51d outputs an indoor leak signal indicating the occurrence of indoor refrigerant leak to the operation control section 51b. When a leakage signal is output from the outdoor refrigerant leakage sensor 42, the leakage processing section 51d outputs an outdoor leakage signal indicating the occurrence of refrigerant leakage outdoors to the operation control section 51b.
 また、漏洩処理部51dは、室内冷媒漏洩センサ41及び室外冷媒漏洩センサ42の少なくとも一方から漏洩信号が出力されたとき、異常報知器45に、音、音声、または光などを出力させる。漏洩処理部51dは、室内冷媒漏洩センサ41から漏洩信号を取得した場合と、室外冷媒漏洩センサ42から漏洩信号を取得した場合とで、異なる音、音声、または光などを、異常報知器45に出力させてもよい。 Furthermore, when a leak signal is output from at least one of the indoor refrigerant leak sensor 41 and the outdoor refrigerant leak sensor 42, the leak processing unit 51d causes the abnormality alarm 45 to output sound, voice, light, etc. The leak processing unit 51d sends different sounds, sounds, lights, etc. to the abnormality alarm 45 depending on whether a leak signal is acquired from the indoor refrigerant leak sensor 41 or when a leak signal is acquired from the outdoor refrigerant leak sensor 42. You may also output it.
 動作制御部51bは、各圧力センサ及び各温度センサから定期的に計測データを取得する。そして、動作制御部51bは、設定処理部51aによる設定内容に応じて、取得した計測データを用い、空気調和装置100の各アクチュエータの動作を制御する。動作制御部51bは、例えば、圧縮機1の圧縮機モータ1a、室内送風機11のファンモータ11a、及び室外送風機12のファンモータ12aの回転数を制御する。 The operation control unit 51b periodically acquires measurement data from each pressure sensor and each temperature sensor. Then, the operation control section 51b controls the operation of each actuator of the air conditioner 100 using the acquired measurement data according to the settings made by the setting processing section 51a. The operation control unit 51b controls, for example, the rotation speeds of the compressor motor 1a of the compressor 1, the fan motor 11a of the indoor blower 11, and the fan motor 12a of the outdoor blower 12.
 動作制御部51bは、ユーザの操作またはデフォルトの設定により、運転モードが除湿運転モードに設定されている場合、空気調和装置100に、空調空間の空気の除湿を行う除湿運転を実行させる。動作制御部51bは、運転モードが中間運転モードに設定されている場合、空気調和装置100に空調空間の空気の除湿と冷却とを同時に行う中間運転を実行させる。動作制御部51bは、運転モードが冷却運転モードに設定されている場合、空気調和装置100に、空調空間の空気の冷却を行う冷却運転を実行させる。動作制御部51bは、運転モードが除霜運転モードに設定されている場合、室内熱交換器5に付着した霜を溶かす除霜運転を空気調和装置100に実行させる。 If the operation mode is set to the dehumidification operation mode by user operation or default setting, the operation control unit 51b causes the air conditioner 100 to perform a dehumidification operation to dehumidify the air in the air-conditioned space. When the operation mode is set to the intermediate operation mode, the operation control unit 51b causes the air conditioner 100 to perform an intermediate operation in which the air in the conditioned space is simultaneously dehumidified and cooled. When the operation mode is set to the cooling operation mode, the operation control unit 51b causes the air conditioner 100 to perform a cooling operation to cool the air in the air-conditioned space. When the operation mode is set to the defrosting operation mode, the operation control unit 51b causes the air conditioner 100 to perform a defrosting operation to melt the frost attached to the indoor heat exchanger 5.
 例えば、動作制御部51bは、除湿運転時に第2開閉弁6を閉状態にする。動作制御部51bは、除湿運転時に、第2膨張弁9を全閉の状態にしてもよい。このようにすれば、冷却回路32から主回路31への冷媒の流入を防ぐことができる。また、動作制御部51bは、冷却運転時に第1開閉弁2を閉状態にする。動作制御部51bは、冷却運転時に、第1膨張弁4を全閉の状態にしてもよい。このようにすれば、再熱器3などに滞留している冷媒の室内熱交換器5への流入を防ぐことができる。 For example, the operation control unit 51b closes the second on-off valve 6 during dehumidification operation. The operation control unit 51b may fully close the second expansion valve 9 during the dehumidification operation. In this way, it is possible to prevent the refrigerant from flowing into the main circuit 31 from the cooling circuit 32. Further, the operation control unit 51b closes the first on-off valve 2 during the cooling operation. The operation control unit 51b may fully close the first expansion valve 4 during the cooling operation. In this way, the refrigerant remaining in the reheater 3 or the like can be prevented from flowing into the indoor heat exchanger 5.
 また、動作制御部51bは、余剰冷媒が発生したとき、空気調和装置100に、後述する冷媒量調整運転を実行させる。つまり、動作制御部51bは、余剰冷媒検出部51cから検出信号が出力されたときに、再熱器3の性能を維持させつつ余剰冷媒を液溜め8に貯留させる冷媒量調整制御を実施する。また、動作制御部51bは、室外と室内との差圧により、冷媒が移動しない場合には、各々の状況に応じた冷媒量調整制御を行う。 Furthermore, when surplus refrigerant is generated, the operation control unit 51b causes the air conditioner 100 to perform a refrigerant amount adjustment operation, which will be described later. That is, when the detection signal is output from the surplus refrigerant detection part 51c, the operation control part 51b performs refrigerant amount adjustment control to store the surplus refrigerant in the liquid reservoir 8 while maintaining the performance of the reheater 3. Furthermore, when the refrigerant does not move due to a pressure difference between the outside and the inside, the operation control unit 51b performs refrigerant amount adjustment control according to each situation.
 さらに、動作制御部51bは、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、つまり漏洩処理部51dから室内漏洩信号が出力されたとき、第1開閉弁2を閉状態にし、第2膨張弁9を全閉にする。これにより、第1接続部Mから再熱器3へ流れる冷媒を遮断し、室内の冷媒を第2開閉弁6を介して室外熱交換器7及び液溜め8に貯蔵することができるため、室内への冷媒の漏洩を抑制することができる。動作制御部51bは、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、第1膨張弁4を全閉の状態にしてもよい。このようにすれば、再熱器3などに滞留している冷媒の室内熱交換器5側への流入を防ぐことができる。そのため、冷媒の漏洩箇所が、第2接続部Nから室内熱交換器5及び圧縮機1を経て第1接続部Mまでの流路に存在する場合に、室内へのさらなる冷媒漏洩を抑制することができる。なお、動作制御部51bは、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、第1開閉弁2及び第1膨張弁4を全閉の状態にし、冷媒回路30の第1開閉弁2から第1膨張弁4までの部分を独立させることで、冷媒の漏洩箇所の特定処理を促進してもよい。 Further, when a refrigerant leak is detected by the indoor refrigerant leak sensor 41, that is, when an indoor leak signal is output from the leak processing section 51d, the operation control section 51b closes the first on-off valve 2 and closes the second on-off valve 2. Fully close the expansion valve 9. As a result, the refrigerant flowing from the first connection part M to the reheater 3 can be cut off, and the indoor refrigerant can be stored in the outdoor heat exchanger 7 and the liquid reservoir 8 via the second on-off valve 6. It is possible to suppress leakage of refrigerant to. The operation control unit 51b may fully close the first expansion valve 4 when the indoor refrigerant leak sensor 41 detects refrigerant leakage. In this way, it is possible to prevent the refrigerant remaining in the reheater 3 or the like from flowing into the indoor heat exchanger 5 side. Therefore, when a refrigerant leakage point exists in the flow path from the second connection part N through the indoor heat exchanger 5 and compressor 1 to the first connection part M, further leakage of refrigerant into the room can be suppressed. I can do it. Note that when the indoor refrigerant leak sensor 41 detects refrigerant leakage, the operation control unit 51b fully closes the first on-off valve 2 and the first expansion valve 4, and closes the first on-off valve 2 of the refrigerant circuit 30. By making the portion from the first expansion valve 4 independent, the process of identifying the location of the refrigerant leak may be facilitated.
 また、動作制御部51bは、室外冷媒漏洩センサ42において冷媒の漏洩が検知されたとき、つまり漏洩処理部51dから室外漏洩信号が出力されたとき、第2開閉弁6を閉状態にし、第1膨張弁4を全閉にする。これにより、室外への冷媒の流れを遮断し、室外の冷媒を室内熱交換器5に貯蔵することができるため、室外での冷媒の漏洩を抑制することができる。なお、動作制御部51bは、室外冷媒漏洩センサ42において冷媒の漏洩が検知されたとき、第2開閉弁6及び第2膨張弁9を全閉の状態にし、冷媒回路30の第2開閉弁6から第2膨張弁9までの部分を独立させることで、冷媒の漏洩箇所の特定処理を促進してもよい。 Further, when a refrigerant leak is detected by the outdoor refrigerant leak sensor 42, that is, when an outdoor leak signal is output from the leak processing section 51d, the operation control section 51b closes the second on-off valve 6 and closes the first on-off valve 6. Fully close the expansion valve 4. Thereby, the flow of the refrigerant to the outdoors can be blocked and the outdoor refrigerant can be stored in the indoor heat exchanger 5, so that leakage of the refrigerant outdoors can be suppressed. Note that when the outdoor refrigerant leak sensor 42 detects refrigerant leakage, the operation control unit 51b fully closes the second on-off valve 6 and the second expansion valve 9, and closes the second on-off valve 6 of the refrigerant circuit 30. By making the portion from the first expansion valve 9 to the second expansion valve 9 independent, the process of identifying the refrigerant leak location may be facilitated.
 記憶部52には、制御装置50の動作プログラムが記憶されている。また、記憶部52には、空調制御に関する種々のデータが記憶される。例えば、記憶部52には、運転モード、目標温度、及び目標湿度などの設定内容のデータが記憶される。また、記憶部52には、過冷却度閾値、吐出閾値、高圧閾値、または低圧閾値などの、余剰冷媒の発生を検出する際の基準となる閾値の情報が記憶される。なお、過冷却度閾値、吐出閾値、高圧閾値、及び低圧閾値は、予め設定されており、適宜設定変更することができる。 The storage unit 52 stores an operation program for the control device 50. The storage unit 52 also stores various data related to air conditioning control. For example, the storage unit 52 stores data on settings such as an operating mode, target temperature, and target humidity. The storage unit 52 also stores information on thresholds that serve as standards for detecting generation of surplus refrigerant, such as a subcooling degree threshold, a discharge threshold, a high pressure threshold, or a low pressure threshold. Note that the supercooling degree threshold, the discharge threshold, the high pressure threshold, and the low pressure threshold are set in advance, and can be changed as appropriate.
 図3は、図1に示す空気調和装置100の除湿運転時における冷媒回路30の状態を示す説明図である。図4は、図1に示す空気調和装置100の中間運転時における冷媒回路30の状態を示す説明図である。図5は、図1に示す空気調和装置100の冷却運転時における冷媒回路30の状態を示す説明図である。図6は、図1に示す空気調和装置100の除霜運転時における冷媒回路30の状態を示す説明図である。図3~図6では、開状態の開閉弁を白抜きで示し、閉状態の開閉弁を黒塗りで示す。また、図3~図6では、冷媒の流れを矢印つきの破線で示す。図3~図6を参照して、各運転モードにおける弁制御及び冷媒の流れについて説明する。 FIG. 3 is an explanatory diagram showing the state of the refrigerant circuit 30 during dehumidification operation of the air conditioner 100 shown in FIG. 1. FIG. 4 is an explanatory diagram showing the state of the refrigerant circuit 30 during intermediate operation of the air conditioner 100 shown in FIG. 1. FIG. 5 is an explanatory diagram showing the state of the refrigerant circuit 30 during cooling operation of the air conditioner 100 shown in FIG. 1. FIG. 6 is an explanatory diagram showing the state of the refrigerant circuit 30 during defrosting operation of the air conditioner 100 shown in FIG. 1. In FIGS. 3 to 6, on-off valves in an open state are shown in white, and on-off valves in a closed state are shown in black. Furthermore, in FIGS. 3 to 6, the flow of the refrigerant is shown by broken lines with arrows. Valve control and refrigerant flow in each operation mode will be explained with reference to FIGS. 3 to 6.
[除湿運転]
 図3に示すように、除湿運転時は、第2開閉弁6及び第3開閉弁10が閉状態にあり、第1開閉弁2が開状態にある。つまり、制御装置50は、除湿運転モードに設定されている場合、第1開閉弁2を開状態とし、第2開閉弁6及び第3開閉弁10を閉状態とする。
[Dehumidification operation]
As shown in FIG. 3, during dehumidification operation, the second on-off valve 6 and the third on-off valve 10 are in a closed state, and the first on-off valve 2 is in an open state. That is, when the control device 50 is set to the dehumidifying operation mode, the first on-off valve 2 is opened, and the second on-off valve 6 and the third on-off valve 10 are closed.
 したがって、圧縮機1から吐出された高温高圧のガス冷媒は、吐出配管(圧縮機1と室外熱交換器7との間の配管)を経て再熱器3に流入する。ここで、室内送風機11によって送風され、室内熱交換器5を通過した室内空気は、再熱器3を通過するようになっている。よって、再熱器3に流入した高温高圧のガス冷媒は、再熱器3を通過する室内空気と熱交換して放熱し、凝縮して液化する。そして、再熱器3から流出した冷媒は、液配管(再熱器3と第1膨張弁4との間の配管)を経て第1膨張弁4で減圧され、気液二相冷媒となって室内熱交換器5に流入する。室内熱交換器5に流入した気液二相冷媒は、室内送風機11によって送風される室内空気との熱交換により吸熱してガス化し、低温低圧のガス冷媒となって圧縮機1に戻る。 Therefore, the high temperature and high pressure gas refrigerant discharged from the compressor 1 flows into the reheater 3 via the discharge pipe (the pipe between the compressor 1 and the outdoor heat exchanger 7). Here, indoor air blown by the indoor blower 11 and passed through the indoor heat exchanger 5 passes through the reheater 3. Therefore, the high-temperature, high-pressure gas refrigerant that has flowed into the reheater 3 exchanges heat with the indoor air passing through the reheater 3, radiates heat, and is condensed and liquefied. Then, the refrigerant flowing out from the reheater 3 passes through the liquid pipe (the pipe between the reheater 3 and the first expansion valve 4), is depressurized at the first expansion valve 4, and becomes a gas-liquid two-phase refrigerant. It flows into the indoor heat exchanger 5. The gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 5 absorbs heat by exchanging heat with the indoor air blown by the indoor blower 11, becomes gasified, and returns to the compressor 1 as a low-temperature, low-pressure gas refrigerant.
 ここで、室内送風機11により室内機70を循環する空気は、室内熱交換器5を流れる低温低圧の気液二相冷媒によって冷却され、その温度が露点以下まで低下する。これにより、室内熱交換器5の表面で室内空気中の水分が結露し、室内空気が除湿される。その後、室内熱交換器5を通過した空気は、再熱器3で高温高圧のガス冷媒により加熱されて昇温し、相対湿度が低下する。 Here, the air circulating through the indoor unit 70 by the indoor blower 11 is cooled by the low-temperature, low-pressure gas-liquid two-phase refrigerant flowing through the indoor heat exchanger 5, and its temperature drops to below the dew point. As a result, moisture in the indoor air condenses on the surface of the indoor heat exchanger 5, and the indoor air is dehumidified. Thereafter, the air that has passed through the indoor heat exchanger 5 is heated by a high-temperature, high-pressure gas refrigerant in the reheater 3, increasing its temperature and decreasing its relative humidity.
 このように、空気調和装置100は、除湿運転時に、第2開閉弁6を閉状態にすることで、冷凍サイクル内の放熱をすべて室内で行う。つまり、空気調和装置100は、圧縮機1により冷媒に加わる熱量、及び空気中の水蒸気の凝縮潜熱の分だけ室内空気を加熱する運転を行う。したがって、除湿運転時の空気調和装置100に吸い込まれた室内空気は、加熱されると同時に除湿される。 In this way, the air conditioner 100 radiates all of the heat within the refrigeration cycle indoors by closing the second on-off valve 6 during the dehumidification operation. That is, the air conditioner 100 operates to heat indoor air by the amount of heat added to the refrigerant by the compressor 1 and the latent heat of condensation of water vapor in the air. Therefore, the indoor air sucked into the air conditioner 100 during dehumidification operation is heated and dehumidified at the same time.
[中間運転]
 図4に示すように、空調空間の空気の除湿と冷却とを同時に行う中間運転時は、第1開閉弁2及び第2開閉弁6が開状態にあり、第3開閉弁10が閉状態にある。つまり、制御装置50は、中間運転モードに設定されている場合、第1開閉弁2及び第2開閉弁6を開状態とし、第3開閉弁10を閉状態とする。
[Intermediate operation]
As shown in FIG. 4, during intermediate operation in which the air in the conditioned space is simultaneously dehumidified and cooled, the first on-off valve 2 and the second on-off valve 6 are in the open state, and the third on-off valve 10 is in the closed state. be. That is, when the control device 50 is set to the intermediate operation mode, the first on-off valve 2 and the second on-off valve 6 are opened, and the third on-off valve 10 is closed.
