WO2023226510A1 - 罗经鸟控制方法及控制装置 - Google Patents
罗经鸟控制方法及控制装置 Download PDFInfo
- Publication number
- WO2023226510A1 WO2023226510A1 PCT/CN2023/079673 CN2023079673W WO2023226510A1 WO 2023226510 A1 WO2023226510 A1 WO 2023226510A1 CN 2023079673 W CN2023079673 W CN 2023079673W WO 2023226510 A1 WO2023226510 A1 WO 2023226510A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- circuit
- main control
- communication
- external interrupt
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000004891 communication Methods 0.000 claims abstract description 166
- 238000001514 detection method Methods 0.000 claims abstract description 51
- 230000007958 sleep Effects 0.000 claims description 42
- 238000012545 processing Methods 0.000 claims description 34
- 230000000087 stabilizing effect Effects 0.000 claims description 19
- 230000003321 amplification Effects 0.000 claims description 14
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 14
- 230000008569 process Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 9
- 238000002955 isolation Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000006266 hibernation Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0423—Input/output
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/25—Pc structure of the system
- G05B2219/25257—Microcontroller
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present disclosure belongs to the field of survey technology, and specifically relates to a compass bird control method and a control device.
- the exploration system requires geophones to have more precise positioning capabilities.
- Seismometers arranged according to different depths can collect seismic wave data with broadband information to obtain richer stratigraphic imaging maps, which is of great significance for geological data interpretation and oil and gas exploration.
- the geophone cannot be settled accurately and stably at different depths, the stratigraphic data obtained cannot be continuously imaged, and the data obtained may even be unreliable. Therefore, to collect and analyze broadband geological profile data, it is not only necessary to improve the broadband characteristics of the geophone, but also to accurately control the depth of the towed cable.
- the depth control of different parts of the towing cable through the compass bird requires the compass bird to have strong depth maintenance capabilities and quick response capabilities.
- the sinking requirements of different depths require the compass bird to adjust the wing plate angle more frequently to maintain the depth. This results in an increase in the power consumption of the compass bird, causing the compass bird battery to be replaced more frequently.
- embodiments of the present disclosure provide a compass bird control method and a control device to solve the problem of high power consumption of the compass bird existing in the prior art.
- a compass bird control method which method includes:
- the main control microcontroller enters the first deep sleep state when not processing work
- the main control microcontroller After receiving the external interrupt signal, the main control microcontroller switches from the first deep sleep state to the first working state;
- the peak detection circuit detects whether there is a communication carrier signal
- the data demodulation unit does not start
- the data demodulation unit is started to demodulate the communication carrier signal, and the communication demodulation module sends the demodulated signal obtained by demodulation to the main control microcontroller.
- the external interrupt signal includes a first external interrupt signal
- the main control microcontroller receives the external interrupt signal and switches from the first deep sleep state to the first working state, further including:
- the main control microcontroller receives the first external interrupt signal and performs AD acquisition;
- the external interrupt signal includes a second external interrupt signal
- the main control microcontroller receives the second external interrupt signal to communicate with the communication module and/or the motor control module.
- the second external interrupt signal includes a first communication interrupt signal and a second communication interrupt signal.
- the main control microcontroller receives the second external interrupt signal and communicates with the communication module and/or motor control module, further including:
- the main control microcontroller receives the first communication interruption signal and communicates with the communication module;
- the main control microcontroller receives the second communication interruption signal and communicates with the motor control module.
- the method further includes:
- the motor microcontroller enters the second deepest sleep state when not processing work
- the motor microcontroller receives the first external interrupt signal and controls the operation of the motor and/or compass;
- the motor microcontroller receives the second external interrupt signal and communicates with the main control microcontroller and/or the compass.
- the method further includes:
- the first comparison circuit detects whether the voltage of the first battery is greater than the switching reference voltage, and the value range of the switching reference voltage is the corresponding voltage value range when the first battery has 20%-30% remaining power;
- the first comparison circuit detects that the voltage of the first battery is greater than the switching reference voltage, the first battery continues to work and the second battery does not start;
- the first comparison circuit detects that the voltage of the first battery is less than the switching reference voltage, the first battery Continue to work, the second battery starts working.
- a compass bird control device includes:
- the main control microcontroller enters the first deep sleep state when not processing work.
- the main control microcontroller switches from the first deep sleep state to the first working state after receiving an external interrupt signal;
- the communication module includes a communication demodulation module.
- the communication demodulation module is connected to the main control microcontroller and is used to demodulate the communication carrier signal of the host computer.
- the communication demodulation module includes a peak detection circuit and a data demodulation unit. The peak detection circuit detects Whether there is a communication carrier signal;
- the data demodulation unit does not start
- the data demodulation unit is started to demodulate the communication carrier signal, and the communication demodulation module sends the demodulated signal obtained by demodulation to the main control microcontroller.
- the main control microcontroller includes an AD acquisition module
- the external interrupt signal includes a first external interrupt signal
- the AD acquisition module is used to perform AD acquisition
- the external interrupt signal includes a second external interrupt signal
- the main control microcontroller receives the second external interrupt signal to communicate with the communication module and/or the motor control module.
- the motor control module includes a motor microcontroller, a motor and a compass.
- the motor and the compass are both connected to the motor microcontroller.
- the motor microcontroller enters the second deep sleep state when not processing work;
- the motor microcontroller receives the first external interrupt signal and controls the operation of the motor and/or compass;
- the motor microcontroller receives the second external interrupt signal and communicates with the main control microcontroller and/or the compass.
- control device further includes a power module, and a first trigger switch is connected in series between the power module and the data demodulation unit;
- the communication demodulation module also includes a pre-signal processing unit.
- the pre-signal processing unit is used to perform signal processing on the communication carrier signal before demodulation.
- the peak detection circuit and the data demodulation unit are both connected to the pre-signal processing unit;
- the peak detection circuit detects the communication carrier signal, the peak detection circuit outputs a first control level to trigger the first trigger switch to close to start the data demodulation unit.
- the pre-signal processing unit includes a network matching unit, a filter amplification unit connected to the network matching unit, and a differential amplification unit connected to the filter amplification unit.
- the peak detection circuit and the data demodulation unit are both connected to the differential amplification unit.
- the power module includes a battery pack and a power circuit
- the power circuit includes a battery switching circuit and an output circuit connected in series with the battery switching circuit
- the battery pack includes a first battery and a second battery, the second battery is connected in parallel with the first battery, and the first battery is connected to the output circuit;
- the battery switching circuit includes a first comparison circuit and a second trigger switch, the inverting input terminal of the first comparison circuit inputs the switching reference voltage, the non-inverting input terminal of the first comparison circuit is connected to the first battery, and the output terminal of the first comparison circuit is connected to The control end of the second trigger switch.
- the second battery is connected to the output circuit through the second trigger switch.
- the first comparison circuit is used to detect whether the voltage of the first battery is greater than the switching reference voltage.
- the value range of the switching reference voltage is the first battery. The corresponding voltage value range when the battery remaining is 20%-30%;
- the second trigger switch When the first comparison circuit detects that the voltage of the first battery is greater than the switching reference voltage, the second trigger switch is in an off state, the first battery continues to work, and the second battery does not start;
- the first comparison circuit When the first comparison circuit detects that the voltage of the first battery is less than the switching reference voltage, the first comparison circuit outputs a second control level to trigger the second trigger switch to close so that the second battery starts working.
- the power circuit further includes a bus circuit connected to the output circuit.
- the output circuit includes a first output branch and a second output branch. The input end of the first output branch is connected to the battery switching circuit, and the second output branch
- the circuit includes a second comparison circuit, a boost voltage stabilizing circuit and a third trigger switch. The non-inverting input terminal of the second comparison circuit is connected to the output terminal of the first output branch, and the inverting input terminal of the second comparison circuit inputs the start-up reference voltage.
- the output end of the second comparison circuit is connected to the control end of the third trigger switch, the battery switching circuit is connected to the boost voltage stabilizing circuit through the third trigger switch, and the second comparison circuit is used to detect whether the voltage of the battery switching circuit is greater than the turn-on reference voltage , the turn-on reference voltage is the output voltage value of the bus circuit;
- the third comparison circuit detects that the voltage of the battery switching circuit is greater than the turn-on reference voltage, the third The trigger switch is in the off state, and the boost voltage stabilizing circuit is not conducting;
- the second comparison circuit When the second comparison circuit detects that the voltage of the battery switching circuit is less than the start-up reference voltage, the second comparison circuit outputs a third control level to trigger the third trigger switch to close so that the boost voltage stabilizing circuit is turned on.
- the disclosed embodiments cancel the internal interrupt by controlling the main control microcontroller to enter the first deep sleep state when not processing work, and receiving an external interrupt signal through the main control microcontroller to switch from the first deep sleep state to the first working state. , so that the main control microcontroller can enter a deeper deep sleep to reduce the power of the main control microcontroller.
- the peak detection circuit is used to detect whether the signal in the communication demodulation module has a communication carrier signal, so as to control the on-off state of the data demodulation unit accordingly.
- the power consumption of the peak detection circuit is much less than the operating power consumption of the data demodulation unit.
- the setting of the peak detection circuit can prevent the data demodulation unit from running all the time, thereby reducing the power consumption of the communication demodulation module.
- the power consumption control method of the main control microcontroller and the communication demodulation module can greatly reduce the power consumption of the compass bird, and accordingly reduce the frequency of battery replacement of the compass bird, extend the underwater working time of the compass bird, and improve the operating efficiency of the compass bird. .
- Figure 1 shows a schematic flowchart of a compass bird control method provided by an embodiment of the present disclosure
- Figure 2 shows a schematic structural diagram of a compass bird control device provided by an embodiment of the present disclosure
- Figure 3 shows a schematic structural diagram of a communication demodulation module provided by an embodiment of the present disclosure
- Figure 4 shows a schematic structural diagram of a peak detection circuit provided by an embodiment of the present disclosure
- Figure 5 shows a schematic structural diagram of a motor control module provided by an embodiment of the present disclosure
- Figure 6 shows a schematic structural diagram of an H-bridge circuit provided by an embodiment of the present disclosure.
- FIG. 7 shows a schematic structural diagram of a power module provided by an embodiment of the present disclosure.
- the compass bird since the compass bird needs to deposit various parts of the tow cable to different depths, the compass bird is required to adjust the wing plate angle more frequently to maintain the depth, which results in an increase in the power consumption of the compass bird, causing the compass bird to The problem of frequent battery replacement.
