WO2023226888A1 - 基于虚拟现实的车载通信系统及车载通信方法 - Google Patents

基于虚拟现实的车载通信系统及车载通信方法 Download PDF

Info

Publication number
WO2023226888A1
WO2023226888A1 PCT/CN2023/095242 CN2023095242W WO2023226888A1 WO 2023226888 A1 WO2023226888 A1 WO 2023226888A1 CN 2023095242 W CN2023095242 W CN 2023095242W WO 2023226888 A1 WO2023226888 A1 WO 2023226888A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual reality
communication path
vehicle
reality device
processing module
Prior art date
Application number
PCT/CN2023/095242
Other languages
English (en)
French (fr)
Inventor
张慧敏
王德强
黄军君
Original Assignee
蔚来汽车科技(安徽)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车科技(安徽)有限公司 filed Critical 蔚来汽车科技(安徽)有限公司
Publication of WO2023226888A1 publication Critical patent/WO2023226888A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/48Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for in-vehicle communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1095Replication or mirroring of data, e.g. scheduling or transport for data synchronisation between network nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
    • H04N21/44012Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving rendering scenes according to scene graphs, e.g. MPEG-4 scene graphs

Definitions

  • the present invention relates to the field of vehicle communication, and more specifically to a virtual reality-based vehicle communication system, a virtual reality-based vehicle communication method, a computer storage medium and a vehicle.
  • Virtual reality technology is a computer simulation technology that can create a virtual reality environment. It can use computers to generate a virtual reality environment.
  • the basic implementation of virtual reality technology is that the computer obtains the data (such as images, sounds, videos, etc.) used to create a virtual reality environment and converts it into electronic signals.
  • the virtual reality display device receives the electronic signals and constructs a virtual reality based on the electronic signals.
  • Virtual reality and/or augmented reality technologies typically utilize a virtual reality display device to display images or videos to a user.
  • the displayed images or videos may include a fully digital view (virtual reality) or may include an overlay on the user's field of view (augmented reality). information, thereby enhancing the authenticity and interest of the displayed image or video.
  • virtual reality and/or augmented reality technology can generally be divided into all-in-one machine implementation and split machine implementation.
  • the processing chip is disposed on the virtual reality helmet and/or augmented reality glasses to form a virtual reality and/or augmented reality all-in-one machine, which receives game scene information from the network , complete the spatial positioning of the helmet based on its own sensors, and use the all-in-one machine to create spatial scenes and render images, and then display the image information on the LCD display screen.
  • the processing chip is provided as a discrete component in a computer or other computing device external to the virtual reality and/or augmented reality device.
  • the processing chip is provided as a discrete component in a computer or other computing device external to the virtual reality and/or augmented reality device, image information and other data
  • the transmission of information between the processing chip and the virtual reality and/or augmented reality device may experience limited bandwidth, large delays, and additional hardware costs.
  • a vehicle-mounted communication system based on virtual reality includes: a virtual reality device; and a vehicle-mounted processing module configured to: respond to the access of the virtual reality device via a first
  • the communication path receives sensing data from the virtual reality device and The communication path sends the display image data to the virtual reality device; and is connected to the external terminal device via the first communication path or the third communication path in response to access by the external terminal device.
  • the vehicle-mounted communication system based on virtual reality, wherein the vehicle-mounted processing module, the virtual reality device and the external terminal device are connected via the first communication path, the second communication A wired connection is established between the path and one or more of the third communication paths.
  • the vehicle communication system based on virtual reality, wherein the sensing data includes data collected by one or more of the following sensors: image sensor, depth sensor, Inertial measurement unit, positioning sensor, touch sensor, eye tracking sensor, proximity sensor, ambient light sensor.
  • the vehicle-mounted processing module is further configured to: determine the spatial location information of the virtual reality device based on the sensing data. ; Generate a virtual reality space according to the spatial position information of the virtual reality device; and render an image in the virtual reality space to generate the display image data.
  • the vehicle-mounted processing module is further configured to compress the display image data through the second communication path. Send compressed display image data to the virtual reality device.
  • the vehicle-mounted processing module further includes a switching unit configured to respond to user input on the first Switching between the second communication path and the third communication path.
  • a vehicle communication method based on virtual reality includes: establishing a first communication path, a second communication path and a third communication between the vehicle processing module, the virtual reality device and the external terminal device.
  • the vehicle-mounted processing module receives sensing data from the virtual reality device via a first communication path and sends display image data to the virtual reality device via a second communication path in response to access by the virtual reality device.
  • the virtual reality device; and the vehicle-mounted processing module is connected to the external terminal device via the first communication path or the third communication path in response to access by the external terminal device.
  • the first communication path established between the vehicle processing module, the virtual reality device and the external terminal device, the third One or more of the second communication path and the third communication path include a wired connection.
  • the vehicle communication method based on virtual reality, wherein the sensing data includes data collected by one or more of the following sensors: image sensor, depth sensor, Inertial measurement unit, positioning sensor, touch sensor, eye tracking sensor, proximity sensor, ambient light sensor.
  • the method further includes the following steps performed by the vehicle processing module: determining the Spatial position information of the virtual reality device; generating a virtual reality space according to the spatial position information of the virtual reality device; and rendering images in the virtual reality space to generate the display image data.
  • the vehicle-mounted communication method based on virtual reality according to an embodiment of the present invention or any of the above embodiments, wherein the method further includes the following steps performed by the vehicle-mounted processing module: compressing the display image data To send the compressed display image data to the virtual reality device via the second communication path.
  • the virtual reality-based vehicle communication method according to an embodiment of the present invention or any of the above embodiments, wherein the method further includes the following steps performed by the vehicle processing module: in response to user input, at the first Switching between the second communication path and the third communication path.
  • a computer storage medium includes instructions that execute the steps of the virtual reality-based vehicle communication method according to the second aspect of the present invention when running.
  • a vehicle which vehicle includes the virtual reality-based vehicle communication system according to the first aspect of the present invention.
  • the solution for virtual reality-based vehicle-mounted communication can improve the effective display data transmission bandwidth between the virtual reality device and the vehicle-mounted processing module and reduce the bandwidth between the virtual reality device and the vehicle-mounted processing module.
  • the data transmission delay enables high-quality display image data to be presented substantially simultaneously on the virtual reality device, thereby bringing a more immersive experience to the user.
  • a solution for virtual reality-based in-vehicle communication can utilize a single universal serial bus interface to implement data communication between the vehicle and the virtual reality device and the external terminal device, This saves interior space layout and additional hardware interface costs.
  • FIG. 1 shows a schematic diagram of a virtual reality-based vehicle communication system according to one or more embodiments of the present invention.
  • Figure 2 shows a schematic diagram of establishing a communication link between a vehicle-mounted processing module and a virtual reality device according to one embodiment of the present invention.
  • Figure 3 shows a schematic diagram of establishing a communication link between a vehicle-mounted processing module and an external terminal device according to an embodiment of the present invention.
  • Figure 4 shows a schematic diagram of establishing a communication link between a vehicle-mounted processing module and a virtual reality device according to an embodiment of the present invention.
  • FIG. 5 shows a flow chart of a virtual reality-based vehicle communication method according to one or more embodiments of the present invention.
  • Words such as “comprising” and “including” mean that in addition to having units and steps that are directly and explicitly stated in the specification, the technical solution of the present invention does not exclude having other units and steps that are not directly or explicitly stated. situation. Terms such as “first” and “second” do not indicate the order of units in terms of time, space, size, etc. but are merely used to distinguish between units.
