WO2023226428A1 - 天线装置和电子设备 - Google Patents

天线装置和电子设备 Download PDF

Info

Publication number
WO2023226428A1
WO2023226428A1 PCT/CN2022/142664 CN2022142664W WO2023226428A1 WO 2023226428 A1 WO2023226428 A1 WO 2023226428A1 CN 2022142664 W CN2022142664 W CN 2022142664W WO 2023226428 A1 WO2023226428 A1 WO 2023226428A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
frequency band
feed
antenna device
antenna
Prior art date
Application number
PCT/CN2022/142664
Other languages
English (en)
French (fr)
Inventor
贺爱臣
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023226428A1 publication Critical patent/WO2023226428A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands

Definitions

  • the present application relates to the field of antenna technology, and in particular to an antenna device and electronic equipment.
  • Electronic equipment usually includes an antenna device to implement the communication function of the electronic equipment.
  • Antenna devices in electronic equipment in the related art can implement carrier aggregation in multiple frequency bands, but they occupy a large space.
  • an antenna device and an electronic device are provided.
  • an embodiment of the present application provides an antenna device.
  • the antenna device includes:
  • the first antenna component includes a first feed source, a third feed source and a first radiator provided with a first feed point;
  • the second antenna assembly includes a second feed source and a second radiator provided with a second feed point.
  • a gap is provided between the first radiator and the second radiator.
  • the second radiator is coupled through the gap;
  • the first feed source feeds a first feed signal to the first radiator through the first feed point to capacitively couple with the second radiator through the gap, so that part of the At least one of the second radiator and part of the first radiator supports the first frequency band;
  • the second feed source feeds a second feed signal to the second radiator through the second feed point, So that the second radiator supports the second frequency band,
  • the third feed source is used to feed a third feed signal to the first radiator through the third feed point, so that the first The radiator supports a third frequency band, and the first frequency band, the second frequency band, and the third frequency band are different.
  • the antenna device includes a first antenna component and a second antenna component, wherein the first antenna component and the second antenna component are provided with independent feed sources to feed different feed signals to different Radiators to support the transmission and reception of radio frequency signals in the first frequency band, the second frequency band and the third frequency band, for example, to achieve carrier aggregation (Carrier Aggregation, CA) of low frequency, mid-high frequency and ultra-high frequency, for example, full frequency band coverage, And the dual connection (LTE NR Double Connect, ENDC) combination of 4G-LTE signal and 5G-NR.
  • Carrier Aggregation CA
  • CA carrier aggregation
  • ENDC dual connection
  • the antenna device provided in the embodiment of the present application does not need to provide additional radiators (radiators other than the first radiator and the second radiator) to support the transmission and reception of radio frequency signals in the third frequency band, and can reuse the first radiation.
  • the radio frequency signals of the first frequency band and the third frequency band are transmitted and received in an integrated manner, thereby reducing the space occupied by the antenna device and also reducing the cost.
  • a combiner needs to be added between the first feed source, the second feed source and the feed point, so that different feed signals are combined and loaded on the same feed point.
  • embodiments of the present application provide an antenna device, including: a first feed source, a third feed source and a first radiator.
  • the first radiator is provided with a first feed point, respectively connected with the first feed point. feed source, the third feed source connection, wherein,
  • the first feed source feeds a first feed signal to the first radiator through the first feed point, so that part of the first radiator supports the first frequency band;
  • the third feed source is used to feed a third feed signal to the first radiator through the first feed point, so that the first radiator supports a third frequency band, the first frequency band, The third frequency band varies.
  • the antenna device includes a first antenna component, wherein the first antenna component includes a first feed source, a third feed source and a first radiator, wherein the first radiator is provided with a first feed point,
  • the feed signals provided by the first feed source and the third feed source may share the first feed point, so that the first radiator can support both the first frequency band and the third frequency band.
  • each feed source needs to be independently set up with a feed point, and different feed points are set up on different radiators.
  • a common feed point can be used.
  • Using a radiator to transmit and receive radio frequency signals in the first frequency band and the third frequency band can reduce costs and reduce the space occupied by the antenna device (for example, it can save spring components, etc.), which is conducive to the miniaturization of the antenna device.
  • an embodiment of the present application provides an electronic device, including: the aforementioned antenna device.
  • the above electronic device includes a first antenna component and a second antenna component, wherein the first antenna component and the second antenna component are provided with independent feed sources to feed different feed signals to different radiators respectively, so as to Supports the transmission and reception of radio frequency signals in the first frequency band, the second frequency band and the third frequency band, for example, to achieve carrier aggregation (Carrier Aggregation, CA) of low frequency, mid-high frequency and ultra-high frequency, such as full-band coverage, and 4G-LTE Signal and 5G-NR dual connection (LTE NR Double Connect, ENDC) combination.
  • Carrier Aggregation, CA Carrier Aggregation
  • CA Carrier Aggregation
  • 5G-NR dual connection LTE NR Double Connect, ENDC
  • the antenna device provided in the embodiment of the present application does not need to provide additional radiators (radiators other than the first radiator and the second radiator) to support the transmission and reception of radio frequency signals in the third frequency band, and can reuse the first radiation.
  • the radio frequency signals of the first frequency band and the third frequency band are transmitted and received in an integrated manner, thereby reducing the space occupied by the antenna device and also reducing the cost.
  • a combiner needs to be added between the first feed source, the second feed source and the feed point, so that different feed signals are combined and loaded on the same feed point.
  • the above-mentioned electronic device includes a first antenna component, wherein the first antenna component includes a first feed source, a third feed source and a first radiator, wherein the first radiator is provided with a first feed point, and the first feed source
  • the first feed point may be shared with the feed signal provided by the third feed source, so that the first radiator can support both the first frequency band and the third frequency band.
  • each feed source needs to be independently set up with a feed point, and different feed points are set up on different radiators.
  • a common feed point can be used.
  • Using a radiator to transmit and receive radio frequency signals in the first and third frequency bands can reduce costs, reduce the space occupied by the antenna device (for example, it can save spring components, etc.), and is conducive to the miniaturization of electronic equipment.
  • Figure 1 is a schematic structural diagram of an antenna device in an embodiment
  • Figure 2 is a second structural schematic diagram of an antenna device in an embodiment
  • Figure 3 is a third structural schematic diagram of an antenna device in one embodiment
  • Figure 4 is a fourth structural schematic diagram of an antenna device in one embodiment
  • Figure 5 is a fifth structural schematic diagram of an antenna device in an embodiment
  • Figure 6 is a schematic diagram of the structure of the antenna device in one embodiment
  • Figure 7 is a seventh structural schematic diagram of an antenna device in one embodiment
  • Figure 8 is a schematic structural diagram of an antenna device in one embodiment
  • Figure 9 is a circuit schematic diagram of a first variable frequency modulation circuit in an embodiment
  • Figure 10 is a circuit schematic diagram of a second variable frequency modulation circuit in one embodiment
  • Figure 11 is a schematic diagram of the return loss curve of the antenna device transmitting and receiving radio frequency signals in the third frequency band in one embodiment
  • Figure 12 is a schematic structural diagram of an antenna device in an embodiment
  • Figure 13 is a schematic diagram of the return loss curve of the antenna device transmitting and receiving radio frequency signals in the first frequency band and the second frequency band in yet another embodiment
  • Figure 14 is a schematic structural diagram of an antenna device in the ninth embodiment.
  • Figure 15 is a schematic structural diagram of an antenna device in the same embodiment.
  • Figure 16 is a schematic structural diagram of an electronic device in an embodiment
  • Figure 17 is a schematic structural diagram of an electronic device including an antenna device in an embodiment
  • Figure 18 is a schematic structural diagram of an electronic device including an antenna device in another embodiment
  • Figure 19 is a schematic structural diagram of an electronic device including an antenna device in yet another embodiment
  • Figure 20 is an efficiency curve diagram of the electronic device in different holding states in one embodiment
  • Figure 21 is a block diagram of the internal structure of an electronic device in one embodiment.
  • first and second are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified limitations. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • the antenna device involved in the embodiments of the present application can be applied to electronic equipment with wireless communication functions.
  • the electronic equipment can be a handheld device, a vehicle-mounted device, a wearable device, a computing device or other processing equipment connected to a wireless modem, and in various forms.
  • User equipment User Equipment, UE
  • UE User Equipment
  • MS Mobile Station
  • the devices mentioned above are collectively referred to as electronic devices.
  • the antenna device includes a first antenna component 110 and a second antenna component 120 .
  • the first antenna component 110 includes a first feed source S1, a third feed source S3, and a first radiator 111 provided with a first feed point A and a third feed point C.
  • the first feed point A and the third feed point C may be the same feed point, or they may be different feed points.
  • the first feed point A and the third feed point C are not shared, the first feed point A is disposed closer to the gap 101 relative to the third feed point C.
  • the second antenna component 120 includes a second feed source S2 and a second radiator 121 provided with a second feed point B.
  • a gap 101 is provided between the first radiator 111 and the second radiator 121 .
  • the gap 101 can be used as the coupling gap 101 between the first radiator 111 and the second radiator 121 to achieve capacitive coupling between the two radiators.
  • the first feed source S1, the second feed source S2, and the third feed source S3 may be devices that generate feed signals (or excitation signals).
  • the first feed source S1 is used to generate a first feed signal
  • the second feed source S2 is used to generate a second feed signal
  • the third feed source S3 is used to generate a third feed signal.
  • the first feed signal, the second feed signal and the third feed signal are different.
  • the first feed signal generated by the first feed source S1 can be loaded at the first feed point A, and the first feed signal can be fed into the first radiator 111 through the first feed point A, so that part of the first radiation Body 111 supports the first frequency band.
  • the first feed signal generated by the first feed source S1 can be loaded on the first feed point A, and the first feed signal can be fed to the first radiator 111 through the first feed point A to pass
  • the gap 101 is capacitively coupled to the second radiator 121, so that part of the second radiator 121 supports the first frequency band.
  • the first feed signal generated by the first feed source S1 can be loaded at the first feed point A, and the first feed signal can be fed to the first radiator 111 through the first feed point A, so that Part of the first radiator 111 supports the first frequency band. At the same time, it can also be capacitively coupled with the second radiator 121 through the gap 101 so that part of the second radiator 121 supports the first frequency band. In this embodiment of the present application, at least one of part of the first radiators 111 and part of the second radiators 121 may be used to support the first frequency band.
  • the second feed signal generated by the second feed source S2 can be loaded on the second feed point B, and the second feed signal is fed to the second radiator 121 through the second feed point B, so that the second radiator 121 supports the second frequency band.
  • the second antenna component 120 can be used to support either the first frequency band or the second frequency band.
  • the third feed source S3 feeds the filtered third feed signal to the second radiator 121 through the third feed point C, so that the first radiator 111 transmits and receives radio frequency signals in the third frequency band.
  • the third feed signal generated by the third feed source S3 can be loaded on the third feed point C, and the third feed signal can be fed to the first radiator 111 through the third feed point C, so that the first radiator 111 supports the third frequency band.
  • the first radiator supporting the first frequency band can be understood as the first radiator receiving the radio frequency signal of the first frequency band, or the first radiator transmitting the radio frequency signal of the first frequency band, or The first radiator receives and transmits radio frequency signals in the first frequency band.
  • the first radiator 111 and the second radiator 121 can be respectively a Flexible Printed Circuit (FPC) antenna radiator, a Laser Direct Structuring (LDS) antenna radiator, and a Print Direct Structuring (Print Direct Structuring, PDS) antenna radiator, one of the metal radiation branches.
  • the radiator types of the first radiator 111 and the second radiator 121 are not further limited, and the types of the first radiator 111 and the second radiator 121 may be the same or different.
  • the first radiator 111 and the second radiator 121 are metal radiation branches, such as a conductive frame of an electronic device, as an example. It should be noted that the width of the gap 101 between the first radiator 111 and the second radiator 121 can be determined according to the actual situation, and it needs to meet the minimum size at which the first radiator 111 and the second radiator 121 can be coupled.
  • the first frequency band, the second frequency band, and the third frequency band are different.
  • the frequency range covered by the first frequency band, the frequency range covered by the second frequency band, and the frequency range covered by the third frequency band are different.
  • the first frequency band is an Ultra High Band (UHB) frequency band
  • the second frequency band is a Middle High Band (MHB) frequency band.
  • UHB Ultra High Band
  • MHB Middle High Band
  • the UHB frequency band ranges from 3000MHz to 6000MHz.
  • Examples include 5G New Radio (NR) signals.
  • NR New Radio
  • Examples include radio frequency signals in NR-77/78/79 and other frequency bands.
  • the MHB frequency band ranges from 1000MHz to 3000MHz.
  • the radio frequency signals of MHB may include radio frequency signals of part or all of the mid- and high-frequency bands of 4G Long Term Evolution (LTE) and 5G NR. Examples may include LTE-1/2/3/4/7/ Signals in the 32/34/38/39/40/41 frequency bands and radio frequency signals in the NR-1/3/7/40/41 frequency bands.
  • the third frequency band is the low frequency (Lower Band, LB) frequency band, and the range of the LB frequency band is less than 1000MHz.
  • the radio frequency signals in the low frequency band may include part or all of the low frequency band radio frequency signals of 4G-LTE and 5G-NR.
  • the antenna device includes a first antenna component 110 and a second antenna component 120.
  • the first antenna component 110 and the second antenna component 120 are provided with independent feed sources to feed different feed signals respectively.
  • the combiner can combine different feed signals and then load them at the same feed point, which can avoid the use of a combiner and thus reduce the transmission and reception of radio frequency signals in the first and second frequency bands.
  • the link insertion loss brought by the combiner is used to improve the sending and receiving performance of radio frequency signals in the first frequency band and the second frequency band, while reducing costs.
  • the first antenna component 110 can support the transmission and reception of ultra-high frequency and low-frequency radio frequency signals.
  • the transmission and reception of radio frequency signals in the third frequency band can be achieved by multiplexing the first radiator to realize the transmission and reception of radio frequency signals in the first frequency band and the third frequency band, thereby reducing the space occupied by the antenna device and also reducing the cost.
  • the second antenna component 120 can support the transmission and reception of mid- and high-frequency radio frequency signals, can use fewer antenna radiators to achieve wider frequency band coverage, and can also implement low-frequency, mid-to-high frequency, and ultra-high frequency carrier aggregation (Carrier Aggregation).
  • CA Carrier Aggregation
  • full-band coverage and the dual connection (LTE NR Double Connect, ENDC) combination of 4G-LTE signals and 5G-NR can further improve the communication performance of the antenna device.
  • an embodiment of the present application also provides an antenna device.
  • the antenna device includes a first antenna component 110, where the first antenna component 110 includes: a first feed source S1, a third feed source S3, and a first radiator 110.
  • a first feed point A is provided on the first radiator 110 and is connected to the first feed source A and the third feed source C respectively.
  • the first feed source S1 feeds the first feed signal to the first radiator 110 through the first feed point A, so that part of the first radiator 110 supports the first frequency band.
  • the third feed source S3 is used to feed the third feed signal to the first radiator 110 through the first feed point A, so that the first radiator 110 supports the third frequency band, wherein the first frequency band and the third frequency band each Are not the same.
  • the antenna device includes a first antenna component, wherein the first antenna component includes a first feed source, a third feed source and a first radiator, wherein the first radiator is provided with a first feed point,
  • the feed signals provided by the first feed source and the third feed source may share the first feed point, so that the first radiator can support both the first frequency band and the third frequency band.