- the existing compass bird mainly includes a main control module, a motor control module, a communication module and a power module.
- the total power of the compass bird is approximately 140mW, of which the power of the main control module and the communication module accounts for the majority.
- the communication demodulation module since it is impossible to know when the host computer sends the communication carrier signal, in order to prevent communication errors and leaks, even if the communication carrier signal of the host computer is not obtained, the data demodulation unit needs to be running all the time, causing data demodulation. Unit power consumption increases.
- the power module includes a first battery and a second battery, where the second battery is a backup battery.
- the power of the first battery is monitored by the main control microcontroller, and the switch of the second battery is controlled through the program. Since the main control microcontroller needs to continuously Monitoring the voltage of the first battery causes a waste of system resources of the main control microcontroller and increases power consumption.
- the inventor changed the internal interrupt mode of the main control single-chip computer and the motor single-chip computer to the external interrupt mode, causing the main control single-chip computer and the motor single-chip computer to enter deep sleep, so as to reduce the main control single-chip computer and the motor single-chip computer.
- the power consumption of the motor microcontroller is not limited to the above-mentioned reasons for the impact of power consumption discovered by the inventor.
- the inventor set up a detection circuit to detect whether a communication carrier signal enters, and then runs the data demodulation unit when a communication carrier signal is detected, thereby reducing the power consumption of the communication demodulation module.
- the inventor cancels the power monitoring of the first battery by the main control microcontroller and uses a detection circuit with lower power consumption to reduce the power consumption of the main control microcontroller.
- Figure 1 shows a flow chart of a compass bird control method provided by an embodiment of the present disclosure. The method includes the following steps:
- Step 110 Control the main control microcontroller to enter the first deep sleep state when not processing work.
- Step 120 The main control microcontroller receives an external interrupt signal and switches from the first deep sleep state to the first working state.
- Step 130 The peak detection circuit detects whether there is a communication carrier signal.
- Step 140 If the peak detection circuit does not detect the communication carrier signal, the data demodulation unit does not start.
- Step 150 If the peak detection circuit detects the communication carrier signal, the data demodulation unit is started to demodulate the communication carrier signal, and the communication demodulation module sends the demodulated signal obtained by demodulation to the main control microcontroller.
- the main control single-chip computer is controlled to enter the first deep sleep state when it is not processing work.
- the internal modules of the main control single-chip computer stop running, so that the main control single-chip computer enters the second layer and the third layer.
- a deeper level of sleep state is determined by the performance of the main control microcontroller itself.
- the main control microcontroller can enter up to the third level of sleep state, or in some embodiments, the main control microcontroller can enter up to the third level of sleep state.
- the main control MCU is MSP430F169.
- the main control MCU can enter the fourth level of sleep state, that is, low power consumption mode four.
- the current of the main control MCU is 0.1 ⁇ A, which is the same as when the main control MCU is in the active mode.
- the main control microcontroller is in low power consumption mode 4, which can greatly reduce the power consumption of the main control microcontroller.
- step 120 the internal interrupt mode of the main control microcontroller is cancelled, and the main control microcontroller needs to be triggered by an external interrupt signal to work.
- the main control microcontroller receives the external interrupt signal, and then switches from the first deep sleep state to the first working state.
- the frequency of the external interrupt signal is basically set to 2HZ.
- the external interrupt signal triggers to wake up the main control microcontroller every 0.5 seconds.
- the 0.5 seconds is the main control microcontroller in this embodiment. The minimum time interval for interaction with other modules.
- the main control microcontroller detects that there is work to be processed, At this time, it switches from the first deep sleep state to the first working state and starts processing work, such as processing temperature collection, depth collection, battery voltage, working current collection and other AD collection work. After processing the current work, continue to enter In the first deep sleep state, wait for the external interrupt signal to wake up and repeat the previous steps.
- the frequency of the external interrupt signal can also be 4HZ, and the interrupt wake-up interval is 0.25 seconds, or Alternatively, the frequency of the external interrupt signal can also be 1HZ. At this time, the interrupt wake-up interval is 1 second. It can be set as needed and is not limited here. Among them, when the frequency of the external interrupt signal is higher, the frequency of the main control microcontroller being awakened by interrupts is also higher, and the power consumption becomes correspondingly higher. When the frequency of the external interrupt signal is lower, the frequency of the main control microcontroller being awakened by interrupts is also higher. The lower it is, the lower the power consumption will be.
- the communication demodulation module is used to demodulate the communication carrier signal of the host computer.
- the communication carrier signal carries the communication signal sent by the host computer to indicate the compass bird. Information for corresponding control.
- the communication carrier signal is a sine wave
- the communication carrier signal sent by the host computer is an FSK modulated signal. When no signal is sent, it is a reference 0 level, so the carrier signal has a peak value during communication.
- the communication carrier signal may also be an ASK signal or a PSK signal, or the communication carrier signal may also be a pulse signal, as long as the communication carrier signal has periodic peak values.
- the peak detection circuit By setting the peak detection circuit to detect whether the signal in the communication demodulation module has a peak value, if the signal is detected to have a peak value, it is considered that the signal is a communication carrier signal sent by the host computer, and the peak detection circuit outputs a control level to control data communication
- the data demodulation unit in the demodulation module is powered on and started to demodulate the communication carrier signal. At this time, the communication carrier signal is demodulated to obtain a demodulated signal.
- the communication demodulation module sends the demodulated signal obtained by demodulation to the main control After the main control microcontroller receives the demodulation signal, it enters the first working state triggered by the external interrupt signal and processes the work accordingly according to the content in the demodulation signal.
- the content in the demodulation signal includes obtaining the compass bird heading information, depth information and indicate the depth of the compass bird diving into the water, etc.
- the main control microcontroller will control the compass to perform measurement work, the depth sensor to work, the motor to rotate, etc., and then the main control microcontroller will obtain the corresponding heading information, depth information, etc. through communication
- the modulation module modulates, the information is fed back to the host computer; if no peak value is detected, it is considered that the host computer did not send the communication carrier signal, and the data demodulation unit is in a power-off state and does not start.
- the power consumption of the peak detection circuit is much less than the operating power consumption of the data demodulation unit.
- the setting of the peak detection circuit can prevent the data demodulation unit from running all the time, thereby reducing the power consumption of the communication demodulation module, and roughly demodulating the communication
- the power of the module is reduced by 20mW.
- the above steps 110 to 150 can greatly reduce the power consumption of the compass bird, and correspondingly reduce the frequency of battery replacement of the compass bird, and prolong the underwater work of the compass bird. time, and improve the efficiency of compass bird operations.
- the external interrupt signal includes a first external interrupt signal
- step 120 further Steps include:
- Step a01 The main control microcontroller receives the first external interrupt signal and performs AD acquisition.
- the first external interrupt signal is an IO interrupt signal, not a communication interrupt signal.
- the first external interrupt signal triggers the main control microcontroller to switch from the first deep sleep state to enter the first working state to handle non-communication work.
- Mainly AD acquisition such as temperature acquisition, depth acquisition, battery voltage, working current acquisition, etc.
- AD acquisition that is, AD acquisition that converts the analog signals of the depth sensor, temperature sensor, battery module voltage, and working current into digital signals, and then The main control microcontroller feeds back the digital information collected by the AD to the host computer.
- the frequency of the first external interrupt signal is 2HZ.
- the external interrupt signal also includes a second external interrupt signal
- steps 110 and 120 further include:
- Step a02 The main control microcontroller receives the second external interrupt signal and communicates with the communication module and/or the motor control module 300.
- the second external interrupt signal is a communication interruption signal, which is used to trigger the main control microcontroller to communicate with other modules, including communicating with the communication module and/or motor control module.
- the main control microcontroller Carry out communication work.
- the frequency of the second external interrupt signal is the same as the frequency of the first external interrupt signal, which is 2HZ. It can also be different from the frequency of the first external interrupt signal. It can be set as needed and is not limited here.
- the first external interrupt signal and the second external interrupt signal can trigger the main control microcontroller to perform corresponding work at the same time, or the first external interrupt signal and the second external interrupt signal can not trigger the main control microcontroller to perform corresponding work at the same time, which can be set as needed. , no limitation is made here.
- the second external interrupt signal includes a first communication interrupt signal and a second communication interrupt signal
- step a02 further includes:
- Step a021 The main control microcontroller receives the first communication interruption signal and communicates with the communication module.
- Step a022 The main control microcontroller receives the second communication interruption signal and communicates with the motor control module.
- the first communication interruption signal is used to trigger communication interaction between the main control microcontroller and the communication module, including communication between the main control microcontroller and the communication module and communication between the main control microcontroller and the communication modulation module.
- the main control microcontroller communicates with the communication demodulation module to obtain communication instructions from the host computer.
- the control microcontroller communicates with the communication modulation module to send relevant feedback information to the upper computer.
- the frequency of the first communication interruption signal is determined by the sending time of the host computer.
- the 2HZ interruption frequency does not serve the first communication interruption, that is, when the data demodulation unit starts After demodulating the communication carrier signal, the communication demodulation module sends the demodulated signal to the main control microcontroller and triggers the main control microcontroller to work at the same time.
- the frequency of the first communication interruption signal can be configured as 2HZ.
- the second communication interruption signal is used to trigger the communication between the main control microcontroller and the motor control module.
- the frequency of the second communication interruption signal can be configured to be the same as the frequency of the first external interrupt signal.
- the main control microcontroller and the motor The time interval for communication interaction of the control module is 0.5 seconds, so the frequency of the second communication interruption signal is configured as 2HZ.
- the frequency of the second communication interruption signal can also be different from that of the first external interruption signal, and is set as needed , no limitation is made here.
- the main control microcontroller can communicate with the communication demodulation module and the motor control module at the same time, or it can communicate with the communication demodulation module and the motor control module at staggered times. It can be set according to the needs, which is not limited here.
- the compass bird control method further includes:
- Step 210 The motor microcontroller enters the second deep sleep state when it is not processing work.
- Step 220 The motor microcontroller receives the first external interrupt signal and controls the operation of the motor and/or compass;
- the motor microcontroller receives the second external interrupt signal and communicates with the main control microcontroller and/or the compass.
- the control method for the motor MCU is similar to the above-mentioned main control MCU. It also controls the motor MCU to enter the second deep sleep state when it is not processing work, so that the motor MCU enters the second layer, the third layer or deeper.
- the motor microcontroller can enter the fourth level of sleep state to greatly reduce the power consumption of the motor microcontroller.