 したがって、圧縮機1から吐出された高温高圧のガス冷媒は、吐出配管を経て、室外熱交換器7に流入すると共に、再熱器3に流入する。そして、室外熱交換器7および再熱器3で放熱して液化した冷媒は、液配管(室外熱交換器7と第2膨張弁9との間の配管および再熱器3と第1膨張弁4との間の配管)の下流に設置された第2膨張弁9及び第1膨張弁4でそれぞれ減圧されて気液二相冷媒となり、第2接続部Nで合流後、室内熱交換器5に流入する。室内熱交換器5に流入した気液二相冷媒は、室内熱交換器5で吸熱してガス化し、吸入配管(室内熱交換器5と圧縮機1との間の配管)を経て圧縮機1に吸入される。制御装置50は、中間運転において、室外送風機12に対し、室外温度及び高圧圧力に応じたオンオフ制御を行うと共に、室内送風機11に対し、常時オンにする制御を行う。冷媒量調整制御時の中間運転時は、内液SC及び外液SCに応じたファン回転数での制御とする。ここで、内液SCとは、再熱器3の過冷却度のことであり、外液SCとは、室外熱交換器7の過冷却度のことである。 Therefore, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 7 and the reheater 3 via the discharge pipe. Then, the refrigerant that has radiated heat and liquefied in the outdoor heat exchanger 7 and the reheater 3 is transferred to liquid piping (the piping between the outdoor heat exchanger 7 and the second expansion valve 9, and the piping between the reheater 3 and the first expansion valve). The pressure is reduced by the second expansion valve 9 and the first expansion valve 4, which are installed downstream of the piping between 4 and 4, respectively, and the refrigerant becomes a gas-liquid two-phase refrigerant. flows into. The gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 5 absorbs heat and is gasified by the indoor heat exchanger 5, and then passes through the suction pipe (the pipe between the indoor heat exchanger 5 and the compressor 1) to the compressor 1. is inhaled. During intermediate operation, the control device 50 performs on/off control on the outdoor blower 12 according to the outdoor temperature and high pressure, and also controls the indoor blower 11 to be turned on at all times. During intermediate operation during refrigerant amount adjustment control, the fan rotation speed is controlled according to the internal liquid SC and external liquid SC. Here, the internal liquid SC refers to the degree of subcooling of the reheater 3, and the external liquid SC refers to the degree of subcooling of the outdoor heat exchanger 7.
[冷却運転]
 図5に示すように、空調空間の空気を冷却する冷却運転時は、第2開閉弁6が開状態にあり、第1開閉弁2及び第3開閉弁10が閉状態にある。つまり、制御装置50は、冷却運転モードに設定されている場合、第2開閉弁6を開状態とし、第1開閉弁2及び第3開閉弁10を閉状態とする。
[Cooling operation]
As shown in FIG. 5, during the cooling operation to cool the air in the air-conditioned space, the second on-off valve 6 is in the open state, and the first on-off valve 2 and the third on-off valve 10 are in the closed state. That is, when the control device 50 is set to the cooling operation mode, the second on-off valve 6 is opened, and the first on-off valve 2 and the third on-off valve 10 are closed.
 したがって、圧縮機1から吐出された高温高圧のガス冷媒は、吐出配管を経て室外熱交換器7に流入し、室外送風機12によって送風される室外空気と熱交換して放熱し、凝縮して液化する。そして、室外熱交換器7から流出した冷媒は、液配管(室外熱交換器7と第2膨張弁9との間の配管)を経て第2膨張弁9で減圧されて気液二相冷媒となり、室内熱交換器5に流入する。室内熱交換器5に流入した気液二相冷媒は、室内送風機11により送風される室内空気と熱交換して吸熱してガス化し、低温低圧のガス冷媒となって圧縮機1に戻る。つまり、室内送風機11により循環する空気は、室内熱交換器5において低温低圧の気液二相冷媒により冷却される。なお、冷却運転時の余剰冷媒は、適宜、液溜め8に貯留される。 Therefore, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 7 through the discharge pipe, exchanges heat with the outdoor air blown by the outdoor blower 12, radiates heat, and condenses to liquefy. do. Then, the refrigerant flowing out from the outdoor heat exchanger 7 passes through the liquid pipe (the pipe between the outdoor heat exchanger 7 and the second expansion valve 9), is depressurized at the second expansion valve 9, and becomes a gas-liquid two-phase refrigerant. , flows into the indoor heat exchanger 5. The gas-liquid two-phase refrigerant flowing into the indoor heat exchanger 5 exchanges heat with the indoor air blown by the indoor blower 11, absorbs heat, becomes gasified, and returns to the compressor 1 as a low-temperature, low-pressure gas refrigerant. That is, the air circulated by the indoor blower 11 is cooled in the indoor heat exchanger 5 by a low-temperature, low-pressure gas-liquid two-phase refrigerant. Note that the surplus refrigerant during the cooling operation is stored in the liquid reservoir 8 as appropriate.
 ここで、冷却運転は、室内の絶対湿度が低いとき、または室内の温度を下げる優先度が高いときに実施するとよい。なぜなら、冷却運転により空気の温度が低下すると、相対湿度が高くなる。そして、相対湿度が高くなると、快適性が低下すると共に、室内が結露しやすくなるといった不都合が生じるためである。また、例えば、冷却運転により、空気の温度が低下して露点以下になると、室内熱交換器5の表面で室内空気中の水分が結露して通風抵抗が増大し、熱交換能力が低下するためである。 Here, the cooling operation is preferably performed when the indoor absolute humidity is low or when lowering the indoor temperature is a high priority. This is because when the temperature of the air decreases due to cooling operation, the relative humidity increases. This is because, as the relative humidity increases, comfort decreases and dew condensation tends to occur indoors. Also, for example, when the temperature of the air decreases to below the dew point due to cooling operation, moisture in the indoor air condenses on the surface of the indoor heat exchanger 5, increasing ventilation resistance and reducing heat exchange capacity. It is.
[除霜運転]
 除霜運転は、室内熱交換器5に霜が着き、熱交換器としての性能が低下した際に行う霜取り運転のことである。図6に示すように、除霜運転時は、第1開閉弁2及び第2開閉弁6が閉状態にあり、第3開閉弁10が開状態にある。つまり、制御装置50は、除霜運転モードに設定されている場合、第1開閉弁2及び第2開閉弁6を閉状態とし、第3開閉弁10を開状態とする。したがって、圧縮機1から吐出された高温高圧のガス冷媒は、吐出配管及びバイパス回路33を経て、第1膨張弁4で減圧され、室内熱交換器5に流入する。
[Defrosting operation]
The defrosting operation is an operation performed when frost forms on the indoor heat exchanger 5 and its performance as a heat exchanger deteriorates. As shown in FIG. 6, during the defrosting operation, the first on-off valve 2 and the second on-off valve 6 are in a closed state, and the third on-off valve 10 is in an open state. That is, when the control device 50 is set to the defrosting operation mode, the first on-off valve 2 and the second on-off valve 6 are closed, and the third on-off valve 10 is opened. Therefore, the high temperature and high pressure gas refrigerant discharged from the compressor 1 passes through the discharge pipe and the bypass circuit 33, is depressurized by the first expansion valve 4, and flows into the indoor heat exchanger 5.
 ここで、室内熱交換器5は、冷媒により加熱され、着氷した霜と熱交換して霜を溶かす。室内熱交換器5に流入した冷媒は、霜との熱交換により温度が低下して低温になった後、吸入配管と熱交換して吸熱してガス化し、低温低圧のガス冷媒となって圧縮機1に戻る。このとき、制御装置50は、第1膨張弁4を最小開度にすることで、室内熱交換器5を通過する冷媒の量を調整し、液化した冷媒が圧縮機1に入ることを防ぐ。また、制御装置50は、室内送風機11をオフにする。よって、除霜運転時は、単純に、室内熱交換器5を通過する冷媒と、室内熱交換器5に付着した霜との間の熱交換のみが行われる。 Here, the indoor heat exchanger 5 is heated by the refrigerant and exchanges heat with the frost that has formed to melt the frost. The refrigerant that has flowed into the indoor heat exchanger 5 is lowered in temperature by heat exchange with the frost, and then exchanges heat with the suction pipe to absorb heat and gasify, becoming a low-temperature, low-pressure gas refrigerant that is compressed. Return to machine 1. At this time, the control device 50 adjusts the amount of refrigerant passing through the indoor heat exchanger 5 by setting the first expansion valve 4 to the minimum opening degree, thereby preventing liquefied refrigerant from entering the compressor 1. Further, the control device 50 turns off the indoor blower 11. Therefore, during the defrosting operation, only heat exchange between the refrigerant passing through the indoor heat exchanger 5 and the frost adhering to the indoor heat exchanger 5 is performed.
 上記の各運転のうち、図4に示す中間運転は、再熱器3及び室外熱交換器7に冷媒を流すため、必要とする冷媒量が相対的に多くなる。一方、図3に示す除湿運転は、中間運転と比較して、必要とする冷媒の量が少ない。除湿運転では、再熱器3に冷媒が流れるが、室外熱交換器7には冷媒が流れないためである。したがって、除湿運転を行っているときは、余剰冷媒が発生することがある。そして、余剰冷媒が発生すると、高圧圧力が上昇する等の異常が発生するおそれがある。また、室外と室内との温度差が多くついている際、冷媒の偏りから冷却運転及び除湿運転において余剰冷媒が発生する恐れがある。 Of the above operations, the intermediate operation shown in FIG. 4 requires a relatively large amount of refrigerant because the refrigerant flows through the reheater 3 and the outdoor heat exchanger 7. On the other hand, the dehumidifying operation shown in FIG. 3 requires less refrigerant than the intermediate operation. This is because, in the dehumidifying operation, refrigerant flows into the reheater 3 but does not flow into the outdoor heat exchanger 7. Therefore, during dehumidification operation, surplus refrigerant may be generated. When excess refrigerant is generated, there is a risk that abnormalities such as an increase in high pressure may occur. Further, when there is a large temperature difference between the outdoors and the indoors, there is a risk that surplus refrigerant will be generated during cooling operation and dehumidification operation due to unevenness of refrigerant.
 そこで、本実施の形態1に係る空気調和装置100は、冷却運転あるいは除湿運転に移行する前に冷媒平準化を目的として運転切替え制御を実施する。また、各運転に移行した後に運転中の状態値を基に冷媒分布制御を実施する。まずは、冷却運転あるいは除湿運転に移行する前に動作制御部51bが行う運転切替え制御について説明する。 Therefore, the air conditioner 100 according to the first embodiment performs operation switching control for the purpose of leveling the refrigerant before shifting to the cooling operation or the dehumidifying operation. Furthermore, after each operation is started, refrigerant distribution control is performed based on the state values during operation. First, the operation switching control performed by the operation control section 51b before shifting to the cooling operation or the dehumidification operation will be described.
[運転切替え制御]
 図7は、図1に示す空気調和装置100の運転切替え制御を例示したフローチャートである。
[Operation switching control]
FIG. 7 is a flowchart illustrating operation switching control of the air conditioner 100 shown in FIG. 1.
 動作制御部51bは、冷却運転あるいは除湿運転に切り替える際に冷媒の平準化を目的として運転切替え制御を実施する。運転切替え制御を行うタイミングの一例としては、冷却運転から除湿運転または除湿運転から冷却運転に移行するタイミングである。つまり、冷却運転をしていると、室内が冷えるが相対湿度が高くなるので、ある湿度を超えると除湿運転に切り替えるトリガーが発生し、反対に除湿運転をしていると相対湿度は下がるが室内の温度が上がってしまい、ある温度を超えると冷却運転に切り替えるトリガーが発生するため、そのトリガーに応じて運転切替え制御を行う。 The operation control unit 51b performs operation switching control for the purpose of leveling the refrigerant when switching to cooling operation or dehumidification operation. An example of the timing to perform the operation switching control is the timing to shift from the cooling operation to the dehumidifying operation or from the dehumidifying operation to the cooling operation. In other words, when the cooling operation is running, the room becomes cold but the relative humidity increases, so when the humidity exceeds a certain level, a trigger is generated to switch to the dehumidifying operation, whereas when the dehumidifying operation is running, the relative humidity decreases but the relative humidity increases. When the temperature rises and exceeds a certain temperature, a trigger to switch to cooling operation is generated, so operation switching control is performed in response to that trigger.
 動作制御部51bは、図4に示す中間運転を実行し、第1開閉弁2及び第2開閉弁6を共に開状態とし、第3開閉弁10を閉状態とする(ステップS101)。そして動作制御部51bは、再熱器3の下流に設けられた第1膨張弁4と、室外熱交換器7の下流に設けられた第2膨張弁9とを用いて、運転切替え制御を実施する。運転切替え制御では、動作制御部51bは、例えば、第1膨張弁4でSH制御し、第2膨張弁9で内液SC制御を行う。 The operation control unit 51b executes the intermediate operation shown in FIG. 4, opens both the first on-off valve 2 and the second on-off valve 6, and closes the third on-off valve 10 (step S101). The operation control unit 51b then performs operation switching control using the first expansion valve 4 provided downstream of the reheater 3 and the second expansion valve 9 provided downstream of the outdoor heat exchanger 7. do. In the operation switching control, the operation control unit 51b performs SH control on the first expansion valve 4 and performs internal liquid SC control on the second expansion valve 9, for example.
 動作制御部51bは、室外熱交換器7の下流に設けられた第2膨張弁9を用いて室外熱交換器7で凝縮された冷媒のSC(過冷却度)制御を行うことで、室外熱交換器7に分布する冷媒量を適正な状態とする。また、再熱器3の下流に設けられた第1膨張弁4を用いて室内熱交換器5で蒸発して流出した冷媒のSH(過熱度)制御を行うことで、余剰冷媒による液バックを防止すると共に、再熱器3及び室外熱交換器7に冷媒を貯留する。 The operation control unit 51b controls the degree of supercooling of the refrigerant condensed in the outdoor heat exchanger 7 using the second expansion valve 9 provided downstream of the outdoor heat exchanger 7, thereby reducing the outdoor heat. The amount of refrigerant distributed in the exchanger 7 is brought into an appropriate state. In addition, by controlling the SH (degree of superheating) of the refrigerant that evaporated and flowed out in the indoor heat exchanger 5 using the first expansion valve 4 provided downstream of the reheater 3, liquid back due to surplus refrigerant can be prevented. At the same time, the refrigerant is stored in the reheater 3 and the outdoor heat exchanger 7.
 動作制御部51bは、外液SC及び吸入SHが判定値を満たすか、あるいは運転時間が所定時間を経過したら、運転切替え制御を終了させ、冷却運転あるいは除湿運転に移行する。具体的には、動作制御部51bは、外液SC≒5Kかつ吸入SH≒5Kを満たすか(ステップS102のYES)、運転時間が5分経過したら(ステップS103のYES)、運転切替え制御を終了させ、冷却運転あるいは除湿運転に移行する(ステップS104)。このとき、ステップS102に関して、外液SC及び吸入SHの判定値は5Kであるが、±αの幅を持たせてもよい。つまり、外液SC及び吸入SHが判定値である5Kと完全一致はしなくてもよく、5-αK≦外液SC及びSH≦5+αKでも条件を満たすものとする。ここで、吸入SHとは、圧縮機1の吸入側の過熱度のことである。また、ステップS103に関して、運転切替え制御は、冷媒の標準化を図れるが中途半端な運転となるため、あまり長くは行いたくはなく、5分経過すればある程度平準化できていると見なせるため、運転時間が5分経過したかどうか判定している。 The operation control unit 51b ends the operation switching control and shifts to the cooling operation or the dehumidification operation when the external liquid SC and the intake SH satisfy the determination values or when the operation time has elapsed for a predetermined time. Specifically, the operation control unit 51b ends the operation switching control when the external liquid SC≒5K and the suction SH≒5K are satisfied (YES in step S102) or when the operating time has elapsed for 5 minutes (YES in step S103). and shifts to cooling operation or dehumidification operation (step S104). At this time, regarding step S102, the determination values for the external fluid SC and the inhalation SH are 5K, but may have a range of ±α. In other words, the external fluid SC and the inhaled SH do not have to completely match the determination value of 5K, and the conditions are also satisfied even if 5-αK≦external solution SC and SH≦5+αK. Here, the suction SH refers to the degree of superheat on the suction side of the compressor 1. Regarding step S103, although the operation switching control can standardize the refrigerant, it will result in half-hearted operation, so we do not want to do it for too long, and since it can be considered that the operation has been leveled to some extent after 5 minutes, the operation time It is determined whether 5 minutes have passed.
 図8は、図1に示す空気調和装置100の冷却運転時の冷媒分布制御を例示したフローチャートである。次に各運転に移行した後に運転中の状態値により行う冷媒分布制御について説明する。 FIG. 8 is a flowchart illustrating refrigerant distribution control during cooling operation of the air conditioner 100 shown in FIG. 1. Next, the refrigerant distribution control performed based on the state value during operation after shifting to each operation will be explained.
 冷媒分布制御は、前述の運転切替え制御が実行され、冷却運転、または除湿運転に切り替わった際に運転中の状態値から判断され、実行されるものである。 Refrigerant distribution control is determined from the state value during operation and executed when the above-mentioned operation switching control is executed and the operation is switched to cooling operation or dehumidification operation.
[冷却運転時の冷媒分布制御]
 動作制御部51bは、外液SCにて、冷却運転における冷媒量の過不足を判断する(ステップS201)。
[Refrigerant distribution control during cooling operation]
The operation control unit 51b determines whether the amount of refrigerant in the cooling operation is excessive or insufficient using the external liquid SC (step S201).
