WO2023226610A1 - 一种相干阵激光器结构及制备方法 - Google Patents

一种相干阵激光器结构及制备方法 Download PDF

Info

Publication number
WO2023226610A1
WO2023226610A1 PCT/CN2023/087989 CN2023087989W WO2023226610A1 WO 2023226610 A1 WO2023226610 A1 WO 2023226610A1 CN 2023087989 W CN2023087989 W CN 2023087989W WO 2023226610 A1 WO2023226610 A1 WO 2023226610A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
array
mode selection
resonant cavity
reflection
Prior art date
Application number
PCT/CN2023/087989
Other languages
English (en)
French (fr)
Inventor
王智勇
代京京
兰天
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210580770.2A external-priority patent/CN115000809A/zh
Priority claimed from CN202210815503.9A external-priority patent/CN115173202A/zh
Priority claimed from CN202210806592.0A external-priority patent/CN115189212A/zh
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2023226610A1 publication Critical patent/WO2023226610A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities

Definitions

  • thin-disk lasers allow very high pump power densities without causing too high a temperature rise within the crystal; under the action of a longitudinally pumped flat-top pump beam, this structure can produce a laser beam perpendicular to the disc surface, almost The uniform axial one-dimensional heat flow can reduce the thermal lens effect, effectively remove the heat deposition of the gain medium, and maintain high efficiency and high beam quality while obtaining high-power laser output.
  • Thin-sheet lasers are a type of potential high-power laser source. Due to the various advantages mentioned above, they are widely used in technical fields such as material microprocessing, optical information storage, holographic laser ranging, and guidance.
  • the frequency interval between the two longitudinal modes in the cavity increases and exceeds the gain bandwidth. That is, within the width of the fluorescence spectrum line, only one longitudinal mode exists, so it is easy to obtain a single longitudinal mode.
  • Laser oscillation Although the existing LD multi-pass pumped thin-disk lasers can improve the output beam quality and output power, they suffer from insufficient pump light utilization, insufficient uniform distribution of pump light on the gain medium, and the output beam quality needs to be improved. It has shortcomings such as reaching the near diffraction limit, complex laser structure, and high cost.
  • VESCL vertical cavity surface emitting laser
  • edge-emitting semiconductor lasers vertical-cavity surface-emitting lasers have beam
  • the advantages of good quality, low threshold current, single longitudinal mode operation, easy two-dimensional array integration and low manufacturing cost have attracted widespread attention. It has huge application markets in solid-state laser pumping, medical treatment, optical communications and other fields. For m laser beams with close positions and the same light intensity, the greater the light intensity obtained after coherent overlap in the far field, the better.
  • the invention discloses a coherent array laser structure, which includes: an array light source, a first resonant cavity and a second resonant cavity;
  • a high reflection area and a low reflection area are provided on both sides of the active area of the array light source, and the high reflection area, the active area and the low reflection area constitute the first resonant cavity;
  • the light-emitting side of the low-reflection area is provided with a passive dielectric layer, a mode selection layer and a reflective layer in sequence, and the first resonant cavity, passive dielectric layer, mode selection layer and reflective layer constitute the second resonant cavity;
  • the array light source includes a plurality of pump light sources, a fiber combiner and an active fiber, the high reflection area is a high reflection grating, the low reflection area is a low reflection grating, and the non-reflective area is a low reflection grating.
  • An anti-reflection film is provided between the source dielectric layer and the mode selection layer;
  • the high-reflective grating and the low-reflective grating are respectively engraved on the two end faces of the active optical fiber, and the reflectivity provided by the high-reflective grating and the low-reflective grating does not meet the requirements of laser lasing conditions;
  • the active optical fiber is a single-clad optical fiber or a double-clad optical fiber, and the gain ions of the active optical fiber are one or more of rare earth ions and germanium ions; the active optical fiber is N gradient refractive index.
  • the core-expanded optical fiber is made into a densely arranged optical fiber array, and N is a natural number, greater than or equal to 2; the optical fiber array is arranged in a square array or a hexagonal array.
  • the passive dielectric layer, anti-reflection film, mode selection layer and reflective layer constitute an external cavity; the passive dielectric layer, anti-reflection film, mode selection layer and reflective layer are in conjunction with the active
  • the optical fiber end faces are arranged in parallel, and the external cavity provides the optical fiber array with an optical path that is an integral or fractional multiple of the Talbot distance;
  • the reflective layer and the high-reflective grating provide reflectivity conditions that meet the laser oscillation of the fiber laser;
  • the passive dielectric layer is a transparent dielectric sheet or an air external cavity
  • the mode selection layer is a light-transmitting dielectric layer having a periodically distributed micro-nano structure at a position corresponding to the core of the active optical fiber.
  • the refractive index of the material in the micro-nano structure of the micro-nano structure is different from the material outside the trench. refractive index.
  • the array light source includes a plurality of pump light sources, a pump coupling system and a sheet gain material, the high reflection area is a high reflection film, and the low reflection area is a low reflection film;
  • the pump light source injects pump light into the sheet gain material through the pump coupling system.
  • the front and rear end surfaces of the sheet gain material are respectively coated with the high reflective film and the low reflective film, and the high reflective film.
  • the membrane, the sheet gain material and the low reflection film constitute the first resonant cavity;
  • the output side of the low-reflective film is provided with the passive dielectric layer, the mode selection layer and the reflection layer in sequence, and the first resonant cavity, the passive dielectric layer, the mode selection layer and the reflection layer constitute the second resonant cavity. .
  • the pumping method of the pump light source is single-end pumping, double-end pumping or distributed lateral pumping, so The pump light generated by the pump light source is injected into the first resonant cavity in a multi-pass pumping manner through the pump coupling system;
  • the gain ions of the sheet gain material are one or more of rare earth ions and germanium ions.
  • the sheet gain material is composed of N gain medium arrays arranged periodically in one or two dimensions. N is a natural number, greater than or equal to 2;
  • the reflectivity provided by the high-reflection film and the low-reflection film cannot meet the laser lasing threshold condition.
  • the passive dielectric layer, mode selection layer and reflective layer constitute the Talbot external cavity structure, and the passive dielectric layer, mode selection layer and reflective layer are connected with the output end surface of the sheet gain material. parallel setting;
  • the passive dielectric layer is a transparent dielectric sheet or an air external cavity
  • the mode selection layer is a light-transmitting dielectric film layer with a periodically distributed micro-nano structure at a position corresponding to the sheet gain material.
  • the refractive index of the material in the micro-nano structure of the micro-nano structure is different from the refractive index of the material outside the trench, so
  • the arrangement period of the micro-nano structure is the same as the arrangement period of the sheet gain material;
  • the reflectivity provided by the reflective layer for the second resonant cavity satisfies the laser lasing threshold condition, so that laser output is generated in the second resonant cavity.
  • the array light source is a surface-emitting laser array, and the surface-emitting laser array includes a substrate layer, a first DBR layer, an active layer, and a second DBR layer; the first DBR layer is a total reflection distributed Bragg reflection layer, and the The second DBR layer is a partially reflective distributed Bragg reflection layer, and the first DBR layer, active layer, and second DBR layer constitute a first resonant cavity;
  • the external cavity of the surface-emitting laser array includes a light-passing dielectric layer and a mode selection layer that are sequentially arranged on the first resonant cavity.
  • the mode selection layer is coated with an external cavity reflection layer.
  • the external cavity is connected to the surface.
  • the laser light-emitting subunit array of the emitting laser constitutes a second resonant cavity;
  • the mode selection layer has a periodically arranged micro-nano structure corresponding to the light outlet position of the surface-emitting laser array, and the micro-nano structure is filled with materials having different refractive index from outside the trench.
  • the surface-emitting laser array is composed of one-dimensional or two-dimensional periodically arranged light-emitting units, and its light-emitting structure is a top-emitting or bottom-emitting structure; wherein, the top-emitting surface-emitting laser array includes a substrate layer and a first DBR layer arranged in sequence.
  • the light-transmitting dielectric layer is connected to the surface-emitting laser array through a bonding layer to form a wafer-level on-chip integration; or, it is set in space to form an external cavity structure with an air gap; or, it is rapidly deposited through CVD. Obtain the external cavity structure;
  • the mode selection layer is prepared on the light-transmitting dielectric layer through a chemical vapor deposition or bonding process.
  • On the base layer there are periodically arranged micro-nano microstructures corresponding to the light outlet positions of the surface-emitting laser array.
  • the structure, in which the trenches are filled with materials with a different refractive index than the base layer, enables the mode selection layer to screen out phase-identical modes from multi-order supermodes.
  • the invention also discloses a method for preparing a coherent array laser structure, which includes:
  • the external cavity reflective layer is plated after the mode selection layer.
  • the present invention uses a pump light source to pump the active optical fiber to generate array laser output.
  • the mode distribution of the array laser is changed, thereby achieving mode locking;
  • the second resonant cavity generates composite oscillation, thereby achieving efficient self-injection feedback;
  • single-mode optical fiber is used to fuse variable refractive index multi-mode optical fiber to make a core-expanded active optical fiber, which increases the duty cycle of the array unit;
  • the present invention can not only achieve the same phase Mode coherent laser output, and the structure is simple, and there is no need to build a complex mode selection system; self-injection locking caused by the second resonant cavity It is possible to obtain beam quality near the diffraction limit; and by increasing the duty cycle through core-expanded active fiber arrays, high-power and high-energy-density laser output can be achieved;
  • the periodically distributed light beam emitted from the first resonant cavity of the surface-emitting laser array of the present invention selects supermodes of each order through the mode selection layer of the external cavity to obtain the mode light field with the same phase, and then uses the high feedback effect of the external cavity reflective layer to achieve High-efficiency light self-injection generates laser oscillation in the second resonant cavity; the present invention can achieve optical mode locking through high-efficiency light self-injection, and finally obtain densely arranged coherent array laser output through an on-chip integration process.
  • Figure 2a is a schematic structural diagram of a hexagonally arranged active optical fiber in Embodiment 1 of the present invention.
  • Figure 2b is a schematic structural diagram of a square arrangement of active optical fibers in Embodiment 1 of the present invention.
  • Figure 3a is a schematic diagram of the active optical fiber core expansion structure in Embodiment 1 of the present invention.
  • Figure 3b is a schematic diagram of the active optical fiber core expansion structure in Embodiment 1 of the present invention.
  • Figure 4 is a schematic diagram of the structure of a coherent array thin-film solid-state laser according to Embodiment 2 of the present invention.
  • Figure 5a is a schematic structural diagram of a square-arranged sheet gain material in Embodiment 2 of the present invention.
  • Figure 5b is a schematic structural diagram of a hexagonally arranged sheet gain material in Embodiment 2 of the present invention.
  • Figure 8a is a schematic structural diagram of a quadrilateral surface-emitting laser array according to Embodiment 3 of the present invention.
  • Figure 8b is a schematic structural diagram of a hexagonal surface-emitting laser array according to Embodiment 3 of the present invention.
