WO2023226158A1 - 一种二维梯度应力下岩体受动载冲击的试验装置及方法 - Google Patents

一种二维梯度应力下岩体受动载冲击的试验装置及方法 Download PDF

Info

Publication number
WO2023226158A1
WO2023226158A1 PCT/CN2022/103530 CN2022103530W WO2023226158A1 WO 2023226158 A1 WO2023226158 A1 WO 2023226158A1 CN 2022103530 W CN2022103530 W CN 2022103530W WO 2023226158 A1 WO2023226158 A1 WO 2023226158A1
Authority
WO
WIPO (PCT)
Prior art keywords
test piece
stress
rock mass
dynamic
dynamic load
Prior art date
Application number
PCT/CN2022/103530
Other languages
English (en)
French (fr)
Inventor
史文豹
齐潮
常聚才
殷志强
李传明
Original Assignee
安徽理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽理工大学 filed Critical 安徽理工大学
Priority to GB2217339.7A priority Critical patent/GB2624455A/en
Publication of WO2023226158A1 publication Critical patent/WO2023226158A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/313Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by explosives

Definitions

  • the invention relates to the technical field of mining engineering, and in particular to a test device and method for rock mass to be impacted by dynamic loads under two-dimensional gradient stress.
  • the purpose of the present invention is to provide a test device and method for dynamic load impact of rock mass under two-dimensional gradient stress, so as to solve the problems existing in the above-mentioned prior art and be able to better simulate the actual impact of a single rock mass or a combination of rock masses. Dynamic load impact conditions in stressed environments.
  • the present invention provides the following solutions:
  • the invention provides a test device for dynamic load impact on rock mass under two-dimensional gradient stress, including a gradient stress application module, an axial static load application module, a dynamic load application module and a stress wave monitoring module;
  • the gradient stress application module includes a base, side beams one, two side beams, cross beams, support rods, load-bearing steel plates, hydraulic cylinders, oil distribution pipelines and gradient static load control boxes; the base is fixed on the ground, so The side beam one and the side beam two are respectively arranged on both sides of the top of the base, the side beam two is provided with a through hole, and the cross beam is connected to the top ends of the side beam one and the side beam two.
  • the load-bearing steel plate is also provided between the side beam one and the side beam two at the bottom of the cross beam, a support rod is provided between the load-bearing steel plate and the base, and the top of the load-bearing steel plate is used for Place the test piece;
  • the bottom of the beam is provided with a hydraulic cylinder for vertical loading of the test piece, and the hydraulic cylinder is connected to the gradient static load control box through the oil distribution pipeline;
  • the axial static load application module is a piston cylinder disposed at an inner bottom of the side beam, and the piston cylinder is used to apply an axial static load to the test piece;
  • the dynamic load application module includes a bullet and an incident rod.
  • the incident rod is arranged outside the side beam 2 and faces the through hole.
  • the outer diameter of the through hole is larger than the outer diameter of the incident rod.
  • the bullet impacts the incident rod and exerts a dynamic load on the test piece;
  • the stress wave monitoring module includes a sensor, a super dynamic strain gauge, an oscilloscope, and a computer terminal.
  • the sensor is pasted on the test piece.
  • the terminal of the sensor is connected to the super dynamic strain gauge.
  • the super dynamic strain gauge is connected to the test piece.
  • the oscilloscope and the computer terminal are connected in sequence.
  • the base is fixed to the ground through floor nails.
  • both ends of the cross beam are tenon-jointed with the first side beam and the second side beam respectively.
  • a flange is installed on the through hole, and the flange, the test piece and the incident rod are coaxial.
  • the support rods are arranged in two rows opposite each other, and the support rods in each row are evenly distributed laterally.
  • each of the square iron plates there are square iron plates distributed at no intervals on the top of the test piece, and round iron plates are arranged on the top of each of the square iron plates, and each of the round iron plates is connected to one of the hydraulic cylinders.