  • each feed source needs to be independently set up with a feed point, and different feed points are set up on different radiators.
  • a common feed point can be used.
  • Using a radiator to transmit and receive radio frequency signals in the first frequency band and the third frequency band can reduce costs and reduce the space occupied by the antenna device (for example, it can save spring components, etc.), which is conducive to the miniaturization of the antenna device.
  • the first feed point A and the third feed point C are the same feed point. It can be understood that the first feed signal output by the first feed source S1 and the third feed signal output by the third feed source S3 can be loaded on the first feed point A to pass through the first feed point A
  • the first radiator 111 is loaded with a corresponding feed signal.
  • the frequency range of the first feed signal provided by the first feed source S1 and the third feed signal provided by the third feed source S3 are greatly different. Therefore, the first feed signal and the third feed signal are The mutual interference between signals has little impact. Even if the first radiator 111 supports the transmission and reception of radio frequency signals in the first frequency band and the third frequency band at the same time, its transmission and reception performance will not be affected.
  • the feed signals provided by the first feed source S1 and the third feed source S3 may share the same feed point, such as the first feed point A, so that the first radiator 111 can support both
  • the first frequency band can also support the third frequency band.
  • each feed source needs to be independently set up with a feed point, and different feed points are set at different radiators.
  • Radiators other than body 121) are used to support the transmission and reception of radio frequency signals in the first frequency band.
  • a common feed point and a common radiator can be used to realize the transmission and reception of radio frequency signals in the first frequency band and the third frequency band, which can reduce costs. , reducing the space occupied by the antenna device (for example, the spring assembly can be saved, etc.), which is conducive to the miniaturization of the antenna device.
  • the first antenna component 110 further includes a first filter circuit 112 and a second filter circuit 113, wherein the input end of the first filter circuit 112 is connected to the first feed source S1, The input end of the second filter circuit 113 is connected to the third feed source S3. The second ends of the first filter circuit 112 and the second filter circuit 113 are respectively connected to the first feed point A. The first filter circuit 112 and the second filter circuit 113 are connected to the first feed point A. The frequency bands of the feed signals output by the circuit 113 are different.
  • the first filter circuit 112 is a high-pass filter circuit that can filter out radio frequency signals in the third frequency band (eg, low frequency band) and only allow radio frequency signals in the first frequency band to pass.
  • the second filter circuit 113 is a low-pass filter circuit that can filter out radio frequency signals in the first frequency band (eg, ultra-high frequency band) and only allow radio frequency signals in the third frequency band to pass.
  • the first feed point A and the third feed point C are the same feed point, that is, the first feed source S1 and the third feed source S3 share the same feed point.
  • the first filter circuit 112 and the second filter circuit 113 are arranged between the points to ensure the feed isolation of the first feed signal and the third feed signal to further improve the immunity of the radio frequency signals of the first frequency band and the third frequency band. Transceiver performance.
  • the first antenna component 110 further includes: a first matching circuit 114 connected to the input terminals of the first feed source S1 and the first filter circuit 112 respectively, for tuning the first The resonant frequency of the radio frequency signal in the frequency band.
  • the first matching circuit 114 may include at least one of a capacitor, a resistor, and an inductor, or a combination of more.
  • the device type of the frequency modulation device included in the first matching circuit 114 and the connection relationship between the devices are not further limited.
  • the first feed signal provided by the first feed source S1 can be fed to the first radiator 111 through the first matching circuit 114, the first filter circuit 112, and the first feed point A.
  • the resonant frequency of the first frequency band can be adjusted by adjusting the frequency selection parameters of the first matching circuit 114 (for example, it may include a resistance value, an inductance value, and a capacitance value), so that the first antenna component 110 can achieve matching.
  • Ultra-high frequency radio frequency signals such as NR-77, 78, 79 and other frequency bands, can also achieve ultra-wideband carrier aggregation functions.
  • the first antenna component 110 further includes: at least one of a second matching circuit 115 , a first variable frequency modulation circuit 116 and a second variable frequency modulation circuit 117 .
  • the second matching circuit 115, the first variable frequency modulation circuit 116 and the second variable frequency modulation circuit 117 can be used to tune the resonant frequency of the radio frequency signal in the third frequency band.
  • the second matching circuit 115, the first variable frequency modulation circuit 116 and the second variable frequency modulation circuit 117 can independently or jointly adjust the resonant frequency of the radio frequency signal in the third frequency band.
  • the second matching circuit 115 is connected to the input terminals of the first feed source S1 and the second filter circuit 113 respectively.
  • the second matching circuit 115 may include at least one of a capacitor, a resistor, and an inductor, or a combination of more.
  • the device type of the frequency modulation device included in the second matching circuit 115 and the connection relationship between the devices are not further limited.
  • the third feed signal provided by the third feed source S3 can be fed to the first radiator 111 through the second matching circuit 115, the second filter circuit 113, and the first feed point A.
  • the resonant frequency of the third frequency band can be adjusted by adjusting the frequency selection parameters of the second matching circuit 115 (for example, it may include a resistance value, an inductance value, and a capacitance value), so that the first antenna component 110 can achieve matching.
  • the coverage of low-frequency radio frequency signals can also realize the ultra-wideband carrier aggregation function.
  • the first terminal of the first variable frequency modulation circuit 116 is connected to the second filter circuit 113 , and the second terminal of the first variable frequency modulation circuit 116 is connected to ground.
  • the first end of the second variable frequency modulation circuit 117 can also be connected to the first radiator 111 , and the second end of the first variable frequency modulation circuit 116 is grounded.
  • the first end of the second variable frequency modulation circuit 117 is connected to the first frequency modulation point D on the first radiator 111, and the second end of the second variable frequency modulation circuit 117 is connected to ground.
  • the first radiator 111 includes a first ground terminal GND1 and a first free terminal F1 that are oppositely arranged, wherein the first frequency modulation point D is provided between the first feed point A and the first ground terminal GND1 between.
  • the first free end F1 can be understood as the end of the first radiator 111 disposed adjacent to the gap 101 .
  • the first variable frequency modulation circuit 116 and the second variable frequency modulation circuit 117 may each be provided with multiple frequency modulation paths, wherein the frequency modulation parameters of each frequency modulation path in the same frequency modulation circuit are not exactly the same.
  • the first variable frequency modulation circuit 116 may include a first switch unit 1161 and a plurality of first variable frequency modulation units 1162, and the frequency modulation parameters of each first variable frequency modulation unit 1162 are different.
  • the antenna device or the electronic device can control the first switch unit 1161 to open the path between the target first variable frequency modulation unit 1162 and the first radiator 111 according to actual communication requirements or the holding state of the electronic device.
  • Each frequency modulation path is provided with a variable tuning unit. As shown in FIG.
  • the second variable frequency modulation circuit 117 may include a second switch unit 1171 and a plurality of second variable frequency modulation units 1172 , and each second variable frequency modulation unit 1172 has different frequency modulation parameters.
  • the antenna device or the electronic device can control the second switch unit 1171 to connect the path between the target second variable frequency modulation unit 1172 and the first radiator 111 according to actual communication requirements or the holding state of the electronic device.
  • the target first variable frequency modulation unit 1162 is at least one of the plurality of first variable frequency modulation units 1162
  • the target second variable frequency modulation unit 1172 is at least one of the plurality of second variable frequency modulation units 1172 .
  • the antenna device Based on the second matching circuit 115, the first variable frequency modulation circuit 116 and the second variable tuning circuit 117 provided in the first antenna component 110, the antenna device supports the first resonance mode, the second resonance mode, the third resonance mode and the third resonance mode. Quad-resonance mode to support the transmission and reception of radio frequency signals in the third frequency band. It can be understood that the first resonant mode, the second resonant mode, the third resonant mode and the fourth resonant mode are four resonant modes of the first antenna component 110 and are generated by the first radiator 111 .
  • the first resonant mode, the second resonant mode, the third resonant mode and the fourth resonant mode are respectively the fundamental modes corresponding to the first radiator 111 from the first ground terminal GND1 to the gap 101, as shown in FIG. 11.
  • FIG. 11 is a schematic diagram of the return loss curve of the antenna device shown in FIG. 7 for transmitting and receiving radio frequency signals in the third frequency band. It should be noted that in Figure 11, the first resonance mode (mode 1), the second resonance mode (mode 2), the third resonance mode (mode 3) and the fourth resonance mode (mode 4) only occur at the same time. There is a resonant mode.
  • At least one of the first variable frequency modulation circuit 116 and the second variable frequency modulation circuit 117 may be used to adjust the offset of the resonant frequency of the third frequency band, for example, through the first variable frequency modulation circuit 116 and the second variable frequency modulation circuit At least one of 117 is used to increase or decrease the resonant frequency, so that the first antenna component 110 can transmit and receive radio frequency signals in the third frequency band at different resonant frequencies.
  • the resonant frequencies of the third frequency band corresponding to mode 1, mode 2, mode 3, and mode 4 increase in sequence.
  • the first antenna component 110 includes but is not limited to the above four resonant modes.
  • the quantity can enable the first antenna component 110 to support the transmission and reception of radio frequency signals in the frequency band within the low-frequency 600-1000M bandwidth.
  • the resonant frequency of the radio frequency signal in the third frequency band can be adjusted, and the resonance of the above resonant mode can also be adjusted.
  • the frequency can further enable the first antenna component 110 to cover part or all of the low-frequency band and obtain higher efficiency in the required frequency band, which can further improve the performance of transmitting and receiving low-frequency signals.
  • the antenna device also supports a fifth resonance mode to support the transmission and reception of radio frequency signals in the first sub-band of the second frequency band.
  • the first sub-frequency band of the second frequency band may be an intermediate frequency signal among the intermediate and high frequency signals.
  • the fifth resonance mode can be understood as a ring (LOOP) mode.
  • the fifth resonance mode is a half-wavelength mode of the first radiator 111 corresponding to the first feed point A to the first ground terminal GND1.
  • the resonant frequency of the fifth resonance mode can be adjusted. For example, if a variable tuning unit with a lower resonance parameter (eg, inductance) is selected as the target variable tuning unit, the resonance frequency of its fifth resonance mode will shift toward a high frequency point.
  • a variable tuning unit with a lower resonance parameter eg, inductance
  • the antenna device may choose to support any one of the first to fourth resonant modes, and may also support the fifth resonant mode. In this way, the antenna device can adjust the resonance parameters of the tuning paths configured in the first variable frequency modulation circuit 116 and the second variable tuning circuit 117 according to actual communication requirements, so that the first antenna assembly 110 can operate in the target resonance mode. , the resonance mode can be dynamically adjusted according to communication needs to improve the communication performance of the antenna device.
  • the second radiator 121 includes a second ground terminal GND2 and a second free terminal F2 that are oppositely arranged.
  • the second free end F2 is the end of the second radiator 121 close to the gap 101 .
  • the second radiator 121 is also provided with a first connection point G, which is disposed close to the second free end F2.
  • the second antenna assembly 120 further includes: a third matching circuit 122.
  • the first end of the third matching circuit 122 is connected to the first connection point G, and the second end of the third matching circuit 122 is connected to ground for tuning the resonant frequency of the radio frequency signal in the first frequency band.
  • the third matching circuit 122 may include at least one of a capacitor, a resistor, and an inductor, or a combination of more.
  • the third matching circuit 122 may also include a switch, etc., and by controlling the switch, the frequency modulation parameters of the matching circuit can be changed.
  • the device type of the frequency modulation device included in the third matching circuit 122 and the connection relationship between the devices are not further limited. Among them, the first feed signal provided by the first feed source S1 can be fed into the first radiator 111 through the first matching circuit 114, the first filter circuit 112, and the first feed point A, and then through the gap 101 and the second Radiator 121 is capacitively coupled.
  • the third matching circuit 122 behaves as a low capacitance, similar to an open circuit, to mid- and high-frequency radio frequency signals, and behaves as a low-impedance short-circuit effect to ultra-high frequency radio frequency signals.
  • the first feed signal provided by the first feed source S1 is grounded at the third matching circuit 122 with low impedance.
  • the resonant frequency of the first frequency band can be adjusted by adjusting the frequency selection parameters of the third matching circuit 122 (for example, it may include a resistance value, an inductance value, and a capacitance value), so that the second antenna component 120 can achieve matching. Coverage of radio frequency signals in the first frequency band.
  • the second antenna component 120 can cooperate with the first antenna component 110 to support the transmission and reception of radio frequency signals in the first frequency band, which can improve the transmission and reception performance of ultra-high frequency signals.
  • the antenna device also supports a sixth resonance mode and a seventh resonance mode to support the transmission and reception of radio frequency signals in the first frequency band. It can be understood that the sixth resonant mode and the seventh resonant mode are two resonant modes of the second antenna component 120 and are generated by the second radiator 121 .
  • the sixth resonance mode is the fundamental mode from the first connection end to the second radiator 121 corresponding to the gap 101 to assist in supporting the transmission and reception of radio frequency signals in the first sub-band of the first frequency band.
  • the seventh resonance mode is the third mode in which the second antenna component 120 operates from the second ground terminal GND2 of the second radiator 121 to the gap 101 to support the transmission and reception of radio frequency signals in the second sub-band of the first frequency band.
  • FIG. 13 is a schematic diagram of a return loss curve of the antenna device shown in FIG. 12 for transmitting and receiving radio frequency signals in the third frequency band.
  • the sixth resonance mode (mode 6) and the seventh resonance mode (mode 7) respectively correspond to the first sub-band and the second sub-band of the first frequency band.
  • the frequency range of the first sub-band of the first frequency band is between 3800 and 3900 MHz; the frequency range of the second sub-frequency band of the first frequency band is between 4700 and 4800 MHz.
  • the second radiator 121 can not only implement the transceiver processing of the first frequency band, but also support the transceiver processing of the radio frequency signal of the second frequency band.
  • the next day antenna assembly can support the transmission and reception of 4G-LTE signals and 5G-NR signals, for example, including LTE-1/2/3/4/7/32/34/38/39/40/41 frequency band signals, As well as NR-1/3/7/40/41/77/78/79 band signals, etc., it can realize carrier aggregation of mid-high frequency and ultra-high frequency. At the same time, it can also support low frequency and mid-high frequency, as well as low frequency and ultra-high frequency.
  • the dual connection (LTE NR Double Connect, ENDC) combination can reduce the insertion loss on the transceiver link, improve communication performance, save costs, and reduce the space occupied by the antenna device.
  • the second feed point B is provided between the first connection point G and the second ground terminal GND2.
  • the second antenna assembly 120 further includes: a fourth matching circuit 123 and a third variable frequency modulation circuit 124, wherein the fourth matching circuit 123 and the third variable frequency modulation circuit 124 may be used to adjust the resonant frequency of the radio frequency signal in the second frequency band.
  • the first end of the fourth matching circuit 123 is connected to the second feed point B, and the second end of the fourth matching circuit 123 is connected to the second feed source S2.
  • the third variable frequency modulation circuit 124 has a first end connected to the fourth matching circuit 123 and a second end connected to the ground.
  • the first end of the third variable frequency modulation circuit 124 is connected to the second radiator 121 , and the second end of the third variable frequency modulation circuit 124 is connected to the ground.
  • the fourth matching circuit 123 may include at least one of a capacitor, a resistor, and an inductor, or a combination of more.
  • the device type of the frequency modulation device included in the first matching circuit 114 and the connection relationship between the devices are not further limited.