- the first external interrupt signal and/or the second external interrupt signal can trigger the microcontroller to switch from the second deep sleep state to the second working state, where the first external interrupt signal triggers the microcontroller to control the motor and/or
- the first external interrupt signal triggers the microcontroller to control the motor for depth control
- the motor microcontroller of the compass bird where the part is located will control the motor rotation accordingly.
- the microcontroller of the trigger generator controls the compass to perform heading measurement work.
- the compass work lasts about 600mS each time.
- the wake-up work The duration is about 10mS, and 2S is used for one acquisition.
- the motor single-chip microcomputer can control the operation of the motor and the compass at the same time, and the motor single-chip microcomputer can also control the operation of the motor and the compass separately at staggered times. It can be set according to the needs, and there is no limit here.
- the second external interrupt signal can trigger the motor microcontroller to communicate with the main control microcontroller and the compass at the same time, or the motor microcontroller communicates with the main control microcontroller and the compass respectively at staggered times. It can be set as needed and is not limited here.
- the first external interrupt signal and the second external interrupt signal may trigger the microcontroller to perform corresponding work at the same time, or they may not trigger the microcontroller to perform corresponding work at the same time. They are set as needed and are not limited here.
- the compass bird control method further includes:
- Step 310 The first comparison circuit detects whether the voltage of the first battery is greater than the switching reference voltage.
- the value range of the switching reference voltage is the corresponding voltage value range when the first battery has 20%-30% remaining power.
- Step 320 When the first comparison circuit detects that the voltage of the first battery is greater than the switching reference voltage, the first battery continues to work and the second battery does not start;
- Step 330 When the first comparison circuit detects that the voltage of the first battery is less than the switching reference voltage, the first battery continues to operate and the second battery starts to operate.
- both the first battery and the second battery are lithium batteries.
- the voltage of the first battery is about 7.4V.
- the power of the first battery has been used up 70%-80%, and only 20%-30% is left. At this time, the power of the first battery is about to be exhausted.
- the backup battery needs to be enabled, that is, the second battery The battery continues to provide power to the compass bird for operation.
- the first comparison circuit to detect whether the voltage of the first battery is greater than 4.5V
- the 4.5V is the switching reference voltage to monitor whether the power of the first battery is sufficient to ensure the normal operation of the compass bird.
- the switching reference voltage is determined according to the usage requirements of the first battery, and is not limited here.
- the working current of the first comparison circuit is picoamp level current, and the corresponding working power is very small. Therefore, the power consumption of the first comparison circuit at this time is very low, or even negligible. Compared with using the main control microcontroller to measure the battery power, For the detected power consumption, the use of the first comparison circuit can greatly reduce the power consumption of the main control microcontroller.
- Step 320 is when the first comparison circuit detects that the voltage of the first battery is greater than the switching reference voltage, it means that the power of the first battery is still sufficient for the operation of the compass bird, and there is no need to start the second battery at this time.
- Step 330 is when the first comparison circuit detects that the voltage of the first battery is less than the switching reference voltage, it means that the power of the first battery is low, which may easily affect the normal operation of the compass bird. In order to ensure the normal operation of the compass bird, it is necessary to start the second battery at this time. Battery to increase the battery life of the compass bird.
- FIG. 2 is a schematic structural diagram of a compass bird control device provided by an embodiment of the present disclosure.
- the control device mainly includes a main control module 100 and a communication module 200 connected to the main control module 100.
- the main control module 100 includes a main control single-chip computer 101.
- the main control single-chip computer 101 enters the first deep sleep state when not processing work.
- the main control single-chip computer 101 switches from the first deep sleep state to the first working state after receiving an external interrupt signal.
- the communication module 200 includes a communication demodulation module 201.
- the communication demodulation module 201 is connected to the main control microcontroller 101 and is used to demodulate the communication carrier signal of the host computer.
- the communication demodulation module 201 includes a peak detection circuit. 2016 and the data demodulation unit 2015, the peak detection circuit 2016 detects whether there is a communication carrier signal; if the peak detection circuit 2016 does not detect the communication carrier signal, the data demodulation unit 2015 does not start; if the peak detection circuit 2016 detects the communication carrier signal , then the data demodulation unit 2015 starts to demodulate the communication carrier signal, and the communication demodulation module 201 sends the demodulated signal obtained by demodulation to the main control microcontroller 101 .
- the main control single-chip computer 101 includes an AD acquisition module.
- the AD acquisition module is used to perform AD acquisition.
- the first external interrupt signal triggers the main control single-chip computer 101 to perform AD acquisition through the AD acquisition module, where, The AD acquisition module is used to convert the analog signals of the depth sensor 500, the temperature sensor 600, and the voltage and operating current of the battery module into digital signals.
- control device also includes a motor control module connected to the main control module 100. 300.
- the main control microcontroller 101 receives the second external interrupt signal and communicates with the communication module 200 and/or the motor control module.
- the motor control module 300 includes a motor MCU 301, a motor M and a compass 302.
- the motor M and the compass 302 are both connected to the motor MCU 301.
- the motor MCU 301 enters the second deep sleep state when not processing work.
- the first The external interrupt signal and/or the second external interrupt signal can trigger the microcontroller 301 to switch from the second deep sleep state to the second working state.
- the first external interrupt signal triggers the generator MCU 301 to control the operation of the motor M and/or the compass 302; and/or the second external interrupt signal triggers the generator MCU 301 to communicate with the main control MCU 101 and/or the compass 302.
- the motor control module 300 also includes a control unit 303, a boost unit 304, an H-bridge circuit 305 and an optoelectronic isolation unit 306.
- the control unit 303 and the optoelectronic isolation unit 306 are both connected to the motor microcontroller 301, and the voltage boost unit
- the unit 304 is connected to the control unit 303 and to the H-bridge circuit 305.
- the photoelectric isolation unit 306 is connected to the H-bridge circuit 305.
- the H-bridge circuit 305 is connected to the motor M to drive the motor M to rotate.
- FIG. 6 it is a schematic diagram of the specific circuit structure of the H-bridge circuit.
- VCC is the positive pole in the circuit, which is the power supply voltage of the circuit.
- Q1 to Q10 are all MOS tubes.
- the H-bridge circuit is composed of discrete MOS tubes, and is mainly composed of two driving MOS tubes Q7 and Q8 to form a half bridge.
- the MOS tube model of Q7 is FDC6506, and the MOS tube model of Q8 is FDC6561. After being boosted by the boosting unit, the on-resistance of FDC6561 is only 95m ⁇ at a turn-on voltage of 10V, and the maximum continuous operating current is 2.5A.
- the on-resistance of FDC6506 is 170m ⁇ , and the maximum continuous operating current is 1.8A. Therefore, when the motor M is running, the internal resistance of the H-bridge circuit is very small, about 200m ⁇ . The power dissipated by the motor M at an operating current of 100mA is about 2mW. Therefore, the power consumption of the H-bridge circuit built with discrete components is greatly reduced. reduce.
- the communication module 200 also includes a communication modulation module 202.
- the communication modulation module 202 is connected to the main control microcontroller 101 and is used to modulate the feedback signal of the main control microcontroller 101 and send it to the host computer.
- the communication demodulation module 201 also includes a pre-signal processing unit 2011.
- the pre-signal processing unit 2011 is used to perform signal processing on the communication carrier signal before demodulation.
- the peak detection circuit 2016 and the data demodulation unit 2015 both Connected to the pre-signal processing unit 2011, the peak detection circuit 2016 Detect whether there is a communication carrier signal.
- the pre-signal processing unit 2011 includes a network matching unit 2012, a filter amplification unit 2013 connected to the network matching unit 2012, a differential amplification unit 2014 connected to the filter amplification unit 2013, a peak detection circuit 2016 and data demodulation.
- the units 2015 are all connected to the differential amplification unit 2014.
- the control device also includes a power module 400 connected to the main control module 100.
- a first trigger switch 10 is connected in series between the power module 400 and the data demodulation unit 2015. If the peak detection circuit 2016 does not detect communication Carrier signal, at this time, the first trigger switch 10 is in the off state, then there is no conduction between the data demodulation unit 2015 and the power module 400, and thus it does not start; if the peak detection circuit 2016 detects the communication carrier signal, the peak detection circuit 2016 detects the communication carrier signal. The circuit 2016 outputs the first control level to trigger the first trigger switch 10 to close.
- the power module 400 and the control data demodulation unit 2015 are started to demodulate the communication carrier signal and send the demodulation signal to the main control microcontroller 101, where,
- the first control level can be high level or low level, and can be set as needed.
- R1 to R9 are resistors
- C1 to C5 are capacitors
- CR1 is a diode
- D1 is a Schottky diode
- VCC is the positive pole in the circuit, which is the power supply voltage of the circuit.
- VREF is 2.5V
- U1 and U2 are both comparison circuits.
- C1 and CR1 constitute the communication analog signal envelope signal
- U1, R4 and C2 constitute a low-pass filter and reverse output of the envelope signal.
- the forward output of the envelope signal is composed of U2 and associated discrete components.
- C1 is connected to the differential amplifier unit 2014, and the output end of U2 is connected to the first trigger switch 10. If the peak detection circuit 2016 detects the communication carrier signal, U2 outputs the first control level to trigger the first trigger switch 10 to close, so that the data Demodulation unit 2015 is activated to demodulate the communication carrier signal.
- the power module 400 includes a battery pack 401 and a power circuit 402 .
- the power circuit 402 includes a battery switching circuit 403 , an output circuit 404 connected in series with the battery switching circuit 403 , and a bus circuit 405 connected in series with the output circuit 404 .
- the battery pack 401 includes a first battery A and a second battery B.
- the second battery B is connected in parallel with the first battery A.
- the first battery A is connected to the output circuit 404 .
- the battery switching circuit 403 includes a first comparison circuit 4031 and a second trigger switch 20.
- the inverting input terminal of the first comparison circuit 4031 inputs the switching reference voltage.
- the non-inverting input terminal of the first comparison circuit 4031 is connected to the first battery A.
- the first The output end of the comparison circuit 4031 is connected to the second trigger switch 20 Control terminal.
- the second battery B is connected to the output circuit 404 through the second trigger switch 20 .
- the second trigger switch 20 When the first comparison circuit 4031 detects that the voltage of the first battery A is greater than the replacement reference voltage, the second trigger switch 20 is in an off state, the first battery A continues to work, and the second battery B does not start.
