WO2023228129A1 - Nanofibre having high filtration efficiency - Google Patents

Nanofibre having high filtration efficiency Download PDF

Info

Publication number
WO2023228129A1
WO2023228129A1 PCT/IB2023/055389 IB2023055389W WO2023228129A1 WO 2023228129 A1 WO2023228129 A1 WO 2023228129A1 IB 2023055389 W IB2023055389 W IB 2023055389W WO 2023228129 A1 WO2023228129 A1 WO 2023228129A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofiber
spunbond
sms
meltblown
nylon
Prior art date
Application number
PCT/IB2023/055389
Other languages
Spanish (es)
French (fr)
Inventor
Sandra Milena Sanabria Barrera
Lina María Pineda Berrio
Original Assignee
Fundacion Cardiovascular De Colombia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Cardiovascular De Colombia filed Critical Fundacion Cardiovascular De Colombia
Publication of WO2023228129A1 publication Critical patent/WO2023228129A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B23/00Filters for breathing-protection purposes
    • A62B23/02Filters for breathing-protection purposes for respirators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B5/00Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor
    • B23B5/26Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor for simultaneously turning internal and external surfaces of a body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/02Layered products comprising a layer of synthetic resin in the form of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics

Definitions

  • the present invention belongs to the field of physical or chemical processes, separation and filter material for liquid and gaseous fluids, and more specifically to a nanofiber with high particle filtration efficiency, created from the electrospinning technique that allows the generation of a layer of nanofiber, which, joined to other layers of polypropylene fabric or nanofibers by means of ultrasound or heat, achieves obtaining a material whose fiber diameter range and nanometric pores provide high efficiency in particle filtration.
  • the nano filter layer is made from polymers such as polyvinylpyrrolidone, polyvinyl alcohol, polyethylene oxide, polylactic acid, polyglycolic acid, polycaprolactone, polyacrylonitrile, polystyrene, polymethacrylate, polyvinylidene fluoride, one or more of polyvinylidene chloride, copolymer ethylene-propylene, polyvinyl acetate, polyethylene elastomer, polyamide, and polyamide copolymer.
  • polymers such as polyvinylpyrrolidone, polyvinyl alcohol, polyethylene oxide, polylactic acid, polyglycolic acid, polycaprolactone, polyacrylonitrile, polystyrene, polymethacrylate, polyvinylidene fluoride, one or more of polyvinylidene chloride, copolymer ethylene-propylene, polyvinyl acetate, polyethylene elastomer, polyamide, and polyamide copolymer.
  • These polymers can undergo processes of electrospinning, centrifugal spinning, needleless free surface electrospinning, melt electrospinning, and a template is used as a receptor or substrate (treated with n-hexanol) to prepare an electrically uncharged grid structure.
  • a template is used as a receptor or substrate (treated with n-hexanol) to prepare an electrically uncharged grid structure.
  • the structure that makes up the filter material is different, since it does not present pyramidal structures, in addition the polymers to which that the referenced patent refers to do not coincide with those of the new invention.
  • the production process of nanofibers presented in the preceding patent is through different forms of electrospinning such as, for example, needle-free electrospinning
  • the filter material is collected in a plate pretreated with hexane, which implies a collection process different from that exposed in the new invention, which consists of collecting the nanofiber in another non-woven fabric such as spunbond or SMS.
  • the repair of the solution to be electrospun is carried out in a single chemical solvent, which varies depending on the type of work material.
  • This patent found in the state of the art includes a variety of polymers including polyamide, but the preparation of the working solution is carried out with a single solvent and the collecting fabric receives a chemical and ultrasound pretreatment, which differs from what is stated in the new invention, given that the collection substrate materials do not undergo adaptation processes or treatments prior to electrospinning.
  • the nanofiber developed in the new invention is a novel product because it has high efficiency properties for filtering particles with a diameter of 0.3 microns that have not been filtered in the state of the art with the proposed product and process.
  • of the current patent which as a product obtained allows easy breathability, is disposable, biodegradable and easily scalable for mass production since it is made by the electrospinning technique without pretreatment, characteristics that make it a unique product taking into account unmet needs of similar products for filtration of particles with a diameter of 0.3 microns.
  • the above is complemented by the quality of the polymeric material, concentrations of working solutions, solvents, environmental operating conditions, the configuration of the electrospinning equipment and the filter element that presents a low drop in pressure, therefore, allowing the easy air flow through the mesh of fibers and nanofibers. that result in a product with better characteristics and results than other previous inventions.
  • the nanofiber developed in the new invention has a particle filtration efficiency of 0.3 microns that is greater than 95% and allows easy air flow through the mesh. of fibers. Therefore, it is a product that has the capacity to filter particles present in the air, which would solve concerns related to public health in what has to do with particulate matter, environmental contaminants and viruses and microorganisms that cause respiratory diseases, in closed spaces.
  • Figure 1 shows a perspective of the fibers (belonging to polypropylene nonwoven fabric) and nanofibers, in SEM nanofiber microphotographs at 1000X.
  • Figure 2 shows an SEM photomicrographic view at 14,300X. of nanofibers and ovoid structure with the elements that compose it.
  • Figure 3 shows a microphotographic view of the structure of the nanofibers at 20,000X.
  • Figures 4 and 5 show different structural conformations of the nanofiber.
  • the high particle filtration efficiency nanofiber is produced through the electrospinning technique, which involves the application of a high voltage between a wire containing a polymer solution and an electrode.
  • the applied electric field exceeds the surface tension of the droplet that is arranged on the wire, it acquires a conical configuration, which is made up of highly charged nanometer-sized filaments that solidify when the solvent evaporates, the nanofibers are attracted by the electric field towards an electrode of opposite charge.
  • a non-woven fabric (6) which can be SMS, Spunbond or Meltblown
  • a layer of nanofiber (7) will be deposited on the non-woven fabric (6). In this way, the nanofiber (7) will be collected in the nonwoven fabric (6), subsequently the layers of nonwoven fabric and nanofiber can be joined together by means of ultrasound or heat sealing.
  • the developed nanofiber has been characterized at a microscopic level using the Scanning Electron Microscopy (SEM) technique, which is made up of flat nylon fibers (2), nanonets or spider web-shaped fibers (4) and ovoid nylon fibers ( 1) which, by electrospinning, form pore structures (3), whose fibers have diameters ranging from 40nm to 900nm and pore sizes (3) between 1000nm and 1500nm, with a smooth, continuous surface and with the presence of ovoid microstructures such as "nanonets" or spider web-shaped fibers (4) and “pearls” or ovoid nylon fibers (1).
  • SEM Scanning Electron Microscopy
  • the nanofiber layer (7) produced can be joined to one or several layers of nanofiber of weights between 0.0001 and 50 g and to non-woven fabric (6) of weights between 1 and 50 g, or, the nanofiber layer (7) produced can be attached to one or several layers of non-woven fabric (6) with weights between 1 and 50g.
  • the joining of layers can be done by means of ultrasound or heat.
  • the above allows the nanofiber composition to have high efficiency characteristics in particle filtration, since it is made up of Nylon 6 or Nylon 66 fiber particles dissolved in one or more solvents (5) such as acetic acid, formic acid and trifluoroethanol. in concentrations between 2% to 30%.
  • the composition of the nanofiber with high efficiency in particle filtration is made up of a fibrous structure, formed thanks to the electrospinning technique, which has been modified and adapted to the characteristics of the product, to achieve greater effectiveness in filtration.
  • This contains nanometric-sized filaments, based on highly charged nylon, that solidify when the solvent (5) evaporates, forming a smooth, continuous surface with the presence of ovoid microstructures such as "nanonets" and "pearls”.
  • the nanofibers (7) are attracted by the electric field towards an electrode of opposite charge and subsequently deposited on the non-woven fabric (6), obtaining a higher density, but leaving space for porous spaces, which filter particles with a diameter of 0.3 microns. .
  • the composition of the nanofiber is a pore structure (3), formed thanks to the nylon fibers obtaining diameters ranging from 40nm to 900nm in the pore sizes (3), which is complemented by the quality of the polymeric material. , concentrations of working solutions, solvents (5), environmental operating conditions and the configuration of the electrospinning equipment, obtaining a porous structure of polymeric material that has a low drop in pressure and easy air flow through the mesh of non-woven fabric fibers and nanofibers.
  • the nanofiber is formed by combinations in its final structure, according to the environmental or health needs, thus, it can be accompanied by one or several layers of nanofiber (7) or other types of non-woven fabric (6), (Meltblown, Spunbond, SMS), forming, among others, the following structures: Spunbond - nanofiber, or Spunbond - nanofiber - spunbond, or Spunbond - nanofiber - nanofiber -spunbond, or Meltblown - nanofiber - meltblown, or Meltblown - nanofiber - nanofiber - meltblown, or Meltblown - nanofiber - spunbond, or Meltblown - nanofiber - spunbond, or Meltblown - nanofiber - nanofiber - spunbond, or Meltblown - nanofiber - nanofiber - spunbond, Spunbond, meltlbown, spunbond (SMS) - nanofiber - spunbond, or Spunbond, meltlbown, spunbond (SMS) - nanofiber - nanofiber - spunbond, or
  • Nanofiber with non-woven fabric with high particle filtration efficiency has the following stages:

Abstract

The present invention belongs to the field of physical or chemical processes, separation and a filtering medium for liquid and gaseous fluids, and more specifically to a nanofibre having high particle filtration efficiency. Said nanofibre is made using the electrospinning technique that generates a nanofibre layer which, connected to other polypropylene fabric layers or nanofibres by means of ultrasound or heat, produces a material with a fibre diameter range and nanometre-sized pores that provide high particle filtration efficiency.

Description

NANOFIBRA DE ALTA EFICIENCIA DE FILTRACIÓN HIGH FILTRATION EFFICIENCY NANOFIBER
SECTOR TECNOLÓGICO TECHNOLOGICAL SECTOR
La presente invención pertenece al campo de procesos físicos o químicos, separación y material filtrante para fluidos líquidos y gaseosos, y más concretamente a una nanofibra de alta eficiencia de filtración de partículas, creada a partir de la técnica de electro hilado que permite la generación de una capa de nanofibra, que unida a otras capas de tela de polipropileno o nano fibras por medio de ultrasonido o calor, logra la obtención de un material cuyo rango de diámetro de fibras y poros nanométricos, proveen una alta eficiencia en la filtración de partículas. The present invention belongs to the field of physical or chemical processes, separation and filter material for liquid and gaseous fluids, and more specifically to a nanofiber with high particle filtration efficiency, created from the electrospinning technique that allows the generation of a layer of nanofiber, which, joined to other layers of polypropylene fabric or nanofibers by means of ultrasound or heat, achieves obtaining a material whose fiber diameter range and nanometric pores provide high efficiency in particle filtration.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
Se encuentra la solicitud de patente No. US20200254371A1. " Telas no tejidas de nano fibras de poliamida para filtros" cuyos titulares son Wai-Shing Yung, Scott E. Osborn, Chris E. Schwier, Vikram Gopal, Albert Ortega, Joseph L. Menner. Que presenta un filtro de nanofibras con una o más capas de tela no tejida compuesta cuyas nanofibras están compuestas de distintas conformaciones de poliamida como N6, N66, N6T/66, N612, N6/66, N6I/66, N66/6I/6T, Nil y/o N12, donde "N" significa nailon. El diámetro de las fibras ronda entre 100 a 1000 nanómetros y el proceso de producción de nano fibras se da por medio de aplicación de calor. En la nueva solicitud la técnica usada para la obtención de la nano fibra es el resultado de un producto de electro hilado con la inclusión de solvente como el ácido fórmico. There is patent application No. US20200254371A1. "Polyamide nano fiber nonwoven fabrics for filters" whose owners are Wai-Shing Yung, Scott E. Osborn, Chris E. Schwier, Vikram Gopal, Albert Ortega, Joseph L. Menner. Which presents a nanofiber filter with one or more layers of composite non-woven fabric whose nanofibers are composed of different polyamide conformations such as N6, N66, N6T/66, N612, N6/66, N6I/66, N66/6I/6T, Nil and/or N12, where "N" means nylon. The diameter of the fibers is between 100 to 1000 nanometers and the production process of nanofibers occurs through the application of heat. In the new application, the technique used to obtain the nanofiber is the result of an electrospinning product with the inclusion of a solvent such as formic acid.
Se encuentra en el estado del arte la solicitud de patente No. WQ2019200641A1 "Estructuras de fibras transmisivas de fluidos de múltiples capas que contienen nanofibras y un método para fabricar tales estructuras" publicada en agosto del 2010 y que presenta un Material filtrante de gradiente microscópico de baja resistencia del paso del aire, compuesta por una superficie protectora, una capa de filtración primaria con microfibras y una capa de nano filtración. La capa de nanofiltro se compone de una capa de fibra base plana y una estructura piramidal. La capa de nano filtrante está elaborada a partir de polímeros como polivinilpirrolidona, alcohol polivinílico, óxido de polietíleno, ácido poliláctíco, ácido poliglicólico, policaprolactona, poliacrilonitrilo, poliestíreno, polimetacrilato, fluoruro de polivinilideno, uno o más de cloruro de pol ivinilideno, copolímero de etíleno-propileno, acetato de polivinilo, elastómero de polietíleno, poliamida, y poliamida copolímero. Estos polímeros pueden pasar por procesos de electrohilado, hilado centrífugo, electrohilado de superficie libre sin aguja, electrohilado fundido, y una plantilla es usada como receptor o sustrato (tratado con n-hexanol) para preparar una estructura de rejilla sin carga eléctrica. En la nueva solicitud la estructura que conforma el material filtrante es diferente, pues no presenta estructuras piramidales, además los polímeros a los que hace referencia la patente referenciada no coinciden con los de la nueva invención. Si bien el proceso de producción de nanofibras presentada en la patente antecedente es por medio de distintas formas de electrohilado como, por ejemplo, electrohilado libre de agujas, el material filtrante es recogido en una platina pretratada con hexano, lo cual implica un proceso de recolección diferente al expuesto en la nueva invención, que consiste en la recolección de la nanofibra en otra tela no tejida como spunbond o SMS. The patent application No. WQ2019200641A1 "Multi-layer fluid transmissive fiber structures containing nanofibers and a method for fabricating such structures" published in August 2010 and which presents a Microscopic Gradient Filter Material of low resistance to air passage, composed of a protective surface, a primary filtration layer with microfibers and a nano filtration layer. The nanofilter layer is composed of a flat base fiber layer and a pyramidal structure. The nano filter layer is made from polymers such as polyvinylpyrrolidone, polyvinyl alcohol, polyethylene oxide, polylactic acid, polyglycolic acid, polycaprolactone, polyacrylonitrile, polystyrene, polymethacrylate, polyvinylidene fluoride, one or more of polyvinylidene chloride, copolymer ethylene-propylene, polyvinyl acetate, polyethylene elastomer, polyamide, and polyamide copolymer. These polymers can undergo processes of electrospinning, centrifugal spinning, needleless free surface electrospinning, melt electrospinning, and a template is used as a receptor or substrate (treated with n-hexanol) to prepare an electrically uncharged grid structure. In the new application, the structure that makes up the filter material is different, since it does not present pyramidal structures, in addition the polymers to which that the referenced patent refers to do not coincide with those of the new invention. Although the production process of nanofibers presented in the preceding patent is through different forms of electrospinning such as, for example, needle-free electrospinning, the filter material is collected in a plate pretreated with hexane, which implies a collection process different from that exposed in the new invention, which consists of collecting the nanofiber in another non-woven fabric such as spunbond or SMS.
