WO2023226386A1 - 一种防止空调过热的控制方法和装置 - Google Patents
一种防止空调过热的控制方法和装置 Download PDFInfo
- Publication number
- WO2023226386A1 WO2023226386A1 PCT/CN2022/139137 CN2022139137W WO2023226386A1 WO 2023226386 A1 WO2023226386 A1 WO 2023226386A1 CN 2022139137 W CN2022139137 W CN 2022139137W WO 2023226386 A1 WO2023226386 A1 WO 2023226386A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- evaporator
- air conditioner
- control method
- thermal protection
- heating
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000013021 overheating Methods 0.000 title claims abstract description 41
- 238000010438 heat treatment Methods 0.000 claims abstract description 61
- 238000001816 cooling Methods 0.000 claims abstract description 24
- 238000007664 blowing Methods 0.000 claims description 31
- 238000004590 computer program Methods 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 14
- 238000004891 communication Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/33—Responding to malfunctions or emergencies to fire, excessive heat or smoke
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/61—Control or safety arrangements characterised by user interfaces or communication using timers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/79—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/08—Air-flow control members, e.g. louvres, grilles, flaps or guide plates
- F24F13/10—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
- F24F13/14—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2140/00—Control inputs relating to system states
- F24F2140/20—Heat-exchange fluid temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present application relates to the field of control of household air conditioners, and in particular, to a control method and device for preventing overheating of the air conditioner.
- the air conditioner operates in the heating mode.
- the high-temperature and high-pressure refrigerant evaporates and dissipates heat indoors to heat the indoor air, achieving the air-conditioning and heating effect.
- the purpose of this application is to provide a control method and device for preventing overheating of an air conditioner, so as to solve the problem of poor heating effect caused by frequent triggering of thermal protection, improve the heating effect of the air conditioner, and improve the user experience.
- this application provides a control method for preventing overheating of air conditioners.
- the method includes:
- the air conditioner After the air conditioner enters heating mode, it continuously detects the evaporator temperature;
- the evaporator is controlled to cool down based on the operating mode of the up and down swing air guide plates.
- the operation mode based on the upper and lower swing air guide plates is used to cool down the evaporator, including:
- the air conditioner is thermally protected
- the method further includes:
- the thermal protection includes: compressor shutdown, compressor frequency reduction, electronic expansion valve opening, and outdoor fan shutdown.
- the operating modes of the up-and-down swinging air guide plate include: heating down-blowing operation mode, up-and-down swinging operation mode and self-setting down-blowing position operation mode.
- the evaporator thermal protection threshold is in the range of 58°C to 68°C.
- the preset time period is 3 minutes.
- this application also provides a control device for preventing overheating of an air conditioner.
- the device includes:
- the detection module is used to continuously detect the evaporator temperature after the air conditioner enters the heating mode
- a cooling control module configured to perform cooling control on the evaporator based on the operating mode of the up and down swing air guide when the evaporator temperature is not less than the evaporator thermal protection threshold.
- this application also discloses an electronic device, including a memory, a processor, and a computer program stored on the memory and executable on the processor.
- the processor executes the program, the following is implemented: The control method for preventing overheating of air conditioners described in the first aspect.
- the present application also discloses a non-transitory computer-readable storage medium on which a computer program is stored.
- the control method for preventing overheating of an air conditioner is implemented as described in the first aspect. .
- This application provides a control method and device for preventing overheating of an air conditioner, including: after the air conditioner enters the heating mode, continuously detecting the evaporator temperature; when the evaporator temperature is not less than the evaporator thermal protection threshold, based on the up and down swing of the air guide plate
- the operating mode controls the cooling of the evaporator.
- this application does not directly provide thermal protection for the air conditioner, but performs targeted cooling control on the evaporator based on the current operating mode of the up and down swing air guide plates. In this way, the number of triggering times of thermal protection is reduced as much as possible, thereby solving the problem of poor heating effect caused by triggering thermal protection, and ultimately improving the user experience.
- Figure 1 is a flow chart of a control method for preventing air conditioner overheating provided by this application
- Figure 2 is a schematic diagram of the actual execution steps of a control method for preventing air conditioner overheating provided by this application;
- FIG. 3 is a structural diagram of a control device for preventing air conditioner overheating provided by this application;
- Figure 4 is a schematic structural diagram of an electronic device that implements a control method for preventing overheating of an air conditioner provided by this application.
- this application provides a control method for preventing overheating of air conditioners. As shown in Figure 1, the method includes:
- the evaporator temperature also known as the inner coil temperature, is measured using an evaporator temperature sensor.
