WO2023226474A1 - 一种基于表面增强拉曼散射的舌形光纤探针及其制备方法 - Google Patents

一种基于表面增强拉曼散射的舌形光纤探针及其制备方法 Download PDF

Info

Publication number
WO2023226474A1
WO2023226474A1 PCT/CN2023/074720 CN2023074720W WO2023226474A1 WO 2023226474 A1 WO2023226474 A1 WO 2023226474A1 CN 2023074720 W CN2023074720 W CN 2023074720W WO 2023226474 A1 WO2023226474 A1 WO 2023226474A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
tongue
shaped optical
fiber probe
raman scattering
Prior art date
Application number
PCT/CN2023/074720
Other languages
English (en)
French (fr)
Inventor
付兴虎
付广伟
李佳轩
付子珍
张汐琛
曹茜清
金娃
毕卫红
Original Assignee
燕山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 燕山大学 filed Critical 燕山大学
Publication of WO2023226474A1 publication Critical patent/WO2023226474A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Definitions

  • the invention relates to a tongue-shaped optical fiber probe based on surface-enhanced Raman scattering and a preparation method thereof, and belongs to the field of surface-enhanced Raman optical fiber sensing.
  • SERS Surface-enhanced Raman spectroscopy
  • Fiber optic probes are needle-type structures that are capable of transmitting pump light, receiving and transmitting signal light, taking advantage of the characteristics of small size, flexibility and ease of processing of optical fibers.
  • the structure of the probe (number of fibers, arrangement, fiber spacing and fiber shape, presence or absence of lens), fiber parameters and needle shape jointly determine the light collection efficiency and signal-to-noise ratio of the probe system, which is the most important factor in fiber probe design. The important part.
  • the combination of fiber optic probe technology and SERS technology can achieve high-precision detection of the object to be measured. At the same time, it can also use the characteristics of the fiber's small structure and strong environmental adaptability to enter the living body or perform detection in more harsh environments.
  • most of the probe structures reported so far have a single structure and low Raman detection sensitivity.
  • the lowest detection limit of existing probes can only reach 10 -14 mol/L; compared with the antibiotic enrossa
  • the lowest detection limit of existing probes can only reach 10 ⁇ g/ml; compared with the detection of antibiotic amoxicillin, the lowest detection limit of existing probes can only reach 1 ⁇ g/ml. It is not enough to comprehensively measure and optimize the SERS sensing characteristics of fiber optic probes.
  • the technical problem to be solved by the present invention is to provide a tongue-shaped optical fiber probe based on surface-enhanced Raman scattering and a preparation method thereof.
  • the probe has a novel structure, low cost, does not require pretreatment, and is suitable for trace detection of trace substances. Greatly improve the SERS detection sensitivity of fiber optic probes.
  • the technical solution adopted by the present invention is:
  • a tongue-shaped optical fiber probe based on surface-enhanced Raman scattering, used for reflection and collection of surface-enhanced Raman scattering excitation light including an optical fiber with a core inside, and one end of the optical fiber is provided with an end whose diameter gradually decreases
  • a cone structure the end of the cone structure is provided with a sphere structure prepared from the same optical fiber as the cone structure, and one end of the sphere structure is provided with a microcavity groove structure, the sphere structure, the cone structure and the microcavity structure Metal nanoparticles are arranged on the surface of the cavity groove structure.
  • a further improvement of the technical solution of the present invention is that the metal nanoparticles are silver nanoparticles.
  • optical fiber is a step refractive index multimode optical fiber.
  • a further improvement of the technical solution of the present invention is that the diameter of the fiber core is 105 ⁇ m and the length is 15-25 cm.
  • a further improvement of the technical solution of the present invention is that the length of the cone structure is 1 to 15 mm.
  • a further improvement of the technical solution of the present invention is that the diameter of the spherical structure is 150 ⁇ 250 ⁇ m.
  • a further improvement of the technical solution of the present invention is that the diameter of the microcavity groove structure is 10 ⁇ 100 ⁇ m and the depth is 10 ⁇ 100 ⁇ m.
  • the technical solution adopted by the present invention is:
  • a method for preparing a tongue-shaped fiber optic probe based on surface-enhanced Raman scattering The cone structure is prepared by CO2 laser cone drawing method or melting cone drawing method; then a sphere is prepared at the end of the cone structure in the form of discharge structure; then use the femtosecond laser as the light source, control the movement of the femtosecond laser to write the microcavity groove structure point by point on the spherical structure to obtain the tongue-shaped fiber optic probe preparation; finally, put the tongue-shaped fiber optic probe preparation in sequence Piranha solution, deionized water, absolute ethanol, isopropyl alcohol, ammonia, APTES solution, dry, and finally put the dried tongue-shaped optical fiber probe preparation into the centrifuged metal nano-ion solution, and take it out , complete the preparation of tongue-shaped fiber optic probe.
  • the cone structure of the present invention can enhance the evanescent wave transmission intensity and light coupling efficiency in the sensing area by optimizing the geometric parameters of the cone structure; at the same time, the cone structure is coupled with a sphere structure provided with a special microcavity groove structure , making the detection sensitivity of the probe higher and suitable for trace detection of trace substances.
  • the present invention uses step multi-mode optical fiber for probe preparation, which is low cost, easy to use, and suitable for trace detection of trace substances.
  • the spherical structure and the cone structure of the present invention are prepared by using the same optical fiber, and are arranged in an integrated manner, which provides better support for the subsequent preparation of the microcavity groove structure, making the structure of the optical fiber SERS probe more stable; and at the same time, it can greatly Reduce the difficulty of preparation of fiber optic SERS probes. Since the size of the spherical structure is at the micron level, setting the spherical cone structure into one only requires the preparation of the spherical structure at the end of the cone structure, making the preparation process simpler.
  • Figure 1 is a schematic structural diagram of the present invention
  • Figure 2 is a schematic three-dimensional structural diagram of the present invention.
  • Fiber core 1. Fiber core, 2. Cone structure, 3. Spherical structure, 4. Microcavity groove structure, 5. Metal nanoparticles.
  • the purpose of the present invention is to provide a tongue-shaped optical fiber probe based on surface-enhanced Raman scattering and a preparation method thereof, which is suitable for trace detection of trace substances.
  • the optical fiber SERS probe of the present invention can detect 10 -14 mol/ L- 10-15 mol/L rhodamine 6G can be detected; compared with the antibiotic enrofloxacin, the fiber optic SERS probe of the present invention can detect 1 ⁇ g/ml-10 ⁇ g/ml enrofloxacin.
  • the optical fiber SERS probe of the present invention can detect 0.1 ⁇ g/ml-1 ⁇ g/ml amoxicillin; at the same time, the optical fiber SERS probe of the present invention can also detect mixed antibiotics.
  • FIG. 1 is a schematic structural diagram of a tongue-shaped optical fiber probe based on surface-enhanced Raman scattering provided by an embodiment of the present invention.
  • the tongue-shaped optical fiber probe is used for reflection and collection of surface-enhanced Raman scattering excitation light. It is composed of the same fiber optic probe.
  • Optical fiber preparation is completed. It includes a step-type multi-mode optical fiber with a core (1) inside. A section of cone structure (2) is provided at the end of the step-type multi-mode fiber, and the diameter of the cone structure (2) gradually decreases.
  • the end is provided with a spherical structure (3), the end of the spherical structure (3) is provided with a microcavity groove structure (4), the spherical structure (3), the cone structure (2) and the microcavity groove structure (4) Metal nanoparticles are provided on the surface.
  • the cone structure (2) is prepared by using the CO 2 laser tapering method or the melting tapering method.
  • the CO 2 laser tapering method uses a CO 2 laser to melt the optical fiber, and applies tension to both ends. First, use a smaller Force it into a cone, and then use a larger force to quickly break it, and the section will naturally form a smooth plane.
  • the fusion tapering method refers to bringing the optical fibers with the coating layer removed in a certain way, melting them under high-temperature heating, and stretching them to both sides at the same time. Finally, a special waveguide structure in the form of a double cone is formed in the heating zone.
