WO2023226035A1 - 电子雾化装置、储存介质、计算机设备及其自动供液方法 - Google Patents

电子雾化装置、储存介质、计算机设备及其自动供液方法 Download PDF

Info

Publication number
WO2023226035A1
WO2023226035A1 PCT/CN2022/095756 CN2022095756W WO2023226035A1 WO 2023226035 A1 WO2023226035 A1 WO 2023226035A1 CN 2022095756 W CN2022095756 W CN 2022095756W WO 2023226035 A1 WO2023226035 A1 WO 2023226035A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid supply
liquid
pressure value
supply chamber
chamber
Prior art date
Application number
PCT/CN2022/095756
Other languages
English (en)
French (fr)
Inventor
周瑞龙
谢发明
赵沛彪
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2022/095756 priority Critical patent/WO2023226035A1/zh
Publication of WO2023226035A1 publication Critical patent/WO2023226035A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors

Definitions

  • the present application relates to the field of atomization technology, and in particular to an electronic atomization device, a storage medium, a computer device and an automatic liquid supply method thereof.
  • Electronic atomization devices are used to atomize aerosol-generating substrates. For example, a combined liquid substrate containing flavors and fragrances is atomized in a heated/non-heated manner to form aerosols, which can be used in different fields.
  • This application provides an electronic atomization device, storage medium, computer equipment and an automatic liquid supply method, which can solve the problems of liquid leakage and uneven liquid supply in the electronic atomization device.
  • the first technical solution provided by this application is to provide an electronic atomization device.
  • the electronic atomization device includes a liquid supply chamber, a liquid storage chamber, a sensing hole, a first sensing element, a liquid supply chamber, and a liquid supply chamber.
  • the first sensing element detects the current pressure value in the liquid supply chamber through the sensing hole
  • the liquid supply mechanism is used to drive the liquid in the liquid storage chamber to the liquid supply chamber Liquid supply
  • the control device is electrically connected to the liquid supply mechanism and the first sensing element; wherein the control device controls the liquid supply mechanism based on the pressure difference between the current pressure value and the preset pressure value, so as to The liquid in the liquid storage chamber is driven to supply liquid to the liquid supply chamber.
  • the first sensing element is an air pressure sensor
  • the air pressure sensor is covered at one end of the sensing hole away from the liquid supply chamber, and the other end of the sensing hole is covered by the liquid in the liquid supply chamber. Liquid seal to form an air column within the sensing hole.
  • the diameter of the cross section of the sensing hole along the aperture direction is less than or equal to 5.0 mm.
  • the cross section of the sensing hole along the aperture direction is a circular hole, and the diameter of the circular hole is greater than or equal to 0.3 mm and less than or equal to 5.0 mm.
  • the sensing hole is provided on the side wall of the liquid supply chamber, and the length of the sensing hole is greater than or equal to 1.0 mm and less than or equal to 50 mm.
  • the electronic atomization device further includes a second sensing element, the second sensing element is electrically connected to the control device, the second sensing element is used to detect atmospheric pressure, and the atmospheric pressure is used as the preset pressure value.
  • the first sensing element is a hydraulic sensor, and the liquid in the liquid supply chamber contacts the hydraulic sensor through the sensing hole.
  • the electronic atomization device further includes an installation cavity, the control device is arranged in the installation cavity, the end of the sensing hole away from the liquid supply cavity is also connected to the installation cavity, and the first sensing element seal Cover the end of the sensing hole away from the liquid supply chamber; or the sensing hole is provided on the side wall of the liquid supply chamber.
  • the electronic atomization device includes a suction nozzle assembly, an atomization assembly and a housing; the atomization assembly is connected to the suction nozzle assembly, and the suction nozzle assembly and the atomization assembly cooperate to define the liquid supply cavity, the atomization assembly is used to suck liquid from the liquid supply cavity for atomization; the housing is connected to the suction nozzle assembly, and the housing is provided with the installation cavity; wherein, the liquid storage cavity is provided with on the suction nozzle assembly and/or the housing; the sensing hole includes a first hole section provided on the suction nozzle assembly and a second hole section provided on the housing, the third hole section A sensing element covers one end of the second hole section facing the installation cavity; or the sensing hole is provided on the suction nozzle assembly, and the first sensing element is connected to the suction nozzle assembly.
  • the first sensing element covers one end of the second hole section facing the installation cavity, and the first sensing element is disposed on the control device.
  • the suction nozzle assembly includes a suction nozzle and a base; the atomization assembly is connected to the suction nozzle, and the side wall of the suction nozzle is provided with at least part of the induction hole; the base is connected to the suction nozzle, And the liquid supply chamber is defined with the suction nozzle and the atomization component; the base or the suction nozzle is connected to the housing; wherein the base is configured to be between the suction nozzle component and the When the housing is connected, the liquid storage chamber and the liquid supply chamber are connected, and when the suction nozzle assembly is separated from the housing, the liquid supply chamber is closed.
  • the suction nozzle includes a suction nozzle holder and a heating base, the suction nozzle holder is provided with an atomization channel, and the atomization end of the atomization component is arranged toward the atomization channel; the heating base and the suction nozzle are The mouth seat is connected to clamp the atomization component; wherein, the heating seat and the housing are also provided with a detection channel, the detection channel is connected to the atomization channel, and the installation cavity is also provided with an airflow sensor component, and the airflow sensing component is connected to one end of the detection channel away from the atomization channel.
  • the base includes an end cover and a closing member; the end cover is provided with a liquid hole communicating with the liquid supply chamber and connected to the suction nozzle; the closing member is provided on the end cover and corresponds to A closing slit is provided at the position of the liquid hole.
  • the closing slit closes the liquid hole when the suction nozzle assembly is separated from the housing, and allows communication when the suction nozzle assembly is connected to the housing.
  • one end of the housing facing the nozzle assembly is provided with a liquid storage chamber; or the electronic atomization device further includes a liquid bottle, the liquid bottle is arranged on the housing, and the liquid bottle is provided with The liquid storage chamber.
  • the liquid supply mechanism includes a piston and a driving member; the piston is movably arranged in the liquid storage chamber; the output end of the driving member is connected to the piston and is electrically connected to the control device for The piston is driven to move along the side wall of the liquid storage chamber to supply liquid to the liquid supply chamber.
  • the second technical solution provided by this application is to provide an automatic liquid supply method for use in electronic atomization devices, including: detecting the current pressure value in the liquid supply chamber; based on the current pressure value The difference from the preset pressure value controls the operation of the liquid supply mechanism to drive the liquid in the liquid storage chamber to supply liquid to the liquid supply chamber.
  • detecting the current pressure value in the liquid supply chamber includes: detecting the current pressure value in the liquid supply chamber in response to a suction trigger signal; wherein the suction trigger signal is caused by the user suctioning the electronic atomization device triggered when.
  • the pressure value of the liquid supply chamber before atomization is detected as the preset pressure value.
  • the external atmospheric pressure value is detected as the preset pressure value.
  • the detection of the current pressure value in the liquid supply chamber previously included: in response to the pressure difference between the pressure value of the liquid supply chamber before atomization and the preset pressure value being in a non-preset range, controlling the The liquid supply mechanism is activated to drive the liquid in the liquid supply chamber to supply liquid to the liquid supply chamber, or to drive the liquid in the liquid supply chamber to conduct liquid to the liquid storage chamber; in response to the liquid supply chamber When the pressure difference between the pressure value before atomization and the preset pressure value is within the preset range, the liquid supply mechanism is controlled to be shut down.
  • controlling the operation of the liquid supply mechanism based on the difference between the current pressure value and the preset pressure value includes: in response to the difference reaching a preset first limit, controlling the start of the liquid supply mechanism to Driving the liquid in the liquid storage chamber to supply liquid to the liquid supply chamber; in response to the difference reaching a preset second limit, controlling the liquid supply mechanism to shut down to stop driving the liquid storage chamber
  • the liquid in the liquid supply chamber supplies liquid to the liquid supply chamber; wherein the first limit value is smaller than the second limit value.
  • the number of times the difference reaches the first limit is N times
  • the number of times the difference reaches the second limit is M times
  • N first limit values The liquid supply mechanism is controlled to start N times
  • the M second limit values control the liquid supply mechanism to be shut down M times.
  • controlling the operation of the liquid supply mechanism based on the difference between the current pressure value and the preset pressure value includes: in response to the difference reaching a preset first limit, controlling the startup of the liquid supply mechanism, and Keep the liquid supply mechanism running for a preset period of time.
  • the current pressure value is the air pressure value or hydraulic pressure value in the liquid supply chamber.
  • the three technical solutions adopted by this application are: providing a storage medium, the storage medium stores program files, and the program files can be executed to implement any of the above methods.
  • the four technical solutions adopted in this application are: providing a computer device, including a processor, a memory and a control circuit, the processor is coupled to the memory and the control circuit respectively, the processing The device controls itself, the memory, and the control circuit during operation to implement the method described in any one of the even numbers.
  • the electronic atomization device includes a liquid supply chamber, a liquid storage chamber, a sensing element, a liquid supply mechanism, and an electronic atomizer as claimed in claim 26
  • the computer device is electrically connected to the sensing element and the liquid supply mechanism, and the sensing element is used to detect the current pressure value in the liquid supply chamber.
  • This application provides an electronic atomization device, a storage medium, a computer device and an automatic liquid supply method thereof.
  • the electronic atomization device includes a liquid supply chamber, a liquid storage chamber and a sensing hole. , the first sensing element, the liquid supply mechanism and the control device.
  • the first sensing element detects the current pressure value in the liquid supply chamber through the sensing hole.
  • the liquid supply mechanism is used to drive the liquid in the liquid storage chamber to supply liquid to the liquid supply chamber, and control The device is electrically connected to the liquid supply mechanism and the first sensing element; wherein, the control device controls the liquid supply mechanism based on the difference between the current pressure value and the preset pressure value to drive the liquid in the liquid storage chamber to supply liquid to the liquid supply chamber, thereby ensuring The pressure in the liquid supply chamber is always maintained within the preset pressure range, which solves the problem that the traditional single liquid chamber is easily affected by the external atmospheric pressure, causing liquid leakage and uneven liquid supply; and the liquid supply chamber is supplied to the liquid supply chamber through the liquid storage chamber. Compared with the traditional single-liquid chamber liquid supply, it achieves a ready-to-use liquid supply effect and can effectively control the liquid supply.
  • Figure 1 is a schematic structural diagram of an embodiment of the electronic atomization device provided by the present application.
  • Figure 2 is a cross-sectional view of the electronic atomization device shown in Figure 1 along line A-A;
  • Figure 3 is a cross-sectional view of another embodiment of the electronic atomization device provided by the present application.
  • Figure 4 is a cross-sectional view of the electronic atomization device shown in Figure 1 along line B-B;
  • Figure 5 is an enlarged structural view of area A shown in Figure 2;
  • Figure 6 is an exploded view of the structure of the nozzle assembly in the electronic atomizer device shown in Figure 1;
  • Figure 7 is an exploded view of the structure of the base shown in Figure 6;
  • Figure 8 is a cross-sectional view of another embodiment of the electronic atomization device provided by the present application.
  • Figure 9 is a schematic structural diagram of an embodiment of the connection between the liquid supply mechanism and the oil bottle provided by the present application.
  • Figure 10 is a schematic flow chart of an embodiment of the automatic liquid supply method provided by this application.
  • FIG 11 is a schematic flow chart of another embodiment of the automatic liquid supply method provided by this application.
  • Figure 12 is a schematic flow chart of an embodiment of step S2 shown in Figure 10;
  • Figure 13 is a schematic curve diagram of an embodiment of the difference between the current pressure value and the preset pressure value in the liquid supply chamber during liquid supply provided by the present application;
  • Figure 14 is a module schematic diagram of an embodiment of the computer equipment provided by this application.
  • Figure 15 is a schematic module diagram of an embodiment of the storage medium provided by this application.
  • first”, “second” and “third” in this application are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise clearly and specifically limited. All directional indications (such as up, down, left, right, front, back%) in the embodiments of this application are only used to explain the relative positional relationship between components in a specific posture (as shown in the drawings). , sports conditions, etc., if the specific posture changes, the directional indication will also change accordingly.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • Electronic atomization devices are used to atomize aerosol to generate substrates, which can be used in different fields, such as medical atomization, beauty atomization, recreational smoking and other fields.
  • the electronic atomization device is usually provided with a liquid storage space and an atomization component.
  • the liquid storage space stores an aerosol-generating matrix.
  • the aerosol-generating matrix can be a medicinal liquid, a nutrient solution, or other combined liquid matrices with special aromas, etc.
  • the atomization component is used to atomize the aerosol-generating matrix to generate aerosol when the electronic atomization device is working.
  • the atomization method of the atomization component can be heated atomization or non-heated atomization, where the heated atomization includes a resistor.
  • Non-heated atomization includes ultrasonic atomization, pressure atomization, mechanical vibration atomization and compressed air atomization, etc.
  • traditional single-liquid chamber electronic atomization devices that is, there is only one liquid storage space in the electronic atomization device.
  • the liquid storage space is easily affected by the content of the aerosol-generating matrix, resulting in uneven liquid supply to the atomization component.
  • the aerosol-generating matrix in the liquid storage space is prone to leakage.
  • Figure 1 is a schematic structural diagram of an embodiment of the electronic atomization device provided by the present application
  • Figure 2 is a diagram 1 is a cross-sectional view of the electronic atomization device along line A-A
  • FIG. 3 is a cross-sectional view of another embodiment of the electronic atomization device provided by the present application.
  • the electronic atomization device 100 provided by this application includes a liquid supply chamber 11, a liquid storage chamber 12, a sensing hole 13, a first sensing element 14, a liquid supply mechanism 20 and a control device 30.
  • the first sensing element 14 detects the current pressure value P1 in the liquid supply chamber 11 through the sensing hole 13.
  • the liquid supply mechanism 20 is used to drive the liquid in the liquid storage chamber 12 to supply liquid to the liquid supply chamber 11.
  • the control device 30 is electrically connected The liquid supply mechanism 20 and the first sensing element 14; wherein, the control device 30 controls the liquid supply mechanism 20 based on the difference D1 between the current pressure value P1 and the preset pressure value P0 to drive the liquid in the liquid storage chamber 12 to the liquid supply chamber. 11 Supply liquid.
  • the pressure value in the liquid supply chamber 11 will also decrease at the same time.
  • the first sensing element 14 detects the current pressure value P1 of the liquid supply chamber 11 through the sensing hole 13.
  • the control device 30 compares the current pressure value P1 detected by the first sensing element 14 with the preset pressure value P0. If the current pressure value The difference D1 between P1 and the preset pressure value P0 is not within the preset range.
  • the control device 30 controls the liquid supply mechanism 20 to drive the liquid in the liquid storage chamber 12 to supply liquid to the liquid supply chamber 11, thereby ensuring that the liquid in the liquid supply chamber 11
  • the pressure is always maintained within the preset pressure range, achieving a ready-to-use liquid supply effect, effectively controlling the liquid supply to the atomization component 10, ensuring uniform liquid supply, and the liquid supply chamber 11 and the liquid storage chamber 12 are designed with dual liquid chambers.
  • the control device 30 controls the liquid supply mechanism 20 to drive the liquid in the liquid storage chamber 12 to supply liquid to the liquid supply chamber 11 based on the difference D1 between the current pressure value P1 in the liquid supply chamber 11 and the preset pressure value P0, which solves the problem of the traditional single
  • the liquid chamber is easily affected by the external atmospheric pressure, causing liquid leakage and uneven liquid supply.
  • the first sensing element 14 may be an air pressure sensor.
  • the air pressure sensor is capped at one end of the sensing hole 13 away from the liquid supply chamber 11 , and the other end of the sensing hole 13 is liquid-sealed by the aerosol-generating matrix in the liquid supply chamber 11 to form an air column in the sensing hole 13 .
  • the air pressure sensor and the liquid supply chamber 11 are connected through the sensing hole 13, and when the length and diameter of the sensing hole 13 are appropriate, an air column will be formed in the sensing hole 13 to isolate the air pressure sensor from the liquid supply chamber 11.
  • the pressure in the chamber 11 changes, for example, when the sol-generating matrix in the liquid supply chamber 11 increases or decreases, or when the external atmospheric pressure changes, the pressure of the air column in this section will change accordingly, and the air pressure sensor will respond to changes in the air.
  • the sensitivity is better than the sensitivity to liquid, and can improve the detection sensitivity of air pressure changes in the liquid supply chamber 11 to achieve accurate liquid supply.
  • the cross-section of the sensing hole 13 may be circular, elliptical, rectangular, etc., and the cross-sectional size of the sensing hole 13 along the diameter direction is less than or equal to 5.0 mm. Specifically, if the aperture of the sensing hole 13 is too small, the air in the air column will easily dissolve into the aerosol generating matrix, so that the air column cannot be formed. If the aperture of the sensing hole 13 is too large, the air in the air column will easily squeeze into the liquid supply chamber 11 and the air column will not be formed. Only when the aperture and length of the sensing hole 13 are appropriate to achieve balance, an air column will be formed, and the length of the air column will change with the change of the pressure in the liquid supply chamber 11. The air pressure sensor detects the supply through the pressure change of the air column. The pressure in the liquid chamber 11.
  • the cross section of the sensing hole 13 along the diameter direction is a circular hole, and the diameter of the circular hole is greater than or equal to 0.3 mm and less than or equal to 5.0 mm.
  • the diameter of a circular hole is 0.3mm, 2.0mm, 4.0mm or 5.0mm.
  • the sensing hole 13 is provided on the side wall of the liquid supply chamber 11, and the length of the sensing hole 13 is greater than or equal to 1.0 mm and less than Equal to 50mm. Specifically, it can be set accordingly according to the aperture of the sensing hole 13, so that the diameter and length of the sensing hole 13 are appropriate to form an air column.
  • the sensing hole 13 can also be arranged at any position on the electronic atomization device, as long as one end of the sensing hole 13 is covered by the first sensing element 14 and the other end is sealed by the aerosol-generating matrix liquid in the liquid supply chamber 11 . Can.
  • the first sensing element 14 can also be a hydraulic sensor, and the aerosol-generating matrix in the liquid chamber 11 contacts the hydraulic sensor through the sensing hole 13 .