  • FIG. 1 shows a schematic diagram of a virtual reality-based vehicle communication system according to one or more embodiments of the present invention.
  • the virtual reality-based vehicle communication system 100 includes a vehicle processing module 110 and the virtual reality device 120, wherein a communication connection is established between the on-board processing module 110 and the virtual reality device 120 via a first communication path and a second communication path for data transmission.
  • the vehicle communication system 100 may also establish a communication connection with the external terminal device 130 via the third communication path or the first communication path for data transmission.
  • the external terminal device 130 may include, but is not limited to, a smartphone, a tablet computer, an e-book reader, a smart watch, a smart bracelet, a laptop computer, and other devices integrated with a universal serial bus interface.
  • the vehicle-mounted processing module 110 can be implemented through a vehicle-mounted computer central computing platform, on which a system on a chip (SOC) is integrated, for calculating the spatial position information of the virtual reality device 120 and generating virtual reality data. space and perform image rendering operations.
  • SOC system on a chip
  • the virtual reality-based vehicle communication system 100 shown in FIG. 1 can realize a split design of the virtual reality device applied in the vehicle by deploying components (for example, SOC chips) that perform processing and computing functions to the vehicle processing module 110
  • components for example, SOC chips
  • the volume and weight of the virtual reality device 120 are reduced, while the cost and power consumption of the virtual reality device 120 are reduced, making it easier for the user to wear it for a long time and improving the user experience.
  • the on-board processing module 110 may be configured to receive sensing data from the virtual reality device 120 via the first communication path and send display image data to the virtual reality device 120 via the second communication path in response to the access of the virtual reality device 120 , and connecting to the external terminal device 130 via the first communication path or the third communication path in response to the access of the external terminal device 130 .
  • the first communication path and the second communication path are used in conjunction to transmit sensing data and display image data respectively to support the operation of the virtual reality device 120; the first communication path and the third communication path are based on the external terminal device 130 The type is selectively used to support the access of the external terminal device 130.
  • the on-board processing module 110 may be configured to determine the spatial location information of the virtual reality device 120 based on the sensing data received from the virtual reality device 120 via the first communication path, and generate the virtual reality space according to the spatial location information of the virtual reality device 120 , and rendering the image in the virtual reality space to generate display image data and sending the generated display image data to the virtual reality device 120 via the second communication path for display by the virtual reality device 120 .
  • sensed data may include data collected by one or more of the following sensors: image sensors, depth sensors, inertial measurement units (such as gyroscopes, magnetometers), positioning sensors, touch sensors, eye tracking sensors , proximity sensor, ambient light sensor.
  • the on-board processing module 110 may be configured to perform compression processing on the display image data and send the compressed display image data to the virtual reality device 120 via the second communication path.
  • the vehicle-mounted processing module 110 may be configured to compress the display image data using image compression transmission (Display Stream Compression, DSC). By compressing the display image data and then transmitting it, higher resolution display image data can be transmitted using a lower bandwidth, and the virtual reality device 120 can decompress the compressed display image data and make it visually smooth with lower delay. Displays decompressed display image data with distortion.
  • the on-board processing module 110 may be configured to periodically determine using the sensing data received from the virtual reality device 120 via the first communication path using a Simultaneous Localization and Mapping (SLAM) algorithm.
  • the current posture and position may be represented by 6 Degrees of Freedom (Six Degrees of Freedom, 6DOF) information including position information and posture information.
  • the position information can be represented by 3D coordinates (x, y, z), where the x coordinate represents the horizontal position tx, the y coordinate represents the vertical position ty, and the z coordinate represents the longitudinal position tz.
  • the attitude information can be represented by the rotation coordinate pitch angle (pitch), yaw angle (yaw), and roll angle (roll).
  • the on-board processing module 110 may further include a switching unit (not shown in FIG. 1 ) configured to switch between the second communication path and the third communication path in response to user input.
  • a switching unit (not shown in FIG. 1 ) configured to switch between the second communication path and the third communication path in response to user input.
  • a wired connection is established between the vehicle-mounted processing module 110, the virtual reality device 120 and the external terminal device 130 via one or more of the first communication path, the second communication path and the third communication path.
  • one or more of the first communication path, the second communication path and the third communication path between the vehicle-mounted processing module 110, the virtual reality device 120 and the external terminal device 130 may be based on a single Universal Serial Bus (Universal Serial Bus). Serial Bus, USB) interface to achieve.
  • Universal Serial Bus Universal Serial Bus
  • the first communication path may be implemented based on USB2.0
  • the second communication path may be based on a display port (Display Port, DP) or a display string based on a Mobile Industry Processor Interface (MIPI). line interface
  • the third communication path can be implemented based on USB3.2.
  • USB2.0 and DP are used together to transmit sensing data from the virtual reality device 120 to the vehicle-mounted processing module 110 via USB2.0, and display image data from the vehicle-mounted processing module via DP. 110 is sent to the virtual reality device 120 to support the operation of the virtual reality device 120 .
  • FIG. 1 USB2.0
  • MIPI Mobile Industry Processor Interface
  • USB2.0 and USB3.2 are selectively used based on the type of the external terminal device 130 (eg, interface type) to support access of the external terminal device 130 .
  • the onboard processing module 110 may utilize a USB-DP multiplexing chip to switch between USB3.2 and DP in response to user selection.
  • the first communication path may be implemented based on USB3.2
  • the second communication path may be implemented based on DP or MIPI-based display serial interface
  • the third communication path may be implemented based on USB3.2.
  • USB3.2 and DP are used together to transmit sensing data from the virtual reality device 120 to the vehicle-mounted processing module 110 via USB3.2, and display image data from the vehicle-mounted processing module via DP. 110 is sent to the virtual reality device 120 to support the operation of the virtual reality device 120 .
  • the data transmission rate of the virtual reality device 120 can be further improved.
  • USB2.0 DP or MIPI-based display serial interface
  • USB3.2 is only exemplary and does not depart from the spirit and scope of the present invention.
  • other types of USB, display data transmission interface or other connection methods may also be used to implement wired connections between the vehicle-mounted processing module 110, the virtual reality device 120 and the external terminal device 130.
  • the vehicle-mounted communication system based on virtual reality can improve the effective display data transmission bandwidth between the virtual reality device and the vehicle-mounted processing module and reduce the data transmission bandwidth between the virtual reality device and the vehicle-mounted processing module.
  • the transmission delay enables high-quality display image data to be presented on the virtual reality device substantially simultaneously, thereby bringing a more immersive experience to the user.
  • a solution for virtual reality-based in-vehicle communication can utilize a single universal serial bus interface to implement data communication between the vehicle and the virtual reality device and the external terminal device, This saves interior space layout and additional hardware interface costs.
  • Figure 2 shows a schematic diagram of establishing a communication link between a vehicle-mounted processing module and a virtual reality device according to one embodiment of the present invention.
  • the SOC chip is connected to the virtual reality device via the USB interface through the signal interface USB2.0 and DP.
  • USB2.0 and DP are used together.
  • the SOC chip receives sensing data from the virtual reality device via USB2.0 and sends display image data to the virtual reality device via DP to support the operation of the virtual reality device.
  • the USB interface can be implemented as a Type-C interface.
  • a 4-channel DP transmission path is shown in Figure 2, and DSC can be applied to the DP to display the The image data is compressed and the compressed display image data is sent to the virtual reality device, thereby supporting a display image data transmission bandwidth of up to 90Gbps.
  • Figure 3 shows a schematic diagram of establishing a communication link between a vehicle-mounted processing module and an external terminal device according to an embodiment of the present invention.
  • the communication path can be switched from USB2.0 and DP shown in Figure 2 to USB2.0 and USB3.2 based on external terminal devices in response to user selection.
  • Type for example, interface type
  • the USB interface can be implemented as a Type-C interface.
  • data transmission can be performed with an external terminal device through the TX pin and RX pin of USB3.2.
