WO2023228343A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2023228343A1
WO2023228343A1 PCT/JP2022/021505 JP2022021505W WO2023228343A1 WO 2023228343 A1 WO2023228343 A1 WO 2023228343A1 JP 2022021505 W JP2022021505 W JP 2022021505W WO 2023228343 A1 WO2023228343 A1 WO 2023228343A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
oil film
inner diameter
rotating shaft
diameter surface
Prior art date
Application number
PCT/JP2022/021505
Other languages
French (fr)
Japanese (ja)
Inventor
博之 山田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/021505 priority Critical patent/WO2023228343A1/en
Priority to JP2023537608A priority patent/JP7422950B1/en
Publication of WO2023228343A1 publication Critical patent/WO2023228343A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member

Definitions

  • the present disclosure relates to a rotary compressor.
  • a rotary compressor is one of the refrigerant compressors installed in air conditioners and refrigeration equipment.
  • rotary compressors are known to have a configuration including a closed container, a motor section, a rotating shaft, and a compression mechanism section.
  • the compression mechanism section includes an eccentric crank section provided on a rotating shaft, a cylinder having a cylinder chamber, a rolling piston fitted into the eccentric crank section and housed in the cylinder chamber, and a vane groove formed in the radial direction of the cylinder. It has a vane provided in the.
  • the rolling piston rotates together with the eccentric crank unit to compress refrigerant within the cylinder chamber.
  • the vane follows the rolling piston and partitions the cylinder chamber into a refrigerant suction chamber and a compression chamber.
  • a low-pressure refrigerant is sucked into a compression mechanism, and the refrigerant is rotationally compressed to become a high-pressure refrigerant and discharged.
  • a gas pressure load (hereinafter referred to as gas load) by the refrigerant acts on the rotating shaft.
  • gas load a gas pressure load
  • a gas load is supported by two sliding bearings arranged above and below a cylinder chamber of a compression mechanism. Since the gas load is generated by a change in the volume of the compression chamber due to eccentric rotation of the eccentric crank portion, the magnitude and direction of action of the gas load change depending on the rotation angle of the rotating shaft. Therefore, in a rotary compressor, the thickness of the oil film formed between the sliding bearing and the rotating shaft changes during one rotation, and especially at the rotation angle where the gas load is maximum, the thickness of the oil film formed between the sliding bearing and the rotating shaft changes. There is a concern that contact with
  • Patent Document 1 As a method of avoiding seizure in a bearing portion of a rotating machine where a fluctuating load is applied, a method of making the inner diameter shape of the bearing non-perfectly round has been considered (see, for example, Patent Document 1).
  • the bearing described in Patent Document 1 is a bearing that supports a rotating body where load fluctuations may occur.
  • the bearing described in Patent Document 1 has a non-perfect circular shape such as an elliptical shape, and has a cylindrical shape in which the tube axis direction extends in the horizontal direction, and a rotating body is inserted in the center portion.
  • the cylindrical bearing described in Patent Document 1 is divided into an upper half bearing in the upper half and a lower half bearing in the lower half.
  • the rotating body is composed of a multi-span rotor used in a thermal power plant, for example. Therefore, the load on the bearing may deviate from the design value due to poor alignment settings, changes over time, conditions during partial load operation, etc. Therefore, in Patent Document 1, a stabilizing groove is provided in the lower half bearing to prevent the occurrence of unstable vibrations. In Patent Document 1, the load is always applied in the vertical direction, and the direction of the load does not change.
  • the present disclosure has been made in order to solve the above-mentioned problems, and in a rotary compressor that is subjected to a variable load in which the magnitude and direction of load change, the thickness of the oil film on the sliding surface of the bearing part is reduced.
  • the purpose of this is to suppress a decrease in the bearing height and suppress the occurrence of seizure in the bearing portion.
  • a rotary compressor includes a rotating shaft and a sliding bearing, a bearing portion having an inner diameter surface that supports the rotating shaft, a suction chamber into which refrigerant is sucked, and a compression chamber in which the refrigerant is compressed.
  • a cylinder chamber, and a crank portion that is attached to the rotating shaft and rotates eccentrically within the cylinder chamber, and refrigerating machine oil is provided between the rotating shaft and the inner diameter surface of the slide bearing.
  • a gap is formed for oil supply, and the sliding bearing has anisotropy in the oil film stiffness of the refrigerating machine oil, and the sliding bearing is resistant to the action of gas load generated by compression of the refrigerant due to eccentric rotation of the crank section.
  • the angle changes depending on the crank angle, and when the variation range of the action angle of the gas load is set as a first angle range, the axial direction of the high oil film rigidity indicating the direction in which the oil film rigidity of the sliding bearing is the highest is the first angle range. It is arranged in one angular range.
  • the axial direction of high oil film rigidity which indicates the direction in which the oil film rigidity of the sliding bearing is highest, is arranged in the first angular range that is the range of variation of the action angle of the gas load.
  • FIG. 1 is a longitudinal cross-sectional view showing the configuration of a rotary compressor 1 according to a first embodiment.
  • FIG. 2 is a plan view showing the configuration of a compression mechanism section 501 provided in the rotary compressor 1 according to the first embodiment.
  • FIG. 3 is an explanatory diagram illustrating rotational motion of a crank portion 204 and a rolling piston 504 provided in the rotary compressor 1 according to the first embodiment.
  • FIG. 3 is an explanatory diagram illustrating the principle of gas load generation due to refrigerant compression accompanying rotational operation of a rolling piston 504 in the rotary compressor 1 according to the first embodiment.
  • 5 is a diagram showing an example of a change in gas load GL with respect to crank angle ⁇ 1 in rotary compressor 1 according to Embodiment 1.
  • FIG. 3 is a diagram showing an example of an action angle ⁇ 2 of a gas load GL with respect to a crank angle ⁇ 1 in the rotary compressor 1 according to the first embodiment.
  • FIG. 2 is a plan view showing the configuration of a full-circumference bearing.
  • FIG. 3 is a plan view showing the configuration of a partial bearing.
  • FIG. 3 is a plan view showing the configuration of a split bearing.
  • FIG. 2 is a plan view showing the configuration of a fitted bearing.
  • FIG. 3 is a plan view showing the configuration of a step bearing.
  • FIG. 2 is a plan view showing the configuration of a two-arc bearing.
  • FIG. 3 is a plan view showing the configuration of a three-arc bearing.
  • FIG. 2 is a plan view showing the configuration of a two-arc eccentric bearing.
  • FIG. 3 is a plan view showing the configuration of a floating bush bearing.
  • FIG. 2 is a plan view showing the configuration of a pivot pad bearing.
  • FIG. 2 is a plan view showing the configuration of a Michel-Seggell bearing.
  • FIG. 2 is a plan view showing the configuration of the NOUMU bearing.
  • FIG. 2 is a plan view showing the configuration of a porous bearing.
  • FIG. 3 is a plan view showing the configuration of a foil bearing.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of a spiral grooved bearing.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of a spherical bearing.
  • FIG. 2 is an explanatory diagram showing angular ranges A, B1, and C in which "the axial direction D of high oil film rigidity" is set in the rotary compressor 1 according to the first embodiment.
  • FIG. 2 is an explanatory diagram showing a direction in which "an axial direction D of high oil film rigidity” is set in the rotary compressor 1 according to the first embodiment.
  • FIG. 7 is an explanatory diagram showing the direction in which the "axial direction D of high oil film rigidity" of the upper bearing 301 and the lower bearing 302 in the rotary compressor 1 according to the second embodiment is set.
  • FIG. 3 is a plan view showing the configuration of a bearing section 300 in a rotary compressor 1 according to a third embodiment.
  • FIG. 7 is a plan view showing the configuration of a bearing section 300 in a rotary compressor 1 according to a fifth embodiment.
  • a rotary compressor 1 according to the present disclosure will be described with reference to the drawings.
  • the present disclosure is not limited to the following embodiments, and can be variously modified without departing from the gist of the present disclosure.
  • the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments and modifications thereof.
  • the same reference numerals are the same or equivalent, and this is common throughout the entire specification. Note that in each drawing, the relative dimensional relationship or shape of each component may differ from the actual one.
  • FIG. 1 is a longitudinal sectional view showing the configuration of a rotary compressor 1 according to the first embodiment.
  • FIG. 2 is a plan view showing the configuration of the compression mechanism section 501 provided in the rotary compressor 1 according to the first embodiment. 1 and 2, as an example of the rotary compressor 1, a single rotary compressor having a compression mechanism section is shown. Note that the rotary compressor 1 is not limited to a single rotary compressor, and may be a rotary compressor having a plurality of compression mechanisms, such as a twin rotary compressor having two compression mechanisms.
  • the rotary compressor 1 is connected to a suction muffler 3 via a suction pipe 2. Refrigerant is taken into the rotary compressor 1 from the suction muffler 3.
  • the rotary compressor 1 includes a closed container 100, a rotating shaft 201, a bearing section 300, an electric motor section 401, and a compression mechanism section 501.
  • a motor section 401, a rotating shaft 201, a bearing section 300, and a compression mechanism section 501 are housed inside the airtight container 100.
  • the electric motor section 401 is housed inside the closed container 100 in the upper part.
  • the compression mechanism section 501 is housed in the lower part of the closed container 100, that is, below the electric motor section 401.
  • the electric motor section 401 and the compression mechanism section 501 are connected via the rotating shaft 201.
  • the electric motor section 401 includes a rotor 402 and a stator 403.
  • the rotor 402 is arranged inside the stator 403 and fixed to the rotating shaft 201.
  • Stator 403 is fixed to sealed container 100.
  • the electric motor section 401 rotates the rotating shaft 201 by electromagnetic force generated between the stator 403 and the rotor 402.
  • the rotating shaft 201 transmits the driving force of the electric motor section 401 to the compression mechanism section 501.
  • the rotating shaft 201 has a crank portion 204 that is eccentric with respect to the central axis of the rotating shaft 201 .
  • a rolling piston 504 is fitted and attached to the crank portion 204 .
  • a rolling piston 504 is disposed within cylinder 502. As shown in FIG.
  • the cylinder 502 is arranged around the central axis of the rotating shaft 201 so as to cover the rotating shaft 201 from the outside in the circumferential direction.
  • the dimensions of the crank part 204 may be the same as the dimensions when the rolling piston 504 is attached to the crank part 204, and the rolling piston 504 may not be provided.
  • the compression mechanism section 501 compresses the refrigerant using the driving force transmitted from the rotating shaft 201.
  • the bearing section 300 supports the rotating shaft 201 above and below the compression mechanism section 501, and includes one or more sliding bearings.
  • a cylinder chamber 507 formed between a rolling piston 504 and a cylinder 502 is partitioned by a vane 505 to form a compression chamber 507b and a suction chamber 507a.
  • a rolling piston 504 attached to the crank section 204 rotates eccentrically within the cylinder 502.
  • the internal space of the suction chamber 507a becomes smaller as the rolling piston 504 rotates, and the refrigerant in the compression chamber 507b is compressed in the compression chamber 507b.
  • the compression chamber 507b and the discharge port 509 are connected, and the refrigerant inside the compression chamber 507b is discharged from the discharge port 509.
  • a gas load GL due to the compressed refrigerant acts on the rotating shaft 201. Due to the change in the geometric compression volume of the compression chamber 507b, the gas load GL is approximately vertically downward to the plane of the paper in FIG. 2 with respect to the rotation axis 201, as shown by the arrow W in FIG. Acts on ⁇ 180deg.
  • This gas load GL substantially acts on the surface of the rolling piston 504, as will be described later using FIG. 4, but also acts on the rotating shaft 201 via the rolling piston 504.
  • the gas load GL acts on the rotating shaft 201 via the rolling piston 504 due to the oil film in the gap between the rolling piston 504 and the crank portion 204 or due to direct contact between the rolling piston 504 and the crank portion 204 .
  • FIG. 2 shows the rotary compressor 1 in which the vane 505 and the rolling piston 504 are configured separately from each other.
  • the first embodiment is not limited to this, and can also be applied to a swing type compressor in which the vane 505 and the rolling piston 504 are integrated.
  • the airtight container 100 is composed of an upper container 101 and a lower container 102.
  • the sealed container 100 is not limited to being formed from two components, the upper container 101 and the lower container 102, but may be formed from three or more components.
  • the sealed container 100 is connected to a suction muffler 3 via a suction pipe 2, and gas refrigerant is taken into the interior from the suction muffler 3.
  • the suction muffler 3 is fixed to the outer surface of the lower container 102 of the closed container 100 by welding or the like.
  • the suction muffler 3 separates the low temperature and low pressure refrigerant sent from the refrigeration circuit into liquid refrigerant and gas refrigerant, prevents the liquid refrigerant from being sucked into the compression mechanism section 501 as much as possible, and stores the separated liquid refrigerant.
  • the suction muffler 3 also has a function as a muffler that reduces or eliminates noise generated by the inflowing refrigerant.
  • a refrigerant discharge pipe 4 for discharging compressed refrigerant is connected to the upper part of the closed container 100.
  • the refrigerant discharge pipe 4 is a refrigerant pipe that discharges high-pressure gas refrigerant to the outside of the closed container 100.
  • the refrigerant discharge pipe 4 passes through the upper container 101 constituting the closed container 100 and is joined to the upper container 101 by, for example, brazing or resistance welding.
  • the inside of the closed container 100 is filled with high temperature and high pressure gas refrigerant compressed by the compression mechanism section 501, and refrigerating machine oil 5 used for lubricating the compression mechanism section 501 is stored at the bottom.
  • Refrigerating machine oil 5 is mainly used to lubricate the sliding parts of compression mechanism section 501.
  • An oil pump (not shown) is provided below the rotating shaft 201. As the rotating shaft 201 rotates, the oil pump pumps up the refrigerating machine oil 5 stored at the bottom of the closed container 100 and supplies it to each sliding part of the compression mechanism section 501. In the compression mechanism section 501, mechanical lubrication is ensured by supplying oil to each sliding section.
  • the electric motor section 401 includes a cylindrical stator 403 fixed to the inner wall surface of the closed container 100 by shrink fitting or the like, and is rotatably provided opposite to the inner surface of the stator 403, and is rotatably provided with a magnetic effect. and a cylindrical rotor 402 that rotates by.
  • the rotating shaft 201 is fitted into the center of the rotor 402 .
  • the electric motor section 401 generates rotational driving force on the rotating shaft 201 using electric power supplied from an external power source, and transmits the rotational driving force to the compression mechanism section 501 via the rotating shaft 201.
  • the electric motor section 401 uses, for example, a brushless DC motor.
  • the rotating shaft 201 includes a main shaft section 202 fixed to the rotor 402 of the electric motor section 401, a counter shaft section 203 provided on the opposite side of the main shaft section 202 with the compression mechanism section 501 in between, and the main shaft section 202 and the counter shaft section. 203, and a crank part 204 provided between the crank part 203 and the crank part 204.
  • the rotating shaft 201 is formed in the order of a main shaft part 202, a crank part 204, and a counter shaft part 203 from above to below the closed container 100 in the axial direction.
  • the main shaft portion 202 is fitted into the center of the rotor 402 of the electric motor portion 401 and fixed by shrink fitting or press fitting.
  • the central axis of the crank part 204 is eccentric with respect to the central axes of the main shaft part 202 and the counter shaft part 203.
  • the compression mechanism section 501 compresses the low-pressure gas refrigerant drawn into the low-pressure space of the closed container 100 from the suction pipe 2 into high-pressure gas refrigerant using the rotational driving force supplied from the electric motor section 401.
  • the high-pressure gas refrigerant compressed by the compression mechanism section 501 is discharged into the closed container 100 from above the compression mechanism section 501.
  • the compression mechanism section 501 includes a cylinder 502, an upper bearing 301, a lower bearing 302, a discharge muffler 503, a rolling piston 504, a vane 505 (see FIG. 2), and a vane spring 506 (see FIG. 2). We are prepared.
  • the outer peripheral portion of the cylinder 502 is fixed to the closed container 100 with bolts or the like.
  • the cylinder 502 has an upper surface as one end surface side UP and a lower surface as the other end surface side DN.
  • the cylinder 502 has a hollow cylindrical shape, and a cylinder chamber 507 is formed inside the cylinder.
  • the cylinder chamber 507 is open at both ends in the axial direction of the rotating shaft 201, and includes an upper bearing 301 provided on the upper surface of the cylinder 502 and a lower bearing 302 provided on the lower surface of the cylinder 502. It is blocked by.
  • the cylinder chamber 507 is a space surrounded by the inner peripheral surface of the cylinder 502, the inner wall surface of the upper bearing 301, and the inner wall surface of the lower bearing 302.
  • the cylinder 502 is provided with a suction port (not shown) through which the gas refrigerant from the suction pipe 2 passes, penetrating into the cylinder chamber 507 from the outer peripheral surface.
  • the suction port allows the pipe line of the suction pipe 2 and the cylinder chamber 507 to communicate with each other.
  • the cylinder 502 is formed with a vane groove 508 that communicates with the cylinder chamber 507 and extends in the radial direction about the rotating shaft 201.
  • the vane groove 508 penetrates through the cylinder 502 in the axial direction from one end surface side UP toward the other end surface side DN when viewed from a direction in which the outer shape of the cylinder 502 appears circular.
  • a vane 505 that partitions the cylinder chamber 507 into a suction chamber 507a and a compression chamber 507b is slidably fitted into the vane groove 508.
  • the suction chamber 507a is a low pressure space and communicates with the suction port.
  • the compression chamber 507b is a high pressure space and communicates with a discharge port 509 (see FIG. 1) for discharging to the outside of the cylinder chamber 507.
  • a stop portion 508a is formed at the end of the vane groove 508 on the outer peripheral surface side of the cylinder 502.
  • the stop portion 508a is provided to limit the movement of the vane 505 by stopping the movement of the vane 505 toward the outer circumferential surface of the cylinder 502 so that the vane 505 does not protrude from the outer circumferential surface of the cylinder 502.
  • the stop portion 508a also has the function of introducing high-pressure refrigerant as a back pressure chamber. Note that, as shown in FIG. 2, the stop portion 508a has an arcuate shape that opens only into the vane groove 508 when viewed from the one end surface side UP of the cylinder 502.
  • a vane spring housing hole 508b is formed at the end of the vane groove 508 as a space for housing the vane spring 506 and operating the vane spring 506.
  • Vane spring storage hole 508b is formed to extend in the radial direction of cylinder 502. The length of the vane spring storage hole 508b is determined depending on the shape of the vane spring 506 to be operated or the shape of the cylinder 502.
  • the upper bearing 301 is formed into a substantially inverted T-shape when viewed from the side.
  • the upper bearing 301 is provided on one end surface side UP of the cylinder 502 on the side where the electric motor section 401 is disposed, and closes one opening of the cylinder chamber 507 in the axial direction.
  • the upper bearing 301 is fitted onto the main shaft portion 202 of the rotating shaft 201, and rotatably supports the main shaft portion 202.
  • the upper bearing 301 and the lower bearing 302 are fixed to the cylinder 502 by a common screw 6.
  • the upper bearing 301 is composed of, for example, a sliding bearing.
  • a discharge port 509 is formed in the upper bearing 301 to discharge the refrigerant compressed in the compression chamber 507b to the outside of the cylinder chamber 507.
  • a discharge valve (not shown) is attached to the discharge port 509. The discharge valve controls the timing at which the high temperature and high pressure gas refrigerant is discharged from the compression chamber 507b through the discharge port 509.
  • the discharge valve has a leaf spring mechanism that opens when the pressure of the compressed refrigerant in the compression chamber 507b exceeds a preset pressure to discharge the refrigerant into the closed container 100. Therefore, the discharge valve closes the discharge port 509 when the pressure inside the compression chamber 507b is lower than a preset pressure.
  • the discharge valve is pushed upward by the pressure inside the compression chamber 507b and becomes open. Thereby, the refrigerant is discharged from the compression chamber 507b into the closed container 100 via the discharge port 509.
  • the lower bearing 302 is formed in a generally reverse T-shape when viewed from the side.
  • the lower bearing 302 is provided on the other end surface side DN of the cylinder 502, which is opposite to the side where the electric motor section 401 is arranged, and closes the other opening of the cylinder chamber 507 in the axial direction.
  • the lower bearing 302 is fitted into the subshaft portion 203 of the rotating shaft 201, and rotatably supports the subshaft portion 203.
  • the lower bearing 302 is composed of, for example, a sliding bearing.
  • the discharge muffler 503 is attached to cover the outside of the upper bearing 301. Inside the compression chamber 507b, the operations of sucking in the refrigerant, compressing the refrigerant, and discharging the refrigerant are repeated. The compressed gas refrigerant is intermittently discharged from the discharge port 509. As a result, noise such as pulsation noise may be generated from the cylinder 502. The discharge muffler 503 is provided to suppress noise such as pulsation noise generated from the cylinder 502.
  • the discharge muffler 503 is provided with a discharge hole (not shown) that communicates the space formed by the discharge muffler 503 and the upper bearing 301 with the inside of the closed container 100.
  • the gas refrigerant discharged from the cylinder 502 through the discharge port 509 is once discharged into the space formed by the discharge muffler 503 and the upper bearing 301, and then discharged into the airtight container 100 from the discharge hole.
  • the rolling piston 504 is formed into a hollow cylindrical shape, and the crank portion 204 of the rotating shaft 201 is slidably fitted into the hollow interior.
  • the rolling piston 504 is housed in a cylinder chamber 507 together with the crank portion 204.
  • the rolling piston 504 rotates along the inner peripheral surface of the cylinder chamber 507 and compresses the refrigerant.
  • the vane 505 reciprocates inside the vane groove 508 following the rotation of the rolling piston 504 while its tip remains in contact with the outer peripheral surface of the rolling piston 504. move.
  • the cylinder chamber 507 is partitioned into a suction chamber 507a and a compression chamber 507b by the tip of the vane 505 coming into contact with the outer peripheral surface of the rolling piston 504.
  • Vane 505 is made of, for example, a non-magnetic material.
  • the vane spring 506 contacts the back side of the vane 505 and presses the vane 505 so that the tip of the vane 505 contacts the outer peripheral surface of the rolling piston 504.
  • the vane spring 506 is housed in a vane spring housing hole 508b of the cylinder 502, and is arranged in series with the vane 505.
  • the vane spring 506 is fixed to the cylinder 502 by having its end opposite to the tip that contacts the rolling piston 504 contact the inner wall surface of the vane spring storage hole 508b.
  • a rolling piston 504 rotates together with a crank part 204 inside a cylinder chamber 507 when a rotating shaft 201 rotates by driving an electric motor part 401 .
  • the suction chamber 507a partitioned by the vane 505 increases in volume as the rotating shaft 201 rotates.
  • the volume of the compression chamber 507b partitioned off by the vane 505 is reduced.
  • the suction chamber 507a and the suction port communicate with each other, and low-pressure gas refrigerant is sucked into the cylinder chamber 507.
  • communication between the compression chamber 507b and the suction port is closed by the rolling piston 504, and as the volume of the compression chamber 507b decreases, the gas refrigerant inside the compression chamber 507b is compressed.
  • the compression chamber 507b and the discharge port 509 of the upper bearing 301 communicate with each other, and when the gas refrigerant inside the compression chamber 507b reaches a preset pressure, the discharge valve provided at the discharge port 509 opens.
  • the gas refrigerant thus compressed to a high pressure and high temperature is discharged from the discharge port 509 to the outside of the cylinder chamber 507 .
  • the high-pressure and high-temperature gas refrigerant discharged to the outside of the cylinder chamber 507 is discharged into the sealed container 100 via the discharge muffler 503. Then, the discharged gas refrigerant passes through the inside of the electric motor section 401, rises inside the closed container 100, and is discharged to the outside of the closed container 100 from the refrigerant discharge pipe 4 provided at the upper part of the closed container 100. be done.
  • the refrigerant discharged to the outside of the sealed container 100 circulates through the refrigeration circuit and returns to the suction muffler 3 again.
  • FIG. 3 is an explanatory diagram illustrating the rotational movement of the crank portion 204 and rolling piston 504 provided in the rotary compressor 1 according to the first embodiment.
  • the rolling piston 504 attached to the crank section 204 of the rotating shaft 201 rotates eccentrically within the cylinder 502.
  • the rolling piston 504 changes its state in the order of (a) ⁇ (b) ⁇ (c) ⁇ (d) ⁇ (a) ⁇ ... as shown in FIG.
  • the state shown in FIG. 3(a) is when the crank angle is 0 degrees.
  • the crank angle ⁇ 1 is the rotation angle of the crank portion 204 when the vane top dead center is the origin and the rotation direction R (see FIG. 2) is positive.
  • the vane top dead center means a state in which the vane 505 is completely housed in the vane groove 508, as shown in FIG. 3(a).
  • the crank angle ⁇ 1 at the top dead center of the vane is 0 deg or 360 deg.
  • the rolling piston 504 transitions to the state shown in FIG. 3(b).
  • suction of the refrigerant into the suction chamber 507a is started, and at the same time, compression of the refrigerant in the compression chamber 507b is started.
  • the state shown in FIG. 3(b) is a case where the crank angle ⁇ 1 is 90 degrees.
  • the rolling piston 504 transitions to the state shown in FIG. 3(c).
  • the refrigerant continues to be sucked into the suction chamber 507a, and at the same time, the refrigerant compressed in the compression chamber 507b starts to be discharged.
  • the state shown in FIG. 3(c) is a case where the crank angle ⁇ 1 is 180 degrees.
  • the rolling piston 504 transitions to the state shown in FIG. 3(d).
  • the refrigerant continues to be sucked into the suction chamber 507a, and the refrigerant compressed in the compression chamber 507b continues to be discharged.
  • the state shown in FIG. 3(d) is a case where the crank angle ⁇ 1 is 270 degrees.
  • the rolling piston 504 returns to the state shown in FIG. 3(a). In this state, the suction of the refrigerant into the suction chamber 507a is completed, and the discharge of the refrigerant compressed in the compression chamber 507b is also completed.
  • the state shown in FIG. 3A is a case where the crank angle ⁇ 1 is 360 degrees, that is, a case where the crank angle ⁇ 1 is 0 degrees.
  • FIG. 4 is an explanatory diagram illustrating the principle of gas load generation due to refrigerant compression accompanying the rotational operation of the rolling piston 504 in the rotary compressor 1 according to the first embodiment.
  • ⁇ 1 represents the crank angle
  • e represents the outer radius of the rotating shaft 201
  • r represents the outer radius of the rolling piston 504.
  • compression chamber pressure Pc which is pressure from the refrigerant in compression chamber 507b
  • suction pressure Ps which is the pressure from the refrigerant in suction chamber 507a
  • the differential pressure between the compression chamber pressure Pc and the suction pressure Ps is called "gas load GL.” Since the internal pressure of the compression chamber 507b is greater than the internal pressure of the suction chamber 507a, the compression chamber pressure Pc is greater than the suction pressure Ps. Therefore, the direction of the vector of the gas load GL is from the compression chamber 507b toward the suction chamber 507a, as shown by the white arrow in FIG.
  • the action angle ⁇ 2 of the gas load GL is used as an index indicating the direction of the vector of the gas load GL. Like the crank angle ⁇ 1, the action angle ⁇ 2 of the gas load GL is defined with the vane top dead center (see FIG. 3) as the origin and the rotation direction R (see FIG.
  • FIG. 5 is a diagram showing an example of a change in the gas load GL with respect to the crank angle ⁇ 1 in the rotary compressor 1 according to the first embodiment.
  • the gas load GL is normalized by the maximum value.
  • the horizontal axis shows the crank angle ⁇ 1
  • the vertical axis shows the normalized gas load GL. Since the volume of the compression chamber 507b changes as the crank angle ⁇ 1 changes, as shown in FIG. 5, the magnitude of the gas load GL changes in accordance with the change in the crank angle ⁇ 1. Specifically, as shown in FIG. 5, when the crank angle ⁇ 1 is around 225 degrees, the gas load GL becomes the largest.
  • crank angle ⁇ 1 when the crank angle ⁇ 1 is in the range from 0 deg to 120 deg, the gas load GL gradually increases, and when the crank angle ⁇ 1 is in the range from 120 deg to 225 deg, the gas load GL increases rapidly. Further, in the range of the crank angle ⁇ 1 from 225 degrees to 360 degrees, the magnitude of the gas load GL rapidly decreases.
  • FIG. 6 is a diagram showing an example of the operating angle ⁇ 2 of the gas load GL with respect to the crank angle ⁇ 1 in the rotary compressor 1 according to the first embodiment.
  • the horizontal axis indicates the crank angle ⁇ 1
  • the vertical axis indicates the action angle ⁇ 2 of the gas load GL.
  • the range in which the operating angle ⁇ 2 of the gas load GL changes that is, the variation range of the operating angle ⁇ 2 of the gas load GL, with respect to the entire range of the crank angle ⁇ 1, that is, the range of ⁇ 1 from 0 deg to 360 deg. is in the range of 110deg to 330deg.
  • this range will be referred to as an angular range B1 indicating the variation range of the action angle ⁇ 2.
  • the action angle ⁇ 1 is 0 deg
  • the action angle ⁇ 2 of the gas load GL is 180 deg
  • the action angle ⁇ 2 of the load GL decreases.
  • the action angle ⁇ 2 of the load GL remains unchanged or gradually decreases.
  • crank angle ⁇ 1 When the crank angle ⁇ 1 is in the range from 180 degrees to 355 degrees, the acting angle ⁇ 2 of the load GL gradually increases, and when the crank angle ⁇ 1 is in the range from 355 degrees to 360 degrees, the acting angle ⁇ 2 of the load GL increases rapidly.
  • the magnitude of the gas load GL and the operating angle ⁇ 2 change as the crank angle ⁇ 1 changes.
  • the bearing section 300 is composed of a sliding bearing. That is, at least one of the upper bearing 301 and the lower bearing 302 is configured as a sliding bearing. Further, in the first embodiment, the sliding bearing has anisotropy in oil film rigidity.
  • the oil film rigidity is the stiffness of the refrigerating machine oil interposed between the rotating shaft 201 and the bearing portion 300, and the rotating shaft 201 is supported by the rigidity of the refrigerating machine oil. Therefore, the oil film rigidity functions as bearing support rigidity.
  • the inner diameter surface 300a is a sliding surface on which the rotating shaft 201 slides.
  • the sliding bearing has a cylindrical shape and is hollow inside.
  • a rotating shaft 201 is arranged within the cavity.
  • Sliding bearings are made of copper alloys such as brass, iron, or special resin. Refrigerating machine oil is injected into a gap 400 (see, for example, FIG. 12) formed between the inner diameter surface 300a of the sliding bearing and the rotating shaft 201.
  • one rotation of the rolling piston 504 means that the rolling piston 504 rotates in a range of 360 degrees from a state where the crank angle ⁇ 1 is 0 degrees until the crank angle ⁇ 1 becomes 360 degrees, as shown in FIG. It is.
  • the shape of the inner diameter surface 300a of the sliding bearing constituting the bearing part 300 is a non-perfect circular shape
  • a gap is formed between the inner diameter surface 300a and the rotating shaft 201. 400 is not uniform.
  • the gap 400 includes areas where the gap 400 is narrow and areas where the gap 400 is wide.
  • the oil film thickness of the refrigerating machine oil filled in the gap 400 is no longer uniform, and the oil film thickness changes during one rotation of the rolling piston 504. Therefore, anisotropy appears in the oil film stiffness.
  • FIGS. 7 to 22 some examples of the shapes of journal type sliding bearings are shown in FIGS. 7 to 22.
  • the anisotropy of oil film rigidity will be explained in more detail using a specific example of a sliding bearing.
  • examples of the shape of the inner diameter surface having anisotropy include, for example, the two-arc bearing shown in FIG. 12.
  • the size of the gap 400 changes in the rotational direction of the rolling piston 504.
  • pressure is generated in the fluid such as refrigerating machine oil flowing through the gap 400, thereby generating oil film rigidity.
  • the inner diameter surface 300a is not perfectly circular, so the gap 400 is narrowed in the rotation direction of the rolling piston 504. A distribution occurs. Therefore, in FIG.
  • the axial direction D of high oil film stiffness is the direction in which regions S1 and S2 where the gap 400 is small exist, as shown by thick black arrows in FIG. 24, which will be described later.
  • the two-circle-arc bearing shown in FIG. 12 was explained as an example, but the first embodiment is not limited to that case.
  • the shape examples shown in FIGS. 7 to 22 but any shape can be used as long as the shape of the inner diameter surface includes a surface structure such as a texture that causes anisotropy in the oil film stiffness of the sliding bearing.
  • the features of Embodiment 1 can be applied.
  • a method that does not change the shape of the inner diameter surface 300a from a perfect circular shape it is possible to increase the bearing support rigidity by controlling the electromagnetic force of an electromagnet using a magnetic bearing or by controlling the supply pressure of a hydrostatic bearing.
  • the electromagnetic force of the electromagnet when controlling the electromagnetic force of the electromagnet, the electromagnetic force of the electromagnet is not made uniform around the entire circumference of the plain bearing, but the electromagnetic force is strengthened partially, and the anisotropy of the bearing support rigidity is applied to the plain bearing.
  • the supply pressure of a hydrostatic bearing when controlling the supply pressure of a hydrostatic bearing, the supply pressure is not made uniform around the entire circumference of the plain bearing, but the supply pressure is strengthened in some areas to create anisotropy in the bearing support rigidity of the plain bearing.
  • FIG. 7 is a plan view showing the configuration of the full circumference bearing.
  • Full circumference bearings are the most common type of bearing and are suitable for example in the case of dynamic loads.
  • the inner diameter surface 300a of the sliding bearing has a perfect circular shape in plan view. Therefore, when the sliding bearing constituting the bearing portion 300 is a full-circumference bearing, the sliding bearing does not have anisotropy in oil film rigidity. Therefore, when the plain bearing that constitutes the bearing section 300 is a full-circumference bearing, by configuring the plain bearing from a magnetic bearing and controlling the electromagnetic force of the electromagnet, anisotropy of bearing support rigidity is given to the plain bearing. Just do it like this.
  • the sliding bearing may be configured with a static pressure bearing and the supply pressure may be controlled to give the sliding bearing anisotropy in bearing support rigidity.
  • FIG. 8 is a plan view showing the configuration of the partial bearing.
  • the partial bearing supports only a portion of the outer circumference of the rotating shaft 201.
  • the shape of the inner diameter surface 300a of the sliding bearing is a part of the outer periphery of a perfect circle when viewed from above. Therefore, the gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 is formed only over a portion of the outer circumference of the rotating shaft 201. Therefore, when the sliding bearing constituting the bearing portion 300 is a partial bearing, the sliding bearing has anisotropy in oil film rigidity.
  • FIG. 9 is a plan view showing the configuration of the split bearing.
  • the shape of the inner diameter surface 300a of the sliding bearing is composed of two curved lines with uneven curvatures when viewed from above. Therefore, the gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 is not uniform around the entire circumference of the rotating shaft 201. Therefore, when the sliding bearing constituting the bearing portion 300 is a split bearing, the sliding bearing has anisotropy in oil film rigidity.
  • FIG. 9 shows a case where the inner diameter surface 300a of the sliding bearing is divided into two parts, the present invention is not limited to this case. That is, the split bearing may be divided into three or more parts. In that case, the inner diameter surface 300a of the sliding bearing is composed of three or more curved lines.
  • FIG. 10 is a plan view showing the configuration of the fitted bearing.
  • the fitted bearing supports only a portion of the outer circumference of the rotating shaft 201.
  • the fitted bearing is a type of partial bearing, but compared to the partial bearing shown in FIG. 8, the fitted bearing has almost no gap 400 formed between the inner diameter surface 300a of the sliding bearing and the rotating shaft 201. Therefore, in the fitted bearing, the oil film pressure distribution becomes uniform.
  • the shape of the inner diameter surface 300a of the sliding bearing in cross-sectional view is a part of a perfect circle. Therefore, when the sliding bearing that constitutes the bearing portion 300 is a fitted bearing, the sliding bearing has anisotropy in oil film rigidity.
  • FIG. 11 is a plan view showing the configuration of the step bearing.
  • Step bearings are sometimes called stepped bearings.
  • the step bearing has one or more steps 300m formed on the inner diameter surface 300a of the sliding bearing.
  • the step 300m is formed in a concave shape on the inner diameter surface 300a.
  • the step 300m protrudes radially outward with respect to the inner diameter surface 300a of the slide bearing. Therefore, the step 300m is recessed radially outward from the inner diameter surface 300a. Therefore, in the region where the step 300m is provided, the gap 400 is wider than in other parts.
  • four steps 300m are formed at intervals in the circumferential direction of the inner diameter surface 300a.
  • steps 300m are not limited to the example of FIG. 11.
  • the shape of the inner diameter surface 300a of the sliding bearing is non-circular. Therefore, when the sliding bearing that constitutes the bearing section 300 is a step bearing, the sliding bearing has anisotropy in oil film rigidity.
  • FIG. 12 is a plan view showing the configuration of a two-arc bearing.
  • the shape of the inner diameter surface 300a of the sliding bearing is composed of two arcs.