  • the aperture, length and location of the sensing hole 13 are not limited, as long as the aerosol-generating matrix in the liquid supply chamber 11 can directly contact the hydraulic sensor through the sensing hole 13 and avoid gas leakage. It is sufficient that the sol-generating matrix leaks from the sensing hole 13 .
  • the hydraulic sensor detects pressure by directly contacting the liquid
  • the first sensing element 14 is a hydraulic sensor.
  • the sensing hole 13 does not need to be provided in the electronic atomization device, and the hydraulic sensor is directly provided. In the liquid supply chamber 11, the process of drilling a sensing hole for the electronic atomization device is omitted, thereby further preventing liquid leakage.
  • the electronic atomization device 100 is also provided with an airflow sensing element 53.
  • the airflow sensing element 53 can be a frequency silicon microphone or a The microphone is used to detect airflow changes in the electronic atomization device 100.
  • the airflow sensing component 53 is electrically connected to the control device 30.
  • the control device 30 detects changes in the airflow in the electronic atomization device 100 based on the airflow sensing component 53 and determines the user.
  • the suction trigger signal is triggered, the atomization component 10 is controlled to atomize the aerosol to generate the matrix, and the first sensing element 14 is controlled to detect the current pressure value P1 in the liquid supply chamber 11 .
  • the preset pressure value P0 may be that when the user just triggers the suction trigger signal, the first sensing element 14 detects the current pressure value P1 of the liquid supply chamber 11 as the preset pressure value P0. Or the preset pressure value P0 is when the first sensing element 14 detects the pressure value in the liquid supply chamber 11 as the preset pressure value P0 when the electronic atomization device 100 is idle, that is, before the electronic atomization device atomizes. Or the preset pressure value P0 is a value preset in the control device 30 . Or the preset pressure value P0 is based on the real-time detected external atmospheric pressure value P2 as the preset pressure value P0.
  • the upper surface of the atomization component 10 is the atomization surface, and the atomization component 10 has micropores for introducing the aerosol-generating substrate in the liquid supply chamber 11 into the atomization surface.
  • the lower surface of the atomization component 10 is in contact with the liquid supply chamber 11, and the upper surface of the atomization component 10 is connected to the outside world.
  • the pressure difference between the liquid supply chamber 11 and the upper surface of the atomization component 10 will cause the aerosol-generating matrix to pass through the mist.
  • the micropores in the electronic atomization component 10 reach the upper surface, so that the pressure of the liquid supply chamber 11 decreases, and finally the liquid supply chamber 11 reaches a balance with the external atmospheric pressure value P2.
  • the pressure in the liquid supply chamber 11 Since during the idle stage of the electronic atomization device 100, the pressure in the liquid supply chamber 11 The pressure changes over time and will gradually become balanced with the external atmospheric pressure value P2. Therefore, the current pressure value P1 of the liquid supply chamber 11 detected by the first sensing element 14 when the user just triggers the suction trigger signal is used as the preset pressure value. P0, or the first sensing element 14 detects the pressure value of the liquid supply chamber 11 before atomization as the preset pressure value P0, which is equivalent to using the external atmospheric pressure value P2 as the preset pressure value P0.
  • the aerosol-generating matrix in the liquid supply chamber 11 will be squeezed, and the aerosol-generating matrix will pass through the micron of the atomization component 10 The hole reaches the upper surface of the heating element and leakage occurs. If the pressure value in the liquid supply chamber 11 is less than the external atmospheric pressure value P2, the aerosol-generating matrix in the micropores of the atomization component 10 will flow back to the liquid supply chamber 11, resulting in insufficient liquid supply to the atomization component 10, causing The atomizer component 10 burns dry and produces toxic and harmful gases.
  • the electronic atomization device 100 further includes a second sensing element (not shown).
  • the second sensing element is electrically connected to the control device 30.
  • the second sensing element is used to detect the external atmospheric pressure value P2 to detect the external atmospheric pressure value P2.
  • the actual external atmospheric pressure value P2 is used as the preset pressure value P0.
  • the second sensing element is not provided in the electronic atomization device 100, and the first sensing element 14 is also used to detect the external atmospheric pressure value P2.
  • the first sensing element 14 detects the pressure value in the liquid supply chamber 11 and the external atmospheric pressure value P2, and at the same time outputs the pressure value in the liquid supply chamber 11 and the external pressure value P2 to the control device 30
  • the atmospheric pressure value P2, or the control device 30 directly outputs the pressure difference D2 between the pressure value in the liquid supply chamber 11 and the external atmospheric pressure value P2.
  • the electronic atomization device 100 provided in this embodiment has a lower cost.
  • the control device 30 can directly use the current pressure value P1 in the liquid supply chamber 11 and the external atmospheric pressure value P2 (preset The difference D1 of the pressure value P0) is controlled to make the control more accurate. Under the condition of only detecting the current pressure value P1 in the liquid supply chamber 11, it is necessary to make the current pressure value P1 in the liquid supply chamber 11 and the external atmospheric pressure value When P2 reaches equilibrium, record the pressure value in the liquid supply chamber 11 as the preset pressure value P0. There is a risk of misjudgment; secondly, the external atmospheric pressure value P2 will change under different conditions such as temperature and altitude.
  • the liquid supply mechanism is used to control the pressure in the liquid supply chamber 11, so that the pressure value in the liquid supply chamber 11 is consistent with the outside world.
  • the atmospheric pressure value P2 reaches a new balance, achieving the effect of preventing liquid leakage and insufficient liquid supply.
  • the control device 30 compares the detected pressure value in the liquid supply chamber 11 with the detected external atmospheric pressure value P2, and responds to the pressure value of the liquid supply chamber 11 before atomization and the external atmospheric pressure.
  • the pressure difference D2 of the value P2 is in a non-preset range. For example, the user moves the electronic atomization device 100 from a high altitude to a low altitude, causing the pressure value in the liquid supply chamber 11 to be smaller than the outside atmospheric pressure value P2 and the pressure difference D2 is not in the preset range.
  • the control device 30 controls the operation of the liquid supply mechanism 20 to drive the aerosol-generating matrix in the liquid storage chamber 12 to supply liquid to the liquid supply chamber 11, so that the pressure value in the liquid supply chamber 11 is consistent with the external atmospheric pressure value. P2 balance.
  • the control device 30 controls the liquid supply mechanism 20 to shut down in response to the pressure difference D2 between the pressure value of the liquid supply chamber 11 before atomization and the preset pressure value being within a preset range.
  • control device 30 compares the detected pressure value in the liquid supply chamber 11 with the detected external atmospheric pressure value P2, and responds to the pressure value of the liquid supply chamber 11 before atomization and the external atmospheric pressure value.
  • the pressure difference D2 of the pressure value P2 is in a non-preset range. For example, the user moves the electronic atomization device 100 from a low altitude to a high altitude, causing the pressure value in the liquid supply chamber 11 to be greater than the external atmospheric pressure value P2 and the pressure difference D2 is not there.
  • the control device 30 controls the operation of the liquid supply mechanism 20 to drive the aerosol-generating matrix in the liquid supply chamber 11 to conduct liquid to the liquid storage chamber 12, so that the pressure value in the liquid supply chamber 11 is consistent with the external atmospheric pressure. Value P2 balance.
  • the control device 30 controls the liquid supply mechanism 20 to shut down in response to the pressure difference D2 between the pressure value of the liquid supply chamber 11 before atomization and the preset pressure value being within a preset range.
  • the electronic atomization device 100 also includes an installation cavity 51.
  • the first sensing element 14 and the control device 30 are arranged in the installation cavity 51.
  • One end of the sensing hole 13 is connected to the liquid supply chamber 11.
  • the sensing hole 13 is connected to the liquid supply chamber 11.
  • the end of the sensing hole 13 away from the liquid supply chamber 11 is also connected to the installation cavity 51 .
  • the first sensing element 14 is capped at the end of the sensing hole 13 away from the liquid supply chamber 11 .
  • the first sensing element 14 can be disposed on the side wall of the installation cavity 51 and is electrically connected to the control device 30 in the installation cavity 51 through wires.
  • the first sensing element 14 and the control device 30 can also be integrated into one body, thereby reducing wiring and further reducing problems such as short circuits and open circuits caused by circuit connections, making the electrical connection between the first sensing element 14 and the control device 30 safe and reliable.
  • the electronic atomization device 100 includes a nozzle assembly 40, an atomization assembly 10 and a housing 50.
  • the atomization assembly 10 is connected to the nozzle assembly 40.
  • the nozzle assembly 40 and the atomization assembly 10 cooperate to define a liquid supply chamber 11; the atomization assembly 10 is used to suck liquid from the liquid supply chamber 11 and perform heated atomization or non-heated atomization; the housing 50 is connected to the suction nozzle assembly 40, and the housing 50 is provided with an installation cavity 51.
  • the housing 50 and the suction nozzle assembly 40 can be integrally formed or detachably connected.
  • the liquid storage chamber 12 can be provided on the suction nozzle assembly 40 or on the housing 50 .
  • the liquid storage chamber 12 can also be partially provided on the suction nozzle assembly 40 , and the other part is provided on the housing 50, and the details can be selected according to actual needs.
  • the first sensing element 14 is provided on the housing 50 , and the sensing hole 13 includes a first hole section 131 provided on the nozzle assembly 40 and a second hole provided on the housing 50 Section 132 , the first sensing element 14 is covered at one end of the second hole section 132 facing the installation cavity 51 .
  • the housing 50 and the nozzle assembly 40 are designed to be integrally formed. This avoids the occurrence of liquid leakage caused by a gap between the housing 50 and the suction nozzle assembly 40 .
  • the housing 50 and the suction nozzle assembly 40 can be detachably connected. Since the first sensing element 14 is provided in the housing 50 and is separated from the suction nozzle assembly 40, it is easy to replace the suction nozzle. When assembling 40, the first sensing element 14 does not need to be replaced, and the first sensing element 14 can be reused, thereby reducing costs.
  • the suction nozzle assembly 40 includes a suction nozzle 41 and a base 42 .
  • the suction nozzle 41 , the atomizing assembly 10 and the base 42 define a liquid supply chamber 11 .
  • the atomization assembly 10 is connected to the suction nozzle 41 and is clamped by the suction nozzle 41.
  • the suction nozzle 41 is also provided with an atomization channel 4110 for exporting the aerosol, and the atomization surface of the atomization assembly 10 faces the atomization channel 4110.
  • the base 42 is provided at an end of the suction nozzle 41 close to the housing 50 .
  • the suction nozzle 41 and the base 42 are also used to connect with the housing 50 .
  • the suction nozzle 41 constitutes the side wall of the liquid supply chamber 11
  • the base 42 constitutes the bottom wall of the liquid supply chamber 11
  • the atomization assembly 10 constitutes the top wall of the liquid supply chamber 11 and is used to atomize the air in the liquid supply chamber 11.
  • the sol generates a matrix.
  • the sensing hole 13 is completely disposed on the side wall of the suction nozzle 41 .
  • the sensing hole 13 includes a first hole section 131 located on the suction nozzle 41 and a second hole section 132 located on the housing.
  • the first hole section 131 One end is connected to the liquid supply chamber 11
  • the other end is connected to the second hole section 132 formed on the housing 50 .
  • FIG. 6 is an exploded view of the structure of the nozzle assembly in the electronic atomization device shown in FIG. 1 .
  • the first sensing element 14 is disposed on the side wall of the liquid supply chamber 11.
  • the outer surface of the side wall of the liquid supply chamber 11 is also provided with a mounting slot 4120.
  • the first sensing element 14 is disposed in the mounting slot 4120.
  • One end of the sensing hole 13 is connected to The liquid supply chamber 11 is connected, and the other end is located on the bottom wall of the installation groove 4120 and is covered by the first sensing element 14 .
  • arranging the first sensing element 14 in the installation groove 4120 can, on the one hand, prevent external force from acting on the first sensing element 14, causing the first sensing element 14 to fall off or be damaged; on the other hand, the electronic atomization device 100 can have a beautiful appearance. .
  • the base 42 and the housing 50 are both provided with connecting structures, and the base 42 and the housing 50 are connected through the connecting structures.
  • the base 42 is provided with a protrusion at one end close to the housing 50
  • the housing 50 is provided with a groove at one end close to the base 42 .
  • the nozzle assembly 40 and the housing 50 are snap-connected through the protrusions and the grooves.
  • the base 42 is provided with positive threads at one end close to the housing 50
  • the housing 50 is provided with reverse threads at one end close to the base 42 .
  • the nozzle assembly 40 is connected to the housing 50 through threads.
  • both the suction nozzle 41 and the housing 50 are provided with a connection structure, and the base 42 is not provided with a connection structure. The specific choice can be made according to the actual situation.
  • the liquid storage chamber 12 is provided on the housing 50 , and the base 42 is configured to communicate with the liquid storage chamber 12 and the liquid supply chamber 11 when the suction nozzle assembly 40 is connected to the housing 50 .
  • the liquid supply chamber 11 is closed.
  • the liquid storage chamber 12 is disposed in the installation chamber 51, in order to prevent the separation of the housing 50 and the nozzle assembly 40 from causing the aerosol-generating matrix in the liquid supply chamber 11 to flow out of the liquid supply chamber 11, for example, in the nozzle assembly 40
  • the liquid storage chamber 12 is connected to the liquid supply chamber 11 through the base 42 , thereby not affecting the liquid supply mechanism 20 driving the liquid in the liquid storage chamber 12 to supply liquid to the liquid supply chamber 11 .
  • the base closes the liquid supply chamber 11 to avoid the generation of aerosol in the liquid supply chamber 11
  • the substrate flows out of the liquid supply chamber 11, causing waste and hygiene problems.
  • the base 42 is equivalent to a one-way valve, and the aerosol-generating substrate can only flow into the liquid supply chamber 11 but cannot flow out.
  • FIG. 7 is an exploded view of the structure of the base shown in FIG. 6 .
  • the base 42 includes an end cover 421 and a closing member 422.
  • the end cover 421 is provided with a liquid hole 4210 that communicates with the liquid supply chamber 11 and is connected to the suction nozzle 41; the closing member 422 is provided on the end cover 421 and corresponds to the liquid hole 4210.
  • a closing slit 4220 is provided at the position. The closing slit 4220 closes the liquid hole 4210 when the nozzle assembly 40 is separated from the housing 50 , and allows the liquid storage chamber 12 and the liquid supply chamber 11 to be connected when the nozzle assembly 40 is connected to the housing 50 .
  • the end cover 421 includes a bottom plate 4211 and an annular flange 4212.
  • the bottom plate 4211 is used to connect to the housing 50, and the bottom plate 4211 and the annular flange 4212 define an accommodating groove 4213, and the closing member 422 is disposed in the accommodating groove 4213.
  • the liquid hole 4210 is disposed on the bottom plate 4211 at a position corresponding to the closing slit 4220.
  • the closing member 422 may be made of elastic material such as silicone or rubber.
  • an electric baffle (not shown) can be provided on the base 42, and the electric baffle is electrically connected to the control device 30.
  • the control device 30 controls the electric baffle.
  • the control device 30 controls the electric baffle to close the liquid supply chamber 11.
  • the nozzle 41 includes a nozzle seat 411 and a heating seat 412.
  • the nozzle seat 411 is provided at an end of the heating seat 412 away from the base 42.
  • the nozzle seat 411 is provided with mist. atomization channel 4110; a mounting slot 4120 is provided on the heating base 412, and the heating base 412 is connected to the nozzle base 411 to clamp the atomization assembly 10.
  • the suction nozzle 41 is divided into a suction nozzle holder 411 and a heating base 412. The user can replace the suction nozzle holder 411 according to hygiene and wear conditions without having to replace the entire suction nozzle 41, which is beneficial to health and reduces usage costs. .
  • the electronic atomization device 100 is also provided with a detection channel 52 , and the airflow sensor 53 is connected to an end of the detection channel 52 away from the atomization channel 4110 .
  • the airflow sensor 53 is connected to an end of the detection channel 52 away from the atomization channel 4110 .
  • one end of the detection channel 52 is connected to the atomization channel 4110, and the other end is covered by the airflow sensing member 53.
  • the airflow in the atomization channel 4110 changes.
  • the air pressure in the atomization channel 4110 becomes negative pressure
  • the airflow sensor 53 detects the airflow in the atomization channel 4110 through the detection channel 52.
  • the control device 30 controls the operation of the atomization assembly 10, the first sensing element 14 and the second sensing element based on the changes in air flow detected by the air flow sensing element 53.
  • the airflow sensing element can be provided on the nozzle assembly 40 or on the housing 50 .
  • FIG 4 is a cross-sectional view of the electronic atomizer device shown in Figure 1 along line B-B.
  • the airflow sensor 53 is provided on the housing 50 .
  • the detection channel 52 includes a first detection section 521 and a second detection section 522 .
  • the first detection section 521 is provided on the heating base 412
  • the second detection section 522 is provided on the housing 50 , one end of the first detection section 521 is connected to the atomization channel 4110, the other end of the first detection section 521 is connected to one end of the second detection section 522 on the housing 50, and the other end of the second detection section 522 is located by the airflow sensing element 53 Cover.
  • arranging the airflow sensing component 53 on the casing for example, being disposed on the casing and integrated with the control device, can reduce wiring and make the electrical connection between the airflow sensing component 53 and the control device 30 safe and reliable.
  • FIG. 8 is a cross-sectional view of another embodiment of the electronic atomization device provided by the present application.
  • a liquid storage chamber 12 is provided at one end of the housing 50 facing the suction nozzle assembly 40 .
  • the housing 50 includes a side wall 54 and an isolation wall 55.
  • the isolation wall 55 is disposed in a cavity formed by the side wall 54, and separates the cavity to form an installation cavity 51 and a receiving cavity 56.
  • the receiving cavity 56 is close to the suction nozzle.
  • the assembly 40 is configured, and the receiving cavity 56 is used as the liquid storage cavity 12 .
  • FIG. 9 is a schematic structural diagram of an embodiment of the connection between the liquid supply mechanism and the oil bottle provided by the present application.
  • the electronic atomization device 100 also includes a liquid bottle 57 , which is disposed on the housing 50 .
  • the liquid bottle 57 is provided with a liquid storage chamber 12 .
  • the liquid bottle 57 is disposed in the receiving cavity 56, and the liquid bottle 57 has a liquid storage cavity 12 for storing the aerosol-generating substrate.
  • the liquid bottle 57 includes a bottle body 571 and a bottle mouth 572.
  • the bottle body 571 is arranged in the receiving cavity 56.
  • the bottle mouth 572 is used to pass through the suction nozzle assembly 40 and the supply when the housing 50 is connected to the suction nozzle assembly 40.
  • the liquid chamber 11 is connected.
  • a position-limiting structure is provided on the liquid bottle 57 and the housing 50 to fix the liquid bottle 57 on the housing 50 .
  • one of the liquid bottle 57 and the housing 50 is provided with a limiting protrusion, and the other is provided with a limiting groove.
  • the limiting protrusion is fixed in the limiting groove. , thereby fixing the liquid bottle 57 on the housing 50 .
  • the liquid bottle 57 is fixed on the casing 50 through a limiting structure, and is easy to disassemble, allowing the user to freely fill the liquid bottle 57 with liquid for reuse, which is beneficial to reducing user costs.
  • the liquid supply mechanism 20 includes a piston 21 and a driving member 22.
  • the piston 21 is movably disposed in the liquid storage chamber 12; the output end of the driving member 22 is connected to the piston 21 and is connected to the control device. 30 is electrically connected and used to drive the piston 21 to move along the side wall of the liquid storage chamber to supply liquid to the liquid supply chamber 11.