  • the spherical structure (3) is prepared by discharge at the end of the cone structure (2).
  • the microcavity groove structure (4) is obtained by using a femtosecond laser as a light source and controlling the movement of the femtosecond laser to write point by point on the spherical structure (3).
  • the three structures are combined into a tongue-shaped fiber probe preparation; secondly, The surface of the tongue-shaped optical fiber probe preparation is coated with metal nanoparticles to finally form a tongue-shaped optical fiber probe.
  • Metal nanoparticles are usually silver nanoparticles, which are modified using a self-assembly method.
  • the tongue-shaped fiber optic probe preparation is put into the piranha solution for hydroxylation, and then the hydroxylated tongue-shaped fiber optic probe preparation is sequentially passed through deionized water. Clean with absolute ethanol; put the cleaned tongue-shaped fiber optic probe preparation into a mixed solution containing APTES for amination, drying, and finally put the dried tongue-shaped fiber optic probe preparation into a centrifuge of the nanometal sol, take it out, and complete the preparation of the tongue-shaped optical fiber probe; the mixed solution also includes isopropyl alcohol and ammonia.
  • the concentration of APTES in the mixed solution can be, but is not limited to, 10%.
  • the tongue-shaped optical fiber probe preparation is soaked in piranha solution to hydroxylate the surface of the optical fiber. After taking it out, it is cleaned twice with deionized water and absolute ethanol; secondly, the cleaned tongue-shaped optical fiber probe is The preparation is placed in the APTES system solution, and the tongue-shaped optical fiber probe preparation will react with the hydroxyl group to covalently bind to the amino group; then, the aminated tongue-shaped optical fiber probe preparation is placed in a drying oven at 100 Dry at °C for 30 minutes; finally, place the tongue-shaped optical fiber probe preparation in the centrifuged precious metal nanosol, allowing the precious metal nanoparticles to self-assemble on the surface of the optical fiber probe.
  • the precious metal nanoparticles on the optical fiber surface can be controlled.
  • Particle size Characterize under a field emission scanning electron microscope to observe the morphology and size of the noble metal nanoparticles modified on the surface of the optical fiber.
  • the piranha solution is prepared with 30% hydrogen peroxide and concentrated sulfuric acid in a ratio of 1:2.
  • the purity of absolute ethanol is greater than or equal to 99%
  • the purity of isopropyl alcohol is greater than or equal to 99%
  • the purity of ammonia is 25% ⁇ 28%
  • the purity of APTES is 99%.
  • the above-mentioned step-type multimode optical fiber has a core diameter of 105 ⁇ m and a length of 15 to 25 cm. It is used for the output port of the excitation light and the output port of the Raman spectrum.
  • the above-mentioned optical fiber taper structure (2) is prepared by using a CO 2 laser tapering method or a fusion tapering method to prepare a step-type multi-mode optical fiber.
  • the length of the optical fiber taper structure (2) is 1 to 15 mm.
  • the above-mentioned optical fiber sphere structure (3) is prepared by discharge at the end of a tapered optical fiber, with a diameter of 150 ⁇ 250 ⁇ m.
  • the above-mentioned optical fiber groove region structure (4) is prepared by writing point by point on the spherical structure (3) with a femtosecond laser, with a diameter of 10 ⁇ 100 ⁇ m and a depth of 10 ⁇ 100 ⁇ m.
  • the embodiment of the present invention also provides a three-dimensional view of a tongue-shaped optical fiber probe based on surface-enhanced Raman scattering, as shown in Figure 3.
  • a tongue-shaped optical fiber probe based on surface-enhanced Raman scattering, as shown in Figure 3.
  • the tongue-shaped multimode optical fiber probe modified with nano-noble metals uses large core diameter multi-mode optical fiber, which can make more light directly act on the precious metal nanostructures. It has the characteristics of large sensing area and strong enhanced Raman signal.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种基于表面增强拉曼散射的舌形光纤探针及其制备方法,舌形光纤探针包括锥体结构(2)、球体结构(3)以及微腔凹槽结构(4)三种结构,其中锥体结构(2)采用CO 2激光拉锥法或熔融拉锥法;球体结构(3)采用放电方式进行制备,通过控制熔接机的放电电流、光纤推进量、放电时间等参数,得到不同大小尺寸的光纤球体结构(3);微腔凹槽结构(4)采用飞秒激光器刻蚀,通过逐点写入的方法在球体结构(3)上制备。可同时用于激发光传输及拉曼散射光谱接收,可与拉曼光谱仪组合成光纤拉曼传感检测装置,有利于促进光纤SERS探针的实用化,提供具备更好的灵敏度及重复性的光纤探针的制备方法,促进拉曼光谱在在线分析、实时检测、痕量及原位检测方面的应用。