  • an interface compliant with the Type-C standard can be set on the central computing platform of the vehicle computer, which can support USB2.0 and DP signal transmission to realize the operation of virtual reality devices, or support USB3.2 Or USB2.0 signal transmission to realize the operation of external terminal devices. It should be noted that within the same time period, the virtual reality device and the external terminal device cannot be operated at the same time. Therefore, pins CC1 and CC2 can be used to identify whether the connected device is an external terminal device or a virtual reality device.
  • Figure 4 shows a schematic diagram of establishing a communication link between a vehicle-mounted processing module and a virtual reality device according to an embodiment of the present invention.
  • USB3.2 and DP are used together.
  • the SOC chip receives sensing data from the virtual reality device via USB3.2 and sends the display image data via DP. to a virtual reality device to support the operation of the virtual reality device.
  • a 4-channel DP transmission path is shown in Figure 4, and DSC can be applied to the DP to compress the display image data and send the compressed display image data to the virtual reality device, thereby being able to support up to 90Gbps display image data transmission bandwidth.
  • USB3.2 two pairs of D+/D- signal lines in the USB interface are used to transmit USB3.2 signals to meet the higher transmission rate requirements of virtual reality devices. Since the D+/D- signal line is occupied, the access of external terminal devices based on USB2.0 is not supported.
  • a special fixed interface connection is required. The connection mode does not support the standard Type-C interface. Due to signal impedance requirements, the TX1 pin of USB3.2 is connected to a pair of D+/-(1) pins of the USB interface for signal transmission; the RX1 pin of USB3.2 is connected to another pair of D+ of the USB interface. /-(2) Pin, used for signal reception.
  • FIG. 5 shows a flow chart of a virtual reality-based vehicle communication method according to one or more embodiments of the present invention.
  • a virtual reality-based vehicle communication method includes the following steps:
  • Step S510 Establish one or more of the first communication path, the second communication path and the third communication path between the vehicle-mounted processing module, the virtual reality device and the external terminal device;
  • Step S520 The vehicle-mounted processing module receives sensing data from the virtual reality device via the first communication path and sends display image data to the virtual reality device via the second communication path in response to the virtual reality device access;
  • Step S530 The vehicle-mounted processing module responds to the access of the external terminal device and connects to the external terminal device via the first communication path or the third communication path.
  • external terminal devices may include but are not limited to smartphones, tablet computers, e-book readers, smart watches, smart bracelets, laptop computers, and other devices integrated with universal serial bus interfaces.
  • the vehicle-mounted processing module can be implemented through a vehicle-mounted computer central computing platform, on which a system-on-a-chip (SOC) is integrated to calculate the spatial position information of the virtual reality device and generate the virtual reality space. and perform image rendering operations.
  • SOC system-on-a-chip
  • the virtual reality-based vehicle communication method shown in Figure 5 can realize the split design of the virtual reality device applied in the vehicle, by deploying components (for example, SOC chips) that perform processing and computing functions to the vehicle processing module.
  • the size and weight of the virtual reality device are reduced, while the cost and power consumption of the virtual reality device are reduced, making it easier for users to wear it for a long time and improving the user experience.
  • the first communication path and the second communication path are used in conjunction to transmit sensing data and display image data respectively to support the operation of the virtual reality device; the first communication path and the third communication path are based on It is selectively used according to the type of external terminal equipment to support the access of external terminal equipment.
  • the spatial location information of the virtual reality device may be determined based on the sensing data received from the virtual reality device via the first communication path.
  • the information generates a virtual reality space, and renders images in the virtual reality space to generate display image data and sends the generated display image data to the virtual reality device via the second communication path for display by the virtual reality device.
  • sensed data may include data collected by one or more of the following sensors: image sensors, depth sensors, inertial measurement units (such as gyroscopes, magnetometers), positioning sensors, touch sensors, eye tracking sensors , proximity sensor, ambient light sensor.
  • the display image data may be compressed and the compressed display image data may be sent to the virtual reality device via the second communication path.
  • a SLAM algorithm may be used to periodically determine the current posture and position of the virtual reality device relative to the real world scene using sensing data received from the virtual reality device via the first communication path.
  • the above method may further include switching between the second communication path and the third communication path in response to user input.
  • a wired connection is established between the vehicle-mounted processing module, the virtual reality device and the external terminal device via one or more of the first communication path, the second communication path and the third communication path.
  • one or more of the first communication path, the second communication path and the third communication path between the vehicle-mounted processing module, the virtual reality device and the external terminal device may be implemented based on a single USB interface.
  • the first communication path may be implemented based on USB2.0
  • the second communication path may be implemented based on DP or MIPI-based display serial interface
  • the third communication path may be implemented based on USB3.2.
  • USB2.0 and DP are used together to transmit sensing data from the virtual reality device to the vehicle-mounted processing module via USB2.0, and send display image data from the vehicle-mounted processing module to the vehicle via DP.
  • Virtual reality device to support the operation of the virtual reality device.
  • USB2.0 and USB3.2 are selectively used based on the type of the external terminal device (eg, interface type) to support access of the external terminal device.
  • the first communication path may be implemented based on USB3.2
  • the second communication path may be implemented based on DP or MIPI-based display serial interface
  • the third communication path may be implemented based on USB3.2.
  • USB3.2 and DP are used together to transmit sensing data from the virtual reality device to the on-board processing module via USB3.2, and to display the display via DP.
  • the display image data is sent from the on-board processing module to the virtual reality device to support the operation of the virtual reality device.
  • USB2.0 DP or MIPI-based display serial interface
  • USB3.2 is only exemplary and does not depart from the spirit and scope of the present invention.
  • other types of USB, display data transmission interface or other connection methods can also be used to achieve wired connections between the on-board processing module, the virtual reality device and the external terminal device.
  • the method for vehicle-mounted communication based on virtual reality can improve the effective display data transmission bandwidth between the virtual reality device and the vehicle-mounted processing module and reduce the data transmission bandwidth between the virtual reality device and the vehicle-mounted processing module.
  • the transmission delay enables high-quality display image data to be presented on the virtual reality device substantially simultaneously, thereby bringing a more immersive experience to the user.
  • a solution for virtual reality-based in-vehicle communication can utilize a single universal serial bus interface to implement data communication between the vehicle and the virtual reality device and the external terminal device, This saves interior space layout and additional hardware interface costs.
  • the present invention can also be implemented as a computer storage medium in which a program for causing a computer to execute a virtual reality-based vehicle communication method according to one aspect of the present invention is stored.
  • disks for example, magnetic disks, optical disks, etc.
  • cards for example, memory cards, optical cards, etc.
  • semiconductor memories for example, read-only memories, non-volatile memories, etc.
  • tapes for example, tapes, cassettes, etc.
  • the various embodiments provided by the present disclosure may be implemented using hardware, software, or a combination of hardware and software.
  • the various hardware components and/or software components set forth herein may be combined into composite components including software, hardware, and/or both without departing from the scope of the present disclosure.
  • the various hardware components and/or software components set forth herein may be divided into sub-components including software, hardware, or both without departing from the scope of the present disclosure.
  • software components may be implemented as hardware components, and vice versa.
  • Software (such as program code and/or data) according to the present disclosure may be stored on one or more computer storage media. It is also contemplated that one or more channels may be networked and/or otherwise Use or special purpose computers and/or computer systems to implement the software identified herein. Where applicable, the order of the various steps described herein may be changed, combined into composite steps, and/or divided into sub-steps to provide the features described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Multimedia (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