  • the third variable frequency modulation circuit 124 can separate multiple frequency modulation paths.
  • the third variable frequency modulation circuit 124 may include a third switch unit and a plurality of third variable frequency modulation units, and the frequency modulation parameters of each third variable frequency modulation unit are different.
  • Each frequency modulation path is provided with a variable tuning unit.
  • the antenna device or the electronic device can control the third switch unit to conduct a path between the target third variable frequency modulation unit and the second radiator 121 according to actual communication requirements or the holding state of the electronic device.
  • the target third variable frequency modulation unit is at least one of a plurality of third variable frequency modulation units.
  • each variable frequency modulation unit in the embodiment of the present application may include at least one of a capacitor, a resistor and an inductor, or a combination of more.
  • each matching circuit, each variable frequency modulation unit There are no specific limitations on the frequency modulation devices included in the frequency modulation unit, the number, combination methods and connection methods of the frequency modulation devices.
  • the antenna device also supports an eighth resonance mode (mode 8) and a ninth resonance mode (mode 9) to support the transmission and reception of radio frequency signals in the second frequency band. It can be understood that the eighth resonant mode and the ninth resonant mode are two resonant modes of the second antenna component 120 and are generated by the second radiator 121 .
  • the eighth resonance mode is the fundamental mode from the second ground terminal GND2 to the second radiator 121 corresponding to the gap 101 to support the transmission and reception of radio frequency signals in the first sub-band of the second frequency band.
  • the ninth resonance mode is the fundamental mode from the second feed point B to the second radiator 121 corresponding to the slot 101 to support the transmission and reception of radio frequency signals in the second sub-band of the second frequency band.
  • the eighth resonance mode and the ninth resonance mode respectively correspond to the first sub-frequency band and the second sub-frequency band of the second frequency band.
  • the frequency range of the first sub-band of the second frequency band is between 1900 and 2000 MHz; the frequency range of the second sub-frequency band of the second frequency band is between 2600 and 2700 MHz.
  • first variable frequency modulation circuit 116 and the second variable frequency modulation circuit 117 may be used to adjust the offset of the resonant frequency of the third frequency band, for example, through the first variable frequency modulation circuit 116 and the second variable frequency modulation circuit At least one of 117 is used to adjust the resonant frequency to be higher or lower, so that the first antenna component 110 can transmit and receive radio frequency signals in the third frequency band at different resonant frequencies.
  • first variable frequency modulation circuit 116 and the second variable frequency modulation circuit 117 may be used to adjust the offset of the resonant frequency of the third frequency band, for example, through the first variable frequency modulation circuit 116 and the second variable frequency modulation circuit
  • At least one of 117 is used to adjust the resonant frequency to be higher or lower, so that the first antenna component 110 can transmit and receive radio frequency signals in the third frequency band at different resonant frequencies.
  • Figure 13 for details.
  • the second antenna component 120 includes but is not limited to the above four resonant modes.
  • the second antenna component 120 can support the mid-high frequency band (1000MHz-3000MHz) and ultra-high frequency band (3000MHz-10000MHz) Transmitting and receiving radio frequency signals.
  • the second antenna component 120 can achieve full coverage of mid- to high-frequency and ultra-high frequencies, and obtain higher efficiency in the required frequency band.
  • An embodiment of the present application also provides an electronic device, the antenna device in any of the foregoing embodiments.
  • the first radiator and the second radiator of the antenna device may be formed in the conductive component of the electronic device.
  • the conductive parts can be PCB boards, conductive frames, etc.
  • the specific types of the first radiator and the second radiator are not limited, and the conductive parts in the electronic equipment are not further limited.
  • Embodiments of the present application provide electronic equipment, including the aforementioned antenna device.
  • a combiner needs to be added between the first feed source, the second feed source and the feed point to combine different feed signals. After reasonable processing and loading at the same feed point, the use of a combiner can be avoided, thereby reducing the link insertion loss caused by the combiner on the transceiver link of the RF signals in the first and second frequency bands.
  • the performance of transmitting and receiving radio frequency signals in the first frequency band and the second frequency band is improved, and at the same time, the use of a combiner can be avoided to reduce costs.
  • the first antenna component can support the transmission and reception of ultra-high frequency radio frequency signals
  • the second antenna component can support the transmission and reception of ultra-high frequency and/or medium-high frequency radio frequency signals, which can be achieved by using fewer antenna radiators. Covering a wider frequency band, it can also realize carrier aggregation (Carrier Aggregation, CA) of mid-high frequency and ultra-high frequency and the dual connection (LTE NR Double Connect, ENDC) combination of 4G-LTE signals and 5G-NR, which can further improve Communication performance of the antenna device.
  • Carrier Aggregation, CA Carrier Aggregation
  • ENDC LTE NR Double Connect
  • the electronic device is a mobile phone as an example for explanation.
  • the electronic device 10 further includes: a frame 11 , a display screen assembly 12 and a control module 13 .
  • the display screen component 12 is set on the frame 11.
  • the display screen component 12 includes a display screen.
  • the display screen can be an OLED (Organic Light-Emitting Diode, organic light-emitting diode) screen or an LCD (Liquid Crystal Display). ) screen, a display screen can be used to display information and provide an interactive interface for users.
  • the shape of the display screen can be a rectangle or a curved rectangle. A curved rectangle is sometimes called a rounded rectangle, that is, the four corners of the rectangle adopt arc transitions, and the four sides of the rectangle are roughly straight segments.
  • the frame 11 can be made of metal materials such as aluminum alloy, magnesium alloy or stainless steel.
  • the frame 11 is provided on the periphery of the display screen assembly 12 to support and protect the display screen assembly 12 .
  • the frame 11 can further extend into the electronic device to form a middle plate.
  • the integrally formed middle plate and frame 11 are sometimes also called middle frames.
  • the display screen assembly 12 can be fixedly connected to the frame 11 or the middle panel using glue dispensing or other processes.
  • the frame 11 is generally in the shape of a rectangular frame
  • the middle frame is a metal conductive middle frame, which includes a first conductive frame 1101 and a third conductive frame 1103 that are arranged oppositely, and a second conductive frame 1103 that is arranged oppositely.
  • the first conductive frame 1101 and the third conductive frame 1103 can be understood as the top frame and the bottom frame of the electronic device
  • the second conductive frame 1102 and the fourth conductive frame 1104 can be understood as the first side frame and the third conductive frame of the electronic device.
  • the specific connection between the frames 11 may be a right-angle connection or an arc transition connection.
  • the first radiator and the second radiator in the antenna device are formed on any conductive frame.
  • both the first radiator 111 and the second radiator 121 of the antenna device can be formed on the second conductive frame 1102 , where the second radiator 121 is disposed close to the first conductive frame 1101 .
  • the electronic device may also include a mainboard 14, wherein the first feed source S1, the second feed source S2, each matching circuit, and each variable tuning circuit in the antenna device are all provided on the mainboard 14, and the first feed source S1 of the first radiator 111 is
  • the ground terminal GND1 and the second ground terminal GND2 of the second radiator 121 may be connected to the ground layer of the motherboard 14 .
  • both the first radiator 111 and the second radiator 121 of the antenna device can be formed on the third conductive frame 1103 , wherein the second radiator 121 is disposed close to the fourth conductive frame 1104 .
  • the first radiator 111 and the second radiator 121 in the antenna device are respectively formed on two adjacent conductive frames 11 .
  • the first radiator 111 and the second radiator 121 are respectively formed on the adjacent first conductive frame 1101 and the second conductive frame 1102.
  • the frame 11 close to the connection area of two adjacent conductive frames 11 can be understood as the corner frame 11 .
  • the first radiator 111 and the second radiator 121 of the antenna device can be disposed on any corner frame 11 of the electronic device.
  • the electronic device may include a first corner frame 11 , a second corner frame 11 , a third corner frame 11 and a fourth corner frame 11 .
  • the first radiator 111 and the second radiator 121 of the antenna device may be disposed on any one of the first to fourth corner frames 11 of the electronic device.
  • the areas where the first radiator 111 and the second radiator 121 in the antenna device are formed on the conductive frame 11 are not limited to the above examples.
  • the electronic device further includes a control module 13 for obtaining the holding state of the electronic device and controlling the resonance mode of the antenna device according to the holding state, wherein when the electronic device is in different holding states, the first The antenna assembly 110 operates in different resonant modes of the first radiator 111, and the holding state includes a vertical screen holding state and a horizontal screen holding state.
  • the holding state of the electronic device can be obtained based on the motion data of the sensor module in the electronic device.
  • the sensor data can include gravity data, gyroscope data, acceleration data, etc.
  • the holding state of the electronic device may be determined based on the display mode of the display screen in the electronic device. For example, if the current display screen is a horizontal screen display, the corresponding holding state is a horizontal screen holding state; if the current display screen is a vertical screen display, the corresponding holding state is a vertical screen holding state. It should be noted that in the embodiment of the present application, the method of obtaining the holding state of the electronic device is not limited to the above examples.
  • the electronic device can control the first antenna component 110 in the antenna device to work in the resonance mode of the first radiator 111 based on the current holding state of the electronic device, so that the first radiator 111 can support different
  • the frequency band radio frequency signal is sent and received, so that the resonance mode of the first antenna component 110 can be adjusted based on the current holding state of the electronic device, so that the electronic device can achieve high-performance communication in different holding states.
  • the control module when the electronic device is working in the vertical screen holding state, the control module is used to control the frequency modulation parameters of the first variable frequency modulation circuit and the second variable frequency modulation circuit in the antenna device, so that the first antenna The component operates in at least one of the first resonance mode, the second resonance mode, the third resonance mode and the fourth resonance mode to support the transmission and reception of radio frequency signals in the third frequency band.
  • control module is used to control the frequency modulation parameters of the first variable frequency modulation circuit in the antenna device, so that the first antenna component operates in the sixth resonance mode to support the transmission and reception of radio frequency signals in the first frequency band.
  • the control module is used to control the frequency modulation parameters of the first variable frequency modulation circuit and the second variable frequency modulation circuit in the antenna device, so that the first antenna component works in the fifth Resonance mode to support the transmission and reception of radio frequency signals in the first sub-band of the second frequency band.
  • the fifth resonance mode is a ring (LOOP) mode.
  • the fifth resonant mode is a half-wavelength mode in which the first antenna component operates from the first feeding point to the first ground terminal of the first radiator 111 .
  • the resonant frequency of the fifth resonant mode can be adjusted by adjusting the resonance parameters of the tuning paths configured in the first variable frequency modulation circuit and the second variable frequency modulation circuit. For example, if a variable tuning unit with a lower resonance parameter (eg, inductance) is selected as the target variable tuning unit, the resonance frequency of its fifth resonance mode will shift toward a high frequency point.
  • a variable tuning unit with a lower resonance parameter eg, inductance
  • the electronic device is held horizontally (or the gap is partially or completely blocked), and the first antenna component is not working in the fifth resonance mode.
  • the resonance of the signal shifts to 1.55G.
  • the total efficiency of the mid-frequency radio frequency signal drops sharply to -13 ⁇ -15dB.
  • the first antenna component can be controlled to work in the fifth resonance mode (reference curve 2), and the peak value of the total efficiency (reference curve 4) can be close to -10dB, and the performance is greatly improved. Large, ensuring the communication performance of the antenna device when the screen is held horizontally (or the gap of the antenna device is blocked).
  • the electronic device includes at least two antenna devices, wherein each antenna device is formed on a different conductive frame.
  • the radiator in each antenna device can be formed on any conductive frame or any corner frame.
  • the electronic device may include a first antenna device and a second antenna device, the radiator in the first antenna device may be formed on the second conductive frame, and the radiator in the second antenna device may be formed on the third conductive frame.
  • the radiator in the first antenna device may be formed on the first corner frame, and the radiator in the second antenna device may be formed on the second corner frame.
  • the radiator in the first antenna device may be formed on the first conductive frame
  • the radiator in the second antenna device may be formed on the second corner frame.
  • the areas of the first antenna assembly and the second antenna device formed on the conductive frame 11 in the electronic device are not limited to the above examples.
  • control module 13 can control one antenna device to send and receive 4G LTE signals, and can control another antenna device to send and receive 5G NR signals, so as to realize dual connection of 4G LTE signals and 5G NR signals.
  • the electronic device includes a first antenna device, a second antenna device, a third antenna device and a fourth antenna device.
  • the radiator in each antenna device can be formed on any conductive frame or any corner frame.
  • control module can control four antenna devices to respectively support the sending and receiving of radio frequency signals in the low frequency band, mid-high frequency band and ultra-high frequency band to achieve the full-band carrier aggregation function. It can also control the four antenna devices to support the transmission and reception of radio frequency signals in the low frequency band, mid-high frequency band and ultra-high frequency band respectively. Transmitting and receiving 5G NR signals to achieve 4*4 multiple input multiple output (Multiple Input Multiple Output, MIMO) function, and can also support dual connection of 4G LTE signals and 5G NR signals with different ENDC combinations, etc., thereby improving the performance of electronic equipment Communication performance.
  • MIMO Multiple Input Multiple Output
  • the electronic device is a mobile phone 10 as an example for explanation.
  • the mobile phone 10 may include a memory 21 (which optionally includes one or more computer-readable storage devices). medium), processing circuit 22, control module 23, input/output (I/O) subsystem 24 and at least an antenna device 25 as in any of the previous embodiments. These components optionally communicate via one or more communication buses or signal lines 29 .
  • the mobile phone 10 shown in FIG. 21 is not limited to the mobile phone and may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • the various components shown in Figure 21 are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • Memory 21 optionally includes high-speed random access memory, and optionally also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.
  • non-volatile memory such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.
  • the software components stored in the memory 21 include an operating system 211, a communication module (or instruction set) 212, a global positioning system (GPS) module (or instruction set) 213, and so on.
  • GPS global positioning system
  • Processing circuitry 22 and other control circuitry 23 may be used to control the operation of the handset 10 .
  • the processing circuit 22 may be based on one or more microprocessors, microcontrollers, digital signal processors, baseband processors, power management units, audio codec chips, application specific integrated circuits, or the like.
  • control module 23 is used to control the frequency modulation parameters of the first variable frequency modulation circuit and the second variable frequency modulation circuit in the antenna device 25 so that the first antenna component works in the first At least one of the resonance mode, the second resonance mode, the third resonance mode and the fourth resonance mode is used to support the transmission and reception of radio frequency signals in the third frequency band.
  • control module 23 is used to control the frequency modulation parameters of the first variable frequency modulation circuit in the antenna device 25 so that the first antenna component operates in the sixth resonance mode to support the transmission and reception of radio frequency signals in the first frequency band.
  • the I/O subsystem 24 couples input/output peripherals on the mobile phone 10 such as keypads and other input control devices to the peripheral interface 23 .
  • I/O subsystem 24 optionally includes a touch screen, buttons, tone generators, accelerometers (motion sensors), ambient light and other sensors, light emitting diodes and other status indicators, data ports, and the like.
  • a user may control the operation of the handset 10 by supplying commands via the I/O subsystem 24 and may use the output resources of the I/O subsystem 24 to receive status information and other output from the handset 10 . For example, the user presses button 241 to turn on or turn off the phone.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