- the first comparison circuit 4031 When the first comparison circuit 4031 detects that the voltage of the first battery A is less than the switching reference voltage, the first comparison circuit 4031 outputs a second control level to trigger the second trigger switch 20 to close so that the second battery B starts working.
- the switching reference voltage in the first comparison circuit 4031 is 4.5V, so that the first comparison circuit 4031 can determine whether the voltage of the first battery A is greater than 4.5V based on the switching reference voltage, and control the second battery A accordingly. Whether battery B is started.
- the switching reference voltage is provided by the voltage of the shunt circuit or by an ultra-low power reference power chip, where the current in the shunt circuit is picoamp level, so the power of the shunt circuit is negligible.
- the second control level can be a high level or a low level, which can be set as needed, and is not limited here.
- the first comparison circuit 4031 may output the second control level to control the second battery B to start, or may not output the second control level so that the second battery B starts. Battery B does not start.
- the power circuit 402 also includes a bus circuit 405 connected to the output circuit 404.
- the output circuit 404 includes a first output branch and a second output branch.
- the input end of the first output branch is connected to the battery switching circuit 403.
- the second output branch includes a second comparison circuit 4041, a boost voltage stabilizing circuit 4042 and a third trigger switch 30.
- the non-inverting input end of the second comparison circuit 4041 is connected to the output end of the first output branch.
- the second comparison circuit The inverting input terminal of 4041 inputs the start-up reference voltage, the output terminal of the second comparison circuit 4041 is connected to the control terminal of the third trigger switch 30, the battery switching circuit 403 is connected to the boost voltage stabilizing circuit 4042 through the third trigger switch 30, and the second The comparison circuit 4041 is used to detect whether the voltage of the battery switching circuit 403 is greater than the turn-on reference voltage.
- the turn-on reference voltage is the output voltage value of the bus circuit 405.
- the third trigger switch 30 When the second comparison circuit 4041 detects that the voltage of the battery switching circuit 403 is greater than the start-up reference voltage, the third trigger switch 30 is in an off state, and the boost voltage stabilizing circuit 4042 is not conductive;
- the second comparison circuit 4041 When the second comparison circuit 4041 detects that the voltage of the battery switching circuit 403 is less than the start-up reference voltage, the second comparison circuit 4041 outputs the third control level to trigger the third trigger switch 30 to close, causing the boost voltage stabilizing circuit 4042 to turn on to output the Turn on the same voltage value as the reference voltage.
- the turn-on reference voltage in the second comparison circuit 4041 of the output circuit 404 is 6V, which is provided by the voltage of the bus circuit 405, so that the second comparison circuit 4041 can determine the battery switching circuit based on the turn-on reference voltage. Whether the voltage of 403 is greater than 6V, to correspondingly control whether the boost voltage stabilizing circuit 4042 is started.
- the voltage boosting and stabilizing circuit 4042 boosts the voltage to output a voltage of 6V.
- the third control level can be high level or low level, and can be set as needed, and is not limited here.
- the turn-on reference voltage is 7V or 8V or other voltage values, which is not limited here.
- the bus circuit 405 includes a step-down voltage stabilizing circuit 4051, which is connected in series with the output circuit 404 to step down the voltage of the output circuit 404 to 6V for the operation of other modules.
- the boost voltage stabilizing circuit 4042 adopts the existing boost chip configuration
- the buck stabilizing circuit 4051 adopts the existing buck chip configuration.
- the general energy conversion efficiency of the boost chip is at most 85%
- the buck stabilizing circuit 4051 adopts the existing buck chip configuration.
- the energy conversion efficiency of the chip is as high as over 90%, which can effectively reduce the voltage conversion power consumption of the power circuit 402, further reduce the power consumption of the compass bird, and reduce unnecessary energy consumption by at least 10%.
- modules in the devices in the embodiment can be adaptively changed and arranged in one or more devices different from the embodiment.
- the modules or units or components in the embodiments may be combined into one module or unit or component, and they may be divided into multiple sub-modules or sub-units or sub-components. Except that at least some of such features and/or processes or elements are mutually exclusive, any combination may be used to make this specification (including the accompanying rights All features disclosed in the requirements, abstract and drawings) and all processes or units of any method or apparatus so disclosed are combined.