本发明涉及基于虚拟现实的车载通信系统、基于虚拟现实的车载通信方法、计算机存储介质及车辆。按照本发明一个方面的基于虚拟现实的车载通信系统包括:虚拟现实设备;以及车载处理模块,其配置成:响应于所述虚拟现实设备接入而经由第一通信路径从所述虚拟现实设备接收感测数据并且经由第二通信路径将显示图像数据发送至所述虚拟现实设备;以及响应于外部终端设备接入而经由所述第一通信路径或第三通信路径连接至所述外部终端设备。

Description

基于虚拟现实的车载通信系统及车载通信方法 技术领域
本发明涉及车辆通信领域,并且更具体地涉及一种基于虚拟现实的车载通信系统、基于虚拟现实的车载通信方法、计算机存储介质及车辆。
背景技术
虚拟现实技术是一种可以创建虚拟现实环境的计算机仿真技术,其可以利用计算机生成虚拟现实环境。虚拟现实技术的基本实现方式为计算机获取用于创建虚拟现实环境的数据(如,图像、声音、视频等)并将其转换为电子信号,虚拟现实显示设备接收电子信号并根据该电子信号构建虚拟现实环境。虚拟现实和/或增强现实技术通常利用虚拟现实显示设备向用户显示图像或视频,所显示的图像或视频可以包括完全数字视图(虚拟现实)或者可以包括覆盖在用户的视野(增强现实)上的信息,从而能够提升显示图像或视频的真实性和趣味性。
目前,根据处理芯片的设置位置不同,虚拟现实和/或增强现实技术一般可以分为一体机实现方式和分体机实现方式。在一体机实现方式中,处理芯片设置在虚拟现实头盔和/或增强现实眼镜上以形成虚拟现实和/或增强现实一体机,该虚拟现实和/或增强现实一体机接收来自网络的游戏场景信息,根据自带的传感器完成头盔的空间定位,并由一体机实现空间场景的创建与图像渲染,然后将图像信息显示在LCD显示屏幕上。在分体机实现方式中,处理芯片作为分立部件设置在虚拟现实和/或增强现实设备外部的计算机或其他计算设备中。
然而,在虚拟现实和/或增强现实技术的分体机实现方式中,由于处理芯片作为分立部件设置在虚拟现实和/或增强现实设备外部的计算机或其他计算设备中,导致图像信息和其他数据信息在处理芯片与虚拟现实和/或增强现实设备之间的传输过程中可能出现带宽受限和较大延时,并且增加额外的硬件成本。
发明内容
为了解决或至少缓解以上问题中的一个或多个,提供了以下技术方案。
按照本发明的第一方面,提供一种基于虚拟现实的车载通信系统,所述系统包括:虚拟现实设备;以及车载处理模块,其配置成:响应于所述虚拟现实设备接入而经由第一通信路径从所述虚拟现实设备接收感测数据并且经由第二通 信路径将显示图像数据发送至所述虚拟现实设备;以及响应于外部终端设备接入而经由所述第一通信路径或第三通信路径连接至所述外部终端设备。
根据本发明一实施例所述的基于虚拟现实的车载通信系统,其中所述车载处理模块、所述虚拟现实设备和所述外部终端设备之间经由所述第一通信路径、所述第二通信路径和所述第三通信路径中的一个或多个建立有线连接。
根据本发明一实施例或以上任一实施例的所述的基于虚拟现实的车载通信系统,其中所述感测数据包括由以下中的一个或多个传感器采集的数据:图像传感器、深度传感器、惯性测量单元、定位传感器、触摸传感器、眼动追踪传感器、近距离传感器、环境光传感器。
根据本发明一实施例或以上任一实施例的所述的基于虚拟现实的车载通信系统,其中所述车载处理模块进一步配置成:基于所述感测数据确定所述虚拟现实设备的空间位置信息;根据所述虚拟现实设备的空间位置信息生成虚拟现实空间;以及在所述虚拟现实空间中渲染图像以生成所述显示图像数据。
根据本发明一实施例或以上任一实施例的所述的基于虚拟现实的车载通信系统,其中所述车载处理模块进一步配置成将所述显示图像数据进行压缩处理以经由所述第二通信路径将压缩的显示图像数据发送至所述虚拟现实设备。
根据本发明一实施例或以上任一实施例的所述的基于虚拟现实的车载通信系统,其中所述车载处理模块还包括切换单元,所述切换单元配置成响应于用户输入而在所述第二通信路径和所述第三通信路径之间进行切换。
按照本发明的第二方面,提供一种基于虚拟现实的车载通信方法,其包括:在车载处理模块、虚拟现实设备和外部终端设备之间建立第一通信路径、第二通信路径和第三通信路径中的一个或多个;所述车载处理模块响应于所述虚拟现实设备接入而经由第一通信路径从所述虚拟现实设备接收感测数据并且经由第二通信路径将显示图像数据发送至所述虚拟现实设备;以及所述车载处理模块响应于所述外部终端设备接入而经由所述第一通信路径或第三通信路径连接至所述外部终端设备。
根据本发明一实施例所述的基于虚拟现实的车载通信方法,其中在所述车载处理模块、所述虚拟现实设备和所述外部终端设备之间建立的所述第一通信路径、所述第二通信路径和所述第三通信路径中的一个或多个包括有线连接。
根据本发明一实施例或以上任一实施例的所述的基于虚拟现实的车载通信方法,其中所述感测数据包括由以下中的一个或多个传感器采集的数据:图像传感器、深度传感器、惯性测量单元、定位传感器、触摸传感器、眼动追踪传感器、近距离传感器、环境光传感器。
根据本发明一实施例或以上任一实施例的所述的基于虚拟现实的车载通信方法,其中所述方法进一步包括由所述车载处理模块执行的以下步骤:基于所述感测数据确定所述虚拟现实设备的空间位置信息;根据所述虚拟现实设备的空间位置信息生成虚拟现实空间;以及在所述虚拟现实空间中渲染图像以生成所述显示图像数据。
根据本发明一实施例或以上任一实施例的所述的基于虚拟现实的车载通信方法,其中所述方法进一步包括由所述车载处理模块执行的以下步骤:将所述显示图像数据进行压缩处理以经由所述第二通信路径将压缩的显示图像数据发送至所述虚拟现实设备。
根据本发明一实施例或以上任一实施例的所述的基于虚拟现实的车载通信方法,其中所述方法进一步包括由所述车载处理模块执行的以下步骤:响应于用户输入而在所述第二通信路径和所述第三通信路径之间进行切换。
根据本发明的第三方面,提供一种计算机存储介质,所述计算机存储介质包括指令,所述指令在运行时执行根据本发明第二方面所述的基于虚拟现实的车载通信方法的步骤。
根据本发明的第四方面,提供一种车辆,所述车辆包括根据本发明第一方面所述的基于虚拟现实的车载通信系统。
根据本发明的一个或多个实施例的用于基于虚拟现实的车载通信的方案能够提高虚拟现实设备与车载处理模块之间的有效显示数据传输带宽并降低虚拟现实设备与车载处理模块之间的数据传输延迟,使得能够在虚拟现实设备上基本上同步地呈现高质量的显示图像数据,从而为用户带来更加沉浸式体验。另一方面,根据本发明的一个或多个实施例的用于基于虚拟现实的车载通信的方案能够利用单个通用串行总线接口来实现车辆与虚拟现实设备和外部终端设备之间的数据通信,从而节省了车内空间布局和额外的硬件接口成本。
附图说明
本发明的上述和/或其它方面和优点将通过以下结合附图的各个方面的描述变得更加清晰和更容易理解,附图中相同或相似的单元采用相同的标号表示。在所述附图中:
图1示出了按照本发明的一个或多个实施例的基于虚拟现实的车载通信系统的示意图。
图2示出了按照本发明的一个实施例的在车载处理模块和虚拟现实设备之间建立通信链路的示意图。
图3示出了按照本发明的一个实施例的在车载处理模块和外部终端设备之间建立通信链路的示意图。
图4示出了按照本发明的一个实施例的在车载处理模块和虚拟现实设备之间建立通信链路的示意图。
图5示出了按照本发明的一个或多个实施例的基于虚拟现实的车载通信方法的流程图。
具体实施方式
以下具体实施方式的描述本质上仅仅是示例性的,并且不旨在限制所公开的技术或所公开的技术的应用和用途。此外,不意图受在前述技术领域、背景技术或以下具体实施方式中呈现的任何明示或暗示的理论的约束。
在实施例的以下详细描述中,阐述了许多具体细节以便提供对所公开技术的更透彻理解。然而,对于本领域普通技术人员显而易见的是,可以在没有这些具体细节的情况下实践所公开的技术。在其他实例中,没有详细描述公知的特征,以避免不必要地使描述复杂化。
诸如“包含”和“包括”之类的用语表示除了具有在说明书中有直接和明确表述的单元和步骤以外,本发明的技术方案也不排除具有未被直接或明确表述的其它单元和步骤的情形。诸如“第一”和“第二”之类的用语并不表示单元在时间、空间、大小等方面的顺序而仅仅是作区分各单元之用。
在下文中,将参考附图详细地描述根据本发明的各示例性实施例。
图1示出了按照本发明的一个或多个实施例的基于虚拟现实的车载通信系统的示意图。