(外液SC≦5K(冷媒不足)の場合)
 動作制御部51bは、外液SC≦5Kとなった場合に(ステップS201のNO)、冷媒不足と判定し、次の判定式に移る。次の判定式では、室外熱交換器7の凝縮温度である室外凝縮温度CToutが、圧縮機1の周波数を低くするもしくは圧縮機1を停止させる制御である高圧保護制御が実施される値CTout_max―5Kよりも低いことと、再熱器3を流れる冷媒の温度である内液温が室内熱交換器5の蒸発温度である蒸発温度ETよりも高いことを共に満たしているかを判定する(ステップS209)。これは、室外凝縮温度CToutの判定式は、冷媒の分布を室外側に多くした際に高圧異常とならないようにすることを意図し、蒸発温度ETの判定式は、次に述べる室内側からの冷媒排出を実施するにあたり、差圧による排出可否を判定するものである。動作制御部51bは、上記判定式を満たさずに室内側からの冷媒排出困難と判定した場合(ステップS209のNO)、中間運転によるさらなる冷媒量調整運転を行う(ステップS213)。これは差圧により室内側からの冷媒排出が困難となった冷媒を強制的に循環させ、意図した外液SCとなるようにするものである。
(When external liquid SC≦5K (refrigerant shortage))
When the external liquid SC≦5K (NO in step S201), the operation control unit 51b determines that there is a refrigerant shortage, and moves to the next determination formula. In the following determination formula, the outdoor condensing temperature CTout, which is the condensing temperature of the outdoor heat exchanger 7, is set to a value CTout_max - at which high pressure protection control, which is control to lower the frequency of the compressor 1 or stop the compressor 1, is implemented. It is determined whether the internal liquid temperature, which is the temperature of the refrigerant flowing through the reheater 3, is higher than the evaporation temperature ET, which is the evaporation temperature of the indoor heat exchanger 5 (step S209). ). This is because the determination formula for the outdoor condensing temperature CTout is intended to prevent high pressure abnormalities when the distribution of refrigerant is increased toward the outdoor side, and the determination formula for the evaporation temperature ET is intended to prevent high pressure abnormalities from occurring from the indoor side described below. When discharging the refrigerant, it is determined whether or not the refrigerant can be discharged based on the differential pressure. When the operation control unit 51b determines that it is difficult to discharge the refrigerant from the indoor side without satisfying the above-mentioned determination formula (NO in step S209), the operation control unit 51b performs further refrigerant amount adjustment operation by intermediate operation (step S213). This is to forcibly circulate the refrigerant, which has become difficult to discharge from the indoor side due to the pressure difference, so that it becomes the intended external liquid SC.
 このときの中間運転では、第2膨張弁9でSH制御し、第1膨張弁4で内液SC制御する。また合わせて、室外送風機12の回転数を下げ、外液SCを大きくする運転とする。これは、第1膨張弁4で内液SC制御することで、第1膨張弁4が開いて再熱器3に溜まった冷媒が排出され、第2膨張弁9でSH制御することで、冷媒を液溜め8及び室外熱交換器7に溜めることを容易とし、差圧により排出できない状況にあった冷媒を強制的に循環させることを目的とする。動作制御部51bは、外液SC≒5Kを満たしたと判定した場合(ステップS214のYES)、本制御を終了させる(ステップS215)。 In the intermediate operation at this time, the second expansion valve 9 performs SH control, and the first expansion valve 4 performs internal liquid SC control. At the same time, the rotational speed of the outdoor blower 12 is lowered to increase the external liquid SC. This is done by performing internal liquid SC control with the first expansion valve 4, which opens the refrigerant and discharges the refrigerant accumulated in the reheater 3, and by performing SH control with the second expansion valve 9, the refrigerant The purpose is to make it easier to store the refrigerant in the liquid reservoir 8 and the outdoor heat exchanger 7, and to forcibly circulate the refrigerant that could not be discharged due to the pressure difference. If the operation control unit 51b determines that the external liquid SC≈5K is satisfied (YES in step S214), it ends this control (step S215).
 動作制御部51bは、上記判定式を満たし室内側からの冷媒排出可能と判定した場合(ステップS209のYES)、第1膨張弁4の制御目標を外液SC≒5Kに変更し(ステップS210)、第1膨張弁4を閉状態から最小開度に開いて外液SC≒5Kとなるように制御を実施する。そして、動作制御部51bは、外液SC≒5Kを満たしたと判定した場合(ステップS211のYES)、第1膨張弁4を全閉し、本制御を終了させる(ステップS212)。なお、本制御を実施してから一定期間は本制御を実行しないようにすることで、第1膨張弁4を頻繁に全閉から開度調整させることによって劣化するのを防ぎ、信頼性悪化を防ぐ。 When the operation control unit 51b determines that the above-mentioned determination formula is satisfied and the refrigerant can be discharged from the indoor side (YES in step S209), the operation control unit 51b changes the control target of the first expansion valve 4 to external liquid SC≈5K (step S210). , the first expansion valve 4 is opened from the closed state to the minimum opening degree, and control is performed so that the external liquid SC≈5K. When the operation control unit 51b determines that the external liquid SC≈5K is satisfied (YES in step S211), the operation control unit 51b fully closes the first expansion valve 4 and ends this control (step S212). Note that by not executing this control for a certain period of time after executing this control, it is possible to prevent deterioration of the first expansion valve 4 caused by frequently adjusting the opening from fully closed, and to reduce reliability. prevent.
(外液SC>5K(冷媒過多)の場合)
 動作制御部51bは、外液SC>5Kとなった場合に(ステップS201のYES)、冷媒過多と判定し、次の判定式に移る。次の判定式では、室外凝縮温度CToutが、内液温よりも高いことを満たしているかを判定する(ステップS202)。これは、次に述べる室外側からの冷媒排出を実施するにあたり、差圧による排出可否を判定するものである。動作制御部51bは、上記判定式を満たさずに室内側からの冷媒排出困難と判定した場合(ステップS202のNO)、中間運転によるさらなる冷媒量調整運転を行う(ステップS206)。これは差圧により排出が困難となった冷媒を強制的に循環させ、意図した外液SCとなるようにするものである。
(When external liquid SC>5K (excessive refrigerant))
When the external liquid SC>5K (YES in step S201), the operation control unit 51b determines that there is an excess of refrigerant, and moves to the next determination formula. In the next determination formula, it is determined whether the outdoor condensation temperature CTout satisfies the requirement that it is higher than the internal liquid temperature (step S202). This is to determine whether or not the refrigerant can be discharged based on the differential pressure when discharging the refrigerant from the outdoor side, which will be described next. When the operation control unit 51b determines that it is difficult to discharge the refrigerant from the indoor side without satisfying the above-mentioned determination formula (NO in step S202), the operation control unit 51b performs further refrigerant amount adjustment operation by intermediate operation (step S206). This is to forcibly circulate the refrigerant that has become difficult to discharge due to the differential pressure, so that it becomes the intended external liquid SC.
 このときの中間運転では、第2膨張弁9で外液SC制御し、第1膨張弁4でSH制御する。また合わせて、室内送風機11の回転数を下げ、内液SCを大きくする運転とする。これは、第2膨張弁9で外液SC制御とすることで、第2膨張弁9が開いて室外熱交換器7に溜まった冷媒が排出され、第1膨張弁4でSH制御することで、冷媒を再熱器3に溜めることを容易とし、差圧により排出できない状況にあった冷媒を強制的に循環させることを目的とする。動作制御部51bは、外液SC≒5Kを満たしたと判定した場合(ステップS207のYES)、本制御を終了させる(ステップS208)。 In the intermediate operation at this time, the second expansion valve 9 performs SC control of the external liquid, and the first expansion valve 4 performs SH control. At the same time, the rotation speed of the indoor blower 11 is lowered to increase the internal liquid SC. This is achieved by performing external liquid SC control with the second expansion valve 9, which opens the second expansion valve 9 and discharges the refrigerant accumulated in the outdoor heat exchanger 7, and by performing SH control with the first expansion valve 4. The purpose of this system is to facilitate the storage of refrigerant in the reheater 3 and to forcefully circulate the refrigerant that could not be discharged due to the pressure difference. If the operation control unit 51b determines that the external liquid SC≈5K has been filled (YES in step S207), it ends this control (step S208).
 動作制御部51bは、上記判定式を満たし室内側からの冷媒排出可能と判定した場合(ステップS202のYES)、第1開閉弁2を開放する(ステップS203)。これは、再熱器3への冷媒貯留を意図している。そして、動作制御部51bは、第1膨張弁4を閉状態から最小開度に開いて外液SC≒5Kとなるように制御を実施する。そして、動作制御部51bは、外液SC≒5Kを満たしたと判定した場合(ステップS204のYES)、第1開閉弁2を全閉し、本制御を終了させる(ステップS205)。なお、本制御を実施してから一定期間は本制御を実行しないようにすることで、第1開閉弁2を頻繁に開閉させることによって劣化するのを防ぎ、信頼性悪化を防ぐ。 If the operation control unit 51b determines that the above-mentioned determination formula is satisfied and the refrigerant can be discharged from the indoor side (YES in step S202), the operation control unit 51b opens the first on-off valve 2 (step S203). This is intended to store refrigerant in the reheater 3. Then, the operation control unit 51b performs control to open the first expansion valve 4 from the closed state to the minimum opening degree so that the external liquid SC≈5K. When the operation control unit 51b determines that the external liquid SC≈5K is satisfied (YES in step S204), the operation control unit 51b fully closes the first on-off valve 2 and ends this control (step S205). Note that by not executing this control for a certain period of time after executing this control, it is possible to prevent deterioration of the first on-off valve 2 due to frequent opening and closing, and to prevent deterioration of reliability.
[除湿運転時の冷媒分布制御]
 図9は、図1に示す空気調和装置100の除湿運転時の冷媒分布制御を例示したフローチャートである。
[Refrigerant distribution control during dehumidification operation]
FIG. 9 is a flowchart illustrating refrigerant distribution control during dehumidification operation of the air conditioner 100 shown in FIG. 1.
 動作制御部51bは、内液SCにて、除湿運転における冷媒量の過不足を判断する(ステップS301)。 The operation control unit 51b determines whether the amount of refrigerant in the dehumidifying operation is excessive or insufficient in the internal liquid SC (step S301).
(内液SC<5K(冷媒不足)の場合)
 動作制御部51bは、内液SC<5Kとなった場合に(ステップS301のNO)、冷媒不足と判定し、次の判定式に移る。次の判定式では、再熱器3の凝縮温度である室内凝縮温度CTinが、高圧保護制御が実施される値CTin_max―5Kよりも低いことと、室外熱交換器7を流れる冷媒の温度である外液温が蒸発温度ETよりも高いことを共に満たしているかを判定する(ステップS309)。これは、室内凝縮温度CTinの判定式は、冷媒の分布を室内側に多くした際に高圧異常とならないようにすることを意図し、蒸発温度ETの判定式は、次に述べる室外側からの冷媒排出を実施するにあたり、差圧による排出可否を判定するものである。動作制御部51bは、上記判定式を満たさずに室外側からの冷媒排出困難と判定した場合(ステップS309のNO)、中間運転によるさらなる冷媒量調整運転を行う(ステップS313)。これは差圧により排出が困難となった冷媒を強制的に循環させ、意図した内液SCとなるようにするものである。
(In case of internal liquid SC<5K (refrigerant shortage))
When the internal liquid SC<5K (NO in step S301), the operation control unit 51b determines that there is a refrigerant shortage, and moves to the next determination formula. In the following judgment formula, the indoor condensing temperature CTin, which is the condensing temperature of the reheater 3, is lower than the value CTin_max - 5K at which high pressure protection control is implemented, and the temperature of the refrigerant flowing through the outdoor heat exchanger 7. It is determined whether the external liquid temperature is higher than the evaporation temperature ET (step S309). This is because the determination formula for the indoor condensation temperature CTin is intended to prevent high pressure abnormalities when the distribution of refrigerant is increased indoors, and the determination formula for the evaporation temperature ET is intended to prevent high pressure abnormalities from occurring when the refrigerant is distributed indoors. When discharging the refrigerant, it is determined whether or not the refrigerant can be discharged based on the differential pressure. When the operation control unit 51b determines that it is difficult to discharge the refrigerant from the outdoor side without satisfying the above-mentioned determination formula (NO in step S309), the operation control unit 51b performs further refrigerant amount adjustment operation by intermediate operation (step S313). This is to forcibly circulate the refrigerant that has become difficult to discharge due to the differential pressure, so that it becomes the intended internal liquid SC.
 このときの中間運転では、第2膨張弁9で外液SC制御し、第1膨張弁4でSH制御する。このとき、室内送風機11の回転数を下げ、内液SCを大きくする運転とする。これは、第2膨張弁9で外液SC制御することで、第2膨張弁9が開いて室外熱交換器7に溜まった冷媒が排出され、第1膨張弁4でSH制御することで、冷媒を再熱器3に多く循環させることを容易とし、差圧により排出できない状況にあった冷媒を強制的に循環させることを目的とする。動作制御部51bは、内液SC≒5Kを満たしたと判定した場合(ステップS314のYES)、本制御を終了させる(ステップS315)。 In the intermediate operation at this time, the second expansion valve 9 performs SC control of the external liquid, and the first expansion valve 4 performs SH control. At this time, the rotation speed of the indoor blower 11 is lowered to increase the internal liquid SC. This is done by performing external liquid SC control with the second expansion valve 9, which opens the second expansion valve 9 and discharges the refrigerant accumulated in the outdoor heat exchanger 7, and by performing SH control with the first expansion valve 4. The purpose is to facilitate the circulation of a large amount of refrigerant to the reheater 3, and to forcibly circulate the refrigerant that could not be discharged due to the pressure difference. If the operation control unit 51b determines that the internal liquid SC≈5K is satisfied (YES in step S314), it ends this control (step S315).
 動作制御部51bは、上記判定式を満たし室外側からの冷媒排出可能と判定した場合(ステップS309のYES)、第2膨張弁9の制御目標を内液SC≒5Kに変更し(ステップS310)、第2膨張弁9を閉状態から最小開度に開いて内液SC≒5Kとなるように制御を実施する。そして、動作制御部51bは、内液SC≒5Kを満たしたと判定した場合(ステップS311のYES)、第2膨張弁9を全閉し、本制御を終了させる(ステップS312)。なお、本制御を実施してから一定期間は本制御を実行しないようにすることで、第2膨張弁9を頻繁に全閉から開度調整させることによって劣化するのを防ぎ、信頼性悪化を防ぐ。 When the operation control unit 51b determines that the above-mentioned determination formula is satisfied and the refrigerant can be discharged from the outdoor side (YES in step S309), the operation control unit 51b changes the control target of the second expansion valve 9 to internal liquid SC≈5K (step S310). , the second expansion valve 9 is opened from the closed state to the minimum opening degree, and control is performed so that the internal liquid SC≈5K. When the operation control unit 51b determines that the internal liquid SC≈5K is satisfied (YES in step S311), the operation control unit 51b fully closes the second expansion valve 9 and ends this control (step S312). Note that by not executing this control for a certain period of time after executing this control, it is possible to prevent deterioration of the second expansion valve 9 caused by frequently adjusting the opening from fully closed, and to reduce reliability. prevent.
(内液SC>5K(冷媒過多)の場合)
 動作制御部51bは、内液SC>5Kとなった場合に(ステップS301のYES)、冷媒過多と判定し、次の判定式に移る。次の判定式では、室内凝縮温度CTinが、外液温よりも高いことを満たしているかを判定する(ステップS302)。これは、次に述べる室外側からの冷媒排出を実施するにあたり、差圧による排出可否を判定するものである。動作制御部51bは、上記判定式を満たさずに室外側からの冷媒排出困難と判定した場合(ステップS302のNO)、中間運転によるさらなる冷媒量調整運転を行う(ステップS306)。これは差圧により排出が困難となった冷媒を強制的に循環させ、意図した内液SCとなるようにするものである。
(In case of internal liquid SC>5K (excessive refrigerant))
When the internal liquid SC>5K (YES in step S301), the operation control unit 51b determines that there is an excess of refrigerant, and moves on to the next determination formula. In the next determination formula, it is determined whether the indoor condensation temperature CTin is higher than the outside liquid temperature (step S302). This is to determine whether or not the refrigerant can be discharged based on the differential pressure when discharging the refrigerant from the outdoor side, which will be described next. When the operation control unit 51b determines that it is difficult to discharge the refrigerant from the outdoor side without satisfying the above-mentioned determination formula (NO in step S302), the operation control unit 51b performs further refrigerant amount adjustment operation by intermediate operation (step S306). This is to forcibly circulate the refrigerant that has become difficult to discharge due to the differential pressure, so that it becomes the intended internal liquid SC.
 このときの中間運転では、第2膨張弁9でSH制御し、第1膨張弁4で内液SC制御する。このとき、室内送風機11の回転数を上げ、内液SCを小さくする運転とする。また合わせて、室外送風機12の回転数を下げ、外液SCを大きくする運転とする。これは、第1膨張弁4で内液SC制御することで、第1膨張弁4が開いて再熱器3に溜まった冷媒が排出され、第2膨張弁9でSH制御することで、冷媒を液溜め8及び室外熱交換器7に溜めることを容易とし、差圧により排出できない状況にあった冷媒を強制的に循環させることを目的とする。動作制御部51bは、内液SC≒5Kを満たしたと判定した場合(ステップS307のYES)、本制御を終了させる(ステップS308)。 In the intermediate operation at this time, the second expansion valve 9 performs SH control, and the first expansion valve 4 performs internal liquid SC control. At this time, the rotation speed of the indoor blower 11 is increased to reduce the internal liquid SC. At the same time, the rotational speed of the outdoor blower 12 is lowered to increase the external liquid SC. This is done by performing internal liquid SC control with the first expansion valve 4, which opens the refrigerant and discharges the refrigerant accumulated in the reheater 3, and by performing SH control with the second expansion valve 9, the refrigerant The purpose is to make it easier to store the refrigerant in the liquid reservoir 8 and the outdoor heat exchanger 7, and to forcibly circulate the refrigerant that could not be discharged due to the pressure difference. If the operation control unit 51b determines that the internal liquid SC≈5K is satisfied (YES in step S307), it ends this control (step S308).