  • Figure 8c is a schematic structural diagram of a rectangular surface emitting laser array according to Embodiment 3 of the present invention.
  • Figure 8e is a schematic structural diagram of a two-dimensional Bar surface emitting laser array according to Embodiment 3 of the present invention.
  • Figure 9 is a schematic structural diagram of the mode selection layer in Embodiment 3 of the present invention.
  • Figure 10 is a flow chart of a method for manufacturing a coherent array emitting laser according to Embodiment 3 of the present invention.
  • a single-mode optical fiber with a core diameter of 20 ⁇ m and a cladding diameter of 400 ⁇ m is thermally expanded for the first time to obtain an optical fiber with a core diameter of 50 ⁇ m and a cladding diameter of 400 ⁇ m.
  • a core diameter of 100 ⁇ m is obtained.
  • a fiber with a cladding diameter of 400 ⁇ m and then undergo the third core expansion to finally obtain an optical fiber with a core diameter of 300 ⁇ m and a cladding diameter of 400 ⁇ m.
  • Multiple core-expanded fibers are tapered into a tightly arranged fiber array.
  • a passive dielectric layer 6 is bonded behind the low-reflective grating 5.
  • the present invention provides a square coherent array thin fiber laser structure, including: a high reflective film 1, a thin sheet gain material 2, a low reflective film 3, a passive dielectric layer 4, a mode selection layer 5, Reflective layer 6, pump light source 7, pump coupling system 8; among which:
  • the present invention provides a hexagonal coherent array thin-film solid laser structure, including: a high-reflective film 1, a thin-film gain material 2, a low-reflective film 3, a passive dielectric layer 4, and a mode selection layer. 5.
  • the passive dielectric layer 4 can be a thin glass plate, an air cavity or other light-transmitting materials; a mode selection layer 5 as shown in Figure 6 is provided behind the passive dielectric layer 4. , the mode selection layer 5 can adopt a periodically arranged micro-nano structure etched on the Si 3 N 4 film.
  • the arrangement period of the micro-nano structure is the same as the arrangement period of the columnar gain material.
  • the micro-nano structure is filled with materials such as SiO 2 whose refractive index is different from the Si 3 N 4 thin film, the surface of the mode selection layer 5 is polished, and a high reflective layer 6 is plated on its surface.
  • the reflective layer 6 provides The reflectivity satisfies the laser oscillation conditions.
  • the pump light output by the pump light source 7 is coupled into the first resonant cavity through the pump coupling system 8 to excite the gain material particle number inversion in the sheet gain material 2.
  • the first resonant cavity uses a high-reflective film 1 and low-reflective film 3 serve as resonant cavity mirrors, and the reflectivity provided by low-reflective film 3 cannot meet laser lasing conditions.
  • the light beam output from the first resonant cavity passes through the passive dielectric layer 4 to form a Talbot sub-image or a Talbot self-reproducing image.
  • the multi-order supermode of the array beam is mode selected to screen out modes with the same phase.
  • the light beam returned to the first resonant cavity exhibits a Talbot self-reproducing image and is injected into the sheet gain material 2 to form light injection locking and generate laser lasing in the second resonant cavity.
  • the invention provides a coherent array surface-emitting semiconductor laser structure and a preparation method thereof.
  • An external cavity is provided behind the light-emitting surface of the laser light-emitting subunit array of the surface-emitting semiconductor laser.
  • the first DBR layer and active layer of the surface-emitting semiconductor laser array are layer and the second DBR layer constitute the first resonant cavity;
  • the external cavity includes a light-passing medium layer and a mode selection layer that are sequentially arranged on the first resonant cavity.
  • the mode selection layer is coated with an external cavity reflection layer, and the external cavity is connected to the surface emission layer.
  • the laser light-emitting sub-unit array of the laser constitutes the second resonant cavity;
  • the mode selection layer is provided with a micro-nano structure corresponding to the light outlet position of the surface-emitting laser array, and the micro-nano structure is filled with materials with different refractive index from the outer substrate of the trench; surface-emitting
  • the laser light-emitting subunit array of the semiconductor laser generates a periodically distributed light field.
  • the multi-order super-mode laser output from the surface-emitting laser array is pattern filtered to obtain a densely arranged coherent output laser beam with the same phase mode. .
  • the mode selection layer 4 of the present invention performs mode modulation on each order supermode of the output beam; the modes with the same phase are screened out, and the beam is reflected back to the first resonant cavity through the external cavity reflection layer 5, presenting a Talbot self-reproducing image, and is injected into the entrance surface
  • laser lasing is generated by locking in the second resonant cavity through light injection.
  • the mode selection layer 4 of the present invention performs mode modulation on each order supermode of the output beam; the mode with the same phase is screened out, and the beam is reflected back to the first resonant cavity through the external cavity reflection layer 5, presenting a Talbot self-reproducing image, and is injected into the incoming surface for emission In the light-emitting unit of the laser array, laser lasing is generated by locking in the second resonant cavity through light injection.
  • the output end of the second DBR layer of the surface-emitting laser array 1 is provided with a light-transmitting medium layer 3 , and the output end of the light-transmitting medium layer 3 is provided with a mode selection layer 4 .
  • an air gap is used between the transparent medium layer 3 and the surface-emitting laser array 1 to form an external cavity structure; in order to increase the reflectivity of the external cavity output end, the present invention is coated with an external cavity reflective layer 5 after the mode selection layer 4.
  • the mode selection layer 4 of the present invention performs mode modulation on each order supermode of the output beam; the mode with the same phase is screened out, and the beam is reflected back to the first resonant cavity through the external cavity reflection layer 5, presenting a Talbot self-reproducing image, and is injected into the incoming surface for emission In the light-emitting unit of the laser array, laser lasing is generated by locking in the second resonant cavity through light injection.
  • the surface-emitting laser array 1 of this embodiment is a rectangular top-emitting surface-emitting laser array as shown in Figure 8d.
  • the surface-emitting laser substrate is the first DBR layer, which consists of Divided into Al Al x Ga 1-x As, providing a reflectivity of less than 99.5%; the substrate layer is thinned, a different-surface electrode is prepared by evaporating metal, and the laser is output from the top electrode side.
  • the reflectivity of the cavity reflective layer 5 is above 50%; in order to reduce the loss in the resonant cavity, the transparent medium layer 3, the mode selection layer 4 and the external cavity reflective layer 5 are arranged parallel to the light exit surface of the surface-emitting laser array 1 in the present invention ;Furthermore, a heat dissipation structure can be provided under the substrate layer of the surface-emitting laser array 1.
  • the light-transmitting medium layer 3 of this embodiment is used to transmit the light beam emitted from the surface-emitting laser array and obtain the diffraction light field distribution, thereby forming the Talbot sub-image.
  • the mode selection layer 4 of the present invention is a light-transmissive dielectric layer with grooves. By depositing a certain thickness of transmissive infrared light material as a substrate and etching periodically arranged micro-nano structures therein, the micro-nano structure is formed on the micro-nano structure. Nanostructures are filled with materials that have a different refractive index than the substrate.
  • the mode selection layer 4 of the present invention performs mode modulation on each order supermode of the output beam; the modes with the same phase are screened out, and the beam is reflected back to the first resonant cavity through the external cavity reflection layer 5, presenting a Talbot self-reproducing image, and is injected into the entrance surface
  • laser lasing is generated by locking in the second resonant cavity through light injection.
  • the present invention provides a two-dimensional Bar coherent array surface emitting laser structure and preparation method, including: surface emitting laser array 1, light-transmitting dielectric layer 3, mode selection layer 4 and external cavity reflection Layer 5; where:
  • the output end of the surface-emitting laser array 1 is provided with a transparent medium layer 3, and the output end of the transparent medium layer 3 There is a mode selection layer 4.
  • an epitaxial layer is used as the external cavity structure between the light-transmitting dielectric layer 3 and the surface-emitting laser array 1; in order to increase the reflectivity of the external cavity output end, the present invention is coated with an external cavity reflective layer 5 after the mode selection layer 4.
  • the reflectivity of the cavity reflective layer 5 is above 50%; a cylindrical collimating mirror is provided behind the external cavity reflective layer 5 to collimate the output beam.
  • the transparent medium layer 3, the mode selection layer 4 and the external cavity reflection layer 5 are arranged parallel to the light exit surface of the surface emitting laser array 1 in the present invention.
  • the light-transmitting medium layer 3 of this embodiment is used to transmit the light beam emitted from the surface-emitting laser array and obtain the diffraction light field distribution, thereby forming the Talbot sub-image.
  • the mode selection layer 4 of the present invention is a light-transmissive dielectric layer with grooves. By depositing a certain thickness of transmissive infrared light material as a substrate and etching periodically arranged micro-nano structures therein, the micro-nano structure is formed on the micro-nano structure. Nanostructures are filled with materials that have a different refractive index than the substrate.
  • the mode selection layer 4 of the present invention performs mode modulation on each order supermode of the output beam; the modes with the same phase are screened out, and the beam is reflected back to the first resonant cavity through the external cavity reflection layer 5, presenting a Talbot self-reproducing image, and is injected into the entrance surface
  • laser lasing is generated by locking in the second resonant cavity through light injection.
  • the present invention provides a method for preparing the above-mentioned top-emitting coherent array surface-emitting laser, which includes:
  • top-emitting surface-emitting lasers Arrange more than 4 units of top-emitting surface-emitting lasers into a quadrilateral array as shown in Figure 8a, a hexagonal array as shown in Figure 8b, a rectangular array as shown in Figure 8c, or a one-dimensional array as shown in Figure 8d,
  • the distance between the light-emitting units of the surface-emitting laser is 5 to 1000 ⁇ m, and the device is manufactured.
  • the bottom vacuum is first drawn to reach 10-7Torr, then part of N 2 is introduced, and the surface of the substrate is preheated, and then SiH 4 and N 2 O are introduced in proportion at 300 degrees for reaction. After the deposition is completed, the generated SiO 2 falls on the surface of the device, and N 2 is introduced to ensure that there is no SiH 4 residue in the pipe.
  • a strong electrostatic field is applied between the bonding layer 2 and the outer cavity 3.
  • the bonding layer 2 is connected to the anode, and the outer cavity 3 is connected to the cathode.
  • the Na ions in the glass move toward the cathode under the action of the electric field. migrate, and The cathode is neutralized, while the fixed bound negative ions in the outer cavity 3 remain motionless, and a layer of space positive charge area is induced on the surface of the bonding layer 2, causing the two bonded surfaces to be pressed together;
  • the bonding layer 2 and the outer cavity 3 are indirectly bonded with glue such as resin or castor oil;
  • the surfaces of the bonding layer 2 and the outer cavity 3 are cleaned, activated, and hydrophilic pretreated, then bonded at room temperature, and then annealed at a high temperature of about 450°C to reach the final bonding strength.
  • the specific process is: coating photoresist on the surface of clean silicon dioxide, after soft baking, aligned exposure, development, and hard baking, using wet method (mixing of hydrofluoric acid and water or ammonium fluoride and water) or dry method.
  • the silicon dioxide is etched using the method (planar plasma) to obtain the required micro-nano structure, and the silicon nitride material is filled in the micro-nano structure to form a mode selection layer.
  • CVD chemical vapor deposition
  • a gold-tin electrode is prefabricated on the surface of the ceramic substrate.
  • the prepared surface-emitting laser chip is welded to the gold-tin electrode by flip-chip welding.
  • the ceramic substrate is fixed on the water-cooled radiator to complete the package.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