Description

一种基于表面增强拉曼散射的舌形光纤探针及其制备方法
  
技术领域
 本发明涉及一种基于表面增强拉曼散射的舌形光纤探针及其制备方法,属于表面增强拉曼光纤传感领域。
背景技术
 表面增强拉曼光谱是指某些分子吸附在一些金属表面时获得分子的被极大增强的拉曼光谱。它利用贵金属的粗糙表面,解决了拉曼光谱低散射截面的缺点,可以产生几个数量级增强的拉曼信号。表面增强拉曼散射(Surface-Enhanced Raman Scattering,SERS)的发现,极大地提高了拉曼检测技术的灵敏度,扩大了拉曼技术的应用范围,推动了拉曼技术的发展。
 光纤探针是利用光纤尺寸小、灵活自由、易加工的特点制作的能够传导泵浦光、接收并传导信号光的针式结构。探针的结构(光纤数量、排布方式、光纤间距以及光纤形状、有无透镜)、光纤参数和针头形状共同决定了探针系统的集光效率与信噪比,是光纤探针设计中最为重要的部分。
 光纤探针技术与SERS技术相结合,可以对待测物实现高精度检测,同时也可以利用光纤结构微小、环境适应能力强等特性,进入生物体内或在更加恶劣的环境下进行检测。但是目前所报道的探针结构大多较为单一,拉曼检测灵敏度低,例如:对于罗丹明6G的检测,现有探针检测极限最低仅能达到10 -14mol/L;相对于抗生素恩诺沙星的检测,现有探针检测极限最低仅能达到10μg/ml;相对于抗生素阿莫西林的检测,现有探针检测极限最低仅能达到1μg/ml。尚不足以对光纤探针的SERS传感特性进行全面的衡量优化。
发明内容
 本发明需要解决的技术问题是提供一种基于表面增强拉曼散射的舌形光纤探针及其制备方法,该探针结构新颖,成本低,无需预处理,适用于微量物质的痕量检测,大大提高光纤探针的SERS检测灵敏度。
 为解决上述技术问题,本发明所采用的技术方案是:
一种基于表面增强拉曼散射的舌形光纤探针,用于表面增强拉曼散射激发光的反射和收集,包括内部设置有纤芯的光纤,所述光纤的一端设置有端部直径逐渐缩小的锥体结构,所述锥体结构的端部设置与锥体结构由同一根光纤制备的球体结构,且球体结构的一端设置有微腔凹槽结构,所述球体结构、锥体结构和微腔凹槽结构的表面均设置有金属纳米粒子。
 本发明技术方案的进一步改进在于:所述金属纳米粒子为银纳米颗粒。
 本发明技术方案的进一步改进在于:所述光纤为阶跃折射率多模光纤。
 本发明技术方案的进一步改进在于:所述纤芯的直径为105μm;长度为15~25cm。
 本发明技术方案的进一步改进在于:所述锥体结构的长度为1~15mm。
 本发明技术方案的进一步改进在于:所述球体结构的直径为150~250μm。
 本发明技术方案的进一步改进在于:所述微腔凹槽结构的直径为10~100μm,深度为10~100μm。
 为解决上述技术问题,本发明所采用的技术方案是:
一种基于表面增强拉曼散射的舌形光纤探针的制备方法,所述锥体结构采用CO 2激光拉锥法或熔融拉锥法制备;然后在锥体结构的末端通过放电形式制备得到球体结构;再利用飞秒激光器作为光源,控制飞秒激光器运动在球体结构上逐点写入微腔凹槽结构得到舌形光纤探针预备体;最后,将舌形光纤探针预备体依次放入食人鱼溶液、去离子水、无水乙醇、异丙醇、氨水、APTES溶液中,烘干,最后将烘干后的舌形光纤探针预备体放入离心后的金属纳米离子溶液中,取出,完成舌形光纤探针的制备。
 由于采用了上述技术方案,本发明取得的技术进步是:
本发明的锥体结构,通过优化锥体结构的几何参数,可以增强传感区域消逝波的透射强度和光的耦合效率;同时,锥体结构加上设置有特殊的微腔凹槽结构的球体结构,使得探针的检测灵敏度更高,适用于微量物质的痕量检测。
 本发明采用阶跃多模光纤进行探针制备,成本低廉、使用方便,适用于微量物质的痕量检测。
 本发明的球体结构和锥体结构采用同一根光纤制备完成,为一体设置,为后续微腔凹槽结构的制备提供了更好的依托,使得光纤SERS探针的结构更加稳定;同时还可以大大减小光纤SERS探针的制备难度,由于球形结构大小在微米级别,将球锥结构设置为一体只需在锥形结构的末端进行球形结构的制备,使制备工艺更加简便。
附图说明
 图1是本发明的结构示意图;
图2是本发明的立体结构示意图;
其中,1、纤芯,2、锥体结构,3、球体结构,4、微腔凹槽结构,5、金属纳米粒子。
实施方式