 動作制御部51bは、上記判定式を満たし室外側からの冷媒排出可能と判定した場合(ステップS302のYES)、第2開閉弁6を開放する(ステップS303)。これは、室外熱交換器7への冷媒貯留を意図している。そして、動作制御部51bは、第2膨張弁9を閉状態から最小開度に開いて内液SC≒5Kとなるように制御を実施する。そして、動作制御部51bは、内液SC≒5Kを満たしたと判定した場合(ステップS304のYES)、第2開閉弁6を全閉し、本制御を終了させる(ステップS305)。なお、本制御を実施してから一定期間は本制御を実行しないようにすることで、第2開閉弁6を頻繁に開閉させることによって劣化するのを防ぎ、信頼性悪化を防ぐ。 When the operation control unit 51b determines that the above-mentioned determination formula is satisfied and the refrigerant can be discharged from the outdoor side (YES in step S302), the operation control unit 51b opens the second on-off valve 6 (step S303). This is intended to store refrigerant in the outdoor heat exchanger 7. Then, the operation control unit 51b performs control to open the second expansion valve 9 from the closed state to the minimum opening degree so that the internal liquid SC≈5K. When the operation control unit 51b determines that the internal liquid SC≈5K is satisfied (YES in step S304), the operation control unit 51b fully closes the second on-off valve 6 and ends this control (step S305). Note that by not executing this control for a certain period of time after executing this control, it is possible to prevent deterioration of the second on-off valve 6 due to frequent opening and closing, and to prevent deterioration in reliability.
 冷却運転時の冷媒分布制御及び除湿運転時の冷媒分布制御共に、終了時のSC判定値には目標に幅を設け、完全一致はしなくてもよいものとする。つまり、ステップS204、S207、S211、S214、S304、S307、S311、S314に関して、外液SCあるいは内液SCの判定値は5Kであるが、±αの幅を持たせてもよい。つまり、外液SCあるいは内液SCが判定値である5Kと完全一致はしなくてもよく、5-αK≦外液SCあるいは内液SC≦5+αKでも条件を満たすものとする。 For both the refrigerant distribution control during cooling operation and the refrigerant distribution control during dehumidification operation, a range is set as a target for the SC determination value at the end, and it is assumed that they do not need to match completely. That is, for steps S204, S207, S211, S214, S304, S307, S311, and S314, the determination value of external fluid SC or internal fluid SC is 5K, but may have a range of ±α. In other words, the external fluid SC or the internal fluid SC does not have to completely match the determination value of 5K, and the condition is satisfied even if 5-αK≦external fluid SC or internal fluid SC≦5+αK.
 また、ステップS204、S207、S211、S214、ステップS304、S307、S311、S314において、それぞれ条件を満たさなくてもあらかじめ設定された時間が経過したら、YESの処理に進むようにしてもよい。 Furthermore, in steps S204, S207, S211, S214, and steps S304, S307, S311, and S314, even if the conditions are not satisfied, the process may proceed to YES if a preset time has elapsed.
 本実施の形態1に係る動作制御部51bは、以上に述べた運転切替え制御及び冷媒分布制御により、冷媒量が適正値に調整される。そのため、除湿運転では、除湿運転時に必要とする再熱器3の再熱量を確保して、必要十分な除湿能力を発揮でき、冷却運転では、冷却運転時に必要とする室外熱交換器7の凝縮量を確保して、必要十分な冷却能力を発揮することができる。また、差圧により室外側あるいは室内側からの冷媒排出困難と判定した状況でも、中間運転にて冷媒を強制的に循環させることで意図した冷凍サイクルに状態を遷移させ、理想的な冷却能力を発揮することができる。 The operation control unit 51b according to the first embodiment adjusts the amount of refrigerant to an appropriate value through the operation switching control and refrigerant distribution control described above. Therefore, in the dehumidifying operation, the reheat amount of the reheater 3 required during the dehumidifying operation can be secured and the necessary and sufficient dehumidifying capacity can be demonstrated, and in the cooling operation, the condensation of the outdoor heat exchanger 7 required during the cooling operation can be It is possible to secure sufficient amount of cooling capacity and exhibit the necessary and sufficient cooling capacity. In addition, even in situations where it is determined that it is difficult to discharge the refrigerant from the outside or inside due to the pressure difference, the refrigerant is forcibly circulated in intermediate operation to transition the state to the intended refrigeration cycle and maintain the ideal cooling capacity. able to demonstrate.
 より具体的に、運転切替え制御時、動作制御部51bは、例えば、室外熱交換器7の出口の冷媒の温度を利用して、第2膨張弁9の開度を制御する。つまり、動作制御部51bは、冷媒温度センサ69において計測された室外熱交換器出口温度を用いて室外熱交換器7の過冷却度を求める。動作制御部51bは、室外熱交換器7の過冷却度を求める際、圧力センサ62から高圧圧力を取得すると共に、冷媒温度センサ69において計測された室外熱交換器出口温度を取得する。そして、動作制御部51bは、高圧圧力を飽和換算して凝縮温度を求め、凝縮温度から室外熱交換器出口温度を減算することにより、室外熱交換器7の過冷却度を求める。そして、動作制御部51bは、求めた過冷却度に応じ第2膨張弁9を制御する。これにより、室外熱交換器7に分布する冷媒量を調整する。なお、凝縮温度は、圧力センサ64から飽和換算した値を用いてもよい。 More specifically, during operation switching control, the operation control unit 51b controls the opening degree of the second expansion valve 9 by using, for example, the temperature of the refrigerant at the outlet of the outdoor heat exchanger 7. That is, the operation control unit 51b uses the outdoor heat exchanger outlet temperature measured by the refrigerant temperature sensor 69 to determine the degree of subcooling of the outdoor heat exchanger 7. When determining the degree of subcooling of the outdoor heat exchanger 7, the operation control unit 51b acquires the high pressure from the pressure sensor 62 and also acquires the outdoor heat exchanger outlet temperature measured by the refrigerant temperature sensor 69. Then, the operation control unit 51b calculates the condensation temperature by converting the high pressure into saturation, and subtracts the outdoor heat exchanger outlet temperature from the condensation temperature to determine the degree of supercooling of the outdoor heat exchanger 7. The operation control unit 51b then controls the second expansion valve 9 according to the obtained degree of supercooling. Thereby, the amount of refrigerant distributed in the outdoor heat exchanger 7 is adjusted. Note that the condensation temperature may be a value converted to saturation from the pressure sensor 64.
 また、動作制御部51bは、再熱器3による過熱度を判定値以上に保つように、第1膨張弁4のSH制御を実施する。これにより、余剰冷媒が液溜め8に貯留され、また、圧縮機1への液バックを抑制する。本実施の形態1において、動作制御部51bは、室内熱交換器5の過熱度を求める際、圧力センサ61から低圧圧力を取得すると共に、冷媒温度センサ65から吸入温度を取得する。そして、動作制御部51bは、低圧圧力を飽和換算して蒸発温度ETを求め、吸入温度から蒸発温度ETを減算することにより、室内熱交換器5の過熱度を求める。もっとも、室内熱交換器5の中間部に冷媒温度センサ(図示せず)を設け、当該冷媒温度センサによる計測温度を蒸発温度ETとして用いるようにしてもよい。 Further, the operation control unit 51b performs SH control of the first expansion valve 4 so as to maintain the degree of superheating by the reheater 3 at or above the determination value. As a result, surplus refrigerant is stored in the liquid reservoir 8, and liquid backflow to the compressor 1 is suppressed. In the first embodiment, when determining the degree of superheating of the indoor heat exchanger 5, the operation control unit 51b acquires the low pressure from the pressure sensor 61 and the suction temperature from the refrigerant temperature sensor 65. Then, the operation control unit 51b calculates the evaporation temperature ET by converting the low pressure into saturation, and subtracts the evaporation temperature ET from the suction temperature to calculate the degree of superheating of the indoor heat exchanger 5. However, a refrigerant temperature sensor (not shown) may be provided in the middle of the indoor heat exchanger 5, and the temperature measured by the refrigerant temperature sensor may be used as the evaporation temperature ET.
 冷却運転時の冷媒分布制御時、動作制御部51bは、例えば、室外熱交換器7の出口の冷媒の温度を利用して、第2膨張弁9の開度を制御する。つまり、動作制御部51bは、冷媒温度センサ69において計測された室外熱交換器出口温度を用いて室外熱交換器7の過冷却度を求める。動作制御部51bは、室外熱交換器7の過冷却度を求める際、圧力センサ62から高圧圧力を取得すると共に、冷媒温度センサ69から室外熱交換器出口温度を取得する。そして、動作制御部51bは、高圧圧力を飽和換算して凝縮温度を求め、凝縮温度から室外熱交換器出口温度を減算することにより、室外熱交換器7の過冷却度を求める。そして、動作制御部51bは、求めた過冷却度に応じて第2膨張弁9を制御すると共に、第1開閉弁2、第2開閉弁6、及び第1膨張弁4を制御することで、室外熱交換器7に分布する冷媒量を調整する。なお、凝縮温度は、圧力センサ64から飽和換算した値を用いてもよい。 During refrigerant distribution control during cooling operation, the operation control unit 51b controls the opening degree of the second expansion valve 9 by using, for example, the temperature of the refrigerant at the outlet of the outdoor heat exchanger 7. That is, the operation control unit 51b uses the outdoor heat exchanger outlet temperature measured by the refrigerant temperature sensor 69 to determine the degree of subcooling of the outdoor heat exchanger 7. When determining the degree of subcooling of the outdoor heat exchanger 7 , the operation control unit 51 b acquires the high pressure from the pressure sensor 62 and acquires the outdoor heat exchanger outlet temperature from the refrigerant temperature sensor 69 . Then, the operation control unit 51b calculates the condensation temperature by converting the high pressure into saturation, and subtracts the outdoor heat exchanger outlet temperature from the condensation temperature to determine the degree of supercooling of the outdoor heat exchanger 7. Then, the operation control unit 51b controls the second expansion valve 9 according to the obtained degree of supercooling, and also controls the first on-off valve 2, the second on-off valve 6, and the first expansion valve 4. The amount of refrigerant distributed in the outdoor heat exchanger 7 is adjusted. Note that the condensation temperature may be a value converted to saturation from the pressure sensor 64.
 除湿運転時の冷媒分布制御時、動作制御部51bは、例えば、再熱器3の出口の冷媒の温度を利用して、第1膨張弁4の開度を制御する。つまり、動作制御部51bは、冷媒温度センサ67において計測された再熱器出口温度を用いて再熱器3の過冷却度を求める。動作制御部51bは、再熱器3の過冷却度を求める際、圧力センサ62から高圧圧力を取得すると共に、冷媒温度センサ67から再熱器出口温度を取得する。そして、動作制御部51bは、高圧圧力を飽和換算して凝縮温度を求め、凝縮温度から再熱器出口温度を減算することにより、再熱器3の過冷却度を求める。そして、動作制御部51bは、求めた過冷却度に応じて第1膨張弁4を制御すると共に、第2開閉弁6、第3開閉弁10、及び第2膨張弁9を制御することで、再熱器3に分布する冷媒量を調整する。なお、凝縮温度は、圧力センサ63から飽和換算した値を用いてもよい。 During refrigerant distribution control during dehumidification operation, the operation control unit 51b controls the opening degree of the first expansion valve 4 using, for example, the temperature of the refrigerant at the outlet of the reheater 3. That is, the operation control unit 51b uses the reheater outlet temperature measured by the refrigerant temperature sensor 67 to determine the degree of subcooling of the reheater 3. When determining the degree of subcooling of the reheater 3, the operation control unit 51b acquires the high pressure from the pressure sensor 62 and acquires the reheater outlet temperature from the refrigerant temperature sensor 67. Then, the operation control unit 51b calculates the condensation temperature by converting the high pressure into saturation, and subtracts the reheater outlet temperature from the condensation temperature to determine the degree of supercooling of the reheater 3. Then, the operation control unit 51b controls the first expansion valve 4 according to the obtained degree of supercooling, and also controls the second on-off valve 6, the third on-off valve 10, and the second expansion valve 9. The amount of refrigerant distributed in the reheater 3 is adjusted. Note that the condensation temperature may be a value converted to saturation from the pressure sensor 63.
[冷媒漏洩時の処理及び動作]
 図10は、実施の形態1に係る空気調和装置200の冷媒漏洩時の各開閉弁及び各膨張弁の動作内容の一例を示す図である。
[Processing and operation in case of refrigerant leak]
FIG. 10 is a diagram illustrating an example of the operation details of each on-off valve and each expansion valve when a refrigerant leaks in the air conditioner 200 according to the first embodiment.
 次に、冷媒漏洩が発生した場合の制御装置50による処理内容、及び各開閉弁及び各膨張弁の動作内容の一例について説明する。 Next, an example of the processing content by the control device 50 when a refrigerant leak occurs and the operation content of each on-off valve and each expansion valve will be explained.
(室内冷媒漏洩センサ41が冷媒漏洩を検知した場合)
 室内冷媒漏洩センサ41が冷媒漏洩を検知した際、図10に示すように、制御装置50は、第1開閉弁2を閉状態とし、第2開閉弁6を開状態とし、第3開閉弁10を閉状態とし、第1膨張弁4を全開とし、第2膨張弁9を全閉とし、圧縮機1を運転させてポンプダウン運転を実施する。ポンプダウン運転を実施する際、制御装置50は、室内送風機11及び室外送風機12の回転数を、通常運転時の回転数よりも大きくするとよい。これは、漏れた冷媒が高濃度域をつくらないように送風量を高めて漏れた冷媒を拡散させるためである。上記のような弁制御とポンプダウン運転とにより、室内で冷媒漏れが発生したとき、冷媒を、第2開閉弁6から室外熱交換器7までの配管、室外熱交換器7、室外熱交換器7から液溜め8までの配管、液溜め8、及び液溜め8から第2膨張弁9までの配管などに溜めることができる。
(When indoor refrigerant leak sensor 41 detects refrigerant leak)
When the indoor refrigerant leak sensor 41 detects a refrigerant leak, as shown in FIG. 10, the control device 50 closes the first on-off valve 2, opens the second on-off valve 6, and closes the third on-off valve 10. is closed, the first expansion valve 4 is fully opened, the second expansion valve 9 is fully closed, and the compressor 1 is operated to perform pump-down operation. When performing the pump-down operation, the control device 50 preferably makes the rotation speeds of the indoor blower 11 and the outdoor blower 12 larger than the rotation speeds during normal operation. This is to increase the amount of air flow and diffuse the leaked refrigerant so that the leaked refrigerant does not create a high concentration area. Due to the valve control and pump down operation as described above, when refrigerant leaks indoors, the refrigerant is transferred to the pipes from the second on-off valve 6 to the outdoor heat exchanger 7, the outdoor heat exchanger 7, and the outdoor heat exchanger. The liquid can be stored in the piping from the liquid reservoir 7 to the liquid reservoir 8, the liquid reservoir 8, and the piping from the liquid reservoir 8 to the second expansion valve 9.
 また、制御装置50は、圧縮機1の吸入側の圧力が設定値よりも低くなったとき、または圧縮機1の吐出側の圧力が設定値よりも高くなったときに、圧縮機1の運転を停止させる。そして、制御装置50は、圧縮機1の運転を停止させた後に、第2開閉弁6を閉状態にする。このように、圧縮機1の停止後に第2開閉弁6を閉状態にすることで、冷媒の逆流を抑制することができる。そして、上記のように、空気調和装置100の運転を段階的に停止することで、安全性の向上を図ることができる。 The control device 50 also controls the operation of the compressor 1 when the pressure on the suction side of the compressor 1 becomes lower than the set value or when the pressure on the discharge side of the compressor 1 becomes higher than the set value. to stop. After stopping the operation of the compressor 1, the control device 50 closes the second on-off valve 6. In this way, by closing the second on-off valve 6 after the compressor 1 is stopped, it is possible to suppress the backflow of the refrigerant. As described above, safety can be improved by stopping the operation of the air conditioner 100 in stages.
 なお、ポンプダウン運転を実行した後に、圧縮機1と室外熱交換器7と第2膨張弁9と室内熱交換器5とに冷媒を循環させでも支障がないときは、第2開閉弁6を開にして冷却運転を実施することができる。冷却運転を実施することで、空調空間の温度上昇を防ぐことができるため、快適性の低下を抑制することができる。なお、圧縮機1と室外熱交換器7と第2膨張弁9と室内熱交換器5とに冷媒を循環させても支障がない状況としては、冷媒の漏洩箇所が、第1開閉弁2と第1膨張弁4との間、または第3開閉弁10と第1膨張弁4との間などで特定されている場合が想定される。 In addition, after executing the pump-down operation, if there is no problem in circulating the refrigerant among the compressor 1, outdoor heat exchanger 7, second expansion valve 9, and indoor heat exchanger 5, the second on-off valve 6 is turned on. Cooling operation can be carried out by opening. By performing the cooling operation, it is possible to prevent a rise in the temperature of the air-conditioned space, so it is possible to suppress a decrease in comfort. Note that the situation in which there is no problem even if the refrigerant is circulated between the compressor 1, the outdoor heat exchanger 7, the second expansion valve 9, and the indoor heat exchanger 5 is that the refrigerant leakage point is between the first on-off valve 2 and the A case is assumed in which it is specified between the first expansion valve 4 or between the third on-off valve 10 and the first expansion valve 4.
 (室外冷媒漏洩センサ42が冷媒漏洩を検知した場合)
 室外冷媒漏洩センサ42が冷媒漏洩を検知した際、図10に示すように、制御装置50は、第1開閉弁2を開状態とし、第2開閉弁6を閉状態にし、第3開閉弁10を閉状態にし、第1膨張弁4を全閉とし、第2膨張弁9を全開とし、圧縮機1を運転させてポンプダウン運転を実施する。ポンプダウン運転を実施する際、制御装置50は、室内送風機11及び室外送風機12の回転数を、通常運転時の回転数よりも大きくするとよい。上記のような弁制御とポンプダウン運転とにより、室外で冷媒漏れが発生したとき、冷媒を、第1開閉弁2から再熱器3までの配管、再熱器3、及び再熱器3から第1膨張弁4までの配管などに溜めることができる。
(When the outdoor refrigerant leak sensor 42 detects refrigerant leak)
When the outdoor refrigerant leak sensor 42 detects a refrigerant leak, as shown in FIG. 10, the control device 50 opens the first on-off valve 2, closes the second on-off valve 6, and closes the third on-off valve 10. is closed, the first expansion valve 4 is fully closed, the second expansion valve 9 is fully open, and the compressor 1 is operated to perform pump-down operation. When performing the pump-down operation, the control device 50 preferably makes the rotation speeds of the indoor blower 11 and the outdoor blower 12 larger than the rotation speeds during normal operation. Due to the valve control and pump down operation as described above, when a refrigerant leak occurs outdoors, the refrigerant is removed from the piping from the first on-off valve 2 to the reheater 3, the reheater 3, and the reheater 3. It can be stored in the piping up to the first expansion valve 4.
