WO2023224384A1 - 각형 이차전지 - Google Patents

각형 이차전지 Download PDF

Info

Publication number
WO2023224384A1
WO2023224384A1 PCT/KR2023/006678 KR2023006678W WO2023224384A1 WO 2023224384 A1 WO2023224384 A1 WO 2023224384A1 KR 2023006678 W KR2023006678 W KR 2023006678W WO 2023224384 A1 WO2023224384 A1 WO 2023224384A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
cooling unit
case
heat
battery cell
Prior art date
Application number
PCT/KR2023/006678
Other languages
English (en)
French (fr)
Inventor
이용호
이진규
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP23807903.2A priority Critical patent/EP4336626A1/en
Priority to CN202380012391.6A priority patent/CN117501516A/zh
Publication of WO2023224384A1 publication Critical patent/WO2023224384A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/308Detachable arrangements, e.g. detachable vent plugs or plug systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/394Gas-pervious parts or elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a prismatic secondary battery that can suppress the heat propagation phenomenon in which other secondary batteries around it continuously overheat when thermal runaway occurs.
  • secondary batteries can be recharged and have been extensively researched and developed in recent years due to their small size and high capacity.
  • Secondary batteries are classified into coin-shaped batteries, cylindrical batteries, square-shaped batteries, and pouch-shaped batteries, depending on the shape of the battery case.
  • the electrode assembly mounted inside the battery case in a secondary battery is a power generating element capable of charging and discharging consisting of a stacked structure of electrodes and a separator.
  • Patent Document 1 Korean Patent No. 10-1270796 (announced on June 5, 2013)
  • the purpose of the present invention is to provide a secondary battery that can effectively suppress and prevent heat propagation due to thermal runaway occurring in the secondary battery.
  • the present invention relates to a prismatic secondary battery, and in one example, a case made of metal, at least one battery cell accommodated in the case, a cooling unit disposed on at least one side of the case, and the cooling unit is fixed and the battery It includes a fixed body with a venting hole formed to guide the gas generated in the cell and passing through the cooling unit to the outside of the case.
  • the cooling unit includes an absorbent material impregnated with a liquid that is vaporized by heat generated from the battery cell, and a heat-conducting body having an insertion hole into which the absorbent material is inserted.
  • the absorbent material is a superabsorbent matrix
  • the superabsorbent matrix may include superabsorbent polymer (SAP) or superabsorbent fiber (SAF).
  • the liquid impregnated in the absorbent material may be water.
  • the cooling unit may include a cover that is joined to the front and rear of the heat-conducting body in the flow direction of the gas generated in the battery cell and moves to the venting hole, and melted by the heat of the gas.
  • the battery cell is a pouch-type battery cell with an electrode lead protruding to the outside, and the electrode lead may protrude in one direction of the case where the cooling unit is disposed.
  • the prismatic secondary battery of the present invention may include a side case coupled to one end of the case and covering the fixed body, and a bus bar provided between the fixed body and the side case and electrically connected to the electrode lead. there is.
  • a bus bar hole is formed in the bus bar that communicates with the venting hole and is open toward the outside of the side case.
  • the cooling unit is disposed on at least one of the front and rear of the heat-conducting body with respect to the flow direction of the gas generated in the battery cell and moving to the venting hole, and is disposed on the gas.
  • a filter that filters particles of a certain size or larger.
  • venting hole of the fixed body may be provided with an end filter that filters particles of a predetermined size or larger contained in the gas that has passed through the cooling unit.
  • the end filter may be broken or separated from the venting hole when a pressure exceeding a predetermined value is applied.
  • the prismatic secondary battery of the present invention having the above configuration, high-temperature gases and particles generated by thermal runaway phenomenon are discharged to the outside through a cooling unit containing a cooling liquid. Therefore, the prismatic secondary battery of the present invention greatly reduces the risk of heat propagation by discharging the high-temperature ignition source emitted from the overheated battery cell after it is cooled inside the case.
  • the rectangular secondary battery can effectively suppress the risk of external fire caused by the ignition source of high-temperature particles by installing a filter that filters out particles exceeding a certain size in the cooling unit and venting hole.
  • FIG. 1 is a perspective view of a prismatic secondary battery according to an embodiment of the present invention.
  • Figure 2 is an exploded perspective view of the square secondary battery of Figure 1.
  • FIG. 3 is a diagram illustrating a cooling unit included in the square secondary battery of FIG. 1.
  • Figure 4 is a diagram showing the cooling action of the cooling unit in a thermal runaway state.
  • FIG. 5 is a diagram showing a cooling unit in another embodiment of the present invention.
  • Figure 6 is a diagram showing an end filter provided in a venting hole in another embodiment of the present invention.