- the up and down swing air guides generally default to the heating down blow mode, but users can still switch to other modes according to needs, such as: up and down swing operation mode and self-set down blow position. operating mode.
- the phenomenon that the evaporator temperature is not less than the evaporator thermal protection threshold may be caused by the upper and lower swing air guides of the air conditioner not being in the heating downward blowing mode, causing the air inlet temperature of the air conditioner to be too high, or it may be caused by other factors. Therefore, this application performs targeted evaporator cooling control according to the operating mode of the up and down swing air guide plates.
- This application provides a control method for preventing overheating of an air conditioner, including: after the air conditioner enters the heating mode, continuously detecting the evaporator temperature; when the evaporator temperature is not less than the evaporator thermal protection threshold, based on the operation of the up and down swing air guide plates mode to control the cooling of the evaporator.
- this application does not directly provide thermal protection for the air conditioner, but performs targeted cooling control on the evaporator based on the current operating mode of the up and down swing air guide plates. In this way, the number of triggering times of thermal protection is reduced as much as possible, thereby solving the problem of poor heating effect caused by triggering thermal protection, and ultimately improving the user experience.
- the cooling control of the evaporator based on the operation mode of swinging the air guide plate up and down includes:
- the air conditioner is thermally protected
- the operation mode of the upper and lower swing air guide plates is not in the heating down-blowing operation mode, it means that the evaporator temperature is too high, which is most likely caused by the air conditioner air inlet temperature being too high. At this time, the operation mode of the upper and lower swing air guide plates is forced. It is a down-blowing operation mode for heating, which reduces the hot air content in the upper part of the room and reduces the air inlet temperature of the air conditioner, thus achieving the effect of lowering the evaporator temperature.
- the method further includes:
- the evaporator temperature is not less than the evaporator thermal protection threshold after the preset period of time, it means that forcing the upper and lower swing air guide plates to the heating down-blowing mode cannot achieve the expected cooling effect. At this time, heating is performed for safety reasons. Protect. After the preset time period, the evaporator temperature is less than the evaporator thermal protection threshold, which means that forcing the upper and lower swing air guide plates to the heating down-blowing mode can achieve effective cooling. At this time, the evaporator temperature is already within a safe range and is in a manner that respects the user. Taking into consideration the usage habits, restore the upper and lower swing air deflectors to their original operating mode.
- This application reduces the number of triggering times of thermal protection to a certain extent and avoids the poor heating effect caused by thermal protection as much as possible.
- FIG. 2 is a schematic diagram of the actual execution steps of the control method to prevent air conditioner overheating. As can be seen from Figure 2, this application has the following implementation steps:
- Step 1 After the air conditioner enters heating mode, detect the evaporator temperature
- Step 2 If the evaporator temperature is not less than the evaporator thermal protection threshold, determine whether the upper and lower swing air guides are in the heating down-blowing operation mode; otherwise, return to the first step;
- Step 3 If the upper and lower swing air guides are in the heating down-blowing operation mode, perform thermal protection on the air conditioner; if the upper and lower swing air guides are not in the heating down-blowing operation mode, force the operation mode of the upper and lower swing air guides to Hot down blow operation mode;
- Step 4 After forcing the operating mode of the upper and lower swing air guide plates to the heating downward blowing operation mode and running for a preset time, determine whether the evaporator temperature is less than the evaporator thermal protection threshold;
- Step 5 If the evaporator temperature is less than the evaporator thermal protection threshold, restore the operating mode of the upper and lower swing air guides to the previous operating mode; if the evaporator temperature is less than the evaporator thermal protection threshold, perform thermal protection on the air conditioner .
- the thermal protection includes: compressor shutdown, compressor frequency reduction, electronic expansion valve opening, and outdoor fan shutdown.
- compressor shutdown compressor frequency reduction, electronic expansion valve opening and outdoor fan shutdown are common forms of thermal protection, among which:
- Compressor shutdown Stop heating to cool down the evaporator temperature
- Compressor frequency reduction reduce the heating intensity to cool down the evaporator temperature
- Open the electronic expansion valve Open the valve and throttle to exhaust the compressor, thereby reducing the internal temperature of the evaporator;
- This application sets the thermal protection priorities of the above methods in descending order as outdoor fan shutdown, electronic expansion valve opening, compressor frequency reduction, and compressor shutdown.
- the operating modes of the up-and-down swing air guide plate include: heating down-blowing operation mode, up-and-down swing operation mode and self-setting down-blowing position operation mode. .