  • the two circular arcs have the same shape and are arranged line-symmetrically.
  • the curvatures of the two circular arcs are different from the curvature of the outer periphery of the bearing portion 300. Therefore, the gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 is not uniform, and includes areas where the gap 400 is narrow and areas where the gap 400 is wide.
  • the sliding bearing constituting the bearing portion 300 is a two-arc bearing, the sliding bearing has anisotropy in oil film rigidity.
  • the two-arc bearing is sometimes called a multi-arc bearing because the inner diameter surface 300a is composed of a plurality of arc surfaces.
  • FIG. 13 is a plan view showing the configuration of a three-arc bearing.
  • the shape of the inner diameter surface 300a of the sliding bearing is composed of three arcs.
  • the three arcs have the same shape, as shown in FIG.
  • the three circular arcs are arranged adjacent to each other so as to be convex toward the outside in the radial direction.
  • the curvatures of the three arcs are different from the curvature of the outer periphery of the bearing portion 300. Therefore, the gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 is not uniform, and includes areas where the gap 400 is narrow and areas where the gap 400 is wide.
  • the sliding bearing constituting the bearing portion 300 is a three-arc bearing
  • the sliding bearing has anisotropy in oil film rigidity.
  • the three-arc bearing is sometimes called a multi-arc bearing because the inner diameter surface 300a is composed of a plurality of arc surfaces.
  • FIG. 14 is a plan view showing the configuration of a two-arc eccentric bearing.
  • the shape of the inner diameter surface 300a of the sliding bearing is composed of two arcs.
  • the two circular arcs have the same shape and are arranged point-symmetrically with respect to the axial center of the rotating shaft 201.
  • the curvatures of the two circular arcs are different from the curvature of the outer periphery of the bearing portion 300.
  • the centers of the circles forming the two arcs are shifted from each other in the horizontal direction. Therefore, the gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 is not uniform, and includes areas where the gap 400 is narrow and areas where the gap 400 is wide.
  • the inner diameter surface 300a of the two-arc eccentric bearing is formed from two arcs and two straight parts.
  • the sliding bearing constituting the bearing section 300 is a two-arc eccentric bearing
  • the sliding bearing has anisotropy in oil film rigidity.
  • the two-arc eccentric bearing is sometimes called a multi-arc bearing because the inner diameter surface 300a is composed of a plurality of arcuate surfaces.
  • FIG. 15 is a plan view showing the configuration of the floating bush bearing.
  • Floating bush bearings were originally devised for the purpose of reducing heat generation in high-speed bearings, and are suitable, for example, when the rotating shaft 201 rotates at high speeds.
  • a thin cylindrical bush 300b is inserted into a gap 400 formed between an inner diameter surface 300a and a rotating shaft 201.
  • the gap 400 is supplied with oil
  • the rotating shaft 201 is supported by the double oil film formed in series on both the inside and outside of the bush 300b.
  • the bush 300b floats within the gap 400, and the rotating shaft 201 is rotated by the driving torque of the inner oil film.
  • the rotational speed of the rotating shaft 201 is determined by the balance between the driving torque of the inner oil film and the braking torque of the outer oil film.
  • the inner diameter surface 300a of the sliding bearing has a perfect circular shape. Therefore, when the sliding bearing that constitutes the bearing section 300 is a floating bush bearing, the sliding bearing does not have anisotropy in oil film rigidity. Therefore, when the sliding bearings constituting the bearing section 300 are floating bush bearings, the sliding bearings are constructed from magnetic bearings, or the sliding bearings are constructed from static pressure bearings, so that the sliding bearings have anisotropy of oil film rigidity. All you have to do is give it.
  • FIG. 16 is a plan view showing the configuration of the pivot pad bearing.
  • a pivot pad bearing is a type of tilting pad bearing.
  • a plurality of divided pads 300c are arranged in a gap 400 formed between an inner diameter surface 300a and a rotating shaft 201.
  • a fulcrum called a pivot 300d is arranged between each pad 300c and the inner diameter surface 300a.
  • the inner diameter surface 300a of the sliding bearing has a perfect circular shape, but since the pivot 300d and the pad 300c are arranged within the gap 400, the thickness of the oil film is uniform. Not like that. Therefore, when the sliding bearing that constitutes the bearing section 300 is a pivot pad bearing, the sliding bearing has anisotropy in oil film rigidity.
  • FIG. 17 is a plan view showing the configuration of the Michel-Seggell bearing.
  • a Michel-Seggell bearing is a type of tilting pad bearing.
  • a plurality of pads 300c are arranged in a gap 400 formed between an inner diameter surface 300a and a rotating shaft 201.
  • the difference from the pivot pad bearing shown in FIG. 16 is that the Michelle-Seggell bearing does not use a pivot 300d.
  • pad 300c rotates with rotating shaft 201. As shown in FIG.
  • the inner diameter surface 300a of the plain bearing has a perfect circular shape, but since the pad 300c is arranged within the gap 400, the thickness of the oil film is not uniform. do not have. Therefore, when the sliding bearing constituting the bearing portion 300 is a Mitchell-Seggell bearing, the sliding bearing has anisotropy in oil film rigidity.
  • FIG. 18 is a plan view showing the configuration of the NOUMU bearing.
  • the Neumu bearing is a type of tilting pad bearing.
  • a plurality of pads 300c are arranged in a gap 400 formed between an inner diameter surface 300a and a rotating shaft 201.
  • the Noumyu bearing is a bearing named because of its low friction, and the pad surface of the pad 300c has a spherical shape.
  • the Neumu bearing like the Michel-Seggell bearing, does not use a pivot 300d. Therefore, in the NOUMU bearing, the pad 300c rotates together with the rotating shaft 201.
  • a protrusion 201a is provided on the side surface of the rotating shaft 201.
  • the convex portion 201a protrudes radially outward from the side surface of the rotating shaft 201.
  • the convex portion 201a restricts movement of the pad 300c in the circumferential direction. That is, the pad 300c can move in the circumferential direction only between the two adjacent convex portions 201a.
  • the inner diameter surface 300a of the sliding bearing of the NOUMU bearing has a perfect circular shape, but since the pad 300c is disposed within the gap 400, the thickness of the oil film is not uniform. Therefore, when the sliding bearing that constitutes the bearing section 300 is a Neumu bearing, the sliding bearing has anisotropy in oil film rigidity.
  • FIG. 19 is a plan view showing the configuration of a porous bearing.
  • the porous bearing has a thin cylindrical porous member 300e made of a porous material attached to an inner diameter surface 300a.
  • the rotating shaft 201 is supported by the oil film formed between the porous member 300e and the rotating shaft 201. That will happen.
  • a large number of holes 300ee are formed on the surface of the porous member 300e.
  • the hole 300ee is formed in a concave shape in the inner diameter surface 300a. Further, the arrangement of the holes 300ee is not evenly distributed.
  • the thickness of the oil film becomes substantially non-uniform.
  • the inner diameter surface 300a of the sliding bearing has a perfect circular shape, but by providing the porous member 300e on the inner diameter surface 300a, the oil film rigidity has anisotropy. are doing.
  • FIG. 20 is a plan view showing the configuration of the foil bearing.
  • the foil bearing is a bearing formed of a plurality of foils 300f, as shown in FIG. 20.
  • the size of the gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 is automatically determined by the generated film pressure.
  • the inner surface of the foil 300f constitutes an inner diameter surface 300a of the sliding bearing.
  • the inner surfaces of the three foils 300f have the same shape, as shown in FIG. 20.
  • the inner surfaces of the three foils 300f are arranged adjacent to each other so as to be convex toward the outside in the radial direction.
  • the inner surfaces of the three foils 300f are each formed of a curved surface, but the curvature is not uniform and changes along the way. Therefore, as shown in FIG. 20, the gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 is not uniform, and includes areas where the gap 400 is narrow and areas where the gap 400 is wide.
  • the sliding bearing that constitutes the bearing section 300 is a foil bearing, the sliding bearing has anisotropy in oil film rigidity.
  • FIG. 21 is a cross-sectional view schematically showing the configuration of a spiral grooved bearing.
  • the rotating shaft 201 is shown not in cross section but in a side view.
  • the sliding bearing that constitutes the bearing portion 300 has a cylindrical shape.
  • the rotating shaft 201 is arranged in a cylindrical hollow part.
  • a "groove" is provided on either the rotating shaft 201 or the inner diameter surface 300a of the sliding bearing.
  • a plurality of thin twisted grooves 300k are provided as the "grooves”.
  • the "groove” is formed in a concave shape on the inner diameter surface 300a. Further, in the example of FIG.
  • the twisted groove 300k is provided on the side surface of the rotating shaft 201, but the twisted groove 300k may be provided on the inner diameter surface 300a side.
  • the spiral grooved bearing is a type of bearing that obtains oil pressure by drawing refrigerating machine oil into the gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 by a pumping action when the rotating shaft 201 rotates.
  • the helix angle of the groove, the depth of the groove, the groove and the land are calculated based on the local characteristics of the stepped bearing, and by applying the theory of infinite grooves to determine the pressure within the gap 400.
  • the twisted groove 300k is formed by determining the optimum value such as the width ratio between the two. In the example of FIG.
  • a plurality of twisted grooves 300k are arranged at intervals in the circumferential direction of the rotating shaft 201, thereby forming a row of twisted grooves 300k.
  • two rows of twisted grooves 300k are provided.
  • the two rows of twisted grooves 300k are formed side by side in the axial direction of the rotating shaft 201.
  • the twisting directions of the twisting grooves 300k in the left row of the paper in FIG. 21 and the twisting grooves 300k in the right row are opposite to each other. As shown in FIG.
  • a type in which helical grooves with opposite torsional directions are provided from positions corresponding to both ends of the inner diameter surface 300a and also over the entire inner diameter surface 300a is called a herringbone groove bearing.
  • the number and shape of the twisted grooves 300k are not limited to the example shown in FIG. 21.
  • the spiral grooved bearing one or more helical grooves 300k as "grooves" are formed on the rotating shaft 201 or the inner diameter surface 300a. Therefore, the shape of the gap 400 formed between the inner diameter surface 300a of the sliding bearing and the rotating shaft 201 is not uniform. Therefore, when the sliding bearing constituting the bearing portion 300 is a bearing with a spiral groove, the sliding bearing has anisotropy in oil film rigidity.
  • FIG. 22 is a cross-sectional view schematically showing the configuration of a spherical bearing.
  • the rotating shaft 201 is shown not in cross section but in a side view.
  • the sliding bearing is composed of an inner ring 300g and an outer ring 300h. Both the inner ring 300g and the outer ring 300h have a cylindrical shape.
  • the inner ring 300g is arranged concentrically inside the outer ring 300h.
  • the shape of the outer peripheral surface of the inner ring 300g is spherical, as shown in FIG.
  • the shape of the inner circumferential surface of the outer ring 300h is spherical, as shown in FIG.
  • the inner ring 300g and the outer ring 300h are in spherical contact.
  • the contact surface between the inner ring 300g and the outer ring 300h may be specially processed or a member called a liner may be attached to the contact surface to improve slippage.
  • the inner ring 300g tilts with respect to the outer ring 300h. Since the spherical bearing has a structure in which the inner ring 300g and the outer ring 300h are in spherical contact, it is a self-aligning bearing that can simultaneously bear a radial load in the radial direction and an axial load in the axial direction.
  • the inner diameter surface 300a of the sliding bearing is constituted by the inner circumferential surface of the inner ring 300g.
  • the inner ring 300g is inclined with respect to the axial direction of the rotating shaft 201 as the rotating shaft 201 rotates. Therefore, the shape of the gap 400 formed between the inner diameter surface 300a of the sliding bearing and the rotating shaft 201 is not uniform. Therefore, when the sliding bearing that constitutes the bearing section 300 is a spherical bearing, the sliding bearing has anisotropy in oil film rigidity.
  • the sliding bearing has anisotropy in oil film rigidity as shown in FIGS. 7 to 22 described above, it is possible to determine "the axial direction D of high oil film rigidity" which indicates the direction in which the oil film rigidity is highest. can. Since “the axial direction D of high oil film rigidity” differs depending on the type of sliding bearing that constitutes the bearing part 300, for example, by experiment or simulation, "the axial direction D of high oil film rigidity" has been determined for each type of sliding bearing. All you have to do is decide. For example, as shown in FIG.
  • the "axial direction D of high oil film rigidity" indicating the direction in which the oil film rigidity is highest is the area S1 and the area S2. is the direction in which it exists. That is, to explain using FIG. 24, which will be described later, "the axial direction D of high oil film rigidity” is the direction in which regions S1 and S2 where the gap 400 becomes narrow exist, as shown by the thick black arrow in FIG. . In the first embodiment, as shown in FIG. 24, "the axial direction D of high oil film rigidity” is set to a direction opposite to the action angle ⁇ 2 where the gas load GL acts largely.
  • FIG. 23 is an explanatory diagram showing angular ranges A, B1, and C in which the "axial direction D of high oil film rigidity" is set in the rotary compressor 1 according to the first embodiment.
  • FIG. 24 is an explanatory diagram showing the direction in which "the axial direction D of high oil film rigidity" is set in the rotary compressor 1 according to the first embodiment.
  • the angular range B1 indicating the variation range of the action angle ⁇ 2 of the gas load GL is 110 deg to 330 deg.
  • FIG. 23 illustrates the angular range B1.
  • the action angle ⁇ 2 of the gas load GL generally acts in a vertically downward direction.
  • the position of the axial center of the rotating shaft 201 changes to a position eccentric in the rotational direction with respect to the acting direction of the gas load GL acting on the bearing portion 300 due to oil film pressure generation due to rotation.
  • the axis center is at a position of 180 deg to 270 deg in the third quadrant, as shown by arrow E. It is approximately eccentric in the angular range of .
  • factors that influence the size of the minimum oil film thickness and the position where the minimum oil film is formed include “the size of the gas load GL” and “the size of the gas load GL”. There is an “action angle ⁇ 2" and an “eccentric direction of the shaft center” of the rotating shaft 201. In addition, there are also influencing factors such as the viscosity coefficient of the refrigerating machine oil and the rotation speed of the rotating shaft 201.
  • the magnitude of the gas load GL due to refrigerant compression changes during one rotation in which the crank angle ⁇ 1 changes from 0 degrees to 360 degrees.
  • the bearing portion 300 where the oil film rigidity is anisotropic as described above, there are a direction in which the oil film rigidity is high and a direction in which the oil film rigidity is low.
  • the thickness of the oil film of the refrigerating machine oil supplied to the gap 400 formed between the bearing portion 300 and the rotating shaft 201 changes during one rotation of the rolling piston 504.
  • the crank angle ⁇ 1 where the gas load GL is maximum there is a concern that the rotating shaft 201 and the bearing portion 300 will come into contact, and in the worst case, seizure may occur. Therefore, for example, if a direction with low oil film rigidity is placed in the direction of crank angle ⁇ 1 where the gas load GL is maximum, there is a concern that the rotating shaft 201 will come into contact with the bearing part 300, and in the worst case, it may lead to seizure. There is.
  • the "axis direction D of high oil film rigidity" indicating the direction in which the oil film rigidity is highest is arranged in the direction of the crank angle ⁇ 1 where the gas load GL is large. Note that the contact between the rotating shaft 201 and the bearing portion 300 is contact between metals, and is therefore sometimes referred to as metal contact.
  • the “axis direction D of high oil film rigidity” of the bearing portion 300 having anisotropic oil film rigidity is arranged at . By doing so, it is possible to suppress a decrease in the oil film thickness.
  • the range of the crank angle ⁇ 1 that includes the region where the normal load is 0.5 or more is the angle range A of 180 degrees to 330 degrees.
  • the axial direction D of high oil film rigidity within the angular range A, it is possible to suppress a decrease in the oil film thickness.
  • the axial direction D of high oil film rigidity indicated by the thick black arrow shown in FIG. 24 is arranged in any direction within the angular range A of FIG. 23. Since the angular range A is the angular range determined from the normalized graph of FIG. 5, it is sometimes referred to as the "gas load absolute value reference angular range.” Further, the angular range A is sometimes referred to as a "second angular range.”
  • the angular range B1 indicating the variation range of the operating angle ⁇ 2 of the gas load GL is 110 degrees to 330 degrees, as described above. Therefore, "the axial direction D of high oil film rigidity" may be arranged within the angular range B1. Even in that case, reduction in oil film thickness can be suppressed. Specifically, "the axial direction D of high oil film rigidity" indicated by the thick black arrow shown in FIG. 24 is arranged in any direction within the angular range B1 of FIG. 23. Since the angular range B1 is an angular range determined based on the graph of FIG. 6 showing the acting angle ⁇ 2 of the gas load GL, it is sometimes referred to as a "gas load acting direction reference angular range.” Further, the angular range B1 is sometimes referred to as a "first angular range.”
  • the action angle ⁇ 2 of the gas load GL corresponding to the angle range A in FIG. 5 is in the angle range B2 of 110 degrees to 180 degrees. Therefore, "the axial direction D of high oil film rigidity" may be arranged within the angular range B2. Even in that case, reduction in oil film thickness can be suppressed. Further, the angular range B2 is sometimes referred to as a "third angular range”.
  • the acting angle ⁇ 2 of the gas load GL generally acts in a downward direction perpendicular to the paper plane of FIG.
  • the axis is eccentric in an angular range C of 180 degrees to 270 degrees, which is the position of the third quadrant. Therefore, "the axial direction D of high oil film rigidity" may be arranged in the angular range C of 180 degrees to 270 degrees.
  • the axial direction D of high oil film rigidity indicated by the thick black arrow shown in FIG. 24 is arranged in any direction within the angular range C of FIG. 23.
  • the angle range C is sometimes referred to as "the eccentricity characteristic reference angle range of the sliding bearing.”
  • the angular range C is sometimes referred to as a "fourth angular range.”
  • FIGS. 23 and 24 respectively show angular ranges A, B1, and C corresponding to each of the above criteria, and an example of bearing arrangement using a two-arc bearing as an example.
  • the angular range of the crank angle ⁇ 1 in which the “axial direction D of high oil film rigidity” is arranged may be selected by comprehensively considering each criterion shown in FIG. 23.
  • the arrangement of “high oil film rigidity in the axial direction D” described in the first embodiment is applicable to both or one of the upper bearing 301 and the lower bearing 302.
  • one of the bearings may be a sliding bearing having anisotropy in oil film stiffness, and the other bearing may be a conventional perfectly circular sliding bearing.
  • the rotary compressor 1 includes the rotating shaft 201 and the bearing portion 300 that is configured from a sliding bearing and has an inner diameter surface 300a that supports the rotating shaft 201. Furthermore, the sliding bearing that constitutes the bearing portion 300 has anisotropy in oil film rigidity.
  • the "high oil film rigidity axial direction D" indicating the direction in which the oil film rigidity of the sliding bearing is highest is arranged in an angular range B1 in which the crank angle of the crank portion 204 of the rotating shaft 201 is from 110 degrees to 330 degrees. Thereby, a decrease in the oil film thickness of the refrigerating machine oil filled in the gap 400 formed between the rotating shaft 201 and the bearing portion 300 can be suppressed.
  • the oil film thickness changes during one rotation of the rolling piston 504.
  • the occurrence of seizure of the inner diameter surface 300a of the bearing portion 300 can be suppressed.
  • Embodiment 2 In the first embodiment described above, in the rotary compressor 1, even when the magnitude of the gas load GL is large, the decrease in the oil film thickness and the occurrence of metal contact caused by it are suppressed with respect to the fluctuating gas load GL. are doing.
  • a sliding bearing having anisotropy in oil film rigidity is used. Then, taking into consideration the size of the gas load GL, the operating angle ⁇ 2 of the gas load GL, the eccentricity characteristics of the plain bearing, etc., the "axial direction D of high oil film rigidity" is arranged within a preset angular range A. There is.
  • both the upper bearing 301 and the lower bearing 302 are constructed of sliding bearings having anisotropy in oil film rigidity.
  • the upper bearing 301 is arranged so that the "axial direction D of high oil film rigidity" and the "axial direction D of high oil film rigidity" of the lower bearing 302 are different from each other. Since the other configurations are the same as those in Embodiment 1, their description will be omitted here.
  • FIG. 25 is an explanatory diagram showing the direction in which the "axial direction D of high oil film rigidity" of the upper bearing 301 and the lower bearing 302 in the rotary compressor 1 according to the second embodiment is set.
  • D1 indicates "the axial direction of low oil film rigidity” which indicates the direction in which the oil film rigidity is the smallest in the upper bearing 301.
  • FIG. 25 A preferred form is shown in FIG. 25, for example.
  • the axial direction D of high oil film rigidity is arranged in the angular range A of the crank angle ⁇ 1 in which the upper bearing 301 aims to avoid seizure.
  • the "axial direction D of high oil film rigidity" of the lower bearing 302 is arranged in a direction parallel to the "axial direction D1 of low oil film rigidity" of the upper bearing 301.
  • the axial direction D of the "high oil film rigidity" of at least two or more sliding bearings among the plurality of sliding bearings. ” are arranged so that they are different from each other. That is, the "high oil film rigidity axial direction D" of at least two or more slide bearings are arranged in a direction that intersects with each other.
  • the axial direction D of high oil film rigidity" of the upper bearing 301 and the “axial direction D of high oil film rigidity” of the lower bearing 302 are orthogonal to each other. This makes it possible to suppress an increase in shaft vibration due to the fluctuating gas load GL in the axial direction with low oil film rigidity.
  • the sliding bearing has the characteristic of being eccentric in the rotational direction due to the rotational movement of the rotating shaft 201. Therefore, as shown in FIG. 25, even if the "axial direction D of high oil film rigidity" of the lower bearing 302 is arranged in the "axial direction D1 of low oil film rigidity" of the upper bearing 301, the amount of shaft vibration can be reduced. , there is a possibility that sufficient effects may not be obtained.
  • the rotating shaft 201 of the rotary compressor 1 is housed in the closed container 100 made of a pressure container, it is not easy to directly measure the amount of vibration. Therefore, for example, a vibration meter such as an acceleration sensor is attached to the closed container 100, and the vibration of the rotary compressor 1 is measured. may be determined.
  • Embodiment 2 can be applied to a rotary compressor 1 having multiple sliding bearings. Further, the number of upper bearings 301 arranged at an angle for the purpose of avoiding seizure, and the number of lower bearings 302 arranged at an angle for the purpose of vibration reduction can be divided arbitrarily. Furthermore, if there are a plurality of upper bearings 301 arranged at an angle for the purpose of avoiding seizure, the angular arrangement of each upper bearing 301 may be the same as long as it is within the angular range A, B1, or C described in the first embodiment. However, they can also be different. Furthermore, even when there are a plurality of lower bearings 302 arranged at an angle for the purpose of reducing vibration, the angular arrangement of each lower bearing 302 may be the same or different.
  • the upper bearing 301 is described as a bearing with an angular arrangement for the purpose of avoiding seizure
  • the lower bearing 302 is described as a bearing with an angular arrangement for the purpose of reducing vibration.
  • the lower bearing 302 may be used as an angularly positioned bearing for the purpose of avoiding seizure
  • the upper bearing 301 may be used as an angularly positioned bearing for vibration reduction purposes.
  • the bearing section 300 has a plurality of sliding bearings
  • the "axial direction D of high oil film rigidity" of two or more sliding bearings among the plurality of sliding bearings are arranged so that they are different from each other.
  • FIG. 26 is a plan view showing the configuration of the bearing section 300 in the rotary compressor 1 according to the third embodiment.
  • Embodiment 3 is characterized in that the inner diameter surface 300a of the bearing portion 300 is composed of a plurality of arcs in plan view.
  • the other configurations are the same as in Embodiment 1, so their explanation will be omitted here.
  • the inner diameter surface 300a of the bearing portion 300 is composed of a plurality of circular arcs in plan view. That is, the inner diameter surface 300a is composed of a plurality of circular arc surfaces.
  • a bearing shape in which the inner diameter surface 300a is constituted by two circular arc surfaces shown in FIG. 26 will be described as an example.
  • the two arcuate surfaces will be referred to as a first arcuate surface portion 300a-1 and a second arcuate surface portion 300a-2, respectively.
  • first circular arc surface section 300a-1 and the second circular arc surface section 300a-2 are of the same type, the configuration of the first circular arc surface section 300a-1 will be described below, and the description of the second circular arc surface section 300a-2 will be omitted. .
  • the shape of the circular arc surface of the first circular arc surface portion 300a-1 is determined by the preload coefficient mp defined by the following equation (1).
  • mp preload coefficient
  • Cb assembly radius clearance
  • Cp machining radius clearance
  • the assembly radius gap Cb is the size of the gap 400 formed between the rotating shaft 201 and the first circular arc surface portion 300a-1 on the imaginary line L1 extending in the first direction.
  • the first direction is the vertical direction.
  • the assembly radius gap Cb is the size of the gap 400 at the position where the gap 400 is the narrowest among the sizes of the gap 400.
  • the assembly radius gap Cb is the minimum value of the size of the gap 400.
  • a virtual circle 700 is defined as a virtual circle having the same curvature as the curvature of the arc forming the first circular arc surface portion 300a-1.
  • a virtual rotation axis obtained by shifting the rotation axis 201 in the first direction so as to be concentric with the virtual circle 700 is defined as a virtual rotation axis 701. Therefore, the virtual rotation axis 701 is a rotation axis at a position concentric with the virtual circle 700.
  • the machining radius gap Cp is the size of the virtual gap 702 formed between the virtual rotating shaft 701 and the first circular arc surface portion 300a-1, on the virtual line L1 extending in the first direction. .
  • the preload coefficient mp of the first circular arc surface portion 300a-1 and the preload coefficient mp of the second circular arc surface portion 300a-2 are the same, but the present invention is not limited to that case. That is, the preload coefficient mp of the first circular arc surface portion 300a-1 and the preload coefficient mp of the second circular arc surface portion 300a-2 may be the same or different.
  • the angle in the circumferential direction of the first arcuate surface portion 300a-1 Although the case has been described in which the angles in the circumferential direction of the arcuate surface portion 300a-2 are the same and the first arcuate surface portion 300a-1 and the second arcuate surface portion 300a-2 face each other, the present invention is limited to that case. Not done. That is, the central angle of the arc forming the first arc surface section 300a-1 and the center angle of the arc forming the second arc surface section 300a-2 may be the same or different.
  • the two arcuate surfaces forming the two-arc bearing do not have to be equally spaced. Furthermore, even in the case of a bearing composed of three or more arcuate surfaces, these arcuate surfaces do not have to be equally distributed.
  • the three circular arc bearings shown in Fig. 13 the split bearings with three or more divisions, the step bearings shown in Fig. 11, the pivot pad bearings shown in Fig. 16, the Michel-Seggell bearings shown in Fig. 17, and the Neumu bearings shown in Fig. 18.
  • the plurality of surfaces constituting the inner diameter surface 300a do not need to be equally distributed.
  • the present invention is not limited to that case.
  • the second direction is a direction that intersects the first direction.
  • the second direction is perpendicular to the first direction. That is, the circumferential position at which the first arcuate surface portion 300a-1 starts from the arcuate arrangement and the circumferential position from which the arcuate arrangement of the second arcuate surface portion 300a-2 starts from the axis of the bearing portion 300. In O, it is not necessary to arrange line symmetrically.
  • the positions in the circumferential direction that are the starting points of the arcuate arrangement of these arcuate surfaces do not have to be arranged at equal intervals. Furthermore, even in the case of a bearing composed of three or more arcuate surfaces, the positions in the circumferential direction from which the arcuate arrangement of the arcuate surfaces starts do not have to be arranged at equal intervals. Specifically, for example, in the three-arc bearing shown in FIG. 13, the center angle of each arc surface is 180 degrees, the center angle of the second arc is 120 degrees, and the center angle of the third arc is 60 degrees. The positions in the circumferential direction that are the starting points of the arc arrangement do not need to be arranged at equal intervals.
  • the position in the circumferential direction which is the starting point of the circular arc arrangement of each circular arc surface, be a position where the desired oil film rigidity can be obtained.
  • split bearings with three or more parts step bearings shown in Fig. 11, pivot pad bearings shown in Fig. 16, Michel-Seggell bearings shown in Fig. 17, Neumu bearings shown in Fig. 18, foil bearings shown in Fig. 20, etc.
  • the positions in the circumferential direction which are the starting points of the arcuate arrangement of the plurality of arcuate surfaces constituting the inner diameter surface 300a, do not have to be arranged at equal intervals. In these cases as well, it is desirable that the position in the circumferential direction, which is the starting point of the circular arc arrangement of each circular arc surface, be a position where the desired oil film rigidity can be obtained.
  • the inner diameter surface 300a is composed of two circular arc surfaces, but the present invention is not limited to that case. That is, the inner diameter surface 300a may be composed of three or more circular arc surface portions.
  • FIG. 13 described above shows a case where the inner diameter surface 300a is composed of three arcuate surface portions.
  • the shape of the inner diameter surface 300a of the sliding bearing that constitutes the bearing portion 300 is composed of a plurality of arcuate surfaces in plan view.
  • the sliding bearing that constitutes the bearing portion 300 has anisotropy in oil film rigidity. Therefore, as explained in the first embodiment, by arranging the "axial direction D of high oil film rigidity" of the bearing part 300 in the angular range A of 180 degrees to 330 degrees (see FIG. 5), the oil film thickness can be reduced. The decline can be suppressed. Thereby, the oil film thickness is always ensured, so that it is possible to prevent metal contact between the rotating shaft 201 and the bearing portion 300. As a result, seizure of the bearing portion 300 can be avoided.
  • Embodiment 4 is characterized in that a dynamic pressure generating section 600 that generates dynamic pressure of refrigerating machine oil is provided on the inner diameter surface 300a of the bearing section 300.
  • the other configurations are the same as in Embodiment 1, so their explanation will be omitted here.
  • the dynamic pressure generating section 600 is, for example, a step 300m shown in FIG. 11.
  • the dynamic pressure generating section 600 is, for example, a twisted groove 300k shown in FIG. 21.
  • the dynamic pressure generating section 600 is, for example, a hole 300ee shown in FIG. 19.
  • FIG. 19 shows an example in which a porous member 300e having holes 300ee is attached to the inner diameter surface 300a, the holes 300ee may be formed directly on the inner diameter surface 300a.
  • At least one of a step, a groove, or a hole is formed on the inner diameter surface 300a of the bearing section 300 as the dynamic pressure generating section 600.
  • the step, groove, or hole is formed in a concave shape on the inner diameter surface 300a.
  • steps, grooves, and holes may be formed on the entire inner diameter surface 300a of the bearing section 300, or may be formed only on a portion of the inner diameter surface 300a of the bearing section 300.
  • At least one of a step, a groove, or a hole is formed on the inner diameter surface 300a of the bearing portion 300.
  • refrigerating machine oil flows into and out of the steps, grooves, or holes, and dynamic pressure of the refrigerating machine oil is generated. Therefore, even if the rotational arrangement and phase angle of the bearing portion 300 having a non-perfect circular structure change and the direction of the vector of the gas load GL changes, the desired dynamic pressure effect can always be obtained.
  • the thickness of the oil film in the gap 400 formed between the rotating shaft 201 and the inner diameter surface 300a is ensured, and seizing of the bearing portion 300 due to the rigidity of the oil film can be prevented.
  • the refrigerating machine oil since the refrigerating machine oil is stored inside the steps, grooves, or holes, the refrigerating machine oil can be held on the surface of the rotating shaft 201. Further, by forming steps, grooves, or holes in the inner diameter surface 300a of the bearing portion 300, an effect of trapping foreign matter from the outside can be expected.
  • Embodiment 5 is characterized in that the inner diameter surface 300a of the bearing portion 300 has a non-perfect circular shape, and the gap distribution of the gap 400 is continuous.
  • the other configurations are the same as in Embodiment 1, so their explanation will be omitted here.
  • FIG. 27 is a plan view showing the configuration of the bearing section 300 in the rotary compressor 1 according to the fifth embodiment.
  • FIG. 27 shows an example in which the inner diameter surface 300a of the bearing portion 300 is configured by adding up Fourier series in plan view.
  • the circumferential gap distribution shape of the gap 400 on the inner diameter surface 300a of the bearing portion 300 may be expressed as, for example, the addition of polynomials to the rotation angle or the addition of Fourier series. This makes it possible to create a complex shape on the inner diameter surface 300a that provides the desired oil film rigidity. Further, the above-mentioned complex shape may not only change in the circumferential direction of the bearing section 300 but also change in the axial direction of the bearing section 300.
  • one or more polynomials shown in the following equation (2) can each represent one or more curves forming the inner diameter surface 300a. Therefore, the inner diameter surface 300a is divided into one or more ranges, a polynomial expressed by the following formula (2) is generated for each range, and the coefficient a k (k is an integer from 0 to n) of the polynomial is determined. do. In this way, the entire curve constituting the inner diameter surface 300a is generated using one or more polynomials shown in Equation (2) below.
  • one or more curves constituting the inner diameter surface 300a can be represented by the Fourier series shown in the following equation (3). Therefore, the inner diameter surface 300a is divided into one or more ranges, a Fourier series expressed by the following formula (3) is generated for each range, and the coefficients a 0 , a n , b n (n is (an integer between 1 and ⁇ ). In this way, the entire curve forming the inner diameter surface 300a is generated by adding up the Fourier series shown in equation (3) below.
  • the inner diameter surface 300a of the sliding bearing forming the bearing portion 300 has a non-perfect circular shape in plan view, and the gap distribution of the gap 400 is continuous.
  • the inner diameter surface 300a can be formed into a complex shape that can obtain the desired oil film rigidity.
  • a necessary oil film thickness can always be ensured in the gap 400 formed between the rotating shaft 201 and the bearing part 300, and metal contact between the rotating shaft 201 and the bearing part 300 can be prevented. .
  • seizure of the bearing portion 300 can be avoided.
  • Bearing section 300 according to Embodiment 6 has two or more of the features of bearing section 300 shown in Embodiments 3, 4, and 5 above.
  • the other configurations are the same as in any of the first to fifth embodiments, so their explanation will be omitted here.
  • the first arc surface portion 300a-1 has the characteristics of Embodiment 4, and the second arc surface portion 300a-2 However, this embodiment has the characteristics of the fifth embodiment.
  • the first arcuate surface portion 300a-1 is provided with a dynamic pressure generating portion 600 consisting of a step 300m, a groove 300k, or a hole 300ee, which is a feature of the fourth embodiment.
  • the second arcuate surface portion 300a-2 has an inner diameter surface shape expressed by a polynomial, which is an example of the fifth embodiment.
  • the bearing section 300 according to the sixth embodiment has a combination of a plurality of features among the features of the bearing section 300 shown in the third, fourth, and fifth embodiments.
  • effects obtained from each of the plurality of combined features can be obtained. That is, in Embodiment 6, when Embodiments 3, 4, and 5 are combined as in the above example, all the effects obtained from Embodiments 3, 4, and 5 can be obtained.
  • Foil 300g inner ring, 300h outer ring, 300k groove, 300m step, 301 upper bearing, 302 lower bearing, 400 gap, 401 electric motor, 402 rotor, 403 stator, 501 compression mechanism, 502 cylinder, 503 Discharge muffler, 504 rolling piston , 505 vane, 506 venue spring, 507 cylinder room, 507A inhalation room, 507B compression room, 508 vane groove, 508A stop, 508B venue spring storage hole, 509 discharge port, 600 vibration pressure generator, 700 virtual yen, 701 virtual yen Rotation axis, 702 virtual gap, A angular range, B1 angular range, B2 angular range, C angular range, D axial direction of high oil film rigidity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This rotary compressor includes: a rotational shaft; a bearing that is configured from a slip bearing and that has an inner diameter surface that supports the rotational shaft; a cylinder chamber including a suction chamber into which a refrigerant is sucked in, and a compression chamber in which the refrigerant is compressed; and a crank part that is attached to the rotational shaft and that rotates eccentrically in the cylinder chamber. A gap to which refrigerating machine oil is supplied is formed between the rotational shaft and the inner diameter surface of the slip bearing. The slip bearing has anisotropy with respect to the oil film rigidity of the refrigerating machine oil. A working angle of a gas load generated by compression of the refrigerant caused by the eccentric rotation of the crank part changes in accordance with a crank angle. When a fluctuation range of the working angle of the gas load is a first angle range, an axial direction of high oil film rigidity, indicating the direction in which the oil film rigidity of the slip bearing is highest, is disposed in the first angle range.