Se encuentra en el estado del arte la solicitud de patente No. CN105200539B "Método de preparación de material de filtro compuesto no tejido de nano fibras/spunbond y material de filtro compuesto preparado" cuyo titulares son Cao LeitáoZhao Xingleiyu jianyong, que proporciona Producción de nanofibras por medio de la técnica de electrohilado a base de materiales acrilnitrilo-butadieno- estireno, makrolon, metacrilato de polimetilo, polipropileno, kynoar, poliamida, poliestireno, cloruro de polivinilo, polietileno, politetrafluoroetileno. La tela no tejida recibe un pretratramiento con sustancias químicas y ultrasonido. La reparación de la solución a electrohilar se realiza en un solo solvente químico, que varía según el tipo de material de trabajo. Esta patente encontrada en el estado del arte, incluye una variedad de polímeros entre ellos, la poliamida, pero la preparación de la solución de trabajo se realiza con un solo solvente y la tela colectora recibe un pretratamiento químico y de ultrasonido, lo cual difiere de lo expuesto en la nueva invención, dado que los materiales sustrato de colección no sufren procesos de adecuación o tratamientos previos al electrohilado. The patent application No. CN105200539B "Preparation method of nano fiber/spunbond non-woven composite filter material and prepared composite filter material" is in the state of the art, whose holders are Cao LeitáoZhao Xingleiyu jianyong, which provides Nanofiber production through the electrospinning technique based on materials acrylnitrile-butadiene-styrene, makrolon, polymethyl methacrylate, polypropylene, kynoar, polyamide, polystyrene, polyvinyl chloride, polyethylene, polytetrafluoroethylene. The nonwoven fabric is pre-treated with chemicals and ultrasound. The repair of the solution to be electrospun is carried out in a single chemical solvent, which varies depending on the type of work material. This patent found in the state of the art, includes a variety of polymers including polyamide, but the preparation of the working solution is carried out with a single solvent and the collecting fabric receives a chemical and ultrasound pretreatment, which differs from what is stated in the new invention, given that the collection substrate materials do not undergo adaptation processes or treatments prior to electrospinning.
La nanofibra desarrollada en la nueva invención, es un producto novedoso debido a que cuenta con propiedades de alta eficiencia de filtración de partículas de diámetro de 0.3 mieras como diámetro que no se ha filtrado en el estado de la técnica con la propuesta de producto y proceso de la patente actual, que como producto obtenido permite una fácil respirabilidad, es desechable, biodegradable y fácilmente escalable para producción masiva dado que es elaborada por la técnica de electro hilado sin pretratamientos, características que lo hacen un producto único teniendo en cuenta las necesidades insatisfechas de productos de similares para filtración de partículas de diámetro de 0.3 mieras. The nanofiber developed in the new invention is a novel product because it has high efficiency properties for filtering particles with a diameter of 0.3 microns that have not been filtered in the state of the art with the proposed product and process. of the current patent, which as a product obtained allows easy breathability, is disposable, biodegradable and easily scalable for mass production since it is made by the electrospinning technique without pretreatment, characteristics that make it a unique product taking into account unmet needs of similar products for filtration of particles with a diameter of 0.3 microns.
Lo anterior se complementa con la calidad del material polimérico, concentraciones de soluciones de trabajo, solventes, condiciones ambientales de operación, la configuración del equipo de electro hilado y el elemento filtrante que presenta una baja caída en la presión, por lo tanto, permite el fácil flujo de aire a través de la malla de fibras y nanofibras. que dan como resultado un producto de mejores características y resultados que otras invenciones antecedentes. Además, de acuerdo con los resultados obtenidos por un laboratorio internacional certificado, la nanofibra desarrollada en la nueva invención tiene una eficiencia de filtración de partículas de 0.3 mieras que es superior al 95% y que permite el fácil flujo del aire a través de la malla de fibras. Por ende, es un producto que cuenta con la capacidad de filtrar partículas presentes en el aire, los que solucionaría preocupaciones relacionadas con la salud publica en lo que tiene que ver con material particulado, contaminantes ambientales y virus y microorganismos causantes de enfermedades respiratorias, en espacios cerrados. The above is complemented by the quality of the polymeric material, concentrations of working solutions, solvents, environmental operating conditions, the configuration of the electrospinning equipment and the filter element that presents a low drop in pressure, therefore, allowing the easy air flow through the mesh of fibers and nanofibers. that result in a product with better characteristics and results than other previous inventions. Furthermore, according to the results obtained by a certified international laboratory, the nanofiber developed in the new invention has a particle filtration efficiency of 0.3 microns that is greater than 95% and allows easy air flow through the mesh. of fibers. Therefore, it is a product that has the capacity to filter particles present in the air, which would solve concerns related to public health in what has to do with particulate matter, environmental contaminants and viruses and microorganisms that cause respiratory diseases, in closed spaces.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
Las figuras anexas ¡lustran el alcance que se propone la invención dentro de la siguiente propuesta de nanofibra de alta eficiencia de filtración de partículas. The attached figures illustrate the scope of the invention within the following proposal for a nanofiber with high particle filtration efficiency.
