WO2023226195A1 - 一种绝缘性喷印油墨及其制备方法 - Google Patents

一种绝缘性喷印油墨及其制备方法 Download PDF

Info

Publication number
WO2023226195A1
WO2023226195A1 PCT/CN2022/110524 CN2022110524W WO2023226195A1 WO 2023226195 A1 WO2023226195 A1 WO 2023226195A1 CN 2022110524 W CN2022110524 W CN 2022110524W WO 2023226195 A1 WO2023226195 A1 WO 2023226195A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
insulating
printing ink
ink
phenolic resin
Prior art date
Application number
PCT/CN2022/110524
Other languages
English (en)
French (fr)
Inventor
周振兴
周完成
Original Assignee
东莞市科雷明斯智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市科雷明斯智能科技有限公司 filed Critical 东莞市科雷明斯智能科技有限公司
Publication of WO2023226195A1 publication Critical patent/WO2023226195A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to jet printing inks, in particular to insulating jet printing inks and preparation methods thereof.
  • the existing UV digital inkjet used on lithium battery materials has high viscosity, poor insulation and voltage resistance, and poor electrolyte resistance. It is easy to be penetrated by the electrolyte, causing the cured ink layer to separate from the material. There is no There are a series of problems such as adhesion, hardness, shear resistance and bending resistance after printing and molding, and poor other performance effects. Therefore, it is necessary to develop an insulating printing ink with better comprehensive performance, especially in terms of insulation resistance, shear resistance and bending resistance, which can meet the needs of the printing process.
  • the purpose of the present invention is to provide an insulating jet printing ink and a preparation method thereof to solve the above problems.
  • the viscosity and stability of the ink are ensured, thereby satisfying the ink insulation requirements. printing needs; and greatly improve its comprehensive performance, making it have excellent performance in terms of viscosity, hardness, adhesion, bending resistance, insulation, pressure resistance, corrosion resistance, etc., thus meeting the needs of power batteries Demand for insulating ink jet printing process.
  • an insulating jet printing ink including the following components by weight:
  • Trimethylbenzoyl-diphenylphosphine oxide is an efficient photoinitiator with wavelength absorption peaks at 269nm, 298nm, 379nm, and 393nm, and the absorption wavelength can reach 430nm. It is especially suitable for photocuring of colored systems. Its photolysis products are trimethylbenzoyl radicals and diphenylphosphonyl radicals, both of which are highly active radicals. The absorption wavelength of its photolysis product shifts to short wavelength, has a photobleaching effect, is beneficial to the transmission of ultraviolet light, and can be used for curing thick coatings. It has excellent thermal stability, no chemical reaction occurs when heated to 180°C, and has good storage stability. Although it has a light yellow color, it becomes colorless after photolysis and no yellowing occurs.
  • Cross-linked polyvinylpyrrolidone is generally used as a stabilizer in beverages such as beer, liquor, grape juice and fruit juice to extend their storage life.
  • beverages such as beer, liquor, grape juice and fruit juice to extend their storage life.
  • it is mainly used as a disintegrant for tablets, and can also be used as a disintegrant and filler for pills, granules, and hard capsules.
  • it was found that it has good complexing ability with many types of substances in this insulating jet printing ink. Ensure the stability of the ink, otherwise, once the ink is unstable, it will not be suitable for printing.
  • 4-Acryloylmorpholine Alias: acryloylmorpholine; 4-(1-oxo-2-propenyl)morpholine; N-acryloylmorpholine; 4-acryloylmorpholine; 4-acetoacryloylmorpholine; ACMO, the chemical formula is C7H11 N O2, a substance used in fibers, flocculants, oil field polymers, and UV resin reaction diluents.
  • 1,6-hexanediol diacrylate also known as: 1,6-hexanediol diacrylate, HDDA, YHH7-HDDA. It is a low-viscosity, low-volatility liquid functional monomer that has a rapid curing reaction in UV radical polymerization. HDDA also has a water-repellent backbone and excellent solubility.
  • Isobornyl acrylate is a chemical substance with the molecular formula C13H20O2. This product is used in adhesives and special coatings with high activity, high hardness and low shrinkage.
  • IBOA as a reactive diluent in this insulating ink (radiation curable ink) can effectively reduce the viscosity of the ink, improve the dispersion stability, and improve the leveling of the coating.
  • IBOA as the reactive diluent of epoxy acrylic oligomer can significantly reduce the internal stress of the printing coating and reduce the volume shrinkage of the printing coating, thereby significantly improving the adhesion and shrinkage of the radiation-cured printing coating.
  • IBOA in the protective coating of optical discs, it has excellent adhesion and scratch resistance to fine-grained surfaces, and has excellent coating properties and significantly improves the gloss of the coating film. Its performance can well match the needs of this insulating ink and becomes one of the core components of this insulating ink.
  • the insulating printing ink already has considerable insulating properties, and the CPS with a viscosity of about 15 can be used for printing operations (whether the ink can be printed is based on meeting the viscosity requirements), which meets the requirements of the ink.
  • This basic version of insulating printing ink can already be used for insulation printing applications in some product areas that require insulation layers. However, for lithium battery printing applications, further improvement is needed because lithium batteries, especially power batteries, It requires a series of requirements such as strong insulation, voltage resistance, hardness, toughness, thickness, etc.
  • the molecules of polyurethane acrylate (PUA) contain acrylic functional groups and urethane bonds.
  • the cured adhesive has the high wear resistance, adhesion, flexibility, high peel strength and excellent low temperature resistance of polyurethane.
  • Polyacrylate has excellent optical properties and weather resistance, and is a radiation curing material with excellent comprehensive properties.
  • Polyurethane acrylate PUA has become a very important type of oligomer in the field of waterproof coatings. In view of the very high viscosity of polyurethane acrylate PUA, reaching about 8000 CPS, slow curing speed and relatively high price, in conventional coating formulations There are fewer oligomers with PUA as the main body, and they are often used as auxiliary functional resins.
  • PUA is used in the formula mainly to increase the flexibility of the coating, reduce stress shrinkage, and improve adhesion; however, in insulation
  • polyurethane acrylate PUA can be developed into a water-based system after being diluted with benzyl acrylate.
  • the water-based system is directly diluted with benzyl acrylate to reduce the viscosity, which effectively reduces the shrinkage of the ink and reduces the curing time.
  • the internal stress increases the adhesion of the ink and improves the flexibility of the ink film.
  • the adhesion of the insulating ink protective layer can reach level 0, and the insulation performance and toughness have met the needs of the insulating protective layer of lithium batteries, especially power batteries.
  • its hardness is slightly less than ideal, and its scratch resistance and bending resistance need to be further improved to better meet the requirements for printing the insulation protective layer of some special lithium batteries, especially power batteries.
  • Trimethylolpropane triacrylate Mainly used in light-curing coatings, light-curing inks, photoresists, flexible prints, solder masks, resists, paints, polymer modifications, etc. Ethoxypentaerythritol tetraacrylate. Molecular formula: (C2H4O)n(C2H4O)n(C2H4O)nC17H20O8. Glyceryl trihydroxypropyl ether triacrylate. Molecular formula: C21H32O9.
  • Phosphate ester also known as orthophosphate (to distinguish it from phosphite) is an ester derivative of phosphoric acid and belongs to a category of phosphoric acid derivatives.
  • Phosphoric acid is a tribasic acid, so according to the number of substituted hydrocarbon groups, phosphate esters can be divided into primary phosphates (phosphoric acid monoester, hydrocarbyl phosphoric acid), secondary phosphates (phosphoric acid diesters) and tertiary phosphates (phosphate triesters) . It is preferred to use highly active phosphate esters, a mixture of medium carbon chain phosphate monoesters and diesters specially prepared to improve the solubility of phosphate triesters and increase extreme pressure and wear resistance.
  • High phosphorus content increases dispersion and solubility, especially in hydrophilic fluids. Its potassium salt or organic amine salt has more antistatic properties.
  • the above four substances played a very good role in improving the hardness and toughness after being added to this insulating ink. What is even more rare is that after the addition of these four substances, only an appropriate amount of benzyl acrylate is used.
  • Balance the total amount of benzyl acrylate in the insulating ink can be blended to balance), the stability and viscosity of the insulating ink can be maintained. The viscosity is about 15 to 19 CPS, and it can be used for printing operations.
  • the hardness performance and bending resistance of the insulating ink after printing have been effectively improved.
  • the hardness can reach up to 4H, and the frequent bending resistance can reach 90°, and the limit can reach 360°, insulation withstand voltage: DC 4000V, ⁇ 1mA; AC 2230V, ⁇ 10mA.
  • Soak in water DC 500V, >1G ⁇ ; DC 4000V, ⁇ 1mA; AC 2230V, ⁇ 5mA. It has excellent hardness, bending resistance, and insulation and voltage resistance, and can fully meet the printing needs of the insulation protective layer of lithium batteries, especially power batteries.
  • Phenolic resin modified phenolic resin or mixtures thereof 5-15.
  • the thickness and corrosion resistance of the insulating ink protective layer are also required. Therefore, in order to reduce the printing thickness and improve the corrosion resistance At the same time, it has also become an improvement direction to ensure hardness, bending resistance, insulation and voltage resistance and other properties.
  • this kind of insulating ink needs to be: before printing, a CPS with good stability and a viscosity of about 10 to 30. After printing, a thin protective layer of insulating ink can achieve excellent hardness. , insulation voltage resistance, corrosion resistance, bending resistance and other performance requirements.