Description

ロータリ圧縮機rotary compressor
 本開示は、ロータリ圧縮機に関する。 The present disclosure relates to a rotary compressor.
 空気調和機および冷凍機器に搭載される冷媒圧縮機のひとつにロータリ圧縮機がある。一般的に、ロータリ圧縮機では、密閉容器と、電動機部と、回転軸と、圧縮機構部と、を備えた構成が知られている。圧縮機構部は、回転軸に設けられる偏心クランク部と、シリンダ室を有するシリンダと、偏心クランク部に嵌合されてシリンダ室に収容されたローリングピストンと、シリンダの径方向に形成されたベーン溝に設けられたベーンと、を有している。ローリングピストンは、偏心クランク部と共に回転して、シリンダ室内の冷媒を圧縮する。ベーンは、ローリングピストンに追従して、シリンダ室を冷媒の吸入室と圧縮室とに仕切る。ロータリ圧縮機では、圧縮機構部に低圧の冷媒を吸入し、当該冷媒を回転圧縮することで高圧冷媒にして吐出する。 A rotary compressor is one of the refrigerant compressors installed in air conditioners and refrigeration equipment. Generally, rotary compressors are known to have a configuration including a closed container, a motor section, a rotating shaft, and a compression mechanism section. The compression mechanism section includes an eccentric crank section provided on a rotating shaft, a cylinder having a cylinder chamber, a rolling piston fitted into the eccentric crank section and housed in the cylinder chamber, and a vane groove formed in the radial direction of the cylinder. It has a vane provided in the. The rolling piston rotates together with the eccentric crank unit to compress refrigerant within the cylinder chamber. The vane follows the rolling piston and partitions the cylinder chamber into a refrigerant suction chamber and a compression chamber. In a rotary compressor, a low-pressure refrigerant is sucked into a compression mechanism, and the refrigerant is rotationally compressed to become a high-pressure refrigerant and discharged.
 冷媒の圧縮過程において、回転軸には冷媒によるガス圧荷重(以下、ガス荷重とする)が作用する。一般にロータリ圧縮機では、圧縮機構部のシリンダ室の上下に配置される2個のすべり軸受で、ガス荷重を支持している。ガス荷重は、偏心クランク部の偏心回転による圧縮室の容積の変化によって発生するため、回転軸の回転角度に応じて、ガス荷重の大きさと作用方向とが変化する。従って、ロータリ圧縮機にあっては、すべり軸受と回転軸との間に形成される油膜厚さが一回転中に変化しており、特にガス荷重が最大となる回転角度において回転軸とすべり軸受との接触が懸念され、最悪の場合、すべり軸受の焼付きに至る可能性がある。 During the compression process of the refrigerant, a gas pressure load (hereinafter referred to as gas load) by the refrigerant acts on the rotating shaft. Generally, in a rotary compressor, a gas load is supported by two sliding bearings arranged above and below a cylinder chamber of a compression mechanism. Since the gas load is generated by a change in the volume of the compression chamber due to eccentric rotation of the eccentric crank portion, the magnitude and direction of action of the gas load change depending on the rotation angle of the rotating shaft. Therefore, in a rotary compressor, the thickness of the oil film formed between the sliding bearing and the rotating shaft changes during one rotation, and especially at the rotation angle where the gas load is maximum, the thickness of the oil film formed between the sliding bearing and the rotating shaft changes. There is a concern that contact with
 変動荷重が作用する回転機械における軸受部での焼付きを回避する方法として、軸受の内径形状を非真円形状にする方法が考えられている(例えば特許文献1参照)。 As a method of avoiding seizure in a bearing portion of a rotating machine where a fluctuating load is applied, a method of making the inner diameter shape of the bearing non-perfectly round has been considered (see, for example, Patent Document 1).
 特許文献1に記載の軸受は、荷重変動の生ずる可能性のある回転体を支持する軸受である。特許文献1に記載の軸受は、楕円形状等の非真円形状を有し、管軸方向が水平方向に延びた筒形状で、中央部分に回転体が挿入されている。特許文献1に記載の筒形状の軸受は、上半分の上半軸受と、下半分の下半軸受部と、に分割されている。 The bearing described in Patent Document 1 is a bearing that supports a rotating body where load fluctuations may occur. The bearing described in Patent Document 1 has a non-perfect circular shape such as an elliptical shape, and has a cylindrical shape in which the tube axis direction extends in the horizontal direction, and a rotating body is inserted in the center portion. The cylindrical bearing described in Patent Document 1 is divided into an upper half bearing in the upper half and a lower half bearing in the lower half.
 特許文献1では、回転体が、例えば火力プラントで使用される多スパンロータで構成されている。そのため、アライメントのセッティング不良、経時変化、および、部分負荷運転時の条件などにより、軸受の荷重が設計値から外れることがある。そこで、特許文献1では、下半軸受に安定化溝部を設けることで、不安定振動の発生を未然に防止している。特許文献1では、荷重は常に垂直方向に加わっており、荷重の作用方向は変化しない。 In Patent Document 1, the rotating body is composed of a multi-span rotor used in a thermal power plant, for example. Therefore, the load on the bearing may deviate from the design value due to poor alignment settings, changes over time, conditions during partial load operation, etc. Therefore, in Patent Document 1, a stabilizing groove is provided in the lower half bearing to prevent the occurrence of unstable vibrations. In Patent Document 1, the load is always applied in the vertical direction, and the direction of the load does not change.
特開2000-145781号公報Japanese Patent Application Publication No. 2000-145781
 特許文献1に記載のような、荷重の作用方向が変化しない変動荷重の環境下で使用する軸受の構造を、荷重の大きさと作用方向とが変化するロータリ圧縮機に適用する場合、構造を定義する荷重方向を一意に規定することができない。さらに、実用上の問題として、回転方向における非真円構造の配置および位相角によっては、変動荷重のベクトルに対して所望の動圧効果が得られず、回転軸と軸受との接触リスクならびに焼付きリスクを増加させる可能性がある。さらに、特許文献1に記載のように、複数の円弧が組み合わされた多円弧軸受を用いる場合、あるいは、摺動面へ部分的な溝加工を施す場合は、軸受の油膜剛性に異方性が生じて、低剛性の方向へ軸振動が増大する可能性が高い。 When applying the structure of a bearing used under a fluctuating load environment where the direction of load action does not change, as described in Patent Document 1, to a rotary compressor where the magnitude and direction of load change, the structure must be defined. It is not possible to uniquely specify the direction of the load applied. Furthermore, as a practical problem, depending on the arrangement and phase angle of the non-round structure in the direction of rotation, the desired dynamic pressure effect on the variable load vector cannot be obtained, leading to the risk of contact between the rotating shaft and the bearing, and the risk of burnout. may increase the risk of Furthermore, as described in Patent Document 1, when using a multi-arc bearing in which a plurality of arcs are combined, or when partially grooving the sliding surface, anisotropy occurs in the oil film stiffness of the bearing. As a result, there is a high possibility that shaft vibration will increase in the direction of lower rigidity.
 本開示は、上記のような問題点を解決するためになされたものであり、荷重の大きさと作用方向とが変化する変動荷重が作用するロータリ圧縮機において、軸受部の摺動面の油膜厚さの低下抑制、および、軸受部での焼付きの発生の抑制を行うことを目的としている。 The present disclosure has been made in order to solve the above-mentioned problems, and in a rotary compressor that is subjected to a variable load in which the magnitude and direction of load change, the thickness of the oil film on the sliding surface of the bearing part is reduced. The purpose of this is to suppress a decrease in the bearing height and suppress the occurrence of seizure in the bearing portion.
 本開示に係るロータリ圧縮機は、回転軸と、すべり軸受から構成され、前記回転軸を支持する内径面を有する、軸受部と、冷媒が吸入される吸入室と、前記冷媒が圧縮される圧縮室と、を有する、シリンダ室と、前記回転軸に取り付けられ、前記シリンダ室内で偏心回転するクランク部と、を備え、前記回転軸と前記すべり軸受の前記内径面との間には冷凍機油が給油される隙間が形成されており、前記すべり軸受は、前記冷凍機油の油膜剛性に異方性を有しており、前記クランク部の偏心回転に伴う前記冷媒の圧縮によって発生するガス荷重の作用角度はクランク角によって変化し、前記ガス荷重の作用角度の変動幅を第1角度範囲としたとき、前記すべり軸受の前記油膜剛性が最も高くなる方向を示す高油膜剛性の軸線方向は、前記第1角度範囲に配置されるものである。 A rotary compressor according to the present disclosure includes a rotating shaft and a sliding bearing, a bearing portion having an inner diameter surface that supports the rotating shaft, a suction chamber into which refrigerant is sucked, and a compression chamber in which the refrigerant is compressed. a cylinder chamber, and a crank portion that is attached to the rotating shaft and rotates eccentrically within the cylinder chamber, and refrigerating machine oil is provided between the rotating shaft and the inner diameter surface of the slide bearing. A gap is formed for oil supply, and the sliding bearing has anisotropy in the oil film stiffness of the refrigerating machine oil, and the sliding bearing is resistant to the action of gas load generated by compression of the refrigerant due to eccentric rotation of the crank section. The angle changes depending on the crank angle, and when the variation range of the action angle of the gas load is set as a first angle range, the axial direction of the high oil film rigidity indicating the direction in which the oil film rigidity of the sliding bearing is the highest is the first angle range. It is arranged in one angular range.
 本開示に係るロータリ圧縮機によれば、すべり軸受の油膜剛性が最も高くなる方向を示す高油膜剛性の軸線方向を、前記ガス荷重の作用角度の変動幅である第1角度範囲に配置する。これにより、油膜厚さの低下を抑制し、軸受部での焼付きの発生を抑制できる。 According to the rotary compressor according to the present disclosure, the axial direction of high oil film rigidity, which indicates the direction in which the oil film rigidity of the sliding bearing is highest, is arranged in the first angular range that is the range of variation of the action angle of the gas load. Thereby, it is possible to suppress a decrease in the oil film thickness and suppress the occurrence of seizure in the bearing portion.
実施の形態1に係るロータリ圧縮機1の構成を示す縦断面図である。1 is a longitudinal cross-sectional view showing the configuration of a rotary compressor 1 according to a first embodiment. 実施の形態1に係るロータリ圧縮機1に設けられた圧縮機構部501の構成を示す平面図である。FIG. 2 is a plan view showing the configuration of a compression mechanism section 501 provided in the rotary compressor 1 according to the first embodiment. 実施の形態1に係るロータリ圧縮機1に設けられたクランク部204およびローリングピストン504の回転運動を説明する説明図である。FIG. 3 is an explanatory diagram illustrating rotational motion of a crank portion 204 and a rolling piston 504 provided in the rotary compressor 1 according to the first embodiment. 実施の形態1に係るロータリ圧縮機1において、ローリングピストン504の回転運転に伴う冷媒圧縮によって、ガス荷重が発生する原理を説明する説明図である。FIG. 3 is an explanatory diagram illustrating the principle of gas load generation due to refrigerant compression accompanying rotational operation of a rolling piston 504 in the rotary compressor 1 according to the first embodiment. 実施の形態1に係るロータリ圧縮機1におけるクランク角θ1に対するガス荷重GLの変化の一例を示す図である。5 is a diagram showing an example of a change in gas load GL with respect to crank angle θ1 in rotary compressor 1 according to Embodiment 1. FIG. 実施の形態1に係るロータリ圧縮機1におけるクランク角θ1に対するガス荷重GLの作用角度θ2の一例を示す図である。FIG. 3 is a diagram showing an example of an action angle θ2 of a gas load GL with respect to a crank angle θ1 in the rotary compressor 1 according to the first embodiment. 全周軸受の構成を示す平面図である。FIG. 2 is a plan view showing the configuration of a full-circumference bearing. 部分軸受の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of a partial bearing. 割り軸受の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of a split bearing. フィティド軸受の構成を示す平面図である。FIG. 2 is a plan view showing the configuration of a fitted bearing. ステップ軸受の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of a step bearing. 二円弧軸受の構成を示す平面図である。FIG. 2 is a plan view showing the configuration of a two-arc bearing. 三円弧軸受の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of a three-arc bearing. 二円弧偏心軸受の構成を示す平面図である。FIG. 2 is a plan view showing the configuration of a two-arc eccentric bearing. 浮動ブシュ軸受の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of a floating bush bearing. ピボットパッド軸受の構成を示す平面図である。FIG. 2 is a plan view showing the configuration of a pivot pad bearing. Michell-Seggell軸受の構成を示す平面図である。FIG. 2 is a plan view showing the configuration of a Michel-Seggell bearing. ノウミュ軸受の構成を示す平面図である。FIG. 2 is a plan view showing the configuration of the NOUMU bearing. 多孔質軸受の構成を示す平面図である。FIG. 2 is a plan view showing the configuration of a porous bearing. フォイル軸受の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of a foil bearing. スパイラル溝付き軸受の構成を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the configuration of a spiral grooved bearing. 球面軸受の構成を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the configuration of a spherical bearing. 実施の形態1に係るロータリ圧縮機1において、「高油膜剛性の軸線方向D」を設定する角度範囲A、B1、Cを示す説明図である。FIG. 2 is an explanatory diagram showing angular ranges A, B1, and C in which "the axial direction D of high oil film rigidity" is set in the rotary compressor 1 according to the first embodiment. 実施の形態1に係るロータリ圧縮機1において、「高油膜剛性の軸線方向D」を設定する方向を示す説明図である。FIG. 2 is an explanatory diagram showing a direction in which "an axial direction D of high oil film rigidity" is set in the rotary compressor 1 according to the first embodiment. 実施の形態2に係るロータリ圧縮機1における上軸受301および下軸受302の「高油膜剛性の軸線方向D」を設定する方向を示す説明図である。FIG. 7 is an explanatory diagram showing the direction in which the "axial direction D of high oil film rigidity" of the upper bearing 301 and the lower bearing 302 in the rotary compressor 1 according to the second embodiment is set. 実施の形態3に係るロータリ圧縮機1における軸受部300の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of a bearing section 300 in a rotary compressor 1 according to a third embodiment. 実施の形態5に係るロータリ圧縮機1における軸受部300の構成を示す平面図である。FIG. 7 is a plan view showing the configuration of a bearing section 300 in a rotary compressor 1 according to a fifth embodiment.
 以下、本開示に係るロータリ圧縮機1の実施の形態について図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の実施の形態およびその変形例に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。 Hereinafter, embodiments of a rotary compressor 1 according to the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments, and can be variously modified without departing from the gist of the present disclosure. Furthermore, the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments and modifications thereof. Furthermore, in each figure, the same reference numerals are the same or equivalent, and this is common throughout the entire specification. Note that in each drawing, the relative dimensional relationship or shape of each component may differ from the actual one.
 実施の形態1.
 図1は、実施の形態1に係るロータリ圧縮機1の構成を示す縦断面図である。図2は、実施の形態1に係るロータリ圧縮機1に設けられた圧縮機構部501の構成を示す平面図である。図1および図2では、ロータリ圧縮機1の一例として、圧縮機構部が一カ所であるシングルロータリ圧縮機を示している。なお、ロータリ圧縮機1は、シングルロータリ圧縮機に限定されるものではなく、例えば圧縮機構部を2つ有するツインロータリ圧縮機等、複数の圧縮機構部を有するロータリ圧縮機であっても良い。図1に示すように、ロータリ圧縮機1には、吸入配管2を介して、吸入マフラ3と接続されている。ロータリ圧縮機1の内部には、吸入マフラ3から、冷媒が取り込まれる。
Embodiment 1.
FIG. 1 is a longitudinal sectional view showing the configuration of a rotary compressor 1 according to the first embodiment. FIG. 2 is a plan view showing the configuration of the compression mechanism section 501 provided in the rotary compressor 1 according to the first embodiment. 1 and 2, as an example of the rotary compressor 1, a single rotary compressor having a compression mechanism section is shown. Note that the rotary compressor 1 is not limited to a single rotary compressor, and may be a rotary compressor having a plurality of compression mechanisms, such as a twin rotary compressor having two compression mechanisms. As shown in FIG. 1, the rotary compressor 1 is connected to a suction muffler 3 via a suction pipe 2. Refrigerant is taken into the rotary compressor 1 from the suction muffler 3.
 ロータリ圧縮機1は、図1に示すように、密閉容器100と、回転軸201と、軸受部300と、電動機部401と、圧縮機構部501と、を備えている。密閉容器100の内部には、電動機部401と、回転軸201と、軸受部300と、圧縮機構部501と、が収容されている。電動機部401は、密閉容器100の内部の上部に収容されている。圧縮機構部501は、密閉容器100の内部の下部、すなわち、電動機部401の下方に収容されている。電動機部401と圧縮機構部501とは、回転軸201を介して連結されている。電動機部401は、ロータ402と、ステータ403と、を有している。ロータ402は、ステータ403の内側に配置され、回転軸201に固定されている。ステータ403は、密閉容器100に固定されている。電動機部401は、ステータ403とロータ402との間に発生する電磁気力によって、回転軸201を回転させる。回転軸201は、電動機部401の駆動力を圧縮機構部501に伝達する。回転軸201は、回転軸201の中心軸に対して偏心したクランク部204を有している。クランク部204には、ローリングピストン504が嵌合して取り付けられる。ローリングピストン504は、シリンダ502の中に配置される。シリンダ502は、図2に示すように、回転軸201の中心軸を中心にして、回転軸201を外周方向の外側から覆うように、配置されている。なお、クランク部204の寸法を、ローリングピストン504をクランク部204に取り付けた際の寸法と同じ大きさにして、ローリングピストン504を設けない構成としてもよい。圧縮機構部501は、回転軸201から伝達される駆動力によって、冷媒を圧縮する。軸受部300は、圧縮機構部501の上側と下側とで回転軸201を支持しており、1以上のすべり軸受を有している。 As shown in FIG. 1, the rotary compressor 1 includes a closed container 100, a rotating shaft 201, a bearing section 300, an electric motor section 401, and a compression mechanism section 501. Inside the airtight container 100, a motor section 401, a rotating shaft 201, a bearing section 300, and a compression mechanism section 501 are housed. The electric motor section 401 is housed inside the closed container 100 in the upper part. The compression mechanism section 501 is housed in the lower part of the closed container 100, that is, below the electric motor section 401. The electric motor section 401 and the compression mechanism section 501 are connected via the rotating shaft 201. The electric motor section 401 includes a rotor 402 and a stator 403. The rotor 402 is arranged inside the stator 403 and fixed to the rotating shaft 201. Stator 403 is fixed to sealed container 100. The electric motor section 401 rotates the rotating shaft 201 by electromagnetic force generated between the stator 403 and the rotor 402. The rotating shaft 201 transmits the driving force of the electric motor section 401 to the compression mechanism section 501. The rotating shaft 201 has a crank portion 204 that is eccentric with respect to the central axis of the rotating shaft 201 . A rolling piston 504 is fitted and attached to the crank portion 204 . A rolling piston 504 is disposed within cylinder 502. As shown in FIG. 2, the cylinder 502 is arranged around the central axis of the rotating shaft 201 so as to cover the rotating shaft 201 from the outside in the circumferential direction. Note that the dimensions of the crank part 204 may be the same as the dimensions when the rolling piston 504 is attached to the crank part 204, and the rolling piston 504 may not be provided. The compression mechanism section 501 compresses the refrigerant using the driving force transmitted from the rotating shaft 201. The bearing section 300 supports the rotating shaft 201 above and below the compression mechanism section 501, and includes one or more sliding bearings.
 図2に示すように、ローリングピストン504とシリンダ502との間に形成されるシリンダ室507を、ベーン505によって間仕切りすることで、圧縮室507bと吸入室507aとが形成される。電動機部401が回転すると、クランク部204に取り付けられたローリングピストン504がシリンダ502内で偏心回転する。これにより、吸入室507aはローリングピストン504の回転に伴い内部空間が小さくなり、圧縮室507bでは圧縮室507b内の冷媒が圧縮される。そして、圧縮室507bと吐出ポート509(図1参照)とが接続されて、圧縮室507bの内部の冷媒が吐出ポート509から吐出される。このとき、圧縮された冷媒によるガス荷重GLが、回転軸201に作用する。ガス荷重GLは、圧縮室507bの幾何学的な圧縮容積の変化によって、図2の矢印Wで示されるように、回転軸201に対して、図2の紙面の概ね垂直下向き方向、すなわち、120deg~180degに作用する。このガス荷重GLは、図4を用いて後述するように、実質的にはローリングピストン504の表面に作用するが、ローリングピストン504を介して回転軸201にも作用する。すなわち、ガス荷重GLは、ローリングピストン504とクランク部204との間隙にある油膜あるいはローリングピストン504とクランク部204との直接接触により、ローリングピストン504を介して回転軸201に作用する。図2の例で回転軸201に対して概ね垂直下向き方向にガス荷重GLが作用した場合、図2の矢印Eで示すように、軸受部300に作用する負荷荷重の作用方向に対して回転方向に偏心した位置に、回転軸201の軸心位置が変化する。なお、図2では説明のため、ベーン505とローリングピストン504とが互いに別体で構成されたロータリ圧縮機1を示している。しかしながら、実施の形態1は、これに限定されず、ベーン505とローリングピストン504とが一体となったスイング式の圧縮機にも適用できる。 As shown in FIG. 2, a cylinder chamber 507 formed between a rolling piston 504 and a cylinder 502 is partitioned by a vane 505 to form a compression chamber 507b and a suction chamber 507a. When the electric motor section 401 rotates, a rolling piston 504 attached to the crank section 204 rotates eccentrically within the cylinder 502. As a result, the internal space of the suction chamber 507a becomes smaller as the rolling piston 504 rotates, and the refrigerant in the compression chamber 507b is compressed in the compression chamber 507b. Then, the compression chamber 507b and the discharge port 509 (see FIG. 1) are connected, and the refrigerant inside the compression chamber 507b is discharged from the discharge port 509. At this time, a gas load GL due to the compressed refrigerant acts on the rotating shaft 201. Due to the change in the geometric compression volume of the compression chamber 507b, the gas load GL is approximately vertically downward to the plane of the paper in FIG. 2 with respect to the rotation axis 201, as shown by the arrow W in FIG. Acts on ~180deg. This gas load GL substantially acts on the surface of the rolling piston 504, as will be described later using FIG. 4, but also acts on the rotating shaft 201 via the rolling piston 504. That is, the gas load GL acts on the rotating shaft 201 via the rolling piston 504 due to the oil film in the gap between the rolling piston 504 and the crank portion 204 or due to direct contact between the rolling piston 504 and the crank portion 204 . In the example of FIG. 2, when the gas load GL acts on the rotating shaft 201 in a generally vertical downward direction, as shown by the arrow E in FIG. The axial center position of the rotating shaft 201 changes to a position eccentric to . Note that, for the sake of explanation, FIG. 2 shows the rotary compressor 1 in which the vane 505 and the rolling piston 504 are configured separately from each other. However, the first embodiment is not limited to this, and can also be applied to a swing type compressor in which the vane 505 and the rolling piston 504 are integrated.
 以下、図1および図2に示したロータリ圧縮機1の各構成要素について詳細に説明する。 Hereinafter, each component of the rotary compressor 1 shown in FIGS. 1 and 2 will be described in detail.
 密閉容器100は、上部容器101と、下部容器102と、により構成されている。なお、密閉容器100は、上部容器101と下部容器102との2つの構成部材から形成されるものに限定されるものではなく、3つ以上の構成部材で形成してもよい。 The airtight container 100 is composed of an upper container 101 and a lower container 102. Note that the sealed container 100 is not limited to being formed from two components, the upper container 101 and the lower container 102, but may be formed from three or more components.
 密閉容器100は、図1に示すように、吸入配管2を介して吸入マフラ3と接続されており、吸入マフラ3からガス冷媒が内部に取り込まれる。吸入マフラ3は、溶接等により密閉容器100の下部容器102の外側面に固定されている。吸入マフラ3は、冷凍回路から送られてくる低温且つ低圧の冷媒を液冷媒とガス冷媒とに分離し、液冷媒がなるべく圧縮機構部501に吸入されないようにすると共に、分離した液冷媒を貯留するために設けられている。その理由は、ロータリ圧縮機1は、圧縮機構部501に液冷媒が流入して圧縮されてしまうと、液冷媒圧縮によりシリンダ内の圧力が異常高圧となり、ベーン飛び破損などの圧縮機構部501の故障の原因となるからである。また、吸入マフラ3は、流入する冷媒により発生する騒音を低減又は除去する消音器としての機能も有する。 As shown in FIG. 1, the sealed container 100 is connected to a suction muffler 3 via a suction pipe 2, and gas refrigerant is taken into the interior from the suction muffler 3. The suction muffler 3 is fixed to the outer surface of the lower container 102 of the closed container 100 by welding or the like. The suction muffler 3 separates the low temperature and low pressure refrigerant sent from the refrigeration circuit into liquid refrigerant and gas refrigerant, prevents the liquid refrigerant from being sucked into the compression mechanism section 501 as much as possible, and stores the separated liquid refrigerant. It is set up for the purpose of The reason for this is that in the rotary compressor 1, when liquid refrigerant flows into the compression mechanism section 501 and is compressed, the pressure inside the cylinder becomes abnormally high due to the compression of the liquid refrigerant, causing damage to the compression mechanism section 501 such as vane flying damage. This is because it may cause a malfunction. The suction muffler 3 also has a function as a muffler that reduces or eliminates noise generated by the inflowing refrigerant.
 密閉容器100の上部には、圧縮された冷媒を排出させる冷媒吐出管4が接続されている。冷媒吐出管4は、高圧のガス冷媒を密閉容器100の外部に吐出させる冷媒配管である。冷媒吐出管4は、密閉容器100を構成する上部容器101を貫通した状態で、例えばろう付け又は抵抗溶接等によって上部容器101に接合されている。 A refrigerant discharge pipe 4 for discharging compressed refrigerant is connected to the upper part of the closed container 100. The refrigerant discharge pipe 4 is a refrigerant pipe that discharges high-pressure gas refrigerant to the outside of the closed container 100. The refrigerant discharge pipe 4 passes through the upper container 101 constituting the closed container 100 and is joined to the upper container 101 by, for example, brazing or resistance welding.
 密閉容器100の内部は、圧縮機構部501によって圧縮された高温且つ高圧のガス冷媒によって満たされているとともに、底部に圧縮機構部501の潤滑に用いられる冷凍機油5が貯留されている。冷凍機油5は、主に圧縮機構部501の摺動部を潤滑するために用いられる。回転軸201の下部にはオイルポンプ(図示は省略)が設けられている。オイルポンプは、回転軸201の回転とともに密閉容器100の底部に貯留された冷凍機油5を汲み上げ、圧縮機構部501の各摺動部へ供給する。圧縮機構部501は、各摺動部への給油によって機械的な潤滑作用が確保される。 The inside of the closed container 100 is filled with high temperature and high pressure gas refrigerant compressed by the compression mechanism section 501, and refrigerating machine oil 5 used for lubricating the compression mechanism section 501 is stored at the bottom. Refrigerating machine oil 5 is mainly used to lubricate the sliding parts of compression mechanism section 501. An oil pump (not shown) is provided below the rotating shaft 201. As the rotating shaft 201 rotates, the oil pump pumps up the refrigerating machine oil 5 stored at the bottom of the closed container 100 and supplies it to each sliding part of the compression mechanism section 501. In the compression mechanism section 501, mechanical lubrication is ensured by supplying oil to each sliding section.
 電動機部401は、図1に示すように、密閉容器100の内壁面に焼き嵌め等によって固定された円筒形状のステータ403と、ステータ403の内側面に対向して回転可能に設けられ、磁気作用によって回転する円筒形状のロータ402と、を有している。ロータ402の中心部には、回転軸201が嵌入されている。電動機部401は、外部電源から供給された電力を用いて回転軸201に回転駆動力を発生させ、回転軸201を介して回転駆動力を圧縮機構部501に伝達する。なお、電動機部401には、例えばブラシレスDCモータ等が用いられる。 As shown in FIG. 1, the electric motor section 401 includes a cylindrical stator 403 fixed to the inner wall surface of the closed container 100 by shrink fitting or the like, and is rotatably provided opposite to the inner surface of the stator 403, and is rotatably provided with a magnetic effect. and a cylindrical rotor 402 that rotates by. The rotating shaft 201 is fitted into the center of the rotor 402 . The electric motor section 401 generates rotational driving force on the rotating shaft 201 using electric power supplied from an external power source, and transmits the rotational driving force to the compression mechanism section 501 via the rotating shaft 201. Note that the electric motor section 401 uses, for example, a brushless DC motor.
 回転軸201は、電動機部401のロータ402に固定された主軸部202と、圧縮機構部501を挟んで主軸部202の反対側に設けられた副軸部203と、主軸部202と副軸部203との間に設けられたクランク部204と、を有している。回転軸201は、軸方向において、密閉容器100の上方から下方に向かって主軸部202、クランク部204、副軸部203の順に形成されている。主軸部202は、電動機部401のロータ402の中心部に嵌め込まれ、焼嵌又は圧入されて固定されている。クランク部204の中心軸は、主軸部202及び副軸部203の中心軸に対して偏心している。 The rotating shaft 201 includes a main shaft section 202 fixed to the rotor 402 of the electric motor section 401, a counter shaft section 203 provided on the opposite side of the main shaft section 202 with the compression mechanism section 501 in between, and the main shaft section 202 and the counter shaft section. 203, and a crank part 204 provided between the crank part 203 and the crank part 204. The rotating shaft 201 is formed in the order of a main shaft part 202, a crank part 204, and a counter shaft part 203 from above to below the closed container 100 in the axial direction. The main shaft portion 202 is fitted into the center of the rotor 402 of the electric motor portion 401 and fixed by shrink fitting or press fitting. The central axis of the crank part 204 is eccentric with respect to the central axes of the main shaft part 202 and the counter shaft part 203.
 圧縮機構部501は、電動機部401から供給された回転駆動力により、吸入配管2から密閉容器100の低圧空間に吸入された低圧のガス冷媒を高圧のガス冷媒に圧縮するものである。圧縮機構部501によって圧縮した高圧のガス冷媒は、圧縮機構部501の上方から密閉容器100の内部に吐出される。圧縮機構部501は、シリンダ502と、上軸受301と、下軸受302と、吐出マフラ503と、ローリングピストン504と、ベーン505(図2参照)と、ベーンスプリング506(図2参照)と、を備えている。 The compression mechanism section 501 compresses the low-pressure gas refrigerant drawn into the low-pressure space of the closed container 100 from the suction pipe 2 into high-pressure gas refrigerant using the rotational driving force supplied from the electric motor section 401. The high-pressure gas refrigerant compressed by the compression mechanism section 501 is discharged into the closed container 100 from above the compression mechanism section 501. The compression mechanism section 501 includes a cylinder 502, an upper bearing 301, a lower bearing 302, a discharge muffler 503, a rolling piston 504, a vane 505 (see FIG. 2), and a vane spring 506 (see FIG. 2). We are prepared.