 また、制御装置50は、圧縮機1の吸入側の圧力が設定値よりも低くなったとき、または圧縮機1の吐出側の圧力が設定値よりも高くなったときに、圧縮機1の運転を停止させる。そして、制御装置50は、圧縮機1の運転を停止させた後に、第1開閉弁2を閉状態にする。このように、圧縮機1の停止後に第1開閉弁2を閉状態にすることで、冷媒の逆流を抑制することができる。そして、上記のように、空気調和装置100の運転を段階的に停止することで、安全性を高めることができる。 The control device 50 also controls the operation of the compressor 1 when the pressure on the suction side of the compressor 1 becomes lower than the set value or when the pressure on the discharge side of the compressor 1 becomes higher than the set value. to stop. After stopping the operation of the compressor 1, the control device 50 closes the first on-off valve 2. In this way, by closing the first on-off valve 2 after the compressor 1 is stopped, it is possible to suppress the backflow of the refrigerant. As described above, safety can be improved by stopping the operation of the air conditioner 100 in stages.
 なお、ポンプダウン運転を実行した後に、圧縮機1と再熱器3と第1膨張弁4と室内熱交換器5とに冷媒を循環させても支障がないときは、第1開閉弁2を開にして、除湿運転を実施することができる。除湿運転を継続することで、空調空間の湿度上昇を防ぐことができるため、快適性の低下を抑制することができる。なお、圧縮機1と再熱器3と第1膨張弁4と室内熱交換器5とに冷媒を循環させても支障がない状況としては、冷媒の漏洩箇所が、第2開閉弁6と第2膨張弁9との間などで特定されている場合が想定される。 In addition, after executing the pump-down operation, if there is no problem in circulating the refrigerant among the compressor 1, reheater 3, first expansion valve 4, and indoor heat exchanger 5, the first on-off valve 2 is turned on. It is possible to carry out dehumidification operation by opening the door. By continuing the dehumidifying operation, it is possible to prevent an increase in the humidity in the air-conditioned space, so it is possible to suppress a decrease in comfort. Note that in a situation where there is no problem even if the refrigerant is circulated among the compressor 1, reheater 3, first expansion valve 4, and indoor heat exchanger 5, the refrigerant leakage point is between the second on-off valve 6 and the second on-off valve 6. A case is assumed in which it is specified between the two expansion valves 9, etc.
 以上のように、本実施の形態1に係る空気調和装置100では、除湿運転時に、制御装置50が第2開閉弁6を閉状態にすることから、室外熱交換器7への冷媒の寝込みを防ぐことができるため、除湿能力の低下を抑制し、除湿運転を効率よく行うことができる。また、制御装置50は、除湿運転時に、第2膨張弁9を全閉の状態にしてもよい。このようにすれば、冷却回路32から主回路31への冷媒の流入を防ぐことができるため、除湿運転の運転効率を高めることができる。 As described above, in the air conditioner 100 according to the first embodiment, the control device 50 closes the second on-off valve 6 during the dehumidification operation, so that the refrigerant does not accumulate in the outdoor heat exchanger 7. Since this can be prevented, dehumidification ability can be suppressed from decreasing, and dehumidification operation can be performed efficiently. Further, the control device 50 may fully close the second expansion valve 9 during the dehumidification operation. In this way, it is possible to prevent the refrigerant from flowing into the main circuit 31 from the cooling circuit 32, thereby increasing the efficiency of the dehumidifying operation.
 また、主回路31は、圧縮機1と再熱器3との間の主配管21と冷却配管22との接続部分である第1接続部Mと再熱器3との間に、開閉動作を行う第1開閉弁2を有している。そして、制御装置50は、冷却運転時に、第1開閉弁2を閉状態にするようになっている。よって、再熱器3への冷媒の流入を防ぐことができるため、冷却運転時の冷媒循環の円滑化と共に、運転効率の向上を図ることができる。加えて、制御装置50は、冷却運転時に、第1膨張弁4を全閉の状態にしてもよい。このようにすれば、第1接続部Mから再熱器3及び第1膨張弁4を経て第2接続部Nまでの流路に滞留している冷媒の、室内熱交換器5への流入を防ぐことができるため、冷却運転時の運転効率をさらに高めることができる。 Further, the main circuit 31 performs an opening/closing operation between the first connection part M, which is the connection part between the main pipe 21 and the cooling pipe 22 between the compressor 1 and the reheater 3, and the reheater 3. It has a first opening/closing valve 2 that operates. The control device 50 is configured to close the first on-off valve 2 during cooling operation. Therefore, since it is possible to prevent the refrigerant from flowing into the reheater 3, it is possible to smooth the refrigerant circulation during the cooling operation and improve the operating efficiency. In addition, the control device 50 may fully close the first expansion valve 4 during the cooling operation. In this way, the refrigerant remaining in the flow path from the first connection part M to the second connection part N via the reheater 3 and the first expansion valve 4 is prevented from flowing into the indoor heat exchanger 5. Since this can be prevented, the operating efficiency during cooling operation can be further improved.
 さらに、制御装置50は、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、第1開閉弁2を閉状態にし、第2膨張弁9を全閉にするようになっている。よって、室内に設けられた主回路31への冷媒の流入を防ぐことができ、室外熱交換器7及び液溜め8に冷媒を貯留できるため、室内への冷媒の漏洩を抑制することができる。加えて、制御装置50は、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、第1膨張弁4を全閉の状態にしてもよい。このようにすれば、再熱器3などに滞留している冷媒の室内熱交換器5への流入を防ぐことができるため、冷媒の漏洩箇所が、第1開閉弁2から再熱器3を経て第1膨張弁4までの流路上にない場合、室内への冷媒漏洩を低減することができる。また、第1開閉弁2、第3開閉弁10、及び第1膨張弁4を閉とし、冷媒回路30の第1開閉弁2から第1膨張弁4までの部分を独立させることで、冷媒の漏洩箇所の特定処理を促進してもよい。 Further, when a refrigerant leak is detected by the indoor refrigerant leak sensor 41, the control device 50 closes the first on-off valve 2 and fully closes the second expansion valve 9. Therefore, the refrigerant can be prevented from flowing into the main circuit 31 provided indoors, and the refrigerant can be stored in the outdoor heat exchanger 7 and the liquid reservoir 8, so that leakage of the refrigerant into the room can be suppressed. In addition, the control device 50 may fully close the first expansion valve 4 when the indoor refrigerant leak sensor 41 detects refrigerant leakage. In this way, it is possible to prevent the refrigerant stagnant in the reheater 3 etc. from flowing into the indoor heat exchanger 5, so that the refrigerant leakage point is from the first on-off valve 2 to the reheater 3. If the refrigerant is not on the flow path leading to the first expansion valve 4, leakage of the refrigerant into the room can be reduced. In addition, by closing the first on-off valve 2, the third on-off valve 10, and the first expansion valve 4, and making the part of the refrigerant circuit 30 from the first on-off valve 2 to the first expansion valve 4 independent, the refrigerant The process of identifying the location of the leak may be facilitated.
 また、制御装置50は、室外冷媒漏洩センサ42において冷媒の漏洩が検知されたとき、第2開閉弁6を閉状態にし、第1膨張弁4を全閉にするようになっている。これにより、室外への冷媒の流れを遮断することができ、また、室外の冷媒を室内熱交換器5に貯蔵できるため、室外での冷媒の漏洩を抑制することができる。加えて、制御装置50は、室外冷媒漏洩センサ42において冷媒の漏洩が検知されたとき、第2膨張弁9を全閉の状態にしてもよい。このようにすれば、冷媒回路30の第2開閉弁6から第2膨張弁9までの部分を独立させることができ、冷媒の漏洩箇所を迅速に特定させることができる。 Furthermore, when a refrigerant leak is detected by the outdoor refrigerant leak sensor 42, the control device 50 closes the second on-off valve 6 and fully closes the first expansion valve 4. Thereby, the flow of the refrigerant to the outside can be blocked, and the refrigerant from the outside can be stored in the indoor heat exchanger 5, so that leakage of the refrigerant to the outside can be suppressed. In addition, the control device 50 may fully close the second expansion valve 9 when the outdoor refrigerant leak sensor 42 detects refrigerant leakage. In this way, the portion of the refrigerant circuit 30 from the second on-off valve 6 to the second expansion valve 9 can be made independent, and the location of the refrigerant leak can be quickly identified.
 ところで、運転切替え制御あるいは冷媒分布制御を実施しない場合は、室内または室外の温度が低い方に冷媒が流れやすくなる。つまり、運転切替え制御あるいは冷媒分布制御を行わなければ、室内の温度が室外の温度よりも低いときは、再熱器3に冷媒が流れやすくなるため、室内の温度が所望の温度よりも上昇し、相対湿度が所望の湿度よりも低下する。一方、室外の温度が室内の温度よりも低いときは、再熱器3に冷媒が流れにくくなるため、室内の温度が所望の目温度よりも低下し、相対湿度が所望の湿度よりも上昇する。この点、制御装置50は、上記の通り、冷媒分布を適正な量に調整することができる。そのため、再熱器3による加熱量を確保して、室内機70に除湿能力を発揮させることができる。 By the way, if the operation switching control or the refrigerant distribution control is not performed, the refrigerant tends to flow toward the lower temperature indoors or outdoors. In other words, unless operation switching control or refrigerant distribution control is performed, when the indoor temperature is lower than the outdoor temperature, the refrigerant will flow more easily to the reheater 3, so the indoor temperature will not rise above the desired temperature. , the relative humidity drops below the desired humidity. On the other hand, when the outdoor temperature is lower than the indoor temperature, it becomes difficult for the refrigerant to flow to the reheater 3, so the indoor temperature falls below the desired target temperature and the relative humidity rises above the desired humidity. . In this regard, the control device 50 can adjust the refrigerant distribution to an appropriate amount as described above. Therefore, the amount of heating by the reheater 3 can be ensured, and the indoor unit 70 can exhibit its dehumidifying ability.
 また、室外熱交換器7の過冷却度を判定値以上に保つように、第2膨張弁9だけを制御すると、液バックが発生するおそれがある。第2膨張弁9のみの制御では、余剰冷媒を低減することができないためである。この点、制御装置50は、上記の通り、再熱器3による過熱度を判定値以上に保つように第1膨張弁4のSH制御を実行し、室外熱交換器7による過熱度を判定値以上に保つように第2膨張弁9のSH制御(冷媒量調整制御の一部制御のみ)を実施する。これにより、余剰冷媒が液溜め8に貯留されるとともに冷媒を室外熱交換器7に溜めることができ、再熱器3にも溜めることはできる(冷媒量調整制御の一部制御のみ)ため、液バックの発生を抑制することができる。すなわち、本実施の形態1に係る空気調和装置100によれば、第2膨張弁9でのSC制御及びSH制御(冷媒量調整制御の一部制御のみ)と、第1膨張弁4でのSH制御及びSC制御(冷媒量調整制御の一部制御のみ)とを組み合わせることで、再熱能力の低下を抑止すると共に、液バックに起因した圧縮機1の損傷発生を回避することができる。 Further, if only the second expansion valve 9 is controlled to keep the degree of subcooling of the outdoor heat exchanger 7 above the determination value, there is a risk that liquid back will occur. This is because the surplus refrigerant cannot be reduced by controlling only the second expansion valve 9. In this regard, as described above, the control device 50 executes the SH control of the first expansion valve 4 so as to maintain the degree of superheating by the reheater 3 at or above the determination value, and adjusts the degree of superheating by the outdoor heat exchanger 7 to the determination value. SH control (only part of the refrigerant amount adjustment control) of the second expansion valve 9 is performed so as to maintain the above value. As a result, the surplus refrigerant is stored in the liquid reservoir 8, the refrigerant can be stored in the outdoor heat exchanger 7, and it can also be stored in the reheater 3 (only part of the refrigerant amount adjustment control). The occurrence of liquid back can be suppressed. That is, according to the air conditioner 100 according to the first embodiment, the SC control and the SH control (only part of the refrigerant amount adjustment control) at the second expansion valve 9 and the SH control at the first expansion valve 4 are performed. By combining the control and the SC control (only part of the refrigerant amount adjustment control), it is possible to suppress a decrease in reheating capacity and avoid damage to the compressor 1 due to liquid back.
 また、冷媒回路30を循環させる冷媒として非共沸混合冷媒を用いることで、室内熱交換器5は、冷媒の入口側の温度が、冷媒の出口側の温度よりも低くなる。また、再熱器3は、冷媒の入口側の温度が、冷媒の出口側の温度よりも高くなる。そして、室内熱交換器5と再熱器3とを、室内熱交換器5における冷媒の入口側を通過した空気が、再熱器3における冷媒の出口側を通過し、かつ、室内熱交換器5における冷媒の出口側を通過した空気が、再熱器3における冷媒の入口側を通過するように配置する。例えば、室内熱交換器5の冷媒温度が相対的に低い部分と、再熱器3の冷媒温度が相対的に高い部分とが対向し、かつ室内熱交換器5の冷媒温度が相対的に高い部分と、再熱器3の冷媒温度が相対的に低い部分とが対向するように配置する。つまり、室内熱交換器5と再熱器3とを、いずれも冷媒が上部から下部へ流れるように設ける。室内熱交換器5と再熱器3とをこのように配置することで、室内機70から空調空間に吹き出される空気の温度である吹出し温度のばらつきと、吹出し温度のばらつきに起因した湿度のむらとを低減することができる。そのため、室内機70から空調空間に吹き出される空気の湿度のばらつきを抑制すると共に、室内の空気の状態の安定化を図ることができる。 Furthermore, by using a non-azeotropic mixed refrigerant as the refrigerant that is circulated through the refrigerant circuit 30, the temperature at the inlet side of the refrigerant in the indoor heat exchanger 5 becomes lower than the temperature at the outlet side of the refrigerant. Further, in the reheater 3, the temperature on the refrigerant inlet side is higher than the temperature on the refrigerant outlet side. Then, the air that has passed through the refrigerant inlet side of the indoor heat exchanger 5 passes through the refrigerant outlet side of the reheater 3, and the indoor heat exchanger 5 and the reheater 3 The reheater 3 is arranged so that the air that has passed through the refrigerant outlet side of the reheater 5 passes through the refrigerant inlet side of the reheater 3. For example, a portion of the indoor heat exchanger 5 where the refrigerant temperature is relatively low is opposed to a portion of the reheater 3 where the refrigerant temperature is relatively high, and the refrigerant temperature of the indoor heat exchanger 5 is relatively high. and a portion of the reheater 3 where the refrigerant temperature is relatively low are arranged so as to face each other. That is, the indoor heat exchanger 5 and the reheater 3 are both provided so that the refrigerant flows from the top to the bottom. By arranging the indoor heat exchanger 5 and the reheater 3 in this way, variations in the blowout temperature, which is the temperature of the air blown out from the indoor unit 70 into the air-conditioned space, and unevenness in humidity caused by the dispersion in the blowout temperature are reduced. and can be reduced. Therefore, variations in the humidity of the air blown out from the indoor unit 70 into the air-conditioned space can be suppressed, and the state of the indoor air can be stabilized.
 以上、実施の形態1に係る空気調和装置100は、主配管21によって圧縮機1、第1開閉弁2、再熱器3、第1膨張弁4、及び蒸発器が順次連結された主回路31と、圧縮機1と第1開閉弁2との間から第1膨張弁4と蒸発器との間までをつなぐ冷却配管22によって第2開閉弁6、凝縮器、及び第2膨張弁9が順次連結された冷却回路32と、圧縮機1の吐出側から再熱器3と第1膨張弁4との間までをつなぐバイパス配管23及びバイパス配管23を開閉する第3開閉弁10を有するバイパス回路33と、を含み、冷媒が循環する冷媒回路30と、冷媒回路30を制御する制御装置50と、備え、再熱器3及び蒸発器は、空調空間に配置され、凝縮器は、空調空間の外部に配置され、制御装置50は、運転を空調空間の空気の冷却を行う冷却運転または空調空間の空気の除湿を行う除湿運転に切り替える前に、第1開閉弁2及び第2開閉弁6を開状態にし、第3開閉弁10を閉状態にし、第1膨張弁4を用いて圧縮機1の吸入側の過熱度の制御を行い、第2膨張弁9を用いて凝縮器の過冷却度の制御を行う、運転切替え制御を実施するものである。 As described above, the air conditioner 100 according to the first embodiment includes a main circuit 31 in which the compressor 1 , the first on-off valve 2 , the reheater 3 , the first expansion valve 4 , and the evaporator are sequentially connected by the main pipe 21 . The second on-off valve 6, the condenser, and the second expansion valve 9 are sequentially operated by the cooling pipe 22 that connects between the compressor 1 and the first on-off valve 2 and between the first expansion valve 4 and the evaporator. A bypass circuit having a connected cooling circuit 32, a bypass pipe 23 connecting from the discharge side of the compressor 1 to between the reheater 3 and the first expansion valve 4, and a third on-off valve 10 that opens and closes the bypass pipe 23. 33, a refrigerant circuit 30 in which refrigerant circulates, and a control device 50 for controlling the refrigerant circuit 30, the reheater 3 and the evaporator are arranged in the air-conditioned space, and the condenser is arranged in the air-conditioned space. Arranged externally, the control device 50 controls the first on-off valve 2 and the second on-off valve 6 before switching the operation to a cooling operation that cools the air in the air-conditioned space or a dehumidification operation that dehumidifies the air in the air-conditioned space. the third on-off valve 10 is closed, the first expansion valve 4 is used to control the degree of superheating on the suction side of the compressor 1, and the second expansion valve 9 is used to control the degree of supercooling of the condenser. This is to perform operation switching control.