  • each of the hydraulic cylinders and the opposite round iron plate and square iron plate are arranged coaxially.
  • square iron plates are also provided on both side end surfaces of the test piece.
  • the present invention also provides a test method for dynamic load impact on rock mass under two-dimensional gradient stress, which includes the following steps:
  • Step 1 The test piece is proportioned according to the similar simulated proportion of the required combined rock mass. After the proportioning is completed, the test piece is obtained, the gradient static load control box is controlled, the hydraulic cylinder telescopic rod is retracted, and the test piece is Place it on the load-bearing steel plate, align several square iron plates and place them above the test piece, and place a square iron plate on both sides of the test piece;
  • Step 2 Move the incident rod so that the incident rod is in contact with the flange. In order to ensure full contact, evenly apply butter on the contact interface between the flange and the incident rod; paste the sensor on the test piece and attach the sensor to the test piece. Connect to a dynamic strain gauge, connect the dynamic strain gauge to an oscilloscope, and the oscilloscope is connected to a computer terminal;
  • Step 3 Control the gradient static load control box to apply linear or nonlinear gradient stress to the specimen along the axial direction of the specimen; control the external manual hydraulic pump to extend the piston cylinder to apply an axial load to the specimen;
  • Step 4 Fire a bullet.
  • the bullet impacts the incident rod.
  • the incident rod passes through the flange and hits the test piece.
  • the stress wave signal is received through the sensor on the test piece and dynamic strain is used.
  • the instrument collects stress wave signals and synchronizes them to the oscilloscope for observation, and processes them on the computer terminal;
  • Step 5 At the end of the test, observe the stress wave propagation law and the damage characteristics of the specimen, control the hydraulic cylinder to rise through the gradient static load control box, and remove the specimen.
  • test device and method for rock mass subjected to dynamic load impact under two-dimensional gradient stress comprehensively consider the stress environment and dynamic load impact of the rock mass, and design a test device that is more in line with the force of the rock mass, and impact through the incident rod
  • the propagation law and damage characteristics of stress waves under gradient stress and axial stress can be observed, revealing the fracture law of rock mass under gradient stress.
  • Figure 1 is a three-dimensional view of the test device for dynamic load impact of rock mass under two-dimensional gradient stress in the present invention
  • Figure 2 is a three-dimensional assembly diagram of the gradient stress application module, the axial static load application module, and the dynamic load application module in the present invention
  • Figure 3 is a front view of Figure 2;
  • Figure 4 is a top view of the assembly of the specimen and the axial static load application module and the dynamic load application module;
  • the purpose of the present invention is to provide a test device and method for dynamic load impact of rock mass under two-dimensional gradient stress, so as to solve the problems existing in the existing technology.
  • test device for dynamic load impact on rock mass under two-dimensional gradient stress in this embodiment is shown in Figure 1-4, including a gradient stress application module, an axial static load application module, a dynamic load application module and a stress Wave monitoring module;
  • the gradient stress application module includes a base 18, side beam one 91, side beam two 92, cross beam 7, support rod 19, load-bearing steel plate 17, hydraulic cylinder 16, oil distribution pipeline 8 and gradient static load control box 10; base 18
  • the first side beam 91 and the second side beam 92 are fixed on the ground through floor nails. They are respectively arranged on both sides of the top of the base 18.
  • the second side beam 92 is provided with through holes.
  • the cross beam 7 is connected to the first side beam 91 and the second side beam 92.
  • the top of the cross beam 7, and the two ends of the cross beam 7 are respectively connected with the first side beam 91 and the second side beam 92.