 本发明的目的在于提供一种基于表面增强拉曼散射的舌形光纤探针及其制备方法,适用于微量物质的痕量检测,如:本发明的光纤SERS探针可以对10 -14mol/L-10 -15mol/L的罗丹明6G实现检测;相对于抗生素恩诺沙星,本发明的光纤SERS探针可以对1μg/ml-10μg/ml的恩诺沙星实现检测,相对于抗生素阿莫西林,本发明的光纤SERS探针可以对0.1μg/ml-1μg/ml的阿莫西林实现检测;同时,本发明的光纤SERS探针还可以实现对混合抗生素的检测。
 为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
 实施例1:
如图1所示为本发明实施例提供的基于表面增强拉曼散射的舌形光纤探针结构示意图,该舌形光纤探针用于表面增强拉曼散射激发光的反射和收集,由同一根光纤制备完成。包括一根内部设置有纤芯(1)的阶跃型多模光纤,阶跃型多模光纤的端部设置有一段锥体结构(2),且锥体结构(2)的直径逐渐缩小,端部设置有球体结构(3),球体结构(3)的端部设置有微腔凹槽结构(4),球体结构(3)、锥体结构(2)以及微腔凹槽结构(4)表面均设置有金属纳米粒子。
 锥体结构(2)为利用CO 2激光拉锥法或熔融拉锥法制备而成,CO 2激光拉锥法是利用CO 2激光器将光纤熔融,在两端施以拉力,先用较小的力使其成锥,再用较大的力将其迅速拉断,断面自然形成光滑平面。熔融拉锥法是指将除去涂覆层的光纤以一定的方法靠拢,在高温加热下熔融,同时向两侧拉伸,最终在加热区形成双锥体形式的特殊波导结构。
 球体结构(3)为在锥体结构(2)末端通过放电形式制备而成,通过控制熔接机的放电电流、光纤推进量、放电时间等参数,得到不同大小尺寸的光纤球形结构。微腔凹槽结构(4)是利用飞秒激光器作为光源,控制飞秒激光器运动在球体结构(3)上逐点写入得到,三种结构一起组合成舌形光纤探针预备体;其次,在舌形光纤探针预备体的表面均涂敷金属纳米粒子,最终组成舌形光纤探针。金属纳米粒子常用银纳米颗粒,采用自组装法进行修饰,将舌形光纤探针预备体放入食人鱼溶液进行羟基化,然后将羟基化后的舌形光纤探针预备体依次通过去离子水和无水乙醇进行清洗;将清洗后的舌形光纤探针预备体放入含有APTES的混合溶液中进行氨基化,烘干,最后将烘干后的舌形光纤探针预备体放入离心后的纳米金属溶胶中,取出,完成舌形光纤探针的制备;其中,混合溶液还包括异丙醇和氨水。混合溶液中APTES的浓度可以但不限于为10%。
 具体的,将舌形光纤探针预备体浸泡在食人鱼溶液中,对光纤表面羟基化,取出后用去离子水和无水乙醇分别清洗两次;其次,将清洗后的舌形光纤探针预备体置于APTES体系溶液中,舌形光纤探针预备体将与羟基发生反应从而共价结合上氨基;然后,将氨基化后的舌形光纤探针预备体置于干燥箱中,在100℃下干燥30分钟;最后,将舌形光纤探针预备体置于离心后的贵金属纳米溶胶中,使贵金属纳米颗粒自组装在光纤探针表面,通过改变自组装时间,可以调控光纤表面贵金属纳米颗粒的大小尺寸。在场发射扫描电子显微镜下进行表征,观察修饰在光纤表面的贵金属纳米颗粒的形貌及尺寸大小。
 其中,食人鱼溶液为30%过氧化氢和浓硫酸按照1:2制备,无水乙醇纯度大于等于99%,异丙醇纯度大于等于99%,氨水纯度为25%~28%,APTES纯度为99%。
 上述阶跃型多模光纤,其纤芯直径为105μm,长度为15~25cm,用于激发光的输出端口以及拉曼光谱的输出端口。
 上述光纤锥体结构(2)是阶跃型多模光纤经CO 2激光拉锥法或熔融拉锥法拉锥后制备得到的,其锥体结构(2)的长度为1~15mm。
 上述光纤球体结构(3)是在锥形光纤末端通过放电形式制备,直径为150~250μm。
 上述光纤凹槽区域结构(4)是通过飞秒激光在球体结构(3)上逐点写入制备,其直径为10~100μm;深度为10~100μm。
 除此之外,本发明实施例还给出了一种基于表面增强拉曼散射的舌形光纤探针的立体图,如图3所示。目前,所报道的研究工作大多基于单一的柱形、锥形、球形、斜面形的探针结构研究其SERS特性,尚不足以对光纤探针的SERS传感特性进行全面的衡量优化。而纳米贵金属修饰的舌形多模光纤探针使用大芯径的多模光纤,可以使光更多地直接作用于贵金属纳米结构上,具有传感面积大、增强拉曼信号强等特点,将其引入到光纤SERS特性表征中,可以更加充分的利用光纤探针与SERS技术相结合的优势,探索其在稳定性、灵敏度等方面的变化机理和传感特性,为构建新型光纤探针提供理论及技术支撑,对推动小型化、多功能化的新型光纤器件研制具有重要意义和应用价值。