 シリンダ502は、ボルト等によって外周部が密閉容器100に固定されている。シリンダ502は、図1に示すように、上面を一端面側UPとし、下面を他端面側DNとしている。シリンダ502は、図2に示すように、中空円筒形状とされ、中空内部がシリンダ室507になっている。シリンダ室507は、図1に示すように、回転軸201の軸方向の両端が開口しており、シリンダ502の上面に設けられた上軸受301と、シリンダ502の下面に設けられた下軸受302とによって閉塞されている。つまり、シリンダ室507は、シリンダ502の内周面と、上軸受301の内壁面と、下軸受302の内壁面とによって囲まれた空間である。 The outer peripheral portion of the cylinder 502 is fixed to the closed container 100 with bolts or the like. As shown in FIG. 1, the cylinder 502 has an upper surface as one end surface side UP and a lower surface as the other end surface side DN. As shown in FIG. 2, the cylinder 502 has a hollow cylindrical shape, and a cylinder chamber 507 is formed inside the cylinder. As shown in FIG. 1, the cylinder chamber 507 is open at both ends in the axial direction of the rotating shaft 201, and includes an upper bearing 301 provided on the upper surface of the cylinder 502 and a lower bearing 302 provided on the lower surface of the cylinder 502. It is blocked by. In other words, the cylinder chamber 507 is a space surrounded by the inner peripheral surface of the cylinder 502, the inner wall surface of the upper bearing 301, and the inner wall surface of the lower bearing 302.
 また、シリンダ502には、吸入配管2からのガス冷媒が通る吸入ポート(図示せず)が、外周面からシリンダ室507に貫通して設けられている。吸入ポートは、吸入配管2の管路とシリンダ室507とを連通させるものである。 Further, the cylinder 502 is provided with a suction port (not shown) through which the gas refrigerant from the suction pipe 2 passes, penetrating into the cylinder chamber 507 from the outer peripheral surface. The suction port allows the pipe line of the suction pipe 2 and the cylinder chamber 507 to communicate with each other.
 また、シリンダ502には、図2に示すように、シリンダ室507に連通し、回転軸201を中心とした径方向に延びるベーン溝508が形成されている。ベーン溝508は、図2に示すように、シリンダ502の外形が円に見える方向から見て、一端面側UPから他端面側DNに向かって、シリンダ502の軸方向に貫通している。ベーン溝508には、シリンダ室507を吸入室507aと圧縮室507bとに仕切るベーン505が、摺動可能に嵌入させて設けられている。吸入室507aは、低圧空間であり、吸入ポートと連通している。圧縮室507bは、高圧空間であり、シリンダ室507の外部へ吐出するための吐出ポート509(図1参照)と連通している。 Further, as shown in FIG. 2, the cylinder 502 is formed with a vane groove 508 that communicates with the cylinder chamber 507 and extends in the radial direction about the rotating shaft 201. As shown in FIG. 2, the vane groove 508 penetrates through the cylinder 502 in the axial direction from one end surface side UP toward the other end surface side DN when viewed from a direction in which the outer shape of the cylinder 502 appears circular. A vane 505 that partitions the cylinder chamber 507 into a suction chamber 507a and a compression chamber 507b is slidably fitted into the vane groove 508. The suction chamber 507a is a low pressure space and communicates with the suction port. The compression chamber 507b is a high pressure space and communicates with a discharge port 509 (see FIG. 1) for discharging to the outside of the cylinder chamber 507.
 また、シリンダ502の外周面側におけるベーン溝508の端部には、止まり部508aが形成されている。止まり部508aは、ベーン505がシリンダ502の外周面から飛び出さないように、シリンダ502の外周面側に向かうベーン505の動きを止めて、ベーン505の動作を制限するために設けられている。また、止まり部508aは、背圧室として高圧冷媒を導入する機能も有する。なお、止まり部508aは、図2に示すように、シリンダ502の一端面側UPから見てベーン溝508にのみ開口する円弧形状である。 Furthermore, a stop portion 508a is formed at the end of the vane groove 508 on the outer peripheral surface side of the cylinder 502. The stop portion 508a is provided to limit the movement of the vane 505 by stopping the movement of the vane 505 toward the outer circumferential surface of the cylinder 502 so that the vane 505 does not protrude from the outer circumferential surface of the cylinder 502. Further, the stop portion 508a also has the function of introducing high-pressure refrigerant as a back pressure chamber. Note that, as shown in FIG. 2, the stop portion 508a has an arcuate shape that opens only into the vane groove 508 when viewed from the one end surface side UP of the cylinder 502.
 さらに、ベーン溝508の端部には、図2に示すように、ベーンスプリング506を収納し、ベーンスプリング506を動作させる空間としてベーンスプリング収納穴508bが形成されている。ベーンスプリング収納穴508bは、シリンダ502の径方向に延びるように形成されている。ベーンスプリング収納穴508bの長さは、動作させるベーンスプリング506の形状、又はシリンダ502の形状に応じて決定される。 Furthermore, as shown in FIG. 2, a vane spring housing hole 508b is formed at the end of the vane groove 508 as a space for housing the vane spring 506 and operating the vane spring 506. Vane spring storage hole 508b is formed to extend in the radial direction of cylinder 502. The length of the vane spring storage hole 508b is determined depending on the shape of the vane spring 506 to be operated or the shape of the cylinder 502.
 上軸受301は、図1に示すように、側面視で略逆T字形状に形成されている。上軸受301は、電動機部401が配置されている側のシリンダ502の一端面側UPに設けられ、シリンダ室507の軸方向の一方の開口部を閉塞している。また、上軸受301は、回転軸201の主軸部202に嵌合され、主軸部202を回転可能に支持している。上軸受301は、下軸受302と共に、共通のねじ6によってシリンダ502に固定されている。上軸受301は、例えばすべり軸受で構成されている。 As shown in FIG. 1, the upper bearing 301 is formed into a substantially inverted T-shape when viewed from the side. The upper bearing 301 is provided on one end surface side UP of the cylinder 502 on the side where the electric motor section 401 is disposed, and closes one opening of the cylinder chamber 507 in the axial direction. Further, the upper bearing 301 is fitted onto the main shaft portion 202 of the rotating shaft 201, and rotatably supports the main shaft portion 202. The upper bearing 301 and the lower bearing 302 are fixed to the cylinder 502 by a common screw 6. The upper bearing 301 is composed of, for example, a sliding bearing.
 なお、上軸受301には、圧縮室507bで圧縮された冷媒を、シリンダ室507の外部へ吐出するための吐出ポート509が形成されている。吐出ポート509には、吐出弁(図示省略)が取り付けられている。吐出弁は、高温且つ高圧のガス冷媒を圧縮室507bから吐出ポート509を介して吐出させるタイミングを制御する。具体的には、吐出弁は、圧縮室507b内の圧縮冷媒の圧力が、予め設定された圧力以上となったら開いて、密閉容器100内に冷媒を吐出させる板バネ機構を有している。そのため、吐出弁は、圧縮室507bの内部の圧力が、予め設定された圧力より低い時に、吐出ポート509を閉塞する。また、吐出弁は、圧縮室507bの内部の圧力が、予め設定された圧力以上になったときに、圧縮室507bの内部の圧力により上方向へ押し上げられて開状態になる。これにより、圧縮室507bから吐出ポート509を介して密閉容器100内に冷媒が吐出される。 Note that a discharge port 509 is formed in the upper bearing 301 to discharge the refrigerant compressed in the compression chamber 507b to the outside of the cylinder chamber 507. A discharge valve (not shown) is attached to the discharge port 509. The discharge valve controls the timing at which the high temperature and high pressure gas refrigerant is discharged from the compression chamber 507b through the discharge port 509. Specifically, the discharge valve has a leaf spring mechanism that opens when the pressure of the compressed refrigerant in the compression chamber 507b exceeds a preset pressure to discharge the refrigerant into the closed container 100. Therefore, the discharge valve closes the discharge port 509 when the pressure inside the compression chamber 507b is lower than a preset pressure. Further, when the pressure inside the compression chamber 507b exceeds a preset pressure, the discharge valve is pushed upward by the pressure inside the compression chamber 507b and becomes open. Thereby, the refrigerant is discharged from the compression chamber 507b into the closed container 100 via the discharge port 509.
 下軸受302は、図1に示すように、側面視で、逆向きの略T字形状に形成されている。下軸受302は、電動機部401が配置されている側とは反対側のシリンダ502の他端面側DNに設けられ、シリンダ室507の軸方向の他方の開口部を閉塞している。また、下軸受302は、回転軸201の副軸部203に嵌合され、副軸部203を回転可能に支持している。下軸受302は、例えばすべり軸受で構成されている。 As shown in FIG. 1, the lower bearing 302 is formed in a generally reverse T-shape when viewed from the side. The lower bearing 302 is provided on the other end surface side DN of the cylinder 502, which is opposite to the side where the electric motor section 401 is arranged, and closes the other opening of the cylinder chamber 507 in the axial direction. Further, the lower bearing 302 is fitted into the subshaft portion 203 of the rotating shaft 201, and rotatably supports the subshaft portion 203. The lower bearing 302 is composed of, for example, a sliding bearing.
 吐出マフラ503は、図1に示すように、上軸受301の外側を覆うように取り付けられている。圧縮室507bの内部では、冷媒を吸入し、冷媒を圧縮し、冷媒を吐出する動作が繰り返されている。圧縮されたガス冷媒は、吐出ポート509から間欠的に吐出される。これにより、シリンダ502から脈動音などの騒音が発生する場合がある。吐出マフラ503は、このようなシリンダ502から発生される脈動音などの騒音を抑制するために設けられている。 As shown in FIG. 1, the discharge muffler 503 is attached to cover the outside of the upper bearing 301. Inside the compression chamber 507b, the operations of sucking in the refrigerant, compressing the refrigerant, and discharging the refrigerant are repeated. The compressed gas refrigerant is intermittently discharged from the discharge port 509. As a result, noise such as pulsation noise may be generated from the cylinder 502. The discharge muffler 503 is provided to suppress noise such as pulsation noise generated from the cylinder 502.
 また、吐出マフラ503には、吐出マフラ503と上軸受301とによって形成される空間と、密閉容器100の内部と、を連通させる吐出穴(図示は省略)が設けられている。シリンダ502から吐出ポート509を介して吐出されるガス冷媒は、吐出マフラ503と上軸受301とによって形成される空間に一旦吐出され、その後、吐出穴から密閉容器100の内部へ吐出される。 Further, the discharge muffler 503 is provided with a discharge hole (not shown) that communicates the space formed by the discharge muffler 503 and the upper bearing 301 with the inside of the closed container 100. The gas refrigerant discharged from the cylinder 502 through the discharge port 509 is once discharged into the space formed by the discharge muffler 503 and the upper bearing 301, and then discharged into the airtight container 100 from the discharge hole.
 ローリングピストン504は、図2に示すように、中空円筒状に形成されており、中空内部に回転軸201のクランク部204が摺動可能に嵌合されている。ローリングピストン504は、クランク部204と共にシリンダ室507に収納されている。ローリングピストン504は、電動機部401の駆動によって回転軸201が回転すると、シリンダ室507の内周面に沿って回転して冷媒を圧縮する。 As shown in FIG. 2, the rolling piston 504 is formed into a hollow cylindrical shape, and the crank portion 204 of the rotating shaft 201 is slidably fitted into the hollow interior. The rolling piston 504 is housed in a cylinder chamber 507 together with the crank portion 204. When the rotating shaft 201 is rotated by the drive of the electric motor section 401, the rolling piston 504 rotates along the inner peripheral surface of the cylinder chamber 507 and compresses the refrigerant.
 ベーン505は、図2に示すように、冷媒の圧縮工程中に、先端部がローリングピストン504の外周面に当接したまま、ローリングピストン504の回転に追従してベーン溝508の内部を往復摺動する。シリンダ室507は、ベーン505の先端部がローリングピストン504の外周面に当接することにより、吸入室507aと圧縮室507bとに仕切られる。ベーン505は、例えば非磁性材料で形成されている。 As shown in FIG. 2, during the refrigerant compression process, the vane 505 reciprocates inside the vane groove 508 following the rotation of the rolling piston 504 while its tip remains in contact with the outer peripheral surface of the rolling piston 504. move. The cylinder chamber 507 is partitioned into a suction chamber 507a and a compression chamber 507b by the tip of the vane 505 coming into contact with the outer peripheral surface of the rolling piston 504. Vane 505 is made of, for example, a non-magnetic material.
 ベーンスプリング506は、ベーン505の背面側と当接し、ベーン505の先端部がローリングピストン504の外周面に当接するようにベーン505を押圧するものである。ベーンスプリング506は、シリンダ502のベーンスプリング収納穴508bに収納され、ベーン505と直列に配置されている。ベーンスプリング506は、ローリングピストン504に当接する上記先端部と反対側の端部が、ベーンスプリング収納穴508bの内壁面に当接することによって、シリンダ502に固定されている。 The vane spring 506 contacts the back side of the vane 505 and presses the vane 505 so that the tip of the vane 505 contacts the outer peripheral surface of the rolling piston 504. The vane spring 506 is housed in a vane spring housing hole 508b of the cylinder 502, and is arranged in series with the vane 505. The vane spring 506 is fixed to the cylinder 502 by having its end opposite to the tip that contacts the rolling piston 504 contact the inner wall surface of the vane spring storage hole 508b.
 ここで、ロータリ圧縮機1の動作について説明する。ロータリ圧縮機1は、電動機部401の駆動によって回転軸201が回転運動することにより、シリンダ室507の内部でクランク部204と共にローリングピストン504が回転する。シリンダ室507において、ベーン505によって仕切られた吸入室507aは、回転軸201の回転とともに容積が増加する。また、シリンダ室507において、ベーン505によって仕切られた圧縮室507bは、容積が減少する。 Here, the operation of the rotary compressor 1 will be explained. In the rotary compressor 1 , a rolling piston 504 rotates together with a crank part 204 inside a cylinder chamber 507 when a rotating shaft 201 rotates by driving an electric motor part 401 . In the cylinder chamber 507, the suction chamber 507a partitioned by the vane 505 increases in volume as the rotating shaft 201 rotates. Moreover, in the cylinder chamber 507, the volume of the compression chamber 507b partitioned off by the vane 505 is reduced.
 ロータリ圧縮機1は、吸入室507aと吸入ポートとが連通し、低圧のガス冷媒がシリンダ室507の内部に吸入される。次に、圧縮室507bと吸入ポートとの連通がローリングピストン504によって閉鎖され、圧縮室507bの容積減少とともに、圧縮室507bの内部のガス冷媒が圧縮される。そして、圧縮室507bと上軸受301の吐出ポート509とが連通し、圧縮室507bの内部のガス冷媒が予め設定された圧力に達したときに、吐出ポート509に設けられた吐出弁が開く。こうして、圧縮されて高圧且つ高温となったガス冷媒が、吐出ポート509から、シリンダ室507の外部へ吐出される。 In the rotary compressor 1, the suction chamber 507a and the suction port communicate with each other, and low-pressure gas refrigerant is sucked into the cylinder chamber 507. Next, communication between the compression chamber 507b and the suction port is closed by the rolling piston 504, and as the volume of the compression chamber 507b decreases, the gas refrigerant inside the compression chamber 507b is compressed. The compression chamber 507b and the discharge port 509 of the upper bearing 301 communicate with each other, and when the gas refrigerant inside the compression chamber 507b reaches a preset pressure, the discharge valve provided at the discharge port 509 opens. The gas refrigerant thus compressed to a high pressure and high temperature is discharged from the discharge port 509 to the outside of the cylinder chamber 507 .
 シリンダ室507の外部へ吐出された高圧且つ高温のガス冷媒は、吐出マフラ503を介して、密閉容器100の内部に吐出される。そして、吐出されたガス冷媒は、電動機部401の内部を通過し、密閉容器100の内部を上昇して、密閉容器100の上部に設けられた冷媒吐出管4から、密閉容器100の外部へ吐出される。密閉容器100の外部へ吐出された冷媒は、冷凍回路を循環して、再び、吸入マフラ3に戻ってくる。 The high-pressure and high-temperature gas refrigerant discharged to the outside of the cylinder chamber 507 is discharged into the sealed container 100 via the discharge muffler 503. Then, the discharged gas refrigerant passes through the inside of the electric motor section 401, rises inside the closed container 100, and is discharged to the outside of the closed container 100 from the refrigerant discharge pipe 4 provided at the upper part of the closed container 100. be done. The refrigerant discharged to the outside of the sealed container 100 circulates through the refrigeration circuit and returns to the suction muffler 3 again.
 図3は、実施の形態1に係るロータリ圧縮機1に設けられたクランク部204およびローリングピストン504の回転運動を説明する説明図である。上述したように、電動機部401が回転すると、回転軸201のクランク部204に取り付けられたローリングピストン504が、シリンダ502内で偏心回転する。このとき、ローリングピストン504は、図3に示すように、(a)→(b)→(c)→(d)→(a)→・・・の順に、状態を変化させる。 FIG. 3 is an explanatory diagram illustrating the rotational movement of the crank portion 204 and rolling piston 504 provided in the rotary compressor 1 according to the first embodiment. As described above, when the electric motor section 401 rotates, the rolling piston 504 attached to the crank section 204 of the rotating shaft 201 rotates eccentrically within the cylinder 502. At this time, the rolling piston 504 changes its state in the order of (a)→(b)→(c)→(d)→(a)→... as shown in FIG.
 図3(a)の状態は、クランク角が0degの場合である。クランク角θ1は、ベーン上死点を原点にし、且つ、回転方向R(図2参照)を正とした場合の、クランク部204の回転角度である。ベーン上死点とは、図3(a)に示すように、ベーン505がベーン溝508内に完全に収納された状態を意味する。ベーン上死点におけるクランク角θ1は、0degまたは360degである。 The state shown in FIG. 3(a) is when the crank angle is 0 degrees. The crank angle θ1 is the rotation angle of the crank portion 204 when the vane top dead center is the origin and the rotation direction R (see FIG. 2) is positive. The vane top dead center means a state in which the vane 505 is completely housed in the vane groove 508, as shown in FIG. 3(a). The crank angle θ1 at the top dead center of the vane is 0 deg or 360 deg.
 次に、ローリングピストン504は、図3(b)の状態に移行する。このときの状態は、吸入室507aへの冷媒の吸入が開始され、それと同時に、圧縮室507bでの冷媒の圧縮が開始される。図3(b)の状態は、クランク角θ1が90degの場合である。 Next, the rolling piston 504 transitions to the state shown in FIG. 3(b). In this state, suction of the refrigerant into the suction chamber 507a is started, and at the same time, compression of the refrigerant in the compression chamber 507b is started. The state shown in FIG. 3(b) is a case where the crank angle θ1 is 90 degrees.
 次に、ローリングピストン504は、図3(c)の状態に移行する。このときの状態は、吸入室507aへの冷媒の吸入が継続され、それと同時に、圧縮室507bで圧縮された冷媒の吐出が開始される。図3(c)の状態は、クランク角θ1が180degの場合である。 Next, the rolling piston 504 transitions to the state shown in FIG. 3(c). In this state, the refrigerant continues to be sucked into the suction chamber 507a, and at the same time, the refrigerant compressed in the compression chamber 507b starts to be discharged. The state shown in FIG. 3(c) is a case where the crank angle θ1 is 180 degrees.
 次に、ローリングピストン504は、図3(d)の状態に移行する。このときの状態は、吸入室507aへの冷媒の吸入が継続され、圧縮室507bで圧縮された冷媒の吐出が継続される。図3(d)の状態は、クランク角θ1が270degの場合である。 Next, the rolling piston 504 transitions to the state shown in FIG. 3(d). In this state, the refrigerant continues to be sucked into the suction chamber 507a, and the refrigerant compressed in the compression chamber 507b continues to be discharged. The state shown in FIG. 3(d) is a case where the crank angle θ1 is 270 degrees.
 次に、ローリングピストン504は、図3(a)の状態に戻る。このときの状態は、吸入室507aへの冷媒の吸入が終了し、圧縮室507bで圧縮された冷媒の吐出も終了する。図3(a)の状態は、クランク角θ1が360degの場合、すなわち、クランク角θ1が0degの場合である。 Next, the rolling piston 504 returns to the state shown in FIG. 3(a). In this state, the suction of the refrigerant into the suction chamber 507a is completed, and the discharge of the refrigerant compressed in the compression chamber 507b is also completed. The state shown in FIG. 3A is a case where the crank angle θ1 is 360 degrees, that is, a case where the crank angle θ1 is 0 degrees.
 図4は、実施の形態1に係るロータリ圧縮機1において、ローリングピストン504の回転運転に伴う冷媒圧縮によって、ガス荷重が発生する原理を説明する説明図である。図4において、θ1はクランク角を示し、eは回転軸201の外径の半径を示し、rはローリングピストン504の外径の半径を示す。図4に示すように、ローリングピストン504に対して、圧縮室507b内の冷媒からの圧力である圧縮室圧力Pcが加わる。それと同時に、吸入室507a内の冷媒からの圧力である吸入圧Psがローリングピストン504に加わる。圧縮室圧力Pcと吸入圧Psとの差圧を「ガス荷重GL」と呼ぶ。圧縮室507bの内圧は、吸入室507aの内圧より大きいため、圧縮室圧力Pcの方が吸入圧Psより大きい。そのため、ガス荷重GLのベクトルの向きは、図4の白抜き矢印で示すように、圧縮室507bから吸入室507aに向かう方向となる。なお、実施の形態1では、ガス荷重GLのベクトルの向きを示す指標として、ガス荷重GLの作用角度θ2を用いる。ガス荷重GLの作用角度θ2は、クランク角θ1と同じく、べーン上死点(図3参照)を原点にし、回転方向R(図2参照)を正として定義される。クランク角θ1に応じて圧縮室507bの位置が変化するため、ガス荷重GLの作用角度θ2も変化する。このように、ガス荷重GLは、実質的にはローリングピストン504の表面に作用するが、上述したように、ローリングピストン504を介して回転軸201にも作用する。 FIG. 4 is an explanatory diagram illustrating the principle of gas load generation due to refrigerant compression accompanying the rotational operation of the rolling piston 504 in the rotary compressor 1 according to the first embodiment. In FIG. 4, θ1 represents the crank angle, e represents the outer radius of the rotating shaft 201, and r represents the outer radius of the rolling piston 504. As shown in FIG. 4, compression chamber pressure Pc, which is pressure from the refrigerant in compression chamber 507b, is applied to rolling piston 504. At the same time, suction pressure Ps, which is the pressure from the refrigerant in suction chamber 507a, is applied to rolling piston 504. The differential pressure between the compression chamber pressure Pc and the suction pressure Ps is called "gas load GL." Since the internal pressure of the compression chamber 507b is greater than the internal pressure of the suction chamber 507a, the compression chamber pressure Pc is greater than the suction pressure Ps. Therefore, the direction of the vector of the gas load GL is from the compression chamber 507b toward the suction chamber 507a, as shown by the white arrow in FIG. In the first embodiment, the action angle θ2 of the gas load GL is used as an index indicating the direction of the vector of the gas load GL. Like the crank angle θ1, the action angle θ2 of the gas load GL is defined with the vane top dead center (see FIG. 3) as the origin and the rotation direction R (see FIG. 2) as positive. Since the position of the compression chamber 507b changes according to the crank angle θ1, the action angle θ2 of the gas load GL also changes. In this way, the gas load GL substantially acts on the surface of the rolling piston 504, but also acts on the rotating shaft 201 via the rolling piston 504, as described above.
 図5は、実施の形態1に係るロータリ圧縮機1におけるクランク角θ1に対するガス荷重GLの変化の一例を示す図である。なお、図5においては、ガス荷重GLを最大値により正規化している。図5において、横軸はクランク角θ1を示し、縦軸は正規化されたガス荷重GLを示す。クランク角θ1の変化に伴い、圧縮室507bの容積が変化するため、図5に示すように、クランク角θ1の変化に応じてガス荷重GLの大きさが変化する。具体的には、図5に示すように、クランク角θ1が225deg前後で、ガス荷重GLの大きさが最も大きくなる。すなわち、クランク角θ1が0degから120degまでの範囲では、ガス荷重GLの大きさが緩やかに増加し、クランク角θ1が120degから225degまでの範囲では、ガス荷重GLが急激に大きくなっている。また、クランク角θ1が225degから360degまでの範囲では、ガス荷重GLの大きさが急激に減少している。 FIG. 5 is a diagram showing an example of a change in the gas load GL with respect to the crank angle θ1 in the rotary compressor 1 according to the first embodiment. In addition, in FIG. 5, the gas load GL is normalized by the maximum value. In FIG. 5, the horizontal axis shows the crank angle θ1, and the vertical axis shows the normalized gas load GL. Since the volume of the compression chamber 507b changes as the crank angle θ1 changes, as shown in FIG. 5, the magnitude of the gas load GL changes in accordance with the change in the crank angle θ1. Specifically, as shown in FIG. 5, when the crank angle θ1 is around 225 degrees, the gas load GL becomes the largest. That is, when the crank angle θ1 is in the range from 0 deg to 120 deg, the gas load GL gradually increases, and when the crank angle θ1 is in the range from 120 deg to 225 deg, the gas load GL increases rapidly. Further, in the range of the crank angle θ1 from 225 degrees to 360 degrees, the magnitude of the gas load GL rapidly decreases.
 図6は、実施の形態1に係るロータリ圧縮機1におけるクランク角θ1に対するガス荷重GLの作用角度θ2の一例を示す図である。図6において、横軸はクランク角θ1を示し、縦軸はガス荷重GLの作用角度θ2を示す。図6に示すように、クランク角θ1の変化に伴い、圧縮室507bの容積が変化するため、ガス荷重GLの作用角度θ2が変化する。図6の例では、クランク角θ1の全範囲、すなわち、θ1が0deg~360degの範囲に対して、ガス荷重GLの作用角度θ2の変化する範囲、すなわち、ガス荷重GLの作用角度θ2の変動幅は、110deg~330degの範囲となっている。以下では、当該範囲を、作用角度θ2の変動幅を示す角度範囲B1と呼ぶこととする。具体的には、図6に示すように、クランク角θ1が180deg前後で、ガス荷重GLの作用角度θ2が最も小さく、θ2=110degになっている。すなわち、θ2=110degが、角度範囲B1の下限値である。また、クランク角θ1が360degのときに、ガス荷重GLの作用角度θ2が最も大きく、θ2=330degになっている。すなわち、θ2=330degが、角度範囲B1の上限値である。また、クランク角θ1が0degのときに、ガス荷重GLの作用角度θ2が180degで、その後、クランク角θ1が0degから30degまでの範囲では、荷重GLの作用角度θ2が減少する。また、クランク角θ1が30degから180degまでの範囲では、荷重GLの作用角度θ2が横ばいか、あるいは、漸減する。そして、クランク角θ1が180degから355degまでの範囲では、荷重GLの作用角度θ2が漸増し、クランク角θ1が355degから360degまでの範囲では、荷重GLの作用角度θ2が急激に増加する。 FIG. 6 is a diagram showing an example of the operating angle θ2 of the gas load GL with respect to the crank angle θ1 in the rotary compressor 1 according to the first embodiment. In FIG. 6, the horizontal axis indicates the crank angle θ1, and the vertical axis indicates the action angle θ2 of the gas load GL. As shown in FIG. 6, as the crank angle θ1 changes, the volume of the compression chamber 507b changes, so the action angle θ2 of the gas load GL changes. In the example of FIG. 6, the range in which the operating angle θ2 of the gas load GL changes, that is, the variation range of the operating angle θ2 of the gas load GL, with respect to the entire range of the crank angle θ1, that is, the range of θ1 from 0 deg to 360 deg. is in the range of 110deg to 330deg. Hereinafter, this range will be referred to as an angular range B1 indicating the variation range of the action angle θ2. Specifically, as shown in FIG. 6, when the crank angle θ1 is around 180 degrees, the action angle θ2 of the gas load GL is the smallest, θ2=110 degrees. That is, θ2=110 degrees is the lower limit value of the angle range B1. Further, when the crank angle θ1 is 360 degrees, the action angle θ2 of the gas load GL is the largest, and θ2=330 degrees. That is, θ2=330 degrees is the upper limit of the angle range B1. Further, when the crank angle θ1 is 0 deg, the action angle θ2 of the gas load GL is 180 deg, and thereafter, in the range of the crank angle θ1 from 0 deg to 30 deg, the action angle θ2 of the load GL decreases. Further, in the range of the crank angle θ1 from 30 degrees to 180 degrees, the action angle θ2 of the load GL remains unchanged or gradually decreases. When the crank angle θ1 is in the range from 180 degrees to 355 degrees, the acting angle θ2 of the load GL gradually increases, and when the crank angle θ1 is in the range from 355 degrees to 360 degrees, the acting angle θ2 of the load GL increases rapidly.
 このように、実施の形態1に係るロータリ圧縮機1においては、図5および図6に示すように、クランク角θ1の変化に伴い、ガス荷重GLの大きさおよび作用角度θ2が変化する。 As described above, in the rotary compressor 1 according to the first embodiment, as shown in FIGS. 5 and 6, the magnitude of the gas load GL and the operating angle θ2 change as the crank angle θ1 changes.
 実施の形態1では、軸受部300がすべり軸受で構成されていることを前提としている。すなわち、上軸受301および下軸受302の少なくともいずれか一方が、すべり軸受で構成されている。また、実施の形態1では、当該すべり軸受は、油膜剛性に異方性を有している。油膜剛性とは、回転軸201と軸受部300との間に介在する冷凍機油が有する剛性であり、回転軸201は、当該冷凍機油の剛性により支持されている。そのため、油膜剛性は、軸受支持剛性として機能する。 In the first embodiment, it is assumed that the bearing section 300 is composed of a sliding bearing. That is, at least one of the upper bearing 301 and the lower bearing 302 is configured as a sliding bearing. Further, in the first embodiment, the sliding bearing has anisotropy in oil film rigidity. The oil film rigidity is the stiffness of the refrigerating machine oil interposed between the rotating shaft 201 and the bearing portion 300, and the rotating shaft 201 is supported by the rigidity of the refrigerating machine oil. Therefore, the oil film rigidity functions as bearing support rigidity.
 ここで、すべり軸受の油膜剛性に異方性を発現させる方法について説明する。一つの方法としては、軸受部300を構成するすべり軸受の内径面300a(例えば図12参照)の形状を、非真円形状とすることが挙げられる。内径面300aは、回転軸201が摺動する摺動面である。すべり軸受は、円筒状の形状を有しており、内部が空洞になっている。当該空洞内に、回転軸201が配置される。すべり軸受は、真鍮などの銅合金、鉄、あるいは、特殊な樹脂で形成される。すべり軸受の内径面300aと、回転軸201と、の間に形成される隙間400(例えば図12参照)は、冷凍機油が注入されている。 Here, a method for creating anisotropy in the oil film rigidity of a sliding bearing will be explained. One method is to make the shape of the inner diameter surface 300a (for example, see FIG. 12) of the sliding bearing constituting the bearing portion 300 into a non-perfect circular shape. The inner diameter surface 300a is a sliding surface on which the rotating shaft 201 slides. The sliding bearing has a cylindrical shape and is hollow inside. A rotating shaft 201 is arranged within the cavity. Sliding bearings are made of copper alloys such as brass, iron, or special resin. Refrigerating machine oil is injected into a gap 400 (see, for example, FIG. 12) formed between the inner diameter surface 300a of the sliding bearing and the rotating shaft 201.