 実施の形態1に係る空気調和装置100によれば、制御装置50は、運転を冷却運転または除湿運転に切り替える前に、第1開閉弁2及び第2開閉弁6を開状態にし、第3開閉弁10を閉状態にし、第1膨張弁4を用いて圧縮機1の吸入側の過熱度の制御を行い、第2膨張弁9を用いて凝縮器の過冷却度の制御を行う、運転切替え制御を実施するものである。この運転切替え制御を実施することにより、冷媒量が適正値に調整されるため、冷却運転または除湿運転を行う前に各熱交換器に分布する冷媒に偏りが発生するのを抑制することができる。 According to the air conditioner 100 according to the first embodiment, the control device 50 opens the first on-off valve 2 and the second on-off valve 6 and opens the third on-off valve before switching the operation to the cooling operation or the dehumidification operation. Operation switching in which the valve 10 is closed, the first expansion valve 4 is used to control the degree of superheating on the suction side of the compressor 1, and the second expansion valve 9 is used to control the degree of supercooling of the condenser. This is to carry out control. By implementing this operation switching control, the amount of refrigerant is adjusted to an appropriate value, so it is possible to prevent uneven distribution of refrigerant in each heat exchanger before performing cooling operation or dehumidification operation. .
 また、実施の形態1に係る空気調和装置100において、制御装置50は、運転切替制御時において、凝縮器の過冷却度及び圧縮機1の吸入側の過熱度があらかじめ設定された値になったら、あるいは、あらかじめ設定された時間が経過したら、運転を冷却運転または除湿運転に切り替えるものである。 Furthermore, in the air conditioner 100 according to the first embodiment, the control device 50 controls, when the degree of subcooling of the condenser and the degree of superheating of the suction side of the compressor 1 reach preset values during operation switching control. Alternatively, after a preset time has elapsed, the operation is switched to cooling operation or dehumidification operation.
 実施の形態1に係る空気調和装置100によれば、冷媒量が適正値に調整された後、適切なタイミングで運転を冷却運転または除湿運転に切り替えることができる。 According to the air conditioner 100 according to the first embodiment, after the refrigerant amount is adjusted to an appropriate value, the operation can be switched to the cooling operation or the dehumidification operation at an appropriate timing.
 また、実施の形態1に係る空気調和装置100において、制御装置50は、冷却運転時において、凝縮器の過冷却度があらかじめ設定された値以下の場合であって、凝縮器の凝縮温度が、圧縮機1の周波数を低くするもしくは圧縮機1を停止させる制御である高圧保護が実施される値よりも低く、かつ、内液温が、蒸発器の蒸発温度よりも高い場合、凝縮器の過冷却度があらかじめ設定された値となるように、第1膨張弁4を制御する、冷媒分布制御を実施するものである。 Further, in the air conditioner 100 according to the first embodiment, the control device 50 controls, during the cooling operation, when the degree of subcooling of the condenser is equal to or less than a preset value, and the condensation temperature of the condenser is If the internal liquid temperature is lower than the value at which high-pressure protection is implemented, which is control to lower the frequency of compressor 1 or stop compressor 1, and higher than the evaporation temperature of the evaporator, the condenser is overheated. Refrigerant distribution control is performed to control the first expansion valve 4 so that the degree of cooling becomes a preset value.
 実施の形態1に係る空気調和装置100によれば、冷却運転時において、冷却運転時に必要とする室外熱交換器7の凝縮量を確保して、必要十分な冷却能力を発揮することができる。また、冷媒量を適正値に調整するに当たって、室内側からの冷媒排出を実施するにあたり差圧による排出を行うことができ、かつ、室内側からの冷媒排出を実施して冷媒の分布を室外側に多くした際に高圧異常とならずに済む。 According to the air conditioner 100 according to the first embodiment, during the cooling operation, the amount of condensation of the outdoor heat exchanger 7 required during the cooling operation can be ensured, and the necessary and sufficient cooling capacity can be exhibited. In addition, when adjusting the amount of refrigerant to an appropriate value, it is possible to discharge the refrigerant from the indoor side using differential pressure, and by discharging the refrigerant from the indoor side, the refrigerant distribution can be adjusted to the outdoor side. High pressure abnormalities do not occur when the amount is increased.
 また、実施の形態1に係る空気調和装置100において、制御装置50は、冷却運転時において、凝縮器の過冷却度があらかじめ設定された値以下の場合であって、凝縮器の凝縮温度が、圧縮機1の周波数を低くするもしくは圧縮機1を停止させる制御である高圧保護が実施される値よりも低くない、あるいは、内液温が、蒸発器の蒸発温度よりも高くない場合、第1開閉弁2及び第2開閉弁6を開状態にし、第3開閉弁10を閉状態にし、第1膨張弁4を用いて再熱器3の過冷却度の制御を行い、第2膨張弁9を用いて圧縮機1の吸入側の過熱度の制御を行う、冷媒分布制御を実施するものである。 Further, in the air conditioner 100 according to the first embodiment, the control device 50 controls, during the cooling operation, when the degree of subcooling of the condenser is equal to or less than a preset value, and the condensation temperature of the condenser is If the internal liquid temperature is not lower than the value at which high pressure protection, which is control to lower the frequency of the compressor 1 or stop the compressor 1, is implemented, or if the internal liquid temperature is not higher than the evaporation temperature of the evaporator, the first The on-off valve 2 and the second on-off valve 6 are opened, the third on-off valve 10 is closed, the first expansion valve 4 is used to control the degree of supercooling of the reheater 3, and the second expansion valve 9 is closed. This is used to control the degree of superheating on the suction side of the compressor 1, thereby implementing refrigerant distribution control.
 実施の形態1に係る空気調和装置100によれば、冷却運転時において、差圧により室内側からの冷媒排出困難と判定した状況でも、中間運転にて冷媒を強制的に循環させることで意図した冷凍サイクルに状態を遷移させ、理想的な冷却能力を発揮することができる。 According to the air conditioner 100 according to the first embodiment, even in a situation where it is determined that it is difficult to discharge the refrigerant from the indoor side due to the pressure difference during the cooling operation, the intended refrigerant is forcibly circulated in the intermediate operation. The state can be changed to the refrigeration cycle and the ideal cooling capacity can be demonstrated.
 また、実施の形態1に係る空気調和装置100において、制御装置50は、冷却運転時において、凝縮器の過冷却度があらかじめ設定された値より大きい場合であって、凝縮器の凝縮温度が、内液温よりも高い場合、第1開閉弁2を開放し、凝縮器の過冷却度があらかじめ設定された値となるように、第1膨張弁4を制御する、冷媒分布制御を実施するものである。 Further, in the air conditioner 100 according to the first embodiment, the control device 50 controls, during the cooling operation, when the degree of subcooling of the condenser is larger than a preset value, the condensation temperature of the condenser is When the temperature is higher than the internal liquid temperature, the first on-off valve 2 is opened and the first expansion valve 4 is controlled so that the degree of supercooling of the condenser becomes a preset value. It is.
 実施の形態1に係る空気調和装置100によれば、冷却運転時において、冷却運転時に必要とする室外熱交換器7の凝縮量を確保して、必要十分な冷却能力を発揮することができる。また、冷媒量を適正値に調整するに当たって、室内側からの冷媒排出を実施するにあたり差圧による排出を行うことができる。 According to the air conditioner 100 according to the first embodiment, during the cooling operation, the amount of condensation of the outdoor heat exchanger 7 required during the cooling operation can be ensured, and the necessary and sufficient cooling capacity can be exhibited. Further, in adjusting the amount of refrigerant to an appropriate value, the refrigerant can be discharged from the indoor side using a differential pressure.
 また、実施の形態1に係る空気調和装置100において、制御装置50は、冷却運転時において、凝縮器の過冷却度があらかじめ設定された値より大きい場合であって、凝縮器の凝縮温度が、内液温よりも高くない場合、第1開閉弁2及び第2開閉弁6を開状態にし、第3開閉弁10を閉状態にし、第1膨張弁4を用いて圧縮機1の吸入側の過熱度の制御を行い、第2膨張弁9を用いて凝縮器の過冷却度の制御を行う、冷媒分布制御を実施するものである。 Further, in the air conditioner 100 according to the first embodiment, the control device 50 controls, during the cooling operation, when the degree of subcooling of the condenser is larger than a preset value, the condensation temperature of the condenser is If the temperature is not higher than the internal liquid temperature, the first on-off valve 2 and the second on-off valve 6 are opened, the third on-off valve 10 is closed, and the first expansion valve 4 is used to open the suction side of the compressor 1. The refrigerant distribution control is performed by controlling the degree of superheating and controlling the degree of subcooling of the condenser using the second expansion valve 9.
 実施の形態1に係る空気調和装置100によれば、冷却運転時において、差圧により室内側からの冷媒排出困難と判定した状況でも、中間運転にて冷媒を強制的に循環させることで意図した冷凍サイクルに状態を遷移させ、理想的な冷却能力を発揮することができる。 According to the air conditioner 100 according to the first embodiment, even in a situation where it is determined that it is difficult to discharge the refrigerant from the indoor side due to the pressure difference during the cooling operation, the intended refrigerant is forcibly circulated in the intermediate operation. The state can be changed to the refrigeration cycle and the ideal cooling capacity can be demonstrated.
 また、実施の形態1に係る空気調和装置100において、制御装置50は、除湿運転時において、再熱器3の過冷却度があらかじめ設定された値以下の場合であって、再熱器3の凝縮温度が、圧縮機1の周波数を低くするもしくは圧縮機1を停止させる制御である高圧保護が実施される値よりも低く、かつ、外液温が、蒸発器の蒸発温度よりも高い場合、再熱器3の過冷却度があらかじめ設定された値となるように、第2膨張弁9を制御する、冷媒分布制御を実施するものである。 Further, in the air conditioner 100 according to the first embodiment, the control device 50 controls the reheater 3 when the degree of subcooling of the reheater 3 is less than or equal to a preset value during the dehumidifying operation. If the condensing temperature is lower than the value at which high pressure protection is implemented, which is control to lower the frequency of the compressor 1 or stop the compressor 1, and the external liquid temperature is higher than the evaporation temperature of the evaporator, Refrigerant distribution control is performed to control the second expansion valve 9 so that the degree of subcooling of the reheater 3 becomes a preset value.
 実施の形態1に係る空気調和装置100によれば、除湿運転時において、除湿運転時に必要とする再熱器3の再熱量を確保して、必要十分な除湿能力を発揮できる。また、冷媒量を適正値に調整するに当たって、室外側からの冷媒排出を実施するにあたり差圧による排出を行うことができ、かつ、室外側からの冷媒排出を実施して冷媒の分布を室内側に多くした際に高圧異常とならずに済む。 According to the air conditioner 100 according to the first embodiment, during the dehumidifying operation, the reheat amount of the reheater 3 required during the dehumidifying operation can be ensured, and the necessary and sufficient dehumidifying ability can be exhibited. In addition, when adjusting the amount of refrigerant to an appropriate value, it is possible to discharge the refrigerant from the outdoor side using differential pressure, and also to adjust the distribution of the refrigerant to the indoor side by discharging the refrigerant from the outdoor side. High pressure abnormalities do not occur when the amount is increased.
 また、実施の形態1に係る空気調和装置100において、制御装置50は、除湿運転時において、再熱器3の過冷却度があらかじめ設定された値以下の場合であって、再熱器3の凝縮温度が、圧縮機1の周波数を低くするもしくは圧縮機1を停止させる制御である高圧保護が実施される値よりも低くない、あるいは、外液温が、蒸発器の蒸発温度よりも高くない場合、第1開閉弁2及び第2開閉弁6を開状態にし、第3開閉弁10を閉状態にし、第1膨張弁4を用いて圧縮機1の吸入側の過熱度の制御を行い、第2膨張弁9を用いて凝縮器の過冷却度の制御を行う、冷媒分布制御を実施するものである。 Further, in the air conditioner 100 according to the first embodiment, the control device 50 controls the reheater 3 when the degree of subcooling of the reheater 3 is less than or equal to a preset value during the dehumidifying operation. The condensing temperature is not lower than the value at which high pressure protection is implemented, which is control to lower the frequency of compressor 1 or stop compressor 1, or the external liquid temperature is not higher than the evaporation temperature of the evaporator. In this case, the first on-off valve 2 and the second on-off valve 6 are opened, the third on-off valve 10 is closed, and the first expansion valve 4 is used to control the degree of superheat on the suction side of the compressor 1. The second expansion valve 9 is used to control the degree of subcooling of the condenser, thereby implementing refrigerant distribution control.
 実施の形態1に係る空気調和装置100によれば、除湿運転時において、差圧により室外側からの冷媒排出困難と判定した状況でも、中間運転にて冷媒を強制的に循環させることで意図した冷凍サイクルに状態を遷移させ、理想的な冷却能力を発揮することができる。 According to the air conditioner 100 according to the first embodiment, even in a situation where it is determined that it is difficult to discharge the refrigerant from the outdoor side due to the pressure difference during the dehumidification operation, the intended refrigerant is forcibly circulated in the intermediate operation. The state can be changed to the refrigeration cycle and the ideal cooling capacity can be demonstrated.
 また、実施の形態1に係る空気調和装置100において、制御装置50は、除湿運転時において、再熱器3の過冷却度があらかじめ設定された値より大きい場合であって、再熱器3の凝縮温度が、外液温よりも高い場合、第2開閉弁6を開放し、再熱器3の過冷却度があらかじめ設定された値となるように、第2膨張弁9を制御する、冷媒分布制御を実施するものである。 Further, in the air conditioner 100 according to the first embodiment, the control device 50 controls the reheater 3 when the degree of subcooling of the reheater 3 is larger than a preset value during dehumidification operation. When the condensation temperature is higher than the external liquid temperature, the second on-off valve 6 is opened and the second expansion valve 9 is controlled so that the degree of subcooling of the reheater 3 becomes a preset value. This is to implement distribution control.
 実施の形態1に係る空気調和装置100によれば、除湿運転時において、除湿運転時に必要とする再熱器3の凝縮量を確保して、必要十分な冷却能力を発揮することができる。また、冷媒量を適正値に調整するに当たって、室外側からの冷媒排出を実施するにあたり差圧による排出を行うことができる。 According to the air conditioner 100 according to the first embodiment, during the dehumidification operation, the amount of condensation of the reheater 3 required during the dehumidification operation can be ensured, and the necessary and sufficient cooling capacity can be exhibited. Further, in adjusting the amount of refrigerant to an appropriate value, the refrigerant can be discharged from the outdoor side using a differential pressure.
 また、実施の形態1に係る空気調和装置100において、制御装置50は、除湿運転時において、再熱器3の過冷却度があらかじめ設定された値より大きい場合であって、再熱器3の凝縮温度が、外液温よりも高くない場合、第1開閉弁2及び第2開閉弁6を開状態にし、第3開閉弁10を閉状態にし、第1膨張弁4を用いて再熱器3の過冷却度の制御を行い、第2膨張弁9を用いて圧縮機1の吸入側の過熱度の制御を行う、冷媒分布制御を実施するものである。 Further, in the air conditioner 100 according to the first embodiment, the control device 50 controls the reheater 3 when the degree of subcooling of the reheater 3 is larger than a preset value during dehumidification operation. When the condensing temperature is not higher than the external liquid temperature, the first on-off valve 2 and the second on-off valve 6 are opened, the third on-off valve 10 is closed, and the first expansion valve 4 is used to operate the reheater. The second expansion valve 9 controls the degree of supercooling on the suction side of the compressor 1, thereby implementing refrigerant distribution control.
 実施の形態1に係る空気調和装置100によれば、除湿運転時において、差圧により室外側からの冷媒排出困難と判定した状況でも、中間運転にて冷媒を強制的に循環させることで意図した冷凍サイクルに状態を遷移させ、理想的な冷却能力を発揮することができる。 According to the air conditioner 100 according to the first embodiment, even in a situation where it is determined that it is difficult to discharge the refrigerant from the outdoor side due to the pressure difference during the dehumidification operation, the intended refrigerant is forcibly circulated in the intermediate operation. The state can be changed to the refrigeration cycle and the ideal cooling capacity can be demonstrated.
 また、実施の形態1に係る空気調和装置100は、空調空間に設けられ、冷媒の漏洩を検知する室内冷媒漏洩センサ41を有し、制御装置50は、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、第1開閉弁2を閉状態にするものである。 Furthermore, the air conditioner 100 according to the first embodiment includes an indoor refrigerant leak sensor 41 that is provided in an air-conditioned space and detects refrigerant leakage, and the control device 50 detects refrigerant leakage at the indoor refrigerant leakage sensor 41. When detected, the first on-off valve 2 is closed.
 また、実施の形態1に係る空気調和装置100において、制御装置50は、室内冷媒漏洩センサ41において冷媒の漏洩が検知されたとき、第2膨張弁9を全閉の状態にするものである。 Furthermore, in the air conditioner 100 according to the first embodiment, the control device 50 brings the second expansion valve 9 into a fully closed state when a refrigerant leak is detected by the indoor refrigerant leak sensor 41.
 実施の形態1に係る空気調和装置100によれば、室内に設けられた主回路31への冷媒の流入を防ぐことができ、室外熱交換器7及び液溜め8に冷媒を貯留できるため、室内への冷媒の漏洩を抑制することができる。 According to the air conditioner 100 according to the first embodiment, it is possible to prevent the refrigerant from flowing into the main circuit 31 provided indoors, and the refrigerant can be stored in the outdoor heat exchanger 7 and the liquid reservoir 8. It is possible to suppress leakage of refrigerant to.
 また、実施の形態1に係る空気調和装置100は、空調空間の外部に設けられ、冷媒の漏洩を検知する室外冷媒漏洩センサ42を有し、制御装置50は、室外冷媒漏洩センサ42において冷媒の漏洩が検知されたとき、第2開閉弁6を閉状態にするものである。 Furthermore, the air conditioner 100 according to the first embodiment includes an outdoor refrigerant leak sensor 42 that is provided outside the air-conditioned space and detects refrigerant leakage, and the control device 50 controls the refrigerant leakage sensor 42 in the outdoor refrigerant leakage sensor 42. When leakage is detected, the second on-off valve 6 is closed.