  • the driving member 22 includes a power source such as a motor 221, a peristaltic pump or a compression pump.
  • the piston 21 assembly is located in the liquid storage chamber 12 and at the bottom of the aerosol-generating substrate, and is used to push the aerosol-generating substrate thereon to supply liquid to the liquid supply chamber 11 under the driving of the driving member 22 .
  • the driving member 22 includes a motor 221 and a push rod 222.
  • One end of the push rod 222 is connected to the output end of the motor 221, and the other end is connected to the piston 21.
  • the motor 221 When the motor 221 is working, it drives the piston 21 through the push rod 222.
  • the aerosol-generating matrix in the liquid storage chamber 12 is pushed into the liquid supply chamber 11 .
  • the atomization component 10 the liquid supply chamber 11, the liquid storage chamber 12, and the liquid supply mechanism 20 are arranged in series.
  • the driving member 22 controls the piston 21 to move toward the supply mechanism.
  • the direction of the liquid chamber 11 moves to inject the aerosol-generating matrix in the liquid storage chamber 12 into the liquid supply chamber 11 .
  • the electronic atomization device provided by this application has a dual liquid chamber design of liquid supply chamber 11 and liquid storage chamber 12.
  • the control device 30 compares the current pressure value P1 detected by the first sensing element 14 with the preset pressure value P0. If the difference D1 between the current pressure value P1 and the preset pressure value P0 is not within the preset range, the control device 30 controls the liquid supply mechanism 20 to drive the liquid in the liquid storage chamber 12 to supply liquid to the liquid supply chamber 11 to ensure liquid supply.
  • the pressure in the chamber 11 is always maintained within the preset pressure range, achieving a ready-to-use liquid supply effect, effectively controlling the liquid supply to the atomization component 10, ensuring uniform liquid supply, and the liquid supply chamber 11 and the liquid storage chamber 12 are double Liquid chamber design, the control device 30 controls the liquid supply mechanism 20 to drive the liquid in the liquid storage chamber 12 to supply liquid to the liquid supply chamber 11 based on the difference D1 between the current pressure value P1 in the liquid supply chamber and the preset pressure value P0, solving the problem
  • the traditional single liquid chamber is easily affected by the external atmospheric pressure, causing problems such as liquid leakage and uneven liquid supply.
  • this application also provides an automatic liquid supply method for an electronic atomization device. See Figure 10.
  • Figure 10 is an automatic liquid supply method provided by this application.
  • a flow diagram of an embodiment. This application provides an automatic liquid supply method, including:
  • Step S1 Detect the current pressure value in the liquid supply chamber.
  • the electronic atomization device includes an atomization component, a liquid supply chamber, and a first sensing element.
  • An aerosol-generating substrate is stored in the liquid supply chamber.
  • the atomization component is used to atomize the aerosol in the liquid supply chamber under energized conditions.
  • a matrix is generated to generate aerosol, and the first sensing element is used to detect the current pressure value P1 in the liquid supply chamber.
  • the first sensing element may be a pneumatic pressure sensor or a hydraulic pressure sensor, and the first sensing element is used to detect the pneumatic pressure value or the hydraulic pressure value in the liquid supply chamber.
  • the first sensing element detects the current pressure value P1 in the liquid supply chamber in real time. For example, when the user is using the electronic atomization device and during the idle period of the electronic atomization device, the first sensing element detects the liquid supply. The current pressure value P1 in the cavity.
  • the first sensing element is used to detect the current pressure value P1 in the liquid supply chamber during each atomization process. That is, the first sensing element only detects the supply pressure when the user inhales the electronic atomization device. The current pressure value P1 in the liquid chamber.
  • Step S2 Control the operation of the liquid supply mechanism based on the difference between the current pressure value and the preset pressure value to drive the liquid in the liquid storage chamber to supply liquid to the liquid supply chamber.
  • the electronic atomization device also includes a liquid storage chamber, a liquid supply mechanism, and a control device.
  • the liquid storage chamber stores an aerosol-generating matrix
  • the liquid supply mechanism is used to drive the aerosol-generating matrix in the liquid storage chamber to the liquid supply chamber.
  • the control device is electrically connected to the liquid supply mechanism and the first sensing element.
  • the control device detects the current pressure value P1 in the liquid supply chamber based on the first sensing element, and the difference D1 from the preset pressure value P0 controls the driving of the liquid supply mechanism.
  • the aerosol-generating matrix in the liquid storage chamber supplies liquid to the liquid supply chamber.
  • the control device controls the operation of the liquid supply mechanism to drive the liquid storage chamber.
  • the aerosol-generating matrix supplies liquid to the liquid supply chamber, thereby ensuring that the aerosol-generating matrix in the liquid supply chamber can maintain normal atomization of the atomization component.
  • the pressure in the liquid supply chamber will decrease.
  • the pressure in the liquid supply chamber decreases To a certain extent, it will cause the aerosol-generating matrix in the liquid supply chamber to insufficiently supply liquid to the atomization component, causing the atomization component to dry out and produce toxic and harmful gases.
  • the control device in this application can be detected based on the first sensing element.
  • the difference D1 between the current pressure value P1 and the preset pressure value P0 controls the liquid supply mechanism to drive the aerosol-generating matrix in the liquid supply chamber to supply liquid to the liquid supply chamber, ensuring that the aerosol-generating matrix in the liquid supply chamber is effective in atomizing
  • the normal supply of liquid to the component realizes the ready-to-use liquid supply effect of the electronic atomization device, and the pressure in the liquid supply chamber is always maintained within the preset pressure range, which can ensure the uniform supply of liquid to the atomization component from the liquid supply chamber.
  • the electronic atomization device is provided with a liquid supply chamber and a liquid storage chamber.
  • the control device controls the liquid supply mechanism to drive the aerosol-generating matrix in the liquid storage chamber to supply liquid based on the difference D1 between the current pressure value P1 and the preset pressure value P0.
  • the liquid supply chamber contains less aerosol-generating matrix, which can reduce the leakage of the aerosol-generating matrix through the atomization component.
  • Step S1 includes: detecting the current pressure value in the liquid supply chamber in response to a suction trigger signal; wherein the suction trigger signal is triggered when the user suctions the electronic atomization device.
  • the electronic atomization device is also provided with an airflow sensing element.
  • the airflow sensing element can be a frequency silicon microphone or microphone, which is used to Detect airflow changes in the electronic atomization device.
  • the airflow sensing element is electrically connected to the control device.
  • the control device detects changes in the airflow in the electronic atomization device based on the airflow sensing element and controls the first sensing element to detect the current pressure in the liquid supply chamber. Value P1.
  • the preset pressure value P0 may be when the user just triggers the suction trigger signal, and the first sensing element detects the current pressure value P1 of the liquid supply chamber as the preset pressure value P0.
  • the preset pressure value P0 is that the first sensing element detects the pressure value P3 in the liquid supply chamber as the preset pressure value P0 during the idle stage of the electronic atomization device, that is, before the electronic atomization device atomizes.
  • the preset pressure value P0 is a value preset in the control device.
  • the preset pressure value P0 is based on the real-time detected external atmospheric pressure value P2 as the preset pressure value P0.
  • control device detects the pressure value P3 of the liquid supply chamber before atomization through the first sensing element as the preset pressure value P0.
  • the electronic atomization device further includes a second sensing element.
  • the second sensing element is used to detect the external atmospheric pressure value P2.
  • the control device detects the external atmospheric pressure value P2 through the second sensing element as the preset pressure. Value P0.
  • the second sensing element is not provided in the electronic atomization device, and the first sensing element is also used to detect the external atmospheric pressure value P2. Specifically, before the electronic atomization device atomizes, the first sensing element detects the pressure value P3 in the liquid supply chamber and the outside atmospheric pressure value P2, and at the same time outputs the pressure value P3 in the liquid supply chamber and the outside atmospheric pressure value to the control device. P2, or directly output the pressure difference D2 between the pressure value P3 in the liquid supply chamber and the external atmospheric pressure value P2 for the control device.
  • FIG. 11 is a schematic flow chart of another embodiment of the automatic liquid supply method provided by the present application.
  • step S1 it also includes:
  • Step S01 In response to the pressure difference between the pressure value of the liquid supply chamber before atomization and the preset pressure value being in a non-preset range, control the liquid supply mechanism to start to drive the liquid in the liquid storage chamber to supply liquid to the liquid supply chamber, Or drive the liquid in the liquid supply chamber to conduct liquid to the liquid storage chamber.
  • the control device compares the detected pressure value P3 in the liquid supply chamber with the detected external atmospheric pressure value P2, and responds to the When the pressure difference D2 between the pressure value P3 before atomization and the external atmospheric pressure value P2 is in a non-preset range, the liquid supply mechanism is controlled to start.
  • the non-preset range may be that the pressure difference D2 is not equal to 0, or the pressure difference D2 is greater than 10Pa, 20Pa, or 50Pa.
  • the pressure value P3 in the liquid supply chamber is less than the external atmospheric pressure value P2.
  • the control device controls the operation of the liquid supply mechanism to drive the aerosol-generating matrix in the liquid storage chamber to supply the liquid to the liquid supply chamber. liquid, so that the pressure difference D2 between the pressure value P3 in the liquid supply chamber and the external atmospheric pressure value P2 is within the preset range.
  • the pressure value P3 in the liquid supply chamber is greater than the external atmospheric pressure value P2.
  • the control device controls the work of the liquid supply mechanism to drive the aerosol-generating matrix in the liquid supply chamber to conduct liquid to the liquid storage chamber.
  • the pressure difference D2 between the pressure value P3 in the liquid supply chamber and the external atmospheric pressure value P2 is within a preset range.
  • Step S02 In response to the pressure difference between the pressure value of the liquid supply chamber before atomization and the preset pressure value being within the preset range, control the liquid supply mechanism to shut down.
  • the pressure difference between the pressure value P3 of the liquid supply chamber before atomization and the external atmospheric pressure value P2 D2 is basically balanced.
  • the control device responds to the pressure difference D2 between the pressure value P3 of the liquid supply chamber before atomization and the external atmospheric pressure value P2 being within the preset range, and controls the liquid supply mechanism to shut down.
  • the pressure value in the liquid supply chamber P3 is basically the same as the actual external atmospheric pressure value P2.
  • the preset range may be that the pressure difference D2 is equal to 0, or the pressure difference D2 is within the range of 0-10Pa, 0-20Pa or 0-50Pa.
  • the step of balancing the pressure value P3 in the liquid supply chamber with the external atmospheric pressure value P2 is in the idle stage of the electronic atomization device, and after the electronic atomization device responds to the suction trigger signal, the control device is only based on the current
  • the difference D1 between the pressure value P1 and the preset pressure value P0 controls the operation of the liquid supply mechanism.
  • the control device can determine that the electronic atomization device is in an idle stage based on the preset time when the atomization component stops working. For example, the atomization component stops working for 10 minutes, 20 minutes, or longer. In order to avoid affecting the user's normal suction.
  • step S2 includes:
  • Step S21 In response to the difference reaching the preset first limit, control the liquid supply mechanism to start to drive the liquid in the liquid storage chamber to supply liquid to the liquid supply chamber.
  • the atomization component atomizes the aerosol to generate the matrix.
  • the micropores in the atomization component will generate capillary force, which will move the liquid supply chamber
  • the aerosol-generated matrix is directed to the atomization component, causing the pressure in the liquid supply chamber to change.
  • the control device calculates the difference D1 between the current pressure value P1 and the preset pressure value P0, and responds to the current pressure value P1 and the preset pressure value P0 detected by the first sensing element.
  • the control device controls the start of the liquid supply mechanism to drive the aerosol-generating matrix in the liquid storage chamber to supply liquid to the liquid supply chamber.
  • the first limit value X1 can be obtained through experiments.
  • the difference D1 between the current pressure value P1 and the preset pressure value P0 reaches the first limit value supply fluid to the chemical component.
  • the first limit value Balanced with preset pressure value is the first limit value Balanced with preset pressure value.
  • the value range of the first limit X1 is -100Pa-(-200Pa), that is, the current pressure value P1 is less than the preset pressure value P0, and the difference between the current pressure value P1 and the preset pressure value P0 D1 is 100Pa-200Pa.
  • the control device controls the liquid supply mechanism to start to drive the aerosol in the liquid storage chamber
  • the generated matrix supplies liquid to the liquid supply chamber.
  • Step S22 In response to the difference reaching the preset second limit, control the liquid supply mechanism to shut down to stop driving the liquid in the liquid storage chamber to supply liquid to the liquid supply chamber.
  • the control device calculates the difference D1 between the current pressure value P1 and the preset pressure value P0, and responds to the detection of the first sensing element
  • the difference D1 between the current pressure value P1 and the preset pressure value P0 reaches the preset second limit value X2, and the control device controls the liquid supply mechanism to shut down to stop driving the aerosol-generating matrix in the liquid storage chamber to supply liquid cavity fluid supply.
  • the second limit X2 is greater than the first limit X1, and the second limit X2 can be obtained through experiments.
  • the difference D1 between the current pressure value P1 and the preset pressure value P0 reaches the second limit X2, it can be guaranteed
  • the aerosol-generating matrix in the liquid supply chamber uniformly supplies liquid to the atomization component, and there is no problem of leakage of the aerosol-generating matrix in the liquid supply chamber due to excessive pressure in the liquid supply chamber.
  • the value range of the second limit value 350Pa For example, when the current pressure value P1 is greater than the preset pressure value P0, and the difference D1 between the current pressure value P1 and the preset pressure value P0 reaches 300Pa, the control device controls the liquid supply mechanism to shut down to stop driving the liquid in the liquid storage chamber.
  • the aerosol-generating matrix supplies liquid to the liquid supply chamber.
  • the second limit X2 can also be set to 0, that is, as long as the current pressure value P1 in the liquid supply chamber is equal to the preset pressure value P0, the liquid storage chamber will stop supplying liquid to the liquid supply chamber to maintain The current pressure value is always balanced with the preset pressure value.
  • the control device may control the liquid supply mechanism to drive the aerosol-generating matrix in the liquid storage chamber to supply liquid to the liquid supply chamber N times, that is, the number of times the difference D1 reaches the first limit X1 is N times, correspondingly , the control device may control the liquid supply mechanism to stop driving the aerosol-generating matrix in the liquid storage chamber to supply liquid to the liquid supply chamber M times, that is, the number of times the difference D1 reaches the second limit X2 is M times, thereby ensuring that the liquid supply chamber
  • the sol-generating matrix content is capable of sustaining user puffing.
  • Figure 13 is a schematic curve diagram of an embodiment of the difference between the current pressure value and the preset pressure value in the liquid supply chamber during liquid supply provided by the present application, in which the abscissa represents time, and the ordinate represents the supply time.
  • in one suction trigger signal T there will be multiple upper and lower peaks. That is to say, in one suction trigger signal T, the aerosol-generating matrix in the liquid storage chamber may have just supplied liquid.
  • the aerosol-generating matrix in the liquid supply chamber is subsequently consumed, which requires the liquid storage chamber to supply liquid to the liquid supply chamber multiple times, so that the current pressure value P1 in the liquid supply chamber is always higher than the lower pressure. limit.
  • step S2 includes: in response to the difference D1 reaching the preset first limit X1, controlling the liquid supply mechanism to start, and keeping the liquid supply mechanism running for a preset time period.
  • control device calculates the difference D1 between the current pressure value P1 and the preset pressure value P0, and responds to the first sensing element detecting that the difference D1 between the current pressure value P1 and the preset pressure value P0 reaches the preset first value.
  • Limit value After the liquid supply mechanism runs for a preset time, the control device controls the liquid supply mechanism to shut down to stop driving the aerosol-generating matrix in the liquid storage chamber to supply liquid to the liquid supply chamber.
  • the preset time period can be obtained through experiments.
  • the control device controls the liquid supply mechanism to run for the preset time period, so that The current pressure value P1 in the liquid supply chamber is greater than or equal to the preset pressure value P0, and the difference D1 between the current pressure value P1 in the liquid supply chamber and the preset pressure value P0 is in the range from 0 to the second limit X2.
  • the first limit value When the difference D1 from the preset pressure value P0 is 100Pa, the control device controls the liquid supply mechanism to run for the preset time.
  • the control device controls the liquid supply mechanism to shut down.
  • the liquid supply chamber The current pressure value P1 is greater than or equal to the preset pressure value P0.
  • the difference D1 between the current pressure value P1 and the preset pressure value P0 is in the range of 0Pa-300Pa, but does not exceed 300Pa.
  • the control device 30 may be a control circuit board or a computer device, see FIG. 14 , which is a schematic module diagram of an embodiment of the computer device provided by this application.
  • the computer device includes a processor 301 and a memory 302 that are interconnected.
  • Memory 302 stores computer programs.
  • the processor 301 is used to execute computer programs stored in the memory 302.
  • the processor 301 can also be called a CPU (Central Processing Unit).
  • the processor 301 may be an integrated circuit chip with signal processing capabilities.
  • the processor 301 may also be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component .
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory 302 can be a memory stick, a TF card, etc., and can store all the information in the computer device of the device, including input raw data, computer programs, intermediate running results, and final running results, all of which are stored in the memory 302.
  • the memory 302 of the computer equipment can be divided into main memory (memory) and auxiliary memory (external memory) according to its purpose. There is also a classification method into external memory and internal memory. External storage is usually magnetic media or optical disks, which can store information for a long time.
  • Memory refers to the storage component on the motherboard, which is used to store data and programs currently being executed, but is only used to temporarily store programs and data. When the power is turned off or the power is turned off, the data will be lost.
  • Figure 15 is a schematic module diagram of an embodiment of the storage medium provided by this application.
  • the storage medium of the present application stores program data 204 that can implement all the above methods, wherein the program data 204 can be stored in the storage medium in the form of a software product, including a number of instructions to cause a computer device (which can be a personal computer, Server, or network device, etc.) or processor 301 executes all or part of the steps of the methods of various embodiments of this application.
  • a computer device which can be a personal computer, Server, or network device, etc.
  • processor 301 executes all or part of the steps of the methods of various embodiments of this application.