一种天线装置,包括:第一天线组件(110),包括第一馈源(S1)以及设有第一馈电点(A)的第一辐射体(111);第二天线组件(120),包括第二馈源(S2)以及设有第二馈电点(B)的第二辐射体(121),第一辐射体(111)与第二辐射体(121)之间设有缝隙(101);第一馈源(S1)用于经第一馈电点(A)向第一辐射体(111)馈入第一馈电信号,以通过缝隙(101)与第二辐射体(121)容性耦合,以使部分第二辐射体(121)和部分第一辐射体(111)中的至少一个收发第一频段的射频信号;第二馈源(S2)用于经第二馈电点(B)向第二辐射体(121)馈入第二馈电信号,以使第二辐射体(121)收发第二频段的射频信号。

Description

天线装置和电子设备
相关申请的交叉引用
本申请要求于2022年5月27日提交中国专利局、申请号为2022105880977发明名称为“天线装置和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别是涉及一种天线装置和电子设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
随着技术的发展,通信功能电子设备(例如,手机、平板等)的普及度越来越高,且功能越来越强大。电子设备中通常包括天线装置以实现电子设备的通信功能。
相关技术中的电子设备中的天线装置可以实现多个频段的载波聚合,但是其占用空间大。
发明内容
根据本申请的各种实施例,提供一种天线装置和电子设备。
第一方面,本申请实施例提供一种天线装置,所述天线装置包括:
第一天线组件,包括第一馈源、第三馈源以及设有第一馈电点的第一辐射体;
第二天线组件,包括第二馈源以及设有第二馈电点的第二辐射体,所述第一辐射体与所述第二辐射体之间设有缝隙,所述第一辐射体与所述第二辐射体通过所述缝隙耦合;
所述第一馈源通过所述第一馈电点向所述第一辐射体馈入第一馈电信号,以通过所述缝隙与所述第二辐射体容性耦合,以使部分所述第二辐射体和部分所述第一辐射体中的至少一个支持第一频段;所述第二馈源通过所述第二馈电点向所述第二辐射体馈入第二馈电信号,以使所述第二辐射体支持第二频段,所述第三馈源用于通过所述第三馈电点向所述第一辐射体馈入第三馈电信号,以使所述第一辐射体支持第三频段,所述第一频段、所述第二频段、所述第三频段各不相同。
本申请实施例中,天线装置包括第一天线组件和第二天线组件,其中,第一天线组件和第二天线组件通过设置独立的馈源,以将不同的馈电信号分别馈入至不同的辐射体,以支持对第一频段、第二频段和第三频段的射频信号的收发,例如,实现低频、中高频以及超高频的载波聚合(Carrier Aggregation,CA)例如,全频段的覆盖,以及4G-LTE信号与5G-NR的双连接(LTE NR Double Connect,ENDC)组合。本申请实施例中提供的天线装置不需要设置额外的辐射体(除第一辐射体、第二辐射体以外的辐射体)来支持对第三频段的射频信号的收发,可以复用第一辐射体的方式来实现对第一频段和第三频段的射频信号的收发,减少天线装置的占用空间,还可以降低成本。另外,相比于相关技术中,需要在第一馈源和第二馈源与馈电点之间增加合路器,以将不同的馈电信号经过合路处理后加载在同一馈电点的方式,可以避免使用合路器,进而可以降低第一频段和第二频段的射频信号的收发链路上合路器带来的链路插损,以提高对第一频段和第二频段的射频信号的收发性能,同时还降低成本。
第二方面,本申请实施例提供天线装置,包括:第一馈源、第三馈源以及第一辐射体,所述第一辐射体上设有第一馈电点,分别与所述第一馈源、所述第三馈源连接,其中,
所述第一馈源通过所述第一馈电点向所述第一辐射体馈入第一馈电信号,以使部分所 述第一辐射体支持第一频段;
所述第三馈源用于通过所述第一馈电点向所述第一辐射体馈入第三馈电信号,以使所述第一辐射体支持第三频段,所述第一频段、所述第三频段各不相同。
本申请实施例中,天线装置包括第一天线组件,其中,第一天线组件包括第一馈源、第三馈源和第一辐射体,其中,第一辐射体设有第一馈电点,第一馈源和第三馈源提供的馈电信号可以共用第一馈电点,以使第一辐射体既可以支持对第一频段,也可以支持第三频段。相关技术中,每个馈源需要独立设置一个馈电点、不同馈电点设置在不同辐射体上。本申请实施例中,也不需要设置额外的馈电点(除第一馈电点以外的馈电点)和辐射体(除第一辐射体以外的辐射体)可以采用共用馈电点,共用辐射体的方式来实现对第一频段和第三频段的射频信号的收发,可以降低成本,减少天线装置的占用空间(例如,可以节约弹片组件等),有利于天线装置的小型化设置。
第三方面,本申请实施例提供一种电子设备,包括:前述天线装置。
上述电子设备,包括第一天线组件和第二天线组件,其中,第一天线组件和第二天线组件通过设置独立的馈源,以将不同的馈电信号分别馈入至不同的辐射体,以支持对第一频段、第二频段和第三频段的射频信号的收发,例如,实现低频、中高频以及超高频的载波聚合(Carrier Aggregation,CA)例如,全频段的覆盖,以及4G-LTE信号与5G-NR的双连接(LTE NR Double Connect,ENDC)组合。本申请实施例中提供的天线装置不需要设置额外的辐射体(除第一辐射体、第二辐射体以外的辐射体)来支持对第三频段的射频信号的收发,可以复用第一辐射体的方式来实现对第一频段和第三频段的射频信号的收发,减少天线装置的占用空间,还可以降低成本。另外,相比于相关技术中,需要在第一馈源和第二馈源与馈电点之间增加合路器,以将不同的馈电信号经过合路处理后加载在同一馈电点的方式,可以避免使用合路器,进而可以降低第一频段和第二频段的射频信号的收发链路上合路器带来的链路插损,以提高对第一频段和第二频段的射频信号的收发性能,同时还可以降低成本。
上述电子设备,包括第一天线组件,其中,第一天线组件包括第一馈源、第三馈源和第一辐射体,其中,第一辐射体设有第一馈电点,第一馈源和第三馈源提供的馈电信号可以共用第一馈电点,以使第一辐射体既可以支持对第一频段,也可以支持第三频段。相关技术中,每个馈源需要独立设置一个馈电点、不同馈电点设置在不同辐射体上。本申请实施例中,也不需要设置额外的馈电点(除第一馈电点以外的馈电点)和辐射体(除第一辐射体以外的辐射体)可以采用共用馈电点,共用辐射体的方式来实现对第一频段和第三频段的射频信号的收发,可以降低成本,减少天线装置的占用空间(例如,可以节约弹片组件等),有利于电子设备的小型化设置。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中天线装置的结构示意图之一;
图2为一个实施例中天线装置的结构示意图之二;
图3为一个实施例中天线装置的结构示意图之三;
图4为一个实施例中天线装置的结构示意图之四;
图5为一个实施例中天线装置的结构示意图之五;
图6为一个实施例中天线装置的结构示意图之六;
图7为一个实施例中天线装置的结构示意图之七;
图8为一个实施例中天线装置的结构示意图之八;
图9为一个实施例中第一可变调频电路的电路示意图;
图10为一个实施例中第二可变调频电路的电路示意图;
图11为一个实施例中天线装置收发第三频段的射频信号的回波损耗曲线示意图;
图12为一实施例中天线装置的结构示意图;
图13为又一个实施例中天线装置收发第一频段和第二频段的射频信号的回波损耗曲线示意图;
图14为一个同实施例中天线装置的结构示意图之九;
图15为一个同实施例中天线装置的结构示意图之十;
图16为一个实施例中电子设备的结构示意图;
图17为一实施例中包括天线装置的电子设备的结构示意图;
图18为另一实施例中包括天线装置的电子设备的结构示意图;
图19为又一实施例中包括天线装置的电子设备的结构示意图;
图20为一个实施例中电子设备在不同握持状态的效率曲线图;
图21为一个实施例中电子设备的内部结构框图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
本申请实施例涉及的天线装置可以应用到具有无线通信功能的电子设备,其电子设备可以为手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE)(例如,手机),移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为电子设备。
如图1和图2所示,本申请实施例提供一种天线装置。天线装置包括第一天线组件110和第二天线组件120。其中,第一天线组件110包括第一馈源S1、第三馈源S3以及设有第一馈电点A、第三馈电点C的第一辐射体111。在本申请实施例中,第一馈电点A和第三馈电点C可以为同一馈电点,也可以为不同的馈电点。示例性的,当第一馈电点A 与第三馈电点C不共用时,第一馈电点A相对于第三馈电点C靠近缝隙101设置。
第二天线组件120,包括第二馈源S2以及设有第二馈电点B的第二辐射体121,第一辐射体111与第二辐射体121之间设有缝隙101。该缝隙101可以作为第一辐射体111和第二辐射体121的耦合缝隙101,用于实现两个辐射体之间的容性耦合。第一馈源S1、第二馈源S2、第三馈源S3可以为产生馈电信号(或激励信号)的器件。在本申请实施例中,第一馈源S1用于产生第一馈电信号,第二馈源S2用于产生第二馈电信号,第三馈源S3用于产生第三馈电信号。其中,第一馈电信号、第二馈电信号、第三馈电信号不同。
第一馈源S1产生的第一馈电信号可加载在第一馈电点A,并经第一馈电点A向第一辐射体111馈入第一馈电信号,以使部分第一辐射体111支持第一频段。可选的,第一馈源S1产生的第一馈电信号可加载在第一馈电点A,并经第一馈电点A向第一辐射体111馈入第一馈电信号,以通过缝隙101与第二辐射体121容性耦合,以使部分第二辐射体121支持第一频段。可选的,第一馈源S1产生的第一馈电信号可加载在第一馈电点A,并经第一馈电点A向第一辐射体111馈入第一馈电信号,以使部分第一辐射体111支持第一频段,同时,还可以通过缝隙101与第二辐射体121容性耦合,以使部分第二辐射体121支持第一频段。在本申请实施例中,部分第一辐射体111和部分第二辐射体121中的至少一个都可以用于支持第一频段。
第二馈源S2产生的第二馈电信号可加载在第二馈电点B,并经第二馈电点B向第二辐射体121馈入第二馈电信号,以使第二辐射体121支持第二频段。在本申请实施例中,第二天线组件120既可以用于支持第一频段,也可以支持第二频段。
第三馈源S3通过第三馈电点C向第二辐射体121馈入滤波后的第三馈电信号,以使第一辐射体111收发第三频段的射频信号。第三馈源S3产生的第三馈电信号可加载在第三馈电点C,并经第三馈电点C向第一辐射体111馈入第三馈电信号,以使第一辐射体111支持第三频段。
在本申请实施例中,需要说明的是,第一辐射体支持第一频段可以理解为,第一辐射体接收第一频段的射频信号,或第一辐射体发射第一频段的射频信号,或第一辐射体接收和发射第一频段的射频信号。
第一辐射体111、第二辐射体121可分别为柔性电路板(Flexible Printed Circuit,FPC)天线辐射体、激光直接成型(Laser Direct Structuring,LDS)天线辐射体、印刷直接成型(Print Direct Structuring,PDS)天线辐射体、金属辐射枝节中的一种。在本申请实施例中,对第一辐射体111、第二辐射体121的辐射体类型不做进一步的限定,且第一辐射体111和第二辐射体121的类型可以相同,也可以不同。在本申请实施例中,为了便于说明,以第一辐射体111、第二辐射体121为金属辐射枝节,例如电子设备的导电边框为例进行说明。需要说明的是,第一辐射体111与第二辐射体121之间的缝隙101的宽度可以根据实际情况而定,其需要满足第一辐射体111与第二辐射体121可以耦合的最小尺寸。
第一频段、第二频段、第三频段各不相同,示例性的,第一频段所覆盖的频率范围、第二频段所覆盖的频率范围、第三频段所覆盖的频率范围各不同。在本实施实施例中,第一频段为超高频(Ultra High Band,UHB)频段,第二频段为中高频(Middle High Band,MHB)频段。需要说明的是,UHB频段的频段范围在3000MHz-6000MHz,示例性的,可以包括5G新空口(New Radio,NR)信号,示例性的,可以包括NR-77/78/79等频段的射频信号。MHB频段范围在1000MHz-3000MHz。其中,MHB的射频信号可以包括4G长期演进(Long Term Evolution,LTE)与5G NR的部分或所有中高频频段的射频信号,示例性的,可以包括LTE-1/2/3/4/7/32/34/38/39/40/41频段的信号以及NR-1/3/7/40/41等频段的射频信号。第三频段为低频(Lower Band,LB)频段,LB频段的范围为低于1000MHz。其中,低频频段的射频信号可以包括4G-LTE与5G-NR的部分或所有低频段的射频信号。
本申请实施例中,天线装置包括第一天线组件110和第二天线组件120,其中,第一 天线组件110和第二天线组件120通过设置独立的馈源,以将不同的馈电信号分别馈入至不同的辐射体,以支持对第一频段和第二频段的射频信号的收发,相比于相关技术中,需要在第一馈源S1和第二馈源S2与馈电点之间增加合路器,以将不同的馈电信号经过合路处理后加载在同一馈电点的方式,可以避免使用合路器,进而可以降低第一频段和第二频段的射频信号的收发链路上合路器带来的链路插损,以提高对第一频段和第二频段的射频信号的收发性能,同时降低成本。
进一步的,第一天线组件110可以支持对超高频和低频的射频信号的收发,例如,不需要设置额外的辐射体(除第一辐射体、第二辐射体以外的辐射体)来支持对第三频段的射频信号的收发,可以通过复用第一辐射体的方式来实现对第一频段和第三频段的射频信号的收发,减少天线装置的占用空间,还可以降低成本。第二天线组件120可以支持对中高频的射频信号的收发处理,可以利用较少的天线辐射体实现较宽频段的覆盖,同时也可以实现低频、中高频以及超高频的载波聚合(Carrier Aggregation,CA)例如,全频段的覆盖,以及4G-LTE信号与5G-NR的双连接(LTE NR Double Connect,ENDC)组合,可以进一步提高天线装置的通信性能。