一种相干阵激光器结构及制备方法,包括:阵列光源、第一谐振腔和第二谐振腔;阵列光源的有源区的两侧设有高反射区和低反射区,高反射区、有源区和低反射区构成第一谐振腔;低反射区的出光侧依次设有无源介质层(6)、模式选择层(8)和反射层(9),第一谐振腔、无源介质层(6)、模式选择层(8)和反射层(9)构成第二谐振腔;模式选择层(8),用于实现并联相干,通过第二谐振腔形成相干激光。通过调控无源介质层(6)结构的长度和模式选择层(8)结构中微纳图形的结构改变阵列激光的模式分布,进而实现相位相同的模式锁定,通过第二谐振腔产生复合振荡,从而实现高效自注入反馈。

Description

一种相干阵激光器结构及制备方法 技术领域
本发明涉及激光器技术领域,具体涉及一种相干阵激光器结构及制备方法。
背景技术
近年来,光纤激光器因具有光束质量好、电光效率高、散热特性好、结构紧凑、可靠性好等优势而备受关注,并在很多领域得到广泛应用,如光纤通讯、激光加工、军事国防以及激光医疗等领域。随着工业应用对效率越来越高的要求,获得高光束质量、高功率的光纤激光器成为迫切需求。然而,受限于光纤本身的热效应、非线性效应、泵浦技术、模式不稳定等因素,单路光纤激光器输出功率存在极限。现有技术中,通过多光路主动锁相相干合成技术,在克服单路光纤激光器输出功率极限的基础上,能够实现更高功率的激光输出,主动锁相相干合成技术多采用外差法随机并行梯度下降法、频域多抖动法等技术,整个系统设备数量以及连接复杂度急剧增加,难以调节。
薄片激光器优点在于允许非常高的泵浦功率密度,但在晶体内不会有太高的温升;在纵向泵浦的平顶泵浦光束作用下这种结构可以产生垂直于圆盘表面、几乎均匀的轴向一维热流,因而可以减小热透镜效应,能有效去除增益介质的热沉积,在获得高功率激光输出同时,保持高效率和高光束质量。薄片激光器是一类有潜力的高功率激光源,由于以上所述的各种优势在材料微加工、光信息的储存、全息激光测距、制导等技术领域应用广泛。由于薄片激光器晶体薄、腔长短,这就使得腔内两个纵模的频率间隔增大,进而超过增益带宽,即在荧光谱线的宽度内,只有一个纵模存在,故而容易获得单纵模激光振荡。虽然现在已有的LD多通抽运薄片激光器,可以提高输出光束质量和输出功率,但它们分别存在泵浦光利用率不够高、泵浦光在增益介质上分布不够均匀、输出光束质量有待提高到近衍射极限、激光器结构复杂、成本高等缺点。
垂直腔面发射激光器(VESCL)是一种半导体激光器,其激光垂直于顶面射出。与传统的边发射半导体激光器相比,垂直腔面发射激光器具有光束 质量好、阈值电流低、单纵模工作、易于二维列阵集成和制造成本低廉等优点,引起了人们的广泛关注。其在固体激光泵浦、医疗、光通讯等领域有着巨大的应用市场。对于m个位置接近、光强相同的激光束,其在远场的相干重叠后得到的光强越大越好。若上述激光束互不相干,则其在远场的叠加光强是单激光束光强的m倍;若上述激光束相互相干,则其在远场的叠加光强为单激光束光强的m2倍,激光器的输出可以大大增强;因此,设计激光相干的面发射激光器以及其外腔结构等具有一定意义。现有技术中,实现面发射激光器阵列的相干输出有许多方法,例如:使用利用偏转外腔等设计均可实现模式的选择;虽然上述设计有相应的优点,但其会增大损耗导致增益阈值提高,这会对输出光强造成一定的影响。
发明内容
针对现有技术中存在的上述问题,本发明提供一种相干阵激光器结构及制备方法。
本发明公开了一种相干阵激光器结构,包括:阵列光源、第一谐振腔和第二谐振腔;
所述阵列光源的有源区的两侧设有高反射区和低反射区,所述高反射区、有源区和低反射区构成所述第一谐振腔;
所述低反射区的出光侧依次设有无源介质层、模式选择层和反射层,所述第一谐振腔、无源介质层、模式选择层和反射层构成所述第二谐振腔;
其中,
所述第一谐振腔的位置在阵列光源的点阵上,单独震荡;
所述第二谐振腔在高反射区与反射层之间实现整体震荡;
所述模式选择层,用于选择反馈、过滤掉异相,与阵列光源对应实现点对点注入;实现并联相干,并通过第二谐振腔形成相干激光。
作为本发明的进一步改进,所述阵列光源包括多个泵浦光源、光纤合束器和有源光纤,所述高反射区为高反光栅,所述低反射区为低反光栅,所述无源介质层与模式选择层之间设有增透膜;
多个所述泵浦光源、光纤合束器、高反光栅、有源光纤和低反光栅沿光路方向依次设置,所述高反光栅、有源光纤和低反光栅构成所述第一谐振腔; 所述第一谐振腔、无源介质层、增透膜、模式选择层和反射层构成所述第二谐振腔。
作为本发明的进一步改进,
所述泵浦光源的泵浦方式为单端泵浦、双端泵浦或分布式侧向泵浦,所述泵浦光源产生的泵浦光通过所述光纤合束器耦合进所述第一谐振腔;
所述高反光栅和低反光栅分别刻在所述有源光纤的两个端面,所述高反光栅和低反光栅提供的反射率不满足激光激射条件的要求;
所述有源光纤为单包层光纤或双包层光纤,所述有源光纤的增益离子为稀土离子、锗离子中的一种或多种;所述有源光纤为N个渐变折射率的扩芯光纤制成紧密排布的光纤阵列,N为自然数,大于等于2;所述光纤阵列的排布方式为正方形阵列或六边形阵列排布。
作为本发明的进一步改进,
在所述第二谐振腔中,所述无源介质层、增透膜、模式选择层和反射层构成外腔;所述无源介质层、增透膜、模式选择层和反射层与有源光纤端面平行设置,所述外腔为光纤阵列提供整数或分数倍Talbot距离的光程;
所述反射层和所述高反光栅提供满足所述光纤激光器激光振荡的反射率条件;
所述无源介质层为通光介质薄片或者为空气外腔;
所述模式选择层为在对应于所述有源光纤的纤芯位置具有周期分布的微纳结构的通光介质层,所述微纳结构的微纳结构中材料折射率不同于沟槽外材料折射率。
作为本发明的进一步改进,所述阵列光源包括多个泵浦光源、泵浦耦合系统和薄片增益物质,所述高反射区为高反射膜,所述低反射区为低反射膜;
所述泵浦光源通过所述泵浦耦合系统将泵浦光注入所述薄片增益物质中,所述薄片增益物质的前后端面分别镀有所述高反射膜和低反射膜,且所述高反射膜、薄片增益物质和低反射膜构成所述第一谐振腔;
所述低反射膜的输出侧依次设有所述无源介质层、模式选择层和反射层,所述第一谐振腔、无源介质层、模式选择层和反射层构成所述第二谐振腔。
作为本发明的进一步改进,
所述泵浦光源的泵浦方式为单端泵浦、双端泵浦或分布式侧向泵浦,所 述泵浦光源产生的泵浦光通过所述泵浦耦合系统以多通泵浦方式注入所述第一谐振腔;
所述薄片增益物质的增益离子为稀土离子、锗离子中的一种或多种,所述薄片增益物质为一维或二维周期排布的N个增益介质阵列构成,N为自然数,大于等于2;
所述高反射膜和低反射膜提供的反射率无法满足激光激射阈值条件。
作为本发明的进一步改进,
在所述第二谐振腔中,所述无源介质层、模式选择层和反射层构成Talbot外腔结构,所述无源介质层、模式选择层和反射层与所述薄片增益物质的输出端面平行设置;
所述无源介质层为通光介质薄片或者为空气外腔;
所述模式选择层为在对应于薄片增益物质位置具有周期分布的微纳结构的通光介质膜层,所述微纳结构的微纳结构中材料折射率不同于沟槽外材料折射率,所述微纳结构的排布周期与薄片增益物质的排布周期相同;
所述反射层为第二谐振腔提供的反射率满足激光激射阈值条件,使得在第二谐振腔中产生激光输出。
作为本发明的进一步改进,
所述阵列光源为面发射激光器阵列,所述面发射激光器阵列包括衬底层、第一DBR层、有源层和第二DBR层;所述第一DBR层为全反射分布布拉格反射层,所述第二DBR层为部分反射分布布拉格反射层,所述第一DBR层、有源层、第二DBR层构成第一谐振腔;
所述面发射激光器阵列的外腔包括在依次设置在所述第一谐振腔上的通光介质层和模式选择层,所述模式选择层上镀有外腔反射层,所述外腔与面发射激光器的激光发光子单元阵列构成第二谐振腔;
所述模式选择层相对应所述面发射激光器阵列的出光孔位置具有周期排布的微纳结构,微纳结构中填充与沟槽外不同折射率的材料。
作为本发明的进一步改进,
所述面发射激光器阵列为一维或二维周期排布的发光单元构成,其发光结构为顶发射或底发射结构;其中,顶发射面发射激光器阵列包括依次设置的衬底层、第一DBR层、有源层和第二DBR层;所述第二DBR层的反射率 小于99.5%,使得所述第一谐振腔不能达到激射条件;底发射面发射激光器阵列包括依次设置的第一DBR层、有源层、第二DBR层和衬底层;所述第二DBR层的反射率小于99.5%,使得第一谐振腔不能达到激射条件;