如图1中所示,基于虚拟现实的车载通信系统100包括车载处理模块110 和虚拟现实设备120,其中经由第一通信路径和第二通信路径在车载处理模块110和虚拟现实设备120之间建立通信连接,以进行数据传输。可选地,车载通信系统100还可以经由第三通信路径或第一通信路径与外部终端设备130建立通信连接,以进行数据传输。示例性地,外部终端设备130可以包括但不限于智能手机、平板电脑、电子书阅读器、智能手表、智能手环、膝上型便携计算机以及其他集成有通用串行总线接口的设备等。示例性地,车载处理模块110可以通过车载计算机中央计算平台来实现,其上集成有系统级芯片(System on a Chip,SOC),以用于计算虚拟现实设备120的空间位置信息,生成虚拟现实空间,并执行图像渲染操作。
图1中所示的基于虚拟现实的车载通信系统100能够实现应用于车辆中的虚拟现实设备的分体式设计,通过将执行处理与计算功能的部件(例如,SOC芯片)部署到车载处理模块110上,减小了虚拟现实设备120的体积和重量,同时降低了虚拟现实设备120的成本与功耗,便于用户长时间穿戴,提升用户体验。
可选地,车载处理模块110可以配置成响应于虚拟现实设备120接入而经由第一通信路径从虚拟现实设备120接收感测数据并且经由第二通信路径将显示图像数据发送至虚拟现实设备120,以及响应于外部终端设备130接入而经由第一通信路径或第三通信路径连接至外部终端设备130。需要说明的是,第一通信路径和第二通信路径配合使用来分别传输感测数据和显示图像数据,以支持虚拟现实设备120的操作;第一通信路径和第三通信路径基于外部终端设备130的类型而选择性地使用,以支持外部终端设备130的接入。
可选地,车载处理模块110可以配置成基于经由第一通信路径从虚拟现实设备120接收的感测数据确定虚拟现实设备120的空间位置信息,根据虚拟现实设备120的空间位置信息生成虚拟现实空间,以及在虚拟现实空间中渲染图像以生成显示图像数据并将生成的显示图像数据经由第二通信路径发送至虚拟现实设备120,以供虚拟现实设备120进行显示。示例性地,感测数据可以包括由以下中的一个或多个传感器采集的数据:图像传感器、深度传感器、惯性测量单元(如陀螺仪、磁力计)、定位传感器、触摸传感器、眼动追踪传感器、近距离传感器、环境光传感器。可选地,车载处理模块110可以配置成将显示图像数据进行压缩处理并经由第二通信路径将压缩的显示图像数据发送至虚拟现实设备120。 示例性地,车载处理模块110可以配置成利用影像压缩传输(Display Stream Compression,DSC)将显示图像数据进行压缩处理。通过将显示图像数据进行压缩处理后进行传输,能够利用较低带宽传输较高分辨率的显示图像数据,并且虚拟现实设备120能够解压缩该压缩的显示图像数据并且以较低延迟在视觉上无失真地显示解压缩的显示图像数据。
在一个实施例中,车载处理模块110可以配置成使用同时定位和建图(Simultaneous Localization and Mapping,SLAM)算法,利用经由第一通信路径从虚拟现实设备120接收的感测数据来周期性地确定虚拟现实设备120相对于现实世界场景的当前姿势和位置。示例性地,当前姿势和位置可以通过包括位置信息和姿态信息6自由度(Six Degrees ofFreedom,6DOF)信息来表示。位置信息可以利用3D坐标(x,y,z)来表示,其中x坐标表示横向位置tx,y坐标表示竖直位置ty,z坐标表示纵向位置tz。此外,姿态信息可以利用旋转坐标俯仰角(pitch)、偏航角(yaw)、横滚角(roll)表示。
可选地,车载处理模块110还可以包括切换单元(图1中未示出),该切换单元配置成响应于用户输入而在第二通信路径和第三通信路径之间进行切换。
可选地,车载处理模块110、虚拟现实设备120和外部终端设备130之间经由第一通信路径、第二通信路径和第三通信路径中的一个或多个建立有线连接。可选地,车载处理模块110、虚拟现实设备120和外部终端设备130之间的第一通信路径、第二通信路径和第三通信路径中的一个或多个可以基于单个通用串行总线(Universal Serial Bus,USB)接口来实现。
在一个实施例中,第一通信路径可以基于USB2.0来实现,第二通信路径可以基于显示端口(Display Port,DP)或者基于移动行业处理器接口(Mobile Industry Processor Interface,MIPI)的显示串行接口来实现,以及第三通信路径可以基于USB3.2来实现。作为示例,如以下结合图2中所示,USB2.0和DP配合使用,经由USB2.0从虚拟现实设备120向车载处理模块110传输感测数据,以及经由DP将显示图像数据从车载处理模块110发送至虚拟现实设备120,以支持虚拟现实设备120的操作。作为示例,如以下结合图3中所示,USB2.0和USB3.2基于外部终端设备130的类型(例如,接口类型)而选择性地使用,以支持外部终端设备130的接入。通过向外部终端设备130提供USB2.0和USB3.2的选择使 用,提高了对不同类型的外部终端设备130的兼容性。示例性地,车载处理模块110可以利用USB-DP复用芯片来响应于用户选择而在USB3.2和DP之间进行切换。
在另一个实施例中,第一通信路径可以基于USB3.2来实现,第二通信路径可以基于DP或者基于MIPI的显示串行接口来实现,以及第三通信路径可以基于USB3.2来实现。作为示例,如以下结合图4中所示,USB3.2和DP配合使用,经由USB3.2从虚拟现实设备120向车载处理模块110传输感测数据,以及经由DP将显示图像数据从车载处理模块110发送至虚拟现实设备120,以支持虚拟现实设备120的操作。通过USB3.2和DP的配合使用来支持虚拟现实设备120的操作,可以进一步提高虚拟现实设备120的数据传输速率。
需要说明的是,以上描述的通过USB2.0、DP或者基于MIPI的显示串行接口和USB3.2来实现不同通信路径的实现方式仅是示例性的,在不脱离本发明的精神和范围的情况下,也可以使用其他类型的USB、显示数据传输接口或其他连接方式来实现车载处理模块110、虚拟现实设备120和外部终端设备130之间的有线连接。
根据本发明的一个或多个实施例的用于基于虚拟现实的车载通信系统能够提高虚拟现实设备与车载处理模块之间的有效显示数据传输带宽并降低虚拟现实设备与车载处理模块之间的数据传输延迟,使得能够在虚拟现实设备上基本上同步地呈现高质量的显示图像数据,从而为用户带来更加沉浸式体验。另一方面,根据本发明的一个或多个实施例的用于基于虚拟现实的车载通信的方案能够利用单个通用串行总线接口来实现车辆与虚拟现实设备和外部终端设备之间的数据通信,从而节省了车内空间布局和额外的硬件接口成本。
图2示出了按照本发明的一个实施例的在车载处理模块和虚拟现实设备之间建立通信链路的示意图。
如图2中所示,SOC芯片通过信号接口USB2.0和DP经由USB接口与虚拟现实设备连接。USB2.0和DP配合使用,SOC芯片经由USB2.0从虚拟现实设备接收感测数据,并且经由DP将显示图像数据发送至虚拟现实设备,以支持虚拟现实设备的操作。示例性地,USB接口可以实现为Type-C接口。示例性地,图2中示出了4通道的DP传输路径,并且可以将DSC应用于DP,以将显示图 像数据进行压缩处理并将压缩的显示图像数据发送至虚拟现实设备,从而能够支持高达90Gbps的显示图像数据传输带宽。
图3示出了按照本发明的一个实施例的在车载处理模块和外部终端设备之间建立通信链路的示意图。
如图3中所示,可以响应于用户选择而将通信路径从图2中所示的USB2.0和DP切换到USB2.0和USB3.2,USB2.0和USB3.2基于外部终端设备的类型(例如,接口类型)而选择性地使用,以支持外部终端设备的接入。示例性地,USB接口可以实现为Type-C接口。通过向外部终端设备提供USB2.0和USB3.2的选择使用,提高了对不同类型的外部终端设备的兼容性。作为示例,如图3中所示,可以通过USB3.2的TX管脚和RX管脚与外部终端设备进行数据传输。需要说明的是,当将通信路径从图2中所示的USB2.0和DP切换到USB2.0和USB3.2时,将不支持虚拟现实设备的接入。