- Each feature disclosed in this specification may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一种罗经鸟控制方法及控制装置,该方法包括:主控单片机在不处理工作时进入第一深度休眠状态;主控单片机接收外部中断信号后,从第一深度休眠状态切换至第一工作状态;峰值检测电路检测是否有通信载波信号;若峰值检测电路未检测到通信载波信号,则数据解调单元不启动;若峰值检测电路检测到通信载波信号,则数据解调单元启动以解调通信载波信号,通信解调模块将解调得到的解调信号发送给主控单片机。
Description
相关申请的交叉参考
本申请要求于2022年5月24日提交中国专利局、申请号为2022105703366、名称为“罗经鸟控制方法及控制装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本公开属于勘测技术领域,具体涉及一种罗经鸟控制方法及控制装置。
随着海洋石油勘探技术逐渐向宽频、宽方位的方向发展,勘探系统要求检波器具有更加精确的定位能力。按照不同深度布置的地震检波器,采集到宽频信息的地震波数据可以得到更丰富的地层成像图,对地质数据解释和油气勘探具有重要意义。然而,如果检波器不能精确稳定的沉放到不同的深度,得到的地层数据无法连续成像,甚至可能得到的数据不可信。因此要进行宽频的地质剖面数据采集分析,不仅需要提高检波器的宽频特性,还需要对拖曳电缆深度进行精确的控制。其中,通过罗经鸟对拖曳电缆不同部位进行深度控制,要求罗经鸟有较强的深度维持能力和快速反应能力,不同深度的沉放需求需要罗经鸟更加频繁的进行翼板角度调整来维持深度,这就造成了罗经鸟功耗的增加,导致罗经鸟电池更换比较频繁。
因此,有必要设计一种罗经鸟控制方法及控制装置,以克服上述问题。
发明内容
发明内容
鉴于上述问题,本公开实施例提供了一种罗经鸟控制方法及控制装置,用于解决现有技术中存在的罗经鸟功耗较大的问题。
根据本公开实施例的第一方面,提供了一种罗经鸟控制方法,该方法包括:
主控单片机在不处理工作时进入第一深度休眠状态;
主控单片机接收外部中断信号后,从第一深度休眠状态切换至第一工作状态;
峰值检测电路检测是否有通信载波信号;
若峰值检测电路未检测到通信载波信号,则数据解调单元不启动;
若峰值检测电路检测到通信载波信号,则数据解调单元启动以解调通信载波信号,通信解调模块将解调得到的解调信号发送给主控单片机。
在一些实施例中,外部中断信号包括第一外部中断信号,主控单片机接收外部中断信号,从第一深度休眠状态切换至第一工作状态,进一步包括:
主控单片机接收第一外部中断信号,进行AD采集;
和/或,外部中断信号包括第二外部中断信号,主控单片机接收第二外部中断信号,与通信模块和/或电机控制模块通信。
在一些实施例中,第二外部中断信号包括第一通信中断信号和第二通信中断信号,主控单片机接收第二外部中断信号,与通信模块和/或电机控制模块通信,进一步包括:
主控单片机接收第一通信中断信号,与通信模块通信;
主控单片机接收第二通信中断信号,与电机控制模块通信。
在一些实施例中,该方法还包括:
电机单片机在不处理工作时进入第二深度休眠状态;
电机单片机接收第一外部中断信号,控制电机和/或罗盘工作;
和/或,电机单片机接收第二外部中断信号,与主控单片机和/或罗盘通信。
在一些实施例中,该方法还包括:
第一比较电路检测第一电池的电压是否大于切换参考电压,切换参考电压的取值范围为第一电池电量剩余20%-30%时对应的电压值范围;
当第一比较电路检测到第一电池的电压大于切换参考电压,则第一电池继续工作,第二电池不启动;
当第一比较电路检测到第一电池的电压小于切换参考电压,则第一电池
继续工作,第二电池启动工作。
根据本公开实施例的第一方面,提供了一种罗经鸟控制装置,该控制装置包括:
主控单片机,主控单片机在不处理工作时进入第一深度休眠状态,主控单片机接收外部中断信号后从第一深度休眠状态切换至第一工作状态;
通信模块,包括通信解调模块,通信解调模块与主控单片机连接并用于将上位机的通信载波信号进行解调处理,通信解调模块包括峰值检测电路和数据解调单元,峰值检测电路检测是否有通信载波信号;
若峰值检测电路未检测到通信载波信号,则数据解调单元不启动;
若峰值检测电路检测到通信载波信号,则数据解调单元启动以解调通信载波信号,通信解调模块将解调得到的解调信号发送给主控单片机。
在一些实施例中,主控单片机包括AD采集模块,外部中断信号包括第一外部中断信号,主控单片机接收第一外部中断信号时,AD采集模块用于进行AD采集;
和/或,外部中断信号包括第二外部中断信号,主控单片机接收第二外部中断信号,与通信模块和/或电机控制模块通信。
在一些实施例中,电机控制模块包括电机单片机、电机和罗盘,电机和罗盘均与电机单片机连接,电机单片机在不处理工作时进入第二深度休眠状态;
电机单片机接收第一外部中断信号,控制电机和/或罗盘工作;
和/或,电机单片机接收第二外部中断信号,与主控单片机和/或罗盘通信。
在一些实施例中,控制装置还包括电源模块,电源模块与数据解调单元之间串联有第一触发开关;
通信解调模块还包括前置信号处理单元,前置信号处理单元用于将通信载波信号进行解调前信号处理,峰值检测电路和数据解调单元均与前置信号处理单元连接;
若峰值检测电路检测到通信载波信号,则峰值检测电路输出第一控制电平触发第一触发开关闭合以使数据解调单元启动。
在一些实施例中,前置信号处理单元包括网络匹配单元、与网络匹配单元连接的滤波放大单元、与滤波放大单元连接的差分放大单元,峰值检测电路和数据解调单元均差分放大单元连接。
在一些实施例中,电源模块包括电池组和电源电路,电源电路包括电池切换电路和与电池切换电路串联的输出电路;
电池组包括第一电池和第二电池,第二电池与第一电池并联,第一电池连接至输出电路;
电池切换电路包括第一比较电路和第二触发开关,第一比较电路的反相输入端输入切换参考电压,第一比较电路的正相输入端连接第一电池,第一比较电路的输出端连接第二触发开关的控制端,第二电池通过第二触发开关连接至输出电路,第一比较电路用于检测第一电池的电压是否大于切换参考电压,切换参考电压的取值范围为第一电池电量剩余20%-30%时对应的电压值范围;
当第一比较电路检测到第一电池的电压大于切换参考电压,则第二触发开关处于断开状态,第一电池继续工作,第二电池不启动;
当第一比较电路检测到第一电池的电压小于切换参考电压,则第一比较电路输出第二控制电平触发第二触发开关闭合使得第二电池启动工作。
在一些实施例中,电源电路还包括与输出电路连接的总线电路,输出电路包括第一输出支路和第二输出支路,第一输出支路的输入端连接电池切换电路,第二输出支路包括第二比较电路、升压稳压电路和第三触发开关,第二比较电路的正相输入端连接第一输出支路的输出端,第二比较电路的反相输入端输入开启参考电压,第二比较电路的输出端连接第三触发开关的控制端,电池切换电路通过第三触发开关连接至升压稳压电路,第二比较电路用于检测电池切换电路的电压是否大于开启参考电压,开启参考电压为总线电路的输出电压值;
当第二比较电路检测到电池切换电路的电压大于开启参考电压,则第三
触发开关处于断开状态,升压稳压电路不导通;
当第二比较电路检测到电池切换电路的电压小于开启参考电压,则第二比较电路输出第三控制电平触发第三触发开关闭合使得升压稳压电路导通。
本公开实施例通过控制主控单片机在不处理工作时进入第一深度休眠状态,并通过主控单片机接收外部中断信号,从第一深度休眠状态切换至第一工作状态,取消了内部中断的方式,从而使得主控单片机可以进入更深层次的深度休眠,以降低主控单片机的功率。此外,通过峰值检测电路检测在通信解调模块中的信号是否有通信载波信号,以相应控制数据解调单元的通断状态。其中,峰值检测电路的功耗大大小于数据解调单元的运行功耗,该峰值检测电路的设置可避免数据解调单元一直运行,从而降低通信解调模块的功耗。该主控单片机以及通信解调模块的功耗控制方法,可以较大降低罗经鸟的功耗,并相应减少罗经鸟更换电池的频率,延长罗经鸟的水下工作时间,以及提高罗经鸟作业效率。
上述说明仅是本公开实施例技术方案的概述,为了能够更清楚了解本公开实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本公开实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图概述
附图仅用于示出实施方式,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了本公开实施例提供的罗经鸟控制方法的流程示意图;
图2示出了本公开实施例提供的罗经鸟控制装置的结构示意图;
图3示出了本公开实施例提供的通信解调模块的结构示意图;
图4示出了本公开实施例提供的峰值检测电路的结构示意图;
图5示出了本公开实施例提供的电机控制模块的结构示意图;
图6示出了本公开实施例提供的H桥电路的结构示意图;以及
图7示出了本公开实施例提供的电源模块的结构示意图。
附图标记说明:
100、主控模块;101、主控单片机;
200、通信模块;201、通信解调模块;2011、前置信号处理单元;2012、
网络匹配单元;2013、滤波放大单元;2014、差分放大单元;2015、数据解调单元;2016、峰值检测电路;202、通信调制模块;
300、电机控制模块;301、电机单片机;302、罗盘;303、控制单元;
304、升压单元;305、H桥电路;306、光电隔离单元;
400、电源模块;401、电池组;402、电源电路;403、电池切换电路;
4031、第一比较电路;404、输出电路;4041、第二比较电路;4042、升压稳压电路;405、总线电路;4051、降压稳压电路;
500、深度传感器;
600、温度传感器;
10、第一触发开关;20、第二触发开关;30、第三触发开关;
A、第一电池;
B、第二电池;
M、电机。
100、主控模块;101、主控单片机;
200、通信模块;201、通信解调模块;2011、前置信号处理单元;2012、
网络匹配单元;2013、滤波放大单元;2014、差分放大单元;2015、数据解调单元;2016、峰值检测电路;202、通信调制模块;
300、电机控制模块;301、电机单片机;302、罗盘;303、控制单元;
304、升压单元;305、H桥电路;306、光电隔离单元;
400、电源模块;401、电池组;402、电源电路;403、电池切换电路;
4031、第一比较电路;404、输出电路;4041、第二比较电路;4042、升压稳压电路;405、总线电路;4051、降压稳压电路;
500、深度传感器;
600、温度传感器;
10、第一触发开关;20、第二触发开关;30、第三触发开关;
A、第一电池;
B、第二电池;
M、电机。
本公开的较佳实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。
针对现有技术中,由于罗经鸟需要对拖缆各部位进行不同深度沉放,要求罗经鸟更加频繁的进行翼板角度调整来维持深度,这就造成了罗经鸟功耗的增加,导致罗经鸟电池更换比较频繁的问题。
发明人发现,现有的罗经鸟中主要包括主控模块、电机控制模块、通信模块和电源模块,罗经鸟总功率大致为140mW,其中,主控模块和通信模块的功率占其中大部分。
发明人通过分析发现,主控模块中主控单片机采用内部中断方式唤醒主控单片机工作,而采用内部中断方式,此时主控单片机的计时器以及定时器等还在工作,主控单片机处于第一层级休眠,无法进入更深层次的休眠使得主控单片机的休眠程度较浅,此时其他工作进程(如通讯功能以及数据采集控制等)仍处于待机状态,并未彻底关闭,导致主控单片机即使处于休眠状态,也有较大的功耗。同理,电机控制模块中的电机单片机也是采用内部中断方式,也具有较大的功耗。
通信解调模块中,由于无法得知上位机何时发送通信载波信号,为防止通讯错漏,因此,即使没有获取到上位机的通信载波信号,也需要一直运行数据解调单元,造成数据解调单元功耗增加。
此外,电源模块包括第一电池和第二电池,其中第二电池为备用电池,第一电池的电量通过主控单片机监测,并通过程序控制第二电池打开的开关,由于主控单片机需要不断的监视第一电池的电压,造成了主控单片机系统资源的浪费,而且还增加了功耗。
因此,针对上述发明人发现的功耗影响原因,发明人通过将主控单片机以及电机单片机的内部中断方式改为外部中断方式,使得主控单片机以及电机单片机进入深度休眠,以降低主控单片机以及电机单片机的功耗。
以及针对通信解调模块,发明人通过设置检测电路检测是否有通信载波信号进入,当检测到有通信载波信号进入时再运行数据解调单元,从而降低通信解调模块的功耗。
此外,针对电源模块,发明人取消主控单片机对第一电池的电量监测,而采用功耗较低的检测电路检测,以降低主控单片机的功耗。