Landscapes

  • Special Spraying Apparatus (AREA)

Abstract

本申请提供一种电子雾化装置、储存介质、计算机设备及其自动供液方法,电子雾化装置包括供液腔、储液腔、感应孔、第一感应元件、供液机构和控制器件,第一感应元件通过感应孔检测供液腔内的当前压力值,供液机构用于驱动储液腔内的液体向供液腔供液,控制器件电连接供液机构和第一感应元件;其中,控制器件基于当前压力值与预设压力值的差值控制供液机构,以驱动储液腔内的液体向供液腔供液,从而保证供液腔内的压力一直维持在预设压力范围,解决了传统的单液腔容易受外界大气压力影响,发生液体渗漏和供液不均匀的问题;且通过储液腔向供液腔供液,相比于传统的单液腔供液,实现即用即供的供液效果,能够有效控制液体供给。

Description

电子雾化装置、储存介质、计算机设备及其自动供液方法 【技术领域】
本申请涉及雾化技术领域,尤其涉及一种电子雾化装置、储存介质、计算机设备及其自动供液方法。
【背景技术】
电子雾化装置用于雾化气溶胶生成基质,例如,对含有香精香料的组合液态基质以加热/非加热的方式进行雾化形成气溶胶,其可用于不同的领域。
然而,电子雾化装置根据使用场景的不同,一直存在着液体渗漏、供液不均匀等问题,影响用户体验。
【发明内容】
本申请提供一种电子雾化装置、储存介质、计算机设备及其自动供液方法,能够解决电子雾化装置液体渗漏以及供液不均匀的问题。
为解决上述技术问题,本申请提供的第一个技术方案为:提供一种电子雾化装置,所述电子雾化装置包括供液腔、储液腔、感应孔、第一感应元件、供液机构和控制器件,所述第一感应元件通过所述感应孔检测所述供液腔内的当前压力值,所述供液机构用于驱动所述储液腔内的液体向所述供液腔供液,所述控制器件电连接所述供液机构和所述第一感应元件;其中,所述控制器件基于所述当前压力值与预设压力值的压差控制所述供液机构,以驱动所述储液腔内的液体向所述供液腔供液。
其中,所述第一感应元件为气压传感器,所述气压传感器封盖于所述感应孔远离所述供液腔的一端,且所述感应孔的另一端被所述供液腔内的液体所液封,以在所述感应孔内形成空气柱。
其中,所述感应孔沿孔径方向的横截面的直径小于等于5.0mm。
其中,所述感应孔沿孔径方向的横截面呈圆形孔,所述圆形孔的直径大于等于0.3mm且小于等于5.0mm。
其中,所述感应孔设置于所述供液腔的侧壁上,所述感应孔的长度大于等于1.0mm且小于等于50mm。
其中,所述电子雾化装置还包括第二感应元件,所述第二感应元件电连接所述控制器件,所述第二感应元件用于检测大气压,所述大气压作为所述预设压力值。
其中,所述第一感应元件为液压传感器,所述供液腔内的液体通过所述感应孔接触所述液压传感器。
其中,所述电子雾化装置还包括安装腔,所述控制器件设置于所述安装腔,所述感应孔远离所述供液腔的一端还连通所述安装腔,所述第一感应元件封盖于所述感应孔远离所述供液腔的一端;或所述感应孔设置于所述供液腔的侧壁上。
其中,所述电子雾化装置包括吸嘴组件、雾化组件以及壳体;所述雾化组件连接所述吸嘴组件,所述吸嘴组件和所述雾化组件配合界定出所述供液腔,所述雾化组件用于从所述供液腔吸液进行雾化;壳体与所述吸嘴组件连接,所述壳体设有所述安装腔;其中,所述储液腔设置于所述吸嘴组件和/或所述壳体上;所述感应孔包括设置于所述吸嘴组件上的第一孔段和设置于所述壳体上的第二孔段,所述第一感应元件封盖于所述第二孔段朝向所述安装腔的一端;或所述感应孔设置于所述吸嘴组件上,所述第一感应元件连接所述吸嘴组件。
其中,所述第一感应元件封盖于所述第二孔段朝向所述安装腔的一端,且所述第一感应元件设置于所述控制器件上。
其中,所述吸嘴组件包括吸嘴和底座;所述雾化组件连接所述吸嘴,所述吸嘴的侧壁设有至少部分的所述感应孔;所述底座连接所述吸嘴,且与所述吸嘴及所述雾化组件界定出所述供液腔;所述底座或所述吸嘴与所述壳体连接;其中,所述底座设置成在所述吸嘴组件与所述壳体连接时连通所述储液腔和供液腔,在所述吸嘴组件与所述壳体分离时封闭所述供液腔。
其中,所述吸嘴包括吸嘴座和发热座,所述吸嘴座设有雾化通道,所述雾化组件的雾化端朝向所述雾化通道设置;所述发热座与所述吸嘴座连接,夹持所述雾化组件;其中,所述发热座和所述壳体上还设有探测通道,所述探测通道连通所述雾化通道,所述安装腔还设有气流感应件,所述气流感应件连接于所述探测通道远离所述雾化通道的一端。
其中,所述底座包括端盖和封闭件;所述端盖设有连通所述供液腔的液孔,且与所述吸嘴连接;所述封闭件设置于所述端盖上,且对应于所述液孔的位置设置有闭合缝,所述闭合缝在所述吸嘴组件与所述壳体分离时封闭所述液孔,在所述吸嘴组件与所述壳体连接时允许连通所述储液腔和供液腔。
其中,所述壳体朝向所述吸嘴组件的一端设有储液腔;或所述电子雾化装置还包括液瓶,所述液瓶设置于所述壳体上,所述液瓶设有所述储液腔。
其中,所述供液机构包括活塞和驱动件;所述活塞可移动地设置于所述储液腔;所述驱动件的输出端连接所述活塞,且与所述控制器件电连接,用于驱动所述活塞沿所述储液腔的侧壁移动,以向所述供液腔供液。
为解决上述技术问题,本申请提供的第二个技术方案为:提供一种自动供液方法,应用于电子雾化装置,包括:检测供液腔内的当前压力值;基于所述当前压力值与预设压力值的差值控制供液机构工作,以驱动储液腔内的液体向所述供液腔供液。
其中,所述检测供液腔内的当前压力值,包括:响应于抽吸触发信号,检测供液腔内的当前压力值;其中所述抽吸触发信号由用户抽吸所述电子雾化装置时触发。
其中,检测所述供液腔在雾化前的压力值作为所述预设压力值。
其中,检测外界大气压力值作为所述预设压力值。
其中,所述检测供液腔内的当前压力值,之前包括:响应于所述供液腔在雾化前的压力值与所述预设压力值的压差处于非预设范围,控制所述供液机构启动,以驱动所述储液腔内的液体向所述供液腔供液,或驱动所述供液腔内的液体向所述储液腔导液;响应于所述供液腔在雾化前的压力值与所述预设压力值的压差处于预设范围,控制所述供液机构关停。
其中,所述基于所述当前压力值与预设压力值的差值控制供液机构工作,包括:响应于所述差值达到预设的第一限值,控制所述供液机构启动,以驱动所述储液腔内的液体向所述供液腔供液;响应于所述差值达到预设的第二限值,控制所述供液机构关停,以停止驱动所述储液腔内的液体向所述供液腔供液;其中,所述第一限值小于所述第二限值。
其中,在一次抽吸触发信号中,所述差值达到所述第一限值的次数为N次,所述差值达到所述第二限值的次数为M次,N个第一限值控制所述供液机构启动N次,M个第二限值控制所述供液机构关停M次。
其中,所述基于所述当前压力值与预设压力值的差值控制供液机构工作,包括: 响应于所述差值达到预设的第一限值,控制所述供液机构启动,并保持所述供液机构运行预设时长。
其中,所述当前压力值为所述供液腔内的气压值或液压值。
为解决上述技术问题,本申请采用的三个技术方案是:提供一种储存介质,所述储存介质存储有程序文件,所述程序文件能够被执行以实现上述任一项所述的方法。
为解决上述技术问题,本申请采用的四个技术方案是:提供一种计算机设备,包括处理器、存储器以及控制电路,所述处理器分别耦接所述存储器以及所述控制电路,所述处理器在工作时控制自身以及所述存储器、所述控制电路实现如双数任一项所述方法。
为解决上述技术问题,本申请采用的五个技术方案是:提供一种电子雾化装置,所述电子雾化装置包括供液腔、储液腔、感应元件、供液机构和如权利要求26所述的计算机设备,所述计算机设备电连接所述感应元件和所述供液机构,所述感应元件用于检测所述供液腔内的当前压力值。
本申请的有益效果,区别于现有技术的情况,本申请提供的电子雾化装置、储存介质、计算机设备及其自动供液方法,电子雾化装置包括供液腔、储液腔、感应孔、第一感应元件、供液机构和控制器件,第一感应元件通过感应孔检测供液腔内的当前压力值,供液机构用于驱动储液腔内的液体向供液腔供液,控制器件电连接供液机构和第一感应元件;其中,控制器件基于当前压力值与预设压力值的差值控制供液机构,以驱动储液腔内的液体向供液腔供液,从而保证供液腔内的压力一直维持在预设压力范围,解决了传统的单液腔容易受外界大气压力影响,发生液体渗漏和供液不均匀的问题;且通过储液腔向供液腔供液,相比于传统的单液腔供液,实现即用即供的供液效果,能够有效控制液体供给。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本申请提供的电子雾化装置的一实施例的结构示意图;
图2是如图1所示电子雾化装置沿A-A线的剖视图;
图3是本申请提供的电子雾化装置的另一实施例的剖视图;
图4是如图1所示电子雾化装置沿B-B线的剖视图;
图5是如图2中所示的A区域的结构放大图;
图6是如图1所示的电子雾化装置中吸嘴组件的结构爆炸图;
图7是如图6所示的底座的结构爆炸图;
图8是本申请提供的电子雾化装置的又一实施例的剖视图;
图9是本申请提供的供液机构与油瓶连接的一实施例的结构示意图;
图10是本申请提供的自动供液方法的一实施例的流程示意图;
图11是本申请提供的自动供液方法的另一实施例的流程示意图;
图12是如图10中所示的步骤S2的一实施例的流程示意图;
图13是本申请提供的供液时供液腔内当前压力值与预设压力值的差值的一实施例的曲线示意图;
图14是本申请提供的计算机设备的一实施例的模块示意图;
图15是本申请提供的存储介质的一实施例的模块示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
电子雾化装置用于雾化气溶胶生成基质,其可用于不同的领域,例如、医疗雾化、美容雾化、休闲吸食等领域。其中,电子雾化装置内通常设置有储液空间和雾化组件,储液空间内存储有气溶胶生成基质,气溶胶生成基质可以为药液、营养液或其他具有特殊香气的组合液态基质等,雾化组件用于在电子雾化装置工作时,雾化气溶胶生成基质以生成气溶胶,雾化组件的雾化方式可以为加热雾化或非加热雾化,其中,加热雾化包括电阻加热、电磁加热、激光加热、红外加热以及微波加热等;非加热雾化包括超声雾化、压力雾化、机械震动雾化以及压缩空气雾化等。然而,传统的单液腔电子雾化装置,即,电子雾化装置内只设置一个储液空间,储液空间容易受气溶胶生成基质含量的影响,导致对雾化组件的供液不均匀。而且,在电子雾化装置长期闲置或外界大气压发生变化时,储液空间内的气溶胶生成基质容易发生渗漏。
为了解决传统的电子雾化装置存在液体渗漏、供液不均等问题,参见图1-图3,图1是本申请提供的电子雾化装置的一实施例的结构示意图;图2是如图1所示电子雾化装置沿A-A线的剖视图;图3是本申请提供的电子雾化装置的另一实施例的剖视图。
本申请提供的电子雾化装置100,包括供液腔11、储液腔12、感应孔13、第一感应元件14、供液机构20和控制器件30。其中,第一感应元件14通过感应孔13检测供液腔11内的当前压力值P1,供液机构20用于驱动储液腔12内的液体向供液腔11供液,控制器件30电连接供液机构20和第一感应元件14;其中,控制器件30基于当前压力值P1与预设压力值P0的差值D1控制供液机构20,以驱动储液 腔12内的液体向供液腔11供液。
具体的,雾化组件10在雾化供液腔11内的气溶胶生成基质时,随着供液腔11内气溶胶生成基质逐渐消耗,供液腔11内的压力值同时也会减小,第一感应元件14通过感应孔13检测供液腔11的当前压力值P1,控制器件30基于第一感应元件14检测得到的当前压力值P1,与预设压力值P0进行比较,若当前压力值P1与预设压力值P0的差值D1不在预设范围,控制器件30控制供液机构20,以驱动储液腔12内的液体向供液腔11供液,从而保证供液腔11内的压力一直维持在预设压力范围,实现即用即供的供液效果,有效控制对雾化组件10的液体供给,保证均匀供液,且供液腔11和储液腔12双液腔设计,控制器件30基于供液腔11内的当前压力值P1与预设压力值P0的差值D1控制供液机构20驱动储液腔12内的液体向供液腔11供液,解决了传统的单液腔容易受外界大气压影响,发生的液体渗漏和供液不均匀的问题。
其中,第一感应元件14可以为气压传感器。气压传感器封盖于感应孔13远离供液腔11的一端,且感应孔13的另一端被供液腔11内的气溶胶生成基质所液封,以在感应孔13内形成空气柱。具体的,气压传感器与供液腔11通过感应孔13连接,且感应孔13的长度和直径合适时,感应孔13中会形成一段空气柱,将气压传感器与供液腔11隔离,当供液腔11内的压力发生变化时,例如,供液腔11内溶胶生成基质增多或减少时,或外界大气压发生变化时,此段空气柱的压力会相应地发生变化,而气压传感器对空气变化的灵敏度优于对液体的灵敏度,可以提高对供液腔11内的气压变化检测灵敏度,实现精确供液。
其中,感应孔13的横截面可以为圆形、椭圆形、矩形等,感应孔13沿直径方向的横截面尺寸小于等于5.0mm。具体的,若感应孔13的孔径太小,空气柱中的空气容易溶解到气溶胶生成基质中,从而无法形成空气柱。若感应孔13的孔径太大,空气柱中的空气容易挤入供液腔11,无法形成空气柱。只有当感应孔13的孔径和长度合适从而达到平衡时,会形成空气柱,且空气柱的长度会随着供液腔11内压力的变化而发生变化,气压传感器通过空气柱的压力变换检测供液腔11内的压力。
在一具体实施方式中,感应孔13沿直径方向的横截面呈圆形孔,圆形孔的直径大于等于0.3mm且小于等于5.0mm。例如,圆形孔的直径为0.3mm、2.0mm、4.0mm或5.0mm。
在一具体实施方式中,参见图2,考虑到感应孔13的气密性和液密性,感应孔13设置于供液腔11的侧壁上,感应孔13的长度大于等于1.0mm且小于等于50mm。具体可根据感应孔13的孔径进行相应设置,以使感应孔13的直径和长度合适从而形成空气柱为准。
当然,感应孔13还可以设置于电子雾化装置上的任意位置,只要使感应孔13的一端被第一感应元件14封盖,另一端被供液腔11内的气溶胶生成基质液封即可。
第一感应元件14也可以为液压传感器,供液腔11内的气溶胶生成基质通过感应孔13接触液压传感器。当第一感应元件14为液压传感器时,感应孔13的孔径、长度和设置位置不做限定,只要供液腔11内的气溶胶生成基质能够通过感应孔13直接接触到液压传感器,且避免气溶胶生成基质从感应孔13发生漏液即可。
需要说明的是,由于液压传感器是通过与液体直接接触来检测压力,因此,第一感应元件14为液压传感器时还有一个优点,电子雾化装置中可以不设置感应孔13,液压传感器直接设置于供液腔11内,省去了为电子雾化装置打感应孔的工艺,进一步防止漏液的情况发生。
具体的,在用户抽吸电子雾化装置100时,电子雾化装置100内的气流会发生改变,电子雾化装置100中还设置有气流感应件53,气流感应件53可以为频率硅麦或咪头,用于检测电子雾化装置100内的气流变化,气流感应件53与控制器件30电连接,控制器件30基于气流感应件53检测到电子雾化装置100内的气流发生变化,判断用户触发抽吸触发信号,控制雾化组件10雾化气溶胶生成基质,且控制第一感应元件14检测供液腔11内的当前压力值P1。