- the operating modes of the up and down swing air guide plates of most air conditioners include the above-mentioned ones. Of course, it can also be increased or decreased according to the model of the air conditioner.
- the evaporator thermal protection threshold is in the range of 58°C to 68°C.
- This embodiment provides a relatively universal value range for the evaporator thermal protection threshold, which should be selected according to the operating conditions in actual applications.
- the preset time length is 3 minutes.
- This embodiment provides a relatively universal preset duration value, which should be selected according to the operating conditions in actual applications.
- FIG. 3 illustrates a schematic structural diagram of a control method for preventing overheating of air conditioners.
- the device includes:
- the detection module 21 is used to continuously detect the evaporator temperature after the air conditioner enters the heating mode
- the cooling control module 22 is configured to perform cooling control on the evaporator based on the operating mode of the up and down swing air guide when the evaporator temperature is not less than the evaporator thermal protection threshold.
- This application provides a control device for preventing overheating of an air conditioner, including: after the air conditioner enters the heating mode, continuously detecting the evaporator temperature; when the evaporator temperature is not less than the evaporator thermal protection threshold, based on the operation of the up and down swing air guide plates mode to control the cooling of the evaporator.
- This application does not directly provide thermal protection for the air conditioner when the temperature of the air conditioner evaporator is too high. Instead, it performs targeted cooling control on the evaporator based on the current operating mode of the up and down swing air guide plates. In this way, the number of triggering times of thermal protection is reduced as much as possible, thereby solving the problem of poor heating effect caused by triggering thermal protection, and ultimately improving the user experience.
- the cooling control module includes:
- the first control unit is used to perform thermal protection on the air conditioner if the upper and lower swing air guide plates are in the heating down-blowing operation mode; otherwise, force the operation mode of the upper and lower swing air guide plates to the heating down-blowing operation mode.
- the cooling control module further includes: a second control unit; the second control unit includes:
- Determination subunit used to determine whether the evaporator temperature is less than the evaporator thermal protection threshold after forcing the operation mode of the upper and lower swing air guide plates to the heating down-blowing operation mode and running in this mode for a preset period of time.
- the control subunit is used to, if yes, restore the operating mode of the upper and lower swing air guide plates to the operating mode before forcing; if not, perform thermal protection on the air conditioner.
- the thermal protection includes: compressor shutdown, compressor frequency reduction, electronic expansion valve opening, and outdoor fan shutdown.
- the operating modes of the up-and-down swing air guide plate include: heating down-blowing operation mode, up-and-down swing operation mode and self-setting down-blowing position operation mode. .
- the evaporator thermal protection threshold is in the range of 58°C to 68°C.
- the preset time length is 3 minutes.
- FIG. 4 illustrates a schematic diagram of the physical structure of an electronic device.
- the electronic device may include: a processor (processor) 410, a communication interface (Communications Interface) 420, a memory (memory) 430, and a communication bus 440.
- the processor 410, the communication interface 420, and the memory 430 pass through The communication bus 440 completes mutual communication.
- the processor 410 can call the logic instructions in the memory 430 to execute a control method to prevent the air conditioner from overheating.
- the method includes: after the air conditioner enters the heating mode, continuously detecting the evaporator temperature; when the evaporator temperature is not less than the evaporator thermal protection At the threshold, the evaporator is cooled and controlled based on the operating mode of the up and down swing air guide plates.
- the above-mentioned logical instructions in the memory 430 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
- the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, It includes several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
- the present application further provides a computer program product.
- the computer program product includes a computer program.
- the computer program can be stored on a non-transitory computer-readable storage medium.
- a control method for preventing overheating of an air conditioner includes: after the air conditioner enters the heating mode, continuously detecting the evaporator temperature; when the evaporator temperature is not less than the evaporator thermal protection threshold, controlling the evaporator based on the operation mode of swinging the air guide plate up and down. Perform cooling control.
- the application also provides a non-transitory computer-readable storage medium on which a computer program is stored to execute a control method for preventing overheating of an air conditioner.
- the method includes: after the air conditioner enters the heating mode, continuously detecting the evaporator Temperature; when the evaporator temperature is not less than the evaporator thermal protection threshold, the evaporator is cooled and controlled based on the operating mode of the up and down swing air guide plate.
- the device embodiments described above are only illustrative.
- the units described as separate components may or may not be physically separated.
- the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
- each embodiment can be implemented by means of software plus the necessary general hardware platform, and of course it can also be implemented by hardware.