  • a load-bearing steel plate 17 is also provided between the first side beam 91 and the second side beam 92 at the bottom of the cross beam 7.
  • the load-bearing steel plate 17 is connected to the base There are support rods 19 between 18.
  • the support rods 19 are arranged in two rows opposite each other. The support rods 19 in each row are evenly distributed horizontally.
  • the top of the load-bearing steel plate 17 is used to place the test piece 5; the bottom of the cross beam 7 is provided with a pair of test pieces.
  • Part 5 is a hydraulic cylinder 16 for vertical loading.
  • the hydraulic cylinder 16 is connected to the gradient static load control box 10 through the oil distribution pipeline 8;
  • the axial static load application module is a piston cylinder 15 arranged at the bottom of the inner side of the side beam 91.
  • the piston cylinder 15 is used to apply an axial static load to the specimen 5;
  • the dynamic load application module includes a bullet 14 and an incident rod 13.
  • the incident rod 13 is arranged outside the side beam 92 and faces the through hole.
  • the outer diameter of the through hole is larger than the outer diameter of the incident rod 13.
  • a flange is installed on the through hole.
  • the disc 11, the flange 11, the specimen 5 and the incident rod 13 are coaxial, and the bullet 14 impacts the incident rod 13 and exerts a dynamic load on the specimen 5;
  • the stress wave monitoring module includes a sensor 12, a super dynamic strain gauge 3, an oscilloscope 2, and a computer terminal 1.
  • the sensor 12 is pasted on the specimen 5.
  • the terminal of the sensor 12 is connected to the super dynamic strain gauge 3 through the connecting wire 4.
  • the super dynamic strain gauge Instrument 3 is connected to oscilloscope 2 and computer terminal 1 in sequence.
  • each round iron plate 20 is connected to a hydraulic cylinder 16. ;
  • Each hydraulic cylinder 16 and its opposite round iron plate 20 and square iron plate 6 are arranged coaxially.
  • square iron plates 6 are also provided on the two side end surfaces of the specimen 5 .
  • this embodiment also provides a test method for dynamic load impact on rock mass under two-dimensional gradient stress, which includes the following steps:
  • Step 1 The materials of the specimen 5 are proportioned according to the similar simulated ratio of the required combined rock mass. After the proportioning is completed, the specimen 5 is obtained.
  • the gradient static load control box 10 is controlled, and the telescopic rod of the hydraulic cylinder 16 is retracted.
  • the specimen 5 is placed on the load-bearing steel plate 17, and several square iron plates 6 are aligned and placed above the specimen 5. A square iron plate 6 is also placed on both sides of the specimen 5;
  • Step 2 Move the incident rod 13 so that the incident rod 13 is in contact with the flange 11.
  • Apply butter evenly on the contact interface between the flange 11 and the incident rod 13 paste the sensor 12 on the specimen 5, and put the sensor 12 Connect to the dynamic strain gauge 3, connect the dynamic strain gauge 3 to the oscilloscope 2, and connect the oscilloscope 2 to the computer terminal 1;
  • Step 3 Control the gradient static load control box 10 to apply linear or nonlinear gradient stress to the specimen 5 along the axial direction of the specimen 5; control the external manual hydraulic pump to extend the piston cylinder 15 to apply an axial load to the specimen 5;
  • Step 4 Fire the bullet 14.
  • the bullet 14 impacts the incident rod 13.
  • the incident rod 13 passes through the flange 11 and hits the specimen 5.
  • the stress wave signal is received through the sensor 12 on the specimen 5, and the dynamic strain gauge 3 is used to collect the stress.
  • the wave signal is synchronized to the oscilloscope 2 for observation and processed at the computer terminal 1;
  • Step 5 At the end of the test, observe the stress wave propagation law and the damage characteristics of the specimen 5, control the hydraulic cylinder 16 to rise through the gradient static load control box 10, and remove the specimen 5.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种二维梯度应力下岩体受动载冲击的试验装置及方法,包括梯度应力施加模组、轴向静载施加模组、动载施加模组和应力波监测模组;梯度应力施加模组包括底座(18)、侧梁一(91)、侧梁二(92)、横梁(7)、支撑杆(19)、承载钢板(17)、液压缸(16)、分油管路(8)和梯度静载控制箱(10);动载施加模组包括子弹(14)、入射杆(13),子弹(14)冲击入射杆(13)对试件(5)施加动载;应力波监测模组包括传感器(12)、超动态应变仪(3)、示波器(2)、电脑终端(1),传感器(12)粘贴于试件(5)上,传感器(12)的接线端子连接超动态应变仪(3),超动态应变仪(3)与示波器(2)、电脑终端(1)依次相连。该装置和方法能够更好的模拟出单一岩体或组合岩体在实际受力环境下的动载冲击情况。