La figura 1 muestra una perspectiva de las fibras (pertenecientes a tela no tejida de polipropileno) y nano fibras, en microfotografia SEM nanofibras a 1000X. Figure 1 shows a perspective of the fibers (belonging to polypropylene nonwoven fabric) and nanofibers, in SEM nanofiber microphotographs at 1000X.
La figura 2 muestra una vista microfotográfica SEM a 14.300X. de nanofibras y estructura ovoide con los elementos que la componen. Figure 2 shows an SEM photomicrographic view at 14,300X. of nanofibers and ovoid structure with the elements that compose it.
La figura 3 muestra una vista microfotográfica de la estructura de las nanofibras a 20.000X Figure 3 shows a microphotographic view of the structure of the nanofibers at 20,000X.
Las figuras 4 y 5 muestra diferentes conformaciones estructurales de la nanofibra. Figures 4 and 5 show different structural conformations of the nanofiber.
La nanofibra de alta eficiencia de filtración de partículas se produce a través de la técnica de electrohilado , que consiste en la aplicación de un alto voltaje entre un alambre que contiene una solución de polimérica y un electrodo. Cuando el campo eléctrico aplicado excede la tensión superficial de la gota que está dispuesta en el alambre, ella adquiere una configuración cónica, que está constituida por filamentos de tamaño nanométrico altamente cargados que se solidifican cuando el solvente se evapora, las nanofibras son atraídas por el campo eléctrico hacia un electrodo de carga opuesta. Al colocar una tela no tejida (6), que puede ser SMS, Spunbond o Meltblown, sobre el alambre colector de carga opuesta, se irá depositando una capa de nanofibra (7) sobre la tela no tejida (6). De esta forma la nanofibra (7) será recolectada en la tela no tejida (6), posteriormente las capas de tela no tejida y nanofibra pueden ser unidas entre sí por medio de sellado de ultrasonido o por calor. The high particle filtration efficiency nanofiber is produced through the electrospinning technique, which involves the application of a high voltage between a wire containing a polymer solution and an electrode. When the applied electric field exceeds the surface tension of the droplet that is arranged on the wire, it acquires a conical configuration, which is made up of highly charged nanometer-sized filaments that solidify when the solvent evaporates, the nanofibers are attracted by the electric field towards an electrode of opposite charge. By placing a non-woven fabric (6), which can be SMS, Spunbond or Meltblown, on the oppositely charged collector wire, a layer of nanofiber (7) will be deposited on the non-woven fabric (6). In this way, the nanofiber (7) will be collected in the nonwoven fabric (6), subsequently the layers of nonwoven fabric and nanofiber can be joined together by means of ultrasound or heat sealing.
La nanofibra desarrollada ha sido caracterizada a nivel microscópico por medio de la técnica de Microscopía Electrónica de Barrido (SEM), la cual está conformada por fibras nilón planas (2), nanonetas o fibras en forma de telaraña (4) y fibras nilón ovoides (1) que por electrohilado conforman unas estructuras de poro (3), cuyas fibras tienen diámetros que van desde los 40nm hasta los 900nm y tamaños de poro (3) entre lOOnm hasta 1500nm, de superficie lisa, continua y con presencia de microestructuras ovoides como "nanonetas" o fibras en forma de telaraña (4) y "perlas" o fibras nilón ovoides (1). Dichas microestructuras ovoides han sido reconocidas en la literatura científica como elementos "potenciadores" en la eficiencia de la filtración. La capa de nanofibra (7) producida puede ser unida a una o varias capas de nanofibra de gramajes entre 0.0001 y 50 g y a tela no tejida (6) de gramajes entre 1 y 50 g, o, la capa de nanofibra (7) producida puede ser unida a una o varias capas de tela no tejida (6) de gramajes entre 1 y 50g. La unión de capas se puede realizar por medio de ultrasonido o calor. Lo anterior permite que la composición de la nanofibra tenga características de alta eficiencia en la filtración de partículas, pues está integrada por partículas de fibras nilón Nylon 6 o Nylon 66 disuelto en uno o varios solventes (5) como ácido acético, ácido fórmico y trifluoroetanol en concentraciones entre 2% al 30%. The developed nanofiber has been characterized at a microscopic level using the Scanning Electron Microscopy (SEM) technique, which is made up of flat nylon fibers (2), nanonets or spider web-shaped fibers (4) and ovoid nylon fibers ( 1) which, by electrospinning, form pore structures (3), whose fibers have diameters ranging from 40nm to 900nm and pore sizes (3) between 1000nm and 1500nm, with a smooth, continuous surface and with the presence of ovoid microstructures such as "nanonets" or spider web-shaped fibers (4) and "pearls" or ovoid nylon fibers (1). These ovoid microstructures have been recognized in the scientific literature as "enhancing" elements in filtration efficiency. The nanofiber layer (7) produced can be joined to one or several layers of nanofiber of weights between 0.0001 and 50 g and to non-woven fabric (6) of weights between 1 and 50 g, or, the nanofiber layer (7) produced can be attached to one or several layers of non-woven fabric (6) with weights between 1 and 50g. The joining of layers can be done by means of ultrasound or heat. The above allows the nanofiber composition to have high efficiency characteristics in particle filtration, since it is made up of Nylon 6 or Nylon 66 fiber particles dissolved in one or more solvents (5) such as acetic acid, formic acid and trifluoroethanol. in concentrations between 2% to 30%.
La composición de la nanofibra de alta eficiencia en filtración de partículas está integrada por una estructura fibrosa, formada gracias a la técnica de electrohilado, que ha sido modificada y adaptada a las características del producto, para alcanzar mayor efectividad en la filtración. Esta contiene filamentos de tamaño nanométrico, a base de nilón altamente cargados que se solidifican cuando el solvente (5) se evapora, formando una superficie lisa, continua y con presencia de microestructuras ovoides como "nanonetas" y "perlas". Las nanofibras (7) son atraídas por el campo eléctrico hacia un electrodo de carga opuesta y posteriormente depositadas en la tela no tejida (6), obteniendo una densidad superior, pero dejando espacio para espacios porosos, que filtran partículas de un diámetro de 0.3 mieras. The composition of the nanofiber with high efficiency in particle filtration is made up of a fibrous structure, formed thanks to the electrospinning technique, which has been modified and adapted to the characteristics of the product, to achieve greater effectiveness in filtration. This contains nanometric-sized filaments, based on highly charged nylon, that solidify when the solvent (5) evaporates, forming a smooth, continuous surface with the presence of ovoid microstructures such as "nanonets" and "pearls". The nanofibers (7) are attracted by the electric field towards an electrode of opposite charge and subsequently deposited on the non-woven fabric (6), obtaining a higher density, but leaving space for porous spaces, which filter particles with a diameter of 0.3 microns. .
