CN103706182A - Spherical and linear combined compound fiber air filtering material and preparation method thereof - Google Patents
Spherical and linear combined compound fiber air filtering material and preparation method thereof Download PDFInfo
- Publication number
- CN103706182A CN103706182A CN201310674542.2A CN201310674542A CN103706182A CN 103706182 A CN103706182 A CN 103706182A CN 201310674542 A CN201310674542 A CN 201310674542A CN 103706182 A CN103706182 A CN 103706182A
- Authority
- CN
- China
- Prior art keywords
- spinning
- polysulfone
- preparation
- ball line
- air filting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 80
- 239000000463 material Substances 0.000 title claims abstract description 54
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 238000001914 filtration Methods 0.000 title abstract description 28
- 150000001875 compounds Chemical class 0.000 title abstract 5
- 238000009987 spinning Methods 0.000 claims abstract description 61
- 239000002131 composite material Substances 0.000 claims abstract description 53
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 52
- 229920002492 poly(sulfone) Polymers 0.000 claims abstract description 42
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 26
- 239000007788 liquid Substances 0.000 claims abstract description 11
- 239000000243 solution Substances 0.000 claims description 28
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 24
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 16
- 238000002347 injection Methods 0.000 claims description 12
- 239000007924 injection Substances 0.000 claims description 12
- 239000002077 nanosphere Substances 0.000 claims description 11
- 235000012239 silicon dioxide Nutrition 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 9
- 239000011148 porous material Substances 0.000 claims description 7
- 239000011259 mixed solution Substances 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- 238000010041 electrostatic spinning Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 230000003068 static effect Effects 0.000 claims 7
- 239000005030 aluminium foil Substances 0.000 claims 3
- 239000007921 spray Substances 0.000 claims 3
- FDPIMTJIUBPUKL-UHFFFAOYSA-N dimethylacetone Natural products CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 abstract description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 15
- 239000011888 foil Substances 0.000 abstract description 15
- 238000001523 electrospinning Methods 0.000 abstract description 14
- 239000002105 nanoparticle Substances 0.000 abstract 3
- 239000004005 microsphere Substances 0.000 description 19
- 239000002121 nanofiber Substances 0.000 description 17
- 239000012528 membrane Substances 0.000 description 13
- 239000000443 aerosol Substances 0.000 description 5
- 238000001000 micrograph Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000004750 melt-blown nonwoven Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Landscapes
- Filtering Materials (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种空气过滤材料,尤其是一种球线组合型复合纤维空气过滤材料及其制备方法。The invention relates to an air filter material, in particular to a ball-string composite fiber air filter material and a preparation method thereof.
背景技术 Background technique
空气中粉尘是主要的污染源之一,尤其是在工业区和公共社交场所,其浓度惊人,并且粉尘中通常带菌,严重地危及人类的健康,因此必须进行过滤净化,另外高精度作业区,如:微电子车间的超净室和光学工程车间的空气净化也是必不可少的。通常采用空气过滤的方法来减少空气中粉尘,空气过滤就是分离、捕集分散于空气中的微粒的一种操作,而利用静电纺丝方法可以得到直径为几十或几百纳米的纳米级纤维构成的多孔纤维膜,纤维比表面积大、膜的孔隙率高,很适合用作过滤材料。目前,静电纺丝纳米纤维空气过滤材料的研究大多是以传统过滤介质为基布,直接将纳米纤维沉积在基布上,形成纳米纤维层和传统过滤介质构成的复合过滤材料。Leung发现在纳米纤维毡表面层合微米纤维毡可以增加过滤效率,并且压降小于纯纳米纤维毡。Shin等人制备了玻璃纤维/纳米纤维复合过滤材料,添加少量的纳米纤维就可提高玻璃纤维过滤材料的捕集效率,但压力降也会增加。Qin等在纺粘和熔喷的非织造布上铺上不同面密度的纳米纤维,纳米纤维纺于非织造基布上后,其过滤效率提高,但是压力降也明显增加。Agne等将PVA纳米纤维膜与聚丙烯非织造布复合,随着纳米纤维膜厚度的增加,过滤效率逐渐提高。Patanaik、Leung等将聚氧化乙烯(PEO)纳米纤维覆盖在非织造布基底上形成复合过滤材料。Wang等先电纺出聚丙烯腈(PAN)纤维层再将PVA纳米纤维覆盖在上面形成复合过滤材料。Vitchuli等在50/50聚酰胺6/棉非织造织物基底上沉积了聚酰胺66纳米纤维,当纤维堆积密度增加时,过滤效率提高。