其中,预设压力值P0可以为用户刚触发抽吸触发信号时,第一感应元件14检测供液腔11的当前压力值P1作为预设压力值P0。或预设压力值P0为第一感应元件14在电子雾化装置100闲置阶段,即电子雾化装置雾化前,检测供液腔11内的压力值作为预设压力值P0。或预设压力值P0为预先设置在控制器件30内的数值。或预设压力值P0以实时检测的外界大气压力值P2作为预设压力值P0。
在一具体实施方式中,雾化组件10的上表面为雾化面,且雾化组件10具有用于将供液腔11内气溶胶生成基质导入雾化面的微孔。雾化组件10的下表面与供液腔11接触,雾化组件10的上表面与外界连通,供液腔11内与雾化组件10上表面存在的压力差会使气溶胶生成基质穿过雾化组件10内微孔到达上表面,使得供液腔11压力减小,最终使供液腔11与外界大气压力值P2达到平衡,由于在电子雾化装置100的闲置阶段,供液腔11内的压力随着时间的变化会与外界大气压力值P2逐渐趋于平衡,因此,以用户刚触发抽吸触发信号时第一感应元件14检测供液腔11的当前压力值P1作为预设压力值P0,或第一感应元件14检测供液腔11在雾化前的压力值作为预设压力值P0,相当于以外界大气压力值P2作为预设压力值P0。
需要注意的是,供液腔11内的压力随着时间的变化会与外界大气压力值P2逐渐趋于平衡需要一定的时间,当外界大气压发生变化时,短时间内供液腔11内的压力值与实际的外界大气压力值并不平衡,此时间段内,若检测供液腔11内的压力值作为预设压力值P0,可能会导致供液腔11内气溶胶生成基质渗漏或供液不足的问题。例如,此时间段内,若供液腔11内的压力值大于外界大气压力值P2,会挤压供液腔11内的气溶胶生成基质,而使气溶胶生成基质通过雾化组件10的微孔到达发热体上表面,出现渗漏的现象。若供液腔11内的压力值小于外界大气压力值P2,会使雾化组件10的微孔内的气溶胶生成基质回流至供液腔11,导致对雾化组件10供液不足,而使雾化组件10发生干烧,产生有毒有害气体。
因此,在一具体实施方式中,电子雾化装置100还包括第二感应元件(图未示),第二感应元件电连接控制器件30,第二感应元件用于检测外界大气压力值P2,以实际的外界大气压力值P2作为预设压力值P0。
或在另一具体实施方式中,电子雾化装置100内不设置第二感应元件,第一感应元件14还用于检测外界大气压力值P2。具体的,在电子雾化装置100雾化之前,第一感应元件14检测供液腔11内的压力值和外界大气压力值P2,同时为控制器件30输出供液腔11内的压力值和外界大气压力值P2,或直接为控制器件30输出供液腔11内的压力值和外界大气压力值P2的压差D2。相比于电子雾化装置100中设置第一感应元件14和第二感应元件,本实施方式中提供的电子雾化装置100,成本更低。
可以理解的,以外界大气压力值P2作为预设压力值P0有三个好处,第一,控制器件30控制时可以直接用供液腔11内的当前压力值P1与外界大气压力值P2(预设压力值P0)的差值D1进行控制,使得控制更精确,而只检测供液腔11内的当前压力值P1的条件下,需要使供液腔11内的当前压力值P1和外界大气压力值P2达 到平衡时记录供液腔11内的压力值作为预设压力值P0,存在误判的风险;第二,外界大气压力值P2在不同的气温、海拔高度等情况下会发生变化,通过实时检测外界大气压力值P2并做修正,使得供液腔11内的压力值与外界大气压力值P2始终相同;第三,当外界大气压力值P2发生变化时,特别是外界大气压力值P2变小时,由于供液腔11内的压力值比外界大气压力值P2大,会挤压气溶胶生成基质,而使气溶胶生成基质通过雾化组件10的微孔到达发热体上表面,出现渗漏的现象,而有第二感应元件,可以检测到外界大气压力值P2变小,在雾化前利用供液机构对供液腔11内的压力进行控制,使供液腔11内的压力值与外界大气压力值P2达到新的平衡,实现防止液体渗漏和供液不足的效果。
在一情景中,控制器件30基于检测到的供液腔11内的压力值,和检测到的外界大气压力值P2进行比较,响应于供液腔11在雾化前的压力值和外界大气压力值P2的压差D2处于非预设范围,例如,用户携带电子雾化装置100由高海拔移动到低海拔,导致供液腔11内的压力值小于外界大气压力值P2且压差D2不在预设范围,此时,控制器件30控制供液机构20工作,以驱动储液腔12内的气溶胶生成基质向供液腔11供液,使得供液腔11内的压力值与外界大气压力值P2平衡。控制器件30响应于供液腔11在雾化前的压力值与预设压力值的压差D2处于预设范围,控制所述供液机构20关停。
在另一情景中,控制器件30基于检测到的供液腔11内的压力值,和检测到的外界大气压力值P2进行比较,响应于供液腔11在雾化前的压力值和外界大气压力值P2的压差D2处于非预设范围,例如,用户携带电子雾化装置100由低海拔移动到高海拔,导致供液腔11内的压力值大于外界大气压力值P2且压差D2不在预设范围,此时,控制器件30控制供液机构20工作,以驱动供液腔11内的气溶胶生成基质向储液腔12导液,使得供液腔11内的压力值与外界大气压力值P2平衡。控制器件30响应于供液腔11在雾化前的压力值与预设压力值的压差D2处于预设范围,控制所述供液机构20关停。
在一实施方式中,参见图3,电子雾化装置100还包括安装腔51,第一感应元件14和控制器件30设置于安装腔51,感应孔13的一端与供液腔11连通,感应孔13远离供液腔11的一端还连通安装腔51,第一感应元件14封盖于感应孔13远离供液腔11的一端。
其中,第一感应元件14可以设置于安装腔51的侧壁,通过导线与安装腔51内的控制器件30电连接。第一感应元件14与控制器件30也可以集成为一体,从而减少布线,进一步减少电路连接带来的短路、断路等问题,使得第一感应元件14与控制器件30之间电连接安全可靠。
在一实施方式中,参见图5,图5是如图2中所示的A区域的结构放大图。电子雾化装置100包括吸嘴组件40、雾化组件10和壳体50,雾化组件10连接吸嘴组件40,吸嘴组件40和雾化组件10配合界定出供液腔11;雾化组件10用于从供液腔11吸液并进行加热雾化或非加热雾化;壳体50与吸嘴组件40连接,壳体50设有安装腔51。
其中,壳体50与吸嘴组件40可以是一体成型或可拆卸连接,储液腔12可以设置于吸嘴组件40上或壳体50上,储液腔12也可以部分设置于吸嘴组件40,另外部分设置于壳体50,具体可根据实际需要选择。
在一实施方式中,参见图3,第一感应元件14设置于壳体50上,感应孔13包括设置于吸嘴组件40上的第一孔段131和设置于壳体50上的第二孔段132,第一 感应元件14封盖于第二孔段132朝向安装腔51的一端。
本实施例中,若考虑到感应孔13的气密性和液密性问题,壳体50与吸嘴组件40一体成型设计。从而避免壳体50与吸嘴组件40之间具有间隙,导致液体渗漏的情况的发生。
本实施例中,若考虑到成本问题,可以设置壳体50与吸嘴组件40可拆卸连接,由于第一感应元件14设置于壳体50且与吸嘴组件40分隔设置,因此在更换吸嘴组件40时,可以不更换第一感应元件14,第一感应元件14可以重复使用,从而减少成本。
在一实施方式中,参见图3和图5,吸嘴组件40包括吸嘴41和底座42,吸嘴41、雾化组件10以及底座42界定出供液腔11。具体的,雾化组件10连接吸嘴41并被吸嘴41夹持,吸嘴41上还设置有用于将气溶胶导出的雾化通道4110,雾化组件10的雾化面朝向雾化通道4110。底座42设置于吸嘴41靠近壳体50的一端,吸嘴41和底座42还用于与壳体50连接。
具体的,吸嘴41构成供液腔11的侧壁,底座42构成供液腔11的底壁、雾化组件10构成供液腔11的顶壁且用于雾化供液腔11内的气溶胶生成基质,当第一感应元件14设置于供液腔11的侧壁上时(参见图5),感应孔13完全设置于吸嘴41的侧壁。当第一感应元件14设置于安装腔51时(参见图3),感应孔13包括位于吸嘴41上的第一孔段131和位于壳体上的第二孔段132,第一孔段131的一端与供液腔11连通,另一端与壳体50上的形成的第二孔段132连通。
在一实施方式中,请结合图6,图6是如图1所示的电子雾化装置中吸嘴组件的结构爆炸图。第一感应元件14设置于供液腔11的侧壁上,供液腔11的侧壁外表面还设置有安装槽4120,第一感应元件14设置于安装槽4120内,感应孔13的一端与供液腔11连通,另一端位于安装槽4120底壁且被第一感应元件14所封盖。具体的,将第一感应元件14设置于安装槽4120内,一方面可以避免外力作用于第一感应元件14,使得第一感应元件14脱落或损坏;另一方面使得电子雾化装置100外形美观。
其中,当吸嘴组件40与壳体50可拆卸连接时,底座42和壳体50上均设置有连接结构,底座42与壳体50通过连接结构连接。例如,底座42靠近壳体50的一端设置有凸起,壳体50靠近底座42的一端设置有凹槽,吸嘴组件40与壳体50通过凸起和凹槽卡扣连接。在例如,底座42靠近壳体50的一端设置有正螺纹,壳体50靠近底座42的一端设置有反螺纹,吸嘴组件40与壳体50通过螺纹连接。当然,也可以是吸嘴41和壳体50上均设置有连接结构,底座42上不设置连接结构,具体可根据实际情况选择。
在一实施方式中,储液腔12设置于壳体50上,底座42被设置成在吸嘴组件40与壳体50连接时连通储液腔12和供液腔11,在吸嘴组件40与壳体50分离时封闭供液腔11。具体的,当储液腔12设置于安装腔51时,为了防止壳体50与吸嘴组件40分离导致供液腔11内的气溶胶生成基质流出供液腔11,例如,在吸嘴组件40与壳体50连接时,储液腔12通过底座42与供液腔11导通,从而不影响供液机构20驱动储液腔12内的液体向供液腔11供液。在更换一次性吸嘴组件40或给储液腔12注液的情景下,在吸嘴组件40与壳体50分离时,底座封闭供液腔11,从而避免供液腔11内的气溶胶生成基质流出供液腔11,造成浪费和卫生问题。可以理解的,底座42相当于单向阀,气溶胶生成基质只能流入供液腔11而不能流出。
在一实施方式中,参见图6和图7,图7是如图6所示的底座的结构爆炸图。 底座42包括端盖421和封闭件422,端盖421设有连通供液腔11的液孔4210,且与吸嘴41连接;封闭件422设置于端盖421上,且对应于液孔4210的位置设置有闭合缝4220,闭合缝4220在吸嘴组件40与壳体50分离时封闭液孔4210,在吸嘴组件40与壳体50连接时允许连通储液腔12和供液腔11。具体的,端盖421包括底板4211和环形凸缘4212,底板4211用于与壳体50连接,且底板4211与环形凸缘4212界定形成容置槽4213,封闭件422设置于容置槽4213内。其中,液孔4210设置于底板4211对应闭合缝4220的位置,封闭件422可以为硅胶或橡胶等具有弹性的材料。可以理解的,当储液腔12设置于安装腔51且壳体50与吸嘴组件40连接时,由于闭合缝4220具有一定的弹性,储液腔12部分可以穿过液孔4210和闭合缝4220,压缩封闭件422从而与供液腔11连通,当壳体50与吸嘴组件40分离时,储液腔12从闭合缝4220和液孔4210中脱离,封闭件422恢复,从而封闭闭合缝4220实现封闭供液腔11的目的。
在另一实施方式中,底座42上可以设置电动挡板(图未示),电动挡板与控制器件30电连接,在吸嘴组件40与壳体50连接时,控制器件30控制电动挡板动作以使储液腔12和供液腔11,在吸嘴组件40与壳体50分离时,控制器件30控制电动挡板动作以封闭供液腔11。
在一实施方式中,请参见图5和图6,吸嘴41包括吸嘴座411和发热座412,吸嘴座411设置于发热座412背离底座42的一端,吸嘴座411上设有雾化通道4110;发热座412上设置有安装槽4120,发热座412与吸嘴座411连接,夹持雾化组件10。本实施方式中,将吸嘴41分为吸嘴座411和发热座412,用户可以根据卫生和磨损情况,更换吸嘴座411,而不必将整个吸嘴41更换,有利于健康且减少使用成本。
本实施方式中,电子雾化装置100上还设置有探测通道52,气流感应件53连接于探测通道52远离雾化通道4110的一端。具体的,探测通道52的一端连通雾化通道4110,另一端被气流感应件53所封盖。在用户抽吸电子雾化装置100时,雾化通道4110内的气流发生变化,例如,雾化通道4110内气压变为负压时,气流感应件53通过探测通道52检测雾化通道4110内的气流变化,控制器件30基于气流感应件53检测到的气流变化,控制雾化组件10、第一感应元件14以及第二感应元件工作。其中,气流感应件可以设置于吸嘴组件40上,也可以设置于壳体50。
参见图4,图4是如图1所示电子雾化装置沿B-B线的剖视图。气流感应件53设置于壳体50上,探测通道52包括第一探测段521和第二探测段522,第一探测段521设置于发热座412上,第二探测段522设置于壳体50上,第一探测段521的一端连通雾化通道4110,第一探测段521的另一端与壳体50上的第二探测段522一端连通,第二探测段522的另一端被气流感应件53所封盖。具体的,将气流感应件53设置于壳体上,例如,设置于壳体上且与控制器件集成,可以减少布线,使气流感应件53与控制器件30之间电连接安全可靠。
在一实施方式中,参见图8,图8是本申请提供的电子雾化装置的又一实施例的剖视图。壳体50朝向吸嘴组件40的一端设有储液腔12。具体的,壳体50包括侧壁54和隔离壁55,隔离壁55设置于侧壁54围设形成的腔室内,且将腔室分隔形成安装腔51和收容腔56,收容腔56靠近吸嘴组件40设置,收容腔56作为储液腔12使用。
在另一实施方式中,参见图2和图9,图9是本申请提供的供液机构与油瓶连接的一实施例的结构示意图。电子雾化装置100还包括液瓶57,液瓶57设置于壳体50上,液瓶57设有储液腔12。具体的,液瓶57设置于收容腔56内,液瓶57 具有存储气溶胶生成基质的储液腔12。具体的,液瓶57包括瓶身571和瓶嘴572,瓶身571设置于收容腔56内,瓶嘴572用于在壳体50与吸嘴组件40连接时,穿过吸嘴组件40与供液腔11连通。本实施例中,液瓶57和壳体50上设置有限位结构,用于将液瓶57固定设置于壳体50上。例如,液瓶57和壳体50的其中一个设置有限位凸起,另一个设置有限位凹槽,在液瓶57设置于收容腔56内时,限位凸起被固定于限位凹槽内,从而将液瓶57固定设置于壳体50上。液瓶57通过限位结构固定于壳体50上,拆卸方便,便于用户自由地向液瓶57注液,实现重复利用,有利于减少用户使用成本。
在一实施方式中,请继续参见图9,供液机构20包括活塞21和驱动件22,活塞21可移动地设置于储液腔12;驱动件22的输出端连接活塞21,且与控制器件30电连接,用于驱动活塞21沿储液腔的侧壁移动,以向供液腔11供液。其中,驱动件22包括为电机221、蠕动泵或压缩泵等动力源。本实施方式中,活塞21组件位于储液腔12内且位于气溶胶生成基质底部,用于在驱动件22的驱动下,推动其上的气溶胶生成基质向供液腔11供液。