具体实施例如下:
图1示出了本公开实施例提供的罗经鸟控制方法的流程图,该方法包括以下步骤:
步骤110:控制主控单片机在不处理工作时进入第一深度休眠状态。
步骤120:主控单片机接收外部中断信号,从第一深度休眠状态切换至第一工作状态。
步骤130:峰值检测电路检测是否有通信载波信号。
步骤140:若峰值检测电路未检测到通信载波信号,则数据解调单元不启动。
步骤150:若峰值检测电路检测到通信载波信号,则数据解调单元启动以解调通信载波信号,通信解调模块将解调得到的解调信号发送给主控单片机。
其中,步骤110中,控制主控单片机在不处理工作时进入第一深度休眠状态,此时,主控单片机的内部各模块停止运行,从而可以使得主控单片机进入了第二层、第三层或者更深层级的休眠状态,由主控单片机本身的性能确定,如在一些实施例中,主控单片机最多可进入第三层级的休眠状态,或者在一些实施例中,主控单片机最多可进入第四层级的休眠状态。本实施例中,主控单片机为MSP430F169,主控单片机可以进入第四层级的休眠状态,即低功耗模式四,此时主控单片机的电流为0.1μA,与主控单片机处于活动模式时的电流340μA相比,主控单片机处于低功耗模式四可以较大程度降低主控单片机的功耗。
步骤120中,取消了主控单片机的内部中断方式,需要通过外部中断信号触发主控单片机进行工作,此时,主控单片机接收外部中断信号,而后从第一深度休眠状态切换至第一工作状态,本实施例中,外部中断信号的频率基本设为2HZ,此时,相应地,该外部中断信号每隔0.5秒即触发唤醒主控单片机处理工作,该0.5秒为本实施例中主控单片机与其他模块交互的最小时间间隔,当主控单片机被触发唤醒时,若主控单片机未检测到有工作待处理,则继续进入第一深度休眠状态,若主控单片机检测发现有工作待处理,此时则从第一深度休眠状态切换至第一工作状态,开始处理工作,如处理温度采集、深度采集、电池电压、工作电流采集等AD采集工作,当处理完目前的工作后,则继续进入第一深度休眠状态,等待外部中断信号唤醒,重复前述步骤。本实施例中,AD采集每次工作时长为140mS,0.5S唤醒时不进行采集时,唤醒工作时长约10mS,如果采用设定2S进行一次采集,工作占空比为(140mS+20mS)/2S=8%,功耗降低比例为92%。在其他实施例中,外部中断信号的频率也可以为4HZ,此时中断唤醒的时间间隔则为0.25秒,或
者,外部中断信号的频率也可以为1HZ,此时中断唤醒的时间间隔则为1秒,根据需要设置,在此不做限定。其中,当外部中断信号的频率越高,则主控单片机被中断唤醒的频率也越高,则功耗相应变高,当外部中断信号的频率越低,则主控单片机被中断唤醒的频率也越低,则功耗相应变低。
步骤130至步骤150中,针对通信模块中的通信解调模块,通信解调模块用于将上位机的通信载波信号进行解调处理,该通信载波信号载有上位机发送的用于指示罗经鸟进行相应控制的信息,本实施例中,该通信载波信号为正弦波,上位机发送的通信载波信号为FSK调制信号,当没有信号发送时为参考0电平,因此通信时载波信号具有峰值。在其他实施例中,通信载波信号也可以是ASK信号或PSK信号,或者通信载波信号也可以是脉冲信号,只要通信载波信号具有周期性的峰值即可。
通过设置峰值检测电路检测在通信解调模块中的信号是否具有峰值,若检测到该信号具有峰值,则认为该信号为上位机发送的通信载波信号,则峰值检测电路输出控制电平控制数据通信解调模块中的数据解调单元通电并启动,以解调通信载波信号,此时通信载波信号经过解调后得到解调信号,通信解调模块将解调得到的解调信号发送给主控单片机,主控单片机收到该解调信号后,由外部中断信号触发进入第一工作状态,根据解调信号中的内容相应处理工作,其中解调信号中的内容包括获取罗经鸟航向信息、深度信息以及指示罗经鸟潜入水下的深度等等,则主控单片机相应控制罗盘进行测量工作、深度传感器进行工作以及电机转动等等,而后主控单片机将获取相应的航向信息、深度信息等经通信调制模块调制后信息反馈给上位机;若没有检测到峰值,则认为上位机并没有发送通信载波信号,则数据解调单元为断电状态而不启动。其中,峰值检测电路的功耗大大小于数据解调单元的运行功耗,该峰值检测电路的设置可避免数据解调单元一直运行,从而降低通信解调模块的功耗,大致可以将通信解调模块的功率降低了20mW。
上述步骤110至步骤150,通过对主控单片机以及通信解调模块的功耗控制方法,可以较大降低罗经鸟的功耗,并相应减少罗经鸟更换电池的频率,延长罗经鸟的水下工作时间,以及提高罗经鸟作业效率。
在一些实施例中,外部中断信号包括第一外部中断信号,步骤120进一
步包括:
步骤a01:主控单片机接收第一外部中断信号,进行AD采集。
其中,第一外部中断信号为IO中断信号,并不为通信中断信号,此时该第一外部中断信号触发主控单片机从第一深度休眠状态切换至进入第一工作状态,处理非通信工作,主要为AD采集,如温度采集、深度采集、电池电压、工作电流采集等AD采集,即是将深度传感器、温度传感器、电池模块的电压、工作电流的模拟信号转化为数字信号的AD采集,而后主控单片机将该进过AD采集后的数字信息反馈给上位机。本实施例中,第一外部中断信号的频率为2HZ。
在一些实施例中,外部中断信号还包括第二外部中断信号,步骤110和步骤120进一步还包括:
步骤a02:主控单片机接收第二外部中断信号,与通信模块和/或电机控制模块300通信。
其中,第二外部中断信号为通信中断信号,用于触发主控单片机与其他模块进行通信工作,包括与通信模块和/或电机控制模块通信,此时,在第一工作状态时,主控单片机进行通信工作。其中第二外部中断信号的频率与第一外部中断信号的频率相同即为2HZ,也可与第一外部中断信号的频率不同,根据需要设置,在此不做限定。
其中,第一外部中断信号和第二外部中断信号可以同时触发主控单片机进行相应工作,或者第一外部中断信号和第二外部中断信号也可以不同时触发主控单片机进行相应工作,根据需要设置,在此不做限定。
在一些实施例中,第二外部中断信号包括第一通信中断信号和第二通信中断信号,步骤a02进一步包括:
步骤a021:主控单片机接收第一通信中断信号,与通信模块通信。
步骤a022:主控单片机接收第二通信中断信号,与电机控制模块通信。
第一通信中断信号用于触发主控单片机与通信模块的通信交互,包括主控单片机与通信模块的通信解调模块通信以及主控单片机与通信调制模块通信。其中,主控单片机与通信解调模块通信以获取上位机的通信指令,主
控单片机与通信调制模块通信以向上位机发送相关反馈信息。其中,当主控单片机与通信解调模块通信时,第一通信中断信号的频率由上位机发送时间决定,此时,2HZ的中断频率不为第一通信中断服务,即当数据解调单元启动解调通信载波信号后,通信解调模块将解调得到的解调信号发送给主控单片机,并同时触发主控单片机工作。而当主控单片机与通信调制模块通信以向上位机发送相关反馈信息时,第一通信中断信号的频率可以配置为2HZ。
第二通信中断信号用于触发主控单片机与电机控制模块通信,此时可以将第二通信中断信号的频率配置为与第一外部中断信号的频率相同,本实施例中,主控单片机与电机控制模块通信交互的时间间隔为0.5秒,因此将第二通信中断信号的频率配置为2HZ,在其他实施例中,第二通信中断信号也可与第一外部中断信号的频率不同,根据需要设置,在此不做限定。
其中,主控单片机可以同时与通信解调模块和电机控制模块通信,也可以错开时间分别与通信解调模块和电机控制模块通信,根据需要设置,在此不做限定。
在一些实施例中,罗经鸟控制方法还包括:
步骤210:电机单片机在不处理工作时进入第二深度休眠状态。
步骤220:电机单片机接收第一外部中断信号,控制电机和/或罗盘工作;
和/或,电机单片机接收第二外部中断信号,与主控单片机和/或罗盘通信。
其中,步骤210中,针对电机单片机的控制方式与上述主控单片机类似,也是通过控制电机单片机在不处理工作时进入第二深度休眠状态,使得电机单片机进入了第二层、第三层或者更深层级的休眠状态。本实施例中,电机单片机可以进入第四层级的休眠状态,以较大程度降低电机单片机的功耗。步骤220中,第一外部中断信号和/或第二外部中断信号均可触发电机单片机从第二深度休眠状态切换至第二工作状态,其中,第一外部中断信号触发电机单片机控制电机和/或罗盘工作,如第一外部中断信号触发电机单片机控制电机进行深度控制,当拖缆的某一部位需要位于特定的水下的深度时,则该部位所在的罗经鸟的电机单片机相应控制电机转动,使得罗经鸟潜入相应的水下深度并带动当前拖缆部位位于特定的水下深度,以及第一外部中断信号
触发电机单片机控制罗盘进行航向测量工作,其中,第一外部中断信号频率越低功耗越低,本实施例中,罗盘工作每次工作时长约600mS,0.5S唤醒时不进行采集时,唤醒工作时长约10mS,采用设定2S进行一次采集,工作占空比为(600mS+20mS)/2S=31%,降低比例为69%。
其中,电机单片机可以同时控制电机和罗盘工作,电机单片机也可以错开时间分别控制电机和罗盘工作,根据需要设置,在此不做限定。
第二外部中断信号可以触发电机单片机同时与主控单片机和罗盘通信,或者电机单片机错开时间分别与主控单片机和罗盘通信,根据需要设置,在此不做限定。
第一外部中断信号和第二外部中断信号可以同时触发电机单片机进行相应的工作,也可以不同时触发电机单片机进行相应的工作,根据需要设置,在此不做限定。
在一些实施例中,罗经鸟控制方法还包括:
步骤310:第一比较电路检测第一电池的电压是否大于切换参考电压,切换参考电压的取值范围为第一电池电量剩余20%-30%时对应的电压值范围。
步骤320:当第一比较电路检测到第一电池的电压大于切换参考电压,则第一电池继续工作,第二电池不启动;
步骤330:当第一比较电路检测到第一电池的电压小于切换参考电压,则第一电池继续工作,第二电池启动工作。
其中,步骤310中,第一电池和第二电池均为锂电池,本实施例中,满电量时,第一电池的电压为7.4V左右,当第一电池的电压降低到4.5V左右时,则第一电池的电量已经用了70%-80%,只剩下20%-30%,此时第一电池的电量即将耗尽,为保证罗经鸟正常工作,需要启用备用电池,即第二电池继续提供电力给罗经鸟进行工作。通过设置第一比较电路检测第一电池的电压是否大于4.5V,该4.5V即为切换参考电压,以监控第一电池的电量是否充足,保证罗经鸟正常工作。在其他实施例中,当第一电池的满电量电压为3.7V时,当剩下20%-30%时第一电池的电压为2.3V左右,此时2.3V即
为切换参考电压,该切换参考电压根据第一电池使用需求确定,在此不做限定。
该第一比较电路的工作电流为皮安级电流,相应的工作功率很小,因此,此时第一比较电路的功耗很低,甚至可以忽略不计,相比采用主控单片机进行电池电量的检测的功耗,采用第一比较电路的可以较大程度降低主控单片机的功耗。
步骤320为当第一比较电路检测到第一电池的电压大于切换参考电压时,则说明第一电池电量尚满足罗经鸟工作,此时不需要启动第二电池。
步骤330为当第一比较电路检测到第一电池的电压小于切换参考电压时,则说明第一电池电量较低,容易影响罗经鸟正常工作,为保证罗经鸟正常工作,此时需要启动第二电池,增加罗经鸟的续航时间。
如图2为本公开实施例提供的罗经鸟控制装置的结构示意图,该控制装置主要包括主控模块100和与主控模块100连接的通信模块200。其中,主控模块100包括主控单片机101,主控单片机101在不处理工作时进入第一深度休眠状态,主控单片机101接收外部中断信号后从第一深度休眠状态切换至第一工作状态。
如图3所示,通信模块200包括通信解调模块201,通信解调模块201与主控单片机101连接并用于将上位机的通信载波信号进行解调处理,通信解调模块201包括峰值检测电路2016和数据解调单元2015,峰值检测电路2016检测是否有通信载波信号;若峰值检测电路2016未检测到通信载波信号,则数据解调单元2015不启动;若峰值检测电路2016检测到通信载波信号,则数据解调单元2015启动以解调通信载波信号,通信解调模块201将解调得到的解调信号发送给主控单片机101。
主控单片机101包括AD采集模块,主控单片机101接收第一外部中断信号时,AD采集模块用于进行AD采集,第一外部中断信号触发主控单片机101通过AD采集模块进行AD采集,其中,AD采集模块用于将深度传感器500、温度传感器600、电池模块的电压、工作电流的模拟信号转化为数字信号。
如图2所示,该控制装置还包括与主控模块100连接的电机控制模块
300,主控单片机101接收第二外部中断信号,与通信模块200和/或电机控制模块通信。