Description

一种二维梯度应力下岩体受动载冲击的试验装置及方法 技术领域
本发明涉及采矿工程技术领域,特别是涉及一种二维梯度应力下岩体受动载冲击的试验装置及方法。
背景技术
深部资源开发是人类必然的选择,随着煤炭资源消耗的加剧,煤炭开采向深部转移,矿压显现更加剧烈。深部岩体高应力下的动力扰动,对巷道及工作面的影响不可忽视。动载的扰动不但能够引起局部应力的增加,降低岩体强度,而且会对扰动范围内的应力分布造成影响,改变原本的应力分布,加速围岩变形失稳,致支护结构体失效,不利于深井巷道的维护,制约了煤炭高效开采。
高地应力与强动载扰动的综合作用是动载巷道失稳破坏的根源,应力波从震源地点传递到冲击发生地点处的传播机理是冲击剧烈程度的重要影响因素,近年来,许多学者针对岩体受动载的试验装置做了许多改进,关于动载作用在岩体中的室内试验已有很多成果,但是,大多数专利仅仅探讨了没有围压作用时单一岩体受动载的作用机理,关于岩体受二维应力场的研究几乎处于空白状态,另外考虑到围岩受力环境为梯度应力,因此,综合考虑梯度高地应力与强动载扰动影响,本领域技术人员亟需设计一种二维梯度应力下岩体受动载冲击的试验装置及方法。
发明内容
本发明的目的是提供一种二维梯度应力下岩体受动载冲击的试验装置及方法,以解决上述现有技术存在的问题,能够更好的模拟出单一岩体或组合岩体在实际受力环境下的动载冲击情况。
为实现上述目的,本发明提供了如下方案:
本发明提供一种二维梯度应力下岩体受动载冲击的试验装置,包括梯度应力施加模组、轴向静载施加模组、动载施加模组和应力波监测模组;
其中,所述梯度应力施加模组包括底座、侧梁一、侧梁二、横梁、支 撑杆、承载钢板、液压缸、分油管路和梯度静载控制箱;所述底座固定于地面上,所述侧梁一和所述侧梁二分别设置于所述底座的顶部两侧,所述侧梁二上开设有通孔,所述横梁连接于所述侧梁一和所述侧梁二的顶端,所述横梁底部的所述侧梁一与所述侧梁二之间还设置有所述承载钢板,所述承载钢板与所述底座之间设置有支撑杆,所述承载钢板的顶部用于放置试件;所述横梁的底部设置有对所述试件进行竖向加载的液压缸,所述液压缸通过所述分油管路连接所述梯度静载控制箱;
所述轴向静载施加模组为设置于所述侧梁一内侧底部的活塞缸,所述活塞缸用于对所述试件施加轴向静载;
所述动载施加模组包括子弹、入射杆,所述入射杆设置于所述侧梁二的外侧并与所述通孔相对,所述通孔的外径大于所述入射杆的外径,所述子弹冲击所述入射杆对所述试件施加动载;
所述应力波监测模组包括传感器、超动态应变仪、示波器、电脑终端,所述传感器粘贴于试件上,所述传感器的接线端子连接所述超动态应变仪,所述超动态应变仪与所述示波器、所述电脑终端依次相连。
优选地,所述底座通过落地钉固定于地面上。
优选地,所述横梁的两端分别与所述侧梁一、所述侧梁二榫接。
优选地,所述通孔上安装有法兰盘,所述法兰盘、所述试件和所述入射杆同轴心。
优选地,所述支撑杆相对设置有两排,每排中的各个所述支撑杆横向均布。