Claims (8)

  1. 一种基于表面增强拉曼散射的舌形光纤探针,其特征在于:用于表面增强拉曼散射激发光的反射和收集,包括内部设置有纤芯(1)的光纤,所述光纤的一端设置有端部直径逐渐缩小的锥体结构(2),所述锥体结构(2)的端部设置与锥体结构(2)由同一根光纤制备的球体结构(3),且球体结构(3)的一端设置有微腔凹槽结构(4),所述球体结构(3)、锥体结构(2)和微腔凹槽结构(4)的表面均设置有金属纳米粒子(5)。
  2. 根据权利要求1所述的一种基于表面增强拉曼散射的舌形光纤探针,其特征在于:所述金属纳米粒子(5)为银纳米颗粒。
  3. 根据权利要求1所述的一种基于表面增强拉曼散射的舌形光纤探针,其特征在于:所述光纤为阶跃折射率多模光纤。
  4. 根据权利要求1所述的一种基于表面增强拉曼散射的舌形光纤探针,其特征在于:所述纤芯(1)的直径为105μm;长度为15~25cm。
  5. 根据权利要求1所述的一种基于表面增强拉曼散射的舌形光纤探针,其特征在于:所述锥体结构(2)的长度为1~15mm。
  6. 根据权利要求1所述的一种基于表面增强拉曼散射的舌形光纤探针,其特征在于:所述球体结构(3)的直径为150~250μm。
  7. 根据权利要求1所述的一种基于表面增强拉曼散射的舌形光纤探针,其特征在于:所述微腔凹槽结构(4)的直径为10~100μm,深度为10~100μm。
  8. 采用权利要求1所述的一种基于表面增强拉曼散射的舌形光纤探针的制备方法,其特征在于:
    所述锥体结构(2)采用CO 2激光拉锥法或熔融拉锥法制备;
    在锥体结构(2)的末端通过放电形式制备得到球体结构(3);
    利用飞秒激光器作为光源,控制飞秒激光器运动在球体结构(3)上逐点写入微腔凹槽结构(4)得到舌形光纤探针预备体;
    将舌形光纤探针预备体放入食人鱼溶液进行羟基化,然后将羟基化后的舌形光纤探针预备体依次通过去离子水和无水乙醇进行清洗;将清洗后的舌形光纤探针预备体放入含有APTES的混合溶液中进行氨基化,烘干,最后将烘干后的舌形光纤探针预备体放入离心后的纳米金属溶胶中,取出,完成舌形光纤探针的制备。
PCT/CN2023/074720 2022-05-27 2023-02-07 一种基于表面增强拉曼散射的舌形光纤探针及其制备方法 WO2023226474A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210591504.XA CN115046981B (zh) 2022-05-27 2022-05-27 一种基于表面增强拉曼散射的舌形光纤探针及其制备方法
CN202210591504.X 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023226474A1 true WO2023226474A1 (zh) 2023-11-30