结合以上图2和图3所述,可以在车载计算机中央计算平台设置一个符合Type-C标准的接口,其可以支持USB2.0和DP信号传输以实现虚拟现实设备的操作,或者支持USB3.2或USB2.0信号传输以实现外部终端设备的操作。需要说明的是,在同一时间段内,虚拟现实设备和外部终端设备不能同时操作。因此,可以通过管脚CC1和CC2来识别接入的设备是外部终端设备还是虚拟现实设备。
图4示出了按照本发明的一个实施例的在车载处理模块和虚拟现实设备之间建立通信链路的示意图。
如图4中所示,为了进一步提高虚拟现实设备的数据传输速率,将USB3.2和DP配合使用,SOC芯片经由USB3.2从虚拟现实设备接收感测数据,以及经由DP将显示图像数据发送至虚拟现实设备,以支持虚拟现实设备的操作。示例性地,图4中示出了4通道的DP传输路径,并且可以将DSC应用于DP,以将显示图像数据进行压缩处理并将压缩的显示图像数据发送至虚拟现实设备,从而能够支持高达90Gbps的显示图像数据传输带宽。
在图4所示的实施方式中,利用USB接口中的两对D+/D-信号线来传输USB3.2信号,以满足虚拟现实设备更高的传输速率要求。由于D+/D-信号线被占用,因此不支持基于USB2.0的外部终端设备的接入。如图4中所示,利用USB接口中的两对D+/D-信号线来传输USB3.2信号时,需要采用特殊的固定接口连 接方式而不支持标准的Type-C接口。由于信号阻抗的要求,USB3.2的TX1管脚连接到USB接口的一对D+/-(1)引脚,用于信号发送;USB3.2的RX1管脚连接到USB接口的另一对D+/-(2)引脚,用于信号接收。
图5示出了按照本发明的一个或多个实施例的基于虚拟现实的车载通信方法的流程图。
如图5中所示,按照本发明的一个或多个实施例的基于虚拟现实的车载通信方法包括如下步骤:
步骤S510:在车载处理模块、虚拟现实设备和外部终端设备之间建立第一通信路径、第二通信路径和第三通信路径中的一个或多个;
步骤S520:车载处理模块响应于虚拟现实设备接入而经由第一通信路径从虚拟现实设备接收感测数据并且经由第二通信路径将显示图像数据发送至虚拟现实设备;以及
步骤S530:车载处理模块响应于外部终端设备接入而经由第一通信路径或第三通信路径连接至外部终端设备。
示例性地,外部终端设备可以包括但不限于智能手机、平板电脑、电子书阅读器、智能手表、智能手环、膝上型便携计算机以及其他集成有通用串行总线接口的设备等。示例性地,车载处理模块可以通过车载计算机中央计算平台来实现,其上集成有系统级芯片(System on a Chip,SOC),以用于计算虚拟现实设备的空间位置信息,生成虚拟现实空间,并执行图像渲染操作。
图5中所示的基于虚拟现实的车载通信方法能够实现应用于车辆中的虚拟现实设备的分体式设计,通过将执行处理与计算功能的部件(例如,SOC芯片)部署到车载处理模块上,减小了虚拟现实设备的体积和重量,同时降低了虚拟现实设备的成本与功耗,便于用户长时间穿戴,提升用户体验。
需要说明的是,在步骤520中,第一通信路径和第二通信路径配合使用来分别传输感测数据和显示图像数据,以支持虚拟现实设备的操作;第一通信路径和第三通信路径基于外部终端设备的类型而选择性地使用,以支持外部终端设备的接入。
可选地,在步骤520中,可以基于经由第一通信路径从虚拟现实设备接收的感测数据确定虚拟现实设备的空间位置信息,根据虚拟现实设备的空间位置信 息生成虚拟现实空间,以及在虚拟现实空间中渲染图像以生成显示图像数据并将生成的显示图像数据经由第二通信路径发送至虚拟现实设备,以供虚拟现实设备进行显示。示例性地,感测数据可以包括由以下中的一个或多个传感器采集的数据:图像传感器、深度传感器、惯性测量单元(如陀螺仪、磁力计)、定位传感器、触摸传感器、眼动追踪传感器、近距离传感器、环境光传感器。可选地,在步骤520中,可以将显示图像数据进行压缩处理并经由第二通信路径将压缩的显示图像数据发送至虚拟现实设备。
在一个实施例中,在步骤520中,可以使用SLAM算法,利用经由第一通信路径从虚拟现实设备接收的感测数据来周期性地确定虚拟现实设备相对于现实世界场景的当前姿势和位置。
可选地,上述方法还可以包括响应于用户输入而在第二通信路径和第三通信路径之间进行切换。
可选地,车载处理模块、虚拟现实设备和外部终端设备之间经由第一通信路径、第二通信路径和第三通信路径中的一个或多个建立有线连接。可选地,车载处理模块、虚拟现实设备和外部终端设备之间的第一通信路径、第二通信路径和第三通信路径中的一个或多个可以基于单个USB接口来实现。
在一个实施例中,第一通信路径可以基于USB2.0来实现,第二通信路径可以基于DP或者基于MIPI的显示串行接口来实现,以及第三通信路径可以基于USB3.2来实现。作为示例,如以上结合图2中所示,USB2.0和DP配合使用,经由USB2.0从虚拟现实设备向车载处理模块传输感测数据,以及经由DP将显示图像数据从车载处理模块发送至虚拟现实设备,以支持虚拟现实设备的操作。作为示例,如以上结合图3中所示,USB2.0和USB3.2基于外部终端设备的类型(例如,接口类型)而选择性地使用,以支持外部终端设备的接入。通过向外部终端设备提供USB2.0和USB3.2的选择使用,提高了对不同类型的外部终端设备的兼容性。
在另一个实施例中,第一通信路径可以基于USB3.2来实现,第二通信路径可以基于DP或者基于MIPI的显示串行接口来实现,以及第三通信路径可以基于USB3.2来实现。作为示例,如以上结合图4中所示,USB3.2和DP配合使用,经由USB3.2从虚拟现实设备向车载处理模块传输感测数据,以及经由DP将显 示图像数据从车载处理模块发送至虚拟现实设备,以支持虚拟现实设备的操作。通过USB3.2和DP的配合使用来支持虚拟现实设备的操作,可以进一步提高虚拟现实设备的数据传输速率。
需要说明的是,以上描述的通过USB2.0、DP或者基于MIPI的显示串行接口和USB3.2来实现不同通信路径的实现方式仅是示例性的,在不脱离本发明的精神和范围的情况下,也可以使用其他类型的USB、显示数据传输接口或其他连接方式来实现车载处理模块、虚拟现实设备和外部终端设备之间的有线连接。
根据本发明的一个或多个实施例的用于基于虚拟现实的车载通信方法能够提高虚拟现实设备与车载处理模块之间的有效显示数据传输带宽并降低虚拟现实设备与车载处理模块之间的数据传输延迟,使得能够在虚拟现实设备上基本上同步地呈现高质量的显示图像数据,从而为用户带来更加沉浸式体验。另一方面,根据本发明的一个或多个实施例的用于基于虚拟现实的车载通信的方案能够利用单个通用串行总线接口来实现车辆与虚拟现实设备和外部终端设备之间的数据通信,从而节省了车内空间布局和额外的硬件接口成本。
另外,如上所述,本发明也可以被实施为一种计算机存储介质,在其中存储有用于使计算机执行按照本发明的一个方面的基于虚拟现实的车载通信方法的程序。
在此,作为计算机存储介质,能采用盘类(例如,磁盘、光盘等)、卡类(例如,存储卡、光卡等)、半导体存储器类(例如,只读存储器、非易失性存储器等)、带类(例如,磁带、盒式磁带等)等各种方式的计算机存储介质。
在可适用的情况下,可以使用硬件、软件或硬件和软件的组合来实现由本公开提供的各种实施例。而且,在可适用的情况下,在不脱离本公开的范围的情况下,本文中阐述的各种硬件部件和/或软件部件可以被组合成包括软件、硬件和/或两者的复合部件。在可适用的情况下,在不脱离本公开的范围的情况下,本文中阐述的各种硬件部件和/或软件部件可以被分成包括软件、硬件或两者的子部件。另外,在可适用的情况下,预期的是,软件部件可以被实现为硬件部件,以及反之亦然。
根据本公开的软件(诸如程序代码和/或数据)可以被存储在一个或多个计算机存储介质上。还预期的是,可以使用联网的和/或以其他方式的一个或多个通 用或专用计算机和/或计算机系统来实现本文中标识的软件。在可适用的情况下,本文中描述的各个步骤的顺序可以被改变、被组合成复合步骤和/或被分成子步骤以提供本文中描述的特征。
提供本文中提出的实施例和示例,以便最好地说明按照本发明及其特定应用的实施例,并且由此使本领域的技术人员能够实施和使用本发明。但是,本领域的技术人员将会知道,仅为了便于说明和举例而提供以上描述和示例。所提出的描述不是意在涵盖本发明的各个方面或者将本发明局限于所公开的精确形式。