 例えば図7に示すように、軸受部300を構成するすべり軸受の内径面300aの形状が真円形状である場合には、内径面300aと回転軸201との間に形成される隙間400(図7参照)の広さが一様である。その場合、隙間400に充填された冷凍機油の油膜厚さも一様となり、ローリングピストン504の一回転中に、油膜厚さが変化しない。そのため、油膜剛性に異方性が発現しない。ここで、ローリングピストン504の一回転とは、ローリングピストン504が、図3に示すように、クランク角θ1が0degの状態から、クランク角θ1が360degになるまで、360degの範囲を回転移動することである。 For example, as shown in FIG. 7, when the shape of the inner diameter surface 300a of the sliding bearing constituting the bearing part 300 is a perfect circle, there is a gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 (see FIG. 7) are uniform in width. In this case, the thickness of the oil film of the refrigerating machine oil filled in the gap 400 is also uniform, and the oil film thickness does not change during one revolution of the rolling piston 504. Therefore, anisotropy does not appear in the oil film stiffness. Here, one rotation of the rolling piston 504 means that the rolling piston 504 rotates in a range of 360 degrees from a state where the crank angle θ1 is 0 degrees until the crank angle θ1 becomes 360 degrees, as shown in FIG. It is.
 一方、例えば図12に示すように、軸受部300を構成するすべり軸受の内径面300aの形状が非真円形状である場合には、内径面300aと回転軸201との間に形成される隙間400が一様ではない。言い換えると、隙間400の中に、隙間400が狭い箇所と、隙間400が広い箇所と、が含まれる。その場合、隙間400に充填された冷凍機油の油膜厚さも一様ではなくなり、ローリングピストン504の一回転中に、油膜厚さが変化する。そのため、油膜剛性に異方性が発現する。以下、図7~図22にジャーナル型すべり軸受の形状例の一部を示す。以下、具体的なすべり軸受の例を挙げて、油膜剛性の異方性について、さらに詳細に説明する。 On the other hand, as shown in FIG. 12, for example, when the shape of the inner diameter surface 300a of the sliding bearing constituting the bearing part 300 is a non-perfect circular shape, a gap is formed between the inner diameter surface 300a and the rotating shaft 201. 400 is not uniform. In other words, the gap 400 includes areas where the gap 400 is narrow and areas where the gap 400 is wide. In that case, the oil film thickness of the refrigerating machine oil filled in the gap 400 is no longer uniform, and the oil film thickness changes during one rotation of the rolling piston 504. Therefore, anisotropy appears in the oil film stiffness. Below, some examples of the shapes of journal type sliding bearings are shown in FIGS. 7 to 22. Hereinafter, the anisotropy of oil film rigidity will be explained in more detail using a specific example of a sliding bearing.
 図7~図22のうち、異方性を有する内径面の形状としては、例えば図12の二円弧軸受等が挙げられる。すべり軸受では、ローリングピストン504の回転方向に隙間400の大きさが変化する。これにより、隙間400が狭まる領域S1およびS2において、隙間400を流れる冷凍機油等の流体に圧力が発生することで、油膜剛性が発生する。二円弧軸受においては、図12に示すように、回転軸201と内径面300aとが同心状態の場合においても、内径面300aが真円形状でないため、ローリングピストン504の回転方向に、隙間400の分布が生じる。そのため、図12において、特に隙間400が小さい領域S1および領域S2が存在する方向、すなわち、図12の紙面の垂直方向で、高い油膜圧力が発生する。従って、図12に示すような軸受においては、隙間400の大きい水平方向の油膜剛性よりも、隙間400の小さい垂直方向の油膜剛性が高くなる。以下では、油膜剛性が最も高くなる方向を「高油膜剛性の軸線方向D」と呼ぶこととする。図12に示す二円弧軸受の場合、高油膜剛性の軸線方向Dは、後述する図24の黒太矢印で示すように、隙間400が小さい領域S1および領域S2が存在する方向となる。 Among FIGS. 7 to 22, examples of the shape of the inner diameter surface having anisotropy include, for example, the two-arc bearing shown in FIG. 12. In a sliding bearing, the size of the gap 400 changes in the rotational direction of the rolling piston 504. As a result, in the regions S1 and S2 where the gap 400 narrows, pressure is generated in the fluid such as refrigerating machine oil flowing through the gap 400, thereby generating oil film rigidity. In the two-arc bearing, as shown in FIG. 12, even when the rotating shaft 201 and the inner diameter surface 300a are concentric, the inner diameter surface 300a is not perfectly circular, so the gap 400 is narrowed in the rotation direction of the rolling piston 504. A distribution occurs. Therefore, in FIG. 12, a high oil film pressure is generated particularly in the direction where the region S1 and the region S2 where the gap 400 is small exist, that is, in the direction perpendicular to the plane of the paper of FIG. Therefore, in a bearing as shown in FIG. 12, the oil film rigidity in the vertical direction where the gap 400 is small is higher than the oil film rigidity in the horizontal direction where the gap 400 is large. Hereinafter, the direction in which the oil film stiffness is highest will be referred to as "the axial direction D of high oil film stiffness." In the case of the two-arc bearing shown in FIG. 12, the axial direction D of high oil film rigidity is the direction in which regions S1 and S2 where the gap 400 is small exist, as shown by thick black arrows in FIG. 24, which will be described later.
 ここでは、説明を分かりやすくするため、図12に示す二円弧軸受を例に説明したが、実施の形態1では、その場合に限定されない。すなわち、図7~図22に示す形状例に限らず、すべり軸受の油膜剛性に異方性を発現させるテクスチャ等の表面構造を含む、内径面形状であれば、如何なる形状のものを用いても、実施の形態1の特徴を適用することができる。また、内径面300aの形状を真円形状から変更しない方法として、磁気軸受を用いて電磁石の電磁力を制御することで、あるいは、静圧軸受の供給圧力を制御することで、軸受支持剛性の異方性をすべり軸受に与えることも考えられる。なお、電磁石の電磁力を制御する場合には、電磁石の電磁力を、すべり軸受の全周で一様にせず、部分的に電磁力を強くして、すべり軸受に軸受支持剛性の異方性を与える。また、静圧軸受の供給圧力を制御する場合には、供給圧力をすべり軸受の全周で一様にせず、部分的に供給圧力を強くして、すべり軸受に軸受支持剛性の異方性を与える。 Here, in order to make the explanation easier to understand, the two-circle-arc bearing shown in FIG. 12 was explained as an example, but the first embodiment is not limited to that case. In other words, it is not limited to the shape examples shown in FIGS. 7 to 22, but any shape can be used as long as the shape of the inner diameter surface includes a surface structure such as a texture that causes anisotropy in the oil film stiffness of the sliding bearing. , the features of Embodiment 1 can be applied. In addition, as a method that does not change the shape of the inner diameter surface 300a from a perfect circular shape, it is possible to increase the bearing support rigidity by controlling the electromagnetic force of an electromagnet using a magnetic bearing or by controlling the supply pressure of a hydrostatic bearing. It is also conceivable to impart anisotropy to the plain bearing. In addition, when controlling the electromagnetic force of the electromagnet, the electromagnetic force of the electromagnet is not made uniform around the entire circumference of the plain bearing, but the electromagnetic force is strengthened partially, and the anisotropy of the bearing support rigidity is applied to the plain bearing. give. In addition, when controlling the supply pressure of a hydrostatic bearing, the supply pressure is not made uniform around the entire circumference of the plain bearing, but the supply pressure is strengthened in some areas to create anisotropy in the bearing support rigidity of the plain bearing. give.
 以下、図7~図22に示すジャーナル型すべり軸受について説明する。 Hereinafter, the journal type sliding bearing shown in FIGS. 7 to 22 will be explained.
 図7は、全周軸受の構成を示す平面図である。全周軸受は、最も一般的な軸受で、例えば動荷重の場合に適している。図7に示すように、全周軸受は、すべり軸受の内径面300aの形状が、平面視で、真円形状である。そのため、軸受部300を構成するすべり軸受が、全周軸受である場合、すべり軸受は、油膜剛性に異方性を有していない。そのため、軸受部300を構成するすべり軸受が全周軸受である場合、すべり軸受を磁気軸受から構成して、電磁石の電磁力を制御することで、すべり軸受に軸受支持剛性の異方性を与えるようにすればよい。あるいは、すべり軸受を静圧軸受で構成し、供給圧力を制御することで、すべり軸受に軸受支持剛性の異方性を与えるようにすればよい。 FIG. 7 is a plan view showing the configuration of the full circumference bearing. Full circumference bearings are the most common type of bearing and are suitable for example in the case of dynamic loads. As shown in FIG. 7, in the full circumference bearing, the inner diameter surface 300a of the sliding bearing has a perfect circular shape in plan view. Therefore, when the sliding bearing constituting the bearing portion 300 is a full-circumference bearing, the sliding bearing does not have anisotropy in oil film rigidity. Therefore, when the plain bearing that constitutes the bearing section 300 is a full-circumference bearing, by configuring the plain bearing from a magnetic bearing and controlling the electromagnetic force of the electromagnet, anisotropy of bearing support rigidity is given to the plain bearing. Just do it like this. Alternatively, the sliding bearing may be configured with a static pressure bearing and the supply pressure may be controlled to give the sliding bearing anisotropy in bearing support rigidity.
 図8は、部分軸受の構成を示す平面図である。図8に示すように、部分軸受は、回転軸201の外周の一部分のみを支持する。部分軸受は、すべり軸受の内径面300aの形状が、平面視で、真円の外周の一部分である。そのため、内径面300aと回転軸201との間に形成される隙間400は、回転軸201の外周の一部分のみに対して形成される。従って、軸受部300を構成するすべり軸受が、部分軸受である場合、すべり軸受は、油膜剛性に異方性を有する。 FIG. 8 is a plan view showing the configuration of the partial bearing. As shown in FIG. 8, the partial bearing supports only a portion of the outer circumference of the rotating shaft 201. As shown in FIG. In the partial bearing, the shape of the inner diameter surface 300a of the sliding bearing is a part of the outer periphery of a perfect circle when viewed from above. Therefore, the gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 is formed only over a portion of the outer circumference of the rotating shaft 201. Therefore, when the sliding bearing constituting the bearing portion 300 is a partial bearing, the sliding bearing has anisotropy in oil film rigidity.
 図9は、割り軸受の構成を示す平面図である。図9に示すように、割り軸受は、すべり軸受の内径面300aの形状が、平面視で、曲率が一様でない2つの曲線から構成されている。そのため、内径面300aと回転軸201との間に形成される隙間400は、回転軸201の全周に対して、一様ではない。従って、軸受部300を構成するすべり軸受が、割り軸受である場合、すべり軸受は、油膜剛性に異方性を有する。なお、図9では、すべり軸受の内径面300aが2分割されている場合が示されているが、その場合に限定されない。すなわち、割り軸受は、3分割以上に分割されていてもよい。その場合、すべり軸受の内径面300aは、3以上の個数の曲線から構成されている。 FIG. 9 is a plan view showing the configuration of the split bearing. As shown in FIG. 9, in the split bearing, the shape of the inner diameter surface 300a of the sliding bearing is composed of two curved lines with uneven curvatures when viewed from above. Therefore, the gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 is not uniform around the entire circumference of the rotating shaft 201. Therefore, when the sliding bearing constituting the bearing portion 300 is a split bearing, the sliding bearing has anisotropy in oil film rigidity. Although FIG. 9 shows a case where the inner diameter surface 300a of the sliding bearing is divided into two parts, the present invention is not limited to this case. That is, the split bearing may be divided into three or more parts. In that case, the inner diameter surface 300a of the sliding bearing is composed of three or more curved lines.
 図10は、フィティド軸受の構成を示す平面図である。図10に示すように、フィティド軸受は、回転軸201の外周の一部分のみを支持する。フィティド軸受は、部分軸受の一種であるが、図8の部分軸受に比べて、すべり軸受の内径面300aと回転軸201との間に形成される隙間400が殆ど無い軸受である。そのため、フィティド軸受は、油膜圧力分布が一様になる。但し、フィティド軸受は、断面視におけるすべり軸受の内径面300aの形状が、真円の一部分である。そのため、軸受部300を構成するすべり軸受が、フィティド軸受である場合、すべり軸受は、油膜剛性に異方性を有する。 FIG. 10 is a plan view showing the configuration of the fitted bearing. As shown in FIG. 10, the fitted bearing supports only a portion of the outer circumference of the rotating shaft 201. As shown in FIG. The fitted bearing is a type of partial bearing, but compared to the partial bearing shown in FIG. 8, the fitted bearing has almost no gap 400 formed between the inner diameter surface 300a of the sliding bearing and the rotating shaft 201. Therefore, in the fitted bearing, the oil film pressure distribution becomes uniform. However, in the fitted bearing, the shape of the inner diameter surface 300a of the sliding bearing in cross-sectional view is a part of a perfect circle. Therefore, when the sliding bearing that constitutes the bearing portion 300 is a fitted bearing, the sliding bearing has anisotropy in oil film rigidity.
 図11は、ステップ軸受の構成を示す平面図である。ステップ軸受は、段付き軸受と呼ばれることがある。図11に示すように、ステップ軸受は、すべり軸受の内径面300aに、1以上のステップ300mが形成されている。ステップ300mは、内径面300aに凹状に形成されている。ステップ300mの部分は、すべり軸受の内径面300aに対して、径方向の外側に向かって突出している。そのため、ステップ300mは、内径面300aから、径方向の外方向に向かって凹んでいる。従って、ステップ300mが設けられている領域においては、他の部分に比べて、隙間400が広くなっている。また、図11の例では、内径面300aの周方向に、互いに間隔を空けて、4つのステップ300mが形成されている。ステップ300mの個数および形状は、図11の例に限定されない。ステップ軸受においては、内径面300aに1以上のステップ300mが形成されているため、すべり軸受の内径面300aの形状が、非真円形状になっている。そのため、軸受部300を構成するすべり軸受が、ステップ軸受である場合、すべり軸受は、油膜剛性に異方性を有する。 FIG. 11 is a plan view showing the configuration of the step bearing. Step bearings are sometimes called stepped bearings. As shown in FIG. 11, the step bearing has one or more steps 300m formed on the inner diameter surface 300a of the sliding bearing. The step 300m is formed in a concave shape on the inner diameter surface 300a. The step 300m protrudes radially outward with respect to the inner diameter surface 300a of the slide bearing. Therefore, the step 300m is recessed radially outward from the inner diameter surface 300a. Therefore, in the region where the step 300m is provided, the gap 400 is wider than in other parts. In the example of FIG. 11, four steps 300m are formed at intervals in the circumferential direction of the inner diameter surface 300a. The number and shape of steps 300m are not limited to the example of FIG. 11. In the step bearing, since one or more steps 300m are formed on the inner diameter surface 300a, the shape of the inner diameter surface 300a of the sliding bearing is non-circular. Therefore, when the sliding bearing that constitutes the bearing section 300 is a step bearing, the sliding bearing has anisotropy in oil film rigidity.
 図12は、二円弧軸受の構成を示す平面図である。図12に示すように、二円弧軸受は、すべり軸受の内径面300aの形状が、2つの円弧から構成されている。2つの円弧は、図12に示すように、同じ形状を有し、線対称になるように配置されている。また、2つの円弧の曲率は、軸受部300の外周の曲率とは異なっている。そのため、内径面300aと回転軸201との間に形成される隙間400が一様ではなく、隙間400が狭い箇所と、隙間400が広い箇所と、が含まれる。軸受部300を構成するすべり軸受が、二円弧軸受である場合、すべり軸受は、油膜剛性に異方性を有する。二円弧軸受は、内径面300aが、複数の円弧面から構成されているため、多円弧軸受と呼ばれることがある。 FIG. 12 is a plan view showing the configuration of a two-arc bearing. As shown in FIG. 12, in the two-arc bearing, the shape of the inner diameter surface 300a of the sliding bearing is composed of two arcs. As shown in FIG. 12, the two circular arcs have the same shape and are arranged line-symmetrically. Furthermore, the curvatures of the two circular arcs are different from the curvature of the outer periphery of the bearing portion 300. Therefore, the gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 is not uniform, and includes areas where the gap 400 is narrow and areas where the gap 400 is wide. When the sliding bearing constituting the bearing portion 300 is a two-arc bearing, the sliding bearing has anisotropy in oil film rigidity. The two-arc bearing is sometimes called a multi-arc bearing because the inner diameter surface 300a is composed of a plurality of arc surfaces.
 図13は、三円弧軸受の構成を示す平面図である。図13に示すように、三円弧軸受は、すべり軸受の内径面300aの形状が、3つの円弧から構成されている。3つの円弧は、図13に示すように、同じ形状を有している。3つの円弧は、それぞれ、径方向の外側に向かって凸になるように、互いに隣接して配置されている。また、3つの円弧の曲率は、軸受部300の外周の曲率とは異なっている。そのため、内径面300aと回転軸201との間に形成される隙間400が一様ではなく、隙間400が狭い箇所と、隙間400が広い箇所と、が含まれる。軸受部300を構成するすべり軸受が、三円弧軸受である場合、すべり軸受は、油膜剛性に異方性を有する。三円弧軸受は、内径面300aが、複数の円弧面から構成されているため、多円弧軸受と呼ばれることがある。 FIG. 13 is a plan view showing the configuration of a three-arc bearing. As shown in FIG. 13, in the three-arc bearing, the shape of the inner diameter surface 300a of the sliding bearing is composed of three arcs. The three arcs have the same shape, as shown in FIG. The three circular arcs are arranged adjacent to each other so as to be convex toward the outside in the radial direction. Furthermore, the curvatures of the three arcs are different from the curvature of the outer periphery of the bearing portion 300. Therefore, the gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 is not uniform, and includes areas where the gap 400 is narrow and areas where the gap 400 is wide. When the sliding bearing constituting the bearing portion 300 is a three-arc bearing, the sliding bearing has anisotropy in oil film rigidity. The three-arc bearing is sometimes called a multi-arc bearing because the inner diameter surface 300a is composed of a plurality of arc surfaces.
 図14は、二円弧偏心軸受の構成を示す平面図である。図14に示すように、二円弧偏心軸受は、すべり軸受の内径面300aの形状が、2つの円弧から構成されている。2つの円弧は、図14に示すように、同じ形状を有し、回転軸201の軸中心に対して、点対称になるように配置されている。また、2つの円弧の曲率は、軸受部300の外周の曲率とは異なっている。さらに、2つの円弧を構成する円の中心は、水平方向に互いにずれた位置になっている。そのため、内径面300aと回転軸201との間に形成される隙間400が一様ではなく、隙間400が狭い箇所と、隙間400が広い箇所と、が含まれる。また、2つの円弧が水平方向にずれて配置されているため、2つの円弧を連結するための直線部が、2つの円弧の間に設けられている。すなわち、二円弧偏心軸受の内径面300aは、2つの円弧と、2つの直線部と、から形成されている。軸受部300を構成するすべり軸受が、二円弧偏心軸受である場合、すべり軸受は、油膜剛性に異方性を有する。二円弧偏心軸受は、内径面300aが、複数の円弧面から構成されているため、多円弧軸受と呼ばれることがある。 FIG. 14 is a plan view showing the configuration of a two-arc eccentric bearing. As shown in FIG. 14, in the two-arc eccentric bearing, the shape of the inner diameter surface 300a of the sliding bearing is composed of two arcs. As shown in FIG. 14, the two circular arcs have the same shape and are arranged point-symmetrically with respect to the axial center of the rotating shaft 201. Furthermore, the curvatures of the two circular arcs are different from the curvature of the outer periphery of the bearing portion 300. Furthermore, the centers of the circles forming the two arcs are shifted from each other in the horizontal direction. Therefore, the gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 is not uniform, and includes areas where the gap 400 is narrow and areas where the gap 400 is wide. Further, since the two circular arcs are arranged horizontally shifted, a straight line portion for connecting the two circular arcs is provided between the two circular arcs. That is, the inner diameter surface 300a of the two-arc eccentric bearing is formed from two arcs and two straight parts. When the sliding bearing constituting the bearing section 300 is a two-arc eccentric bearing, the sliding bearing has anisotropy in oil film rigidity. The two-arc eccentric bearing is sometimes called a multi-arc bearing because the inner diameter surface 300a is composed of a plurality of arcuate surfaces.
 図15は、浮動ブシュ軸受の構成を示す平面図である。浮動ブシュ軸受は、元来、高速軸受における発熱量低減を目的として考案されたもので、例えば回転軸201が高回転する場合に適している。浮動ブッシュ軸受は、図15に示すように、内径面300aと回転軸201との間に形成される隙間400に、薄肉円筒状のブッシュ300bが挿入されている。このとき、隙間400に給油を行うと、ブッシュ300bの内側と外側との両方に形成される直列二重の油膜によって、回転軸201が支持されることになる。回転軸201が回転すると、ブッシュ300bは隙間400内で浮動し、内側油膜の駆動トルクによって、回転軸201が回転する。回転軸201の回転速度は、内側油膜の駆動トルクと外側油膜の制動トルクの釣り合いによって定まる。図15に示すように、浮動ブシュ軸受は、すべり軸受の内径面300aの形状が、真円形状である。そのため、軸受部300を構成するすべり軸受が、浮動ブシュ軸受である場合、すべり軸受は、油膜剛性に異方性を有していない。そのため、軸受部300を構成するすべり軸受が浮動ブシュ軸受である場合、すべり軸受を磁気軸受から構成するか、あるいは、すべり軸受を静圧軸受で構成して、すべり軸受に油膜剛性の異方性を与えるようにすればよい。 FIG. 15 is a plan view showing the configuration of the floating bush bearing. Floating bush bearings were originally devised for the purpose of reducing heat generation in high-speed bearings, and are suitable, for example, when the rotating shaft 201 rotates at high speeds. In the floating bush bearing, as shown in FIG. 15, a thin cylindrical bush 300b is inserted into a gap 400 formed between an inner diameter surface 300a and a rotating shaft 201. At this time, when the gap 400 is supplied with oil, the rotating shaft 201 is supported by the double oil film formed in series on both the inside and outside of the bush 300b. When the rotating shaft 201 rotates, the bush 300b floats within the gap 400, and the rotating shaft 201 is rotated by the driving torque of the inner oil film. The rotational speed of the rotating shaft 201 is determined by the balance between the driving torque of the inner oil film and the braking torque of the outer oil film. As shown in FIG. 15, in the floating bush bearing, the inner diameter surface 300a of the sliding bearing has a perfect circular shape. Therefore, when the sliding bearing that constitutes the bearing section 300 is a floating bush bearing, the sliding bearing does not have anisotropy in oil film rigidity. Therefore, when the sliding bearings constituting the bearing section 300 are floating bush bearings, the sliding bearings are constructed from magnetic bearings, or the sliding bearings are constructed from static pressure bearings, so that the sliding bearings have anisotropy of oil film rigidity. All you have to do is give it.
 図16は、ピボットパッド軸受の構成を示す平面図である。ピボットパッド軸受は、ティルティングパッド軸受の一種である。ピボットパッド軸受は、図16に示すように、内径面300aと回転軸201との間に形成される隙間400に、分割された複数のパッド300cが配置されている。各パッド300cと内径面300aとの間には、ピボット300dと呼ばれる支点が配置されている。各パッド300cをピボット300dで支持することによって、それぞれのパッド300cに、くさび膜を形成させている。このように、ピボットパッド軸受においては、入口より出口の狭いくさび状の隙間400に粘性流体を押し込むことによって圧力を発生させるくさび膜効果が得られる。図16に示すように、ピボットパッド軸受は、すべり軸受の内径面300aの形状が真円形状であるが、ピボット300dおよびパッド300cが隙間400内に配置されているため、油膜の厚さが一様ではない。そのため、軸受部300を構成するすべり軸受が、ピボットパッド軸受である場合、すべり軸受は、油膜剛性に異方性を有している。 FIG. 16 is a plan view showing the configuration of the pivot pad bearing. A pivot pad bearing is a type of tilting pad bearing. In the pivot pad bearing, as shown in FIG. 16, a plurality of divided pads 300c are arranged in a gap 400 formed between an inner diameter surface 300a and a rotating shaft 201. A fulcrum called a pivot 300d is arranged between each pad 300c and the inner diameter surface 300a. By supporting each pad 300c with a pivot 300d, a wedge film is formed on each pad 300c. In this manner, in the pivot pad bearing, a wedge film effect is obtained in which pressure is generated by forcing the viscous fluid into the wedge-shaped gap 400, which is narrower at the outlet than at the inlet. As shown in FIG. 16, in the pivot pad bearing, the inner diameter surface 300a of the sliding bearing has a perfect circular shape, but since the pivot 300d and the pad 300c are arranged within the gap 400, the thickness of the oil film is uniform. Not like that. Therefore, when the sliding bearing that constitutes the bearing section 300 is a pivot pad bearing, the sliding bearing has anisotropy in oil film rigidity.
 図17は、Michell-Seggell軸受の構成を示す平面図である。Michell-Seggell軸受は、ティルティングパッド軸受の一種である。Michell-Seggell軸受は、図17に示すように、内径面300aと回転軸201との間に形成される隙間400に、複数のパッド300cが配置されている。図16に示したピボットパッド軸受との違いは、Michell-Seggell軸受においては、ピボット300dを使用しない点である。Michell-Seggell軸受においては、パッド300cは、回転軸201とともに回転する。図17に示すように、Michell-Seggell軸受は、すべり軸受の内径面300aの形状が真円形状であるが、パッド300cが隙間400内に配置されているため、油膜の厚さが一様ではない。そのため、軸受部300を構成するすべり軸受が、Michell-Seggell軸受である場合、すべり軸受は、油膜剛性に異方性を有している。 FIG. 17 is a plan view showing the configuration of the Michel-Seggell bearing. A Michel-Seggell bearing is a type of tilting pad bearing. In the Michel-Seggell bearing, as shown in FIG. 17, a plurality of pads 300c are arranged in a gap 400 formed between an inner diameter surface 300a and a rotating shaft 201. The difference from the pivot pad bearing shown in FIG. 16 is that the Michelle-Seggell bearing does not use a pivot 300d. In the Michel-Seggell bearing, pad 300c rotates with rotating shaft 201. As shown in FIG. 17, in the Mitchell-Seggell bearing, the inner diameter surface 300a of the plain bearing has a perfect circular shape, but since the pad 300c is arranged within the gap 400, the thickness of the oil film is not uniform. do not have. Therefore, when the sliding bearing constituting the bearing portion 300 is a Mitchell-Seggell bearing, the sliding bearing has anisotropy in oil film rigidity.
 図18は、ノウミュ軸受の構成を示す平面図である。ノウミュ軸受は、ティルティングパッド軸受の一種である。ノウミュ軸受は、図18に示すように、内径面300aと回転軸201との間に形成される隙間400に、複数のパッド300cが配置されている。ノウミュ軸受は、摩擦が少ないことから名付けられた軸受で、パッド300cのパッド面が球面形状を有している。ノウミュ軸受は、Michell-Seggell軸受と同様に、ピボット300dを使用しない。そのため、ノウミュ軸受においては、パッド300cは、回転軸201とともに回転する。但し、図18の例では、回転軸201の側面に、凸部201aが設けられている。凸部201aは、回転軸201の側面から、径方向の外側に向かって突出している。凸部201aは、パッド300cの周方向の移動を規制する。すなわち、パッド300cが、隣り合って配置された2つの凸部201aの間のみで、周方向に移動することができる。図18に示すように、ノウミュ軸受は、すべり軸受の内径面300aの形状が真円形状であるが、パッド300cが隙間400内に配置されているため、油膜の厚さが一様ではない。そのため、軸受部300を構成するすべり軸受が、ノウミュ軸受である場合、すべり軸受は、油膜剛性に異方性を有している。 FIG. 18 is a plan view showing the configuration of the NOUMU bearing. The Neumu bearing is a type of tilting pad bearing. In the NOUMU bearing, as shown in FIG. 18, a plurality of pads 300c are arranged in a gap 400 formed between an inner diameter surface 300a and a rotating shaft 201. The Noumyu bearing is a bearing named because of its low friction, and the pad surface of the pad 300c has a spherical shape. The Neumu bearing, like the Michel-Seggell bearing, does not use a pivot 300d. Therefore, in the NOUMU bearing, the pad 300c rotates together with the rotating shaft 201. However, in the example shown in FIG. 18, a protrusion 201a is provided on the side surface of the rotating shaft 201. The convex portion 201a protrudes radially outward from the side surface of the rotating shaft 201. The convex portion 201a restricts movement of the pad 300c in the circumferential direction. That is, the pad 300c can move in the circumferential direction only between the two adjacent convex portions 201a. As shown in FIG. 18, the inner diameter surface 300a of the sliding bearing of the NOUMU bearing has a perfect circular shape, but since the pad 300c is disposed within the gap 400, the thickness of the oil film is not uniform. Therefore, when the sliding bearing that constitutes the bearing section 300 is a Neumu bearing, the sliding bearing has anisotropy in oil film rigidity.
 図19は、多孔質軸受の構成を示す平面図である。多孔質軸受は、図19に示すように、内径面300aに、多孔質材料で形成された薄肉円筒状の多孔質部材300eが取り付けられている。このとき、多孔質部材300eと回転軸201との間に形成される隙間400に給油を行うと、多孔質部材300eと回転軸201との間に形成される油膜によって、回転軸201が支持されることになる。多孔質部材300eは、表面に多数の穴300eeが形成されている。穴300eeは、内径面300aに凹状に形成されている。また、穴300eeの配置は、均等に分布されていない。そのため、穴300eeに冷凍機油が入り込むことで、油膜の厚さが実質的に一様ではなくなる。図19に示すように、多孔質軸受は、すべり軸受の内径面300aの形状が真円形状であるが、内径面300aに多孔質部材300eを設けたことで、油膜剛性に異方性を有している。 FIG. 19 is a plan view showing the configuration of a porous bearing. As shown in FIG. 19, the porous bearing has a thin cylindrical porous member 300e made of a porous material attached to an inner diameter surface 300a. At this time, when oil is supplied to the gap 400 formed between the porous member 300e and the rotating shaft 201, the rotating shaft 201 is supported by the oil film formed between the porous member 300e and the rotating shaft 201. That will happen. A large number of holes 300ee are formed on the surface of the porous member 300e. The hole 300ee is formed in a concave shape in the inner diameter surface 300a. Further, the arrangement of the holes 300ee is not evenly distributed. Therefore, when the refrigerating machine oil enters the hole 300ee, the thickness of the oil film becomes substantially non-uniform. As shown in FIG. 19, in the porous bearing, the inner diameter surface 300a of the sliding bearing has a perfect circular shape, but by providing the porous member 300e on the inner diameter surface 300a, the oil film rigidity has anisotropy. are doing.
 図20は、フォイル軸受の構成を示す平面図である。フォイル軸受は、図20に示すように、複数のフォイル300fで形成された軸受である。フォイル軸受においては、発生する膜圧力で、内径面300aと回転軸201との間に形成される隙間400の大きさが、自動的に定まる。図20に示すように、フォイル300fの内側の面によって、すべり軸受の内径面300aが構成されている。3つのフォイル300fの内側の面は、図20に示すように、同じ形状を有している。3つのフォイル300fの内側の面は、それぞれ、径方向の外側に向かって凸になるように、互いに隣接して配置されている。3つのフォイル300fの内側の面は、それぞれ、曲面で構成されているが、その曲率は一様ではなく、途中で変化している。そのため、図20に示すように、内径面300aと回転軸201との間に形成される隙間400が一様ではなく、隙間400が狭い箇所と、隙間400が広い箇所と、が含まれる。軸受部300を構成するすべり軸受が、フォイル軸受である場合、すべり軸受は、油膜剛性に異方性を有する。 FIG. 20 is a plan view showing the configuration of the foil bearing. The foil bearing is a bearing formed of a plurality of foils 300f, as shown in FIG. 20. In the foil bearing, the size of the gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 is automatically determined by the generated film pressure. As shown in FIG. 20, the inner surface of the foil 300f constitutes an inner diameter surface 300a of the sliding bearing. The inner surfaces of the three foils 300f have the same shape, as shown in FIG. 20. The inner surfaces of the three foils 300f are arranged adjacent to each other so as to be convex toward the outside in the radial direction. The inner surfaces of the three foils 300f are each formed of a curved surface, but the curvature is not uniform and changes along the way. Therefore, as shown in FIG. 20, the gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 is not uniform, and includes areas where the gap 400 is narrow and areas where the gap 400 is wide. When the sliding bearing that constitutes the bearing section 300 is a foil bearing, the sliding bearing has anisotropy in oil film rigidity.