Family

ID=83158744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074720 WO2023226474A1 (zh) 2022-05-27 2023-02-07 一种基于表面增强拉曼散射的舌形光纤探针及其制备方法

Country Status (2)

Country Link
CN (1) CN115046981B (zh)
WO (1) WO2023226474A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115046981B (zh) * 2022-05-27 2023-04-04 燕山大学 一种基于表面增强拉曼散射的舌形光纤探针及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060017917A1 (en) * 2004-07-22 2006-01-26 Cullum Brian M Surface enhanced Raman spectroscopic nano-imaging probe and uses therefor
CN101713738A (zh) * 2009-12-22 2010-05-26 上海大学 表面增强拉曼散射光纤探针
CN102183506A (zh) * 2011-02-21 2011-09-14 上海大学 基于表面增强拉曼散射光纤探针的微量物质检测装置
US20130293883A1 (en) * 2012-04-02 2013-11-07 Agency For Science, Technology And Research Optical fiber for optical sensing, and method of manufacture thereof
CN106124478A (zh) * 2016-08-18 2016-11-16 东南大学 拉锥光纤和微小圆球透镜的光纤拉曼增强探针及制作方法
CN207351907U (zh) * 2017-11-10 2018-05-11 天津富伟科技有限公司 一种检测三聚氰胺的拉曼系统
CN115046981A (zh) * 2022-05-27 2022-09-13 燕山大学 一种基于表面增强拉曼散射的舌形光纤探针及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7635392B2 (en) * 2007-08-14 2009-12-22 Qimonda Ag Scanning probe microscopy cantilever, corresponding manufacturing method, scanning probe microscope, and scanning method
CN101666750B (zh) * 2009-09-25 2011-07-20 上海大学 基于光纤熔锥型耦合器的表面增强拉曼散射传感检测装置
CN110455754B (zh) * 2019-07-15 2022-03-18 深圳大学 一种dna探针及制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060017917A1 (en) * 2004-07-22 2006-01-26 Cullum Brian M Surface enhanced Raman spectroscopic nano-imaging probe and uses therefor
CN101713738A (zh) * 2009-12-22 2010-05-26 上海大学 表面增强拉曼散射光纤探针
CN102183506A (zh) * 2011-02-21 2011-09-14 上海大学 基于表面增强拉曼散射光纤探针的微量物质检测装置
US20130293883A1 (en) * 2012-04-02 2013-11-07 Agency For Science, Technology And Research Optical fiber for optical sensing, and method of manufacture thereof
CN106124478A (zh) * 2016-08-18 2016-11-16 东南大学 拉锥光纤和微小圆球透镜的光纤拉曼增强探针及制作方法
CN207351907U (zh) * 2017-11-10 2018-05-11 天津富伟科技有限公司 一种检测三聚氰胺的拉曼系统
CN115046981A (zh) * 2022-05-27 2022-09-13 燕山大学 一种基于表面增强拉曼散射的舌形光纤探针及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DU HUAICHAO; CHEN ZHENYI; CHEN NA; LIU HUAJIAN; XU WENJIE; ZHANG HENG; LIU SHUPENG; WANG TINGYUN: "Fabrication of a Novel Concave Cone Surface-Enhanced Raman Scattering Fiber Probe", CHINESE JOURNAL OF LASERS, SHANGHAI : SHANGHAI KEXUE JISHU CHUBANSHE, 1983-1992, CN, vol. 44, no. 2, 28 February 2017 (2017-02-28), CN , pages 336 - 342, XP009550895, ISSN: 0258-7025, DOI: 10.3788/CJL201744.0213001 *
U XING-HU; WANG ZHEN-XING; LI JIA-XUAN; MA SHUANG-YU; FU GUANG-WEI; JIN WA; BI WEI-HONG; DONG YAN-HUA: "Preparation and Performance Comparison of Nano-Silver Sol and Micro-Cavity Fiber SERS Substrates", SPECTROSCOPY AND SPECTRAL ANALYSIS, BEIJING DAXUE CHUBANSHE, CN, vol. 42, no. 2, 28 February 2022 (2022-02-28), CN , pages 470 - 477, XP009550894, ISSN: 1000-0593, DOI: 10.3964/j.issn.1000-0593(2022)02-0470-08 *
WEI FANG; ZOU ZHIGE: "Surface Enhanced Raman Scattering Based on a Spherical Fiber Probe", CHINESE JOURNAL OF ELECTRON DEVICES, DONGNAN DAXUE, NANJING, CN, vol. 41, no. 5, 20 October 2018 (2018-10-20), CN , pages 1136 - 1140, XP009550896, ISSN: 1005-9490, DOI: 10.3969/j.issn.1005-9490.2018.05.011 *