- the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Air Conditioning Control Device (AREA)
Abstract
本申请涉及一种防止空调过热的控制方法和装置,包括:空调进入制热模式之后,持续检测蒸发器温度;当所述蒸发器温度不小于蒸发器热保护阈值时,基于上下摆风导板的运行模式对蒸发器进行降温控制。本申请在空调蒸发器温度过高时,不直接对空调进行热保护,而是根据当前上下摆风导板的运行模式针对性的对蒸发器进行降温控制。通过这种方式尽可能减少热保护的触发次数,进而解决因触发热保护而导致的制热效果不佳的问题,最终达到提升用户使用体验的效果。
Description
相关申请的交叉引用
本申请要求于2022年5月26日提交的申请号为202210589112.X,名称为“一种防止空调过热的控制方法和装置”的中国专利申请的优先权,其通过引用方式全部并入本文。
本申请涉及家用空调器的控制领域,尤其涉及一种防止空调过热的控制方法和装置。
空调器在制热模式下运行,高温高压的制冷剂在室内蒸发散热将室内空气加热,实现空调制热的效果。
在空调制热运行过程中由于热空气会自动上升,在比较高位置悬挂的空调的上下摆风导板工作在上下摆动运行模式时,会出现热空气在房间上部聚集的现象。此时空调进风温度高,出风温度更高,如此循环会出现下述两个问题:
第一:由于空气在房间上部循环,用户体验不到制热效果。
第二:进风口温度过高会导致蒸发器温度过高,进而引发热保护,进一步的影响制热效果。
发明内容
本申请的目的是提供一种防止空调过热的控制方法和装置,以解决频繁触发热保护而导致的制热效果不佳的问题,提升空调的制热效果,提高用户的使用体验。
第一方面,本申请提供一种防止空调过热的控制方法,所述方法包括:
空调进入制热模式之后,持续检测蒸发器温度;
当所述蒸发器温度不小于蒸发器热保护阈值时,基于上下摆风导板的运行模式对蒸发器进行降温控制。
根据本申请提供的防止空调过热的控制方法,所述基于上下摆风导板 的运行模式对蒸发器进行降温控制,包括:
若所述上下摆风导板处于制热下吹运行模式,对空调进行热保护;
否则,将所述上下摆风导板的运行模式强制为制热下吹运行模式。
根据本申请提供的防止空调过热的控制方法,所述将所述上下摆风导板的运行模式强制为制热下吹运行模式之后,还包括:
运行预设时长之后,判断此时蒸发器温度是否小于所述蒸发器热保护阈值;
若是,将所述上下摆风导板的运行模式恢复为强制之前的运行模式;
若否,对空调进行热保护。
根据本申请提供的防止空调过热的控制方法,所述热保护,包括:压缩机停机、压缩机降频、电子膨胀阀开阀和室外风机停机。
根据本申请提供的防止空调过热的控制方法,所述上下摆风导板的运行模式,包括:制热下吹运行模式、上下摆动运行模式和自设定下吹位置运行模式。
根据本申请提供的防止空调过热的控制方法,所述蒸发器热保护阈值处于58℃到68℃范围内。
根据本申请提供的防止空调过热的控制方法,所述预设时长为3分钟。
第二方面,本申请还提供一种防止空调过热的控制装置,所述装置包括:
检测模块,用于空调进入制热模式之后,持续检测蒸发器温度;
降温控制模块,用于当所述蒸发器温度不小于蒸发器热保护阈值时,基于上下摆风导板的运行模式对蒸发器进行降温控制。
第三方面,本申请还公开了一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现如第一方面所述的防止空调过热的控制方法。
第四方面,本申请还公开了一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的防止空调过热的控制方法。
本申请提供的一种防止空调过热的控制方法和装置,包括:空调进入制热模式之后,持续检测蒸发器温度;当所述蒸发器温度不小于蒸发器热 保护阈值时,基于上下摆风导板的运行模式对蒸发器进行降温控制。本申请在空调蒸发器温度过高时,不直接对空调进行热保护,而是根据当前上下摆风导板的运行模式针对性的对蒸发器进行降温控制。通过这种方式尽可能减少热保护的触发次数,进而解决因触发热保护而导致的制热效果不佳的问题,最终达到提升用户使用体验的效果。
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的一种防止空调过热的控制方法的流程图;
图2是本申请提供的一种防止空调过热的控制方法的实际执行步骤示意图;
图3是本申请提供的一种防止空调过热的控制装置的结构图;
图4是本申请提供的实现防止空调过热的控制方法的电子设备结构示意图。
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合图1至图4描述本申请提供的防止空调过热的控制方法和装置。
第一方面,本申请提供一种防止空调过热的控制方法,如图1所示,所述方法包括:
S11、空调进入制热模式之后,持续检测蒸发器温度;
可以理解的是,蒸发器温度,也叫内盘管温度,是利用蒸发器温度传感器测得的。