本实施方式中,驱动件22包括电机221和推杆222,推杆222的一端与电机221的输出端连接,另一端与活塞21连接,电机221在工作时,通过推杆222驱动活塞21,以将储液腔12内的气溶胶生成基质推入供液腔11内。
请继续参见图5,为优化产品设计,雾化组件10、供液腔11、储液腔12、供液机构20串联排布,在供液机构20工作时,驱动件22控制活塞21朝向供液腔11的方向移动,以将储液腔12内的气溶胶生成基质注入供液腔11内。
本申请提供的电子雾化装置,为供液腔11和储液腔12双液腔设计,控制器件30基于第一感应元件14检测得到的当前压力值P1,与预设压力值P0进行比较,若当前压力值P1与预设压力值P0的差值D1不在预设范围,控制器件30控制供液机构20,以驱动储液腔12内的液体向供液腔11供液,从而保证供液腔11内的压力一直维持在预设压力范围,实现即用即供的供液效果,有效控制对雾化组件10的液体供给,保证均匀供液,且供液腔11和储液腔12双液腔设计,控制器件30基于供液腔内的当前压力值P1与预设压力值P0的差值D1控制供液机构20驱动储液腔12内的液体向供液腔11供液,解决了传统的单液腔容易受外界大气压影响,发生的液体渗漏和供液不均匀的问题。
为了解决传统的电子雾化装置存在液体渗漏、供液不均等问题,本申请还提供一种电子雾化装置的自动供液方法,参见图10,图10是本申请提供的自动供液方法的一实施例的流程示意图。本申请提供一种自动供液方法,包括:
步骤S1:检测供液腔内的当前压力值。
具体的,电子雾化装置包括雾化组件、供液腔、第一感应元件,供液腔内存储有气溶胶生成基质,雾化组件用于在通电条件下雾化供液腔内的气溶胶生成基质以生成气溶胶,第一感应元件用于检测供液腔内的当前压力值P1。
其中,第一感应元件可以为气压传感器或液压传感器,第一感应元件用于检测供液腔内的气压值或液压值。
在一实施方式中,第一感应元件实时检测供液腔内的当前压力值P1,如,在用户使用电子雾化装置过程中和电子雾化装置的闲置阶段,第一感应元件均检测供液腔内的当前压力值P1。
在另一实施方式中,第一感应元件用于在每次雾化过程中,检测供液腔内的当前压力值P1,即,第一感应元件只在用户抽吸电子雾化装置时检测供液腔内的当前 压力值P1。
步骤S2:基于当前压力值与预设压力值的差值控制供液机构工作,以驱动储液腔内的液体向供液腔供液。
具体的,电子雾化装置还包括储液腔、供液机构以及控制器件,储液腔内存储有气溶胶生成基质,供液机构用于驱动储液腔内的气溶胶生成基质向供液腔供液,控制器件电连接供液机构和第一感应元件,控制器件基于第一感应元件检测得到供液腔内的当前压力值P1,与预设压力值P0的差值D1控制供液机构驱动储液腔内的气溶胶生成基质向供液腔供液。具体的,若当前压力值P1小于预设压力值P0,且当前压力值P1与预设压力值P0的差值D1小于预设限值,控制器件控制供液机构工作,以驱动储液腔内的气溶胶生成基质向供液腔供液,从而保证供液腔内气溶胶生成基质能够维持雾化组件正常雾化。
可以理解的,在用户抽吸电子雾化装置时,随着供液腔内气溶胶生成基质被雾化组件雾化消耗,供液腔内压力会减小,当供液腔内的压力减小到一定程度,会导致供液腔内的气溶胶生成基质对雾化组件供液不足,造成雾化组件干烧以及产生有毒有害气体,而本申请中的控制器件可以基于第一感应元件检测得到的当前压力值P1与预设压力值P0的差值D1,控制供液机构驱动储液腔内的气溶胶生成基质向供液腔供液,保证供液腔内的气溶胶生成基质对雾化组件正常供液,实现了电子雾化装置即用即供的供液效果,且供液腔内的压力一直维持在预设压力范围,能够保证供液腔对雾化组件均匀供液的目的。另外,电子雾化装置设置供液腔和储液腔,控制器件基于当前压力值P1与预设压力值P0的差值D1,控制供液机构驱动储液腔内的气溶胶生成基质向供液腔供液,相比于单液腔,供液腔内的气溶胶生成基质含量较少,可以减少气溶胶生成基质通过雾化组件渗漏的情况发生。
其中,步骤S1包括:响应于抽吸触发信号,检测供液腔内的当前压力值;其中抽吸触发信号由用户抽吸电子雾化装置时触发。
具体的,在用户抽吸电子雾化装置时,电子雾化装置内的气流会发生改变,电子雾化装置中还设置有气流感应件,气流感应件可以为频率硅麦或咪头,用于检测电子雾化装置内的气流变化,气流感应件与控制器件电连接,控制器件基于气流感应件检测到电子雾化装置内的气流发生变化,控制第一感应元件检测供液腔内的当前压力值P1。
其中,预设压力值P0可以为用户刚触发抽吸触发信号时,第一感应元件检测供液腔的当前压力值P1作为预设压力值P0。或预设压力值P0为第一感应元件在电子雾化装置闲置阶段,即电子雾化装置雾化前,检测供液腔内的压力值P3作为预设压力值P0。或预设压力值P0为预先设置在控制器件内的数值。或预设压力值P0以实时检测的外界大气压力值P2作为预设压力值P0。
在一具体实施方式中,控制器件通过第一感应元件检测供液腔在雾化前的压力值P3作为预设压力值P0。
在另一具体实施方式中,电子雾化装置还包括第二感应元件,第二感应元件用于检测外界大气压力值P2,控制器件通过第二感应元件检测到外界大气压力值P2作为预设压力值P0。
或在又一具体实施方式中,电子雾化装置内不设置第二感应元件,第一感应元件还用于检测外界大气压力值P2。具体的,在电子雾化装置雾化之前,第一感应元件检测供液腔内的压力值P3和外界大气压力值P2,同时为控制器件输出供液腔内的压力值P3和外界大气压力值P2,或直接为控制器件输出供液腔内的压力值P3和 外界大气压力值P2的压差D2。
具体的,参见图11,图11是本申请提供的自动供液方法的另一实施例的流程示意图。本实施例中,步骤S1之前还包括:
步骤S01:响应于供液腔在雾化前的压力值与预设压力值的压差处于非预设范围,控制供液机构启动,以驱动储液腔内的液体向供液腔供液,或驱动供液腔内的液体向储液腔导液。
具体的,在雾化前,即,电子雾化装置的闲置阶段,控制器件基于检测到的供液腔内的压力值P3,和检测到的外界大气压力值P2进行比较,响应于供液腔在雾化前的压力值P3和外界大气压力值P2的压差D2处于非预设范围,控制供液机构启动。其中,非预设范围可以是压差D2不等于0,或是压差D2比10Pa、20Pa、50Pa大。
具体的,在一情景中,供液腔内的压力值P3小于外界大气压力值P2,此时,控制器件控制供液机构工作,以驱动储液腔内的气溶胶生成基质向供液腔供液,使得供液腔内的压力值P3与外界大气压力值P2的压差D2处于预设范围。
在另一情景中,供液腔内的压力值P3大于外界大气压力值P2,此时,控制器件控制供液机构工作,以驱动供液腔内的气溶胶生成基质向储液腔导液,使得供液腔内的压力值P3与外界大气压力值P2的压差D2处于预设范围。
步骤S02:响应于供液腔在雾化前的压力值与预设压力值的压差处于预设范围,控制所述供液机构关停。
具体的,在供液机构工作以使供液腔内的压力值P3与外界大气压力值P2处于预设范围时,供液腔在雾化前的压力值P3和外界大气压力值P2的压差D2基本平衡,控制器件响应于供液腔在雾化前的压力值P3和外界大气压力值P2的压差D2处于预设范围,控制供液机构关停,此时供液腔内的压力值P3与实际的外界大气压力值P2基本相同。其中,预设范围可以是压差D2等于0,或是压差D2为0-10Pa、0-20Pa或0-50Pa范围内。
需要说明的是,将供液腔内的压力值P3和外界大气压力值P2平衡的步骤处于电子雾化装置闲置阶段,而在电子雾化装置响应于抽吸触发信号后,控制器件只基于当前压力值P1与预设压力值P0的差值D1控制供液机构工作。具体的,控制器件可以基于雾化组件停止工作预设时间,例如,雾化组件停止工作10分钟、20分钟或更长,判断电子雾化装置处于闲置阶段。以避免影响用户正常抽吸。
参见图12,图12是如图10中所示的步骤S2的一实施例的流程示意图。本实施例中,步骤S2包括:
步骤S21:响应于差值达到预设的第一限值,控制供液机构启动,以驱动储液腔内的液体向供液腔供液。
具体的,响应于抽吸触发信号,雾化组件雾化气溶胶生成基质,当雾化组件微孔内的气溶胶生成基质消耗,雾化组件内微孔会产生毛细力,将供液腔内的气溶胶生成基质导流至雾化组件,从而使供液腔内压力发生变化。随着供液腔内气溶胶生成基质被雾化组件雾化消耗,控制器件计算当前压力值P1与预设压力值P0的差值D1,响应于第一感应元件检测到的当前压力值P1与预设压力值P0的差值D1达到预设的第一限值X1,控制器件控制供液机构启动,以驱动储液腔内的气溶胶生成基质向供液腔供液。
其中,第一限值X1可通过实验得到,当前压力值P1与预设压力值P0的差值D1达到第一限值X1以内时,可以保证供液腔内的气溶胶生成基质均匀地向雾化组 件供液。当然,第一限值X1也可以设置为0,即,供液腔内的气溶胶生成基质刚被消耗,储液腔就向供液腔供液,以保持供液腔内的当前压力值始终与预设压力值平衡。
在一实施方式中,第一限值X1的取值范围为-100Pa-(-200Pa),即当前压力值P1小于预设压力值P0,且当前压力值P1与预设压力值P0的差值D1为100Pa-200Pa。例如,在当前压力值P1小于预设压力值P0,且当前压力值P1与预设压力值P0的差值D1达到150Pa时,控制器件控制供液机构启动,以驱动储液腔内的气溶胶生成基质向供液腔供液。
步骤S22:响应于差值达到预设的第二限值,控制供液机构关停,以停止驱动储液腔内的液体向供液腔供液。
具体的,随着供液机构驱动储液腔内的气溶胶生成基质向供液腔供液,控制器件计算当前压力值P1与预设压力值P0的差值D1,响应于第一感应元件检测到的当前压力值P1与预设压力值P0的差值D1达到预设的第二限值X2,控制器件控制供液机构关停,以停止驱动储液腔内的气溶胶生成基质向供液腔供液。
其中,第二限值X2大于第一限值X1,第二限值X2可通过实验得到,在当前压力值P1与预设压力值P0的差值D1达到第二限值X2以内时,可以保证供液腔内的气溶胶生成基质均匀地向雾化组件供液,且不会由于供液腔内的压力过大,导致供液腔内气溶胶生成基质发生渗漏的问题产生。
在一实施方式中,第二限值X2的取值范围为250Pa-350Pa,即当前压力值P1大于预设压力值P0,且当前压力值P1与预设压力值P0的差值D1为250Pa-350Pa。例如,在当前压力值P1大于预设压力值P0,且当前压力值P1与预设压力值P0的差值D1达到300Pa时,控制器件控制供液机构关停,以停止驱动储液腔内的气溶胶生成基质向供液腔供液。
当然,第二限值X2也可以设置为0,即,只要供液腔内的当前压力值P1等于预设压力值P0,储液腔就停止向供液腔供液,以保持供液腔内的当前压力值始终与预设压力值平衡。
需要说明的是,用户抽吸一口电子雾化装置的时间一般维持3-5s左右,一次供液可能维持或不能维持用户抽吸一口时雾化所需的气溶胶生成基质量,因此,在一次抽吸触发信号中,控制器件可能控制供液机构驱动储液腔内的气溶胶生成基质向供液腔供液N次,即差值D1达到第一限值X1的次数为N次,相应的,控制器件可能控制供液机构停止驱动储液腔内的气溶胶生成基质向供液腔供液M次,即差值D1达到第二限值X2的次数为M次,从而保证供液腔内的溶胶生成基质含量能够维持用户抽吸。如图13所示,图13是本申请提供的供液时供液腔内当前压力值与预设压力值的差值的一实施例的曲线示意图,其中,横坐标代表时间,纵坐标代表供液腔内当前压力值P1与预设压力值P0的差值D1。如图13所示,一次抽吸触发信号T中,会出现多个上尖峰和下尖峰,也就是说,在一次抽吸触发信号T中,可能储液腔内的气溶胶生成基质刚供液给供液腔,供液腔内的气溶胶生成基质随之就被消耗,从而需要储液腔多次向供液腔供液,以使供液腔内的当前压力值P1始终高于压力下限值。
在又一实施例中,步骤S2包括:响应于差值D1达到预设的第一限值X1,控制供液机构启动,并保持供液机构运行预设时长。
具体的,控制器件计算当前压力值P1与预设压力值P0的差值D1,响应于第一感应元件检测到的当前压力值P1与预设压力值P0的差值D1达到预设的第一限值 X1,控制器件控制供液机构启动,且控制供液机构运行预设时长,以在预设时长内驱动储液腔内的气溶胶生成基质向供液腔供液。在供液机构运行预设时长后,控制器件控制供液机构关停,以停止驱动储液腔内的气溶胶生成基质向供液腔供液。
其中,预设时长可通过实验得到,当供液腔内的当前压力值P1与预设压力值P0的差值D1达到第一限值X1,控制器件控制供液机构运行预设时长后,使得供液腔内的当前压力值P1大于或等于预设压力值P0,且供液腔内的当前压力值P1与预设压力值P0的差值D1处于0至第二限值X2范围。例如,第一限值X1为-100Pa,第二限值X2为300Pa,控制器件基于第一感应元件检测得到的供液腔内的当前压力值P1小于预设压力值P0,且当前压力值P1与预设压力值P0的差值D1为100Pa时,控制器件控制供液机构运行预设时长,在供液机构运行预设时长后,控制器件控制供液机构关停,此时供液腔内的当前压力值P1大于或等于预设压力值P0,如,当前压力值P1与预设压力值P0的差值D1为0Pa-300Pa范围内,但不超过300Pa。
其中,控制器件30可以为控制线路板或计算机设备,参见图14,图14是本申请提供的计算机设备的一实施例的模块示意图。计算机设备包括相互连接的处理器301和存储器302。
存储器302存储有计算机程序。
处理器301用于执行存储器302存储的计算机程序。
其中,处理器301还可以称为CPU(Central Processing Unit,中央处理单元)。处理器301可能是一种集成电路芯片,具有信号的处理能力。处理器301还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器302可以为内存条、TF卡等,可以存储设备的计算机设备中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器302中。计算机设备的存储器302按用途可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。外存通常是磁性介质或光盘等,能长期保存信息。内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。
参见图15,图15是本申请提供的存储介质的一实施例的模块示意图。本申请的存储介质存储能够实现上述所有方法的程序数据204,其中,该程序数据204可以以软件产品的形式存储在存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器301执行本申请各个实施方式方法的全部或部分步骤。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (27)