 図21は、スパイラル溝付き軸受の構成を模式的に示す断面図である。但し、図21では、説明のため、回転軸201については、断面を示さず、側面を示している。スパイラル溝付き軸受においては、軸受部300を構成するすべり軸受が、円筒形状を有している。回転軸201は、円筒形状の空洞部分に配置されている。また、スパイラル溝付き軸受においては、回転軸201またはすべり軸受の内径面300aのいずれか一方に「溝」が設けられている。図21の例では、当該「溝」として、複数の細いねじれ溝300kが設けられている。当該「溝」は、内径面300aに凹状に形成されている。また、図21の例では、回転軸201の側面にねじれ溝300kが設けられているが、内径面300a側にねじれ溝300kを設けるようにしてもよい。スパイラル溝付き軸受は、回転軸201が回転したときに、ポンピング作用によって、内径面300aと回転軸201との間に形成される隙間400に冷凍機油を誘い込んで油圧を得る方式の軸受である。スパイラル溝付き軸受においては、局所的な段付き軸受の特性を基にして、隙間400内の圧力を求める無限溝数理論等を適用して、溝のねじれ角、溝の深さ、溝とランドとの幅比などの最適値を求めて、ねじれ溝300kを形成している。図21の例では、複数のねじれ溝300kが、回転軸201の周方向に、互いに間隔を空けて配置されることで、ねじれ溝300kの列が形成されている。図21の例では、ねじれ溝300kの列が、2つ設けられている。2つのねじれ溝300kの列は、回転軸201の軸方向に並んで形成されている。また、図21の紙面の左側の列のねじれ溝300kと、右側の列のねじれ溝300kとは、ねじれ方向が互いに逆向きになっている。図21のように、ねじれ方向が互いに逆のねじれ溝を、内径面300aの両端に対応する位置から設け、且つ、内径面300aの全体に対応させて設けた形式は、ヘリングボーン溝軸受と呼ばれることがある。なお、ねじれ溝300kの個数および形状は、図21の例に限定されない。スパイラル溝付き軸受においては、回転軸201または内径面300aに1以上の「溝」としてのねじれ溝300kが形成されている。そのため、すべり軸受の内径面300aと回転軸201との間に形成される隙間400の形状が、一様でない。そのため、軸受部300を構成するすべり軸受が、スパイラル溝付き軸受である場合、すべり軸受は、油膜剛性に異方性を有する。 FIG. 21 is a cross-sectional view schematically showing the configuration of a spiral grooved bearing. However, in FIG. 21, for the sake of explanation, the rotating shaft 201 is shown not in cross section but in a side view. In the spiral grooved bearing, the sliding bearing that constitutes the bearing portion 300 has a cylindrical shape. The rotating shaft 201 is arranged in a cylindrical hollow part. Further, in a spiral grooved bearing, a "groove" is provided on either the rotating shaft 201 or the inner diameter surface 300a of the sliding bearing. In the example of FIG. 21, a plurality of thin twisted grooves 300k are provided as the "grooves". The "groove" is formed in a concave shape on the inner diameter surface 300a. Further, in the example of FIG. 21, the twisted groove 300k is provided on the side surface of the rotating shaft 201, but the twisted groove 300k may be provided on the inner diameter surface 300a side. The spiral grooved bearing is a type of bearing that obtains oil pressure by drawing refrigerating machine oil into the gap 400 formed between the inner diameter surface 300a and the rotating shaft 201 by a pumping action when the rotating shaft 201 rotates. In spiral grooved bearings, the helix angle of the groove, the depth of the groove, the groove and the land are calculated based on the local characteristics of the stepped bearing, and by applying the theory of infinite grooves to determine the pressure within the gap 400. The twisted groove 300k is formed by determining the optimum value such as the width ratio between the two. In the example of FIG. 21, a plurality of twisted grooves 300k are arranged at intervals in the circumferential direction of the rotating shaft 201, thereby forming a row of twisted grooves 300k. In the example of FIG. 21, two rows of twisted grooves 300k are provided. The two rows of twisted grooves 300k are formed side by side in the axial direction of the rotating shaft 201. Furthermore, the twisting directions of the twisting grooves 300k in the left row of the paper in FIG. 21 and the twisting grooves 300k in the right row are opposite to each other. As shown in FIG. 21, a type in which helical grooves with opposite torsional directions are provided from positions corresponding to both ends of the inner diameter surface 300a and also over the entire inner diameter surface 300a is called a herringbone groove bearing. Sometimes. Note that the number and shape of the twisted grooves 300k are not limited to the example shown in FIG. 21. In the spiral grooved bearing, one or more helical grooves 300k as "grooves" are formed on the rotating shaft 201 or the inner diameter surface 300a. Therefore, the shape of the gap 400 formed between the inner diameter surface 300a of the sliding bearing and the rotating shaft 201 is not uniform. Therefore, when the sliding bearing constituting the bearing portion 300 is a bearing with a spiral groove, the sliding bearing has anisotropy in oil film rigidity.
 図22は、球面軸受の構成を模式的に示す断面図である。但し、図22では、説明のため、回転軸201については、断面を示さず、側面を示している。球面軸受においては、図22に示すように、すべり軸受が、内輪300gと外輪300hとから構成されている。内輪300gと外輪300hとは、共に、円筒形状を有している。内輪300gは、外輪300hの内部に、同心状に配置されている。内輪300gの外周面の形状は、図21に示すように、球面になっている。また、外輪300hの内周面の形状は、図21に示すように、球面になっている。そのため、内輪300gと外輪300hとは、球面接触する。内輪300gと外輪300hとの接触面は、滑りをよくするため、特殊加工を行う、または、ライナーと呼ばれる部材を取り付けるようにしてもよい。球面軸受においては、回転軸201が回転すると、それに伴い、内輪300gが外輪300hに対して傾斜する。球面軸受は、内輪300gと外輪300hとを球面接触させる構造であるため、径方向のラジアル荷重と、軸方向のアキシアル荷重と、を同時に負荷できる、自動調心型の軸受である。球面軸受においては、すべり軸受の内径面300aが、内輪300gの内周面で構成されている。内輪300gは、回転軸201の回転に伴って、回転軸201の軸方向に対して傾斜する。そのため、すべり軸受の内径面300aと回転軸201との間に形成される隙間400の形状が、一様でない。そのため、軸受部300を構成するすべり軸受が、球面軸受である場合、すべり軸受は、油膜剛性に異方性を有する。 FIG. 22 is a cross-sectional view schematically showing the configuration of a spherical bearing. However, in FIG. 22, for the sake of explanation, the rotating shaft 201 is shown not in cross section but in a side view. In the spherical bearing, as shown in FIG. 22, the sliding bearing is composed of an inner ring 300g and an outer ring 300h. Both the inner ring 300g and the outer ring 300h have a cylindrical shape. The inner ring 300g is arranged concentrically inside the outer ring 300h. The shape of the outer peripheral surface of the inner ring 300g is spherical, as shown in FIG. Moreover, the shape of the inner circumferential surface of the outer ring 300h is spherical, as shown in FIG. Therefore, the inner ring 300g and the outer ring 300h are in spherical contact. The contact surface between the inner ring 300g and the outer ring 300h may be specially processed or a member called a liner may be attached to the contact surface to improve slippage. In the spherical bearing, when the rotating shaft 201 rotates, the inner ring 300g tilts with respect to the outer ring 300h. Since the spherical bearing has a structure in which the inner ring 300g and the outer ring 300h are in spherical contact, it is a self-aligning bearing that can simultaneously bear a radial load in the radial direction and an axial load in the axial direction. In the spherical bearing, the inner diameter surface 300a of the sliding bearing is constituted by the inner circumferential surface of the inner ring 300g. The inner ring 300g is inclined with respect to the axial direction of the rotating shaft 201 as the rotating shaft 201 rotates. Therefore, the shape of the gap 400 formed between the inner diameter surface 300a of the sliding bearing and the rotating shaft 201 is not uniform. Therefore, when the sliding bearing that constitutes the bearing section 300 is a spherical bearing, the sliding bearing has anisotropy in oil film rigidity.
 上述した図7~図22に示した、すべり軸受が油膜剛性に異方性を有している場合、油膜剛性が最も高くなる方向を示す「高油膜剛性の軸線方向D」を決定することができる。「高油膜剛性の軸線方向D」は、軸受部300を構成するすべり軸受の種類によって異なるため、例えば、実験またはシミュレーションにより、各すべり軸受けの種類ごとに、「高油膜剛性の軸線方向D」を決定すればよい。例えば、図12に示すように、軸受部300を構成するすべり軸受が、二円弧軸受の場合、油膜剛性が最も高くなる方向を示す「高油膜剛性の軸線方向D」は、領域S1および領域S2が存在する方向である。すなわち、後述する図24を用いて説明すれば、「高油膜剛性の軸線方向D」は、図24の黒太矢印で示すように、隙間400が狭くなる領域S1およびS2が存在する方向になる。実施の形態1では、図24に示すように、「高油膜剛性の軸線方向D」を、ガス荷重GLが大きく作用する作用角度θ2の逆向きの方向に設定する。 When the sliding bearing has anisotropy in oil film rigidity as shown in FIGS. 7 to 22 described above, it is possible to determine "the axial direction D of high oil film rigidity" which indicates the direction in which the oil film rigidity is highest. can. Since "the axial direction D of high oil film rigidity" differs depending on the type of sliding bearing that constitutes the bearing part 300, for example, by experiment or simulation, "the axial direction D of high oil film rigidity" has been determined for each type of sliding bearing. All you have to do is decide. For example, as shown in FIG. 12, when the plain bearing constituting the bearing part 300 is a two-arc bearing, the "axial direction D of high oil film rigidity" indicating the direction in which the oil film rigidity is highest is the area S1 and the area S2. is the direction in which it exists. That is, to explain using FIG. 24, which will be described later, "the axial direction D of high oil film rigidity" is the direction in which regions S1 and S2 where the gap 400 becomes narrow exist, as shown by the thick black arrow in FIG. . In the first embodiment, as shown in FIG. 24, "the axial direction D of high oil film rigidity" is set to a direction opposite to the action angle θ2 where the gas load GL acts largely.
 図23は、実施の形態1に係るロータリ圧縮機1において、「高油膜剛性の軸線方向D」を設定する角度範囲A、B1、Cを示す説明図である。図24は、実施の形態1に係るロータリ圧縮機1において、「高油膜剛性の軸線方向D」を設定する方向を示す説明図である。 FIG. 23 is an explanatory diagram showing angular ranges A, B1, and C in which the "axial direction D of high oil film rigidity" is set in the rotary compressor 1 according to the first embodiment. FIG. 24 is an explanatory diagram showing the direction in which "the axial direction D of high oil film rigidity" is set in the rotary compressor 1 according to the first embodiment.
 上記の図6を用いて説明したように、ガス荷重GLの作用角度θ2の変動幅を示す角度範囲B1は、110deg~330degである。図23に、角度範囲B1を図示する。図23に示す角度範囲B1から分かるように、ガス荷重GLの作用角度θ2は、概ね、垂直下向き方向に作用することがわかる。すべり軸受では、回転による油膜圧力発生のために、軸受部300に作用するガス荷重GLの作用方向に対して、回転方向に偏心した位置に、回転軸201の軸心の位置が変化する。上述した図2の例で説明すると、矢印Wで示すように、垂直下向き方向にガス荷重GLが作用した場合、軸心は、矢印Eで示すように、第三象限の位置である180deg~270degの角度範囲において、おおよそ偏心する。 As explained using FIG. 6 above, the angular range B1 indicating the variation range of the action angle θ2 of the gas load GL is 110 deg to 330 deg. FIG. 23 illustrates the angular range B1. As can be seen from the angle range B1 shown in FIG. 23, it can be seen that the action angle θ2 of the gas load GL generally acts in a vertically downward direction. In the sliding bearing, the position of the axial center of the rotating shaft 201 changes to a position eccentric in the rotational direction with respect to the acting direction of the gas load GL acting on the bearing portion 300 due to oil film pressure generation due to rotation. To explain using the example of FIG. 2 described above, when the gas load GL acts in a vertically downward direction as shown by arrow W, the axis center is at a position of 180 deg to 270 deg in the third quadrant, as shown by arrow E. It is approximately eccentric in the angular range of .
 ロータリ圧縮機1の軸受部300を構成するすべり軸受において、最小油膜厚さの大きさおよび最小油膜が形成される位置に影響する因子として、「ガス荷重GLの大きさ」、「ガス荷重GLの作用角度θ2」、回転軸201の「軸心の偏心方向」がある。この他、冷凍機油の粘性係数、回転軸201の回転数等の影響因子も存在する。しかしながら、実施の形態1では、変動荷重下における最小油膜厚さの増大を目的に、上記3点、すなわち、「ガス荷重GLの大きさ」、「ガス荷重GLの作用角度θ2」、「軸心の偏心方向」に対して説明する。 In the sliding bearing that constitutes the bearing section 300 of the rotary compressor 1, factors that influence the size of the minimum oil film thickness and the position where the minimum oil film is formed include "the size of the gas load GL" and "the size of the gas load GL". There is an "action angle θ2" and an "eccentric direction of the shaft center" of the rotating shaft 201. In addition, there are also influencing factors such as the viscosity coefficient of the refrigerating machine oil and the rotation speed of the rotating shaft 201. However, in the first embodiment, for the purpose of increasing the minimum oil film thickness under a fluctuating load, the above three points, ie, "size of gas load GL", "action angle θ2 of gas load GL", and "axis center This will be explained with respect to the eccentric direction of.
 図5のグラフに示すように、ロータリ圧縮機1では、クランク角θ1が0degから360degまで変化する一回転中に、冷媒圧縮に伴うガス荷重GLの大きさが変化する。油膜剛性に異方性のある軸受部300では、上述したように、油膜剛性が高い方向と、油膜剛性が低い方向とが、発現する。 As shown in the graph of FIG. 5, in the rotary compressor 1, the magnitude of the gas load GL due to refrigerant compression changes during one rotation in which the crank angle θ1 changes from 0 degrees to 360 degrees. In the bearing portion 300 where the oil film rigidity is anisotropic, as described above, there are a direction in which the oil film rigidity is high and a direction in which the oil film rigidity is low.
 ロータリ圧縮機1においては、軸受部300と回転軸201との間に形成される隙間400に給油された冷凍機油の油膜厚さが、ローリングピストン504の一回転中に変化する。特に、ガス荷重GLが最大となるクランク角θ1においては、回転軸201と軸受部300との接触が懸念され、最悪の場合、焼付けに至る可能性がある。そのため、例えば、ガス荷重GLが最大となるクランク角θ1の方向に、油膜剛性が低い方向を配置すると、回転軸201と軸受部300との接触が懸念され、最悪の場合、焼付けに至る可能性がある。そこで、実施の形態1では、油膜剛性が最も高くなる方向を示す「高油膜剛性の軸線方向D」を、ガス荷重GLが大きくなるクランク角θ1の方向に配置する。なお、回転軸201と軸受部300との接触は、金属同士の接触であるため、金属接触と呼ばれることがある。 In the rotary compressor 1, the thickness of the oil film of the refrigerating machine oil supplied to the gap 400 formed between the bearing portion 300 and the rotating shaft 201 changes during one rotation of the rolling piston 504. In particular, at the crank angle θ1 where the gas load GL is maximum, there is a concern that the rotating shaft 201 and the bearing portion 300 will come into contact, and in the worst case, seizure may occur. Therefore, for example, if a direction with low oil film rigidity is placed in the direction of crank angle θ1 where the gas load GL is maximum, there is a concern that the rotating shaft 201 will come into contact with the bearing part 300, and in the worst case, it may lead to seizure. There is. Therefore, in the first embodiment, the "axis direction D of high oil film rigidity" indicating the direction in which the oil film rigidity is highest is arranged in the direction of the crank angle θ1 where the gas load GL is large. Note that the contact between the rotating shaft 201 and the bearing portion 300 is contact between metals, and is therefore sometimes referred to as metal contact.
 そのため、実施の形態1では、例えば最大荷重(正規荷重=1[-])に対して50%以上のガス荷重GL(正規荷重=0.5[-])が作用するクランク角θ1の角度範囲に、油膜剛性に異方性のある軸受部300の「高油膜剛性の軸線方向D」を配置する。こうすることで、油膜厚さの低下を抑制することができる。図5のグラフによると、正規荷重が0.5以上となる領域を包含するクランク角θ1の範囲は、180deg~330degの角度範囲Aである。そのため、角度範囲A内に、「高油膜剛性の軸線方向D」を配置すると、油膜厚さの低下を抑制できる。具体的には、図23の角度範囲A内のいずれかの方向に、図24に示す黒太矢印で示す「高油膜剛性の軸線方向D」を配置する。角度範囲Aは、正規化された図5のグラフから決定された角度範囲であるため、「ガス荷重絶対値基準角度範囲」と呼ばれることがある。また、角度範囲Aは、「第2角度範囲」と呼ばれることがある。 Therefore, in the first embodiment, for example, the angular range of the crank angle θ1 is such that a gas load GL (normal load = 0.5 [-]) of 50% or more with respect to the maximum load (normal load = 1 [-]) acts. The “axis direction D of high oil film rigidity” of the bearing portion 300 having anisotropic oil film rigidity is arranged at . By doing so, it is possible to suppress a decrease in the oil film thickness. According to the graph of FIG. 5, the range of the crank angle θ1 that includes the region where the normal load is 0.5 or more is the angle range A of 180 degrees to 330 degrees. Therefore, by arranging "the axial direction D of high oil film rigidity" within the angular range A, it is possible to suppress a decrease in the oil film thickness. Specifically, "the axial direction D of high oil film rigidity" indicated by the thick black arrow shown in FIG. 24 is arranged in any direction within the angular range A of FIG. 23. Since the angular range A is the angular range determined from the normalized graph of FIG. 5, it is sometimes referred to as the "gas load absolute value reference angular range." Further, the angular range A is sometimes referred to as a "second angular range."
 また、図6のグラフによれば、ガス荷重GLの作用角度θ2の変動幅を示す角度範囲B1は、上述したように、110deg~330degとなっている。従って、角度範囲B1内に、「高油膜剛性の軸線方向D」を配置してもよい。その場合においても、油膜厚さの低下を抑制できる。具体的には、図23の角度範囲B1内のいずれかの方向に、図24に示す黒太矢印で示す「高油膜剛性の軸線方向D」を配置する。角度範囲B1は、ガス荷重GLの作用角度θ2を示す図6のグラフに基づいて決定された角度範囲であるため、「ガス荷重作用方向基準角度範囲」と呼ばれることがある。また、角度範囲B1は、「第1角度範囲」と呼ばれることがある。 Furthermore, according to the graph of FIG. 6, the angular range B1 indicating the variation range of the operating angle θ2 of the gas load GL is 110 degrees to 330 degrees, as described above. Therefore, "the axial direction D of high oil film rigidity" may be arranged within the angular range B1. Even in that case, reduction in oil film thickness can be suppressed. Specifically, "the axial direction D of high oil film rigidity" indicated by the thick black arrow shown in FIG. 24 is arranged in any direction within the angular range B1 of FIG. 23. Since the angular range B1 is an angular range determined based on the graph of FIG. 6 showing the acting angle θ2 of the gas load GL, it is sometimes referred to as a "gas load acting direction reference angular range." Further, the angular range B1 is sometimes referred to as a "first angular range."
 また、図6のグラフによれば、図5の角度範囲Aに対応するガス荷重GLの作用角度θ2は、110deg~180degの角度範囲B2となっている。従って、角度範囲B2内に、「高油膜剛性の軸線方向D」を配置してもよい。その場合においても、油膜厚さの低下を抑制できる。また、角度範囲B2は、「第3角度範囲」と呼ばれることがある。 Furthermore, according to the graph in FIG. 6, the action angle θ2 of the gas load GL corresponding to the angle range A in FIG. 5 is in the angle range B2 of 110 degrees to 180 degrees. Therefore, "the axial direction D of high oil film rigidity" may be arranged within the angular range B2. Even in that case, reduction in oil film thickness can be suppressed. Further, the angular range B2 is sometimes referred to as a "third angular range".
 上述したように、ガス荷重GLの作用角度θ2は、概ね、図2の紙面の垂直下向き方向に作用する。上述した図2の例で、垂直下向き方向に荷重が作用した場合、軸心は第三象限の位置である180deg~270degの角度範囲Cにて偏心する。従って、当該180deg~270degの角度範囲Cに、「高油膜剛性の軸線方向D」を配置する事としても良い。具体的には、図23の角度範囲C内のいずれかの方向に、図24に示す黒太矢印で示す「高油膜剛性の軸線方向D」を配置する。角度範囲Cは、「すべり軸受の偏心特性基準角度範囲」と呼ばれることがある。また、角度範囲Cは、「第4角度範囲」と呼ばれることがある。 As described above, the acting angle θ2 of the gas load GL generally acts in a downward direction perpendicular to the paper plane of FIG. In the example of FIG. 2 described above, when a load is applied in a vertically downward direction, the axis is eccentric in an angular range C of 180 degrees to 270 degrees, which is the position of the third quadrant. Therefore, "the axial direction D of high oil film rigidity" may be arranged in the angular range C of 180 degrees to 270 degrees. Specifically, "the axial direction D of high oil film rigidity" indicated by the thick black arrow shown in FIG. 24 is arranged in any direction within the angular range C of FIG. 23. The angle range C is sometimes referred to as "the eccentricity characteristic reference angle range of the sliding bearing." Further, the angular range C is sometimes referred to as a "fourth angular range."
 図23および図24では、それぞれ、上記の各基準に対応した角度範囲A、B1、Cと、二円弧軸受を例とした軸受配置の一例を示す。図23に示す各基準を総合的に勘案して、「高油膜剛性の軸線方向D」を配置するクランク角θ1の角度範囲を選定しても良い。 FIGS. 23 and 24 respectively show angular ranges A, B1, and C corresponding to each of the above criteria, and an example of bearing arrangement using a two-arc bearing as an example. The angular range of the crank angle θ1 in which the “axial direction D of high oil film rigidity” is arranged may be selected by comprehensively considering each criterion shown in FIG. 23.
 さらには、従来の真円形状を有するすべり軸受を用いたロータリ圧縮機を実稼働後に解体し、軸表面あるいは軸受表面の摩耗範囲、すなわち金属接触範囲を計測して、その範囲に「高油膜剛性の軸線方向D」を配置することも考えられる。 Furthermore, we disassembled a rotary compressor using a conventional perfectly circular plain bearing after it was put into operation, measured the wear range of the shaft surface or bearing surface, that is, the metal contact range, and determined that this area had a high oil film rigidity. It is also conceivable to arrange it in the axial direction D.
 実施の形態1で説明した「高油膜剛性の軸線方向D」の配置は、上軸受301および下軸受302の両方あるいは一方のどちらであっても適用可能である。さらに、一方の軸受が油膜剛性に異方性を有するすべり軸受であって、他方が従来の真円形状のすべり軸受という構成でも良い。 The arrangement of “high oil film rigidity in the axial direction D” described in the first embodiment is applicable to both or one of the upper bearing 301 and the lower bearing 302. Furthermore, one of the bearings may be a sliding bearing having anisotropy in oil film stiffness, and the other bearing may be a conventional perfectly circular sliding bearing.
 以上のように、実施の形態1に係るロータリ圧縮機1は、回転軸201と、すべり軸受から構成されて回転軸201を支持する内径面300aを有する軸受部300と、を備えている。また、軸受部300を構成するすべり軸受は、油膜剛性に異方性を有している。すべり軸受の油膜剛性が最も高くなる方向を示す「高油膜剛性の軸線方向D」は、回転軸201のクランク部204のクランク角が110degから330degまでの角度範囲B1に配置されている。これにより、回転軸201と軸受部300との間に形成される隙間400に充填される冷凍機油の油膜厚さの低下を抑制できる。ロータリ圧縮機1では、ローリングピストン504の一回転中に油膜厚さが変化する。「高油膜剛性の軸線方向D」を角度範囲A内に設定することで、ガス荷重GLが最大となるクランク角θ1(=225deg前後)においても、回転軸201と軸受部300の内径面300aとが接触する金属接触を回避することができる。その結果、軸受部300の内径面300aの焼付けの発生を抑制することができる。 As described above, the rotary compressor 1 according to Embodiment 1 includes the rotating shaft 201 and the bearing portion 300 that is configured from a sliding bearing and has an inner diameter surface 300a that supports the rotating shaft 201. Furthermore, the sliding bearing that constitutes the bearing portion 300 has anisotropy in oil film rigidity. The "high oil film rigidity axial direction D" indicating the direction in which the oil film rigidity of the sliding bearing is highest is arranged in an angular range B1 in which the crank angle of the crank portion 204 of the rotating shaft 201 is from 110 degrees to 330 degrees. Thereby, a decrease in the oil film thickness of the refrigerating machine oil filled in the gap 400 formed between the rotating shaft 201 and the bearing portion 300 can be suppressed. In the rotary compressor 1, the oil film thickness changes during one rotation of the rolling piston 504. By setting "the axial direction D of high oil film rigidity" within the angular range A, even at the crank angle θ1 (= around 225 deg) where the gas load GL is maximum, the rotating shaft 201 and the inner diameter surface 300a of the bearing part 300 metal contact can be avoided. As a result, the occurrence of seizure of the inner diameter surface 300a of the bearing portion 300 can be suppressed.
 実施の形態2.
 上記の実施の形態1では、ロータリ圧縮機1において、変動するガス荷重GLに対して、ガス荷重GLの大きさが大きい場合においても、油膜厚さの低下とそれに伴う金属接触の発生とを抑制している。実施の形態1では、そのために、油膜剛性に異方性を有するすべり軸受を用いている。そして、ガス荷重GLの大きさ、ガス荷重GLの作用角度θ2、すべり軸受の偏心特性等を考慮して、「高油膜剛性の軸線方向D」を、予め設定した角度範囲A内に配置している。
Embodiment 2.
In the first embodiment described above, in the rotary compressor 1, even when the magnitude of the gas load GL is large, the decrease in the oil film thickness and the occurrence of metal contact caused by it are suppressed with respect to the fluctuating gas load GL. are doing. For this purpose, in the first embodiment, a sliding bearing having anisotropy in oil film rigidity is used. Then, taking into consideration the size of the gas load GL, the operating angle θ2 of the gas load GL, the eccentricity characteristics of the plain bearing, etc., the "axial direction D of high oil film rigidity" is arranged within a preset angular range A. There is.
 しかしながら、この場合、「高油膜剛性の軸線方向D」においては油膜厚さの低下とそれに伴う金属接触を抑制でき、従来の課題であった焼付きを回避できるが、低油膜剛性の軸線方向においては、変動するガス荷重GLに起因して、軸振動が増大する可能性がある。 However, in this case, in the axial direction D of high oil film rigidity, it is possible to suppress the decrease in oil film thickness and the accompanying metal contact, and avoid seizure, which was a conventional problem, but in the axial direction of low oil film rigidity, In this case, the shaft vibration may increase due to the fluctuating gas load GL.
 そこで、実施の形態2では、上軸受301および下軸受302の両方を、油膜剛性に異方性を有するすべり軸受で構成する。そして、上軸受301の「高油膜剛性の軸線方向D」と、下軸受302の「高油膜剛性の軸線方向D」とが、互いに異なる方向になるように配置している。他の構成については、実施の形態1と同じであるため、ここでは、その説明を省略する。 Therefore, in the second embodiment, both the upper bearing 301 and the lower bearing 302 are constructed of sliding bearings having anisotropy in oil film rigidity. The upper bearing 301 is arranged so that the "axial direction D of high oil film rigidity" and the "axial direction D of high oil film rigidity" of the lower bearing 302 are different from each other. Since the other configurations are the same as those in Embodiment 1, their description will be omitted here.
 図25は、実施の形態2に係るロータリ圧縮機1における上軸受301および下軸受302の「高油膜剛性の軸線方向D」を設定する方向を示す説明図である。図25においては、D1は、上軸受301において、油膜剛性が最も小さくなる方向を示す「低油膜剛性の軸線方向」を示す。 FIG. 25 is an explanatory diagram showing the direction in which the "axial direction D of high oil film rigidity" of the upper bearing 301 and the lower bearing 302 in the rotary compressor 1 according to the second embodiment is set. In FIG. 25, D1 indicates "the axial direction of low oil film rigidity" which indicates the direction in which the oil film rigidity is the smallest in the upper bearing 301.
 好ましい形態を、例えば、図25に示す。図25の例では、上軸受301が焼き付き回避を目的としたクランク角θ1の角度範囲Aに、「高油膜剛性の軸線方向D」が配置されている。そして、下軸受302の「高油膜剛性の軸線方向D」を、上軸受301の「低油膜剛性の軸線方向D1」と平行な方向に配置する。これにより、上軸受301の低油膜剛性の軸線方向D1へ軸振動が増加した場合であっても、下軸受302の高油膜剛性により、当該軸振動を抑制できる。 A preferred form is shown in FIG. 25, for example. In the example of FIG. 25, "the axial direction D of high oil film rigidity" is arranged in the angular range A of the crank angle θ1 in which the upper bearing 301 aims to avoid seizure. The "axial direction D of high oil film rigidity" of the lower bearing 302 is arranged in a direction parallel to the "axial direction D1 of low oil film rigidity" of the upper bearing 301. Thereby, even if the shaft vibration increases in the axial direction D1 with the low oil film rigidity of the upper bearing 301, the shaft vibration can be suppressed due to the high oil film rigidity of the lower bearing 302.
 このように、実施の形態2では、ロータリ圧縮機1が、複数のすべり軸受を有している場合に、複数のすべり軸受のうち、少なくとも2以上のすべり軸受の「高油膜剛性の軸線方向D」が互いに異なるように配置する。すなわち、少なくとも2以上のすべり軸受の「高油膜剛性の軸線方向D」が、互いに交差する方向に配置される。図25の例では、上軸受301の「高油膜剛性の軸線方向D」と、下軸受302の「高油膜剛性の軸線方向D」と、が互いに直交している。これにより、低油膜剛性の軸線方向において、変動するガス荷重GLに起因して軸振動が増大することを抑制できる。 As described above, in the second embodiment, when the rotary compressor 1 has a plurality of sliding bearings, the axial direction D of the "high oil film rigidity" of at least two or more sliding bearings among the plurality of sliding bearings. ” are arranged so that they are different from each other. That is, the "high oil film rigidity axial direction D" of at least two or more slide bearings are arranged in a direction that intersects with each other. In the example of FIG. 25, "the axial direction D of high oil film rigidity" of the upper bearing 301 and the "axial direction D of high oil film rigidity" of the lower bearing 302 are orthogonal to each other. This makes it possible to suppress an increase in shaft vibration due to the fluctuating gas load GL in the axial direction with low oil film rigidity.
 なお、前述のように、すべり軸受は、回転軸201の回転運動のために、回転方向に偏心する特性がある。そのため、図25に示すように、下軸受302の「高油膜剛性の軸線方向D」を、上軸受301の「低油膜剛性の軸線方向D1」へ配置しても、軸振動量低減に対して、十分な効果が得られない可能性がある。 Note that, as described above, the sliding bearing has the characteristic of being eccentric in the rotational direction due to the rotational movement of the rotating shaft 201. Therefore, as shown in FIG. 25, even if the "axial direction D of high oil film rigidity" of the lower bearing 302 is arranged in the "axial direction D1 of low oil film rigidity" of the upper bearing 301, the amount of shaft vibration can be reduced. , there is a possibility that sufficient effects may not be obtained.