S12、当所述蒸发器温度不小于蒸发器热保护阈值时,基于上下摆风导板的运行模式对蒸发器进行降温控制。
需要注意的是,现在的空调制热开机,一般将上下摆风导板默认为制热下吹模式,但是用户还是可以根据需求调换到其它模式,例如:上下摆动运行模式和自设定下吹位置运行模式。在此情况下,蒸发器温度不小于蒸发器热保护阈值的现象,可能由空调上下摆风导板不处于制热下吹模式使得空调进风口温度过高导致,也可能由其它因素导致。因此,因此,本申请根据上下摆风导板的运行模式去针对性的进行蒸发器降温控制。
本申请提供的一种防止空调过热的控制方法,包括:空调进入制热模式之后,持续检测蒸发器温度;当所述蒸发器温度不小于蒸发器热保护阈值时,基于上下摆风导板的运行模式对蒸发器进行降温控制。本申请在空调蒸发器温度过高时,不直接对空调进行热保护,而是根据当前上下摆风导板的运行模式针对性的对蒸发器进行降温控制。通过这种方式尽可能减少热保护的触发次数,进而解决因触发热保护而导致的制热效果不佳的问题,最终达到提升用户使用体验的效果。
在上述各实施例的基础上,作为一种可选的实施例,所述基于上下摆风导板的运行模式对蒸发器进行降温控制,包括:
若所述上下摆风导板处于制热下吹运行模式,对空调进行热保护;
否则,将所述上下摆风导板的运行模式强制为制热下吹运行模式。
可以理解的是,若所述上下摆风导板处于制热下吹运行模式,说明蒸发器温度过高并非由于空调进风口温度过高导致,此时对空调进行热保护以保证空调的安全运行。若所述上下摆风导板的运行模式不处于制热下吹运行模式,说明蒸发器温度过高极有可能由于空调进风口温度过高导致,此时将所述上下摆风导板的运行模式强制为制热下吹运行模式,减少房间上部热空气含量,减小空调进风口温度,进而达到降低蒸发器温度的效果。
本申请在蒸发器温度过高且上下摆风导板运行状态不处于制热下吹模式的情况下,优先将上下摆风导板运行状态强制在制热下吹模式,在增强用户制热体验的同时降低空调进风口温度,以达到降温效果。
在上述各实施例的基础上,作为一种可选的实施例,所述将所述上下摆风导板的运行模式强制为制热下吹运行模式之后,还包括:
运行预设时长之后,判断此时蒸发器温度是否小于所述蒸发器热保护阈值;
若是,将所述上下摆风导板的运行模式恢复为强制之前的运行模式;
若否,对空调进行热保护。
可以理解的是,在预设时长之后蒸发器温度没有小于所述蒸发器热保护阈值,代表将上下摆风导板强制到制热下吹模式达不到预期降温效果,此时为安全起见进行热保护。在预设时长之后蒸发器温度小于所述蒸发器热保护阈值,代表将上下摆风导板强制到制热下吹模式能够实现有效降温,此时蒸发器温度已处于安全范围内,处于尊重用户的使用习惯的考虑,将上下摆风导板恢复到原来的运行模式。
本申请在一定程度上减少热保护的触发次数,尽可能规避了因热保护而导致的制热效果不佳的情况。
图2为防止空调过热的控制方法的实际执行步骤示意图,从图2中可看出,本申请具备以下实施步骤:
第一步:空调进入制热模式之后,检测蒸发器温度;
第二步:如果蒸发器温度不小于蒸发器热保护阈值,则判断上下摆风导板是否处于制热下吹运行模式;否则,返回第一步;
第三步:如果上下摆风导板处于制热下吹运行模式,则对空调进行热保护;如果上下摆风导板不处于制热下吹运行模式,则将上下摆风导板的运行模式强制为制热下吹运行模式;
第四步:将上下摆风导板的运行模式强制为制热下吹运行模式且运行预设时长之后,判断蒸发器温度是否小于蒸发器热保护阈值;
第五步:如果蒸发器温度小于蒸发器热保护阈值,则将上下摆风导板的运行模式恢复为强制之前的运行模式;如果蒸发器温度步小于蒸发器热保护阈值,则对空调进行热保护。
在上述各实施例的基础上,作为一种可选的实施例,所述热保护,包括:压缩机停机、压缩机降频、电子膨胀阀开阀和室外风机停机。
可以了解的是,压缩机停机、压缩机降频、电子膨胀阀开阀和室外风机停机是常见的几种热保护形式,其中:
压缩机停机:停止制热以使蒸发器温度降温;
压缩机降频:降低制热强度以使蒸发器温度降温;
电子膨胀阀开阀:开阀节流使压缩器排气,进而使蒸发器内部温度降低;
室外风机停机:室外换热变差,以使制热速率降低,进而使蒸发器温度降低。
本申请设定上述几种方式的热保护优先级降序顺序为室外风机停机、电子膨胀阀开阀、压缩机降频、压缩机停机。
在上述各实施例的基础上,作为一种可选的实施例,所述上下摆风导板的运行模式,包括:制热下吹运行模式、上下摆动运行模式和自设定下吹位置运行模式。
本领域内,大部分空调的上下摆风导板的运行模式包含上述几种。当然,也可以根据空调的机型酌情增减。
在上述各实施例的基础上,作为一种可选的实施例,所述蒸发器热保护阈值处于58℃到68℃范围内。
本实施例给定蒸发器热保护阈值比较普适的取值范围,实际应用时应根据运行工况来选定。
在上述各实施例的基础上,作为一种可选的实施例,所述预设时长为3分钟。
本实施例给定比较普适的预设时长选值,实际应用时应根据运行工况来选定。