上述研究都是将单一直径的静电纺纳米纤维与普通非织造布复合形成空气过滤材料,虽然过滤效率有所提高,但是过滤过程中的压力降也随之增加,目前在过滤效率30%,压力降35Pa的熔喷非织造布上覆盖2.4g/mDust in the air is one of the main sources of pollution, especially in industrial areas and public social places. : The ultra-clean room of the microelectronics workshop and the air purification of the optical engineering workshop are also essential. Air filtration is usually used to reduce dust in the air. Air filtration is an operation to separate and capture particles dispersed in the air. Electrospinning can be used to obtain nanoscale fibers with a diameter of tens or hundreds of nanometers. The porous fiber membrane formed by the fiber has a large specific surface area and a high porosity of the membrane, which is very suitable for use as a filter material. At present, most of the research on electrospun nanofiber air filter materials is based on traditional filter media, and nanofibers are directly deposited on the base cloth to form a composite filter material composed of nanofiber layers and traditional filter media. Leung found that laminating microfiber mats on the surface of nanofiber mats can increase filtration efficiency, and the pressure drop is smaller than that of pure nanofiber mats. Shin et al. prepared a glass fiber/nanofiber composite filter material. Adding a small amount of nanofiber can improve the collection efficiency of the glass fiber filter material, but the pressure drop will also increase. Qin et al. spread nanofibers of different surface densities on spunbond and meltblown nonwovens. After the nanofibers were spun on the nonwoven base fabric, the filtration efficiency was improved, but the pressure drop also increased significantly. Agne et al. composited PVA nanofiber membranes with polypropylene nonwovens. As the thickness of the nanofiber membranes increased, the filtration efficiency gradually increased. Patanaik, Leung, etc. covered polyethylene oxide (PEO) nanofibers on a nonwoven substrate to form a composite filter material. Wang et al. first electrospun a polyacrylonitrile (PAN) fiber layer and then covered it with PVA nanofibers to form a composite filter material. Vitchuli et al. deposited polyamide 66 nanofibers on a 50/50 polyamide 6/cotton nonwoven fabric substrate, and the filtration efficiency increased when the fiber packing density increased. The above research is to combine single-diameter electrospun nanofibers with ordinary non-woven fabrics to form an air filter material. Although the filtration efficiency has improved, the pressure drop during the filtration process has also increased. Currently, the filtration efficiency is 30%. 2.4g/m is covered on the melt-blown nonwoven fabric with a drop of 35Pa 22 的纳米纤维后,过滤效率可以达到99.9%以上,但是压力降也达到1530Pa,如何通过静电纺丝的方法制备高效低阻型纳米纤维复合材料已经成为过滤材料领域中关注的焦点之一。After using nanofibers, the filtration efficiency can reach more than 99.9%, but the pressure drop also reaches 1530Pa. How to prepare high-efficiency and low-resistance nanofiber composites by electrospinning has become one of the focuses in the field of filtration materials.
发明内容 Contents of the invention
本发明目的是:提供一种过滤效率高,压力降小,且高效低阻的球线组合型复合纤维空气过滤材料及其制备方法。The purpose of the present invention is to provide a ball-and-string composite fiber air filter material with high filtration efficiency, small pressure drop, high efficiency and low resistance and a preparation method thereof.
本发明的技术方案是:一种球线组合型复合纤维空气过滤材料,包括交错排布的静电纺聚砜纤维以及镶嵌于所述静电纺聚砜纤维表面的二氧化硅纳米微球。The technical solution of the present invention is: a composite fiber air filter material with ball and thread combination, which includes electrospun polysulfone fibers arranged in a staggered manner and silicon dioxide nanometer microspheres embedded on the surface of the electrospun polysulfone fibers.
进一步地,所述静电纺聚砜纤维的直径为500~2200nm,所述二氧化硅纳米微球的直径为300~900nm。Further, the diameter of the electrospun polysulfone fiber is 500-2200 nm, and the diameter of the silica nanosphere is 300-900 nm.
进一步地,该球线组合型复合纤维空气过滤材料的孔隙率为80~87%,平均孔径为0.5μm~6.5μm,对数量中值直径75nmNaCl气溶胶的过滤效率为99~99.99%,压力降为150~500Pa。Further, the porosity of the ball-and-wire combined composite fiber air filter material is 80-87%, the average pore size is 0.5 μm-6.5 μm, the filtration efficiency of NaCl aerosol with a median diameter of 75 nm is 99-99.99%, and the pressure drop It is 150~500Pa.