  1. 一种电子雾化装置,其中,所述电子雾化装置包括供液腔、储液腔、感应孔、第一感应元件、供液机构和控制器件,所述第一感应元件通过所述感应孔检测所述供液腔内的当前压力值,所述供液机构用于驱动所述储液腔内的液体向所述供液腔供液,所述控制器件电连接所述供液机构和所述第一感应元件;
    其中,所述控制器件基于所述当前压力值与预设压力值的差值控制所述供液机构,以驱动所述储液腔内的液体向所述供液腔供液。
  2. 根据权利要求1所述的电子雾化装置,其中,所述第一感应元件为气压传感器,所述气压传感器封盖于所述感应孔远离所述供液腔的一端,且所述感应孔的另一端被所述供液腔内的液体所液封,以在所述感应孔内形成空气柱。
  3. 根据权利要求2所述的电子雾化装置,其中,所述感应孔沿孔径方向的横截面的直径小于等于5.0mm。
  4. 根据权利要求3所述的电子雾化装置,其中,所述感应孔沿孔径方向的横截面呈圆形孔,所述圆形孔的直径大于等于0.3mm且小于等于5.0mm。
  5. 根据权利要求4所述的电子雾化装置,其中,所述感应孔设置于所述供液腔的侧壁上,所述感应孔的长度大于等于1.0mm且小于等于50mm。
  6. 根据权利要求2至5任一项所述的电子雾化装置,其中,所述电子雾化装置还包括第二感应元件,所述第二感应元件电连接所述控制器件,所述第二感应元件用于检测大气压,所述大气压作为所述预设压力值。
  7. 根据权利要求1所述的电子雾化装置,其中,所述第一感应元件为液压传感器,所述供液腔内的液体通过所述感应孔接触所述液压传感器。
  8. 根据权利要求2或7所述的电子雾化装置,其中,所述电子雾化装置还包括安装腔,所述控制器件设置于所述安装腔,所述感应孔远离所述供液腔的一端还连通所述安装腔,所述第一感应元件封盖于所述感应孔远离所述供液腔的一端;或
    所述感应孔设置于所述供液腔的侧壁上。
  9. 根据权利要求8所述的电子雾化装置,其中,所述电子雾化装置包括:
    吸嘴组件;
    雾化组件,连接所述吸嘴组件,所述吸嘴组件和所述雾化组件配合界定出所述供液腔,所述雾化组件用于从所述供液腔吸液进行雾化;
    壳体,与所述吸嘴组件连接,所述壳体设有所述安装腔;
    其中,所述储液腔设置于所述吸嘴组件和/或所述壳体上;
    所述感应孔包括设置于所述吸嘴组件上的第一孔段和设置于所述壳体上的第二孔段,所述第一感应元件封盖于所述第二孔段朝向所述安装腔的一端;或所述感应孔设置于所述吸嘴组件上,所述第一感应元件连接所述吸嘴组件。
  10. 根据权利要求9所述的电子雾化装置,其中,所述第一感应元件封盖于所述第二孔段朝向所述安装腔的一端,且所述第一感应元件设置于所述控制器件上。
  11. 根据权利要求9所述的电子雾化装置,其中,所述吸嘴组件包括:
    吸嘴,所述雾化组件连接所述吸嘴,所述吸嘴的侧壁设有至少部分的所述感应孔;
    底座,连接所述吸嘴,且与所述吸嘴及所述雾化组件界定出所述供液腔;所述底座或所述吸嘴与所述壳体连接;
    其中,所述底座设置成在所述吸嘴组件与所述壳体连接时连通所述储液腔和供 液腔,在所述吸嘴组件与所述壳体分离时封闭所述供液腔。
  12. 根据权利要求11所述的电子雾化装置,其中,所述吸嘴包括:
    吸嘴座,设有雾化通道,所述雾化组件的雾化端朝向所述雾化通道设置;
    发热座,与所述吸嘴座连接,夹持所述雾化组件;
    其中,所述发热座和所述壳体上还设有探测通道,所述探测通道连通所述雾化通道,所述安装腔还设有气流感应件,所述气流感应件连接于所述探测通道远离所述雾化通道的一端。
  13. 根据权利要求11所述的电子雾化装置,其中,所述底座包括:
    端盖,设有连通所述供液腔的液孔,且与所述吸嘴连接;
    封闭件,设置于所述端盖上,且对应于所述液孔的位置设置有闭合缝,所述闭合缝在所述吸嘴组件与所述壳体分离时封闭所述液孔,在所述吸嘴组件与所述壳体连接时允许连通所述储液腔和供液腔。
  14. 根据权利要求13所述的电子雾化装置,其中,所述壳体朝向所述吸嘴组件的一端设有储液腔;或
    所述电子雾化装置还包括液瓶,所述液瓶设置于所述壳体上,所述液瓶设有所述储液腔。
  15. 根据权利要求9或14所述的电子雾化装置,其中,所述供液机构包括:
    活塞,可移动地设置于所述储液腔;
    驱动件,所述驱动件的输出端连接所述活塞,且与所述控制器件电连接,用于驱动所述活塞沿所述储液腔的侧壁移动,以向所述供液腔供液。
  16. 一种自动供液方法,应用于电子雾化装置,其中,包括:
    检测供液腔内的当前压力值;
    基于所述当前压力值与预设压力值的差值控制供液机构工作,以驱动储液腔内的液体向所述供液腔供液。
  17. 根据权利要求1所述的自动供液方法,其中,所述检测供液腔内的当前压力值,包括:
    响应于抽吸触发信号,检测供液腔内的当前压力值;其中所述抽吸触发信号由用户抽吸所述电子雾化装置时触发。
  18. 根据权利要求17所述的自动供液方法,其中,检测所述供液腔在雾化前的压力值作为所述预设压力值。
  19. 根据权利要求17所述的自动供液方法,其中,检测外界大气压力值作为所述预设压力值。
  20. 根据权利要求19所述的自动供液方法,其中,所述检测供液腔内的当前压力值,之前包括:
    响应于所述供液腔在雾化前的压力值与所述预设压力值的压差处于非预设范围,控制所述供液机构启动,以驱动所述储液腔内的液体向所述供液腔供液,或驱动所述供液腔内的液体向所述储液腔导液;
    响应于所述供液腔在雾化前的压力值与所述预设压力值的压差处于预设范围,控制所述供液机构关停。
  21. 根据权利要求18或19任一项所述的自动供液方法,其中,所述基于所述当前压力值与预设压力值的差值控制供液机构工作,包括:
    响应于所述差值达到预设的第一限值,控制所述供液机构启动,以驱动所述储液腔内的液体向所述供液腔供液;
    响应于所述差值达到预设的第二限值,控制所述供液机构关停,以停止驱动所述储液腔内的液体向所述供液腔供液;
    其中,所述第一限值小于所述第二限值。
  22. 根据权利要求21所述的自动供液方法,其中,在一次抽吸触发信号中,所述差值达到所述第一限值的次数为N次,所述差值达到所述第二限值的次数为M次,N个第一限值控制所述供液机构启动N次,M个第二限值控制所述供液机构关停M次。
  23. 根据权利要求17所述的自动供液方法,其中,所述基于所述当前压力值与预设压力值的差值控制供液机构工作,包括:
    响应于所述差值达到预设的第一限值,控制所述供液机构启动,并保持所述供液机构运行预设时长。
  24. 根据权利要求16所述的自动供液方法,其中,所述当前压力值为所述供液腔内的气压值或液压值。
  25. 一种存储介质,其上存储有程序数据,其中,所述程序数据被处理器执行时实现如权利要求16-24任一项所述自动供液方法的步骤。
  26. 一种计算机设备,其中,包括相互连接的处理器和存储器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时,实现如权利要求16-24任一项所述自动供液方法的步骤。
  27. 一种电子雾化装置,其特征在于,所述电子雾化装置包括供液腔、储液腔、感应元件、供液机构和如权利要求26所述的计算机设备,所述计算机设备电连接所述感应元件和所述供液机构,所述感应元件用于检测所述供液腔内的当前压力值。
PCT/CN2022/095756 2022-05-27 2022-05-27 电子雾化装置、储存介质、计算机设备及其自动供液方法 WO2023226035A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095756 WO2023226035A1 (zh) 2022-05-27 2022-05-27 电子雾化装置、储存介质、计算机设备及其自动供液方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095756 WO2023226035A1 (zh) 2022-05-27 2022-05-27 电子雾化装置、储存介质、计算机设备及其自动供液方法