优选地,所述试件的顶部还无间隔的分布有方铁板,各个所述方铁板的顶部均设置有圆铁板,每个所述圆铁板相对连接一个所述液压缸。
优选地,每个所述液压缸与其相对的所述圆铁板和方铁板均同轴心设置。
优选地,所述试件的两个侧端面上还设置有方铁板。
基于上述二维梯度应力下岩体受动载冲击的试验装置,本发明还提供了一种二维梯度应力下岩体受动载冲击的试验方法,包括以下步骤:
步骤一、试件按所需组合岩体的相似模拟配比进行材料配比,配比完成后,得到试件,控制梯度静载控制箱,将液压缸伸缩杆缩回,将所述试件放置在承载钢板上,将若干块方铁板对齐放置在所述试件上方,所述试件两侧端面也均放置一块方铁板;
步骤二、移动入射杆使入射杆与法兰盘接触,为了保证充分接触,在所述法兰盘与所述入射杆接触界面均匀涂抹黄油;在所述试件上粘贴传感器,将所述传感器接至动态应变仪上,将所述动态应变仪连接至示波器上,所述示波器与电脑终端相连;
步骤三、控制梯度静载控制箱,沿试件轴向方向对试件施加线性或非线性梯度应力;控制外部手动液压泵使活塞缸伸出对所述试件施加轴向荷载;
步骤四、发射子弹,所述子弹冲击所述入射杆,所述入射杆穿过所述法兰盘打至所述试件上,通过所述试件上的传感器接收应力波信号,采用动态应变仪采集应力波信号同步至所述示波器进行观察,并在电脑终端进行处理;
步骤五、试验结束,观察应力波传播规律及试件破坏特征,通过所述梯度静载控制箱操纵所述液压缸升起,将所述试件卸下。
本发明相对于现有技术取得了以下有益技术效果:
本发明提供的二维梯度应力下岩体受动载冲击的试验装置及方法,综合考虑岩体所受应力环境与动载冲击,设计了更符合岩体受力的试验装置,通过入射杆冲击试件岩体(煤-岩-煤、煤岩体等),可以观察到梯度应力与轴向应力下应力波的传播规律及破坏特征,揭示了梯度应力下岩体的破断规律。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中二维梯度应力下岩体受动载冲击的试验装置的立体 图;
图2为本发明中梯度应力施加模组、轴向静载施加模组、动载施加模组的立体装配图;
图3为图2的主视图;
图4为试件与轴向静载施加模组、动载施加模组的俯视装配图;
图中:1-电脑终端;2-示波器;3-动态应变仪;4-连接线;5-试件;6-方铁板;7-横梁;8-分油管路;91-侧梁一;92-侧梁二;10-梯度静载控制箱;11-法兰盘;12-传感器;13-入射杆;14-子弹;15-活塞缸;16-液压缸;17-承载钢板;18-底座,19-支撑杆;20-圆铁板。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种二维梯度应力下岩体受动载冲击的试验装置及方法,以解决现有技术存在的问题。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本实施例中的二维梯度应力下岩体受动载冲击的试验装置,如图1-4所示,包括梯度应力施加模组、轴向静载施加模组、动载施加模组和应力波监测模组;