如图2所示,电机控制模块300包括电机单片机301、电机M和罗盘302,电机M和罗盘302均与电机单片机301连接,电机单片机301在不处理工作时进入第二深度休眠状态,第一外部中断信号和/或第二外部中断信号均可触发电机单片机301从第二深度休眠状态切换至第二工作状态。其中,第一外部中断信号触发电机单片机301控制电机M和/或罗盘302工作;和/或,第二外部中断信号触发电机单片机301与主控单片机101通信和/或罗盘302通信。
如图5所示,电机控制模块300还包括控制单元303、升压单元304、H桥电路305和光电隔离单元306,其中,控制单元303和光电隔离单元306均与电机单片机301连接,升压单元304与控制单元303连接并与H桥电路305连接,光电隔离单元306与H桥电路305连接,H桥电路305与电机M连接以驱动电机M转动。
如图6所示,为H桥电路的具体电路结构示意图,其中,VCC在电路中是正极,即是电路的供电电压,Q1至Q10均为MOS管。其中,本实施例中,H桥电路采用分立的MOS管构成,主要由两个驱动MOS管Q7和Q8组成半桥,其中Q7的MOS管型号为FDC6506,Q8的MOS管型号为FDC6561。通过升压单元升压后电压为10V的开启电压下FDC6561的导通电阻只有95mΩ,最大连续工作电流为2.5A。同样条件下FDC6506的导通电阻为170mΩ,最大连续工作电流为1.8A。因而在电机M运转情况下H桥电路的内阻非常小,约200mΩ,电机M在100mA的工作电流下耗散功率在2mW左右,因此,采用分立元件搭建的H桥电路的功耗大大得到了降低。
如图2所示,通信模块200还包括通信调制模块202,通信调制模块202与主控单片机101连接并用于将主控单片机101的反馈信号进行调制处理并发送给上位机。
如图3所示,通信解调模块201还包括前置信号处理单元2011,前置信号处理单元2011用于将通信载波信号进行解调前信号处理,峰值检测电路2016和数据解调单元2015均与前置信号处理单元2011连接,峰值检测电路
2016检测是否有通信载波信号。
如图3所示,前置信号处理单元2011包括网络匹配单元2012、与网络匹配单元2012连接的滤波放大单元2013、与滤波放大单元2013连接的差分放大单元2014,峰值检测电路2016和数据解调单元2015均与差分放大单元2014连接。
如图2所示,该控制装置还包括与主控模块100连接的电源模块400,电源模块400与数据解调单元2015之间串联有第一触发开关10,若峰值检测电路2016未检测到通信载波信号,此时,第一触发开关10为断开状态,则数据解调单元2015与电源模块400之间不导通,从而不启动;若峰值检测电路2016检测到通信载波信号,则峰值检测电路2016输出第一控制电平触发第一触发开关10闭合,此时电源模块400与以控制数据解调单元2015启动以解调通信载波信号并发送解调信号给主控单片机101,其中,该第一控制电平可为高电平,也可为低电平,根据需要设置。
如图4所示,峰值检测电路2016中R1至R9均为电阻,C1至C5均为电容,CR1为二极管,D1为肖特基二极管,VCC在电路中是正极,即是电路的供电电压,VREF为2.5V,U1和U2均为比较电路。C1、CR1构成通信模拟信号包络信号,由U1、R4、C2构成包络信号的一个低通滤波及反向输出。由U2及附属的分立元件构成包络信号的正向输出。C1与差分放大单元2014连接,U2的输出端与第一触发开关10连接,若峰值检测电路2016检测到通信载波信号,则U2输出第一控制电平触发第一触发开关10闭合,以使数据解调单元2015启动以解调通信载波信号。
如图7所示,电源模块400包括电池组401和电源电路402,电源电路402包括电池切换电路403、与电池切换电路403串联的输出电路404和与输出电路404串联的总线电路405。
电池组401包括第一电池A和第二电池B,第二电池B与第一电池A并联,第一电池A连接至输出电路404。
电池切换电路403包括第一比较电路4031和第二触发开关20,第一比较电路4031的反相输入端输入切换参考电压,第一比较电路4031的正相输入端连接第一电池A,第一比较电路4031的输出端连接第二触发开关20的
控制端。第二电池B通过第二触发开关20连接至输出电路404。
当第一比较电路4031检测到第一电池A的电压大于换参考电压,则第二触发开关20处于断开状态,第一电池A继续工作,第二电池B不启动。
当第一比较电路4031检测到第一电池A的电压小于换参考电压,则第一比较电路4031输出第二控制电平触发第二触发开关20闭合使得第二电池B启动工作。
如图7所示,其中,第一比较电路4031中切换参考电压为4.5V,以使第一比较电路4031得以根据切换参考电压判断第一电池A的电压是否大于4.5V,以相应控制第二电池B是否启动。该切换参考电压由分流电路的电压或者由超低功耗参考电源芯片提供,其中该分流电路中的电流为皮安级,因此,分流电路的功率可以忽略不计。需要说明的是,第二控制电平可以为高电平或低电平,根据需要设置,在此不做限定。
此外,需要说明的是,当第一电池A的电压等于4.5V时,第一比较电路4031可以输出第二控制电平控制第二电池B启动,也可以不输出第二控制电平使得第二电池B不启动。
如图7所示,电源电路402还包括与输出电路404连接的总线电路405,输出电路404包括第一输出支路和第二输出支路,第一输出支路的输入端连接电池切换电路403,第二输出支路包括第二比较电路4041、升压稳压电路4042和第三触发开关30,第二比较电路4041的正相输入端连接第一输出支路的输出端,第二比较电路4041的反相输入端输入开启参考电压,第二比较电路4041的输出端连接第三触发开关30的控制端,电池切换电路403通过第三触发开关30连接至升压稳压电路4042,第二比较电路4041用于检测电池切换电路403的电压是否大于开启参考电压,开启参考电压为总线电路405的输出电压值.
当第二比较电路4041检测到电池切换电路403的电压大于开启参考电压,则第三触发开关30处于断开状态,升压稳压电路4042不导通;
当第二比较电路4041检测到电池切换电路403的电压小于开启参考电压,则第二比较电路4041输出第三控制电平触发第三触发开关30闭合使得升压稳压电路4042导通以输出与开启参考电压相同的电压值。
如7所示,本实施例中,输出电路404的第二比较电路4041中开启参考电压为6V,由总线电路405的电压提供,以使第二比较电路4041得以根据开启参考电压判断电池切换电路403的电压是否大于6V,以相应控制升压稳压电路4042是否启动。当第二比较电路4041检测到电池切换电路403的电压小于6V时,则升压稳压电路4042进行升压以输出6V电压。需要说明的是,第三控制电平可以为高电平或低电平,根据需要设置,在此不做限定。
在其他实施例中,当总线电路405的电压为7V或8V或者其他电压值时,对应地,该开启参考电压则为7V或8V或者其他电压值,在此不做限定。
总线电路405包括降压稳压电路4051,降压稳压电路4051与输出电路404串联,以将输出电路404的电压降压至6V,以供其他模块工作。其中,升压稳压电路4042采用现有的升压芯片设置,降压稳压电路4051均采用现有的降压芯片设置,该升压芯片的一般的能量转换效率最多为85%,降压芯片的能量转换效率高达90%以上,可以有效降低电源电路402的电压转换功耗,进一步降低罗经鸟的功耗,至少可以减低10%的不必要能耗。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解各个公开方面中的一个或多个,在上面对本公开的示例性实施例的描述中,本公开实施例的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本公开要求比在每个权利要求中所明确记载的特征更多的特征。
本领域技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利
要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
应该注意的是上述实施例对本公开进行说明而不是对本公开进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。上述实施例中的步骤,除有特殊说明外,不应理解为对执行顺序的限定。
Claims (12)
- 一种罗经鸟控制方法,其特征在于,所述方法包括:主控单片机在不处理工作时进入第一深度休眠状态;所述主控单片机接收外部中断信号后,从所述第一深度休眠状态切换至第一工作状态;峰值检测电路检测是否有通信载波信号;若所述峰值检测电路未检测到所述通信载波信号,则数据解调单元不启动;若所述峰值检测电路检测到所述通信载波信号,则所述数据解调单元启动以解调所述通信载波信号,通信解调模块将解调得到的解调信号发送给所述主控单片机。
- 根据权利要求1所述的罗经鸟控制方法,其特征在于,所述外部中断信号包括第一外部中断信号,所述主控单片机接收外部中断信号,从所述第一深度休眠状态切换至第一工作状态,进一步包括:所述主控单片机接收所述第一外部中断信号,进行AD采集;和/或,所述外部中断信号包括第二外部中断信号,所述主控单片机接收所述第二外部中断信号,与通信模块和/或电机控制模块通信。
- 根据权利要求2所述的方法,其特征在于,所述第二外部中断信号包括第一通信中断信号和第二通信中断信号,所述主控单片机接收所述第二外部中断信号,与通信模块和/或电机控制模块通信,进一步包括:所述主控单片机接收所述第一通信中断信号,与所述通信模块通信;所述主控单片机接收所述第二通信中断信号,与所述电机控制模块通信。
- 根据权利要求2所述的方法,其特征在于,所述方法还包括:电机单片机在不处理工作时进入第二深度休眠状态;所述电机单片机接收所述第一外部中断信号,控制电机和/或罗盘工作;和/或,所述电机单片机接收所述第二外部中断信号,与所述主控单片机和/或所述罗盘通信。
- 根据权利要求1所述的罗经鸟控制方法,其特征在于,所述方法还包括:第一比较电路检测第一电池的电压是否大于切换参考电压,所述切换参考电压的取值范围为所述第一电池电量剩余20%-30%时对应的电压值范围;当所述第一比较电路检测到所述第一电池的电压大于所述切换参考电压,则所述第一电池继续工作,第二电池不启动;当所述第一比较电路检测到所述第一电池的电压小于所述切换参考电压,则所述第一电池继续工作,所述第二电池启动工作。
- 一种罗经鸟控制装置,其特征在于,所述控制装置包括:主控单片机,所述主控单片机在不处理工作时进入第一深度休眠状态,所述主控单片机接收外部中断信号后从所述第一深度休眠状态切换至第一工作状态;通信模块,包括通信解调模块,所述通信解调模块与所述主控单片机连接并用于将上位机的通信载波信号进行解调处理,所述通信解调模块包括峰值检测电路和数据解调单元,所述峰值检测电路检测是否有所述通信载波信号;若所述峰值检测电路未检测到所述通信载波信号,则所述数据解调单元不启动;若所述峰值检测电路检测到所述通信载波信号,则所述数据解调单元启动以解调所述通信载波信号,所述通信解调模块将解调得到的解调信号发送给所述主控单片机。
- 根据权利要求6所述的罗经鸟控制装置,其特征在于,所述主控单片机包括AD采集模块,所述外部中断信号包括第一外部中断信号,所述主控单片机接收所述第一外部中断信号时,所述AD采集模块用于进行AD采集;和/或,所述外部中断信号包括第二外部中断信号,所述主控单片机接收所述第二外部中断信号,与通信模块和/或电机控制模块通信。
- 根据权利要求7所述的罗经鸟控制装置,其特征在于,所述电机控制模块包括电机单片机、电机和罗盘,所述电机和所述罗盘均与所述电机单片机连接,所述电机单片机在不处理工作时进入第二深度休眠状态;所述电机单片机接收所述第一外部中断信号,控制所述电机和/或所述罗盘工作;和/或,所述电机单片机接收所述第二外部中断信号,与所述主控单片机和/或所述罗盘通信。
- 根据权利要求6所述的罗经鸟控制装置,其特征在于,所述控制装置还包括电源模块,所述电源模块与所述数据解调单元之间串联有第一触发开关;所述通信解调模块还包括前置信号处理单元,所述前置信号处理单元用于将所述通信载波信号进行解调前信号处理,所述峰值检测电路和所述数据解调单元均与所述前置信号处理单元连接;若所述峰值检测电路检测到所述通信载波信号,则所述峰值检测电路输出第一控制电平触发所述第一触发开关闭合以使所述数据解调单元启动。
- 根据权利要求9所述的罗经鸟控制装置,其特征在于,所述前置信号处理单元包括网络匹配单元、与所述网络匹配单元连接的滤波放大单元、与所述滤波放大单元连接的差分放大单元,所述峰值检测电路和所述数据解调单元均所述差分放大单元连接。