  • Phenolic resin has good acid resistance, mechanical properties, and heat resistance. In practical applications, a thin layer can provide good corrosion resistance and insulation. What's even more rare is that the phenolic resin only needs to be mixed with an appropriate amount of acrylic acid. By balancing it with benzyl ester (the total amount of benzyl acrylate in the insulating ink can be blended to balance it), the stability and viscosity of the insulating ink can be maintained. The viscosity is about 16 to 23 CPS, and it can be used for printing operations. Among them, the phenolic resin can be dissolved (prefabricated) by an appropriate amount of benzyl acrylate before being added, which can reduce the production time and cost of insulating ink.
  • the insulating ink after adding phenolic resin, modified phenolic resin or their mixture only needs about half of the printing film thickness (about 0.11mm), and it can be achieved without adding phenolic resin, modified phenolic resin or their mixture. performance requirements for insulating inks. In other words, the printing thickness of the insulating ink has been reduced, but its hardness, insulation voltage resistance, corrosion resistance and other properties are still maintained, which better meets the requirements for printing the insulation protective layer of lithium batteries, especially power batteries. Require.
  • the color material is a UV monomer nanopigment
  • the weight part of the dispersant is 1-3, which is used to fully and stably disperse the color material in the insulating jet printing ink.
  • Colorants can come in a variety of colors, even transparent.
  • the dispersant is selected according to the selected color material.
  • dispersant is to reasonably disperse various powders in solvents, and make various solids stably suspended in solvents (or dispersions) through certain charge repulsion principles or polymer steric hindrance effects.
  • pigment dispersion is a very important production link. It is directly related to the storage, construction, appearance and performance of the paint film, so the reasonable selection of dispersants is a very important production link.
  • the quality of coating slurry dispersion is not only related to the dispersant, but also to the formulation of the coating formula and the selection of raw materials. Compatibility is important because good compatibility allows coating manufacturers to produce dispersions for many different classes of resin products.
  • polymer dispersants which can increase the pigment concentration, not only increase the output, but also reduce potential media incompatibility problems from grinding the color paste to the final product. Therefore, polymer dispersants expand the scope of use of base inks, especially when using highly compatible resins. Polymeric dispersants help improve flow/leveling capabilities. Leveling is the ability of paint to spread on a specific surface. Ink surface defects are often caused by surface tension and occur relatively quickly. Brush marks are also often caused by insufficient leveling. Ideal leveling behavior can be explained by Newtonian mechanics. But when pigments are introduced into the system, changes occur. This is because particles are affected by chemical bonds and physical interactions and are very prone to thixotropy and pseudoplasticity. Because the pigment particles are more stable under the action of the polymer dispersant and the leveling properties are increased, the Newtonian fluid properties can be improved. It is good for leveling and helps improve the stability and quality of ink.
  • the preparation method of insulating jet printing ink includes the following steps:
  • TPO trimethylbenzoyl-diphenylphosphine oxide
  • CFA cross-linked polyvinylpyrrolidone
  • ACMO 4- Acryloylmorpholine
  • HDDA 1,6-hexanediol diacrylate
  • IBOA isobornyl acrylate
  • acrylic resin is fully carried out.
  • step 1) 1-10 parts of polyurethane acrylate and 20-50 parts of benzyl acrylate are also added.
  • step 1) 1-10 parts of trimethylolpropane triacrylate, 1-10 parts of glycerol trihydroxypropyl ether triacrylate, and 1-10 parts of ethoxy pentaerythritol tetraacrylate are also added. Ester, 1-10 parts of phosphate ester.
  • step 1) 5-15 parts of phenolic resin, modified phenolic resin or mixtures thereof are also added.
  • the phenolic resin, modified phenolic resin or mixture thereof is dissolved and diluted by benzyl acrylate, and then added; wherein, the phenolic resin, modified phenolic resin or mixture thereof is dissolved by the weight ratio of benzyl acrylate to benzyl acrylate. is 0.8:1 to 1:0.8.
  • the invention has the following advantages: by optimizing the composition and formula of the insulating ink, it has appropriate viscosity and stability on the basis of considerable insulation and voltage resistance performance to meet the needs of insulating ink printing; and it greatly improves the Its comprehensive performance makes it have excellent performance in terms of viscosity, hardness, adhesion, bending resistance, insulation, pressure resistance, corrosion resistance, etc., thus meeting the needs of power battery insulating ink printing process.
  • the insulating ink printing protective layer only needs a thickness of about 0.11mm to reach a maximum hardness of 4H, with frequent bending resistance up to 90°, and a limit up to 360°.
  • the insulation resistance Voltage DC 4000V, ⁇ 1mA; AC 2230V, ⁇ 10mA. Soak in water: DC 500V, >1G ⁇ ; DC 4000V, ⁇ 1mA; AC 2230V, ⁇ 5mA. Its hardness, bending resistance, insulation voltage resistance, corrosion resistance and other properties are excellent, and it can fully meet the requirements of lithium batteries, especially power batteries. Insulation protective layer printing requirements.
  • the final optimized insulating ink obtained through this formula process can be well matched and applied to the new high-insulation, high-voltage spray printing surface treatment process.
  • This process is an irreplaceable process in CTP and CTC technology that requires shear force and 800V high-voltage insulation. It greatly improves the overall performance of the battery surface.
  • HEV batteries no longer need to be glued separately, simplifying the production process and improving the yield rate. It solves the problems of product defects caused by HEV batteries being easily wrinkled and the top sheet being easily lifted and overlapped.
  • Insulating jet printing ink includes the following components by weight:
  • Trimethylbenzoyl-diphenylphosphine oxide is an efficient photoinitiator with wavelength absorption peaks at 269nm, 298nm, 379nm, and 393nm, and the absorption wavelength can reach 430nm. It is especially suitable for photocuring of colored systems. Its photolysis products are trimethylbenzoyl radicals and diphenylphosphonyl radicals, both of which are highly active radicals. The absorption wavelength of its photolysis product shifts to short wavelength, has a photobleaching effect, is beneficial to the transmission of ultraviolet light, and can be used for curing thick coatings. It has excellent thermal stability, no chemical reaction occurs when heated to 180°C, and has good storage stability. Although it has a light yellow color, it becomes colorless after photolysis and no yellowing occurs.
  • Cross-linked polyvinylpyrrolidone is generally used as a stabilizer in beverages such as beer, liquor, grape juice and fruit juice to extend their storage life.
  • beverages such as beer, liquor, grape juice and fruit juice to extend their storage life.
  • it is mainly used as a disintegrant for tablets, and can also be used as a disintegrant and filler for pills, granules, and hard capsules.
  • it was found that it has good complexing ability with many types of substances in this insulating jet printing ink. Ensure the stability of the ink, otherwise, once the ink is unstable, it will not be suitable for printing.
  • Acryloylmorpholine Alias: acryloylmorpholine; 4-(1-oxo-2-propenyl)morpholine; N-acryloylmorpholine; 4-acryloylmorpholine; 4-acetoacryloylmorpholine; ACMO, the chemical formula is C7H11 N O2, a substance used in fibers, flocculants, oil field polymers, and UV resin reaction diluents.
  • 1,6-hexanediol diacrylate also known as: 1,6-hexanediol diacrylate, HDDA, YHH7-HDDA. It is a low-viscosity, low-volatility liquid functional monomer that has a rapid curing reaction in UV radical polymerization. HDDA also has a water-repellent backbone and excellent solubility.
  • Isobornyl acrylate is a chemical substance with the molecular formula C13H20O2. This product is used in adhesives and special coatings with high activity, high hardness and low shrinkage.
  • IBOA as a reactive diluent in this insulating ink (radiation curing ink) can effectively reduce the viscosity of the ink, improve the dispersion stability, and improve the leveling of the coating.
  • IBOA as the reactive diluent of epoxy acrylic oligomer can significantly reduce the internal stress of the printing coating and reduce the volume shrinkage of the printing coating, thereby significantly improving the adhesion and shrinkage of the radiation-cured printing coating.
  • IBOA in the protective coating of optical discs, it has excellent adhesion and scratch resistance to fine-grained surfaces, and has excellent coating properties and significantly improves the gloss of the coating film. Its performance can well match the needs of this insulating ink and becomes one of the core components of this insulating ink.
  • the insulating printing ink already has considerable insulating properties, and the CPS with a viscosity of about 15 can be used for printing operations (whether the ink can be printed is based on meeting the viscosity requirements), which meets the requirements of the ink.
  • This basic version of insulating printing ink can already be used for insulation printing applications in some product areas that require insulation layers. However, for lithium battery printing applications, further improvement is needed because lithium batteries, especially power batteries, It requires a series of requirements such as strong insulation, voltage resistance, hardness, toughness, thickness, etc.
  • the color material uses UV monomer nanopigment, and the weight part of the dispersant is 1, which is used to fully and stably disperse the color material in the insulating jet printing ink. It should be noted here that the coloring material can be of various colors, even transparent colors.
  • the dispersant is selected according to the selected color material.
  • dispersant is to reasonably disperse various powders in solvents, and make various solids stably suspended in solvents (or dispersions) through certain charge repulsion principles or polymer steric hindrance effects.
  • pigment dispersion is a very important production link. It is directly related to the storage, construction, appearance and performance of the paint film, so the reasonable selection of dispersants is a very important production link.