La composición de la nanofibra es una estructura de poro (3), conformada gracias a las fibras de nilón obteniendo diámetros que van desde los 40nm hasta los 900nm en los tamaños de poro (3), lo que es complementado por la calidad del material polimérico, concentraciones de soluciones de trabajo, solventes (5), condiciones ambientales de operación y la configuración del equipo de electro hilado, obteniendo una estructura porosa de material polimérico que tiene una baja caída en la presión de fácil flujo de aire a través de la malla de fibras de tela no tejida y nanofibras. la nanofibra es formada por combinaciones en su estructura final, de acuerdo a las necesidades ambientales o sanitarias, así, puede encontrarse acompañada por una o varias capas de nanofibra (7) o de otros tipos de tela no tejida (6), (Meltblown, Spunbond, SMS), formando entre otras , las siguientes estructuras: Spunbond - nanofibra, o Spunbond - nanofibra - spunbond, o Spunbond - nanofibra - nanofibra -spunbond, o Meltblown - nanofibra - meltblown, o Meltblown - nanofibra - nanofibra - meltblown, o Meltblown - nanofibra - spunbond, o Meltblown - nanofibra - nanofibra - spunbond, Spunbond, meltlbown, spunbond (SMS) - nanofibra - spunbond, o Spunbond, meltlbown, spunbond (SMS) - nanofibra - nanofibra - spunbond, o Spunbond, meltlbown, spunbond (SMS) - nanofibra - Spunbond, meltlbown, spunbond (SMS), o Spunbond, meltlbown, spunbond (SMS) - nanofibra - nanofibra - Spunbond, meltlbown, spunbond (SMS), o Spunbond, meltlbown, spunbond (SMS) - nanofibra - meltblown, o Spunbond, meltlbown, spunbond (SMS) - nanofibra - nanofibra - meltblown o Spunbond, meltlbown, spunbond (SMS) - nanofibra, o Meltblown - nanofibra. The composition of the nanofiber is a pore structure (3), formed thanks to the nylon fibers obtaining diameters ranging from 40nm to 900nm in the pore sizes (3), which is complemented by the quality of the polymeric material. , concentrations of working solutions, solvents (5), environmental operating conditions and the configuration of the electrospinning equipment, obtaining a porous structure of polymeric material that has a low drop in pressure and easy air flow through the mesh of non-woven fabric fibers and nanofibers. The nanofiber is formed by combinations in its final structure, according to the environmental or health needs, thus, it can be accompanied by one or several layers of nanofiber (7) or other types of non-woven fabric (6), (Meltblown, Spunbond, SMS), forming, among others, the following structures: Spunbond - nanofiber, or Spunbond - nanofiber - spunbond, or Spunbond - nanofiber - nanofiber -spunbond, or Meltblown - nanofiber - meltblown, or Meltblown - nanofiber - nanofiber - meltblown, or Meltblown - nanofiber - spunbond, or Meltblown - nanofiber - nanofiber - spunbond, Spunbond, meltlbown, spunbond (SMS) - nanofiber - spunbond, or Spunbond, meltlbown, spunbond (SMS) - nanofiber - nanofiber - spunbond, or Spunbond, meltlbown, spunbond (SMS) - nanofiber - Spunbond, meltlbown, spunbond (SMS), or Spunbond, meltlbown, spunbond (SMS) - nanofiber - nanofiber - Spunbond, meltlbown, spunbond (SMS), or Spunbond, meltlbown, spunbond (SMS) - nanofiber - meltblown, or Spunbond, meltlbown, spunbond (SMS) - nanofiber - nanofiber - meltblown or Spunbond, meltlbown, spunbond (SMS) - nanofiber, or Meltblown - nanofiber.
El proceso para la obtención de Nanofibra con tela no tejida de alta eficiencia de filtración de partículas tiene las siguientes etapas: The process to obtain Nanofiber with non-woven fabric with high particle filtration efficiency has the following stages:
1- Disolver nilón como solución polimérica en uno o varios solventes tomados de ácido acético, ácido fórmico o trifluoroetanol, o sus combinaciones, en concentraciones entre 2% al 30%. 1- Dissolve nylon as a polymer solution in one or more solvents taken from acetic acid, formic acid or trifluoroethanol, or their combinations, in concentrations between 2% to 30%.
2- Aplicar alto voltaje entre un alambre que contiene la solución polimérica y un electrodo.2- Apply high voltage between a wire containing the polymer solution and an electrode.
3- Exceder la tensión superficial de la solución dispuesta en el alambre hasta que las gotas de la solución adquieran una configuración cónica en una nanofibra con filamentos de tamaño nanométrico altamente cargados 3- Exceed the surface tension of the solution arranged on the wire until the solution droplets acquire a conical configuration in a nanofiber with highly charged nanometer-sized filaments
4- Evaporar el solvente para solidificar los filamentos de tamaño nanométrico cuyos diámetros van desde los 40nm hasta los 900nm y tamaños de poro entre lOOnm hasta 1500nm con superficie lisa, continua y con presencia de microestructuras ovoides. 4- Evaporate the solvent to solidify the nanometric-sized filaments whose diameters range from 40nm to 900nm and pore sizes between 1000nm and 1500nm with a smooth, continuous surface and the presence of ovoid microstructures.
5- Atraer la nanofibra por campo magnético hacia un alambre electrodo de carga opuesta.5- Attract the nanofiber by magnetic field towards an electrode wire of opposite charge.
6- Colocar una tela no tejida tomada de SMS, Spunbond o Meltblown sobre el alambre colector de carga opuesta. 6- Place a non-woven fabric taken from SMS, Spunbond or Meltblown over the oppositely charged collector wire.
7- Depositar una capa de nanofibra sobre la tela no tejida 7- Deposit a layer of nanofiber on the nonwoven fabric
8- Recolectar la capa de nanofibra en tela no tejida. 8- Collect the nanofiber layer into non-woven fabric.
9- Sellar por ultrasonido o calor las capas de tela no tejida y de nanofibra. 9- Seal the layers of non-woven fabric and nanofiber using ultrasound or heat.