第二方面,对本申请提供的一种防止空调过热的控制装置进行描述,下文描述的防止空调过热的控制装置与上文描述的防止空调过热的控制方法可相互对应参照。图3示例了一种防止空调过热的控制的结构示意图,所述装置包括:
检测模块21,用于空调进入制热模式之后,持续检测蒸发器温度;
降温控制模块22,用于当所述蒸发器温度不小于蒸发器热保护阈值时,基于上下摆风导板的运行模式对蒸发器进行降温控制。
本申请提供的一种防止空调过热的控制装置,包括:空调进入制热模式之后,持续检测蒸发器温度;当所述蒸发器温度不小于蒸发器热保护阈值时,基于上下摆风导板的运行模式对蒸发器进行降温控制。本申请在空 调蒸发器温度过高时,不直接对空调进行热保护,而是根据当前上下摆风导板的运行模式针对性的对蒸发器进行降温控制。通过这种方式尽可能减少热保护的触发次数,进而解决因触发热保护而导致的制热效果不佳的问题,最终达到提升用户使用体验的效果。
在上述各实施例的基础上,作为一种可选的实施例,所述降温控制模块,包括:
第一控制单元,用于若所述上下摆风导板处于制热下吹运行模式,对空调进行热保护;否则,将所述上下摆风导板的运行模式强制为制热下吹运行模式。
在上述各实施例的基础上,作为一种可选的实施例,所述降温控制模块,还包括:第二控制单元;所述第二控制单元,包括:
判断子单元,用于在将所述上下摆风导板的运行模式强制为制热下吹运行模式且以该模式运行预设时长之后,判断此时蒸发器温度是否小于所述蒸发器热保护阈值;
控制子单元,用于若是,将所述上下摆风导板的运行模式恢复为强制之前的运行模式;若否,对空调进行热保护。
在上述各实施例的基础上,作为一种可选的实施例,所述热保护,包括:压缩机停机、压缩机降频、电子膨胀阀开阀和室外风机停机。
在上述各实施例的基础上,作为一种可选的实施例,所述上下摆风导板的运行模式,包括:制热下吹运行模式、上下摆动运行模式和自设定下吹位置运行模式。
在上述各实施例的基础上,作为一种可选的实施例,所述蒸发器热保护阈值处于58℃到68℃范围内。
在上述各实施例的基础上,作为一种可选的实施例,所述预设时长为3分钟。
第三方面,图4示例了一种电子设备的实体结构示意图。如图4所示,该电子设备可以包括:处理器(processor)410、通信接口(Communications Interface)420、存储器(memory)430和通信总线440,其中,处理器410,通信接口420,存储器430通过通信总线440完成相互间的通信。处理器410可以调用存储器430中的逻辑指令,以执行防止空调过热的控制方法, 该方法包括:空调进入制热模式之后,持续检测蒸发器温度;当所述蒸发器温度不小于蒸发器热保护阈值时,基于上下摆风导板的运行模式对蒸发器进行降温控制。
此外,上述的存储器430中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
第四方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,以执行防止空调过热的控制方法,该方法包括:空调进入制热模式之后,持续检测蒸发器温度;当所述蒸发器温度不小于蒸发器热保护阈值时,基于上下摆风导板的运行模式对蒸发器进行降温控制。
第五方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,以执行防止空调过热的控制方法,该方法包括:空调进入制热模式之后,持续检测蒸发器温度;当所述蒸发器温度不小于蒸发器热保护阈值时,基于上下摆风导板的运行模式对蒸发器进行降温控制。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通 过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (10)
- 一种防止空调过热的控制方法,包括:空调进入制热模式之后,持续检测蒸发器温度;当所述蒸发器温度不小于蒸发器热保护阈值时,基于上下摆风导板的运行模式对蒸发器进行降温控制。
- 根据权利要求1所述的防止空调过热的控制方法,其中,所述基于上下摆风导板的运行模式对蒸发器进行降温控制,包括:若所述上下摆风导板处于制热下吹运行模式,对空调进行热保护;否则,将所述上下摆风导板的运行模式强制为制热下吹运行模式。
- 根据权利要求2所述的防止空调过热的控制方法,其中,所述将所述上下摆风导板的运行模式强制为制热下吹运行模式之后,还包括:运行预设时长之后,判断此时蒸发器温度是否小于所述蒸发器热保护阈值;若是,将所述上下摆风导板的运行模式恢复为强制之前的运行模式;若否,对空调进行热保护。
- 根据权利要求2或3所述的防止空调过热的控制方法,其中,所述热保护,包括:压缩机停机、压缩机降频、电子膨胀阀开阀和室外风机停机。
- 根据权利要求1所述的防止空调过热的控制方法,其中,所述上下摆风导板的运行模式,包括:制热下吹运行模式、上下摆动运行模式和自设定下吹位置运行模式。
- 根据权利要求1所述的防止空调过热的控制方法,其中,所述蒸发器热保护阈值处于58℃到68℃范围内。
- 根据权利要求3所述的防止空调过热的控制方法,其中,所述预设时长为3分钟。