  • the quality of coating slurry dispersion is not only related to the dispersant, but also to the formulation of the coating formula and the selection of raw materials. Compatibility is important because good compatibility allows coating manufacturers to produce dispersions for many different classes of resin products.
  • polymer dispersants which can increase the pigment concentration, not only increase the output, but also reduce potential media incompatibility problems from grinding the color paste to the final product. Therefore, especially when using highly compatible resins, polymer dispersants expand the scope of use of base inks.
  • Polymeric dispersants help improve flow/leveling capabilities. Leveling is the ability of paint to spread on a specific surface. Ink surface defects are often caused by surface tension and occur relatively quickly. Brush marks are also often caused by insufficient leveling. Ideal leveling behavior can be explained by Newtonian mechanics. But when pigments are introduced into the system, changes occur. This is because particles are affected by chemical bonds and physical interactions and are very prone to thixotropy and pseudoplasticity. Because the pigment particles are more stable under the action of the polymer dispersant and the leveling properties are increased, the Newtonian fluid properties can be improved. It is good for leveling and helps improve the stability and quality of ink.
  • the preparation method of insulating jet printing ink includes the following steps:
  • This embodiment is basically the same as Embodiment 1, except that:
  • the molecules of polyurethane acrylate (PUA) contain acrylic functional groups and urethane bonds.
  • the cured adhesive has the high wear resistance, adhesion, flexibility, high peel strength and excellent low temperature resistance of polyurethane.
  • Polyacrylate has excellent optical properties and weather resistance, and is a radiation curing material with excellent comprehensive properties.
  • Polyurethane acrylate PUA has become a very important type of oligomer in the field of waterproof coatings. In view of the very high viscosity of polyurethane acrylate PUA, reaching about 8000 CPS, slow curing speed and relatively high price, in conventional coating formulations There are fewer oligomers with PUA as the main body, and they are often used as auxiliary functional resins.
  • PUA is used in the formula mainly to increase the flexibility of the coating, reduce stress shrinkage, and improve adhesion; however, in insulation
  • polyurethane acrylate PUA can be developed into a water-based system after being diluted with benzyl acrylate.
  • the water-based system is directly diluted with benzyl acrylate to reduce the viscosity, which effectively reduces the shrinkage of the ink and reduces the curing time.
  • the internal stress increases the adhesion of the ink and improves the flexibility of the ink film.
  • the adhesion of the insulating ink protective layer can reach level 0, and the insulation performance and toughness have met the needs of the insulating protective layer of lithium batteries, especially power batteries.
  • its hardness is slightly less than ideal, and its scratch resistance and bending resistance need to be further improved to better meet the requirements for printing the insulation protective layer of some special lithium batteries, especially power batteries.
  • This embodiment is basically the same as Embodiment 2, except that:
  • Trimethylolpropane triacrylate Mainly used in light-curing coatings, light-curing inks, photoresists, flexible prints, solder masks, resists, paints, polymer modifications, etc. Ethoxypentaerythritol tetraacrylate. Molecular formula: (C2H4O)n(C2H4O)n(C2H4O)nC17H20O8. Glyceryl trihydroxypropyl ether triacrylate. Molecular formula: C21H32O9.
  • Phosphate ester also known as orthophosphate (to distinguish it from phosphite) is an ester derivative of phosphoric acid and belongs to a category of phosphoric acid derivatives.
  • Phosphoric acid is a tribasic acid, so according to the number of substituted hydrocarbon groups, phosphate esters can be divided into primary phosphates (phosphoric acid monoester, hydrocarbyl phosphoric acid), secondary phosphates (phosphoric acid diesters) and tertiary phosphates (phosphate triesters) . It is preferred to use highly active phosphate esters, a mixture of medium carbon chain phosphate monoesters and diesters specially prepared to improve the solubility of phosphate triesters and increase extreme pressure and wear resistance.
  • High phosphorus content increases dispersion and solubility, especially in hydrophilic fluids. Its potassium salt or organic amine salt has more antistatic properties.
  • the above four substances played a very good role in improving the hardness and toughness after being added to this insulating ink. What is even more rare is that after the addition of these four substances, only an appropriate amount of benzyl acrylate is used.
  • Balance the total amount of benzyl acrylate in the insulating ink can be blended to balance), the stability and viscosity of the insulating ink can be maintained. The viscosity is about 15 to 19 CPS, and it can be used for printing operations.
  • the hardness performance and bending resistance of the insulating ink after printing have been effectively improved.
  • the hardness can reach up to 4H
  • the bending resistance can reach 90°
  • the limit can reach 360 °
  • insulation withstand voltage DC 4000V, ⁇ 1mA; AC2230V, ⁇ 10mA.
  • Soak in water DC 500V, >1G ⁇ ; DC 4000V, ⁇ 1mA; AC 2230V, ⁇ 5mA. It has excellent hardness, bending resistance, and insulation and voltage resistance, and can fully meet the printing needs of the insulation protective layer of lithium batteries, especially power batteries.
  • This embodiment is basically the same as Embodiment 3, except that:
  • Phenolic resin or modified phenolic resin 5 Phenolic resin or modified phenolic resin 5.
  • the thickness and corrosion resistance of the insulating ink protective layer are also required. Therefore, in order to reduce the printing thickness and improve the corrosion resistance At the same time, it has also become an improvement direction to ensure hardness, bending resistance, insulation and voltage resistance and other properties.
  • this kind of insulating ink needs to be: before printing, a CPS with good stability and a viscosity of about 10 to 30. After printing, a thin protective layer of insulating ink can achieve excellent hardness. , insulation voltage resistance, corrosion resistance, bending resistance and other performance requirements.
  • Phenolic resin has good acid resistance, mechanical properties, and heat resistance. In practical applications, a thin layer can provide good corrosion resistance and insulation. What's even more rare is that the phenolic resin only needs to be mixed with an appropriate amount of acrylic acid. By balancing it with benzyl ester (the total amount of benzyl acrylate in the insulating ink can be blended to balance it), the stability and viscosity of the insulating ink can be maintained. The viscosity is about 16 to 23 CPS, and it can be used for printing operations. Among them, the phenolic resin can be dissolved (prefabricated) by an appropriate amount of benzyl acrylate before being added, which can reduce the production time and cost of insulating ink.
  • the insulating ink added with phenolic resin, modified phenolic resin or their mixture only needs half the printing film thickness (about 0.11mm) to achieve the desired result without the addition of phenolic resin, modified phenolic resin or their mixture.
  • Performance requirements for insulating inks In other words, the printing thickness of the insulating ink has been reduced, but its hardness, insulation voltage resistance, corrosion resistance and other properties are still maintained, which better meets the requirements for printing the insulation protective layer of lithium batteries, especially power batteries. Require.
  • This embodiment is basically the same as Embodiment 1, except that:
  • Insulating jet printing ink includes the following components by weight:
  • This embodiment is basically the same as Embodiment 5, except that:
  • This embodiment is basically the same as Embodiment 6, except that:
  • This embodiment is basically the same as Embodiment 7, except that:
  • This embodiment is basically the same as Embodiment 1, except that:
  • Insulating jet printing ink includes the following components by weight:
  • This embodiment is basically the same as Embodiment 9, except that:
  • This embodiment is basically the same as Embodiment 10, except that:
  • This embodiment is basically the same as Embodiment 11, except that:
  • Insulating jet printing ink includes the following components by weight:
  • the viscosity is 19CPS, which has good stability and meets the requirements of the spray printing process for ink viscosity and stability.
  • the insulating ink is printed onto the surface of the aluminum alloy material through a printing device, with a thickness of about 0.11mm. After curing with a UV lamp, a comprehensive performance test is conducted. The results are as follows:
  • Insulation resistance test The insulation resistance reaches 6.47G ⁇ , which is much larger than the 1G ⁇ required by the test. meet testing requirements.
  • Shear strength test The shear tensile force is 63MPa, which is much greater than 10MPa and meets the requirements.
  • Electrolyte resistance test The surface is slightly discolored, but the performance is maintained and the test results meet the requirements.
  • Boiling resistance test After boiling for four hours, the adhesion is maintained and there is no blistering or cracking on the surface. The results meet the requirements.
  • the insulating ink printing protective layer only needs a thickness of about 0.11mm to reach a maximum hardness of 4H, with frequent bending resistance up to 90°, and a limit up to 360°.
  • the insulation resistance Voltage DC 4000V, ⁇ 1mA; AC 2230V, ⁇ 10mA. Soak in water: DC 500V, >1G ⁇ ; DC 4000V, ⁇ 1mA; AC 2230V, ⁇ 5mA. Its hardness, bending resistance, insulation voltage resistance, corrosion resistance and other properties are excellent, and it can fully meet the requirements of lithium batteries, especially power batteries. Insulation protective layer printing requirements.
  • the present invention is not limited to the above-mentioned embodiments.
  • Other insulating jet printing inks and their preparation methods obtained by using the same or similar technical features as the above-mentioned embodiments of the present invention are within the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本发明公开了一种绝缘性喷印油墨,至少包括如下重量份数的组分:三甲基苯甲酰基-二苯基氧化膦(TPO)2-10;交联聚乙烯基吡咯烷酮(CTFA)5-15;4-丙烯酰吗啉(ACMO)1-5;二丙烯酸-1,6-己二醇酯(HDDA)1-5;丙烯酸异冰片酯(IBOA)1-5;丙烯酸树脂5-10;色料1-4;分散剂适量。为完善并提升其性能要求,还可以包括如下重量份数的组分:聚氨酯丙烯酸酯1-10;丙烯酸苄酯20-50;三羟甲基丙烷三丙烯酸酯1-10;甘油三羟丙基醚三丙烯酸酯1-10;乙氧基季戊四醇四丙烯酸酯1-10;磷酸酯1-10;酚醛树脂、改性酚醛树脂或其混合物5-15。本发明还公开了绝缘性喷印油墨的制备方法。