 その場合は、軸振動量を変位センサ等で実測し、軸振動量低減効果が最大化するように、あるいは、実測した軸振動量が予め設定された振動量以下になるように、下軸受302の「低油膜剛性の軸線方向D1」の角度配置を微調整しても良い。 In that case, measure the amount of shaft vibration using a displacement sensor, etc., and set the lower bearing 302 so that the effect of reducing the amount of shaft vibration is maximized, or so that the measured amount of shaft vibration is equal to or less than a preset amount of vibration. The angular arrangement of "the axial direction D1 of low oil film rigidity" may be finely adjusted.
 さらに、ロータリ圧縮機1の回転軸201は、圧力容器から構成された密閉容器100内に収容されているため、振動量を直接計測することは容易ではない。そのため、例えば密閉容器100に加速度センサ等の振動計を取り付け、ロータリ圧縮機1の振動を計測し、ロータリ圧縮機1の振動レベルが所望の振動レベル以下になるように、下軸受302の角度配置を決定しても良い。 Further, since the rotating shaft 201 of the rotary compressor 1 is housed in the closed container 100 made of a pressure container, it is not easy to directly measure the amount of vibration. Therefore, for example, a vibration meter such as an acceleration sensor is attached to the closed container 100, and the vibration of the rotary compressor 1 is measured. may be determined.
 実施の形態2の構成は、すべり軸受を複数有するロータリ圧縮機1に適用できる。また、焼付き回避目的の角度配置の上軸受301の個数、および、振動低減目的の角度配置の下軸受302の個数は、任意に按分できる。また、焼付き回避目的の角度配置の上軸受301が複数ある場合、各上軸受301の角度配置は、実施の形態1に記載の角度範囲A、B1、または、Cであれば、同じであっても、それぞれ異なっていても良い。さらに、振動低減目的の角度配置の下軸受302が複数ある場合も、同様に、各下軸受302の角度配置は、同じであっても、それぞれ異なっていても良い。 The configuration of Embodiment 2 can be applied to a rotary compressor 1 having multiple sliding bearings. Further, the number of upper bearings 301 arranged at an angle for the purpose of avoiding seizure, and the number of lower bearings 302 arranged at an angle for the purpose of vibration reduction can be divided arbitrarily. Furthermore, if there are a plurality of upper bearings 301 arranged at an angle for the purpose of avoiding seizure, the angular arrangement of each upper bearing 301 may be the same as long as it is within the angular range A, B1, or C described in the first embodiment. However, they can also be different. Furthermore, even when there are a plurality of lower bearings 302 arranged at an angle for the purpose of reducing vibration, the angular arrangement of each lower bearing 302 may be the same or different.
 なお、実施の形態2では、便宜上、上軸受301を、焼付き回避目的の角度配置の軸受とし、下軸受302を、振動低減目的の角度配置の軸受として、説明した。しかしながら、この場合に限定されない。すなわち、下軸受302を、焼付き回避目的の角度配置の軸受として用いてもよい。また、上軸受301を、振動低減目的の角度配置の軸受として用いてもよい。 In the second embodiment, for convenience, the upper bearing 301 is described as a bearing with an angular arrangement for the purpose of avoiding seizure, and the lower bearing 302 is described as a bearing with an angular arrangement for the purpose of reducing vibration. However, it is not limited to this case. That is, the lower bearing 302 may be used as an angularly positioned bearing for the purpose of avoiding seizure. Additionally, the upper bearing 301 may be used as an angularly positioned bearing for vibration reduction purposes.
 以上のように、実施の形態2においては、軸受部300が、複数のすべり軸受を有している場合、複数のすべり軸受のうちの2以上のすべり軸受の「高油膜剛性の軸線方向D」が互いに異なるように配置する。これにより、軸受部300の焼付き回避の効果と、振動低減の効果と、の両方の効果を得ることができる。 As described above, in the second embodiment, when the bearing section 300 has a plurality of sliding bearings, the "axial direction D of high oil film rigidity" of two or more sliding bearings among the plurality of sliding bearings are arranged so that they are different from each other. Thereby, it is possible to obtain both the effect of avoiding seizure of the bearing portion 300 and the effect of reducing vibration.
 実施の形態3.
 図26は、実施の形態3に係るロータリ圧縮機1における軸受部300の構成を示す平面図である。実施の形態3においては、軸受部300の内径面300aが、平面視で、複数の円弧から構成されていることを特徴とする。他の構成については、実施の形態1と同じあるため、ここでは、その説明を省略する。
Embodiment 3.
FIG. 26 is a plan view showing the configuration of the bearing section 300 in the rotary compressor 1 according to the third embodiment. Embodiment 3 is characterized in that the inner diameter surface 300a of the bearing portion 300 is composed of a plurality of arcs in plan view. The other configurations are the same as in Embodiment 1, so their explanation will be omitted here.
 上述したように、実施の形態3においては、図26に示すように、軸受部300の内径面300aは、平面視で、複数の円弧から構成されている。すなわち、内径面300aは、複数の円弧面から構成されている。ここでは、説明を簡単にするため、内径面300aが、図26に示す2つの円弧面から構成された軸受形状を例に挙げて説明する。以下では、2つの円弧面を、それぞれ、第1円弧面部300a-1および第2円弧面部300a-2と呼ぶこととする。 As described above, in the third embodiment, as shown in FIG. 26, the inner diameter surface 300a of the bearing portion 300 is composed of a plurality of circular arcs in plan view. That is, the inner diameter surface 300a is composed of a plurality of circular arc surfaces. Here, in order to simplify the explanation, a bearing shape in which the inner diameter surface 300a is constituted by two circular arc surfaces shown in FIG. 26 will be described as an example. Hereinafter, the two arcuate surfaces will be referred to as a first arcuate surface portion 300a-1 and a second arcuate surface portion 300a-2, respectively.
 第1円弧面部300a-1と第2円弧面部300a-2は同型であるため、以下では、第1円弧面部300a-1の構成について説明し、第2円弧面部300a-2については説明を省略する。 Since the first circular arc surface section 300a-1 and the second circular arc surface section 300a-2 are of the same type, the configuration of the first circular arc surface section 300a-1 will be described below, and the description of the second circular arc surface section 300a-2 will be omitted. .
 第1円弧面部300a-1の円弧面の形状は、次の式(1)で定義する予圧係数mpによって決定される。 The shape of the circular arc surface of the first circular arc surface portion 300a-1 is determined by the preload coefficient mp defined by the following equation (1).
  mp=1-Cb/Cp     (1) mp=1-Cb/Cp (1)
 ここで、mp:予圧係数、Cb:組立半径隙間、Cp:加工半径隙間、である。 Here, mp: preload coefficient, Cb: assembly radius clearance, Cp: machining radius clearance.
 組立半径隙間Cbは、回転軸201と第1円弧面部300a-1との間に形成される隙間400の大きさのうち、第1方向に延びる仮想線L1における大きさである。図26では、第1方向は垂直方向である。なお、図26の例では、組立半径隙間Cbは、隙間400の大きさのうち、隙間400が最も狭くなる位置での隙間400の大きさである。言い換えると、図26の例では、組立半径隙間Cbは、隙間400の大きさの最小値である。 The assembly radius gap Cb is the size of the gap 400 formed between the rotating shaft 201 and the first circular arc surface portion 300a-1 on the imaginary line L1 extending in the first direction. In FIG. 26, the first direction is the vertical direction. In the example of FIG. 26, the assembly radius gap Cb is the size of the gap 400 at the position where the gap 400 is the narrowest among the sizes of the gap 400. In other words, in the example of FIG. 26, the assembly radius gap Cb is the minimum value of the size of the gap 400.
 次に、加工半径隙間Cpについて説明する。図26に示すように、まず、第1円弧面部300a-1を形成する円弧の曲率と同じ曲率の仮想円を、仮想円700とする。次に、仮想円700と同心になるように回転軸201を第1方向にシフトさせた仮想回転軸を、仮想回転軸701とする。従って、仮想回転軸701は、仮想円700と同心位置における回転軸である。このとき、加工半径隙間Cpは、仮想回転軸701と第1円弧面部300a-1との間に形成される仮想隙間702の大きさのうち、第1方向に延びる仮想線L1における大きさである。 Next, the machining radius gap Cp will be explained. As shown in FIG. 26, first, a virtual circle 700 is defined as a virtual circle having the same curvature as the curvature of the arc forming the first circular arc surface portion 300a-1. Next, a virtual rotation axis obtained by shifting the rotation axis 201 in the first direction so as to be concentric with the virtual circle 700 is defined as a virtual rotation axis 701. Therefore, the virtual rotation axis 701 is a rotation axis at a position concentric with the virtual circle 700. At this time, the machining radius gap Cp is the size of the virtual gap 702 formed between the virtual rotating shaft 701 and the first circular arc surface portion 300a-1, on the virtual line L1 extending in the first direction. .
 上記の説明においては、第1円弧面部300a-1の予圧係数mpと、第2円弧面部300a-2の予圧係数mpと、が同じである場合について説明したが、その場合に限定されない。すなわち、第1円弧面部300a-1の予圧係数mpと、第2円弧面部300a-2の予圧係数mpと、は同じであっても、異なっていても、良い。 In the above description, a case has been described in which the preload coefficient mp of the first circular arc surface portion 300a-1 and the preload coefficient mp of the second circular arc surface portion 300a-2 are the same, but the present invention is not limited to that case. That is, the preload coefficient mp of the first circular arc surface portion 300a-1 and the preload coefficient mp of the second circular arc surface portion 300a-2 may be the same or different.
 また、上記の説明においては、図26に示す2つの円弧面から構成された二円弧軸受の場合を例に挙げているため、第1円弧面部300a-1の円周方向の角度と、第2円弧面部300a-2の円周方向の角度と、が同じであって、第1円弧面部300a-1と第2円弧面部300a-2とが対向している場合について説明したが、その場合に限定されない。すなわち、第1円弧面部300a-1を構成する円弧の中心角と、第2円弧面部300a-2を構成する円弧の中心角とは、同じであっても、異なっていてもよい。このように、二円弧軸受を構成する2つの円弧面は、等配でなくてもよい。さらに、3以上の円弧面から構成された軸受の場合も、それらの円弧面は等配分でなくてもよい。具体的には、図13に示す三円弧軸受、3分割以上の割り軸受、図11に示すステップ軸受、図16に示すピボットパッド軸受、図17に示すMichell-Seggell軸受、図18に示すノウミュ軸受、図20に示すフォイル軸受などの場合も、同様に、内径面300aを構成する複数の面が、それぞれ、等配分でなくてもよい。 In addition, in the above description, since the case of a two-arc bearing composed of two arcuate surfaces shown in FIG. 26 is taken as an example, the angle in the circumferential direction of the first arcuate surface portion 300a-1 Although the case has been described in which the angles in the circumferential direction of the arcuate surface portion 300a-2 are the same and the first arcuate surface portion 300a-1 and the second arcuate surface portion 300a-2 face each other, the present invention is limited to that case. Not done. That is, the central angle of the arc forming the first arc surface section 300a-1 and the center angle of the arc forming the second arc surface section 300a-2 may be the same or different. In this way, the two arcuate surfaces forming the two-arc bearing do not have to be equally spaced. Furthermore, even in the case of a bearing composed of three or more arcuate surfaces, these arcuate surfaces do not have to be equally distributed. Specifically, the three circular arc bearings shown in Fig. 13, the split bearings with three or more divisions, the step bearings shown in Fig. 11, the pivot pad bearings shown in Fig. 16, the Michel-Seggell bearings shown in Fig. 17, and the Neumu bearings shown in Fig. 18. Similarly, in the case of the foil bearing shown in FIG. 20, the plurality of surfaces constituting the inner diameter surface 300a do not need to be equally distributed.
 さらに、図26を用いた上記の二円弧軸受の説明においては、第1円弧面部300a-1の円周方向の位置と、第2円弧面部300a-2の円周方向の位置と、が、第2方向に延びる仮想線L2に対して、線対称になる場合について説明したが、その場合に限定されない。なお、第2方向は、第1方向と交差する方向である。第2方向は、例えば、第1方向と直交している。すなわち、第1円弧面部300a-1の円弧配置の起点となる円周方向位置と、第2円弧面部300a-2の円弧配置の起点となる円周方向位置と、は、軸受部300の軸心Oにおいて、線対称に配置されなくても良い。すなわち、それらの円弧面の円弧配置の起点となる円周方向位置は、等間隔に配置されていなくてもよい。さらに、3以上の円弧面から構成された軸受の場合も、それらの円弧面の円弧配置の起点となる円周方向位置は、等間隔に配置されなくても良い。具体的には、例えば、図13に示す三円弧軸受において、第1円弧の中心角が180deg、第2円弧の中心角が120deg、第3円弧の中心角が60deg、のように、各円弧面の円弧配置の起点となる円周方向位置は、等間隔に配置されなくても良い。但し、各円弧面の円弧配置の起点となる円周方向位置は、所望の油膜剛性が得られる位置であることが望ましい。また、3分割以上の割り軸受、図11に示すステップ軸受、図16に示すピボットパッド軸受、図17に示すMichell-Seggell軸受、図18に示すノウミュ軸受、図20に示すフォイル軸受などの場合も、同様に、内径面300aを構成する複数の円弧面の円弧配置の起点となる円周方向位置が、それぞれ、等間隔に配置されなくてもよい。これらの場合においても、同様に、各円弧面の円弧配置の起点となる円周方向位置は、所望の油膜剛性が得られる位置であることが望ましい。 Furthermore, in the above description of the two-arc bearing using FIG. Although a case has been described in which there is a line symmetry with respect to the virtual line L2 extending in two directions, the present invention is not limited to that case. Note that the second direction is a direction that intersects the first direction. For example, the second direction is perpendicular to the first direction. That is, the circumferential position at which the first arcuate surface portion 300a-1 starts from the arcuate arrangement and the circumferential position from which the arcuate arrangement of the second arcuate surface portion 300a-2 starts from the axis of the bearing portion 300. In O, it is not necessary to arrange line symmetrically. That is, the positions in the circumferential direction that are the starting points of the arcuate arrangement of these arcuate surfaces do not have to be arranged at equal intervals. Furthermore, even in the case of a bearing composed of three or more arcuate surfaces, the positions in the circumferential direction from which the arcuate arrangement of the arcuate surfaces starts do not have to be arranged at equal intervals. Specifically, for example, in the three-arc bearing shown in FIG. 13, the center angle of each arc surface is 180 degrees, the center angle of the second arc is 120 degrees, and the center angle of the third arc is 60 degrees. The positions in the circumferential direction that are the starting points of the arc arrangement do not need to be arranged at equal intervals. However, it is desirable that the position in the circumferential direction, which is the starting point of the circular arc arrangement of each circular arc surface, be a position where the desired oil film rigidity can be obtained. Also, split bearings with three or more parts, step bearings shown in Fig. 11, pivot pad bearings shown in Fig. 16, Michel-Seggell bearings shown in Fig. 17, Neumu bearings shown in Fig. 18, foil bearings shown in Fig. 20, etc. Similarly, the positions in the circumferential direction, which are the starting points of the arcuate arrangement of the plurality of arcuate surfaces constituting the inner diameter surface 300a, do not have to be arranged at equal intervals. In these cases as well, it is desirable that the position in the circumferential direction, which is the starting point of the circular arc arrangement of each circular arc surface, be a position where the desired oil film rigidity can be obtained.
 さらに、上記の説明においては、内径面300aが2つの円弧面から構成されている場合について説明したが、その場合に限定されない。すなわち、内径面300aは、3以上の複数の円弧面部から構成されていてもよい。上述した図13は、内径面300aは、3つの円弧面部から構成されている場合を示している。 Further, in the above description, a case has been described in which the inner diameter surface 300a is composed of two circular arc surfaces, but the present invention is not limited to that case. That is, the inner diameter surface 300a may be composed of three or more circular arc surface portions. FIG. 13 described above shows a case where the inner diameter surface 300a is composed of three arcuate surface portions.
 以上のように、実施の形態3においては、軸受部300を構成するすべり軸受の内径面300aの形状は、平面視で、複数の円弧面から構成されている。これにより、軸受部300を構成するすべり軸受が、油膜剛性に異方性を有する。そのため、実施の形態1で説明したように、例えば180deg~330degの角度範囲A(図5参照)に、軸受部300の「高油膜剛性の軸線方向D」を配置することで、油膜厚さの低下を抑制できる。これにより、油膜厚さが常に確保されるため、回転軸201と軸受部300とが金属接触することを防止することができる。その結果、軸受部300の焼付きを回避することができる。 As described above, in the third embodiment, the shape of the inner diameter surface 300a of the sliding bearing that constitutes the bearing portion 300 is composed of a plurality of arcuate surfaces in plan view. As a result, the sliding bearing that constitutes the bearing portion 300 has anisotropy in oil film rigidity. Therefore, as explained in the first embodiment, by arranging the "axial direction D of high oil film rigidity" of the bearing part 300 in the angular range A of 180 degrees to 330 degrees (see FIG. 5), the oil film thickness can be reduced. The decline can be suppressed. Thereby, the oil film thickness is always ensured, so that it is possible to prevent metal contact between the rotating shaft 201 and the bearing portion 300. As a result, seizure of the bearing portion 300 can be avoided.
 実施の形態4.
 実施の形態4では、軸受部300の内径面300aに、冷凍機油の動圧を発生させる動圧発生部600を設けることを特徴とする。他の構成については、実施の形態1と同じあるため、ここでは、その説明を省略する。
Embodiment 4.
Embodiment 4 is characterized in that a dynamic pressure generating section 600 that generates dynamic pressure of refrigerating machine oil is provided on the inner diameter surface 300a of the bearing section 300. The other configurations are the same as in Embodiment 1, so their explanation will be omitted here.
 動圧発生部600は、例えば、図11に示すステップ300mである。あるいは、動圧発生部600は、例えば、図21に示すねじれ溝300kである。あるいは、動圧発生部600は、例えば、図19に示す穴300eeである。図19では、穴300eeを有する多孔質部材300eを内径面300aに取り付ける例を示しているが、穴300eeは、直接、内径面300aに形成してもよい。 The dynamic pressure generating section 600 is, for example, a step 300m shown in FIG. 11. Alternatively, the dynamic pressure generating section 600 is, for example, a twisted groove 300k shown in FIG. 21. Alternatively, the dynamic pressure generating section 600 is, for example, a hole 300ee shown in FIG. 19. Although FIG. 19 shows an example in which a porous member 300e having holes 300ee is attached to the inner diameter surface 300a, the holes 300ee may be formed directly on the inner diameter surface 300a.
 このように、実施の形態4では、動圧発生部600として、軸受部300の内径面300aに、ステップ、溝、あるいは、穴のうち、少なくとも1つを形成している。ステップ、溝、あるいは、穴は、内径面300aに凹状に形成されている。回転軸201およびローリングピストン504の回転に伴い、動圧発生部600への冷凍機油の流入、および、動圧発生部600からの冷凍機油の流出が発生する。そのため、動圧発生部600が設けられていない場合に比べて、冷凍機油の流れが活発になり、冷凍機油の動圧が発生する。 As described above, in the fourth embodiment, at least one of a step, a groove, or a hole is formed on the inner diameter surface 300a of the bearing section 300 as the dynamic pressure generating section 600. The step, groove, or hole is formed in a concave shape on the inner diameter surface 300a. As the rotating shaft 201 and the rolling piston 504 rotate, refrigerating machine oil flows into the dynamic pressure generating section 600 and flows out from the dynamic pressure generating section 600. Therefore, compared to the case where the dynamic pressure generating section 600 is not provided, the flow of the refrigerating machine oil becomes more active, and dynamic pressure of the refrigerating machine oil is generated.
 なお、ステップ、溝、および、穴は、軸受部300の内径面300aの全体に対して形成してもよいが、軸受部300の内径面300aの一部分に対してのみ形成してもよい。 Note that the steps, grooves, and holes may be formed on the entire inner diameter surface 300a of the bearing section 300, or may be formed only on a portion of the inner diameter surface 300a of the bearing section 300.
 以上のように、実施の形態4によれば、軸受部300の内径面300aに、ステップ、溝、あるいは、穴のうち、少なくとも1つを形成している。これにより、ステップ、溝、あるいは、穴への冷凍機油の流入および流出が行われ、冷凍機油の動圧が発生する。そのため、非真円構造の軸受部300の回転方向の配置および位相角が変化して、ガス荷重GLのベクトルの方向が変動しても、常に、所望の動圧効果を得ることができる。その結果、回転軸201と内径面300aとの間に形成される隙間400での油膜厚さが確保され、油膜剛性による軸受部300の焼付きを防止することができる。また、ステップ、溝あるいは穴の内部へ冷凍機油が貯留するため、冷凍機油を回転軸201の表面に保持させることができる。さらに、軸受部300の内径面300aに、ステップ、溝、あるいは、穴を形成することで、外部からの異物を捕捉する効果が期待できる。 As described above, according to the fourth embodiment, at least one of a step, a groove, or a hole is formed on the inner diameter surface 300a of the bearing portion 300. As a result, refrigerating machine oil flows into and out of the steps, grooves, or holes, and dynamic pressure of the refrigerating machine oil is generated. Therefore, even if the rotational arrangement and phase angle of the bearing portion 300 having a non-perfect circular structure change and the direction of the vector of the gas load GL changes, the desired dynamic pressure effect can always be obtained. As a result, the thickness of the oil film in the gap 400 formed between the rotating shaft 201 and the inner diameter surface 300a is ensured, and seizing of the bearing portion 300 due to the rigidity of the oil film can be prevented. Further, since the refrigerating machine oil is stored inside the steps, grooves, or holes, the refrigerating machine oil can be held on the surface of the rotating shaft 201. Further, by forming steps, grooves, or holes in the inner diameter surface 300a of the bearing portion 300, an effect of trapping foreign matter from the outside can be expected.
 実施の形態5.
 実施の形態5は、軸受部300の内径面300aが、非真円形状であり、且つ、隙間400の隙間分布が連続であることを特徴とする。他の構成については、実施の形態1と同じあるため、ここでは、その説明を省略する。
Embodiment 5.
Embodiment 5 is characterized in that the inner diameter surface 300a of the bearing portion 300 has a non-perfect circular shape, and the gap distribution of the gap 400 is continuous. The other configurations are the same as in Embodiment 1, so their explanation will be omitted here.
 図27は、実施の形態5に係るロータリ圧縮機1における軸受部300の構成を示す平面図である。図27においては、軸受部300の内径面300aが、平面視で、フーリエ級数の足し合わせで構成された場合の例を示している。 FIG. 27 is a plan view showing the configuration of the bearing section 300 in the rotary compressor 1 according to the fifth embodiment. FIG. 27 shows an example in which the inner diameter surface 300a of the bearing portion 300 is configured by adding up Fourier series in plan view.
 軸受部300の内径面300aにおける隙間400の円周方向の隙間分布形状を、例えば、回転角度に対する多項式の足し合わせ、あるいは、フーリエ級数の足し合わせ、として表現してもよい。これにより、内径面300aにおいて、所望の油膜剛性を得られる複雑形状を生成することができる。さらに、前記の複雑形状は、軸受部300の周方向に変化するだけでなく、軸受部300の軸方向にも変化しても良い。 The circumferential gap distribution shape of the gap 400 on the inner diameter surface 300a of the bearing portion 300 may be expressed as, for example, the addition of polynomials to the rotation angle or the addition of Fourier series. This makes it possible to create a complex shape on the inner diameter surface 300a that provides the desired oil film rigidity. Further, the above-mentioned complex shape may not only change in the circumferential direction of the bearing section 300 but also change in the axial direction of the bearing section 300.
 なお、内径面300aの形状を多項式で表現する場合、例えば下記の式(2)で示す1以上の多項式により、内径面300aを構成する1以上の曲線をそれぞれ示すことができる。そのため、内径面300aを1以上の範囲に分割し、各範囲ごとに、下記の式(2)で示す多項式を生成し、当該多項式の係数a(kは、0~nの整数)を決定する。このようにして、下記の式(2)で示す1以上の多項式により、内径面300aを構成する曲線全体を生成する。 In addition, when expressing the shape of the inner diameter surface 300a by a polynomial, for example, one or more polynomials shown in the following equation (2) can each represent one or more curves forming the inner diameter surface 300a. Therefore, the inner diameter surface 300a is divided into one or more ranges, a polynomial expressed by the following formula (2) is generated for each range, and the coefficient a k (k is an integer from 0 to n) of the polynomial is determined. do. In this way, the entire curve constituting the inner diameter surface 300a is generated using one or more polynomials shown in Equation (2) below.
 y=a+an-1n-1+・・・+ax+a
  =Σa                  (2)
y=a n x n +a n-1 x n-1 +...+a 1 x+a 0
=Σa k x k (2)
 また、内径面300aの形状をフーリエ級数で表現する場合、例えば下記の式(3)で示すフーリエ級数により、内径面300aを構成する1以上の曲線をそれぞれ示すことができる。そのため、内径面300aを1以上の範囲に分割し、各範囲ごとに、下記の式(3)で示すフーリエ級数を生成し、当該フーリエ級数の係数a、a、b(nは、1~∞の整数)を決定する。このようにして、下記の式(3)で示すフーリエ級数の足し合わせにより、内径面300aを構成する曲線全体を生成する。 Further, when expressing the shape of the inner diameter surface 300a using a Fourier series, for example, one or more curves constituting the inner diameter surface 300a can be represented by the Fourier series shown in the following equation (3). Therefore, the inner diameter surface 300a is divided into one or more ranges, a Fourier series expressed by the following formula (3) is generated for each range, and the coefficients a 0 , a n , b n (n is (an integer between 1 and ∞). In this way, the entire curve forming the inner diameter surface 300a is generated by adding up the Fourier series shown in equation (3) below.
 y=a/2+Σ(acos(nx)+bsin(nx))
                          (3)
y=a 0 /2+Σ(a n cos(nx)+b n sin(nx))
(3)
 以上のように、実施の形態5では、軸受部300を構成するすべり軸受の内径面300aが、平面視で、非真円形状を有し、且つ、隙間400の隙間分布が連続である。これにより、内径面300aが、所望の油膜剛性を得られる複雑形状に生成することができる。その場合、回転軸201と軸受部300との間に形成される隙間400において、必要な油膜厚さを常に確保でき、回転軸201と軸受部300とが金属接触することを防止することができる。その結果、軸受部300の焼付きを回避することができる。 As described above, in the fifth embodiment, the inner diameter surface 300a of the sliding bearing forming the bearing portion 300 has a non-perfect circular shape in plan view, and the gap distribution of the gap 400 is continuous. Thereby, the inner diameter surface 300a can be formed into a complex shape that can obtain the desired oil film rigidity. In that case, a necessary oil film thickness can always be ensured in the gap 400 formed between the rotating shaft 201 and the bearing part 300, and metal contact between the rotating shaft 201 and the bearing part 300 can be prevented. . As a result, seizure of the bearing portion 300 can be avoided.
 実施の形態6.
 実施の形態6に係る軸受部300は、上記の実施の形態3、4、5で示した軸受部300の特徴のうち、2以上の特徴を有するものである。他の構成については、実施の形態1~5のいずれかと同じあるため、ここでは、その説明を省略する。
Embodiment 6.
Bearing section 300 according to Embodiment 6 has two or more of the features of bearing section 300 shown in Embodiments 3, 4, and 5 above. The other configurations are the same as in any of the first to fifth embodiments, so their explanation will be omitted here.
 実施の形態6では、例えば、図26に示す二円弧軸受(実施の形態3参照)において、第1円弧面部300a-1が、実施の形態4の特徴を有し、第2円弧面部300a-2が、実施の形態5の特徴を有している。 In Embodiment 6, for example, in the two-arc bearing shown in FIG. 26 (see Embodiment 3), the first arc surface portion 300a-1 has the characteristics of Embodiment 4, and the second arc surface portion 300a-2 However, this embodiment has the characteristics of the fifth embodiment.
 すなわち、第1円弧面部300a-1には、実施の形態4の特徴である、ステップ300m、溝300kあるいは穴300eeから構成された動圧発生部600が設けられている。 That is, the first arcuate surface portion 300a-1 is provided with a dynamic pressure generating portion 600 consisting of a step 300m, a groove 300k, or a hole 300ee, which is a feature of the fourth embodiment.
 また、第2円弧面部300a-2は、実施の形態5の一例である、多項式で表現される内径面形状を有している。 Further, the second arcuate surface portion 300a-2 has an inner diameter surface shape expressed by a polynomial, which is an example of the fifth embodiment.
 このように、実施の形態6に係る軸受部300は、上記の実施の形態3、4、5で示した軸受部300の特徴のうち、複数の特徴を組み合わせて有している。これにより、実施の形態6においては、組み合わせた複数の特徴のそれぞれから得られる効果を得ることができる。すなわち、実施の形態6において、上記の例のように、実施の形態3、4、5を組み合わせた場合、実施の形態3、4、5から得られる効果を、すべて得ることができる。 In this way, the bearing section 300 according to the sixth embodiment has a combination of a plurality of features among the features of the bearing section 300 shown in the third, fourth, and fifth embodiments. Thereby, in the sixth embodiment, effects obtained from each of the plurality of combined features can be obtained. That is, in Embodiment 6, when Embodiments 3, 4, and 5 are combined as in the above example, all the effects obtained from Embodiments 3, 4, and 5 can be obtained.
 1 ロータリ圧縮機、2 吸入配管、3 吸入マフラ、4 冷媒吐出管、5 冷凍機油、6 ねじ、100 密閉容器、101 上部容器、102 下部容器、201 回転軸、201a 凸部、202 主軸部、203 副軸部、204 クランク部、300 軸受部、300a 内径面、300a-1 第1円弧面部、300a-2 第2円弧面部、300b ブッシュ、300c パッド、300d ピボット、300e 多孔質部材、300ee 穴、300f フォイル、300g 内輪、300h 外輪、300k 溝、300m ステップ、301 上軸受、302 下軸受、400 隙間、401 電動機部、402 ロータ、403 ステータ、501 圧縮機構部、502 シリンダ、503 吐出マフラ、504 ローリングピストン、505 ベーン、506 ベーンスプリング、507 シリンダ室、507a 吸入室、507b 圧縮室、508 ベーン溝、508a 止まり部、508b ベーンスプリング収納穴、509 吐出ポート、600 動圧発生部、700 仮想円、701 仮想回転軸、702 仮想隙間、A 角度範囲、B1 角度範囲、B2 角度範囲、C 角度範囲、D 高油膜剛性の軸線方向。 1 rotary compressor, 2 suction pipe, 3 suction muffler, 4 refrigerant discharge pipe, 5 refrigeration oil, 6 screw, 100 sealed container, 101 upper container, 102 lower container, 201 rotating shaft, 201a convex part, 202 main shaft part, 203 Deputy axis, 204 cranks, 300 Axial portion, 300A inner diameter, 300A -1 1st arc, 300A -2 2nd arcs, 300B bush, 300C pad, 300D pivot, 300E porous member, 300EE holes, 300F holes, 300F. Foil, 300g inner ring, 300h outer ring, 300k groove, 300m step, 301 upper bearing, 302 lower bearing, 400 gap, 401 electric motor, 402 rotor, 403 stator, 501 compression mechanism, 502 cylinder, 503 Discharge muffler, 504 rolling piston , 505 vane, 506 venue spring, 507 cylinder room, 507A inhalation room, 507B compression room, 508 vane groove, 508A stop, 508B venue spring storage hole, 509 discharge port, 600 vibration pressure generator, 700 virtual yen, 701 virtual yen Rotation axis, 702 virtual gap, A angular range, B1 angular range, B2 angular range, C angular range, D axial direction of high oil film rigidity.