Claims

REIVINDICACIONES
1. Nanofibra de alta eficiencia de filtración de partículas CARACTERIZADA por las siguientes estructuras: una o más estructuras fibrosas conformadas por fibras nilón planas (2), nanonetas o fibras en forma de telaraña (4) y fibras nilón ovoides (1) que por electrohilado conforman unas estructuras de poro (3) con diámetros nanométricos que filtran partículas de diámetro de 0.3 mieras, adheridas con calor o ultrasonido a una o más las capas de nano fibra (7) con capas de tela no tejida (6). 1. Nanofiber with high particle filtration efficiency CHARACTERIZED by the following structures: one or more fibrous structures made up of flat nylon fibers (2), nanonets or spider web-shaped fibers (4) and ovoid nylon fibers (1) that by electrospinning They make up pore structures (3) with nanometric diameters that filter particles with a diameter of 0.3 microns, adhered with heat or ultrasound to one or more layers of nano fiber (7) with layers of non-woven fabric (6).
2. Nanofibra de alta eficiencia de filtración de partículas de acuerdo con la reivindicación 1, CARACTERIZADA por una estructura fibrosa de electrohilado que contiene filamentos de tamaño nanométrico a base de nilón altamente cargados, solidificados y de superficie lisa, con presencia de microestructuras de fibras nilón planas (2) y microestructuras de fibras nilón ovoides (1) que potencializan la eficiencia de la filtración, cuya nanofibras (7) está reconocida en la tela no tejida (6) de alta densidad que tiene espacios porosos que filtran partículas de un diámetro de 0.3 mieras. 2. High particle filtration efficiency nanofiber according to claim 1, CHARACTERIZED by an electrospinning fibrous structure containing highly charged, solidified, nylon-based nanometer-sized filaments with a smooth surface, with the presence of nylon fiber microstructures. flat (2) and microstructures of ovoid nylon fibers (1) that enhance the filtration efficiency, whose nanofibers (7) are recognized in the high-density nonwoven fabric (6) that has porous spaces that filter particles with a diameter of 0.3 microns.
3. Nanofibra de alta eficiencia de filtración de partículas de acuerdo con la reivindicación 1, CARACTERIZADA por una estructura de poro (3) conformada por fibras a base de nilón con diámetros de fibras nilón planas (2) y fibras nilón ovoides (1) que van desde los 40nm hasta los 900nm y que tiene tamaño de poro (3) entre lOOnm hasta 1500nm, cuyo material polimérico tiene una baja caída en la presión de fácil flujo de aire a través de la malla de fibrasde tela no tejida y nanofibras. 3. Nanofiber with high particle filtration efficiency according to claim 1, CHARACTERIZED by a pore structure (3) made up of nylon-based fibers with diameters of flat nylon fibers (2) and ovoid nylon fibers (1) that They range from 40nm to 900nm and have a pore size (3) between 1000nm and 1500nm, whose polymeric material has a low pressure drop and easy air flow through the mesh of non-woven fabric and nanofiber fibers.
4. Nanofibra de alta eficiencia de filtración de partículas de acuerdo con la reivindicación 1, CARACTERIZADA por fibras de partículas de nilón, Nylon 6 o Nylon 66 disuelto en uno o varios solventes como ácido acético, ácido fórmico y trifluoroetanol en concentraciones entre 2% al 30%. 4. Nanofiber with high particle filtration efficiency according to claim 1, CHARACTERIZED by particle fibers of nylon, Nylon 6 or Nylon 66 dissolved in one or more solvents such as acetic acid, formic acid and trifluoroethanol in concentrations between 2% to 30%.
5. Nanofibra de alta eficiencia de filtración de partículas de acuerdo con la reivindicación 1, CARACTERIZADA por una capa de nanofibra (7) unida a una o a varias capas de tela no tejida (6) con gramajes entre 1 y 50g. 5. Nanofiber with high particle filtration efficiency according to claim 1, CHARACTERIZED by a layer of nanofiber (7) attached to one or several layers of non-woven fabric (6) with weights between 1 and 50g.
6. Nanofibra de alta eficiencia de filtración de partículas de acuerdo con la reivindicación 1, CARACTERIZADA por una o varias capas de nanofibra (7) con gramajes entre 0.0001 y 50 g y a tela no tejida (6) con gramajes entre 1 y 50 g. 6. Nanofiber with high particle filtration efficiency according to claim 1, CHARACTERIZED by one or several layers of nanofiber (7) with weights between 0.0001 and 50 g and a non-woven fabric (6) with weights between 1 and 50 g.