上述球线组合型复合纤维空气过滤材料的制备方法,包括以下步骤:The preparation method of the above-mentioned ball-string composite fiber air filter material comprises the following steps:
1)配制质量分数为15%~25%的聚砜纺丝液,再向该聚砜纺丝液中加入二氧化硅纳米微球,该二氧化硅纳米微球的质量为该聚砜纺丝液质量的0.5%~6%,然后用恒温磁力搅拌器在室温下搅拌均匀后,得到复合纺丝液;1) Prepare a polysulfone spinning solution with a mass fraction of 15%~25%, and then add silica nanospheres to the polysulfone spinning solution. The mass of the silica nanospheres is the polysulfone spinning solution. 0.5%~6% of the liquid mass, and then use a constant temperature magnetic stirrer to stir evenly at room temperature to obtain a composite spinning solution;
2)将所述复合纺丝液倒入若干个注射针筒内,再将该若干个注射针筒依次放入多喷头静电纺丝机,用铜条将每个喷头连通,再将高压直流电源的正极与铜条相连,负极与金属接收滚筒连接并接地,启动该多喷头静电纺丝机,在接收滚筒的铝箔表面收集表面镶嵌有二氧化硅纳米微球的静电纺聚砜纤维;2) Pour the composite spinning liquid into several injection syringes, and then put the several injection syringes into the multi-nozzle electrospinning machine in turn, connect each nozzle with copper bars, and then connect the high-voltage DC power supply The anode is connected to the copper strip, the negative electrode is connected to the metal receiving drum and grounded, the multi-nozzle electrospinning machine is started, and the electrospun polysulfone fiber is collected on the aluminum foil surface of the receiving drum with silica nanospheres embedded on the surface;
3)经过纺丝后,在铝箔的表面形成一层静电纺纤维膜,将其在室温下放置24~72小时至溶剂充分挥发,再将静电纺纤维膜从铝箔表面揭下,然后在190℃下热处理60~180分钟,得到结构和性能稳定的球线组合型复合纤维空气过滤材料。3) After spinning, a layer of electrospun fiber membrane is formed on the surface of the aluminum foil, and it is placed at room temperature for 24 to 72 hours until the solvent is fully evaporated, and then the electrospun fiber membrane is peeled off from the surface of the aluminum foil, and then heated at 190°C Under heat treatment for 60-180 minutes, a ball-and-string combined composite fiber air filter material with stable structure and performance is obtained.
进一步地,所述聚砜纺丝液的溶剂为二甲基甲酰胺和丙酮的混合溶液,所述二甲基甲酰胺和所述丙酮的质量比为9:1。Further, the solvent of the polysulfone spinning solution is a mixed solution of dimethylformamide and acetone, and the mass ratio of the dimethylformamide to the acetone is 9:1.
进一步地,所述多喷头静电纺丝机工作时的纺丝电压为15~30kV,纺丝距离为10~20cm,纺丝液流量1.0~2.5mL/h,针筒横移距离10~25cm,针筒横移速度10~30cm/min。Further, when the multi-nozzle electrospinning machine is working, the spinning voltage is 15-30kV, the spinning distance is 10-20cm, the spinning liquid flow rate is 1.0-2.5mL/h, and the cylinder traverse distance is 10-25cm, The traverse speed of the syringe is 10~30cm/min.
本发明的优点是:该球线组合型复合纤维空气过滤材料,由直径为数百纳米或者1~2微米的纤维与纳米级微球组合而成,纤维表面的微球可增加材料的比表面积、减小纤维间的孔隙,从而增加对空气中粉尘的吸附与拦截能力,使该复合过滤材料具有较高的过滤率以及较低的压力降,有效的克服了现有静电纺纤维与非织造布构成的复合过滤材料虽然过滤效率较高但压力降很大的缺陷。The advantages of the present invention are: the ball-and-wire composite fiber air filter material is composed of fibers with a diameter of hundreds of nanometers or 1-2 microns and nano-scale microspheres, and the microspheres on the surface of the fibers can increase the specific surface area of the material , Reduce the pores between the fibers, thereby increasing the ability to absorb and intercept dust in the air, so that the composite filter material has a high filtration rate and low pressure drop, effectively overcoming the existing electrostatic spinning fiber and non-woven Although the composite filter material made of cloth has high filtration efficiency, it has the disadvantage of large pressure drop.