所述通光介质层、模式选择层和外腔反射膜与所述面发射激光器阵列的出光面平行设置,所述外腔反射膜的反射率大于50%,使得面发射激光器阵列在第二谐振腔中形成激光输出;顶发射面发射激光器阵列的外腔为在第二DBR上制备的具有一定厚度的信号光通光介质层,该外腔为面发射激光器阵列提供整数或分数倍Talbot距离的光程;底发射面发射激光器阵列的外腔为在第二DBR上制备的具有一定厚度的信号光通光介质层,该通光介质层也可采用衬底层作为外腔,该外腔为面发射激光器阵列提供整数或分数倍Talbot距离的光程;
所述通光介质层通过键合层与所述面发射激光器阵列相连,形成晶圆级片上集成;或者,在空间中设置,形成带有空气隙的外腔结构;或者,通过CVD快速沉积方法获得外腔结构;
所述模式选择层通过化学气相沉积或键合工艺在所述通光介质层上制备基底层,在所述基底层上相对应所述面发射激光器阵列的出光孔位置具有周期排布的微纳结构,在沟槽中填充有折射率不同于基底层的材料,使得模式选择层能够从多阶超模中筛选出相位相同模式。
本发明还公开了一种相干阵激光器结构的制备方法,包括:
在阵列光源的有源区的两侧设有高反射区和低反射区;
在低反射区另一侧设有通光介质层;
在通光介质层的输出端制备模式选择层;
在模式选择层后镀外腔反射层。
与现有技术相比,本发明的有益效果为:
本发明由泵浦光源对有源光纤进行泵浦产生阵列激光输出,通过调控无源介质层结构的长度和模式选择层结构中微纳结构,改变阵列激光的模式分布,进而实现模式锁定;通过第二谐振腔产生复合振荡,从而实现高效自注入反馈;同时,利用单模光纤熔接变折射率多模光纤制成扩芯有源光纤,提高阵列单元占空比;本发明不仅可以实现相位相同模式相干激光输出,而且结构简单,不需要搭建复杂的模式选择系统;由第二谐振腔引起的自注入锁 定可以得到近衍射极限的光束质量;并且通过扩芯有源光纤阵列提高占空比,可以实现高功率高能量密度激光输出;
本发明利用增益物质阵列制成薄片增益物质,实现阵列单元紧密排布,由泵浦光源对薄片增益物质进行泵浦产生阵列激光输出,通过调控无源介质层结构的长度和模式选择层结构中微纳图形改变阵列激光的模式分布,进而实现相同相位的模式锁定,通过第二谐振腔产生复合振荡,从而实现高效自注入反馈。该方案不仅可以实现相干激光输出,而且结构简单,不需要搭建复杂的模式选择系统。由第二谐振腔引起的自注入锁定可以得到近衍射极限的光束质量;
本发明面发射激光器阵列第一谐振腔出射的周期分布光束,通过外腔的模式选择层对各阶超模进行选择,得到相位相同模式光场,再通过外腔反射层的高反馈作用,实现高效光自注入,在第二谐振腔中产生激光振荡;本发明能够通过高效光自注入实现光模式锁定,最终经过片上集成工艺得到密集排布的相干阵激光输出。
附图说明
图1为本发明实施例1的相干阵光纤激光器结构的示意图;
图2a为本发明实施例1中六边形排布有源光纤的结构示意图;
图2b为本发明实施例1中正方形排布有源光纤的结构示意图;
图3a是本发明实施例1中有源光纤扩芯结构示意图;
图3b是本发明实施例1中有源光纤扩芯结构示意图;
图4为本发明实施例2的相干阵薄片固体激光器结构的示意图;
图5a是本发明实施例2中正方形排布薄片增益物质的结构示意图;
图5b是本发明实施例2中六边形排布薄片增益物质的结构示意图;
图6是本发明实施例2中模式选择层的结构示意图;
图7为本发明实施例3的相干阵面发射激光器结构的结构示意图;
图8a为本发明实施例3的四边形面发射激光器阵列的结构示意图;
图8b为本发明实施例3的六边形形面发射激光器阵列的结构示意图;
图8c为本发明实施例3的矩形面发射激光器阵列的结构示意图;
图8d为本发明实施例3的一维面发射激光器阵列的结构示意图;
图8e为本发明实施例3的二维Bar条面发射激光器阵列的结构示意图;
图9为本发明实施例3的模式选择层的结构示意图;
图10为本发明实施例3的相干阵面发射激光器的制备方法的流程图。
图中:
实施例1:
1、泵浦光源;2、光纤合束器;3、高反光栅;4、有源光纤;5、低反光栅;6、无源介质层;7、增透膜;8、模式选择层;9、反射层;
实施例2:
1、高反射膜;2、薄片增益物质;3、低反射膜;4、无源介质层;5、模式选择层;6、反射层;7、泵浦光源;8、泵浦耦合系统;
实施例3:
1、面发射激光器阵列;2、键合层;3、通光介质层;4、模式选择层;5、外腔反射层。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明公开了一种相干阵激光器结构及制备方法,该相干阵激光器结构可为光纤激光器结构、薄片固体激光器结构和半导体激光器结构;其中,该相干阵激光器结构包括:阵列光源、第一谐振腔和第二谐振腔;阵列光源的有源区的两侧设有高反射区和低反射区,高反射区、有源区和低反射区构成第一谐振腔;低反射区的出光侧依次设有无源介质层、模式选择层和反射层,第一谐振腔、无源介质层、模式选择层和反射层构成第二谐振腔;其中,第一谐振腔的位置在阵列光源的点阵上,单独震荡;第二谐振腔在高反射区与反射层之间实现整体震荡;模式选择层,用于选择相位相同模式,与阵列光源对应实现点对点注入;实现并联相干,并通过第二谐振腔形成相干激光。该制备方法包括:在阵列光源的有源区的两侧设有高反射区和低反射区;在 低反射区另一侧设有通光介质层;在通光介质层的输出端制备模式选择层;在模式选择层后镀外腔反射层。本发明通过调控无源介质层结构的长度和模式选择层结构中微纳图形改变阵列激光的模式分布,进而实现相位相同的模式锁定,通过第二谐振腔产生复合振荡,从而实现高效自注入反馈。
下面结合附图对本发明做进一步的详细描述:
实施例1:
具体实例1
如图1所示,本发明提供一种相干阵光纤激光器结构,包括沿光路方向依次设置的泵浦光源1、光纤合束器2、高反光栅3、有源光纤4、低反光栅5、无源介质层6、增透膜7、模式选择层8和反射层9;其中:
本实施例的有源光纤4为如图2a所示的六边形有源光纤或如图2b所示的正方形有源光纤,有源光纤数量大于等于7个,每一行或者每一列光源个数n大于等于2,用于产生空间周期分布的光场;有源光纤4采用多根单模光纤经过如图3a所示的扩芯方案,扩芯光纤包层直径可以为:125μm、225μm、400μm或其他直径宽度,本实施例优选为400μm。如图3a所示,将芯层直径20μm、包层直径400μm的单模光纤经过第一次热扩芯得到芯层直径50μm、包层直径400μm光纤,经过第二次扩芯得到芯层直径100μm、包层直径400μm光纤,再经过第三次扩芯最终得到芯层直径300μm、包层直径400μm的光纤,将多根扩芯光纤拉锥制成紧密排布的光纤阵列。在低反光栅5后粘接无源介质层6,无源介质层6可以采用薄玻璃板、无源光纤或者采用空气腔;在无源介质层6后镀增透膜7,降低光束从无源介质层6入射到模式选择层8的反射损耗;模式选择层8可以采用在SiO2薄膜上刻蚀微纳结构,在微纳结构的微纳结构中填充折射率不同于SiO2薄膜的材料如Si3N4等材料;对模式选择层8表面进行抛光处理,在其表面镀高反射层9,使得光纤激光器在第二谐振腔形成激光振荡。
本实施例中,由泵浦光源1输出的泵浦光经过光纤合束器2耦合进第一谐振腔,激发有源光纤4中增益物质粒子数反转,由于第一谐振腔采用高反光栅3和低反光栅5作为谐振腔镜,低反光栅5的反射率满足:第一谐振腔不能达到激光激射条件的要求。由第一谐振腔输出的光束经过无源介质层6、增透膜7形成Talbot子像或Talbot自再现像,通过模式选择层8后,对阵列 光束的多阶超模进行模式选择层,筛选出相位相同的模式,再经由反射层9反馈,返回到第一谐振腔的光束呈现Talbot自再现像,注入到有源光纤4中,形成光注入锁定,在第二谐振腔中产生激光激射。
具体实例2
如图1所示,本发明提供一种相干阵光纤激光器结构,包括沿光路方向依次设置的泵浦光源1、光纤合束器2、高反光栅3、有源光纤4、低反光栅5、无源介质层6、增透膜7、模式选择层8和反射层9;其中:
本实施例的有源光纤4为如图2a所示的六边形有源光纤阵列或如图2b所示的正方形有源光纤阵列,有源光纤数量大于等于7个,每一行或者每一列光源个数n大于等于2,用于产生空间周期分布的光场;有源光纤采用多根单模光纤经过如图3b所示的扩芯方案,扩芯光纤包层直径可以为:125μm、225μm、400μm或其他直径宽度,本实施例优选为125μm。如图3b所示,将芯层直径10μm、包层直径125μm的单模光纤经过第一次热扩芯得到芯层直径20μm、包层直径125μm光纤,经过第二次扩芯得到芯层直径50μm、包层直径125μm光纤,再经过第三次扩芯最终得到芯层直径100μm、包层直径125μm的渐变折射率光纤,将多根扩芯光纤拉锥制成紧密排布的光纤阵列。在低反光栅5后粘接无源介质层6,无源介质层6可以采用薄玻璃板、无源光纤或者采用空气腔;在无源介质层6后镀增透膜7,降低光束从无源介质层6入射到模式选择层8的反射损耗;模式选择层8可以采用在SiO2薄膜上刻蚀微纳结构,在微纳结构的微纳结构中填充折射率不同于SiO2薄膜的材料如Si3N4等材料;对模式选择层8表面进行抛光处理,在其表面镀高反射层9,使得光纤激光器在第二谐振腔形成激光振荡。
本实施例中,由泵浦光源1输出的泵浦光经过光纤合束器2耦合进第一谐振腔,激发有源光纤4中增益物质粒子数反转,由于第一谐振腔采用高反光栅3和低反光栅5作为谐振腔镜,低反光栅5的反射率满足:第一谐振腔不能达到激光激射条件的要求。由第一谐振腔输出的光束经过无源介质层6、增透膜7形成Talbot子像或Talbot自再现像,通过模式选择层8后,对阵列光束的多阶超模进行模式选择层,筛选出相位相同的模式,再经由反射层9反馈,返回到第一谐振腔的光束呈现Talbot自再现像,注入到有源光纤4中,形成光注入锁定,在第二谐振腔中产生激光激射。
实施例2:
具体实例1
如图4和图5a所示,本发明提供一种正方形相干阵薄片光纤激光器结构,包括:高反射膜1、薄片增益物质2、低反射膜3、无源介质层4、模式选择层5、反射层6、泵浦光源7、泵浦耦合系统8;其中:
本实施例的薄片增益物质2为如图5a所示的正方形阵列排布的柱状增益物质,数量大于等于7个,每一行或者每一列光源个数n大于等于2,用于产生空间周期分布的光场。薄片增益物质阵列采用多根增益物质制成紧密排布阵列。薄片增益物质阵列的前端面镀有高反射膜1,后端面镀有低反射膜3,高反射膜1和低反射膜3可以采用单独镀在单根增益物质端面或镀在薄片增益物质阵列端面。在低反射膜3后设置无源介质层4,无源介质层4可以采用薄玻璃板、空气腔或者其他通光材料;在无源介质层4后设置有如图6所示的模式选择层5,模式选择层5可以采用在Si3N4薄膜上刻蚀周期排布的微纳结构,微纳结构的排布周期与薄片增益物质排布周期相同。在微纳结构中填充折射率不同于Si3N4薄膜的材料如SiO2等材料,对模式选择层5表面进行抛光处理,在其表面镀高反射层6,反射层6提供的反射率满足激光振荡条件。
本实施例中,由泵浦光源7输出的泵浦光经过泵浦耦合系统8耦合进第一谐振腔,激发薄片增益物质2中增益物质粒子数反转,由于第一谐振腔采用高反射膜1和低反射膜3作为谐振腔镜,低反射膜3提供的反射率,不能达到激光激射条件。由第一谐振腔输出的光束经过无源介质层4形成Talbot子像或Talbot自再现像,通过模式选择层5后,对阵列光束的多阶超模进行模式选择,筛选出相位相同的模式,再经由反射层6反馈,返回到第一谐振腔的光束呈现Talbot自再现像,注入到薄片增益物质2中,形成光注入锁定,在第二谐振腔中产生激光激射。
具体实例2
如图4和图5b所示,本发明提供一种六边形相干阵薄片固体激光器结构,包括:高反射膜1、薄片增益物质2、低反射膜3、无源介质层4、模式选择层5、反射层6、泵浦光源7、泵浦耦合系统8;其中:
本实施例的薄片增益物质2为如图5b所示的六边形柱状增益物质阵列,数量大于等于7个,每一行或者每一列光源个数n大于等于2,用于产生空间 周期分布的光场。薄片增益物质阵列采用多根增益物质制成紧密排布阵列。薄片增益物质阵列前端面镀有高反射膜1,后端面镀有低反射膜3。高反射膜1和低反射膜3可以采用单独镀在单根增益物质端面或镀在薄片增益物质阵列端面。在低反射膜3后设置无源介质层4,无源介质层4可以采用薄玻璃板、空气腔或者其他通光材料;在无源介质层4后设置有如图6所示的模式选择层5,模式选择层5可以采用在Si3N4薄膜上刻蚀周期排布的微纳结构,微纳结构的排布周期与柱状增益物质排布周期相同。在微纳结构的微纳结构中填充折射率不同于Si3N4薄膜的材料如SiO2等材料,对模式选择层5表面进行抛光处理,在其表面镀高反射层6,反射层6提供的反射率满足激光振荡条件。
本实施例中,由泵浦光源7输出的泵浦光经过泵浦耦合系统8耦合进第一谐振腔,激发薄片增益物质2中增益物质粒子数反转,由于第一谐振腔采用高反射膜1和低反射膜3作为谐振腔镜,低反射膜3提供的反射率,不能达到激光激射条件。由第一谐振腔输出的光束经过无源介质层4形成Talbot子像或Talbot自再现像,通过模式选择层5后,对阵列光束的多阶超模进行模式选择,筛选出相位相同的模式,再经由反射层6反馈,返回到第一谐振腔的光束呈现Talbot自再现像,注入到薄片增益物质2中,形成光注入锁定,在第二谐振腔中产生激光激射。
实施例3:
本发明提供一种相干阵面发射半导体激光器结构及其制备方法,在面发射半导体激光器的激光发光子单元阵列的出光面后设有外腔,面发射半导体激光器阵列的第一DBR层、有源层、第二DBR层构成第一谐振腔;外腔包括在依次设置在第一谐振腔上的通光介质层和模式选择层,模式选择层上镀有外腔反射层,外腔与面发射激光器的激光发光子单元阵列构成第二谐振腔;模式选择层相对应面发射激光器阵列的出光孔位置设有微纳结构,微纳结构中填充与沟槽外基底不同折射率的材料;面发射半导体激光器的激光发光子单元阵列产生周期分布的光场,经通光介质层和模式选择层,对面发射激光器阵列输出多阶超模激光进行模式过滤,得到密集排列相干输出的相位相同模激光束。
具体实例1
如图7和图8a所示,本发明提供一种顶发射四边形相干阵面发射激光器 结构与制备方法,包括:面发射激光器阵列1、键合层2、通光介质层3、模式选择层4和外腔反射层5;其中:
本实施例的面发射激光器阵列1为如图8a所示的四边形顶发射面发射激光器阵列,面发射激光器阵列1的光源个数大于等于4个,每一行或者每一列光源个数n大于等于2,横纵向周期均为T=5~1000μm,用于产生空间周期分布的光场。面发射激光器衬底上为第一DBR层,组成成分为AlxGa1-xAs,提供99.5%以上的反射率;第一DBR层上为有源层,有源层上为氧化限制层,氧化限制层上为第二DBR层,组成成分为AlxGa1-xAs,提供小于99.5%的反射率;对衬底层进行减薄,采用蒸镀金属的方式制备异面电极,激光从顶面电极一侧输出。
面发射激光器阵列1的第二DBR层输出端设有通光介质层3,通光介质层3的输出端设有模式选择层4。进一步,为了实现通光介质层3与面发射激光器阵列1的粘合,本发明在通光介质层3与面发射激光器阵列1之间设有键合层2;为了增加外腔输出端的反射率,本发明在模式选择层4之后镀有外腔反射层5,外腔反射层5的反射率在50%以上;为了降低谐振腔内的损耗,本发明中通光介质层3、模式选择层4和外腔反射层5与面发射激光器阵列1的出光面平行设置,键合层2表面经过研磨抛光得到均匀度在5nm以下的平整度;更进一步,面发射激光器阵列1的衬底层下可设有散热结构。
本实施例的键合层2与通光介质层3和模式选择层4基底的材料一致,可以选择透射红外光的石英晶体、蓝宝石、SiO2等。键合层2采用PECVD技术生长在面发射激光器阵列1的发光面上,键合层2的厚度为
本实施例的通光介质层3,用于传输面发射激光器阵列出射的光束,并得到衍射光场分布,进而形成Talbot子像。如图9所示,本发明的模式选择层4为具有沟槽的通光介质层,通过沉积一定厚度的透射红外光材料作为基底并在其中刻蚀出周期排布的微纳结构,在微纳结构中填充有折射率不同于基底的材料。本发明的模式选择层4对输出光束的各阶超模进行模式调制;筛选出相位相同的模式,经过外腔反射层5反射回第一谐振腔的光束,呈现Talbot自再现像,注入进面发射激光器阵列的发光单元中,经过光注入锁定在第二谐振腔产生激光激射。
具体实例2
如图7和图8b所示,本发明提供一种底发射六边形相干阵面发射激光器结构与制备方法,包括:面发射激光器阵列1、通光介质层3、模式选择层4和外腔反射层5;其中:
本实施例的面发射激光器阵列1为如图8b所示的底发射六边形面发射激光器阵列,面发射激光器阵列1的光源个数大于等于7个,每一行或者每一列光源个数n大于等于2,发光单元最小间距为T=5~1000μm,用于产生空间周期分布的光场。面发射激光器的第一DBR层,组成成分为AlxGa1-xAs,提供99.5%以上的反射率;第一DBR层上为有源层,有源层上为氧化限制层,氧化限制层上为第二DBR层,组成成分为AlxGa1-xAs,提供小于99.5%的反射率;采用蒸镀金属的方式制备同面电极,激光从衬底一侧输出。