7. Nanofibra de alta eficiencia de filtración de partículas de acuerdo con la reivindicación 1, CARACTERIZADO porque su estructura final, está conformada por: una o varias capas de nanofibra (7) o de otros tipos de tela no tejida (6) como Meltblown, Spunbond, SMS; formando las siguientes estructuras: Spunbond - nanofibra, o Spunbond - nanofibra - spunbond, o Spunbond - nanofibra - nanofibra -spunbond, o Meltblown - nanofibra - meltblown, o Meltblown - nanofibra - nanofibra - meltblown, o Meltblown - nanofibra - spunbond, o Meltblown - nanofibra - nanofibra - spunbond, Spunbond, meltlbown, spunbond (SMS) - nanofibra - spunbond, o Spunbond, meltlbown, spunbond (SMS) - nanofibra - nanofibra - spunbond, o Spunbond, meltlbown, spunbond (SMS) - nanofibra - Spunbond, meltlbown, spunbond (SMS), o Spunbond, meltlbown, spunbond (SMS) - nanofibra - nanofibra - Spunbond, meltlbown, spunbond (SMS), o Spunbond, meltlbown, spunbond (SMS) - nanofibra - meltblown, o Spunbond, meltlbown, spunbond (SMS) - nanofibra - nanofibra - meltblown o Spunbond, meltlbown, spunbond (SMS) - nanofibra, o Meltblown - nanofibra. 7. Nanofiber with high particle filtration efficiency according to claim 1, CHARACTERIZED because its final structure is made up of: one or several layers of nanofiber (7) or other types of nonwoven fabric (6) such as Meltblown, Spunbond, SMS; forming the following structures: Spunbond - nanofiber, or Spunbond - nanofiber - spunbond, or Spunbond - nanofiber - nanofiber -spunbond, or Meltblown - nanofiber - meltblown, or Meltblown - nanofiber - nanofiber - meltblown, or Meltblown - nanofiber - spunbond, or Meltblown - nanofiber - nanofiber - spunbond, Spunbond, meltlbown, spunbond (SMS) - nanofiber - spunbond, or Spunbond, meltlbown, spunbond (SMS) - nanofiber - nanofiber - spunbond, or Spunbond, meltlbown, spunbond (SMS) - nanofiber - Spunbond, meltlbown, spunbond (SMS), or Spunbond, meltlbown, spunbond (SMS) - nanofiber - nanofiber - Spunbond, meltlbown, spunbond (SMS), or Spunbond, meltlbown, spunbond (SMS) - nanofiber - meltblown, or Spunbond, meltlbown, spunbond (SMS) - nanofiber - nanofiber - meltblown or Spunbond, meltlbown, spunbond (SMS) - nanofiber, or Meltblown - nanofiber.
8. Proceso para obtención de Nanofibra de alta eficiencia de filtración de partículas CARACTERIZADO por las siguientes etapas: 8. Process to obtain Nanofiber with high particle filtration efficiency CHARACTERIZED by the following stages:
1- Disolver nilón como solución polimérica en uno o varios solventes tomados de ácido acético, ácido fórmico o trifluoroetanol, o sus combinaciones, en concentraciones entre 2% al 30%. 1- Dissolve nylon as a polymer solution in one or more solvents taken from acetic acid, formic acid or trifluoroethanol, or their combinations, in concentrations between 2% to 30%.
2- Aplicar alto voltaje entre un alambre que contiene la solución polimérica y un electrodo.2- Apply high voltage between a wire containing the polymer solution and an electrode.
3- Exceder la tensión superficial de la solución dispuesta en el alambre hasta que las gotas de la solución adquieran una configuración cónica en una nanofibra con filamentos de tamaño nanométrico altamente cargados 3- Exceed the surface tension of the solution arranged on the wire until the solution droplets acquire a conical configuration in a nanofiber with highly charged nanometer-sized filaments
4- Evaporar el solvente para solidificar los filamentos de tamaño nanométrico cuyos diámetros van desde los 40nm hasta los 900nm y tamaños de poro entre lOOnm hasta 1500nm con superficie lisa, continua y con presencia de microestructuras ovoides. 4- Evaporate the solvent to solidify the nanometric-sized filaments whose diameters range from 40nm to 900nm and pore sizes between 1000nm and 1500nm with a smooth, continuous surface and the presence of ovoid microstructures.
5- Atraer la nanofibra por campo magnético hacia un alambre electrodo de carga opuesta.5- Attract the nanofiber by magnetic field towards an electrode wire of opposite charge.
6- Colocar una tela no tejida tomada de SMS, Spunbond o Meltblown sobre el alambre colector de carga opuesta. 6- Place a non-woven fabric taken from SMS, Spunbond or Meltblown over the oppositely charged collector wire.
7- Depositar una capa de nanofibra sobre la tela no tejida 7- Deposit a layer of nanofiber on the nonwoven fabric
8- Recolectar la capa de nanofibra en tela no tejida. 8- Collect the nanofiber layer into non-woven fabric.
9- Sellar por ultrasonido o calor las capas de tela no tejida y de nanofibra. 9- Seal the layers of non-woven fabric and nanofiber using ultrasound or heat.
PCT/IB2023/055389 2022-05-26 2023-05-25 Nanofibre having high filtration efficiency WO2023228129A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2022/0007162 2022-05-26
CONC2022/0007162A CO2022007162A1 (en) 2022-05-26 2022-05-26 High filtration efficiency nanofiber