附图说明 Description of drawings
下面结合附图及实施例对本发明作进一步描述:The present invention will be further described below in conjunction with accompanying drawing and embodiment:
图1为实施例一的球线组合型复合纤维空气过滤材料的扫描电子显微镜图;Fig. 1 is the scanning electron micrograph of the ball wire combination type composite fiber air filter material of embodiment one;
图2为实施例二的球线组合型复合纤维空气过滤材料的扫描电子显微镜图;Fig. 2 is the scanning electron micrograph of the ball and wire combination type composite fiber air filter material of embodiment two;
图3为实施例三的球线组合型复合纤维空气过滤材料的扫描电子显微镜图;Fig. 3 is the scanning electron micrograph of the ball and wire combination type composite fiber air filter material of embodiment three;
图4为实施例四的球线组合型复合纤维空气过滤材料的扫描电子显微镜图。Fig. 4 is a scanning electron microscope image of the ball-and-wire combined composite fiber air filter material of Example 4.
具体实施方式 Detailed ways
实施例一:用电子天平称取5g的聚砜颗粒溶于20g质量比为9:1的二甲基甲酰胺和丙酮的混合溶液中,并用恒温磁力搅拌器在室温下搅拌以加速溶解,制备得到质量百分数为20%的聚砜纺丝液;用电子天平称取1.5g二氧化硅纳米微球,加入上述25g聚砜纺丝液中,用恒温磁力搅拌器在室温下搅拌均匀后,得到复合纺丝液,该二氧化硅纳米微球的直径为900nm;将所述复合纺丝液倒入若干个注射针筒内,再将该若干个注射针筒依次放入多喷头静电纺丝机,调整纺丝电压为20kV,纺丝距离为14cm,纺丝液流量1.5mL/h,针筒横移距离17cm,横移速度30cm/min,启动该多喷头静电纺丝机;在接收滚筒的铝箔表面收集表面镶嵌有二氧化硅纳米微球的静电纺聚砜纤维;经纺丝后,在铝箔的表面形成一层静电纺纤维膜,在室温下放置24小时,再将静电纺纤维膜从铝箔表面揭下,然后在190℃下热处理120分钟,得到结构和性能稳定、且厚度为100.0μm的球线组合型复合纤维空气过滤材料,图1为本实施例一的球线组合型复合纤维空气过滤材料的扫描电子显微镜图。Example 1: Weigh 5g of polysulfone particles with an electronic balance and dissolve them in 20g of a mixed solution of dimethylformamide and acetone with a mass ratio of 9:1, and stir at room temperature with a constant temperature magnetic stirrer to accelerate dissolution, and prepare Obtaining a polysulfone spinning solution with a mass percentage of 20%; taking by weighing 1.5g of silicon dioxide nano-microspheres with an electronic balance, adding in the above-mentioned 25g polysulfone spinning solution, and stirring evenly at room temperature with a constant temperature magnetic stirrer to obtain Composite spinning solution, the diameter of the silica nano-microspheres is 900nm; pour the composite spinning solution into several injection syringes, and then put the several injection syringes into the multi-nozzle electrospinning machine in sequence , adjust the spinning voltage to be 20kV, the spinning distance to be 14cm, the spinning liquid flow rate to be 1.5mL/h, the needle cylinder to traverse distance to 17cm, and the traverse speed to be 30cm/min, start the multi-nozzle electrospinning machine; The surface of the aluminum foil collects electrospun polysulfone fibers with silica nanospheres embedded on the surface; after spinning, a layer of electrospun fiber membrane is formed on the surface of the aluminum foil, which is placed at room temperature for 24 hours, and then the electrospun fiber membrane is removed from the The surface of the aluminum foil was peeled off, and then heat-treated at 190°C for 120 minutes to obtain a ball-and-thread composite fiber air filter material with a stable structure and performance and a thickness of 100.0 μm. Figure 1 shows the ball-and-thread composite fiber in Example 1 Scanning electron microscope image of air filter material.
该厚度为100.0μm的球线组合型复合纤维空气过滤材料的孔隙率为85.7%,平均孔径5.58μm,对数量中值直径75nm气溶胶的过滤效率为99.84%,压力降330Pa。The ball-wire composite fiber air filter material with a thickness of 100.0 μm has a porosity of 85.7%, an average pore diameter of 5.58 μm, a filtration efficiency of 99.84% for aerosols with a median diameter of 75 nm, and a pressure drop of 330 Pa.