Publications (1)

Publication Number Publication Date
WO2023226035A1 true WO2023226035A1 (zh) 2023-11-30

Family

ID=88918217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095756 WO2023226035A1 (zh) 2022-05-27 2022-05-27 电子雾化装置、储存介质、计算机设备及其自动供液方法

Country Status (1)

Country Link
WO (1) WO2023226035A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107713017A (zh) * 2017-10-18 2018-02-23 深圳市新宜康电子技术有限公司 自动检测供油的电子烟及其工作方法
CN109717511A (zh) * 2017-10-30 2019-05-07 常州市派腾电子技术服务有限公司 电子烟、电子烟的控制方法及装置
CN110418583A (zh) * 2017-04-07 2019-11-05 菲利普莫里斯生产公司 用于检查液体储存部分的填充水平的系统和方法
CN210726697U (zh) * 2019-06-14 2020-06-12 常州市派腾电子技术服务有限公司 雾化器及电子烟
CN112638453A (zh) * 2018-06-26 2021-04-09 欧米伽生命科学公司 喷雾剂产生装置
CN114158780A (zh) * 2021-11-22 2022-03-11 深圳麦克韦尔科技有限公司 供液组件、主机和电子雾化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418583A (zh) * 2017-04-07 2019-11-05 菲利普莫里斯生产公司 用于检查液体储存部分的填充水平的系统和方法
CN107713017A (zh) * 2017-10-18 2018-02-23 深圳市新宜康电子技术有限公司 自动检测供油的电子烟及其工作方法
CN109717511A (zh) * 2017-10-30 2019-05-07 常州市派腾电子技术服务有限公司 电子烟、电子烟的控制方法及装置
CN112638453A (zh) * 2018-06-26 2021-04-09 欧米伽生命科学公司 喷雾剂产生装置
CN210726697U (zh) * 2019-06-14 2020-06-12 常州市派腾电子技术服务有限公司 雾化器及电子烟
CN114158780A (zh) * 2021-11-22 2022-03-11 深圳麦克韦尔科技有限公司 供液组件、主机和电子雾化装置

Similar Documents

Publication Publication Date Title
US10561803B2 (en) Ultrasonic atomizer and electronic cigarette
WO2021169654A1 (zh) 雾化器及气溶胶发生装置
CN105559148A (zh) 雾化器及其电子烟
WO2022083485A1 (zh) 一种雾化器及其电子雾化装置
WO2023005933A1 (zh) 雾化器及气溶胶发生装置
CN211458847U (zh) 雾化器及气溶胶发生装置
EP4091464A1 (en) Atomiser and aerosol generating device with same
WO2022179233A1 (zh) 发热体组件、雾化器及电子雾化装置
WO2023221376A1 (zh) 一种雾化芯组件、雾化器及气溶胶产生装置
WO2023116381A1 (zh) 进气结构、雾化器及气溶胶发生装置
CN116807082A (zh) 一种防漏液电子雾化器及其控制方法
CN114246376A (zh) 电子雾化装置及雾化器
WO2022151965A1 (zh) 电子雾化装置及其雾化器和雾化组件
CN114246377A (zh) 电子雾化装置及其主机和雾化器
WO2023226035A1 (zh) 电子雾化装置、储存介质、计算机设备及其自动供液方法
CN112273728A (zh) 一种电源组件以及电子雾化装置
WO2021180194A1 (zh) 双气道进气结构、电源装置及气溶胶发生装置
CN214283306U (zh) 一种电源组件以及电子雾化装置
CN218219162U (zh) 电子雾化装置
WO2021226835A1 (zh) 雾化器和电子雾化装置
CN115119976A (zh) 电子雾化装置、储存介质、计算机设备及其自动供液方法
CN115005509A (zh) 电子雾化装置
WO2023093099A1 (zh) 雾化器及气溶胶发生装置
WO2023108581A1 (zh) 电子雾化装置及其主机和雾化器
CN218219161U (zh) 电子雾化装置、雾化组件及雾化芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943233

Country of ref document: EP

Kind code of ref document: A1