Also Published As

Publication number Publication date
CN115046981B (zh) 2023-04-04
CN115046981A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
Chen et al. Gold nanoparticles-modified tapered fiber nanoprobe for remote SERS detection
CN104698539B (zh) 一种光纤表面等离子体激元激发聚焦装置及其制作方法
WO2023226474A1 (zh) 一种基于表面增强拉曼散射的舌形光纤探针及其制备方法
CN102183506B (zh) 基于表面增强拉曼散射光纤探针的微量物质检测装置
CN101666750B (zh) 基于光纤熔锥型耦合器的表面增强拉曼散射传感检测装置
CN108535220B (zh) 楔形尖端纳米结构集成光纤表面等离子体共振生化传感器
CN106124478A (zh) 拉锥光纤和微小圆球透镜的光纤拉曼增强探针及制作方法
Wang et al. Barium titanate film based fiber optic surface plasmon sensor with high sensitivity
CN109520994A (zh) 一种微流控生物检测系统及方法
CN101561396A (zh) 基于双锥形光纤渐逝波耦合的光纤拉曼传感检测装置
Tou et al. Fiber optic refractometer based on cladding excitation of localized surface plasmon resonance
Liu et al. Stick-slip-motion-assisted interfacial self-assembly of noble metal nanoparticles on tapered optical fiber surface and its application in SERS detection
Yang et al. High sensitivity D-shaped fiber decorated with self-assembly Ag nanoparticles for Raman enhancement via collecting backward and vertical direction scattering signals
Li et al. A microfluid fiber device for trace detection of aggregation induced emission molecules
CN114878438A (zh) 一种细胞内外光电一体化检测平台及其搭建方法和应用
Ren et al. The preparation of optical fibre nanoprobe and its application in spectral detection
Zhao et al. Gold nanoparticles modified double-tapered fiber for SERS detection
Huang et al. 3D printing of fiber-integrated plasmonic micro-grating tip enabling high-resolution real-time and in-site refractive index sensing
CN107703114A (zh) 新型表面增强型便携式拉曼微痕快速检测仪
Liu et al. Laser-Based Four-Core Biosensor with WS2 Thin-Film/CeO2-Nanorods/AuNPs Immobilization for Ascorbic Acid Detection
Pham et al. Fabrication of silver nano-dendrites on optical fibre core by laser-induced method for surface-enhanced Raman scattering applications
CN112147108A (zh) 基于Cu2-xS的表面等离子体共振传感器及其制备方法和应用
CN204718957U (zh) 一种金属覆膜纳米孔离子电流-散射光高速同步检测装置
CN111650181A (zh) 一种光纤sers前向检测装置
Li et al. Polarization-insensitive plasmon nanofocusing with broadband interference modulation for optical nanoimaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810550

Country of ref document: EP

Kind code of ref document: A1