实施例二:用电子天平称取5g的聚砜颗粒溶于20g质量比为9:1的二甲基甲酰胺和丙酮的混合溶液中,并用恒温磁力搅拌器在室温下搅拌以加速溶解,制备得到质量百分数为20%的聚砜纺丝液;用电子天平称取1g二氧化硅纳米微球,加入上述25g聚砜纺丝液中,用恒温磁力搅拌器在室温下搅拌均匀后,得到复合纺丝液,该二氧化硅纳米微球的直径为300nm;将所述复合纺丝液倒入若干个注射针筒内,再将该若干个注射针筒依次放入多喷头静电纺丝机,调整纺丝电压为21kV,纺丝距离为15cm,纺丝液流量1.0mL/h,针筒横移距离18cm,横移速度28cm/min,启动该多喷头静电纺丝机;在接收滚筒的铝箔表面收集表面镶嵌有二氧化硅纳米微球的静电纺聚砜纤维;经纺丝后,在铝箔的表面形成一层静电纺纤维膜,在室温下放置36小时,再将静电纺纤维膜从铝箔表面揭下,然后在190℃下热处理180分钟,得到结构和性能稳定、且厚度为96.1μm的球线组合型复合纤维空气过滤材料,图2为本实施例二的球线组合型复合纤维空气过滤材料的扫描电子显微镜图。Example 2: 5g of polysulfone particles were weighed with an electronic balance and dissolved in 20g of a mixed solution of dimethylformamide and acetone with a mass ratio of 9:1, and stirred at room temperature with a constant temperature magnetic stirrer to accelerate dissolution, and the preparation Obtain a polysulfone spinning solution with a mass percentage of 20%; weigh 1g of silicon dioxide nano-microspheres with an electronic balance, add them to the above-mentioned 25g polysulfone spinning solution, and stir evenly at room temperature with a constant temperature magnetic stirrer to obtain a composite Spinning solution, the diameter of the silica nano-microspheres is 300nm; pour the composite spinning solution into several injection syringes, and then put the several injection syringes into a multi-nozzle electrospinning machine in sequence, Adjust the spinning voltage to 21kV, the spinning distance to 15cm, the spinning liquid flow rate to 1.0mL/h, the needle cylinder traverse distance to 18cm, and the traverse speed to 28cm/min, start the multi-nozzle electrospinning machine; The surface collects electrospun polysulfone fibers with silica nanospheres embedded on the surface; after spinning, a layer of electrospun fiber membrane is formed on the surface of the aluminum foil, which is placed at room temperature for 36 hours, and then the electrospun fiber membrane is removed from the aluminum foil. The surface was peeled off, and then heat-treated at 190°C for 180 minutes to obtain a ball-and-string composite fiber air filter material with a stable structure and performance and a thickness of 96.1 μm. Scanning electron microscope image of filter material.
该厚度为96.1μm的球线组合型复合纤维空气过滤材料的孔隙率为86.1%,平均孔径6.01μm,对数量中值直径75nm气溶胶的过滤效率为99.97%,压力降302Pa。The ball-and-wire combined composite fiber air filter material with a thickness of 96.1 μm has a porosity of 86.1%, an average pore size of 6.01 μm, a filtration efficiency of 99.97% for aerosols with a median diameter of 75 nm, and a pressure drop of 302 Pa.
实施例三:用电子天平称取3.75g的聚砜颗粒溶于21.25g质量比为9:1的二甲基甲酰胺和丙酮的混合溶液中,并用恒温磁力搅拌器在室温下搅拌以加速溶解,制备得到质量百分数为15%的聚砜纺丝液;用电子天平称取1.0g二氧化硅纳米微球,加入上述25g聚砜纺丝液中,用恒温磁力搅拌器在室温下搅拌均匀后,得到复合纺丝液,该二氧化硅纳米微球的直径为600nm;将所述复合纺丝液倒入若干个注射针筒内,再将该若干个注射针筒依次放入多喷头静电纺丝机,调整纺丝电压为20kV,纺丝距离为18cm,纺丝液流量1.0mL/h,针筒横移距离18cm,横移速度30cm/min,启动该多喷头静电纺丝机;在接收滚筒的铝箔表面收集表面镶嵌有二氧化硅纳米微球的静电纺聚砜纤维;经纺丝后,在铝箔的表面形成一层静电纺纤维膜,在室温下放置24小时,再将静电纺纤维膜从铝箔表面揭下,然后在190℃下热处理120分钟,得到结构和性能稳定、且厚度为95.0μm的球线组合型复合纤维空气过滤材料,图3为本实施例三的球线组合型复合纤维空气过滤材料的扫描电子显微镜图。Example 3: Weigh 3.75g of polysulfone particles with an electronic balance and dissolve them in 21.25g of a mixed solution of dimethylformamide and acetone with a mass ratio of 9:1, and stir at room temperature with a constant temperature magnetic stirrer to accelerate dissolution , to prepare a polysulfone spinning solution with a mass percentage of 15%; weigh 1.0 g of silicon dioxide nano-microspheres with an electronic balance, add it to the above 25 g polysulfone spinning solution, and stir it evenly at room temperature with a constant temperature magnetic stirrer , to obtain a composite spinning solution, the diameter of the silica nano-microspheres is 600nm; the composite spinning solution is poured into several