Claims (14)

  1. 一种基于虚拟现实的车载通信系统,其特征在于,所述系统包括:
    虚拟现实设备;以及
    车载处理模块,其配置成:
    响应于所述虚拟现实设备接入而经由第一通信路径从所述虚拟现实设备接收感测数据并且经由第二通信路径将显示图像数据发送至所述虚拟现实设备;以及
    响应于外部终端设备接入而经由所述第一通信路径或第三通信路径连接至所述外部终端设备。
  2. 根据权利要求1所述的系统,其中所述车载处理模块、所述虚拟现实设备和所述外部终端设备之间经由所述第一通信路径、所述第二通信路径和所述第三通信路径中的一个或多个建立有线连接。
  3. 根据权利要求1所述的系统,其中所述感测数据包括由以下中的一个或多个传感器采集的数据:图像传感器、深度传感器、惯性测量单元、定位传感器、触摸传感器、眼动追踪传感器、近距离传感器、环境光传感器。
  4. 根据权利要求1所述的系统,其中所述车载处理模块进一步配置成:
    基于所述感测数据确定所述虚拟现实设备的空间位置信息;
    根据所述虚拟现实设备的空间位置信息生成虚拟现实空间;以及
    在所述虚拟现实空间中渲染图像以生成所述显示图像数据。
  5. 根据权利要求1所述的系统,其中所述车载处理模块进一步配置成将所述显示图像数据进行压缩处理以经由所述第二通信路径将压缩的显示图像数据发送至所述虚拟现实设备。
  6. 根据权利要求1所述的系统,其中所述车载处理模块还包括切换单元,所述切换单元配置成响应于用户输入而在所述第二通信路径和所述第三通信路径之间进行切换。
  7. 一种基于虚拟现实的车载通信方法,其特征在于,所述方法包括:
    在车载处理模块、虚拟现实设备和外部终端设备之间建立第一通信路径、第二通 信路径和第三通信路径中的一个或多个;
    所述车载处理模块响应于所述虚拟现实设备接入而经由第一通信路径从所述虚拟现实设备接收感测数据并且经由第二通信路径将显示图像数据发送至所述虚拟现实设备;以及
    所述车载处理模块响应于所述外部终端设备接入而经由所述第一通信路径或第三通信路径连接至所述外部终端设备。
  8. 根据权利要求7所述的方法,其中在所述车载处理模块、所述虚拟现实设备和所述外部终端设备之间建立的所述第一通信路径、所述第二通信路径和所述第三通信路径中的一个或多个包括有线连接。
  9. 根据权利要求7所述的方法,其中所述感测数据包括由以下中的一个或多个传感器采集的数据:图像传感器、深度传感器、惯性测量单元、定位传感器、触摸传感器、眼动追踪传感器、近距离传感器、环境光传感器。
  10. 根据权利要求7所述的方法,其中所述方法进一步包括由所述车载处理模块执行的以下步骤:
    基于所述感测数据确定所述虚拟现实设备的空间位置信息;
    根据所述虚拟现实设备的空间位置信息生成虚拟现实空间;以及
    在所述虚拟现实空间中渲染图像以生成所述显示图像数据。
  11. 根据权利要求7所述的方法,其中所述方法进一步包括由所述车载处理模块执行的以下步骤:
    将所述显示图像数据进行压缩处理以经由所述第二通信路径将压缩的显示图像数据发送至所述虚拟现实设备。
  12. 根据权利要求7所述的方法,其中所述方法进一步包括由所述车载处理模块执行的以下步骤:
    响应于用户输入而在所述第二通信路径和所述第三通信路径之间进行切换。
  13. 一种计算机存储介质,其特征在于,所述计算机存储介质包括指令,所述指令在运行时执行根据权利要求7至12中任一项所述的基于虚拟现实的车载通信方法。
  14. 一种车辆,其特征在于,包括权利要求1至6中任一项所述的基于虚拟现实的车载通信系统。
PCT/CN2023/095242 2022-05-25 2023-05-19 基于虚拟现实的车载通信系统及车载通信方法 WO2023226888A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210574759.5 2022-05-25
CN202210574759.5A CN115086918A (zh) 2022-05-25 2022-05-25 基于虚拟现实的车载通信系统及车载通信方法