- 一种防止空调过热的控制装置,包括:检测模块,用于空调进入制热模式之后,持续检测蒸发器温度;降温控制模块,用于当所述蒸发器温度不小于蒸发器热保护阈值时,基于上下摆风导板的运行模式对蒸发器进行降温控制。
- 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在 所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1至7任一项所述一种防止空调过热的控制方法。
- 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述一种防止空调过热的控制方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210589112.XA CN115076887A (zh) | 2022-05-26 | 2022-05-26 | 一种防止空调过热的控制方法和装置 |
CN202210589112.X | 2022-05-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023226386A1 true WO2023226386A1 (zh) | 2023-11-30 |
Family
ID=83249559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/139137 WO2023226386A1 (zh) | 2022-05-26 | 2022-12-14 | 一种防止空调过热的控制方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115076887A (zh) |
WO (1) | WO2023226386A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115076887A (zh) * | 2022-05-26 | 2022-09-20 | 重庆海尔空调器有限公司 | 一种防止空调过热的控制方法和装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150096318A1 (en) * | 2013-10-04 | 2015-04-09 | Mitsubishi Electric Corporation | Indoor unit of air-conditioning apparatus |
WO2018142817A1 (ja) * | 2017-02-06 | 2018-08-09 | ダイキン工業株式会社 | 空気調和機 |
CN109237717A (zh) * | 2018-11-27 | 2019-01-18 | 奥克斯空调股份有限公司 | 一种空调电加热热保护方法、装置及空调器 |
CN109855267A (zh) * | 2019-02-02 | 2019-06-07 | 青岛海尔空调器有限总公司 | 空调的自动扫风控制方法和空调 |
JP2019113214A (ja) * | 2017-12-21 | 2019-07-11 | シャープ株式会社 | 空気調和機 |
CN111237999A (zh) * | 2020-02-18 | 2020-06-05 | 宁波奥克斯电气股份有限公司 | 一种空调器控制方法 |
CN111928436A (zh) * | 2020-08-05 | 2020-11-13 | Tcl空调器(中山)有限公司 | 室内环境杀菌方法、空调器及计算机可读存储介质 |
CN115076887A (zh) * | 2022-05-26 | 2022-09-20 | 重庆海尔空调器有限公司 | 一种防止空调过热的控制方法和装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104006485B (zh) * | 2013-02-21 | 2017-02-08 | 广东美的制冷设备有限公司 | 空调器在制热模式下的室内风机转速的控制方法 |
CN112013457B (zh) * | 2019-05-30 | 2021-12-21 | 武汉海尔电器股份有限公司 | 空调器及其控制方法 |
CN112696805B (zh) * | 2020-12-29 | 2022-04-05 | 珠海格力电器股份有限公司 | 控制空调设备的方法、装置和处理器 |
CN114017905B (zh) * | 2021-11-09 | 2023-05-16 | 广东美的制冷设备有限公司 | 空调器的控制方法、控制装置、空调器及存储介质 |
-
2022
- 2022-05-26 CN CN202210589112.XA patent/CN115076887A/zh active Pending