injection syringes, and then the several injection syringes are put into the multi-nozzle electrospinning Silk machine, adjust the spinning voltage to be 20kV, the spinning distance to be 18cm, the spinning liquid flow rate to be 1.0mL/h, the needle cylinder to move laterally to 18cm, and to move at a speed of 30cm/min, and start the multi-nozzle electrospinning machine; The surface of the aluminum foil of the drum collects the electrospun polysulfone fibers embedded with silica nano-microspheres; after spinning, a layer of electrospun fiber film is formed on the surface of the aluminum foil, which is placed at room temperature for 24 hours, and then the electrospun fibers are The film was peeled off from the surface of the aluminum foil, and then heat-treated at 190°C for 120 minutes to obtain a ball-and-wire composite air filter material with a stable structure and performance and a thickness of 95.0 μm. Figure 3 shows the ball-and-wire composite air filter material of Example 3 Scanning electron microscope image of composite fiber air filter material.
该厚度为95.0μm的球线组合型复合纤维空气过滤材料的孔隙率为86.3%,平均孔径5.91μm,对数量中值直径75nm气溶胶的过滤效率为99.71%,压力降292Pa。The ball-wire composite fiber air filter material with a thickness of 95.0 μm has a porosity of 86.3%, an average pore diameter of 5.91 μm, a filtration efficiency of 99.71% for aerosols with a median diameter of 75 nm, and a pressure drop of 292 Pa.
实施例四:用电子天平称取6.25g的聚砜颗粒溶于18.75g质量比为9:1的二甲基甲酰胺和丙酮的混合溶液中,并用恒温磁力搅拌器在室温下搅拌以加速溶解,制备得到质量百分数为25%的聚砜纺丝液;用电子天平称取1.0g二氧化硅纳米微球,加入上述25g聚砜纺丝液中,用恒温磁力搅拌器在室温下搅拌均匀后,得到复合纺丝液,该二氧化硅纳米微球的直径为300nm;将所述复合纺丝液倒入若干个注射针筒内,再将该若干个注射针筒依次放入多喷头静电纺丝机,调整纺丝电压为20kV,纺丝距离为15cm,纺丝液流量2.5mL/h,针筒横移距离16cm,横移速度30cm/min,启动该多喷头静电纺丝机;在接收滚筒的铝箔表面收集表面镶嵌有二氧化硅纳米微球的静电纺聚砜纤维;经纺丝后,在铝箔的表面形成一层静电纺纤维膜,在室温下放置24小时,再将静电纺纤维膜从铝箔表面揭下,然后在190℃下热处理180分钟,得到结构和性能稳定、且厚度为102.0μm的球线组合型复合纤维空气过滤材料,图4为本实施例四的球线组合型复合纤维空气过滤材料的扫描电子显微镜图。Example 4: Weigh 6.25g of polysulfone particles with an electronic balance and dissolve in 18.75g of a mixed solution of dimethylformamide and acetone with a mass ratio of 9:1, and stir at room temperature with a constant temperature magnetic stirrer to accelerate dissolution , to prepare a polysulfone spinning solution with a mass percentage of 25%; weigh 1.0 g of silicon dioxide nano-microspheres with an electronic balance, add them to the above 25 g of polysulfone spinning solution, and stir evenly at room temperature with a constant temperature magnetic stirrer , to obtain a composite spinning solution, the diameter of the silicon dioxide nano-microspheres is 300nm; the composite spinning solution is poured into several injection syringes, and then the several injection syringes are put into the multi-nozzle electrospinning Silk machine, adjust the spinning voltage to be 20kV, the spinning distance to be 15cm, the spinning liquid flow rate to be 2.5mL/h, the needle cylinder to move laterally to 16cm, and to move at a speed of 30cm/min, and start the multi-nozzle electrospinning machine; The surface of the aluminum foil of the drum collects the electrospun polysulfone fibers embedded with silica nano-microspheres; after spinning, a layer of electrospun fiber film is formed on the surface of the aluminum foil, which is placed at room temperature for 24 hours, and then the electrospun fibers are The film was peeled off from the surface of the aluminum foil, and then heat-treated at 190°C for 180 minutes to obtain a ball-and-wire composite air filter material with a stable structure and performance and a thickness of 102.0 μm. Figure 4 shows the ball-and-wire composite air filter material of Example 4 Scanning electron microscope image of composite fiber air filter material.