面发射激光器阵列1的衬底层作为通光介质层3,通光介质层3的输出端设有模式选择层4。为了增加外腔输出端的反射率,本发明在模式选择层4之后镀有外腔反射层5,外腔反射层5的反射率在50%以上;为了降低谐振腔内的损耗,本发明中通光介质层3、模式选择层4和外腔反射层5与面发射激光器阵列1的出光面平行设置,并且面发射激光器阵列的衬底层表面经过研磨抛光后再在其上制备模式选择层4;更进一步,面发射激光器阵列1的非出光一侧可设有散热结构。
本实施例的通光介质层3,用于传输面发射激光器阵列出射的光束,并得到衍射光场分布,进而形成Talbot子像。如图9所示,本发明的模式选择层4为具有沟槽的通光介质层,通过沉积一定厚度的透射红外光材料作为基底并在其中刻蚀出周期排布的微纳结构,在微纳结构中填充有折射率不同于基底的材料。本实施例的模式选择层4的基底材料可以为Si3N4、GaAs、SiO2等。本发明的模式选择层4对输出光束的各阶超模进行模式调制;筛选出相位相同模式,经过外腔反射层5反射回第一谐振腔的光束,呈现Talbot自再现像,注入进面发射激光器阵列的发光单元中,经过光注入锁定在第二谐振腔产生激光激射。
具体实例3
如图7和图8c所示,本发明提供一种顶发射矩形相干阵面发射激光器结构与制备方法,包括:面发射激光器阵列1、通光介质层3、模式选择层4和外腔反射层5;其中:
本实施例的面发射激光器阵列1为如图8c所示的矩形顶发射面发射激光器阵列,面发射激光器阵列1的光源个数大于等于4个,每一行或者每一列光源个数n大于等于2,横向周期为Ta=5~1000μm,纵向周期为Tb=5~~1000μm,用于产生空间周期分布的光场。面发射激光器衬底上为第一DBR层,组成成分为AlxGa1-xAs,提供99.5%以上的反射率;第一DBR层上为有源层,有源层上为氧化限制层,氧化限制层上为第二DBR层,组成成分为AlxGa1-xAs,提供小于99.5%的反射率;对衬底层进行减薄,采用蒸镀金属的方式制备异面电极,激光从顶面电极一侧输出
面发射激光器阵列1的第二DBR层输出端设有通光介质层3,通光介质层3的输出端设有模式选择层4。本实施例中通光介质层3与面发射激光器阵列1中间采用空气隙形成外腔结构;为了增加外腔输出端的反射率,本发明在模式选择层4之后镀有外腔反射层5,外腔反射层5的反射率在50%以上;为了降低谐振腔内的损耗,本发明中通光介质层3、模式选择层4和外腔反射层5与面发射激光器阵列1的出光面平行设置;更进一步,面发射激光器阵列1的衬底层下可设有散热结构。
本实施例的通光介质层3,用于传输面发射激光器阵列出射的光束,并得到衍射光场分布,进而形成Talbot子像。如图9所示,本发明的模式选择层4为具有沟槽的通光介质层,通过沉积一定厚度的透射红外光材料作为基底并在其中刻蚀出周期排布的微纳结构,在微纳结构中填充有折射率不同于基底的材料。本发明的模式选择层4对输出光束的各阶超模进行模式调制;筛选出相位相同模式,经过外腔反射层5反射回第一谐振腔的光束,呈现Talbot自再现像,注入进面发射激光器阵列的发光单元中,经过光注入锁定在第二谐振腔产生激光激射。
具体实例4
如图7和图8d所示,本发明提供一种一维底发射相干阵面发射激光器结构与制备方法,包括:面发射激光器阵列1、通光介质层3、模式选择层4和外腔反射层5;其中:
本实施例的面发射激光器阵列1为如图8d所示的矩形顶发射面发射激光器阵列,面发射激光器阵列1的光源个数大于等于2个,周期为T=5~1000μm,用于产生空间周期分布的光场。面发射激光器衬底上为第一DBR层,组成成 分为AlxGa1-xAs,提供99.5%以上的反射率;第一DBR层上为有源层,有源层上为氧化限制层,氧化限制层上为第二DBR层,组成成分为AlxGa1-xAs,提供小于99.5%的反射率;对衬底层进行减薄,采用蒸镀金属的方式制备异面电极,激光从顶面电极一侧输出。
面发射激光器阵列1的第二DBR层输出端设有通光介质层3,通光介质层3的输出端设有模式选择层4。本实施例中通光介质层3与面发射激光器阵列1中间采用空气隙形成外腔结构;为了增加外腔输出端的反射率,本发明在模式选择层4之后镀有外腔反射层5,外腔反射层5的反射率在50%以上;为了降低谐振腔内的损耗,本发明中通光介质层3、模式选择层4和外腔反射层5与面发射激光器阵列1的出光面平行设置;更进一步,面发射激光器阵列1的衬底层下可设有散热结构。
本实施例的通光介质层3,用于传输面发射激光器阵列出射的光束,并得到衍射光场分布,进而形成Talbot子像。如图9所示,本发明的模式选择层4为具有沟槽的通光介质层,通过沉积一定厚度的透射红外光材料作为基底并在其中刻蚀出周期排布的微纳结构,在微纳结构中填充有折射率不同于基底的材料。本发明的模式选择层4对输出光束的各阶超模进行模式调制;筛选出相位相同的模式,经过外腔反射层5反射回第一谐振腔的光束,呈现Talbot自再现像,注入进面发射激光器阵列的发光单元中,经过光注入锁定在第二谐振腔产生激光激射。
具体实例5
如图7和图8e所示,本发明提供一种二维Bar条相干阵面发射激光器结构与制备方法,包括:面发射激光器阵列1、通光介质层3、模式选择层4和外腔反射层5;其中:
本实施例的面发射激光器阵列1为如图8e所示的矩形顶发射面发射激光器阵列,面发射激光器阵列1的光源个数大于等于2个,周期为T=5~1000μm,用于产生空间周期分布的光场。面发射激光器衬底上为第一DBR层,组成成分为AlxGa1-xAs,提供99.5%以上的反射率;第一DBR层上为下波导限制层,下波导限制层上为有源层,有源层上为上波导限制层,上波导限制层上为第二DBR层,组成成分为AlxGa1-xAs,提供大于99.5%的反射率;
面发射激光器阵列1的输出端设有通光介质层3,通光介质层3的输出端 设有模式选择层4。本实施例中通光介质层3与面发射激光器阵列1中间采用外延层作为外腔结构;为了增加外腔输出端的反射率,本发明在模式选择层4之后镀有外腔反射层5,外腔反射层5的反射率在50%以上;在外腔反射层5后设有柱面准直镜对输出光束进行准直。为了降低谐振腔内的损耗,本发明中通光介质层3、模式选择层4和外腔反射层5与面发射激光器阵列1的出光面平行设置。
本实施例的通光介质层3,用于传输面发射激光器阵列出射的光束,并得到衍射光场分布,进而形成Talbot子像。如图9所示,本发明的模式选择层4为具有沟槽的通光介质层,通过沉积一定厚度的透射红外光材料作为基底并在其中刻蚀出周期排布的微纳结构,在微纳结构中填充有折射率不同于基底的材料。本发明的模式选择层4对输出光束的各阶超模进行模式调制;筛选出相位相同的模式,经过外腔反射层5反射回第一谐振腔的光束,呈现Talbot自再现像,注入进面发射激光器阵列的发光单元中,经过光注入锁定在第二谐振腔产生激光激射。
如图10所示,本发明提供一种上述的顶发射相干阵阵面发射激光器的制备方法,包括:
S1、制备周期分布的面发射激光器阵列1;
具体为:
将超过4单元的顶发射面发射激光器按照图8a所示排列成四边形阵列、按照图8b所示排列成六边形阵列、图8c所示排列成矩形阵列或者图8d所示排列成一维阵列,面发射激光器发光单元间距为5~1000μm,制成器件。
S2、在面发射激光器阵列1的发光面制备一层键合层2;
具体为:
采用PECVD技术,先抽底真空,达到10-7Torr后通入部分N2,并预热基板表面,然后在300度下按照比例通入SiH4和N2O进行反应,沉积完成后,生成的SiO2落在器件表面,通入N2,保证管道内无SiH4残留。
S3、在键合层2上键合外腔3;
具体为:
在键合层2和外腔3间施加强大的静电场,键合层2与阳极相接,外腔3与阴极相接,当温度升高后,玻璃中的Na离子在电场作用下向阴极迁移,并 在阴极被中性化,而外腔3中固定的束缚负离子保持不动,在键合层2表面感应形成一层空间正电荷区,使得两个被键合的表面紧压在一起;
或者,将键合层2和外腔3用树脂或蓖麻油等胶间接键合;
或者,对键合层2和外腔3表面进行清洗、活化、亲水性预处理,接着在室温下进行键合,然后经450℃左右高温退火,达到最终键合强度。
S4、在外腔3上制一层模式选择层4;
具体为:
根据超模在分数或整数倍Talbot距离处的成像特点制作模式选择层,如图9所示。具体工艺为:在洁净的二氧化硅表面涂覆光刻胶,经过软烘焙、对准曝光、显影、硬烘焙,采用湿法(氢氟酸与水混合或氟化铵与水混合)或干法(平面等离子体)刻蚀二氧化硅,得到所需微纳结构,在微纳结构中填充氮化硅材料形成模式选择层。
S5、在模式选择层4的输出端上制一层反射膜5;
具体为:
用化学气相沉淀法(CVD)在通光介质层上淀积一组厚度均匀的多层光学反射膜系。
S6、封装;
具体为:
在陶瓷衬底表面预制金锡电极,将制好的面发射激光器芯片以倒装焊的方式焊接在金锡电极上,将陶瓷衬底固定在水冷散热器上,完成封装。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种相干阵激光器结构,其特征在于,包括:阵列光源、第一谐振腔和第二谐振腔;
    所述阵列光源的有源区的两侧设有高反射区和低反射区,所述高反射区、有源区和低反射区构成所述第一谐振腔;
    所述低反射区的出光侧依次设有无源介质层、模式选择层和反射层,所述第一谐振腔、无源介质层、模式选择层和反射层构成所述第二谐振腔;
    所述模式选择层,用于实现并联相干,通过第二谐振腔形成相干激光。
  2. 如权利要求1所述的相干阵激光器结构,其特征在于,所述阵列光源包括多个泵浦光源、光纤合束器和有源光纤,所述高反射区为高反光栅,所述低反射区为低反光栅,所述无源介质层与模式选择层之间设有增透膜;
    多个所述泵浦光源、光纤合束器、高反光栅、有源光纤和低反光栅沿光路方向依次设置,所述高反光栅、有源光纤和低反光栅构成所述第一谐振腔;所述第一谐振腔、无源介质层、增透膜、模式选择层和反射层构成所述第二谐振腔。
  3. 如权利要求2所述的相干阵激光器结构,其特征在于,
    所述泵浦光源的泵浦方式为单端泵浦、双端泵浦或分布式侧向泵浦,所述泵浦光源产生的泵浦光通过所述光纤合束器耦合进所述第一谐振腔;
    所述高反光栅和低反光栅分别刻在所述有源光纤的两个端面,所述高反光栅和低反光栅提供的反射率不满足激光激射条件的要求;
    所述有源光纤为单包层光纤或双包层光纤,所述有源光纤的增益离子为稀土离子、锗离子中的一种或多种;所述有源光纤为N个渐变折射率的扩芯光纤制成紧密排布的光纤阵列,N为自然数,大于等于2;所述光纤阵列的排布方式为正方形阵列或六边形阵列排布。
  4. 如权利要求2所述的相干阵激光器结构,其特征在于,
    在所述第二谐振腔中,所述无源介质层、增透膜、模式选择层和反射层构成外腔;所述无源介质层、增透膜、模式选择层和反射层与有源光纤端面平行设置,所述外腔可以为光纤阵列提供整数或分数倍Talbot距离的光程;
    所述反射层和所述高反光栅提供满足所述光纤激光器激光振荡的反射率条件;
    所述无源介质层为通光介质薄片或者为空气外腔;
    所述模式选择层为在对应于所述有源光纤的纤芯位置具有周期分布的微纳结构的通光介质层,所述微纳结构的微纳结构中材料折射率不同于沟槽外材料折射率。
  5. 如权利要求1所述的相干阵激光器结构,其特征在于,所述阵列光源包括多个泵浦光源、泵浦耦合系统和薄片增益物质,所述高反射区为高反射膜,所述低反射区为低反射膜;
    所述泵浦光源通过所述泵浦耦合系统将泵浦光注入所述薄片增益物质中,所述薄片增益物质的前后端面分别镀有所述高反射膜和低反射膜,且所述高反射膜、薄片增益物质和低反射膜构成所述第一谐振腔;
    所述低反射膜的输出侧依次设有所述无源介质层、模式选择层和反射层,所述第一谐振腔、无源介质层、模式选择层和反射层构成所述第二谐振腔。
  6. 如权利要求5所述的相干阵激光器结构,其特征在于,
    所述泵浦光源的泵浦方式为单端泵浦、双端泵浦或分布式侧向泵浦,所述泵浦光源产生的泵浦光通过所述泵浦耦合系统以多通泵浦方式注入所述第一谐振腔;
    所述薄片增益物质的增益离子为稀土离子、锗离子中的一种或多种,所述薄片增益物质为一维或二维周期排布的N个增益介质阵列构成,N为自然数,大于等于2;
    所述高反射膜和低反射膜提供的反射率无法满足激光激射阈值条件。
  7. 如权利要求5所述的相干阵激光器结构,其特征在于,
    在所述第二谐振腔中,所述无源介质层、模式选择层和反射层构成Talbot外腔结构,所述无源介质层、模式选择层和反射层与所述薄片增益物质的输出端面平行设置;
    所述无源介质层为通光介质薄片或者为空气外腔;
    所述模式选择层为在对应于薄片增益物质位置具有周期分布的微纳结构的通光介质膜层,所述微纳结构的微纳结构中材料折射率不同于沟槽外材料折射率,所述微纳结构的排布周期与薄片增益物质的排布周期相同;
    所述反射层为第二谐振腔提供的反射率满足激光激射阈值条件,使得在第二谐振腔中产生激光输出。
  8. 如权利要求1所述的相干阵激光器结构,其特征在于,
    所述阵列光源为面发射激光器阵列,所述面发射激光器阵列包括衬底层、第一DBR层、有源层和第二DBR层;所述第一DBR层为全反射分布布拉格反射层,所述第二DBR层为部分反射分布布拉格反射层,所述第一DBR层、有源层、第二DBR层构成第一谐振腔;
    所述面发射激光器阵列的外腔包括在依次设置在所述第一谐振腔上的通光介质层和模式选择层,所述模式选择层上镀有外腔反射层,所述外腔与面发射激光器的激光发光子单元阵列构成第二谐振腔;
    所述模式选择层相对应所述面发射激光器阵列的出光孔位置具有周期排布的微纳结构,微纳结构中填充与沟槽外不同折射率的材料。
  9. 如权利要求8所述的相干阵激光器结构,其特征在于,
    所述面发射激光器阵列为一维或二维周期排布的发光单元构成,其发光结构为顶发射或底发射结构;其中,顶发射面发射激光器阵列包括依次设置的衬底层、第一DBR层、有源层和第二DBR层;所述第二DBR层的反射率小于99.5%,使得所述第一谐振腔不能达到激射条件;底发射面发射激光器阵列包括依次设置的第一DBR层、有源层、第二DBR层和衬底层;所述第二DBR层的反射率小于99.5%,使得第一谐振腔不能达到激射条件;
    所述通光介质层、模式选择层和外腔反射膜与所述面发射激光器阵列的出光面平行设置,所述外腔反射膜的反射率大于50%,使得面发射激光器阵列在第二谐振腔中形成激光输出;顶发射面发射激光器阵列的外腔为在第二DBR上制备的具有一定厚度的信号光通光介质层,该外腔为面发射激光器阵列提供整数或分数倍Talbot距离的光程;底发射面发射激光器阵列的外腔为在第二DBR上制备的具有一定厚度的信号光通光介质层,该通光介质层也可采用衬底层作为外腔,该外腔为面发射激光器阵列提供整数或分数倍Talbot距离的光程;
    所述通光介质层通过键合层与所述面发射激光器阵列相连,形成晶圆级片上集成;或者,在空间中设置,形成带有空气隙的外腔结构;或者,通过CVD快速沉积方法获得外腔结构;
    所述模式选择层通过化学气相沉积或键合工艺在所述通光介质层上制备基底层,在所述基底层上相对应所述面发射激光器阵列的出光孔位置具有周期排布的微纳结构,在微纳结构中填充有折射率不同于基底层的材料,使得 模式选择层能够从多阶超模中筛选出相位相同的模式。
  10. 一种如权利要求1~9中任一项所述的相干阵激光器结构的制备方法,其特征在于,包括:
    在阵列光源的有源区的两侧设有高反射区和低反射区;
    在低反射区另一侧设有通光介质层;
    在通光介质层的输出端制备模式选择层;
    在模式选择层后镀外腔反射层。
PCT/CN2023/087989 2022-05-25 2023-04-13 一种相干阵激光器结构及制备方法 WO2023226610A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210580770.2 2022-05-25
CN202210580770.2A CN115000809A (zh) 2022-05-25 2022-05-25 一种相干阵面发射半导体激光器结构及其制备方法
CN202210815503.9A CN115173202A (zh) 2022-07-08 2022-07-08 一种相干阵薄片固体激光器结构
CN202210815503.9 2022-07-08
CN202210806592.0 2022-07-08
CN202210806592.0A CN115189212A (zh) 2022-07-08 2022-07-08 一种相干阵光纤激光器结构