- 2022-12-14 WO PCT/CN2022/139137 patent/WO2023226386A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150096318A1 (en) * | 2013-10-04 | 2015-04-09 | Mitsubishi Electric Corporation | Indoor unit of air-conditioning apparatus |
WO2018142817A1 (ja) * | 2017-02-06 | 2018-08-09 | ダイキン工業株式会社 | 空気調和機 |
JP2019113214A (ja) * | 2017-12-21 | 2019-07-11 | シャープ株式会社 | 空気調和機 |
CN109237717A (zh) * | 2018-11-27 | 2019-01-18 | 奥克斯空调股份有限公司 | 一种空调电加热热保护方法、装置及空调器 |
CN109855267A (zh) * | 2019-02-02 | 2019-06-07 | 青岛海尔空调器有限总公司 | 空调的自动扫风控制方法和空调 |
CN111237999A (zh) * | 2020-02-18 | 2020-06-05 | 宁波奥克斯电气股份有限公司 | 一种空调器控制方法 |
CN111928436A (zh) * | 2020-08-05 | 2020-11-13 | Tcl空调器(中山)有限公司 | 室内环境杀菌方法、空调器及计算机可读存储介质 |
CN115076887A (zh) * | 2022-05-26 | 2022-09-20 | 重庆海尔空调器有限公司 | 一种防止空调过热的控制方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN115076887A (zh) | 2022-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023226386A1 (zh) | 一种防止空调过热的控制方法和装置 | |
WO2021073034A1 (zh) | 多联机化霜方法、装置、多联机空调系统及可读存储介质 | |
WO2021103815A1 (zh) | 空调器及其空调控制方法、控制装置和可读存储介质 | |
WO2021169087A1 (zh) | 风管式空调器及其运行控制方法、装置 | |
WO2021227801A1 (zh) | 空调器的控制方法、空调器及可读存储介质 | |
JP6796721B2 (ja) | 空調機およびその制御方法並びにコンピュータ読み取り可能な記憶媒体 | |
JP2020079655A (ja) | 空調制御システム | |
CN104764140A (zh) | 制冷空调机组冷凝压力控制方法 | |
CN109612013A (zh) | 空调器的控制方法、装置、空调器及存储介质 | |
WO2019024683A1 (zh) | 一种膨胀阀的控制方法及装置 | |
WO2022127108A1 (zh) | 空调器及其温湿度调控方法、计算机可读存储介质 | |
CN112665116A (zh) | 多联机化霜方法、装置、多联机空调系统及可读存储介质 | |
WO2023071153A1 (zh) | 一种空调除霜控制方法、控制装置及空调器 | |
CN114562790A (zh) | 制热模式新风控制方法及其装置、空调器及可读存储介质 | |
CN112665111B (zh) | 新风机控制方法、系统、新风机及存储介质 | |
CN113932402A (zh) | 空调器的制热控制方法、空调器及存储介质 | |
WO2023124723A1 (zh) | 压缩机排气温度的控制方法、装置、设备及介质 | |
CN115560458B (zh) | 空调的蓄热控制方法、控制装置和空调 | |
CN112413693B (zh) | 集成灶的控制方法、集成灶、处理器和存储介质 | |
CN116518525A (zh) | 空调系统的加热装置的控制方法以及空调系统 | |
WO2023071152A1 (zh) | 一种空调除霜控制方法、控制装置及空调器 | |
CN112710065A (zh) | 一拖多空调器的控制方法、一拖多空调器及存储介质 | |
CN106960526B (zh) | 自助设备内环境参数的控制方法及系统 | |
CN109612040A (zh) | 空调器的控制方法、装置、空调器及存储介质 | |
CN113418231B (zh) | 空调器及其控制方法、计算机可读存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22943573 Country of ref document: EP Kind code of ref document: A1 |