该厚度为102.0μm的球线组合型复合纤维空气过滤材料的孔隙率为83.6%,平均孔径4.13μm,对数量中值直径75nm气溶胶的过滤效率为99.92%,压力降341Pa。The ball-and-wire composite fiber air filter material with a thickness of 102.0 μm has a porosity of 83.6%, an average pore diameter of 4.13 μm, a filtration efficiency of 99.92% for aerosols with a median diameter of 75 nm, and a pressure drop of 341 Pa.
图1~4分别是实施例一~实施例四的四种球线组合型复合纤维空气过滤材料的扫描电子显微镜图,由图1~4可以看到纤维的表面镶嵌有一定量的二氧化硅纳米微球,且分布比较均匀,这些纳米微球的存在增加了纤维的表面积,使该纤维过滤材料对空气中粉尘的吸附能力进一步提高,且在纤维膜厚度相似的条件下,添加球线组合型纤维空气过滤材料的过滤效率提高,压力降下降(参见表1)。Figures 1 to 4 are scanning electron micrographs of the four ball-and-wire combined composite fiber air filter materials of Examples 1 to 4, respectively. From Figures 1 to 4, it can be seen that a certain amount of silica nanometers are embedded on the surface of the fibers. Microspheres, and the distribution is relatively uniform. The existence of these nano-microspheres increases the surface area of the fiber, which further improves the adsorption capacity of the fiber filter material to dust in the air. Fibrous air filter material has increased filtration efficiency and reduced pressure drop (see Table 1).
表1 球线组合型纤维膜与单一聚砜纤维膜的过滤性能比较Table 1 Filtration performance comparison between ball and wire combined fiber membrane and single polysulfone fiber membrane
当然上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明主要技术方案的精神实质所做的修饰,都应涵盖在本发明的保护范围之内。Of course, the above-mentioned embodiments are only to illustrate the technical conception and characteristics of the present invention, and its purpose is to enable those skilled in the art to understand the content of the present invention and implement it accordingly, and not to limit the protection scope of the present invention. All modifications made according to the spirit of the main technical solutions of the present invention shall fall within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310674542.2A CN103706182A (en) | 2013-12-12 | 2013-12-12 | Spherical and linear combined compound fiber air filtering material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310674542.2A CN103706182A (en) | 2013-12-12 | 2013-12-12 | Spherical and linear combined compound fiber air filtering material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103706182A true CN103706182A (en) | 2014-04-09 |
Family
ID=50399744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310674542.2A Pending CN103706182A (en) | 2013-12-12 | 2013-12-12 | Spherical and linear combined compound fiber air filtering material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103706182A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105749767A (en) * | 2015-07-22 | 2016-07-13 | 东华大学 | Electrostatic-spinning nano fiber air filter material and preparation method thereof |
CN105908364A (en) * | 2016-06-16 | 2016-08-31 | 南通那芙尔服饰有限公司 | Oil-water separation fiber membrane |
CN108823806A (en) * | 2018-06-29 | 2018-11-16 | 南通朝旭环保科技有限公司 | Electrostatic spinning micro/nano-fiber material for air filtration |
CN112755651A (en) * | 2020-12-31 | 2021-05-07 | 东华大学 | Multi-combination functional electrostatic spinning submicron fiber air filter material and preparation thereof |
CN114950008A (en) * | 2022-06-10 | 2022-08-30 | 东华大学 | A kind of high temperature resistant electrospinning micro-nano structure air filter material and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1891325A (en) * | 2002-01-31 | 2007-01-10 | 科斯洛技术公司 | Nanofiber filter media |
CN102227247A (en) * | 2008-12-05 | 2011-10-26 | 纳幕尔杜邦公司 | Filter media with nanoweb layer |
CN102695552A (en) * | 2009-11-19 | 2012-09-26 | 纳幕尔杜邦公司 | Filtration media for high humidity environments |
US20130037481A1 (en) * | 2010-04-22 | 2013-02-14 | 3M Innovative Properties Company | Nonwoven nanofiber webs containing chemically active particulates and methods of making and using same |
-
2013
- 2013-12-12 CN CN201310674542.2A patent/CN103706182A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1891325A (en) * | 2002-01-31 | 2007-01-10 | 科斯洛技术公司 | Nanofiber filter media |
CN102227247A (en) * | 2008-12-05 | 2011-10-26 | 纳幕尔杜邦公司 | Filter media with nanoweb layer |