其中,梯度应力施加模组包括底座18、侧梁一91、侧梁二92、横梁7、支撑杆19、承载钢板17、液压缸16、分油管路8和梯度静载控制箱10;底座18通过落地钉固定在地面上,侧梁一91和侧梁二92分别设置于底座18的顶部两侧,侧梁二92上开设有通孔,横梁7连接于侧梁一91和侧梁二92的顶端,且横梁7的两端分别与侧梁一91、侧梁二92榫接,横梁7底部的侧梁一91与侧梁二92之间还设置有承载钢板17,承载钢板17与底座18之间设置有支撑杆19,支撑杆19相对设置有两排, 每排中的各个支撑杆19横向均布,承载钢板17的顶部用于放置试件5;横梁7的底部设置有对试件5进行竖向加载的液压缸16,液压缸16通过分油管路8连接梯度静载控制箱10;
轴向静载施加模组为设置于侧梁一91内侧底部的活塞缸15,活塞缸15用于对试件5施加轴向静载;
动载施加模组包括子弹14和入射杆13,入射杆13设置于侧梁二92的外侧并与通孔相对,通孔的外径大于入射杆13的外径,通孔上安装有法兰盘11,法兰盘11、试件5和入射杆13同轴心,子弹14冲击入射杆13对试件5施加动载;
应力波监测模组包括传感器12、超动态应变仪3、示波器2、电脑终端1,传感器12粘贴于试件5上,传感器12的接线端子通过连接线4连接超动态应变仪3,超动态应变仪3与示波器2、电脑终端1依次相连。
于本具体实施例中,试件5的顶部还无间隔的分布有方铁板6,各个方铁板6的顶部均设置有圆铁板20,每个圆铁板20相对连接一个液压缸16;每个液压缸16与其相对的圆铁板20和方铁板6均同轴心设置。为了放置载荷冲击损坏试件5,在试件5的两个侧端面上也设置有方铁板6。
基于上述二维梯度应力下岩体受动载冲击的试验装置,本实施例还提供了一种二维梯度应力下岩体受动载冲击的试验方法,包括以下步骤:
步骤一、试件5按所需组合岩体的相似模拟配比进行材料配比,配比完成后,得到试件5,控制梯度静载控制箱10,将液压缸16伸缩杆缩回,将试件5放置在承载钢板17上,将若干块方铁板6对齐放置在试件5上方,试件5两侧端面也均放置一块方铁板6;
步骤二、移动入射杆13使入射杆13与法兰盘11接触,为了保证充分接触,在法兰盘11与入射杆13接触界面均匀涂抹黄油;在试件5上粘贴传感器12,将传感器12接至动态应变仪3上,将动态应变仪3连接至示波器2上,示波器2与电脑终端1相连;
步骤三、控制梯度静载控制箱10,沿试件5轴向方向对试件5施加线性或非线性梯度应力;控制外部手动液压泵使活塞缸15伸出对试件5施加轴向荷载;
步骤四、发射子弹14,子弹14冲击入射杆13,入射杆13穿过法兰盘11打至试件5上,通过试件5上的传感器12接收应力波信号,采用动态应变仪3采集应力波信号同步至示波器2进行观察,并在电脑终端1进行处理;
步骤五、试验结束,观察应力波传播规律及试件5破坏特征,通过梯度静载控制箱10操纵液压缸16升起,将试件5卸下。
本发明应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上,本说明书内容不应理解为对本发明的限制。