Description

一种绝缘性喷印油墨及其制备方法 技术领域
本发明涉及喷印油墨,特别涉及绝缘性喷印油墨及其制备方法。
背景技术
随着动力电池行业对CTP技术、CTC技术、One-Stop技术的不断研发,对电池表面的高剪切强度和800V高压绝缘等需求,传统包膜技术性能上已经很难满足新技术的要求。经过长期的研发,绝缘油墨喷印技术应运而生,这种高绝缘、高耐压的表面喷印处理工艺,大大提升了电池表面的综合性能,而且效率极高,很好地满足了CTP技术、CTC技术等技术的需求。而且其所采用的绝缘性油墨则是核心技术之一。
目前现有UV数码喷墨在锂电池材料上应用,存在着黏稠度较大,绝缘耐压性能不佳,耐电解液性能差,容易被电解液渗透引起固化后的墨层与材料分离,没有附着力,喷印成型后硬度、耐剪切耐弯折性能达不到要求,其他性能效果差等等一系列问题。因此,需要研发一种综合性能较佳,特别是在绝缘耐压、耐剪切耐弯折等方面,满足喷印工艺的绝缘性喷印油墨。
发明内容
针对上述不足,本发明的目的在于,针对上述问题,提供一种绝缘性喷印油墨及其制备方法,在具备相当绝缘耐压性能的基础上,保证其黏稠度及稳定性,从而满足油墨绝缘喷印的需求;并且极大地提升其综合性能,使得其在黏稠度、硬度、附着力、耐弯折、绝缘性、耐压性、耐腐蚀性等方面皆有优秀的表现,从而满足动力电池绝缘性油墨喷印工艺的需求。
本发明采用的技术方案为:一种绝缘性喷印油墨,包括如下重量份数的组分:
Figure PCTCN2022110524-appb-000001
三甲基苯甲酰基-二苯基氧化膦是一种高效的光引发剂,波长吸收峰在269nm、298nm、379nm、393nm处,吸收波长可达430nm,特别适合于有色体系的光固化。其光解产物为三甲基苯甲酰自由基和二苯基膦酰自由基,都是引发活性很高的自由基。其光解产物的吸收波长向短波移动,具有光漂白效果,有利于紫外光透过,可用于厚涂层的固化。其热稳定性优良,加热至180℃无化学反应发生,贮存稳定性好。虽然自身带有浅黄色,但光解后变为无色,不发生黄变。
交联聚乙烯基吡咯烷酮,一般作为稳定剂用于啤酒、白酒、葡萄汁及果汁等饮料,延长其储存期。在医药工业中主要用作片剂的崩解剂,也可用作丸剂、颗粒剂、硬胶囊剂的崩解剂和填充剂。经研究实验发现,其在本绝缘性喷印油墨中,起到了很好的与多类物质的络合能力。保证油墨的稳定性,否则的话,油墨一旦不稳定,将无法应用于喷印。因此,将食品乃至医药常用的交联聚乙烯基吡咯烷酮应用于本绝缘性喷印油墨,起到了意想不到的稳定性效果和络合能力,为绝缘油墨可以进行喷印操作提供了基础与可能。否则的话,传统的绝缘油墨配方只能进行涂刷或者喷涂,而不能进行喷印,因为喷印类似于打印机,需要合适的黏稠度区间,10至30CPS左右,才会适合喷印。
4-丙烯酰吗啉。别名为丙烯酰吗啉;4-(1-氧代-2-丙烯基)吗啡啉;N-丙烯酰吗啉;4-丙烯酰酰基吗啉;4-乙酰丙烯酰吗啉;ACMO,化学式为C7H11 N O2,用于纤维、絮凝剂、油田用聚合物、UV树脂反应稀释剂 的物质。
二丙烯酸-1,6-己二醇酯。又称:1,6一己二醇二丙烯酸酯、HDDA、YHH7一HDDA。是一种低黏度,低挥发性的液体功能性单体,在UV紫外光自由基聚合中有快速固化反应。HDDA还具有拒水主链和极出色的溶解力。
丙烯酸异冰片酯。丙烯酸异冰片酯(IBOA)是一种化学物质,分子式是C13H20O2。本品应用于粘合剂、特种涂料,具有高活性、高硬度、低收缩。使用IBOA作为活性稀释剂,用于本绝缘性油墨(辐射固化油墨)中可以有效地降低油墨的粘度,改善分散稳定性能,提高涂层的流平性。使用IBOA作为环氧丙烯酸齐聚物的活性稀释剂,可以明显降低喷印涂层的内应力,减少喷印涂层的体积收缩率,从而显著改善辐射固化喷印涂层的附着力、收缩率、抗冲击性、耐擦伤和耐候性等特性指标,同时又不降低其硬度和柔韧性。在此之前,研究发现IBOA若用于光盘的保护涂层上,其对细纹表面有着极好的附着力和耐擦伤性,且有极佳的涂饰性能并使涂膜光泽明显改善,这样的性能表现,可以很好的匹配本绝缘性油墨的需求,成为本绝缘性油墨的核心组分之一。
在此基础上的绝缘性喷印油墨,已经具有相当的绝缘性能,黏度达到15左右的CPS,可以采用打印喷头进行喷印操作(油墨是否能够喷印,其满足黏度要求是基础),满足油墨喷印的最基本的需求,并且具有一定的绝缘性能。而且,相对来说,具有非常好的保湿性能效果,但同时也存在附着力相对较差的不足。此基础版的绝缘性喷印油墨在某些需要绝缘层的产品领域,已经可以进行绝缘喷印应用,但对应在锂电池喷印应用来说,还需要进一步改进,因为锂电池特别是动力电池需要较强的绝缘性、耐压性、硬度、韧性、厚度等一系列要求。
进一步,还包括如下重量份数的组分:
聚氨酯丙烯酸酯                           1-10;
丙烯酸苄酯                               20-50。
为了改进绝缘性喷印油墨附着力,以及进一步提升其绝缘性和韧 性,加入了设定比例的聚氨酯丙烯酸酯和丙烯酸苄酯。由于聚氨酯丙烯酸酯的黏稠度非常高,达到8000左右CPS,需要通过丙烯酸苄酯进行稀释。
聚氨酯丙烯酸酯(PUA)的分子中含有丙烯酸官能团和氨基甲酸酯键,固化后的胶黏剂具有聚氨酯的高耐磨性、粘附力、柔韧性、高剥离强度和优良的耐低温性能以及聚丙烯酸酯卓越的光学性能和耐候性,是一种综合性能优良的辐射固化材料。聚氨酯丙烯酸酯PUA已成为防水涂料领域应用非常重要的一大类低聚物,鉴于聚氨酯丙烯酸酯PUA的黏稠度非常高,达到8000左右CPS,固化速度较慢、价格相对较高,在常规涂料配方中较少以PUA为主体低聚物,往往作为辅助性功能树脂使用,大多数情况下,配方中使用PUA主要是为了增加涂层的柔韧性、降低应力收缩、改善附着力;但是,在绝缘性油墨的研发过程中发现,聚氨酯丙烯酸酯PUA经过丙烯酸苄酯稀释之后,可以向水性体系发展,特别是水性体系因直接采用丙烯酸苄酯稀释降低粘度,有效地降低了油墨的收缩,减少固化时的内应力,增加油墨的附着力和提高油墨成膜的柔韧性。
至此,在喷印成膜厚度0.18mm的基础上,绝缘油墨保护层的附着力可以达到0级,绝缘性能和韧性都已经满足锂电池特别是动力电池的绝缘保护层需求。但是,其硬度稍微欠佳,耐刮和耐弯折性能有待进一步提升,以更好地满足一些特殊的锂电池特别是动力电池的绝缘保护层喷印。
进一步,还包括如下重量份数的组分:
Figure PCTCN2022110524-appb-000002