Publications (1)

Publication Number Publication Date
WO2023228129A1 true WO2023228129A1 (en) 2023-11-30

Family

ID=83784034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/055389 WO2023228129A1 (en) 2022-05-26 2023-05-25 Nanofibre having high filtration efficiency

Country Status (2)

Country Link
CO (1) CO2022007162A1 (en)
WO (1) WO2023228129A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084369A1 (en) * 2007-01-05 2008-07-17 Rhodia Poliamida E Especialidades Ltda Method for obtaining a product containing nanofibres and product containing nanofibres
KR20150040705A (en) * 2013-10-07 2015-04-15 (주)에프티이앤이 Filter including nylon nanofiber and its manufacturing method
US20190160405A1 (en) * 2016-04-18 2019-05-30 Cummins Filtration Ip, Inc. Nanofiber filter media for high performance applications
US20210170317A1 (en) * 2018-05-03 2021-06-10 Cummins Filtration Ip, Inc. Composite filter media with multiple fiber structures including nanofibers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084369A1 (en) * 2007-01-05 2008-07-17 Rhodia Poliamida E Especialidades Ltda Method for obtaining a product containing nanofibres and product containing nanofibres
KR20150040705A (en) * 2013-10-07 2015-04-15 (주)에프티이앤이 Filter including nylon nanofiber and its manufacturing method
US20190160405A1 (en) * 2016-04-18 2019-05-30 Cummins Filtration Ip, Inc. Nanofiber filter media for high performance applications
US20210170317A1 (en) * 2018-05-03 2021-06-10 Cummins Filtration Ip, Inc. Composite filter media with multiple fiber structures including nanofibers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DHANALAKSHMI M., JOG J. P.: "Preparation and characterization of electrospun fibers of Nylon 11", EXPRESS POLYMER LETTERS, vol. 2, no. 8, 1 January 2008 (2008-01-01), pages 540 - 545, XP093115582, ISSN: 1788-618X, DOI: 10.3144/expresspolymlett.2008.65 *

Also Published As

Publication number Publication date
CO2022007162A1 (en) 2022-10-31

Similar Documents

Publication Publication Date Title
Zhang et al. Structural design and environmental applications of electrospun nanofibers
Zhang et al. Highly integrated polysulfone/polyacrylonitrile/polyamide-6 air filter for multilevel physical sieving airborne particles
Zhao et al. Low-resistance dual-purpose air filter releasing negative ions and effectively capturing PM2. 5
Zhang et al. Highly efficient, transparent, and multifunctional air filters using self-assembled 2D nanoarchitectured fibrous networks
CN102872654B (en) Filtering material for mask and method for manufacturing filtering material
Song et al. Hierarchical porous poly (l-lactic acid) nanofibrous membrane for ultrafine particulate aerosol filtration
JP6048878B2 (en) Fabric material composite structure for use as a filtration means
Kaur et al. Next-generation fibrous media for water treatment
US20080217807A1 (en) Composite fiber filter comprising nan0-materials, and manufacturing method and apparatus thereof
CN103505942A (en) Nanofiber filter material
CN109746120B (en) Filter device comprising piezoelectric composite material and application of filter device in adsorption of atmospheric particulates
WO2009140385A1 (en) Particle filter system incorporating electret nanofibers
Zhou et al. Polyacrylonitrile/polyimide composite sub-micro fibrous membranes for precise filtration of PM0. 26 pollutants
CN104936671A (en) Ultrporous nanofiber mats and uses thereof
CN112774457A (en) Polymer microfiltration membrane and preparation method and application thereof
CN106757424A (en) A kind of method of electrostatic spinning and electrostatic spinning machine prepared with stereochemical structure tunica fibrosa
JP6675853B2 (en) Optical sheet using extra-fine meltblown nonwoven fabric
CN207855076U (en) A kind of efficient haze mask
CN103706182A (en) Spherical and linear combined compound fiber air filtering material and preparation method thereof
WO2023228129A1 (en) Nanofibre having high filtration efficiency
JP5564220B2 (en) Composite structure including three-dimensional structure and filter using the structure
Yin et al. Electrospun fibers for filtration
Huang et al. A single step fabrication of bio-inspired high efficiency and durable water harvester made of polymer membranes
Lee et al. Repair of disposable air filters by solution-blown nano/micro fibrous patches
CN110180400A (en) A kind of conductive-nano-fibers filter membrane and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811280

Country of ref document: EP

Kind code of ref document: A1