如图3所示,本申请实施例还提供一种天线装置。天线装置包括第一天线组件110,其中,第一天线组件110包括:第一馈源S1、第三馈源S3以及第一辐射体110。第一辐射体110上设有第一馈电点A,分别与第一馈源A、第三馈源C连接。第一馈源S1通过第一馈电点A向第一辐射体110馈入第一馈电信号,以使部分第一辐射体110支持第一频段。第三馈源S3用于通过第一馈电点A向第一辐射体110馈入第三馈电信号,以使第一辐射体110支持第三频段,其中,第一频段、第三频段各不相同。
本申请实施例中,天线装置包括第一天线组件,其中,第一天线组件包括第一馈源、第三馈源和第一辐射体,其中,第一辐射体设有第一馈电点,第一馈源和第三馈源提供的馈电信号可以共用第一馈电点,以使第一辐射体既可以支持对第一频段,也可以支持第三频段。相关技术中,每个馈源需要独立设置一个馈电点、不同馈电点设置在不同辐射体上。本申请实施例中,也不需要设置额外的馈电点(除第一馈电点以外的馈电点)和辐射体(除第一辐射体以外的辐射体)可以采用共用馈电点,共用辐射体的方式来实现对第一频段和第三频段的射频信号的收发,可以降低成本,减少天线装置的占用空间(例如,可以节约弹片组件等),有利于天线装置的小型化设置。
请继续参考图3,在其中一个实施例中,第一馈电点A和第三馈电点C为同一馈电点。可以理解的,第一馈源S1输出的第一馈电信号,以及第三馈源S3输出的第三馈电信号都可以加载在第一馈电点A上,以通过第一馈电点A向第一辐射体111加载相应的馈电信号。在本申请实施例中,第一馈源S1提供的第一馈电信号与第三馈源S3提供的第三馈电信号的频率范围相差较大,因此第一馈电信号与第三馈电信号之间彼此之间相互干扰的影响较小,即便是第一辐射体111同时支持对第一频段、第三频段的射频信号的收发,也不会影响其收发性能。
在本申请实施例中,第一馈源S1和第三馈源S3提供的馈电信号可以共用同一个馈电点,如第一馈电点A,以使第一辐射体111既可以支持对第一频段,也可以支持第三频段。相关技术中,每个馈源需要独立设置一个馈电点、不同馈电点设置在不同辐射体的方式。本申请实施例中,也不需要设置额外的馈电点(除第一馈电点A、第二馈电点B以外的馈电点)和辐射体(除第一辐射体111、第二辐射体121以外的辐射体)来支持对第一频段的射频信号的收发,可以采用共用馈电点,共用辐射体的方式来实现对第一频段和第三频段的射频信号的收发,可以降低成本,减少天线装置的占用空间(例如,可以节约弹片组件等),有利于天线装置的小型化设置。
如图4所示,在其中一个实施例中,第一天线组件110还包括第一滤波电路112和第二滤波电路113,其中,第一滤波电路112的输入端与第一馈源S1连接,第二滤波电路 113的输入端与第三馈源S3连接,第一滤波电路112和第二滤波电路113的第二端分别与第一馈电点A连接,第一滤波电路112和第二滤波电路113输出的馈电信号的频段不同。其中,第一滤波电路112为高通滤波电路,可以滤掉第三频段(例如,低频段)的射频信号,仅允许第一频段的射频信号通过。第二滤波电路113为低通滤波电路,可以滤掉第一频段(例如,超高频段)的射频信号,仅允许第三频段的射频信号通过。
在本申请中,第一馈电点A与第三馈电点C为同一馈电点,也即第一馈源S1和第三馈源S3共用同一馈电点,通过在馈源与馈电点之间设置第一滤波电路112和第二滤波电路113,可以保证第一馈电信号和第三馈电信号的馈电隔离度,以进一步提高对第一频段和第三频段的射频信号的收发性能。
如图5所示,在其中一个实施例中,第一天线组件110还包括:分别与第一馈源S1、第一滤波电路112的输入端连接的第一匹配电路114,用于调谐第一频段的射频信号的谐振频率。其中,第一匹配电路114可以包括电容、电阻和电感中的至少一种,或者多个的组合。在本申请实施例中,对第一匹配电路114所包括的调频器件的器件类型以及器件与器件之间的连接关系不做进一步的限定。
其中,第一馈源S1提供的第一馈电信号经第一匹配电路114、第一滤波电路112、第一馈电点A可馈入至第一辐射体111。在本实施例中,通过调节第一匹配电路114的选频参数(例如,可包括电阻值、电感值及电容值)可以调节第一频段的谐振频率,以使第一天线组件110可以实现对超高频的射频信号,例如,NR-77、78、79等频段的覆盖,也可以实现超宽带的载波聚合功能。
如图6-图8所示,在其中一个实施例中,第一天线组件110还包括:第二匹配电路115、第一可变调频电路116和第二可变调频电路117中的至少一个。其中,第二匹配电路115、第一可变调频电路116和第二可变调频电路117可用于调谐第三频段的射频信号的谐振频率。示例性的,第二匹配电路115、第一可变调频电路116和第二可变调频电路117可独立或共同对第三频段的射频信号的谐振频率进行调节。
第二匹配电路115分别与第一馈源S1、第二滤波电路113输入端连接。其中,第二匹配电路115可包括电容、电阻和电感中的至少一种,或者多个的组合。在本申请实施例中,对第二匹配电路115所包括的调频器件的器件类型以及器件与器件之间的连接关系不做进一步的限定。其中,第三馈源S3提供的第三馈电信号经第二匹配电路115、第二滤波电路113、第一馈电点A可馈入至第一辐射体111。在本实施例中,通过调节第二匹配电路115的选频参数(例如,可包括电阻值、电感值及电容值)可以调节第三频段的谐振频率,以使第一天线组件110可以实现对低频段的射频信号的覆盖,也可以实现超宽带的载波聚合功能。
请继续参考图7,第一可变调频电路116的第一端与第二滤波电路113连接,第一可变调频电路116的第二端接地。可选的,请继续参考图8,第二可变调频电路117的第一端还可以与第一辐射体111上连接,第一可变调频电路116的第二端接地。第二可变调频电路117的第一端与第一辐射体111上的第一调频点D连接,第二可变调频电路117的第二端接地。在其中一个实施例中,第一辐射体111包括相对设置的第一接地端GND1和第一自由端F1,其中,第一调频点D设置在第一馈电点A与第一接地端GND1之间。在本申请实施例中,第一自由端F1可以理解为第一辐射体111中临近缝隙101设置的端部。
第一可变调频电路116和第二可变调频电路117可分别设置多个调频通路,其中,同一调频电路中的各调频通路的调频参数不完全相同。示例性的,如图9所示,第一可变调频电路116可包括第一开关单元1161和多个第一可变调频单元1162,各第一可变调频单元1162的调频参数不同。天线装置或电子设备可以根据实际通信需求或电子设备的握持状态来控制第一开关单元1161来导通目标第一可变调频单元1162与第一辐射体111之间的通路。各调频通路上分别设置有一可变调谐单元。如图10所示,第二可变调频电路117 可包括第二开关单元1171和多个第二可变调频单元1172,各第二可变调频单元1172的调频参数不同。天线装置或电子设备可以根据实际通信需求或电子设备的握持状态来控制第二开关单元1171来导通目标第二可变调频单元1172与第一辐射体111之间的通路。其中,目标第一可变调频单元1162为多个第一可变调频单元1162中的至少一个,目标第二可变调频单元1172为多个第二可变调频单元1172中的至少一个。
基于第一天线组件110中设置的第二匹配电路115、第一可变调频电路116和第二可变调谐电路117,天线装置支持第一谐振模式、第二谐振模式、第三谐振模式及第四谐振模式,以支持第三频段的射频信号的收发。可以理解的是,第一谐振模式、第二谐振模式、第三谐振模式及第四谐振模式为第一天线组件110的四种谐振模式,且由第一辐射体111产生。
第一谐振模式、第二谐振模式、第三谐振模式及第四谐振模式分别为从第一接地端GND1至缝隙101对应的第一辐射体111对应的基模,如图11所示。其中,图11为图7所示的天线装置收发第三频段的射频信号的回波损耗曲线示意图。需要说明的是,在图11中的第一谐振模式(模式1)、第二谐振模式(模式2)、第三谐振模(模式3)式及第四谐振模式(模式4)在同一时刻只存在一个谐振模式。第一可变调频电路116和第二可变调频电路117中的至少一个可以用于调节第三频段的谐振频率的偏移,例如,通过第一可变调频电路116和第二可变调频电路117中的至少一个来增高或降低谐振频率,从而使得第一天线组件110可以收发第三频段的射频信号时的谐振频率不同。具体请参见图11,模式1、模式2、模式3、模式4对应的第三频段的谐振频率依次增大。
需要说明的是,在本申请实施例中,第一天线组件110包括但不限于上述四种谐振模式,通过设置第一可变调频电路116和第二可变调谐电路117中配置的调谐通路的数量,可以使得第一天线组件110能够支持对低频600-1000M带宽内的频段的射频信号的收发。
在本实施例中,通过设置第二匹配电路115、第一可变调频电路116和第二可变调频电路117,可以调节第三频段的射频信号的谐振频率,也可以调节上述谐振模式的谐振频率,进而可以使得第一天线组件110对低频段的部分频段或全部频段的覆盖,及在所需频段得到较高的效率,可以进一步提高对低频信号的收发性能。
在其中一个实施例中,天线装置还支持第五谐振模式,以支持第二频段的第一子频段的射频信号的收发。第二频段的第一子频段可以为中高频信号中的中频信号。其中,第五谐振模式可以理解为环形(LOOP)模式。
在其中一个实施例中,第五谐振模式为从第一馈电点A至第一接地端GND1对应的第一辐射体111的二分之一波长模式。在LOOP模式下,通过调节第一可变调频电路116和第二可变调谐电路117中配置的调谐通路的谐振参数,可以调节第五谐振模式的谐振频率。例如,若选择谐振参数(例如,电感)较低的可变调谐单元作为目标可变调谐单元时,其第五谐振模式的谐振频率将往高频点偏移。
在本实施例中,天线装置可以选择支持对第一至第四谐振模式中的任一模式,也可以支持第五谐振模式。这样,天线装置可以根据实际通信需求,来调节第一可变调频电路116和第二可变调谐电路117中配置的调谐通路的谐振参数,进而使第一天线组件110可工作在目标谐振模式下,可以根据通信需求来动态调整谐振模式,以提高天线装置的通信性能。
如图12所示,在其中一个实施例中,第二辐射体121包括相对设置的第二接地端GND2和第二自由端F2。其中,第二自由端F2为第二辐射体121靠近缝隙101的端部。第二辐射体121还设有第一连接点G,第一连接点G靠近第二自由端F2设置,第二天线组件120还包括:第三匹配电路122。第三匹配电路122的第一端与第一连接点G连接,第三匹配电路122的第二端接地设置,用于调谐第一频段的射频信号的谐振频率。其中,第三匹配电路122可包括电容、电阻和电感中的至少一种,或者多个的组合。可选的,第 三匹配电路122还可包括开关等,通过对开关的控制,可以改变该匹配电路的调频参数。在本申请实施例中,对第三匹配电路122所包括的调频器件的器件类型以及器件与器件之间的连接关系不做进一步的限定。其中,第一馈源S1提供的第一馈电信号经第一匹配电路114、第一滤波电路112、第一馈电点A可馈入至第一辐射体111,再经缝隙101与第二辐射体121容性耦合。其中,第三匹配电路122对中高频的射频信号的表现为容性较小,类似开路,对超高频的射频信号表现为低阻抗短路效果。换而言之,第一馈源S1提供的第一馈电信号,在第三匹配电路122处低阻抗下地。
在本实施例中,通过调节第三匹配电路122的选频参数(例如,可包括电阻值、电感值及电容值)可以调节第一频段的谐振频率,以使第二天线组件120可以实现对第一频段的射频信号的覆盖。在本实施例中,第二天线组件120可协同第一天线组件110来支持对第一频段的射频信号的收发,可以提高对超高频信号的收发性能。
在其中一个实施例中,天线装置还支持第六谐振模式和第七谐振模式,以支持第一频段的射频信号的收发。可以理解的是,第六谐振模式和第七谐振模式为第二天线组件120的其中两种谐振模式,且由第二辐射体121产生。
第六谐振模式为从第一连接端至缝隙101对应的第二辐射体121的基模,以辅助支持对第一频段的第一子频段的射频信号的收发。第七谐振模式为第二天线组件120工作在第二辐射体121的第二接地端GND2至缝隙101的三次模,以支持对第一频段的第二子频段的射频信号的收发。
图13为图12所示的天线装置收发第三频段的射频信号的回波损耗曲线示意图。在其中一个实施例中,第六谐振模式(模式6)、第七谐振模式(模式7)分别对应于第一频段的第一子频段、第二子频段。第一频段的第一子频段的频率范围为3800~3900MHz之间;第一频段的第二子频段的频率范围为4700~4800MHz之间。
在本申请实施例中,在不设置合路器的情况下,第二辐射体121除了可以实现对第一频段的收发处理,还可以支持对第二频段的射频信号的收发处理。第二天天线组件可以支持对4G-LTE信号和5G-NR信号的收发处理,例如,包括LTE-1/2/3/4/7/32/34/38/39/40/41频段信号,以及NR-1/3/7/40/41/77/78/79频段信号等,可以实现中高频和超高频的载波聚合,同时,还可以支持低频和中高频,以及低频与超高频的双连接(LTE NR Double Connect,ENDC)组合,其可以降低收发链路上的插损,提高通信性能,还可以节约成本,减小天线装置的占用空间。
如图14所示,在其中一个实施例中,第二馈电点B设置在第一连接点G与第二接地端GND2之间。第二天线组件120还包括:第四匹配电路123和第三可变调频电路124,其中,第四匹配电路123和第三可变调频电路124可用于调节第二频段的射频信号的谐振频率。
其中,第四匹配电路123的第一端与第二馈电点B连接,第四匹配电路123的第二端与第二馈源S2连接。第三可变调频电路124,第三可变调频电路124的第一端与第四匹配电路123连接,第三可变调频电路124的第二端接地设置。可选地,如图15所示,第三可变调频电路124的第一端与第二辐射体121连接,第三可变调频电路124的第二端接地设置。