CN102695552A (en) * | 2009-11-19 | 2012-09-26 | 纳幕尔杜邦公司 | Filtration media for high humidity environments |
US20130037481A1 (en) * | 2010-04-22 | 2013-02-14 | 3M Innovative Properties Company | Nonwoven nanofiber webs containing chemically active particulates and methods of making and using same |
Non-Patent Citations (1)
Title |
---|
王丹飞等: "静电纺粗细复合纤维形态与膜的结构及性能", 《纺织学报》, vol. 34, no. 8, 15 August 2013 (2013-08-15) * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105749767A (en) * | 2015-07-22 | 2016-07-13 | 东华大学 | Electrostatic-spinning nano fiber air filter material and preparation method thereof |
CN105908364A (en) * | 2016-06-16 | 2016-08-31 | 南通那芙尔服饰有限公司 | Oil-water separation fiber membrane |
CN108823806A (en) * | 2018-06-29 | 2018-11-16 | 南通朝旭环保科技有限公司 | Electrostatic spinning micro/nano-fiber material for air filtration |
WO2020000619A1 (en) * | 2018-06-29 | 2020-01-02 | 樊璠 | Electrostatic spinning micro-nano fiber material for air filtration |
CN112755651A (en) * | 2020-12-31 | 2021-05-07 | 东华大学 | Multi-combination functional electrostatic spinning submicron fiber air filter material and preparation thereof |
CN114950008A (en) * | 2022-06-10 | 2022-08-30 | 东华大学 | A kind of high temperature resistant electrospinning micro-nano structure air filter material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103706188A (en) | Compound fiber air filtering material and preparation method thereof | |
Varesano et al. | Experimental investigations on the multi-jet electrospinning process | |
CN102872654B (en) | Filtering material for mask and method for manufacturing filtering material | |
CN108589048A (en) | Orientation capillary power drive is prepared using electrostatic spinning large area efficiently to catchment the methods of hydrophobic/hydrophilic Janus composite cellulosic membranes | |
US20080217807A1 (en) | Composite fiber filter comprising nan0-materials, and manufacturing method and apparatus thereof | |
CN103505942A (en) | Nanofiber filter material | |
CN105435538B (en) | A kind of composite nano fiber air filting material and preparation method thereof | |
CN105749767A (en) | Electrostatic-spinning nano fiber air filter material and preparation method thereof | |
CN111263835B (en) | Blended fiber nonwoven fabric, method for producing same, laminate, and filter material | |
CN103706182A (en) | Spherical and linear combined compound fiber air filtering material and preparation method thereof | |
CN105903271B (en) | Controllable mixing nanostructured fibers composite filter material and preparation method thereof | |
CN103111193A (en) | Nanofiber microfiltration membrane and preparation method thereof | |
JP4902788B2 (en) | Sheet-like assembly of small-diameter fibers, manufacturing method thereof, and manufacturing apparatus thereof | |
CN106890506B (en) | Low-impedance high-efficiency air filtering material and preparation method thereof | |
CN110743249B (en) | Back-blowing resistant nanofiber composite filter material with anchor points | |
KR20200033669A (en) | Filter media for electret filter comprising nano fiber sheet and manufacturing methode of the same | |
JP7177394B2 (en) | COMPOSITE STRUCTURE, MANUFACTURING METHOD THEREOF, AND FILTER MEDIUM CONTAINING THE COMPOSITE STRUCTURE | |
JP2015196263A (en) | Nanofiber laminate, method for producing nanofiber laminate, filter substrate or filter, and mask or mask substrate | |
JP6158061B2 (en) | Air filter media | |
KR20080039278A (en) | Air purification filter media, Air purification filter manufactured using the same and manufacturing method thereof | |
Gobi et al. | Development of PAN nano fibrous filter hybridized by SiO | |
CN103191604A (en) | Preparation method of firmly-combined sandwich type purification material | |
CN103895294A (en) | Spun-bonding/electrostatic spinning/spun-bonding composite non-woven material and preparation method thereof | |
CN208183130U (en) | A kind of melt-spraying spinning web forming device | |
CN214680556U (en) | A kind of gradient filter non-woven fabric and filter element composed of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140409 |