- 根据权利要求9所述的罗经鸟控制装置,其特征在于,所述电源模块包括电池组和电源电路,所述电源电路包括电池切换电路和与所述电池切换电路串联的输出电路;所述电池组包括第一电池和第二电池,所述第二电池与所述第一电池并联,所述第一电池连接至所述输出电路;所述电池切换电路包括第一比较电路和第二触发开关,所述第一比较电路的反相输入端输入切换参考电压,所述第一比较电路的正相输入端连接所述第一电池,所述第一比较电路的输出端连接所述第二触发开关的控制端,所述第二电池通过所述第二触发开关连接至所述输出电路,所述第一比较电 路用于检测所述第一电池的电压是否大于所述切换参考电压,所述切换参考电压的取值范围为所述第一电池电量剩余20%-30%时对应的电压值范围;当所述第一比较电路检测到所述第一电池的电压大于所述切换参考电压,则所述第二触发开关处于断开状态,所述第一电池继续工作,所述第二电池不启动;当所述第一比较电路检测到所述第一电池的电压小于所述切换参考电压,则所述第一比较电路输出第二控制电平触发所述第二触发开关闭合使得所述第二电池启动工作。
- 根据权利要求11所述的罗经鸟控制装置,其特征在于,所述电源电路还包括与所述输出电路连接的总线电路,所述输出电路包括第一输出支路和第二输出支路,所述第一输出支路的输入端连接所述电池切换电路,所述第二输出支路包括第二比较电路、升压稳压电路和第三触发开关,所述第二比较电路的正相输入端连接所述第一输出支路的输出端,所述第二比较电路的反相输入端输入开启参考电压,所述第二比较电路的输出端连接所述第三触发开关的控制端,所述电池切换电路通过所述第三触发开关连接至所述升压稳压电路,所述第二比较电路用于检测所述电池切换电路的电压是否大于所述开启参考电压,所述开启参考电压为所述总线电路的输出电压值;当所述第二比较电路检测到所述电池切换电路的电压大于所述开启参考电压,则所述第三触发开关处于断开状态,所述升压稳压电路不导通;当所述第二比较电路检测到所述电池切换电路的电压小于所述开启参考电压,则所述第二比较电路输出第三控制电平触发所述第三触发开关闭合使得所述升压稳压电路导通。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210570336.6A CN114660978B (zh) | 2022-05-24 | 2022-05-24 | 罗经鸟控制方法及控制装置 |
CN202210570336.6 | 2022-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023226510A1 true WO2023226510A1 (zh) | 2023-11-30 |
Family
ID=82036694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/079673 WO2023226510A1 (zh) | 2022-05-24 | 2023-03-03 | 罗经鸟控制方法及控制装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114660978B (zh) |
WO (1) | WO2023226510A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114660978B (zh) * | 2022-05-24 | 2022-08-09 | 中海油田服务股份有限公司 | 罗经鸟控制方法及控制装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1618192A (zh) * | 2001-10-04 | 2005-05-18 | 夏普株式会社 | Ofdm解调电路以及使用该电路的ofdm接收设备 |
JP2008131225A (ja) * | 2006-11-20 | 2008-06-05 | Nippon Dempa Kogyo Co Ltd | 無線受信機 |
CN102141781A (zh) * | 2011-01-18 | 2011-08-03 | 中国海洋石油总公司 | 一种用于拖缆拖曳控制的水鸟通信控制板 |
CN102183798A (zh) * | 2011-01-30 | 2011-09-14 | 中国海洋石油总公司 | 一种海洋拖曳多线阵声学定位装置测控系统 |
CN102545949A (zh) * | 2011-09-28 | 2012-07-04 | 嘉兴联星微电子有限公司 | 大输入动态范围的射频幅度键控解调电路 |
CN103760604A (zh) * | 2014-01-16 | 2014-04-30 | 中国海洋石油总公司 | 一种用于拖曳多线阵的水平控制装置的电路模块 |
CN205003501U (zh) * | 2015-09-08 | 2016-01-27 | 中国海洋石油总公司 | 一种功耗测量装置 |
CN114660978A (zh) * | 2022-05-24 | 2022-06-24 | 中海油田服务股份有限公司 | 罗经鸟控制方法及控制装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4646260A (en) * | 1983-10-03 | 1987-02-24 | Honeywell Information Systems Inc. | Data collection terminal high speed communication link interrupt logic |
JP2517320B2 (ja) * | 1987-10-28 | 1996-07-24 | 株式会社トキメック | ジャイロコンパス |
CN102621912A (zh) * | 2011-01-27 | 2012-08-01 | 赛酷特(北京)信息技术有限公司 | 单片机自动节电方法 |
CN103488270B (zh) * | 2012-06-13 | 2016-07-06 | 神讯电脑(昆山)有限公司 | 省电方法及其电子装置 |
CN103728644B (zh) * | 2013-12-25 | 2016-08-17 | 李青花 | 一种定位系统及定位方法 |
CN103701498B (zh) * | 2013-12-30 | 2015-09-30 | 上海贝岭股份有限公司 | 电力线载波通信的信号处理方法与装置 |
CN104866067A (zh) * | 2015-05-11 | 2015-08-26 | 联想(北京)有限公司 | 一种低功耗控制方法及电子设备 |
CN205003300U (zh) * | 2015-09-09 | 2016-01-27 | 中国海洋石油总公司 | 一种罗经值测试系统 |
CN105227215B (zh) * | 2015-10-28 | 2017-09-29 | 厦门中天微电子科技有限公司 | 一种电力载波通信装置及其控制方法 |
CN107066073B (zh) * | 2017-03-02 | 2020-07-24 | 联想(北京)有限公司 | 一种控制方法及电子设备 |
LU100947B1 (en) * | 2018-09-27 | 2020-03-27 | Nanopower As | Device connection system and method of operation |
CN112181121A (zh) * | 2020-08-20 | 2021-01-05 | 嘉兴启林科技有限公司 | 一种自驱动外部中断休眠单片机唤醒系统及方法 |
-
2022
- 2022-05-24 CN CN202210570336.6A patent/CN114660978B/zh active Active
-
2023
- 2023-03-03 WO PCT/CN2023/079673 patent/WO2023226510A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1618192A (zh) * | 2001-10-04 | 2005-05-18 | 夏普株式会社 | Ofdm解调电路以及使用该电路的ofdm接收设备 |
JP2008131225A (ja) * | 2006-11-20 | 2008-06-05 | Nippon Dempa Kogyo Co Ltd | 無線受信機 |
CN102141781A (zh) * | 2011-01-18 | 2011-08-03 | 中国海洋石油总公司 | 一种用于拖缆拖曳控制的水鸟通信控制板 |
CN102183798A (zh) * | 2011-01-30 | 2011-09-14 | 中国海洋石油总公司 | 一种海洋拖曳多线阵声学定位装置测控系统 |
CN102545949A (zh) * | 2011-09-28 | 2012-07-04 | 嘉兴联星微电子有限公司 | 大输入动态范围的射频幅度键控解调电路 |
CN103760604A (zh) * | 2014-01-16 | 2014-04-30 | 中国海洋石油总公司 | 一种用于拖曳多线阵的水平控制装置的电路模块 |
CN205003501U (zh) * | 2015-09-08 | 2016-01-27 | 中国海洋石油总公司 | 一种功耗测量装置 |
CN114660978A (zh) * | 2022-05-24 | 2022-06-24 | 中海油田服务股份有限公司 | 罗经鸟控制方法及控制装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114660978B (zh) | 2022-08-09 |
CN114660978A (zh) | 2022-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN203135479U (zh) | 自供电环境监测设备 | |
CN103139936B (zh) | 能量自供给的无线传感器网络节点 | |
WO2023226510A1 (zh) | 罗经鸟控制方法及控制装置 | |
WO2020156321A1 (zh) | 用于摩擦纳米发电机的电源管理模块以及智能浮标系统 | |
CN103944254A (zh) | 掉电保护电路及设备 | |
CN106131936A (zh) | 太阳能供电的低功耗野外检测装置 | |
CN203434675U (zh) | 一种浮标低功耗电源管理电路 | |
CN103760604B (zh) | 一种用于拖曳多线阵的水平控制装置的电路模块 | |
CN108663494A (zh) | 一种基于光伏供电的水质检测船及水质检测方法 | |
CN109760788A (zh) | 一种可太阳能充电的水质监测浮标装置 | |
CN106546920A (zh) | 电池监测电路及系统 | |
CN106505659B (zh) | 不间断直流电源的电池活化控制电路的设计方法 | |
CN112099610B (zh) | 一种带定时预约功能的hadcp系统 | |
CN107804921B (zh) | 一种太阳能直驱曝气系统 | |
CN204344370U (zh) | 一种智能风力检测与发电控制系统 | |
CN108072545A (zh) | 基于无人机的外挂式水体采集设备 | |
CN203535107U (zh) | 低功耗ac掉电告警电路 | |
CN210647650U (zh) | 光伏表面智能清扫系统控制装置 | |
CN203827057U (zh) | 掉电保护电路及设备 | |
CN205812478U (zh) | 一种基于人体感应的公共教室智能照明控制系统 | |
CN209881462U (zh) | 一种运用于无线充电智能调控的充电侦测电路 | |
CN202662154U (zh) | 一种采用太阳能供电的防盗式矿井水文监测装置 | |
CN107966998A (zh) | 一种光伏发电跟踪系统及其控制方法 | |
CN218512821U (zh) | 一种自容式adcp节能控制电路 | |
CN112684736B (zh) | 一种智能型低功耗信标装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23810586 Country of ref document: EP Kind code of ref document: A1 |