第四匹配电路123可以包括电容、电阻和电感中的至少一种,或者多个的组合。在本申请实施例中,对第一匹配电路114所包括的调频器件的器件类型以及器件与器件之间的连接关系不做进一步的限定。
第三可变调频电路124可分别多个调频通路。示例性的,第三可变调频电路124可包括第三开关单元和多个第三可变调频单元,各第三可变调频单元的调频参数不同。各调频通路上分别设置有一可变调谐单元。天线装置或电子设备可以根据实际通信需求或电子设备的握持状态来控制第三开关单元来导通目标第三可变调频单元与第二辐射体121之间 的通路。其中,目标第三可变调频单元为多个第三可变调频单元中的至少一个。需要说明的是,本申请实施例中的各可变调频单元可以包括电容、电阻和电感中的至少一种,或者多个的组合,在本申请实施例中,对各匹配电路、各可变调频单元所包括的调频器件、调频器件的数量、组合方式以及连接方式均不做具体的限定。
请继续参考图13,天线装置还支持第八谐振模式(模式8)和第九谐振模式(模式9),以支持第二频段的射频信号的收发。可以理解的是,第八谐振模式和第九谐振模式为第二天线组件120的其中两种谐振模式,且由第二辐射体121产生。
第八谐振模式为从第二接地端GND2至缝隙101对应的第二辐射体121的基模,以支持对第二频段的第一子频段的射频信号的收发。第九谐振模式为从第二馈电点B至缝隙101对应的第二辐射体121的基模,以支持对第二频段的第二子频段的射频信号的收发。在其中一个实施例中,第八谐振模式、第九谐振模式分别对应第二频段的第一子频段、第二子频段。第二频段的第一子频段的频率范围为1900~2000MHz之间;第二频段的第二子频段的频率范围为2600~2700MHz之间。
需要说明的是,在图13中的各个谐振模式(谐振模式6、谐振模式7、谐振模式8、谐振模式9)在同一时刻可存在多个谐振模式。第一可变调频电路116和第二可变调频电路117中的至少一个可以用于调节第三频段的谐振频率的偏移,例如,通过第一可变调频电路116和第二可变调频电路117中的至少一个来调节谐振频率偏高或拉低,从而使得第一天线组件110可以收发第三频段的射频信号时的谐振频率不同。具体请参见图13,谐振模式1、谐振模式2、谐振模式3、谐振模式4对应的第二频段、第一频段的谐振频率依次增大。需要说明的是,在本申请实施例中,第二天线组件120包括但不限于上述四种谐振模式。
通过设置第三可变调谐电路和第四匹配电路123中配置的调谐通路的数量,可以使得第二天线组件120能够支持对中高频段(1000MHz-3000MHz)和超高频段内(3000MHz-10000MHz)的射频信号的收发。通过调节上述的谐振模式6、7、8、9的谐振频率,可实现第二天线组件120对于中高频、超高频的全覆盖,及在所需频段得到较高的效率。
本申请实施例还提供一种电子设备,前述任一实施例中的天线装置。其中,天线装置的第一辐射体、第二辐射体可以形成在电子设备的导电件中。其中,导电件可以为PCB板,导电边框等。在本申请实施例中,对第一辐射体、第二辐射体的具体类型不做限定,对电子设备中的导电件也不做进一步的限定。
本申请实施例提供电子设备,包括前述的天线装置,相比于相关技术中,需要在第一馈源和第二馈源与馈电点之间增加合路器,以将不同的馈电信号经过合理处理后加载在同一馈电点的方式,可以避免使用合路器,进而可以降低第一频段和第二频段的射频信号的收发链路上合路器带来的链路插损,以提高对第一频段和第二频段的射频信号的收发性能,同时,还可以避免使用合路器,以降低成本。进一步的,第一天线组件可以支持对超高频的射频信号的收发,第二天线组件可以支持对超高频和/或中高频的射频信号的收发处理,可以利用较少的天线辐射体实现较宽频段的覆盖,同时也可以实现中高频以及超高频的载波聚合(Carrier Aggregation,CA)及4G-LTE信号与5G-NR的双连接(LTE NR Double Connect,ENDC)组合,可以进一步提高天线装置的通信性能。
如图16所示,在一实施例中,以电子设备为手机为例进行说明。在其中一个实施例中,电子设备10还包括:边框11、显示屏组件12和控制模块13。其中,显示屏组件12,设置在边框11上,显示屏组件12包括显示屏,显示屏可以采用OLED(Organic Light-Emitting Diode,有机发光二极管)屏幕,也可以采用LCD(Liquid Crystal Display,液晶显示)屏幕,显示屏可用于显示信息并为用户提供交互界面。显示屏的形状可以为矩形或弧角矩形,弧角矩形有时也可以称为圆角矩形,即矩形的四个角采用了圆弧过渡,矩 形的四条边大致呈直线段。
边框11可以采用金属材料例如铝合金或者镁合金或者不锈钢制成,边框11设于显示屏组件12外周以用于支撑和保护显示屏组件12。边框11可以进一步向电子设备内部延伸形成中板,一体成型的中板和边框11有时也被称为中框。显示屏组件12可以采用点胶等工艺固定连接于边框11或者中板。
在其中一个实施例中,参考图16,边框11大致呈矩形框状,中框为金属导电中框,其包括相对设置的第一导电边框1101和第三导电边框1103,以及相对设置的第二导电边框1102和第四导电边框1104,其中,第一导电边框1101、第二导电边框1102、第三导电边框1103和第四导电边框1104依次首尾连接。其中,第一导电边框1101、第三导电边框1103可以对应理解为电子设备的顶边框、底边框,第二导电边框1102和第四导电边框1104可以对应理解为电子设备的第一侧边框和第二侧边框。具体的各边框11间的连接可以为直角连接或者圆弧过渡连接。进一步的,天线装置中的第一辐射体和第二辐射体形成在任一导电边框上。示例性的,如图17所示,天线装置的第一辐射体111和第二辐射体121都可以形成在第二导电边框1102上,其中,第二辐射体121靠近第一导电边框1101设置。
电子设备还可包括主板14,其中,天线装置中的第一馈源S1、第二馈源S2、各匹配电路、各可变调谐电路均设置在主板14上,第一辐射体111的第一接地端GND1、第二辐射体121的第二接地端GND2可与主板14的接地层连接。
如图18所示,可选地,天线装置的第一辐射体111和第二辐射体121都可以形成在第三导电边框1103上,其中,第二辐射体121靠近第四导电边框1104设置。
如图19所示,可选地,天线装置中的第一辐射体111和第二辐射体121分别形成在相邻设置的两个导电边框11上。示例性的,第一辐射体111和第二辐射体121分别形成在相邻设置的第一导电边框1101、第二导电边框1102上。可以理解的是,靠近相邻设置的两个导电边框11的连接区域的边框11可以理解为拐角边框11。天线装置的第一辐射体111和第二辐射体121可设置在电子设备的任一拐角边框11。其中,电子设备可包括第一拐角边框11、第二拐角边框11、第三拐角边框11和第四拐角边框11。其中,天线装置的第一辐射体111和第二辐射体121可设置在电子设备的第一至第四拐角边框11中的任一拐角边框11。
需要说明的是,在本申请实施例中,天线装置中第一辐射体111、第二辐射体121的形成在导电边框11的区域不限于上述举例说明。
在其中一个实施例中,电子设备还包括控制模块13,用于获取电子设备的握持状态,并根据握持状态控制天线装置的谐振模式,其中,电子设备处于不同握持状态时,第一天线组件110工作在第一辐射体111的谐振模式不同,握持状态包括竖屏握持状态和横屏握持状态。
其中,电子设备的握持状态可以基于电子设备中传感器模组的运动数据获取,具体的,传感器数据可包括重力数据、陀螺仪数据、加速度数据等。可选地,电子设备的握持状态可以基于电子设备中显示屏的显示模式来确定。示例性的,若当前显示屏为横屏显示,其对应的握持状态为横屏握持状态;若当前显示屏为竖屏显示,其对应的握持状态为竖屏握持状态。需要说明的是,在本申请实施例中,电子设备握持状态的获取方式不限于上述举例说明。
在本实施例中,电子设备可以基于电子设备当前的握持状态,来控制天线装置中第一天线组件110工作在第一辐射体111的谐振模式,以使第一辐射体111可以支持对不同频段射频信号的收发处理,这样就可以基于电子设备的当前握持状态来调整第一天线组件110的谐振模式,以使电子设备在不同的握持状态下,都可以实现高性能的通信。
为了便于说明,图17-19所示的电子设备为例进行说明。
在其中一个实施例中,当电子设备工作在竖屏握持状态时,控制模块用于控制天线装置中的第一可变调频电路和第二可变调频电路的调频参数,以使第一天线组件工作在第一谐振模式、第二谐振模式、第三谐振模式及第四谐振模式中的至少一种,以支持对第三频段的射频信号的收发。
进一步的,控制模块用于控制天线装置中的第一可变调频电路的调频参数,以使第一天线组件工作在第六谐振模式,以支持对第一频段的射频信号的收发。
当电子设备处于横屏握持状态时,天线装置的缝隙可能会被遮挡,若缝隙被遮挡,其天线装置基于缝隙的多种谐振模式将被破坏。基于此,当电子设备处于横屏握持状态时,控制模块用于控制天线装置中的第一可变调频电路和第二可变调频电路的调频参数,以使第一天线组件工作在第五谐振模式,以支持第二频段的第一子频段的射频信号的收发。其中,第五谐振模式为环形(LOOP)模式。在其中一个实施例中,第五谐振模式为第一天线组件作在第一辐射体111的第一馈电点至第一接地端的二分之一波长模式。在LOOP模式下,通过调节第一可变调频电路和第二可变调频电路中配置的调谐通路的谐振参数,可以调节第五谐振模式的谐振频率。例如,若选择谐振参数(例如,电感)较低的可变调谐单元作为目标可变调谐单元时,其第五谐振模式的谐振频率将往高频点偏移。
如图20所示,以中频段的射频信号为例,电子设备处于横屏握持状态(或缝隙被部分或全部遮挡),且第一天线组件未工作在第五谐振模式,中频段的射频信号的谐振(参考曲线1)偏到1.55G,此时中频段的射频信号的总效率(参考曲线3)急剧下降到-13~-15dB。本申请实施例中,若电子设备处于横屏握持状态,可控制第一天线组件工作在第五谐振模式(参考曲线2),总效率(参考曲线4)峰值能接近-10dB,性能提升非常大,保证横屏握持状态(或天线装置的缝隙被遮挡)下天线装置的通信性能。
在其中一个实施例中,电子设备包括至少两个天线装置,其中,各天线装置对应形成于不同的导电边框。每一天线装置中的辐射体可形成在任一导电边框或任一拐角边框。示例性的,电子设备可包括第一天线装置和第二天线装置,第一天线装置中的辐射体可形成于第二导电边框,第二天线装置中辐射体可形成于第三导电边框。
可选的,第一天线装置中的辐射体可形成于第一拐角边框,第二天线装置中辐射体可形成于第二拐角边框。
可选的,第一天线装置中的辐射体可形成于第一导电边框,第二天线装置中辐射体可形成于第二拐角边框。
需要说明的是,电子设备中第一天线组价、第二天线装置的形成于导电边框11的区域不限于上述举例说明。
进一步的,控制模块13可控制一个天线装置的收发4G LTE信号,可控制另一个天线装置的收发5G NR信号,以实现4G LTE信号与5G NR信号的双连接。
在其中一个实施例中,电子设备包括第一天线装置、第二天线装置、第三天线装置和第四天线装置。其中,每一天线装置中的辐射体可形成在任一导电边框或任一拐角边框。
进一步的,控制模块可控制四个天线装置分别支持对低频段、中高频段以及超高频段的射频信号的收发,以实现全频段的载波聚合功能,还可以分别控制四个天线装置分别支持对5G NR信号的收发,以实现4*4多输入多输出(Multiple Input Multiple Output,MIMO)功能,还可以支持对不同ENDC组合的4G LTE信号与5G NR信号双连接等,进而可提升电子设备的通信性能。
如图21所示,进一步的,以电子设备为手机10为例进行说明,具体的,如图21所示,该手机10可包括存储器21(其任选地包括一个或多个计算机可读存储介质)、处理电路22、控制模块23、输入/输出(I/O)子系统24和至少一如前述任一实施例中的天线装置25。这些部件任选地通过一个或多个通信总线或信号线29进行通信。本领域技术人员可以理解,图21所示的手机10并不构成对手机的限定,可以包括比图示更多或更少的部件, 或者组合某些部件,或者不同的部件布置。图21中所示的各种部件以硬件、软件、或硬件与软件两者的组合来实现,包括一个或多个信号处理和/或专用集成电路。
存储器21任选地包括高速随机存取存储器,并且还任选地包括非易失性存储器,诸如一个或多个磁盘存储设备、闪存存储器设备、或其他非易失性固态存储器设备。示例性的,存储于存储器21中的软件部件包括操作系统211、通信模块(或指令集)212、全球定位系统(GPS)模块(或指令集)213等。
处理电路22和其他控制电路23可以用于控制手机10的操作。该处理电路22可以基于一个或多个微处理器、微控制器、数字信号处理器、基带处理器、功率管理单元、音频编解码器芯片、专用集成电路等。
当电子设备工作在竖屏握持状态时,控制模块23用于控制天线装置25中的第一可变调频电路和第二可变调频电路的调频参数,以使第一天线组件工作在第一谐振模式、第二谐振模式、第三谐振模式及第四谐振模式中的至少一种,以支持对第三频段的射频信号的收发。
进一步的,控制模块23用于控制天线装置25中的第一可变调频电路的调频参数,以使第一天线组件工作在第六谐振模式,以支持对第一频段的射频信号的收发。
其中,I/O子系统24将手机10上的输入/输出外围设备诸如键区和其他输入控制设备耦接到外围设备接口23。I/O子系统24任选地包括触摸屏、按键、音调发生器、加速度计(运动传感器)、周围光传感器和其他传感器、发光二极管以及其他状态指示器、数据端口等。示例性的,用户可以通过经由I/O子系统24供给命令来控制手机10的操作,并且可以使用I/O子系统24的输出资源来从手机10接收状态信息和其他输出。例如,用户按压按钮241即可启动手机或者关闭手机。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (23)