 また、実施の形態1に係る空気調和装置100において、制御装置50は、室外冷媒漏洩センサ42において冷媒の漏洩が検知されたとき、第1膨張弁4を全閉の状態にするものである。 Furthermore, in the air conditioner 100 according to the first embodiment, the control device 50 brings the first expansion valve 4 into a fully closed state when refrigerant leakage is detected by the outdoor refrigerant leakage sensor 42.
 実施の形態1に係る空気調和装置100によれば、室外への冷媒の流れを遮断することができ、また、室外の冷媒を室内熱交換器5に貯蔵できるため、室外での冷媒の漏洩を抑制することができる。 According to the air conditioner 100 according to the first embodiment, it is possible to block the flow of refrigerant to the outdoors, and the outdoor refrigerant can be stored in the indoor heat exchanger 5, thereby preventing leakage of the refrigerant outdoors. Can be suppressed.
 また、実施の形態1に係る空気調和装置100は、冷媒回路30を循環する冷媒として、非共沸混合冷媒が用いられている。 Furthermore, in the air conditioner 100 according to the first embodiment, a non-azeotropic mixed refrigerant is used as the refrigerant that circulates in the refrigerant circuit 30.
 また、実施の形態1に係る空気調和装置100において、蒸発器と再熱器3とは、蒸発器における冷媒の入口側を通過した空気が、再熱器3における冷媒の出口側を通過し、かつ、蒸発器における冷媒の出口側を通過した空気が、再熱器3における冷媒の入口側を通過するように配置されている。 Further, in the air conditioner 100 according to the first embodiment, the evaporator and the reheater 3 are such that air that has passed through the refrigerant inlet side of the evaporator passes through the refrigerant outlet side of the reheater 3, In addition, the air passing through the refrigerant outlet side of the evaporator is arranged so as to pass through the refrigerant inlet side of the reheater 3.
 また、実施の形態1に係る空気調和装置100において、蒸発器と再熱器3とは、いずれも冷媒が上部から下部へ流れるように設けられている。 Furthermore, in the air conditioner 100 according to the first embodiment, both the evaporator and the reheater 3 are provided so that the refrigerant flows from the top to the bottom.
 実施の形態1に係る空気調和装置100によれば、冷媒回路30を循環させる冷媒として非共沸混合冷媒を用いることで、室内熱交換器5は、冷媒の入口側の温度が、冷媒の出口側の温度よりも低くなる。また、再熱器3は、冷媒の入口側の温度が、冷媒の出口側の温度よりも高くなる。そして、室内熱交換器5と再熱器3とを、室内熱交換器5における冷媒の入口側を通過した空気が、再熱器3における冷媒の出口側を通過し、かつ、室内熱交換器5における冷媒の出口側を通過した空気が、再熱器3における冷媒の入口側を通過するように配置する。例えば、室内熱交換器5の冷媒温度が相対的に低い部分と、再熱器3の冷媒温度が相対的に高い部分とが対向し、かつ室内熱交換器5の冷媒温度が相対的に高い部分と、再熱器3の冷媒温度が相対的に低い部分とが対向するように配置する。つまり、室内熱交換器5と再熱器3とを、いずれも冷媒が上部から下部へ流れるように設ける。室内熱交換器5と再熱器3とをこのように配置することで、室内機70から空調空間に吹き出される空気の温度である吹出し温度のばらつきと、吹出し温度のばらつきに起因した湿度のむらとを低減することができる。そのため、室内機70から空調空間に吹き出される空気の湿度のばらつきを抑制すると共に、室内の空気の状態の安定化を図ることができる。 According to the air conditioner 100 according to the first embodiment, by using a non-azeotropic mixed refrigerant as the refrigerant to be circulated through the refrigerant circuit 30, the temperature at the inlet side of the refrigerant in the indoor heat exchanger 5 is lower than that at the outlet of the refrigerant. lower than the temperature on the side. Further, in the reheater 3, the temperature on the refrigerant inlet side is higher than the temperature on the refrigerant outlet side. Then, the air that has passed through the refrigerant inlet side of the indoor heat exchanger 5 passes through the refrigerant outlet side of the reheater 3, and the indoor heat exchanger 5 and the reheater 3 The reheater 3 is arranged so that the air that has passed through the refrigerant outlet side of the reheater 5 passes through the refrigerant inlet side of the reheater 3. For example, a portion of the indoor heat exchanger 5 where the refrigerant temperature is relatively low is opposed to a portion of the reheater 3 where the refrigerant temperature is relatively high, and the refrigerant temperature of the indoor heat exchanger 5 is relatively high. and a portion of the reheater 3 where the refrigerant temperature is relatively low are arranged so as to face each other. That is, the indoor heat exchanger 5 and the reheater 3 are both provided so that the refrigerant flows from the top to the bottom. By arranging the indoor heat exchanger 5 and the reheater 3 in this way, variations in the blowout temperature, which is the temperature of the air blown out from the indoor unit 70 into the air-conditioned space, and unevenness in humidity caused by the dispersion in the blowout temperature are reduced. and can be reduced. Therefore, variations in the humidity of the air blown out from the indoor unit 70 into the air-conditioned space can be suppressed, and the state of the indoor air can be stabilized.
 実施の形態2.
 以下、実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 2.
Embodiment 2 will be described below, but the description of parts that overlap with Embodiment 1 will be omitted, and the same or corresponding parts as in Embodiment 1 will be given the same reference numerals.
 図11は、実施の形態2に係る空気調和装置200の全体的な構成図である。本実施の形態2に係る空気調和装置200は、冷媒回路30の構成の一部が、実施の形態1に係る空気調和装置100とは異なっている。 FIG. 11 is an overall configuration diagram of an air conditioner 200 according to the second embodiment. The air conditioner 200 according to the second embodiment is different from the air conditioner 100 according to the first embodiment in a part of the configuration of the refrigerant circuit 30.
 図11に示すように、本実施の形態2に係る冷媒回路30には、液溜め8が設けられておらず、その代わりにアキュムレータ18が設けられている点で実施の形態1とは異なっており、他の構成については実施の形態1と同様である。空気調和装置200は、過渡的な液バック時に、圧縮機1と室内熱交換器5との間に設けられたアキュムレータ18に冷媒を溜めることができ、圧縮機1の損傷リスクをさらに低減可能とする。 As shown in FIG. 11, the refrigerant circuit 30 according to the second embodiment is different from the first embodiment in that the liquid reservoir 8 is not provided and an accumulator 18 is provided instead. The other configurations are the same as in the first embodiment. The air conditioner 200 can store refrigerant in the accumulator 18 provided between the compressor 1 and the indoor heat exchanger 5 during a transient liquid back-up, and can further reduce the risk of damage to the compressor 1. do.
 本実施の形態2では、実施の形態1で述べた運転切替え制御、冷却運転時の冷媒分布制御、あるいは除湿運転時の冷媒分布を実施することで、再熱器3及び室外熱交換器7のそれぞれでの最適な冷媒量による運転が可能となる。そのため、空気調和装置200の能力を適正に維持することができると共に、過渡的に発生する余剰冷媒を、安価なアキュムレータ18に溜めておくことができる。つまり、液バックにより圧縮機1に向けて冷媒が戻ってきたとしても、アキュムレータ18の作用により、圧縮機1での液圧縮を抑制することができるため、信頼性の高い空気調和装置200を提供することができる。再熱器3の過冷却度は、圧力センサ62から取得する高圧圧力と冷媒温度センサ67から取得する再熱器出口温度とから求める。高圧圧力を飽和換算して凝縮温度を求め、凝縮温度から再熱器出口温度を減算することにより、再熱器3の過冷却度を求めることができる。また、室外熱交換器7の過冷却度は、圧力センサ64から取得する高圧圧力と冷媒温度センサ69から取得する室外熱交換器出口温度から求める。高圧圧力を飽和換算して凝縮温度を求め、凝縮温度から室外熱交換器出口温度を減算することにより、室外熱交換器出口の過冷却度を求めることができる。なお、室外熱交換器7の過冷却度を求める際、高圧圧力は圧力センサ62から取得する圧力を用いてもよい。 In the second embodiment, the reheater 3 and the outdoor heat exchanger 7 are controlled by implementing the operation switching control described in the first embodiment, the refrigerant distribution control during the cooling operation, or the refrigerant distribution during the dehumidifying operation. It is possible to operate with the optimum amount of refrigerant in each case. Therefore, the capacity of the air conditioner 200 can be maintained appropriately, and surplus refrigerant generated transiently can be stored in the inexpensive accumulator 18. In other words, even if the refrigerant returns to the compressor 1 due to liquid backing, the action of the accumulator 18 can suppress liquid compression in the compressor 1, providing a highly reliable air conditioner 200. can do. The degree of subcooling of the reheater 3 is determined from the high pressure obtained from the pressure sensor 62 and the reheater outlet temperature obtained from the refrigerant temperature sensor 67. The degree of supercooling of the reheater 3 can be determined by converting the high pressure into saturation to determine the condensation temperature, and subtracting the reheater outlet temperature from the condensation temperature. Further, the degree of subcooling of the outdoor heat exchanger 7 is determined from the high pressure obtained from the pressure sensor 64 and the outdoor heat exchanger outlet temperature obtained from the refrigerant temperature sensor 69. The degree of supercooling at the outlet of the outdoor heat exchanger can be determined by converting the high pressure into saturation to determine the condensation temperature, and subtracting the outdoor heat exchanger outlet temperature from the condensation temperature. Note that when determining the degree of subcooling of the outdoor heat exchanger 7, the pressure acquired from the pressure sensor 62 may be used as the high pressure.
 室内外での冷媒漏洩時の各開閉弁及び各膨張弁の制御は、上述した実施の形態1と同様である。 The control of each on-off valve and each expansion valve when refrigerant leaks indoors or outdoors is the same as in the first embodiment described above.
 以上のように、本実施の形態2の空気調和装置200によっても、除湿能力の低下を抑制し、除湿運転を効率よく行うことができる。ところで、実施の形態1のように、液溜め8を備える冷媒回路30では、液バックに応じた保護のために、第2膨張弁9に対し、過熱度を確保する運転を実施する必要がある。したがって、余剰冷媒を貯留させるためには、容量の大きな液溜め8のような高価な高圧容器が必要となる。 As described above, the air conditioner 200 of Embodiment 2 can also suppress a decrease in dehumidification ability and efficiently perform dehumidification operation. By the way, as in the first embodiment, in the refrigerant circuit 30 including the liquid reservoir 8, it is necessary to operate the second expansion valve 9 to ensure the degree of superheating in order to protect against liquid back. . Therefore, in order to store the surplus refrigerant, an expensive high-pressure container such as the liquid reservoir 8 with a large capacity is required.
 この点、本実施の形態2に係る空気調和装置200では、液バックにより圧縮機1に向けて冷媒が戻ってきたとしても、液だめがなくともアキュムレータ18の作用により、圧縮機1での液圧縮を抑制することができるため、空気調和装置200としての信頼性を高めることができる。 In this regard, in the air conditioner 200 according to the second embodiment, even if the refrigerant returns toward the compressor 1 due to the liquid back, the action of the accumulator 18 will cause the liquid in the compressor 1 to flow even if there is no liquid reservoir. Since compression can be suppressed, the reliability of the air conditioner 200 can be improved.
 そして、空気調和装置200は、非共沸混合冷媒を、アキュムレータ18により、気体と液体とに分離させ、高沸点の冷媒をアキュムレータ18に貯留させ、低沸点の冷媒を用いて除霜運転時の熱容量を増加させる。つまり、空気調和装置200は、除霜運転中において、非共沸混合冷媒に含まれる高沸点の冷媒をアキュムレータ18に貯留させ、非共沸混合冷媒に含まれる低沸点の冷媒を冷媒回路30に循環させる。そのため、霜取り時間の短縮を図ることができる。他の効果等については、実施の形態1と同様である。 The air conditioner 200 then uses the accumulator 18 to separate the non-azeotropic mixed refrigerant into gas and liquid, stores the high boiling point refrigerant in the accumulator 18, and uses the low boiling point refrigerant during defrosting operation. Increase heat capacity. In other words, during the defrosting operation, the air conditioner 200 stores the high boiling point refrigerant included in the non-azeotropic mixed refrigerant in the accumulator 18 and transfers the low boiling point refrigerant included in the non-azeotropic refrigerant mixture to the refrigerant circuit 30. Circulate. Therefore, the defrosting time can be shortened. Other effects and the like are the same as in the first embodiment.
 なお、図10に例示した冷媒漏洩時の各開閉弁及び各膨張弁の動作内容は、実施の形態2の構成に適用することもできる。 Note that the operations of each on-off valve and each expansion valve at the time of refrigerant leak illustrated in FIG. 10 can also be applied to the configuration of Embodiment 2.
 上記の各実施の形態は、空気調和装置100、200における好適な具体例であり、本開示の技術的範囲は、これらの態様に限定されるものではない。例えば、空気調和装置100、200は、冷却運転及び除霜運転を行う機能を有さなくてもよく、この場合は、第1開閉弁2が不要となる。よって、主回路31は、圧縮機1、再熱器3、第1膨張弁4、及び室内熱交換器5が主配管21により順次連結されたものとなる。また、実施の形態1では、冷媒回路30に液溜め8が設けられた例を示したが、これに限らず、実施の形態1に係る冷媒回路30は、液溜め8を有しなくてもよい。さらに、上記の各実施の形態では、主回路31が空調空間に配置されている場合を例示したが、これに限らず、主回路31の構成のうち、少なくとも再熱器3及び室内熱交換器5が空調空間に配置されていればよい。加えて、実施の形態1に係る冷媒回路30は、バイパス回路33を有しなくてもよい。ただし、冷媒回路30にバイパス回路33を設けなければ、実施の形態1のような流路での除霜運転は不可となる。 Each of the embodiments described above is a preferred specific example of the air conditioner 100, 200, and the technical scope of the present disclosure is not limited to these aspects. For example, the air conditioners 100, 200 may not have the function of performing cooling operation and defrosting operation, and in this case, the first on-off valve 2 is not required. Therefore, in the main circuit 31, the compressor 1, the reheater 3, the first expansion valve 4, and the indoor heat exchanger 5 are sequentially connected by the main pipe 21. Further, in the first embodiment, an example in which the liquid reservoir 8 is provided in the refrigerant circuit 30 is shown, but the refrigerant circuit 30 according to the first embodiment does not need to have the liquid reservoir 8. good. Furthermore, in each of the above embodiments, the main circuit 31 is arranged in an air-conditioned space, but the main circuit 31 is not limited to this. 5 may be placed in an air-conditioned space. In addition, the refrigerant circuit 30 according to the first embodiment does not need to include the bypass circuit 33. However, unless the bypass circuit 33 is provided in the refrigerant circuit 30, the defrosting operation in the flow path as in the first embodiment is not possible.
 図1及び図11では、室内冷媒漏洩センサ41が室内機70の内部に設けられた例を示したが、これに限らず、室内冷媒漏洩センサ41は、空調空間の内部であって、室内機70の外部に設けられてもよい。同様に、図1及び図11では、室外冷媒漏洩センサ42が室外機80の内部に設けられた例を示したが、これに限らず、室外冷媒漏洩センサ42は、空調空間及び室外機80の外部に設けられてもよい。 Although FIG. 1 and FIG. 11 show an example in which the indoor refrigerant leak sensor 41 is provided inside the indoor unit 70, the indoor refrigerant leak sensor 41 is provided inside the air-conditioned space, and is not limited to this. It may be provided outside of 70. Similarly, although FIGS. 1 and 11 show an example in which the outdoor refrigerant leak sensor 42 is provided inside the outdoor unit 80, the outdoor refrigerant leak sensor 42 is not limited to this. It may be provided externally.
 図1及び図11では、制御装置50が室内機70の内部に設けられた例を示したが、これに限らず、制御装置50は、室外機80の内部に設けられてもよい。また、室外機80に、室外送風機12などの室外機80の各アクチュエータの動作を制御する室外制御装置を設け、制御装置50と室外制御装置とが連携して、空気調和装置100、200を制御してもよい。 Although FIGS. 1 and 11 show an example in which the control device 50 is provided inside the indoor unit 70, the control device 50 is not limited to this, and may be provided inside the outdoor unit 80. Further, the outdoor unit 80 is provided with an outdoor control device that controls the operation of each actuator of the outdoor unit 80 such as the outdoor blower 12, and the control device 50 and the outdoor control device cooperate to control the air conditioners 100 and 200. You may.
 以上、実施の形態2に係る空気調和装置200において、冷媒回路30は、圧縮機1と蒸発器との間に設けられたアキュムレータ18を備えたものである。 As described above, in the air conditioner 200 according to the second embodiment, the refrigerant circuit 30 includes the accumulator 18 provided between the compressor 1 and the evaporator.
 実施の形態2に係る空気調和装置200によれば、液バックにより圧縮機1に向けて冷媒が戻ってきたとしても、アキュムレータ18の作用により、圧縮機1での液圧縮を抑制することができるため、空気調和装置200としての信頼性を高めることができる。 According to the air conditioner 200 according to the second embodiment, even if the refrigerant returns toward the compressor 1 due to the liquid back, the action of the accumulator 18 can suppress liquid compression in the compressor 1. Therefore, the reliability of the air conditioner 200 can be improved.