三羟甲基丙烷三丙烯酸酯。主要用于光固化涂料、光固化油墨、光刻胶、柔性印刷品、阻焊剂、抗蚀剂、油漆、聚合物改性等方面。乙氧 基季戊四醇四丙烯酸酯。分子式:(C2H4O)n(C2H4O)n(C2H4O)n(C2H4O)nC17H20O8。甘油三羟丙基醚三丙烯酸酯。分子式:C21H32O9。磷酸酯又称正磷酸酯(以与亚磷酸酯相区别),是磷酸的酯衍生物,属于磷酸衍生物的一类。磷酸为三元酸,因此根据取代烃基数的不同,又可将磷酸酯分为伯磷酸酯(磷酸一酯、烃基磷酸)、仲磷酸酯(磷酸二酯)和叔磷酸酯(磷酸三酯)。优选采用高活性磷酸酯,为改善磷酸三酯的溶解性,增加极压与抗磨性而特别制备的中碳链磷酸单酯与双酯混合物。含磷量高,分散溶解性增加,尤其在亲水性流体中。其钾盐或有机胺盐更具有抗静电性能。经研究实验发现,以上四种物质在加入本绝缘性油墨中后,起到了很好提升硬度和韧性的作用,更为难得是,该四种物质的加入后,只要通过适量的丙烯酸苄酯进行平衡(可以调配丙烯酸苄酯在绝缘性油墨中的总量来平衡),就能保持绝缘性油墨的稳定性和黏稠度,黏稠度大概是15至19CPS,能够进行喷印操作。
至此,绝缘性油墨喷印后的硬度性能以及耐弯折性能得到了有效提升,在喷印成膜厚度0.18mm的基础上,硬度最高可以达到4H,频繁耐弯折达到90°,极限可达360°,绝缘耐压:DC 4000V,<1mA;AC 2230V,<10mA。泡水:DC 500V,>1GΩ;DC 4000V,<1mA;AC 2230V,<5mA。硬度、耐弯折、绝缘耐压性能极佳,已经完全可以满足锂电池特别是动力电池的绝缘保护层喷印需求。
进一步,还包括如下重量份数的组分:
酚醛树脂、改性酚醛树脂或其混合物         5-15。
在某些特殊的锂电池特别是动力电池的绝缘保护层喷印要求中,绝缘性油墨保护层的厚度以及耐腐蚀性也是有所要求的,于是乎,在降低喷印厚度,提升耐腐蚀性的同时,并保证硬度、耐弯折、绝缘耐压性等等性能,也成为了一种改进方向。总的来说,这种绝缘性油墨,需要做到:喷印前,稳定性好,黏稠度10至30左右的CPS,喷印后,较薄的绝缘油墨保护层,便能达到优越的硬度、绝缘耐压性、耐腐蚀性、抗弯 折性等等一些列性能要求。
酚醛树脂具有良好的耐酸性能、力学性能、耐热性能,在实际应用中,薄薄一层便起到较好的耐腐蚀性和绝缘性,更为难得是,该酚醛树脂只要通过适量的丙烯酸苄酯进行平衡(可以调配丙烯酸苄酯在绝缘性油墨中的总量来平衡),就能保持绝缘性油墨的稳定性和黏稠度,黏稠度大概是16至23CPS,能够进行喷印操作。其中,酚醛树脂可以先通过适量丙烯酸苄酯溶解后(预制),再加入,可以减少绝缘性油墨生产制造时间,降低成本。
加入了酚醛树脂、改性酚醛树脂或其混合物后的绝缘性油墨,只需要大概一半的喷印成膜厚度(0.11mm左右),便能做到没有加酚醛树脂、改性酚醛树脂或其混合物的绝缘性油墨的性能要求。也就是说,绝缘性油墨的喷印厚度降下来了,但其硬度、绝缘耐压性、耐腐蚀性等性能依然得以保持,更好地满足了锂电池特别是动力电池的绝缘保护层喷印要求。
进一步,所述色料为UV单体纳米颜料,所述分散剂的重量份数为1-3,用于使得色料充分稳定地分散在绝缘性喷印油墨中。色料可以采用各种颜色,甚至是透明色。分散剂根据所选取的色料进行选配。
分散剂顾名思义,就是把各种粉体合理地分散在溶剂中,通过一定的电荷排斥原理或高分子位阻效应,使各种固体很稳定地悬浮在溶剂(或分散液)中。在涂料生产过程中,颜料分散是一个很主要的生产环节,它直接关系到涂料的储存,施工,外观以及漆膜的性能等,所以合理地选择分散剂就是一个很重要的生产环节。但涂料浆体分散的好坏不光和分散剂有关系,和涂料配方的制定以及原料的选择都有关系。相容性之所以重要,是因为良好的相容性可以使涂料制造商生产用于多种不同类别树脂产品的分散体系。
基于本绝缘性油墨,优选采用聚合物分散剂,可以提高颜料浓度,不仅增加产量,而且减少从研磨色浆直到最终产品中潜在的介质不相容性问题。所以特别是使用高相容性树脂的条件下,聚合物分散剂扩大了 基础油墨的使用范围。聚合物分散剂利于改善流动/流平能力。流平性是涂料在特定表面扩散的能力。油墨表面缺陷通常由表面张力造成,而且发生相对较快。刷痕通常也是由流平性不足造成的。理想的流平行为可以用牛顿力学来解释。但是颜料引入体系后,就会发生变化。这是因为颗粒受化学键和物理相互作用影响,非常容易产生触变性和假塑性。由于颜料颗粒在聚合物分散剂作用下更加稳定,流平性增加,所以可以提高牛顿流体特性。对流平性有好处,利于提升油墨稳定性品质。
绝缘性喷印油墨的制备方法,包括如下步骤:
1)先将重量份数2-10份的三甲基苯甲酰基-二苯基氧化膦(TPO)、5-15份的交联聚乙烯基吡咯烷酮(CTFA)、1-5份的4-丙烯酰吗啉(ACMO)、1-5份的二丙烯酸-1,6-己二醇酯(HDDA)、1-5份的丙烯酸异冰片酯(IBOA)、5-10份的丙烯酸树脂进行充分混合并研磨;2)加入色料和分散剂,混合均匀,使得色料分散,形成绝缘性喷印油墨。在此需要说明的是,一般来说,先1)后2)的步骤会较好,但不区分1)、2)步骤的先后行,一次性将所有组分加入,再进行充分混合研磨分散,原则上也是可行的,应属于等同的工艺操作。
进一步,步骤1)中,还加入有1-10份的聚氨酯丙烯酸酯、20-50份的丙烯酸苄酯。
进一步,步骤1)中,还加入有1-10份的三羟甲基丙烷三丙烯酸酯、1-10份的甘油三羟丙基醚三丙烯酸酯、1-10份的乙氧基季戊四醇四丙烯酸酯、1-10份的磷酸酯。
进一步,步骤1)中,还加入有5-15份的酚醛树脂、改性酚醛树脂或其混合物。
进一步,所述酚醛树脂、改性酚醛树脂或其混合物通过丙烯酸苄酯进行溶解稀释后,再进行加入;其中,酚醛树脂、改性酚醛树脂或其混合物通过丙烯酸苄酯与丙烯酸苄酯的重量比例为0.8:1至1:0.8。
本发明具有以下优点:通过优化绝缘性油墨的组分配方,在具备相当绝缘耐压性能的基础上,使之具有合适的黏稠度及稳定性,满足油墨 绝缘喷印的需求;并且极大地提升其综合性能,使得其在黏稠度、硬度、附着力、耐弯折、绝缘性、耐压性、耐腐蚀性等方面皆有优秀的表现,从而满足动力电池绝缘性油墨喷印工艺的需求。采用本绝缘性油墨的最优化组分配方,绝缘性油墨喷印保护层只需要0.11mm左右的厚度,便可以达到硬度最高4H,频繁耐弯折达到90°,极限可达360°,绝缘耐压:DC 4000V,<1mA;AC 2230V,<10mA。泡水:DC 500V,>1GΩ;DC 4000V,<1mA;AC 2230V,<5mA,其硬度、耐弯折、绝缘耐压、耐腐蚀等性能极佳,已经完全可以满足锂电池特别是动力电池的绝缘保护层喷印需求。
通过本配方工艺所得到的最终优化的绝缘性油墨可以很好地匹配应用在新的高绝缘、高耐压的喷印式表面处理工艺。该工艺是CTP和CTC技术中对剪切力和800V高压绝缘等要求不可代替的一种工艺,大大提高了电池表面的综合性能。通过将该绝缘油墨应用在喷印工艺中,还决绝了HEV电池表面结露造成电池短路的风险。HEV电池不再需要单独打胶,简化了生产工艺,提升了良品率。解决了HEV电池容易起皱,顶片容易翘起和重叠等引起的产品不良。
下面结合具体实施方式,对本发明作进一步说明。
具体实施方式
实施例1
绝缘性喷印油墨,包括如下重量份数的组分:
Figure PCTCN2022110524-appb-000003