  1. 一种天线装置,所述天线装置包括:
    第一天线组件,包括第一馈源、第三馈源以及设有第一馈电点和第三馈电点的第一辐射体;
    第二天线组件,包括第二馈源以及设有第二馈电点的第二辐射体,所述第一辐射体与所述第二辐射体之间设有缝隙,所述第一辐射体与所述第二辐射体通过所述缝隙耦合;
    所述第一馈源通过所述第一馈电点向所述第一辐射体馈入第一馈电信号,以通过所述缝隙与所述第二辐射体容性耦合,以使部分所述第二辐射体和部分所述第一辐射体中的至少一个支持第一频段;所述第二馈源通过所述第二馈电点向所述第二辐射体馈入第二馈电信号,以使所述第二辐射体支持第二频段;所述第三馈源用于通过所述第三馈电点向所述第一辐射体馈入第三馈电信号,以使所述第一辐射体支持第三频段,所述第一频段、所述第二频段、所述第三频段各不相同。
  2. 根据权利要求1所述的天线装置,所述第一馈电点与所述第三馈电点为同一馈电点。
  3. 根据权利要求2所述的天线装置,所述第一天线组件还包括第一滤波电路和第二滤波电路,其中,所述第一滤波电路的输入端与所述第一馈源连接,所述第二滤波电路的输入端与所述第三馈源连接,所述第一滤波电路和所述第二滤波电路的第二端分别与所述第一馈电点连接,所述第一滤波电路用于允许所述第一频段的信号通过,所述第二滤波电路用于允许所述第三频段的信号通过。
  4. 根据权利要求3所述的天线装置,所述第一天线组件还包括:分别与所述第一馈源、所述第一滤波电路连接的第一匹配电路,用于调谐所述第一频段的射频信号的谐振频率。
  5. 根据权利要求3所述的天线装置,所述第一天线组件还包括:第二匹配电路、第一可变调频电路和第二可变调频电路中的至少一个;
    所述第二匹配电路分别与所述第一馈源、所述第一馈电点连接;
    所述第一可变调频电路的第一端与所述第二滤波电路连接,所述第一可变调频电路的第二端接地;
    所述第二可变调频电路的第一端与所述第一辐射体上的第一调频点连接,所述第二可变调频电路的第二端接地;
    第一匹配电路、第一可变调频电路和第二可变调频电路用于调谐所述第三频段的射频信号的谐振频率。
  6. 根据权利要求5所述的天线装置,所述第一辐射体包括相对设置的第一接地端和第一自由端,其中,所述第一调频点设置在所述第一馈电点与所述第一接地端之间。
  7. 根据权利要求5所述的天线装置,所述天线装置支持第一谐振模式、第二谐振模式、第三谐振模式及第四谐振模式,以支持所述第三频段的射频信号的收发。
  8. 根据权利要求7所述的天线装置,所述第一辐射体包括相对设置的第一接地端和第一自由端,其中,所述第一天线组件包括第一匹配电路、第一可变调频电路和第二可变调频电路,其中,
    第一谐振模式、第二谐振模式、第三谐振模式及第四谐振模式分别为从所述第一接地端至所述缝隙对应的所述第一辐射体的基模。
  9. 根据权利要求8所述的天线装置,所述天线装置还具有第五谐振模式,以支持所述第二频段的第一子频段的射频信号的收发。
  10. 根据权利要求9所述的天线装置,所述第五谐振模式为从所述第一馈电点至所述第一接地端对应的所述第一辐射体的二分之一波长模式。
  11. 根据权利要求1-10任一项所述的天线装置,所述第二辐射体包括相对设置的第 二接地端和第二自由端,所述第二辐射体还设有第一连接点,所述第一连接点靠近所述第二自由端设置,所述第二天线组件还包括:第三匹配电路,所述第三匹配电路的第一端与所述第一连接点连接,所述第三匹配电路的第二端接地设置,用于调谐所述第一频段的射频信号的谐振频率。
  12. 根据权利要求11所述的天线装置,所述天线装置还支持第六谐振模式和第七谐振模式,以支持所述第一频段的射频信号的收发。
  13. 根据权利要求12所述的天线装置,所述第六谐振模式为从所述第一连接端至所述缝隙对应的所述第二辐射体的基模,以辅助支持对所述第一频段的第一子频段的射频信号的收发;
    所述第七谐振模式为从所述第二接地端至所述缝隙对应的所述第二辐射体的三次模,以支持对所述第一频段的第二子频段的射频信号的收发。
  14. 根据权利要求11所述的天线装置,所述第二馈电点设置在所述第一连接点与所述第二接地端之间;所述第二天线组件还包括:第四匹配电路和第三可变调频电路,其中,
    所述第四匹配电路的第一端与所述第二馈电点连接,所述第四匹配电路的第二端与所述第二馈源连接;
    所述第三可变调频电路,所述第三可变调频电路的第一端与所述第四匹配电路连接,所述第三可变调频电路的第二端接地设置,或,所述第三可变调频电路的第一端与所述第二辐射体连接,所述第三可变调频电路的第二端接地设置。
  15. 根据权利要求14所述的天线装置,所述天线装置还支持第八谐振模式和第九谐振模式,以支持所述第二频段的射频信号的收发。
  16. 根据权利要求15所述的天线装置,
    所述第八谐振模式为从所述第二接地端至所述缝隙对应的所述第二辐射体的基模,以支持对所述第二频段的第一子频段的射频信号的收发;
    所述第九谐振模式为从所述第二馈电点至所述缝隙对应所述第二辐射体的基模,以支持对所述第二频段的第二子频段的射频信号的收发。
  17. 根据权利要求1所述的天线装置,所述第一频段为超高频频段,所述第二频段为中高频频段,所述第三频段为低频频段。
  18. 一种天线装置,包括:第一馈源、第三馈源以及第一辐射体,所述第一辐射体上设有第一馈电点,分别与所述第一馈源、所述第三馈源连接,其中,
    所述第一馈源通过所述第一馈电点向所述第一辐射体馈入第一馈电信号,以使部分所述第一辐射体支持第一频段,所述第三馈源用于通过所述第一馈电点向所述第一辐射体馈入第三馈电信号,以使所述第一辐射体支持第三频段,所述第一频段、所述第三频段各不相同。
  19. 一种电子设备,包括:如权利要求1-18任一项所述天线装置。
  20. 根据权利要求19所述的电子设备,所述电子设备包括相对设置的第一导电边框和第三导电边框,以及相对设置的第二导电边框和第四导电边框,其中,所述第一导电边框、所述第二导电边框、所述第三导电边框和所述第四导电边框依次首尾连接,其中,所述天线装置中的所述第一辐射体和第二辐射体形成在任一所述导电边框上,或,所述天线装置中的所述第一辐射体和第二辐射体分别形成在相邻设置的两个所述导电边框上。
  21. 根据权利要求19或20所述的电子设备,其中,所述电子设备还包括:
    控制模块,用于获取所述电子设备的握持状态,并根据所述握持状态控制所述天线装置的谐振模式,其中,所述电子设备处于不同所述握持状态时,所述第一天线组件工作在所述第一辐射体的谐振模式不同,所述握持状态包括竖屏握持状态和横屏握持状态。
  22. 根据权利要求21所述的电子设备,
    当所述电子设备处于竖屏握持状态时,所述控制模块用于控制天线装置中的第一可变 调频电路和第二可变调频电路的调频参数,以使所述第一天线组件工作在第一谐振模式、第二谐振模式、第三谐振模式及第四谐振模式中的至少一种,以支持对第三频段的射频信号的收发;
    当所述电子设备处于横屏握持状态时,所述控制模块用于控制天线装置中的第一可变调频电路和第二可变调频电路的调频参数,以使所述第一天线组件工作在第五谐振模式,以支持第二频段的第一子频段的射频信号的收发。
  23. 根据权利要求20所述的电子设备,所述电子设备包括至少两个所述天线装置,其中,各所述天线装置对应形成于不同的所述导电边框,和/或,各所述天线装置对应形成于不同的拐角边框,所述拐角边框为靠近相邻设置的两个所述导电边框连接区域的边框。
PCT/CN2022/142664 2022-05-27 2022-12-28 天线装置和电子设备 WO2023226428A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210588097.7 2022-05-27
CN202210588097.7A CN117175185A (zh) 2022-05-27 2022-05-27 天线装置和电子设备