Claims (9)

  1. 一种二维梯度应力下岩体受动载冲击的试验装置,其特征在于:包括梯度应力施加模组、轴向静载施加模组、动载施加模组和应力波监测模组;
    其中,所述梯度应力施加模组包括底座、侧梁一、侧梁二、横梁、支撑杆、承载钢板、液压缸、分油管路和梯度静载控制箱;所述底座固定于地面上,所述侧梁一和所述侧梁二分别设置于所述底座的顶部两侧,所述侧梁二上开设有通孔,所述横梁连接于所述侧梁一和所述侧梁二的顶端,所述横梁底部的所述侧梁一与所述侧梁二之间还设置有所述承载钢板,所述承载钢板与所述底座之间设置有支撑杆,所述承载钢板的顶部用于放置试件;所述横梁的底部设置有对所述试件进行竖向加载的液压缸,所述液压缸通过所述分油管路连接所述梯度静载控制箱;
    所述轴向静载施加模组为设置于所述侧梁一内侧底部的活塞缸,所述活塞缸用于对所述试件施加轴向静载;
    所述动载施加模组包括子弹和入射杆,所述入射杆设置于所述侧梁二的外侧并与所述通孔相对,所述通孔的外径大于所述入射杆的外径,所述子弹冲击所述入射杆对所述试件施加动载;
    所述应力波监测模组包括传感器、超动态应变仪、示波器、电脑终端,所述传感器粘贴于试件上,所述传感器的接线端子连接所述超动态应变仪,所述超动态应变仪与所述示波器、所述电脑终端依次相连。
  2. 根据权利要求1所述的二维梯度应力下岩体受动载冲击的试验装置,其特征在于:所述底座通过落地钉固定于地面上。
  3. 根据权利要求1所述的二维梯度应力下岩体受动载冲击的试验装置,其特征在于:所述横梁的两端分别与所述侧梁一、所述侧梁二榫接。
  4. 根据权利要求1所述的二维梯度应力下岩体受动载冲击的试验装置,其特征在于:所述通孔上安装有法兰盘,所述法兰盘、所述试件和所述入射杆同轴心。
  5. 根据权利要求1所述的二维梯度应力下岩体受动载冲击的试验装置,其特征在于:所述支撑杆相对设置有两排,每排中的各个所述支撑杆 横向均布。
  6. 根据权利要求1所述的二维梯度应力下岩体受动载冲击的试验装置,其特征在于:所述试件的顶部还无间隔的分布有方铁板,各个所述方铁板的顶部均设置有圆铁板,每个所述圆铁板相对连接一个所述液压缸。
  7. 根据权利要求6所述的二维梯度应力下岩体受动载冲击的试验装置,其特征在于:每个所述液压缸与其相对的所述圆铁板和方铁板均同轴心设置。
  8. 根据权利要求1所述的二维梯度应力下岩体受动载冲击的试验装置,其特征在于:所述试件的两个侧端面上还设置有方铁板。
  9. 一种二维梯度应力下岩体受动载冲击的试验方法,应用权利要求1-8任一项所述的二维梯度应力下岩体受动载冲击的试验装置,其特征在于,包括以下步骤:
    步骤一、试件按所需组合岩体的相似模拟配比进行材料配比,配比完成后,得到试件,控制梯度静载控制箱,将液压缸伸缩杆缩回,将所述试件放置在承载钢板上,将若干块方铁板对齐放置在所述试件上方,所述试件两侧端面也均放置一块方铁板;
    步骤二、移动入射杆使入射杆与法兰盘接触,为了保证充分接触,在所述法兰盘与所述入射杆接触界面均匀涂抹黄油;在所述试件上粘贴传感器,将所述传感器接至动态应变仪上,将所述动态应变仪连接至示波器上,所述示波器与电脑终端相连;
    步骤三、控制梯度静载控制箱,沿试件轴向方向对试件施加线性或非线性梯度应力;控制外部手动液压泵使活塞缸伸出对所述试件施加轴向荷载;
    步骤四、发射子弹,所述子弹冲击所述入射杆,所述入射杆穿过所述法兰盘打至所述试件上,通过所述试件上的传感器接收应力波信号,采用动态应变仪采集应力波信号同步至所述示波器进行观察,并在电脑终端进行处理;
    步骤五、试验结束,观察应力波传播规律及试件破坏特征,通过所述梯度静载控制箱操纵所述液压缸升起,将所述试件卸下。
PCT/CN2022/103530 2022-05-23 2022-07-04 一种二维梯度应力下岩体受动载冲击的试验装置及方法 WO2023226158A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2217339.7A GB2624455A (en) 2022-05-23 2022-07-04 Test device and method for dynamic load impact on rock mass under two-dimensional gradient stress