三甲基苯甲酰基-二苯基氧化膦是一种高效的光引发剂,波长吸收峰在269nm、298nm、379nm、393nm处,吸收波长可达430nm,特别适合于有色体系的光固化。其光解产物为三甲基苯甲酰自由基和二苯基膦酰自由基,都是引发活性很高的自由基。其光解产物的吸收波长向短波移动,具有光漂白效果,有利于紫外光透过,可用于厚涂层的固化。其热稳定性优良,加热至180℃无化学反应发生,贮存稳定性好。虽然自身带有浅黄色,但光解后变为无色,不发生黄变。
交联聚乙烯基吡咯烷酮,一般作为稳定剂用于啤酒、白酒、葡萄汁及果汁等饮料,延长其储存期。在医药工业中主要用作片剂的崩解剂,也可用作丸剂、颗粒剂、硬胶囊剂的崩解剂和填充剂。经研究实验发现,其在本绝缘性喷印油墨中,起到了很好的与多类物质的络合能力。保证油墨的稳定性,否则的话,油墨一旦不稳定,将无法应用于喷印。因此,将食品乃至医药常用的交联聚乙烯基吡咯烷酮应用于本绝缘性喷印油墨,起到了意想不到的稳定性效果和络合能力,为绝缘油墨可以进行喷印操作提供了基础与可能。否则的话,传统的绝缘油墨配方只能进行涂刷或者喷涂,而不能进行喷印,因为喷印类似于打印机,需要合适的黏稠度区间,10至30CPS左右,才会适合喷印。
丙烯酰吗啉。别名为丙烯酰吗啉;4-(1-氧代-2-丙烯基)吗啡啉;N-丙烯酰吗啉;4-丙烯酰酰基吗啉;4-乙酰丙烯酰吗啉;ACMO,化学式为C7H11 N O2,用于纤维、絮凝剂、油田用聚合物、UV树脂反应稀释剂的物质。
二丙烯酸-1,6-己二醇酯。又称:1,6一己二醇二丙烯酸酯、HDDA、YHH7一HDDA。是一种低黏度,低挥发性的液体功能性单体,在UV紫外光自由基聚合中有快速固化反应。HDDA还具有拒水主链和极出色的溶解力。
丙烯酸异冰片酯。丙烯酸异冰片酯(IBOA)是一种化学物质,分子式是C13H20O2。本品应用于粘合剂、特种涂料,具有高活性、高硬度、低收缩。使用IBOA作为活性稀释剂,用于本绝缘性油墨(辐射 固化油墨)中可以有效地降低油墨的粘度,改善分散稳定性能,提高涂层的流平性。使用IBOA作为环氧丙烯酸齐聚物的活性稀释剂,可以明显降低喷印涂层的内应力,减少喷印涂层的体积收缩率,从而显著改善辐射固化喷印涂层的附着力、收缩率、抗冲击性、耐擦伤和耐候性等特性指标,同时又不降低其硬度和柔韧性。在此之前,研究发现IBOA若用于光盘的保护涂层上,其对细纹表面有着极好的附着力和耐擦伤性,且有极佳的涂饰性能并使涂膜光泽明显改善,这样的性能表现,可以很好的匹配本绝缘性油墨的需求,成为本绝缘性油墨的核心组分之一。
在此基础上的绝缘性喷印油墨,已经具有相当的绝缘性能,黏度达到15左右的CPS,可以采用打印喷头进行喷印操作(油墨是否能够喷印,其满足黏度要求是基础),满足油墨喷印的最基本的需求,并且具有一定的绝缘性能。而且,相对来说,具有非常好的保湿性能效果,但同时也存在附着力相对较差的不足。此基础版的绝缘性喷印油墨在某些需要绝缘层的产品领域,已经可以进行绝缘喷印应用,但对应在锂电池喷印应用来说,还需要进一步改进,因为锂电池特别是动力电池需要较强的绝缘性、耐压性、硬度、韧性、厚度等一系列要求。
所述色料采用UV单体纳米颜料,所述分散剂的重量份数为1,用于使得色料充分稳定地分散在绝缘性喷印油墨中。在此需要说明的是,色料可以采用各种颜色,甚至是透明色。分散剂根据所选取的色料进行选配。
分散剂顾名思义,就是把各种粉体合理地分散在溶剂中,通过一定的电荷排斥原理或高分子位阻效应,使各种固体很稳定地悬浮在溶剂(或分散液)中。在涂料生产过程中,颜料分散是一个很主要的生产环节,它直接关系到涂料的储存,施工,外观以及漆膜的性能等,所以合理地选择分散剂就是一个很重要的生产环节。但涂料浆体分散的好坏不光和分散剂有关系,和涂料配方的制定以及原料的选择都有关系。相容性之所以重要,是因为良好的相容性可以使涂料制造商生产用于多种不同类别树脂产品的分散体系。
基于本绝缘性油墨,优选采用聚合物分散剂,可以提高颜料浓度,不仅增加产量,而且减少从研磨色浆直到最终产品中潜在的介质不相容性问题。所以特别是使用高相容性树脂的条件下,聚合物分散剂扩大了基础油墨的使用范围。聚合物分散剂利于改善流动/流平能力。流平性是涂料在特定表面扩散的能力。油墨表面缺陷通常由表面张力造成,而且发生相对较快。刷痕通常也是由流平性不足造成的。理想的流平行为可以用牛顿力学来解释。但是颜料引入体系后,就会发生变化。这是因为颗粒受化学键和物理相互作用影响,非常容易产生触变性和假塑性。由于颜料颗粒在聚合物分散剂作用下更加稳定,流平性增加,所以可以提高牛顿流体特性。对流平性有好处,利于提升油墨稳定性品质。
绝缘性喷印油墨的制备方法,包括如下步骤:
1)先将重量份数2份的三甲基苯甲酰基-二苯基氧化膦(TPO)、5份的交联聚乙烯基吡咯烷酮(CTFA)、1份的4-丙烯酰吗啉(ACMO)、1份的二丙烯酸-1,6-己二醇酯(HDDA)、1份的丙烯酸异冰片酯(IBOA)、5份的丙烯酸树脂进行充分混合并研磨;2)加入色料和分散剂,混合均匀,使得色料分散,形成绝缘性喷印油墨。在此需要说明的是,本实施例采用的是先1)后2)的步骤会,效果相对较好。但在另外的实施例中,不区分1)、2)步骤的先后行,一次性将所有组分加入,再进行充分混合研磨分散,原则上也是可行的。
实施例2
本实施例与实施例1基本相同,其不同之处在于,
还包括如下重量份数的组分:
聚氨酯丙烯酸酯                           1;
丙烯酸苄酯                               20。
为了改进绝缘性喷印油墨附着力,以及进一步提升其绝缘性和韧性,加入了设定比例的聚氨酯丙烯酸酯和丙烯酸苄酯。由于聚氨酯丙烯酸酯的黏稠度非常高,达到8000左右CPS,需要通过丙烯酸苄酯进行稀释。
聚氨酯丙烯酸酯(PUA)的分子中含有丙烯酸官能团和氨基甲酸酯键,固化后的胶黏剂具有聚氨酯的高耐磨性、粘附力、柔韧性、高剥离强度和优良的耐低温性能以及聚丙烯酸酯卓越的光学性能和耐候性,是一种综合性能优良的辐射固化材料。聚氨酯丙烯酸酯PUA已成为防水涂料领域应用非常重要的一大类低聚物,鉴于聚氨酯丙烯酸酯PUA的黏稠度非常高,达到8000左右CPS,固化速度较慢、价格相对较高,在常规涂料配方中较少以PUA为主体低聚物,往往作为辅助性功能树脂使用,大多数情况下,配方中使用PUA主要是为了增加涂层的柔韧性、降低应力收缩、改善附着力;但是,在绝缘性油墨的研发过程中发现,聚氨酯丙烯酸酯PUA经过丙烯酸苄酯稀释之后,可以向水性体系发展,特别是水性体系因直接采用丙烯酸苄酯稀释降低粘度,有效地降低了油墨的收缩,减少固化时的内应力,增加油墨的附着力和提高油墨成膜的柔韧性。
至此,在喷印成膜厚度0.18mm的基础上,绝缘油墨保护层的附着力可以达到0级,绝缘性能和韧性都已经满足锂电池特别是动力电池的绝缘保护层需求。但是,其硬度稍微欠佳,耐刮和耐弯折性能有待进一步提升,以更好地满足一些特殊的锂电池特别是动力电池的绝缘保护层喷印。
实施例3
本实施例与实施例2基本相同,其不同之处在于,
还包括如下重量份数的组分:
Figure PCTCN2022110524-appb-000004
三羟甲基丙烷三丙烯酸酯。主要用于光固化涂料、光固化油墨、光刻胶、柔性印刷品、阻焊剂、抗蚀剂、油漆、聚合物改性等方面。乙氧基季戊四醇四丙烯酸酯。分子式: (C2H4O)n(C2H4O)n(C2H4O)n(C2H4O)nC17H20O8。甘油三羟丙基醚三丙烯酸酯。分子式:C21H32O9。磷酸酯又称正磷酸酯(以与亚磷酸酯相区别),是磷酸的酯衍生物,属于磷酸衍生物的一类。磷酸为三元酸,因此根据取代烃基数的不同,又可将磷酸酯分为伯磷酸酯(磷酸一酯、烃基磷酸)、仲磷酸酯(磷酸二酯)和叔磷酸酯(磷酸三酯)。优选采用高活性磷酸酯,为改善磷酸三酯的溶解性,增加极压与抗磨性而特别制备的中碳链磷酸单酯与双酯混合物。含磷量高,分散溶解性增加,尤其在亲水性流体中。其钾盐或有机胺盐更具有抗静电性能。经研究实验发现,以上四种物质在加入本绝缘性油墨中后,起到了很好提升硬度和韧性的作用,更为难得是,该四种物质的加入后,只要通过适量的丙烯酸苄酯进行平衡(可以调配丙烯酸苄酯在绝缘性油墨中的总量来平衡),就能保持绝缘性油墨的稳定性和黏稠度,黏稠度大概是15至19CPS,能够进行喷印操作。
至此,绝缘性油墨喷印后的硬度性能以及耐弯折性能得到了有效提升,在喷印成膜厚度0.18mm的基础上,硬度最高可以达到4H,耐弯折达到90°,极限可达360°,绝缘耐压:DC 4000V,<1mA;AC2230V,<10mA。泡水:DC 500V,>1GΩ;DC 4000V,<1mA;AC 2230V,<5mA。硬度、耐弯折、绝缘耐压性能极佳,已经完全可以满足锂电池特别是动力电池的绝缘保护层喷印需求。
实施例4
本实施例与实施例3基本相同,其不同之处在于,
还包括如下重量份数的组分:
酚醛树脂或改性酚醛树脂          5。
在某些特殊的锂电池特别是动力电池的绝缘保护层喷印要求中,绝缘性油墨保护层的厚度以及耐腐蚀性也是有所要求的,于是乎,在降低喷印厚度,提升耐腐蚀性的同时,并保证硬度、耐弯折、绝缘耐压性等等性能,也成为了一种改进方向。总的来说,这种绝缘性油墨,需要做到:喷印前,稳定性好,黏稠度10至30左右的CPS,喷印后,较薄的 绝缘油墨保护层,便能达到优越的硬度、绝缘耐压性、耐腐蚀性、抗弯折性等等一些列性能要求。
酚醛树脂具有良好的耐酸性能、力学性能、耐热性能,在实际应用中,薄薄一层便起到较好的耐腐蚀性和绝缘性,更为难得是,该酚醛树脂只要通过适量的丙烯酸苄酯进行平衡(可以调配丙烯酸苄酯在绝缘性油墨中的总量来平衡),就能保持绝缘性油墨的稳定性和黏稠度,黏稠度大概是16至23CPS,能够进行喷印操作。其中,酚醛树脂可以先通过适量丙烯酸苄酯溶解后(预制),再加入,可以减少绝缘性油墨生产制造时间,降低成本。
加入了酚醛树脂、改性酚醛树脂或其混合物后的绝缘性油墨,只需要一半的喷印成膜厚度(0.11mm左右),便能做到没有加酚醛树脂、改性酚醛树脂或其混合物的绝缘性油墨的性能要求。也就是说,绝缘性油墨的喷印厚度降下来了,但其硬度、绝缘耐压性、耐腐蚀性等性能依然得以保持,更好地满足了锂电池特别是动力电池的绝缘保护层喷印要求。
实施例5
本实施例与实施例1基本相同,其不同之处在于,
绝缘性喷印油墨,包括如下重量份数的组分:
Figure PCTCN2022110524-appb-000005
实施例6
本实施例与实施例5基本相同,其不同之处在于:
还包括如下重量份数的组分:
聚氨酯丙烯酸酯                           5;
丙烯酸苄酯                               30。
实施例7
本实施例与实施例6基本相同,其不同之处在于:
还包括如下重量份数的组分:
Figure PCTCN2022110524-appb-000006
实施例8
本实施例与实施例7基本相同,其不同之处在于:
还包括如下重量份数的组分:
改性酚醛树脂                              10。
实施例9
本实施例与实施例1基本相同,其不同之处在于,
绝缘性喷印油墨,包括如下重量份数的组分:
Figure PCTCN2022110524-appb-000007
实施例10
本实施例与实施例9基本相同,其不同之处在于:
还包括如下重量份数的组分:
聚氨酯丙烯酸酯                           10;
丙烯酸苄酯                               50。
实施例11
本实施例与实施例10基本相同,其不同之处在于:
还包括如下重量份数的组分:
Figure PCTCN2022110524-appb-000008
实施例12
本实施例与实施例11基本相同,其不同之处在于:
还包括如下重量份数的组分:
酚醛树脂与改性酚醛树脂混合物                15。
实施例13
绝缘性喷印油墨,包括如下重量份数的组分:
Figure PCTCN2022110524-appb-000009
Figure PCTCN2022110524-appb-000010
测试分析:
取实施例13进行综合性能测试:
在喷涂前,黏稠度为19CPS,稳定性较佳,满足喷印工艺对油墨黏稠度及稳定性的要求。
喷涂应用,通过喷印装置,将该绝缘性油墨喷印至铝合金材料表面,厚度0.11mm左右,并进行UV灯固化后,进行综合性能测试,结果如下:
1.附着力达到0级,满足测试要求。
2.绝缘阻抗测试:绝缘电阻达到6.47GΩ,远大于测试要求的1GΩ。满足测试要求。
3.耐压测试:耐压测试测试漏电电流为0,远小于测试要求的1mA。满足要求。
4.柔韧性测试:极限弯折360°,无爆裂现象,附着力依然达到0级。满足要求。
5.剪切强度测试:剪切拉力为63MPa,远大于10MPa,满足要求。
6.耐电解液测试:表面有轻微掉色,但性能保持,测试结果满足要求。
7.耐水煮测试:水煮四小时,附着力保持,表面无起泡、开裂现象,结果满足要求。
由此可见,经过最终优化的绝缘性油墨及制备工艺,在具备相当绝缘性的基础上,使之具有合适的黏稠度及稳定性,满足油墨绝缘喷印的需求;并且极大地提升其综合性能,使得其在黏稠度、硬度、附着力、耐弯折、绝缘性、耐压性、耐腐蚀性等方面皆有优秀的表现,从而满足动力电池绝缘性油墨喷印工艺的需求。采用本绝缘性油墨的最优化组分配方,绝缘性油墨喷印保护层只需要0.11mm左右的厚度,便可以达到 硬度最高4H,频繁耐弯折达到90°,极限可达360°,绝缘耐压:DC 4000V,<1mA;AC 2230V,<10mA。泡水:DC 500V,>1GΩ;DC 4000V,<1mA;AC 2230V,<5mA,其硬度、耐弯折、绝缘耐压、耐腐蚀等性能极佳,已经完全可以满足锂电池特别是动力电池的绝缘保护层喷印需求。
本发明并不限于上述实施方式,采用与本发明上述实施例相同或近似的技术特征,而得到的其他绝缘性喷印油墨及其制备方法,均在本发明的保护范围之内。