Publications (1)

Publication Number Publication Date
WO2023226888A1 true WO2023226888A1 (zh) 2023-11-30

Family

ID=83248841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095242 WO2023226888A1 (zh) 2022-05-25 2023-05-19 基于虚拟现实的车载通信系统及车载通信方法

Country Status (2)

Country Link
CN (1) CN115086918A (zh)
WO (1) WO2023226888A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115086918A (zh) * 2022-05-25 2022-09-20 蔚来汽车科技(安徽)有限公司 基于虚拟现实的车载通信系统及车载通信方法
CN115607955A (zh) * 2022-10-13 2023-01-17 蔚来汽车科技(安徽)有限公司 车机系统、用于实现扩展显示的方法和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150097863A1 (en) * 2013-10-03 2015-04-09 Honda Motor Co., Ltd. System and method for dynamic in-vehicle virtual reality
CN106096502A (zh) * 2016-05-27 2016-11-09 大连楼兰科技股份有限公司 车联网虚拟现实全景回放系统及方法
CN106412810A (zh) * 2016-11-23 2017-02-15 北京小米移动软件有限公司 数据传输方法及装置
CN109032353A (zh) * 2018-07-20 2018-12-18 爱驰汽车有限公司 基于车载终端的车内虚拟现实体验方法及系统、车载终端
CN114461070A (zh) * 2022-02-09 2022-05-10 蔚来汽车科技(安徽)有限公司 用于实现车载虚拟现实的系统、方法和车辆
CN115086918A (zh) * 2022-05-25 2022-09-20 蔚来汽车科技(安徽)有限公司 基于虚拟现实的车载通信系统及车载通信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150097863A1 (en) * 2013-10-03 2015-04-09 Honda Motor Co., Ltd. System and method for dynamic in-vehicle virtual reality
CN106096502A (zh) * 2016-05-27 2016-11-09 大连楼兰科技股份有限公司 车联网虚拟现实全景回放系统及方法
CN106412810A (zh) * 2016-11-23 2017-02-15 北京小米移动软件有限公司 数据传输方法及装置
CN109032353A (zh) * 2018-07-20 2018-12-18 爱驰汽车有限公司 基于车载终端的车内虚拟现实体验方法及系统、车载终端
CN114461070A (zh) * 2022-02-09 2022-05-10 蔚来汽车科技(安徽)有限公司 用于实现车载虚拟现实的系统、方法和车辆
CN115086918A (zh) * 2022-05-25 2022-09-20 蔚来汽车科技(安徽)有限公司 基于虚拟现实的车载通信系统及车载通信方法

Also Published As

Publication number Publication date
CN115086918A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2023226888A1 (zh) 基于虚拟现实的车载通信系统及车载通信方法
JP4841545B2 (ja) ブリッジコントローラを用いないポイントツーポイントバスブリッジング
US10950205B2 (en) Electronic device, augmented reality device for providing augmented reality service, and method of operating same
US11340676B2 (en) Method of identifying external electronic device based on power information and electronic device and storage medium for supporting same
US20140379952A1 (en) Tablet electronic device
EP3570144A1 (en) Electronic device for providing vr/ar content
US20200201515A1 (en) Method and electronic device for controlling augmented reality device
US11463486B2 (en) Electronic device and method for providing information in virtual reality
US11263160B2 (en) Apparatus and method for performing data transmission with docking device by using USB interface
CN114616536A (zh) 使用超帧传送表面数据的人工现实系统
CN111788819B (zh) 根据输入装置向应用转发用户输入的移动电子装置和方法
US11392523B2 (en) Electronic device and operation method of electronic device
EP3508951B1 (en) Electronic device for controlling image display based on scroll input
US11308474B1 (en) Smart node to node payment systems
US11216165B2 (en) Content processing method and electronic device for supporting same
KR20200144702A (ko) 증강 현실 미디어 콘텐츠의 적응적 스트리밍 시스템 및 적응적 스트리밍 방법
KR100453071B1 (ko) 프로세서 버스 연결 장치 및 방법
KR102422201B1 (ko) 전자 장치, 아답터 장치 및 그 영상 데이터 처리 방법
CN116711302A (zh) 以低时延发送多条应用数据的方法和装置
US11538438B2 (en) Electronic device and method for extending time interval during which upscaling is performed on basis of horizontal synchronization signal
US11164388B2 (en) Electronic device and method for providing augmented reality object therefor
CN110032253A (zh) 电子设备和显示装置
CN111064985A (zh) 一种实现视频串流的系统、方法及装置
CN114168096B (zh) 输出画面的显示方法、系统、移动终端以及存储介质
US20230403389A1 (en) Electronic device for providing ar/vr environment, and operation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810959

Country of ref document: EP

Kind code of ref document: A1