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210566315.7 2022-05-23
CN202210566315.7A CN114910345B (zh) 2022-05-23 2022-05-23 一种二维梯度应力下岩体受动载冲击的试验装置及方法

Publications (1)

Publication Number Publication Date
WO2023226158A1 true WO2023226158A1 (zh) 2023-11-30

Family

ID=82768095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103530 WO2023226158A1 (zh) 2022-05-23 2022-07-04 一种二维梯度应力下岩体受动载冲击的试验装置及方法

Country Status (2)

Country Link
CN (1) CN114910345B (zh)
WO (1) WO2023226158A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226156A (zh) * 2016-09-21 2016-12-14 中国矿业大学(北京) 一种动静组合加载条件下的煤岩试件夹具
CN109142067A (zh) * 2018-09-29 2019-01-04 江西理工大学 在梯度静应力下类岩材料中应力波传播的实验方法及装置
CN109297823A (zh) * 2018-10-31 2019-02-01 山东科技大学 一种模拟采动岩体渐进破坏的试验装置及试验方法
CN110595918A (zh) * 2019-10-25 2019-12-20 安徽理工大学 一种动静耦合加载锚固体试验装置
CN111175121A (zh) * 2020-01-21 2020-05-19 山东科技大学 巷道围岩钻孔卸压相似模拟试验系统及使用方法
US20200319070A1 (en) * 2018-12-24 2020-10-08 Shandong University Of Science And Technology Rock impact loading-unloading confining pressure test system and usage method therefor
CN113237760A (zh) * 2021-06-16 2021-08-10 安徽理工大学 一种多场耦合真三轴动静载荷岩石试验装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202101910U (zh) * 2011-06-10 2012-01-04 中国矿业大学 三轴冲击动静载组合试验机
CN107314933B (zh) * 2017-06-20 2019-07-05 山东科技大学 动及动静组合载荷下煤岩组合体中煤的力学特性试验方法
CN108827578A (zh) * 2018-04-23 2018-11-16 东北大学 一种双向静动加载的顶板关键块冒落试验装置及方法
CN109490086B (zh) * 2018-12-24 2021-03-02 山东科技大学 一种巷道围岩支护强度试验装置及强度确定方法
CN113686657B (zh) * 2021-10-12 2024-05-10 辽宁工程技术大学 一种岩煤结构静动组合加载试验装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226156A (zh) * 2016-09-21 2016-12-14 中国矿业大学(北京) 一种动静组合加载条件下的煤岩试件夹具
CN109142067A (zh) * 2018-09-29 2019-01-04 江西理工大学 在梯度静应力下类岩材料中应力波传播的实验方法及装置
CN109297823A (zh) * 2018-10-31 2019-02-01 山东科技大学 一种模拟采动岩体渐进破坏的试验装置及试验方法
US20200319070A1 (en) * 2018-12-24 2020-10-08 Shandong University Of Science And Technology Rock impact loading-unloading confining pressure test system and usage method therefor
CN110595918A (zh) * 2019-10-25 2019-12-20 安徽理工大学 一种动静耦合加载锚固体试验装置
CN111175121A (zh) * 2020-01-21 2020-05-19 山东科技大学 巷道围岩钻孔卸压相似模拟试验系统及使用方法
CN113237760A (zh) * 2021-06-16 2021-08-10 安徽理工大学 一种多场耦合真三轴动静载荷岩石试验装置

Also Published As

Publication number Publication date
CN114910345A (zh) 2022-08-16
CN114910345B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
US11280762B2 (en) Acoustic emission test equipment and analysis technology for rock breaking
CN105865907B (zh) 一种用于动力扰动型岩爆模拟的真三轴试验夹具
CN103471796B (zh) 隧道现浇砼衬砌抗震性能测试方法
CN113504131B (zh) 一种测试岩石不同法向应力下ii型动态断裂韧度的测试系统及试验方法
CN101769837B (zh) 一种霍普金森压杆动态压缩实验方法
WO2021008010A1 (zh) 一种动静组合电磁加载霍普金森岩石杆波传播测试装置
CN111141607A (zh) 一种桩-土试验用自平衡式多加载路径单向剪切箱
WO2023226158A1 (zh) 一种二维梯度应力下岩体受动载冲击的试验装置及方法
KR20180035427A (ko) 중앙 집중식 와이어로프를 이용한 말뚝 정재하 시험 장치
KR20130045312A (ko) 스프링 행거의 골조 지지형 성능 시험 장치 및 방법
CN203465136U (zh) 一种组接式真三轴地下洞室模拟试验装置
CN110987626A (zh) 一种考虑托盘影响的锚杆拉拔试验装置及方法
CN109060512B (zh) 一种装配叠合式管廊拟静力加载试验装置及试验方法
CN111678807A (zh) 预加正应力条件下岩石动态剪切强度的装置及方法
WO2021012459A1 (zh) 双轴四向动静组合电磁加载霍普金森平板冲击加载装置
GB2624455A (en) Test device and method for dynamic load impact on rock mass under two-dimensional gradient stress
CN103604692A (zh) 一种组接式真三轴地下洞室模拟试验装置
CN107806950B (zh) 一种大推力矢量立式测试装置结构
CN115541390A (zh) 一种大型复杂结构件双轴拉与压弯曲复合试验系统及方法
CN206095771U (zh) 含裂纹缺陷构件的多轴拉压加载装置
WO2023226157A1 (zh) 一种梯度应力下锚固体试件受动载冲击的装置及试验方法
CN110595901B (zh) 一种新型桁架节点自平衡试验装置及其试验方法
CN211013827U (zh) 一种实现剪切作用的锚杆拉拔试验装置
CN108225905A (zh) 一种真三轴采动煤岩体动力显现实验的声发射监测单元
CN207964499U (zh) 一种自动升降的多功能反力检定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202217339

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220704

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943349

Country of ref document: EP

Kind code of ref document: A1