Publications (1)

Publication Number Publication Date
WO2023226610A1 true WO2023226610A1 (zh) 2023-11-30

Family

ID=88918412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087989 WO2023226610A1 (zh) 2022-05-25 2023-04-13 一种相干阵激光器结构及制备方法

Country Status (1)

Country Link
WO (1) WO2023226610A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117673874A (zh) * 2024-01-31 2024-03-08 中国航天三江集团有限公司 一种高功率光纤激光器及使用方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027359A (en) * 1989-10-30 1991-06-25 Massachusetts Institute Of Technology Miniature Talbot cavity for lateral mode control of laser array
CN1877932A (zh) * 2006-05-26 2006-12-13 北京工业大学 二极管激光阵列外腔锁相幅度补偿元件的设计及放置方法
CN1916677A (zh) * 2006-09-08 2007-02-21 北京工业大学 一种应用光纤耦合的半导体激光器的外腔相干锁相方法
CN112310804A (zh) * 2020-10-30 2021-02-02 北京工业大学 一种带相位补偿层的vcsel结构及制备方法
CN213367030U (zh) * 2020-11-12 2021-06-04 中国人民解放军国防科技大学 一种光泵浦半导体激光器芯片
CN113328336A (zh) * 2021-05-28 2021-08-31 北京工业大学 一种反馈式窄线宽高功率半导体激光芯片及使用方法
CN114300940A (zh) * 2021-12-30 2022-04-08 北京工业大学 稀土掺杂vcsel外腔反馈相干阵激光器及其制备方法
CN115000809A (zh) * 2022-05-25 2022-09-02 北京工业大学 一种相干阵面发射半导体激光器结构及其制备方法
CN115173202A (zh) * 2022-07-08 2022-10-11 北京工业大学 一种相干阵薄片固体激光器结构
CN115189212A (zh) * 2022-07-08 2022-10-14 北京工业大学 一种相干阵光纤激光器结构

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027359A (en) * 1989-10-30 1991-06-25 Massachusetts Institute Of Technology Miniature Talbot cavity for lateral mode control of laser array
CN1877932A (zh) * 2006-05-26 2006-12-13 北京工业大学 二极管激光阵列外腔锁相幅度补偿元件的设计及放置方法
CN1916677A (zh) * 2006-09-08 2007-02-21 北京工业大学 一种应用光纤耦合的半导体激光器的外腔相干锁相方法
CN112310804A (zh) * 2020-10-30 2021-02-02 北京工业大学 一种带相位补偿层的vcsel结构及制备方法
CN213367030U (zh) * 2020-11-12 2021-06-04 中国人民解放军国防科技大学 一种光泵浦半导体激光器芯片
CN113328336A (zh) * 2021-05-28 2021-08-31 北京工业大学 一种反馈式窄线宽高功率半导体激光芯片及使用方法
CN114300940A (zh) * 2021-12-30 2022-04-08 北京工业大学 稀土掺杂vcsel外腔反馈相干阵激光器及其制备方法
CN115000809A (zh) * 2022-05-25 2022-09-02 北京工业大学 一种相干阵面发射半导体激光器结构及其制备方法
CN115173202A (zh) * 2022-07-08 2022-10-11 北京工业大学 一种相干阵薄片固体激光器结构
CN115189212A (zh) * 2022-07-08 2022-10-14 北京工业大学 一种相干阵光纤激光器结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117673874A (zh) * 2024-01-31 2024-03-08 中国航天三江集团有限公司 一种高功率光纤激光器及使用方法
CN117673874B (zh) * 2024-01-31 2024-05-14 中国航天三江集团有限公司 一种高功率光纤激光器及使用方法

Similar Documents

Publication Publication Date Title
TWI465830B (zh) 視覺顯示用發光裝置
US6154480A (en) Vertical-cavity laser and laser array incorporating guided-mode resonance effects and method for making the same
US5115445A (en) Microchip laser array
US6792026B2 (en) Folded cavity solid-state laser
US9124064B2 (en) Ultrashort pulse microchip laser, semiconductor laser, and pump method for thin laser media
US6259713B1 (en) Laser beam coupler, shaper and collimator device
JPH09283847A (ja) 半導体レーザモジュール
JP2004503118A (ja) 半導体レーザ・ポンピング固体レーザ・システムに使用するvcselおよび集積マイクロレンズを有するvcselアレイ
JP2001281473A (ja) フォトニクス結晶及びその製造方法、光モジュール並びに光システム
US7548569B2 (en) High-power optically end-pumped external-cavity semiconductor laser
WO2023226610A1 (zh) 一种相干阵激光器结构及制备方法
WO2020078197A1 (zh) 一种半导体激光器
CN109802281B (zh) 一种多波长非相干光谱合束板条激光振荡器
JP2003304033A (ja) 光ポンピング可能な垂直エミッタを有する面発光半導体レーザ装置
CN112310804A (zh) 一种带相位补偿层的vcsel结构及制备方法
US10247969B1 (en) Photon sources with multiple cavities for generation of individual photons
CN115189212A (zh) 一种相干阵光纤激光器结构
TW200400676A (en) Optically pumped semiconductor laser device
JP2006344973A (ja) 光ポンピング方式の面発光レーザー
WO2016080252A1 (ja) 外部共振器型半導体レーザ
CN116526261A (zh) 小型化的主振荡器功率放大器结构二极管泵浦固体激光器
WO2018196689A1 (zh) 多波长混合集成光发射阵列
US8995482B1 (en) High energy semiconductor laser
TWI423545B (zh) 腔內上轉換雷射
CN115000809A (zh) 一种相干阵面发射半导体激光器结构及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810684

Country of ref document: EP

Kind code of ref document: A1