Publications (1)

Publication Number Publication Date
WO2023226428A1 true WO2023226428A1 (zh) 2023-11-30

Family

ID=88918348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142664 WO2023226428A1 (zh) 2022-05-27 2022-12-28 天线装置和电子设备

Country Status (2)

Country Link
CN (1) CN117175185A (zh)
WO (1) WO2023226428A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180351252A1 (en) * 2017-06-06 2018-12-06 Power Wave Electronic Co .,Ltd. Single feed-in dual-band antenna structure
CN110620290A (zh) * 2018-06-20 2019-12-27 青岛海信移动通信技术股份有限公司 一种多天线结构及移动通讯设备
CN211789500U (zh) * 2020-03-20 2020-10-27 启碁科技股份有限公司 混合天线结构
CN113013593A (zh) * 2021-02-24 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN215184540U (zh) * 2021-07-26 2021-12-14 维沃移动通信有限公司 天线结构和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180351252A1 (en) * 2017-06-06 2018-12-06 Power Wave Electronic Co .,Ltd. Single feed-in dual-band antenna structure
CN110620290A (zh) * 2018-06-20 2019-12-27 青岛海信移动通信技术股份有限公司 一种多天线结构及移动通讯设备
CN211789500U (zh) * 2020-03-20 2020-10-27 启碁科技股份有限公司 混合天线结构
CN113013593A (zh) * 2021-02-24 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN215184540U (zh) * 2021-07-26 2021-12-14 维沃移动通信有限公司 天线结构和电子设备

Also Published As

Publication number Publication date
CN117175185A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
CN207719410U (zh) 电子设备和天线
US11901637B2 (en) Millimeter wave module and electronic device
JP3200838U (ja) 近接場通信回路及び非近接場通信回路用の共有アンテナ構造体
TWI520432B (zh) 具有可調諧及固定式天線之電子裝置
US20230352852A1 (en) Antenna system and electronic device
WO2023155559A1 (zh) 电子设备
CN104300225A (zh) 电容耦合的环形天线以及包括其的电子设备
WO2022142822A1 (zh) 天线组件和电子设备
CN109687105B (zh) 电子设备
CN107483060B (zh) 射频电路、天线装置及电子设备
WO2020134330A1 (zh) 天线系统及应用该天线系统的移动终端
US8914082B2 (en) Mobile terminal and method of operating antenna thereof
WO2024001069A1 (zh) 天线组件、中框组件以及电子设备
CN114284721A (zh) 一种天线装置及电子设备
WO2023020467A1 (zh) 天线系统和电子设备
US20240154295A1 (en) Antenna and communication device
WO2022121453A1 (zh) 天线装置及电子设备
US20230246335A1 (en) Antenna apparatus and electronic device
US20140210685A1 (en) Electronic device and antenna control method thereof
WO2021121423A1 (zh) 一种终端设备
WO2023226428A1 (zh) 天线装置和电子设备
US20140340261A1 (en) Dual band antenna
WO2023273493A1 (zh) 天线装置及电子设备
WO2022127727A1 (zh) 电子设备
US20120313819A1 (en) Active Antenna and Electronic Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943613

Country of ref document: EP

Kind code of ref document: A1