 1 圧縮機、1a 圧縮機モータ、2 第1開閉弁、3 再熱器、4 第1膨張弁、5 室内熱交換器、6 第2開閉弁、7 室外熱交換器、8 液溜め、9 第2膨張弁、10 第3開閉弁、11 室内送風機、11a ファンモータ、12 室外送風機、12a ファンモータ、18 アキュムレータ、20 冷媒配管、21 主配管、22 冷却配管、23 バイパス配管、30 冷媒回路、31 主回路、32 冷却回路、33 バイパス回路、41 室内冷媒漏洩センサ、42 室外冷媒漏洩センサ、45 異常報知器、50 制御装置、51 演算処理部、51a 設定処理部、51b 動作制御部、51c 余剰冷媒検出部、51d 漏洩処理部、52 記憶部、61 圧力センサ、62 圧力センサ、63 圧力センサ、64 圧力センサ、65 冷媒温度センサ、66 冷媒温度センサ、67 冷媒温度センサ、68 冷媒温度センサ、69 冷媒温度センサ、70 室内機、80 室外機、91 空気温度センサ、92 空気温度センサ、100 空気調和装置、200 空気調和装置。 1 Compressor, 1a Compressor motor, 2 First on-off valve, 3 Reheater, 4 First expansion valve, 5 Indoor heat exchanger, 6 Second on-off valve, 7 Outdoor heat exchanger, 8 Liquid reservoir, 9 No. 2 expansion valve, 10 third on-off valve, 11 indoor blower, 11a fan motor, 12 outdoor blower, 12a fan motor, 18 accumulator, 20 refrigerant piping, 21 main piping, 22 cooling piping, 23 bypass piping, 30 refrigerant circuit, 31 Main circuit, 32 Cooling circuit, 33 Bypass circuit, 41 Indoor refrigerant leak sensor, 42 Outdoor refrigerant leak sensor, 45 Abnormality alarm, 50 Control device, 51 Arithmetic processing unit, 51a Setting processing unit, 51b Operation control unit, 51c Surplus refrigerant Detection unit, 51d Leakage processing unit, 52 Storage unit, 61 Pressure sensor, 62 Pressure sensor, 63 Pressure sensor, 64 Pressure sensor, 65 Refrigerant temperature sensor, 66 Refrigerant temperature sensor, 67 Refrigerant temperature sensor, 68 Refrigerant temperature sensor, 69 Refrigerant Temperature sensor, 70 indoor unit, 80 outdoor unit, 91 air temperature sensor, 92 air temperature sensor, 100 air conditioner, 200 air conditioner.

Claims (12)

  1.  主配管によって圧縮機、第1開閉弁、再熱器、第1膨張弁、及び蒸発器が順次連結された主回路と、前記圧縮機と前記第1開閉弁との間から前記第1膨張弁と前記蒸発器との間までをつなぐ冷却配管によって第2開閉弁、凝縮器、及び第2膨張弁が順次連結された冷却回路と、前記圧縮機の吐出側から前記再熱器と前記第1膨張弁との間までをつなぐバイパス配管及び前記バイパス配管を開閉する第3開閉弁を有するバイパス回路と、を含み、冷媒が循環する冷媒回路と、
     前記冷媒回路を制御する制御装置と、備え、
     前記再熱器及び前記蒸発器は、空調空間に配置され、
     前記凝縮器は、前記空調空間の外部に配置され、
     前記制御装置は、
     運転を前記空調空間の空気の冷却を行う冷却運転または前記空調空間の空気の除湿を行う除湿運転に切り替える前に、
     前記第1開閉弁及び前記第2開閉弁を開状態にし、前記第3開閉弁を閉状態にし、
     前記第1膨張弁を用いて前記圧縮機の吸入側の過熱度の制御を行い、前記第2膨張弁を用いて前記凝縮器の過冷却度の制御を行う、運転切替え制御を実施する
     空気調和装置。
    A main circuit in which a compressor, a first on-off valve, a reheater, a first expansion valve, and an evaporator are sequentially connected by a main pipe, and a main circuit that connects the first expansion valve between the compressor and the first on-off valve. a cooling circuit in which a second on-off valve, a condenser, and a second expansion valve are sequentially connected by cooling piping that connects between the reheater and the first expansion valve from the discharge side of the compressor; A refrigerant circuit in which refrigerant circulates, including a bypass pipe that connects to an expansion valve and a third on-off valve that opens and closes the bypass pipe;
    a control device that controls the refrigerant circuit;
    The reheater and the evaporator are arranged in an air-conditioned space,
    The condenser is located outside the air-conditioned space,
    The control device includes:
    Before switching the operation to a cooling operation that cools the air in the air-conditioned space or a dehumidification operation that dehumidifies the air in the air-conditioned space,
    The first on-off valve and the second on-off valve are opened, and the third on-off valve is closed,
    Implementing operation switching control in which the first expansion valve is used to control the degree of superheating on the suction side of the compressor, and the second expansion valve is used to control the degree of subcooling of the condenser. Device.
  2.  前記制御装置は、
     前記運転切替制御時において、
     前記凝縮器の過冷却度及び前記圧縮機の吸入側の過熱度があらかじめ設定された値になったら、あるいは、あらかじめ設定された時間が経過したら、運転を前記冷却運転または前記除湿運転に切り替える
     請求項1に記載の空気調和装置。
    The control device includes:
    During the operation switching control,
    When the degree of supercooling of the condenser and the degree of superheating of the suction side of the compressor reach preset values, or when a preset time has elapsed, the operation is switched to the cooling operation or the dehumidifying operation. Item 1. The air conditioner according to item 1.
  3.  前記制御装置は、
     前記冷却運転時において、
     前記凝縮器の過冷却度と、前記凝縮器の凝縮温度および前記再熱器を流れる冷媒の温度である内液温、または、前記凝縮器の凝縮温度あるいは前記内液温と、に基づいて、冷媒分布制御を実施する
     請求項1または2に記載の空気調和装置。
    The control device includes:
    During the cooling operation,
    Based on the degree of subcooling of the condenser, the condensing temperature of the condenser and the internal liquid temperature, which is the temperature of the refrigerant flowing through the reheater, or the condensing temperature of the condenser or the internal liquid temperature, The air conditioner according to claim 1 or 2, which performs refrigerant distribution control.
  4.  前記制御装置は、
     前記冷却運転時において、
     前記凝縮器の過冷却度があらかじめ設定された値以下の場合であって、
     前記凝縮器の凝縮温度が、前記圧縮機の周波数を低くするもしくは前記圧縮機を停止させる制御である高圧保護が実施される値よりも低く、かつ、前記内液温が、前記蒸発器の蒸発温度よりも高い場合、
     前記凝縮器の過冷却度があらかじめ設定された値となるように、前記第1膨張弁を制御する、冷媒分布制御を実施する
     請求項3に記載の空気調和装置。
    The control device includes:
    During the cooling operation,
    When the degree of supercooling of the condenser is below a preset value,
    The condensing temperature of the condenser is lower than a value at which high-pressure protection is implemented, which is control to lower the frequency of the compressor or stop the compressor, and the internal liquid temperature is lower than the value at which high pressure protection is implemented, which is control to lower the frequency of the compressor or stop the compressor, and the internal liquid temperature If the temperature is higher than
    The air conditioner according to claim 3, wherein refrigerant distribution control is performed to control the first expansion valve so that the degree of subcooling of the condenser becomes a preset value.
  5.  前記制御装置は、
     前記冷却運転時において、
     前記凝縮器の過冷却度があらかじめ設定された値以下の場合であって、
     前記凝縮器の凝縮温度が、前記圧縮機の周波数を低くするもしくは前記圧縮機を停止させる制御である高圧保護が実施される値よりも低くない、あるいは、前記内液温が、前記蒸発器の蒸発温度よりも高くない場合、
     前記第1開閉弁及び前記第2開閉弁を開状態にし、前記第3開閉弁を閉状態にし、
     前記第1膨張弁を用いて前記再熱器の過冷却度の制御を行い、
     前記第2膨張弁を用いて前記圧縮機の吸入側の過熱度の制御を行う、冷媒分布制御を実施する
     請求項3または4に記載の空気調和装置。
    The control device includes:
    During the cooling operation,
    When the degree of supercooling of the condenser is below a preset value,
    The condensing temperature of the condenser is not lower than a value at which high pressure protection is implemented, which is control to lower the frequency of the compressor or stop the compressor, or the internal liquid temperature is If not higher than the evaporation temperature,
    The first on-off valve and the second on-off valve are opened, and the third on-off valve is closed,
    Controlling the degree of supercooling of the reheater using the first expansion valve,
    The air conditioner according to claim 3 or 4, wherein refrigerant distribution control is performed by controlling the degree of superheat on the suction side of the compressor using the second expansion valve.
  6.  前記制御装置は、
     前記冷却運転時において、
     前記凝縮器の過冷却度があらかじめ設定された値より大きい場合であって、
     前記凝縮器の凝縮温度が、前記内液温よりも高い場合、
     前記第1開閉弁を開放し、前記凝縮器の過冷却度があらかじめ設定された値となるように、前記第1膨張弁を制御する、冷媒分布制御を実施する
     請求項3~5のいずれか一項に記載の空気調和装置。
    The control device includes:
    During the cooling operation,
    When the degree of supercooling of the condenser is greater than a preset value,
    When the condensation temperature of the condenser is higher than the internal liquid temperature,
    Any one of claims 3 to 5, wherein refrigerant distribution control is performed by opening the first on-off valve and controlling the first expansion valve so that the degree of subcooling of the condenser becomes a preset value. The air conditioner according to item 1.
  7.  前記制御装置は、
     前記冷却運転時において、
     前記凝縮器の過冷却度があらかじめ設定された値より大きい場合であって、
     前記凝縮器の凝縮温度が、前記内液温よりも高くない場合、
     前記第1開閉弁及び前記第2開閉弁を開状態にし、前記第3開閉弁を閉状態にし、
     前記第1膨張弁を用いて前記圧縮機の吸入側の過熱度の制御を行い、
     前記第2膨張弁を用いて前記凝縮器の過冷却度の制御を行う、冷媒分布制御を実施する
     請求項3~6のいずれか一項に記載の空気調和装置。
    The control device includes:
    During the cooling operation,
    When the degree of supercooling of the condenser is greater than a preset value,
    When the condensing temperature of the condenser is not higher than the internal liquid temperature,
    The first on-off valve and the second on-off valve are opened, and the third on-off valve is closed,
    controlling the degree of superheat on the suction side of the compressor using the first expansion valve;
    The air conditioner according to any one of claims 3 to 6, wherein refrigerant distribution control is performed by controlling the degree of subcooling of the condenser using the second expansion valve.
  8.  前記制御装置は、
     前記除湿運転時において、
     前記再熱器の過冷却度と、前記再熱器の凝縮温度および前記凝縮器を流れる冷媒の温度である外液温、または、前記再熱器の凝縮温度あるいは前記外液温と、に基づいて、冷媒分布制御を実施する
     請求項1~7のいずれか一項に記載の空気調和装置。
    The control device includes:
    During the dehumidification operation,
    Based on the degree of subcooling of the reheater, the condensing temperature of the reheater and the external liquid temperature, which is the temperature of the refrigerant flowing through the condenser, or the condensing temperature of the reheater or the external liquid temperature. The air conditioner according to any one of claims 1 to 7, wherein the air conditioner performs refrigerant distribution control.
  9.  前記制御装置は、
     前記除湿運転時において、
     前記再熱器の過冷却度があらかじめ設定された値以下の場合であって、
     前記再熱器の凝縮温度が、前記圧縮機の周波数を低くするもしくは前記圧縮機を停止させる制御である高圧保護が実施される値よりも低く、かつ、前記外液温が、前記蒸発器の蒸発温度よりも高い場合、
     前記再熱器の過冷却度があらかじめ設定された値となるように、前記第2膨張弁を制御する、冷媒分布制御を実施する
     請求項8に記載の空気調和装置。
    The control device includes:
    During the dehumidification operation,
    When the degree of subcooling of the reheater is below a preset value,
    The condensing temperature of the reheater is lower than the value at which high-pressure protection is implemented, which is control to lower the frequency of the compressor or stop the compressor, and the external liquid temperature is lower than the value of the high pressure protection of the evaporator. If higher than the evaporation temperature,
    The air conditioner according to claim 8, wherein refrigerant distribution control is performed to control the second expansion valve so that the degree of subcooling of the reheater becomes a preset value.
  10.  前記制御装置は、
     前記除湿運転時において、
     前記再熱器の過冷却度があらかじめ設定された値以下の場合であって、
     前記再熱器の凝縮温度が、前記圧縮機の周波数を低くするもしくは前記圧縮機を停止させる制御である高圧保護が実施される値よりも低くない、あるいは、前記外液温が、前記蒸発器の蒸発温度よりも高くない場合、
     前記第1開閉弁及び前記第2開閉弁を開状態にし、前記第3開閉弁を閉状態にし、
     前記第1膨張弁を用いて前記圧縮機の吸入側の過熱度の制御を行い、
     前記第2膨張弁を用いて前記凝縮器の過冷却度の制御を行う、冷媒分布制御を実施する
     請求項8または9に記載の空気調和装置。
    The control device includes:
    During the dehumidification operation,
    When the degree of subcooling of the reheater is below a preset value,
    The condensing temperature of the reheater is not lower than a value at which high pressure protection is implemented, which is control to lower the frequency of the compressor or stop the compressor, or the external liquid temperature is if not higher than the evaporation temperature of
    The first on-off valve and the second on-off valve are opened, and the third on-off valve is closed,
    controlling the degree of superheat on the suction side of the compressor using the first expansion valve;
    The air conditioner according to claim 8 or 9, wherein refrigerant distribution control is performed in which the degree of subcooling of the condenser is controlled using the second expansion valve.
  11.  前記制御装置は、
     前記除湿運転時において、
     前記再熱器の過冷却度があらかじめ設定された値より大きい場合であって、
     前記再熱器の凝縮温度が、前記外液温よりも高い場合、
     前記第2開閉弁を開放し、前記再熱器の過冷却度があらかじめ設定された値となるように、前記第2膨張弁を制御する、冷媒分布制御を実施する
     請求項8~10のいずれか一項に記載の空気調和装置。
    The control device includes:
    During the dehumidification operation,
    When the degree of subcooling of the reheater is greater than a preset value,
    When the condensing temperature of the reheater is higher than the external liquid temperature,
    Any one of claims 8 to 10, wherein refrigerant distribution control is performed by opening the second on-off valve and controlling the second expansion valve so that the degree of subcooling of the reheater becomes a preset value. The air conditioner according to item 1.
  12.  前記制御装置は、
     前記除湿運転時において、
     前記再熱器の過冷却度があらかじめ設定された値より大きい場合であって、
     前記再熱器の凝縮温度が、前記外液温よりも高くない場合、
     前記第1開閉弁及び前記第2開閉弁を開状態にし、前記第3開閉弁を閉状態にし、
     前記第1膨張弁を用いて前記再熱器の過冷却度の制御を行い、
     前記第2膨張弁を用いて前記圧縮機の吸入側の過熱度の制御を行う、冷媒分布制御を実施する
     請求項8~11のいずれか一項に記載の空気調和装置。
    The control device includes:
    During the dehumidification operation,
    When the degree of subcooling of the reheater is greater than a preset value,
    When the condensing temperature of the reheater is not higher than the external liquid temperature,
    The first on-off valve and the second on-off valve are opened, and the third on-off valve is closed,
    Controlling the degree of supercooling of the reheater using the first expansion valve,
    The air conditioner according to any one of claims 8 to 11, wherein refrigerant distribution control is performed in which the second expansion valve is used to control the degree of superheat on the suction side of the compressor.
PCT/JP2022/021540 2022-05-26 2022-05-26 Air conditioning device WO2023228353A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021540 WO2023228353A1 (en) 2022-05-26 2022-05-26 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021540 WO2023228353A1 (en) 2022-05-26 2022-05-26 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2023228353A1 true WO2023228353A1 (en) 2023-11-30

Family

ID=88918762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021540 WO2023228353A1 (en) 2022-05-26 2022-05-26 Air conditioning device

Country Status (1)

Country Link
WO (1) WO2023228353A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572363U (en) * 1980-06-06 1982-01-07
WO2020144738A1 (en) * 2019-01-08 2020-07-16 三菱電機株式会社 Air conditioner
CN112857018A (en) * 2021-01-22 2021-05-28 同济大学 Temperature/humidity field cooperative multi-heat exchanger heat pump drying system and control method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572363U (en) * 1980-06-06 1982-01-07
WO2020144738A1 (en) * 2019-01-08 2020-07-16 三菱電機株式会社 Air conditioner
CN112857018A (en) * 2021-01-22 2021-05-28 同济大学 Temperature/humidity field cooperative multi-heat exchanger heat pump drying system and control method thereof

Similar Documents

Publication Publication Date Title
JP5125116B2 (en) Refrigeration equipment
AU2014219807B2 (en) Air-conditioning apparatus
JP3861912B2 (en) Refrigeration equipment
JP2017142039A (en) Air conditioner
CN113227677B (en) Air conditioner
JP3835453B2 (en) Air conditioner
JP6895901B2 (en) Air conditioner
JP6079061B2 (en) Refrigeration equipment
CN112437856B (en) Air conditioner
CN104364590A (en) Air-conditioning device
JP2007170769A (en) Air conditioner
JP2017142038A (en) Refrigeration cycle device
US11231186B2 (en) Refrigeration unit with a liquid heat source and reduced condensation at a utilization unit
JP2008082589A (en) Air conditioner
JPWO2018189942A1 (en) Air conditioner
JP2016008743A (en) Air conditioning device and refrigerant distribution unit
WO2023228353A1 (en) Air conditioning device
KR100677247B1 (en) Heating room control apparatus and method for multi air condintioner in building
JP2008175430A (en) Air conditioner
KR20190005052A (en) Method for controlling multi-type air conditioner
KR101303239B1 (en) Air conditioner and method for controlling the same
JP3824008B2 (en) Supercooling device
JP6628972B2 (en) Air conditioning system control device, air conditioning system, air conditioning system control program, and air conditioning system control method
JP7424870B2 (en) air conditioner
JP7442741B2 (en) air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943755

Country of ref document: EP

Kind code of ref document: A1