Claims (8)

  1.  回転軸と、
     すべり軸受から構成され、前記回転軸を支持する内径面を有する、軸受部と、
     冷媒が吸入される吸入室と、前記冷媒が圧縮される圧縮室と、を有する、シリンダ室と、
     前記回転軸に取り付けられ、前記シリンダ室内で偏心回転するクランク部と、
     を備え、
     前記回転軸と前記すべり軸受の前記内径面との間には冷凍機油が給油される隙間が形成されており、
     前記すべり軸受は、前記冷凍機油の油膜剛性に異方性を有しており、
     前記クランク部の偏心回転に伴う前記冷媒の圧縮によって発生するガス荷重の作用角度はクランク角によって変化し、
     前記ガス荷重の作用角度の変動幅を第1角度範囲としたとき、
     前記すべり軸受の前記油膜剛性が最も高くなる方向を示す高油膜剛性の軸線方向は、前記第1角度範囲に配置される、
     ロータリ圧縮機。
    a rotating shaft;
    a bearing portion configured from a sliding bearing and having an inner diameter surface that supports the rotating shaft;
    a cylinder chamber having a suction chamber into which a refrigerant is drawn, and a compression chamber into which the refrigerant is compressed;
    a crank portion attached to the rotating shaft and rotating eccentrically within the cylinder chamber;
    Equipped with
    A gap is formed between the rotating shaft and the inner diameter surface of the slide bearing, and a gap is formed into which refrigerating machine oil is supplied.
    The sliding bearing has anisotropy in oil film rigidity of the refrigerating machine oil,
    The angle of action of the gas load generated by compression of the refrigerant due to eccentric rotation of the crank portion changes depending on the crank angle,
    When the variation range of the action angle of the gas load is defined as a first angle range,
    An axial direction of high oil film rigidity indicating a direction in which the oil film rigidity of the sliding bearing is highest is arranged in the first angular range,
    rotary compressor.
  2.  前記シリンダ室の前記吸入室と前記圧縮室とを区分するベーンを備え、
     前記ベーンのベーン上死点の前記クランク角を0degとしたとき、
     前記第1角度範囲は、前記クランク角が110degから330degまでの角度範囲である、
     請求項1に記載のロータリ圧縮機。
    comprising a vane that separates the suction chamber and the compression chamber of the cylinder chamber,
    When the crank angle of the vane top dead center of the vane is 0deg,
    The first angle range is an angle range in which the crank angle is from 110 degrees to 330 degrees.
    The rotary compressor according to claim 1.
  3.  前記軸受部は、複数の前記すべり軸受を有しており、
     前記複数の前記すべり軸受のうち、2以上の前記すべり軸受は、前記高油膜剛性の軸線方向が互いに異なる、
     請求項1または2に記載のロータリ圧縮機。
    The bearing section has a plurality of the sliding bearings,
    Of the plurality of slide bearings, two or more of the slide bearings have different axial directions of the high oil film rigidity,
    The rotary compressor according to claim 1 or 2.
  4.  前記すべり軸受の前記内径面の形状は、平面視で複数の円弧面から構成されている、
     請求項1~3のいずれか1項に記載のロータリ圧縮機。
    The shape of the inner diameter surface of the slide bearing is composed of a plurality of arcuate surfaces when viewed from above,
    The rotary compressor according to any one of claims 1 to 3.
  5.  前記すべり軸受の前記内径面には、前記内径面に動圧を発生させる動圧発生部が設けられ、
     前記動圧発生部は、前記内径面に凹状に形成された、ステップ、溝、あるいは、穴のうち、少なくともいずれか1つから構成されている、
     請求項1~4のいずれか1項に記載のロータリ圧縮機。
    The inner diameter surface of the slide bearing is provided with a dynamic pressure generating portion that generates a dynamic pressure on the inner diameter surface,
    The dynamic pressure generating portion is configured from at least one of a step, a groove, or a hole formed in a concave shape on the inner diameter surface.
    The rotary compressor according to any one of claims 1 to 4.
  6.  前記すべり軸受の前記内径面は、平面視で非真円形状を有し、且つ、前記回転軸と前記すべり軸受の前記内径面との間に形成される前記隙間の隙間分布は連続である、
     請求項1~5のいずれか1項に記載のロータリ圧縮機。
    The inner diameter surface of the slide bearing has a non-perfect circular shape in plan view, and the gap distribution of the gap formed between the rotating shaft and the inner diameter surface of the slide bearing is continuous.
    The rotary compressor according to any one of claims 1 to 5.
  7.  前記クランク部の偏心回転に伴う前記冷媒の圧縮によって発生するガス荷重の大きさは前記クランク角によって変化し、
     前記ガス荷重の大きさが、前記ガス荷重の最大値の50%以上になる前記クランク角の角度範囲を、第2角度範囲としたとき、
     前記すべり軸受の前記油膜剛性が最も高くなる方向を示す高油膜剛性の軸線方向は、前記第1角度範囲に代えて、前記第2角度範囲に配置される、
     請求項1に記載のロータリ圧縮機。
    The magnitude of the gas load generated by compression of the refrigerant due to eccentric rotation of the crank portion changes depending on the crank angle,
    When the angular range of the crank angle in which the magnitude of the gas load is 50% or more of the maximum value of the gas load is defined as a second angular range,
    An axial direction of high oil film rigidity indicating a direction in which the oil film rigidity of the sliding bearing is highest is arranged in the second angular range instead of the first angular range,
    The rotary compressor according to claim 1.
  8.  前記シリンダ室の前記吸入室と前記圧縮室とを区分するベーンを備え、
     前記ベーンのベーン上死点の前記クランク角を0degとしたとき、
     前記第2角度範囲は、前記クランク角が180degから330degまでの角度範囲である、
     請求項7に記載のロータリ圧縮機。
    comprising a vane that separates the suction chamber and the compression chamber of the cylinder chamber,
    When the crank angle of the vane top dead center of the vane is 0deg,
    The second angle range is an angle range in which the crank angle is from 180 degrees to 330 degrees.
    The rotary compressor according to claim 7.
PCT/JP2022/021505 2022-05-26 2022-05-26 Rotary compressor WO2023228343A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/021505 WO2023228343A1 (en) 2022-05-26 2022-05-26 Rotary compressor
JP2023537608A JP7422950B1 (en) 2022-05-26 2022-05-26 rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021505 WO2023228343A1 (en) 2022-05-26 2022-05-26 Rotary compressor

Publications (1)

Publication Number Publication Date
WO2023228343A1 true WO2023228343A1 (en) 2023-11-30

Family

ID=88918747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021505 WO2023228343A1 (en) 2022-05-26 2022-05-26 Rotary compressor

Country Status (2)

Country Link
JP (1) JP7422950B1 (en)
WO (1) WO2023228343A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060320A (en) * 1983-09-12 1985-04-06 Hitachi Zosen Corp Tilting pad bearing
JPH10148193A (en) * 1996-11-19 1998-06-02 Matsushita Electric Ind Co Ltd Rotary compressor
WO2006115104A1 (en) * 2005-04-19 2006-11-02 Ntn Corporation Dynamic pressure bearing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060320A (en) * 1983-09-12 1985-04-06 Hitachi Zosen Corp Tilting pad bearing
JPH10148193A (en) * 1996-11-19 1998-06-02 Matsushita Electric Ind Co Ltd Rotary compressor
WO2006115104A1 (en) * 2005-04-19 2006-11-02 Ntn Corporation Dynamic pressure bearing device

Also Published As

Publication number Publication date
JP7422950B1 (en) 2024-01-26
JPWO2023228343A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
EP2700818B1 (en) Scroll compressor
WO2017168673A1 (en) Scroll compressor and refrigeration cycle device
JP6632711B2 (en) Scroll compressor and refrigeration cycle device
JP2005201140A (en) Fluid machine
WO2016067355A1 (en) Rolling cylinder type displacement compressor
US9291164B2 (en) Scroll compressor having a bush bearing provided on a boss of orbiting scroll
WO2015025416A1 (en) Rotary machine and refrigeration cycle device
WO2022030185A1 (en) Compressor and method for manufacturing compressor
JP7422950B1 (en) rotary compressor
JP7142100B2 (en) Refrigerant compressor and refrigeration system using the same
JP6618663B1 (en) Slide bearing structure and scroll compressor
KR20010051341A (en) Conical hub bearing for scroll machine
JP2014152747A (en) Displacement type compressor
JP2611371B2 (en) Trochoid pump
KR100266949B1 (en) Displacement fluid machine
KR20010014606A (en) Positive displacement fluid machine
JP6972391B2 (en) Scroll compressor
KR102640864B1 (en) Scroll compressor
JP6104396B2 (en) Scroll compressor
JP2018035727A (en) Compressor and refrigerator with the same
JP7233935B2 (en) scroll type fluid machinery
JP2011174407A (en) Scroll fluid machine
WO2022097299A1 (en) Scroll compressor
JP3574904B2 (en) Closed displacement compressor
WO2016151769A1 (en) Hermetic rotary compressor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023537608

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943745

Country of ref document: EP

Kind code of ref document: A1