Claims (10)

  1. 一种绝缘性喷印油墨,其特征在于,包括如下重量份数的组分:
    Figure PCTCN2022110524-appb-100001
  2. 根据权利要求1所述的绝缘性喷印油墨,其特征在于,还包括如下重量份数的组分:
    聚氨酯丙烯酸酯                          1-10;
    丙烯酸苄酯                              20-50。
  3. 根据权利要求2所述的绝缘性喷印油墨,其特征在于,还包括如下重量份数的组分:
    Figure PCTCN2022110524-appb-100002
  4. 根据权利要求3所述的绝缘性喷印油墨,其特征在于,还包括如下重量份数的组分:
    酚醛树脂、改性酚醛树脂或其混合物          5-15。
  5. 根据权利要求1所述的绝缘性喷印油墨,其特征在于,所述色料为UV单体纳米颜料,所述分散剂的重量份数为1-3,用于使得色料充分稳定地分散在绝缘性喷印油墨中。
  6. 一种权利要求1至5之一所述绝缘性喷印油墨的制备方法,其特征在 于,包括如下步骤:
    1)先将重量份数2-10份的三甲基苯甲酰基-二苯基氧化膦(TPO)、5-15份的交联聚乙烯基吡咯烷酮(CTFA)、1-5份的4-丙烯酰吗啉(ACMO)、1-5份的二丙烯酸-1,6-己二醇酯(HDDA)、1-5份的丙烯酸异冰片酯(IBOA)、5-10份的丙烯酸树脂进行充分混合并研磨;2)加入色料和分散剂,混合均匀,使得色料分散,形成绝缘性喷印油墨。
  7. 根据权利要求6所述的绝缘性喷印油墨的制备方法,其特征在于,步骤1)中,还加入有1-10份的聚氨酯丙烯酸酯、20-50份的丙烯酸苄酯。
  8. 根据权利要求7所述的绝缘性喷印油墨的制备方法,其特征在于,步骤1)中,还加入有1-10份的三羟甲基丙烷三丙烯酸酯、1-10份的甘油三羟丙基醚三丙烯酸酯、1-10份的乙氧基季戊四醇四丙烯酸酯、1-10份的磷酸酯。
  9. 根据权利要求8所述的绝缘性喷印油墨的制备方法,其特征在于,步骤1)中,还加入有5-15份的酚醛树脂、改性酚醛树脂或其混合物。
  10. 根据权利要求9所述的绝缘性喷印油墨的制备方法,其特征在于,所述酚醛树脂、改性酚醛树脂或其混合物通过丙烯酸苄酯进行溶解稀释后,再进行加入;其中,酚醛树脂、改性酚醛树脂或其混合物通过丙烯酸苄酯与丙烯酸苄酯的重量比例为0.8:1至1:0.8。
PCT/CN2022/110524 2022-05-23 2022-08-05 一种绝缘性喷印油墨及其制备方法 WO2023226195A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210565209.7 2022-05-23
CN202210565209.7A CN114989670A (zh) 2022-05-23 2022-05-23 一种绝缘性喷印油墨及其制备方法

Publications (1)

Publication Number Publication Date
WO2023226195A1 true WO2023226195A1 (zh) 2023-11-30

Family

ID=83027075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110524 WO2023226195A1 (zh) 2022-05-23 2022-08-05 一种绝缘性喷印油墨及其制备方法

Country Status (2)

Country Link
CN (1) CN114989670A (zh)
WO (1) WO2023226195A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116445036B (zh) * 2022-09-09 2024-03-01 松井新材料研究院(广东)有限公司 Uv固化喷墨打印绝缘墨水及uv固化涂层

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180206342A1 (en) * 2015-07-14 2018-07-19 Agfa-Gevaert Manufacturing printed circuit boards using uv free radical curable inkjet inks
CN108359312A (zh) * 2018-03-12 2018-08-03 江门市阪桥电子材料有限公司 一种耐高温型uv-led喷墨打印阻焊墨水及其制备方法和应用
US20190153254A1 (en) * 2016-05-17 2019-05-23 Microcraft Korea Co., Ltd. Method of preparing ink jet resin composition
CN113474425A (zh) * 2019-01-18 2021-10-01 多米诺印刷科学有限公司 油墨组合物
CN113652118A (zh) * 2021-08-25 2021-11-16 艾森半导体材料(南通)有限公司 一种高附着力且弯折性好的uv喷印油墨
CN113881282A (zh) * 2021-11-10 2022-01-04 东莞市新志新材料有限公司 一种动力电池铝合金表面保护用uv喷墨墨水

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417760B (zh) * 2011-11-21 2013-10-23 东莞劲胜精密组件股份有限公司 一种可辐射固化喷墨油墨
CN104046124B (zh) * 2014-06-18 2016-08-17 江门市阪桥电子材料有限公司 一种紫外光固化阻焊油墨及其制作方法
EP3289029B1 (en) * 2015-05-01 2022-02-23 Sun Chemical Corporation Electrically-insulating energy curable ink or coating composition
CN108884345B (zh) * 2016-03-31 2022-02-25 太阳油墨制造株式会社 喷墨用固化性组合物、固化物和印刷电路板
CN107957655A (zh) * 2016-10-18 2018-04-24 广州亦盛环保科技有限公司 一种3d盖板玻璃用负型感光性白色油墨及其制备方法、使用方法
US11193031B2 (en) * 2017-05-15 2021-12-07 Alpha Assembly Solutions Inc. Dielectric ink composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180206342A1 (en) * 2015-07-14 2018-07-19 Agfa-Gevaert Manufacturing printed circuit boards using uv free radical curable inkjet inks
US20190153254A1 (en) * 2016-05-17 2019-05-23 Microcraft Korea Co., Ltd. Method of preparing ink jet resin composition
CN108359312A (zh) * 2018-03-12 2018-08-03 江门市阪桥电子材料有限公司 一种耐高温型uv-led喷墨打印阻焊墨水及其制备方法和应用
CN113474425A (zh) * 2019-01-18 2021-10-01 多米诺印刷科学有限公司 油墨组合物
CN113652118A (zh) * 2021-08-25 2021-11-16 艾森半导体材料(南通)有限公司 一种高附着力且弯折性好的uv喷印油墨
CN113881282A (zh) * 2021-11-10 2022-01-04 东莞市新志新材料有限公司 一种动力电池铝合金表面保护用uv喷墨墨水

Also Published As

Publication number Publication date
CN114989670A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
JP6536625B2 (ja) 活性エネルギー線硬化型インクジェットインク組成物
US8573765B2 (en) Active radiation curable ink composition, ink composition for inkjet recording, printed matter, and method of producing molded article of printed matter
EP2351799B1 (en) Energy beam-curing inkjet ink composition
EP2041230B1 (en) A printing ink
JP5990879B2 (ja) 活性エネルギー線硬化型インクジェットインキ組成物
JP6060791B2 (ja) 活性エネルギー線硬化型インクジェットインキ用溶解液
EP1806327B1 (de) UV-härtende Glasdruckfarbe und UV-härtender Glasdrucklack sowie Verfahren zum Bedrucken von Glassubstraten
US10407582B2 (en) Ink composition, image forming method, and printed matter
WO2013031871A1 (ja) 活性エネルギー線硬化型インクジェットインキ組成物、及びそれを用いた印刷物
JP2013147544A (ja) インクセットおよび記録物
CN111349359A (zh) 一种紫外固化丝网印刷金属油墨及其制备方法
US8829078B2 (en) Ink composition for inkjet recording, inkjet recording method and inkjet printed article
WO2023226195A1 (zh) 一种绝缘性喷印油墨及其制备方法
JP5589223B2 (ja) 活性エネルギー線硬化型インクジェットインキセット
CN113881282A (zh) 一种动力电池铝合金表面保护用uv喷墨墨水
US20240166899A1 (en) Preparing method for branched vegetable oil-based photosensitive resin and uv curing glass ink
JP5708059B2 (ja) インクセットおよび記録物
JP2006274200A (ja) インク組成物、並びに、これを用いた画像形成方法および記録物
CN112898824B (zh) 一种用于玻璃基材的uv-led光固化喷墨墨水及其制备方法
JP4738863B2 (ja) インク組成物及び画像形成方法
JP2012246348A (ja) インクセット
WO2018105355A1 (ja) 活性線硬化型Blueインク、インクセット及び画像形成方法
JP5094507B2 (ja) チューブポンプ、インクジェット記録装置、インクジェット記録方法及び印刷物
CN115785729A (zh) 一种多用途uv-led光固化高遮盖网印油墨及其制备方法
JP2006274204A (ja) インク組成物、並びに、これを用いた画像形成方法および記録物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943385

Country of ref document: EP

Kind code of ref document: A1