  • Figure 7 is a side perspective view showing a venting hole equipped with a cooling unit and an end filter.
  • Figure 8 is a diagram showing a structure in which an end filter can be separated due to excessive internal pressure.
  • the gig-type secondary battery of the present invention includes a case made of metal, at least one battery cell accommodated in the case, a cooling unit disposed on at least one side of the case, And it includes a fixed body in which a venting hole is formed to secure the cooling unit and guide gas generated from the battery cell and passing through the cooling unit to the outside of the case.
  • the cooling unit includes an absorbent material impregnated with a liquid that is vaporized by heat generated from the battery cell, and a heat-conducting body having an insertion hole into which the absorbent material is inserted.
  • FIG. 1 is a perspective view of a prismatic secondary battery 10 according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the prismatic secondary battery 10 of FIG. 1 .
  • the square secondary battery 10 of the present invention includes a case made of metal and at least one battery cell 200 accommodated in the case.
  • the battery cell 200 in the illustrated embodiment is a pouch-type battery cell 200 with a bi-directional terminal in which electrode leads 210 each protrude on both sides in the width direction, and is comprised of two pouch-type battery cells. (200) is stored in the case.
  • Cases can be made by extruding metal materials such as aluminum, stainless steel, or alloys containing them.
  • the case in consideration of the easy storage of the battery cells 200 and the cost of extrusion molding, the case is coupled to the main case 110, which has a cross-section in the shape of the lowercase letter "n" of the English alphabet, and the lower opening. It consists of a lower plate 130.
  • the prismatic secondary battery 10 of the present invention includes a cooling unit 300 disposed on at least one side of the case, and a fixing body 400 that fixes the cooling unit 300 to the case.
  • the cooling unit 300 is used to cool the high-temperature gas generated from the battery cell 200, which is overheated due to thermal runaway, to below the ignition temperature before discharging it to the outside.
  • the cooling unit 300 operates in an emergency situation where high-temperature gas occurs due to thermal runaway, and must fully maintain the cooling function in normal conditions.
  • the cooling unit 300 includes an absorbent material 310 impregnated with a liquid that is vaporized by the heat generated from the battery cell 200, and a heat-conducting body 320 formed with an insertion hole 322 into which the absorbent material 310 is inserted.
  • the heat-conducting body 320 which embeds the absorber 310 in the insertion hole 322, is a structure that supports the absorber 310 and at the same time serves to dissipate heat absorbed by the absorber 310 to the surroundings. As the heat-conducting body 320 radiates heat to the surroundings, the time for the liquid in the absorber 310 to vaporize is delayed, and thus the heat absorption effect of the liquid lasts for a long time.
  • the fixed body 400 serves to fix the cooling unit 300 to the case, and has a venting hole 410 that guides the gas generated from the battery cell 200 and passed through the cooling unit 300 to the outside of the case. It is equipped with The front and rear of the cooling unit 300 fixed to the fixed body 400 (based on the flow direction of the high-temperature gas) are not blocked, and the rear and venting holes of the cooling unit 300 that enter the inside of the fixed body 400 ( 410) There is a gap between them so the flow of gas is not interrupted.
  • the absorbent material 310 is an absorbent material 310 comprising a superabsorbent matrix, for example, Super Absorbent Polymer (SAP) or Super Absorbent Fiber (SAF). You can.
  • the highly absorbent matrix is porous or fibrous and can absorb a large amount of liquid by exhibiting capillary action, and the superabsorbent fiber can be manufactured in the form of a fiber such as a non-woven fabric by processing a superabsorbent polymer.
  • the specific type of the superabsorbent polymer and the superabsorbent fiber produced therefrom is not particularly limited, and any type that has an excellent absorption ability for fluid, especially water, can be used without limitation.
  • examples of superabsorbent polymers include polyacrylic acid, polyacrylate, polyacrylate graft polymer, starch, cross-linked carboxymethylated cellulose, acrylic acid copolymer, hydrolyzed starch-acrylnitrile graft copolymer, and starch-acrylic acid graft.
  • Copolymer saponified vinyl acetate-acrylic acid ester copolymer, hydrolyzed acrylonitrile copolymer, hydrolyzed acrylamide copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, polyvinylsulfonic acid , polyvinylphosphonic acid, polyvinyl phosphoric acid, polyvinyl sulfate, sulfonated polystyrene, polyvinylamine, polydialkylaminoalkyl (meth)acrylamide, polyethyleneimine, polyallylamine, polyallylguanidine, polydimethyldiallylammonium hydride.
  • One or more selected from the group consisting of salts, crosslinked polyacrylic acid, and crosslinked acrylic acid hollow polymers may be included, but are not limited thereto.
  • the type of acrylic acid copolymer used as the superabsorbent polymer in the present invention is not particularly limited, but is preferably acrylic acid monomer and maleic acid, itaconic acid, acrylamide, 2-acrylamide-2-methylpropanesulfonic acid, 2-(meth ) It may be a copolymer containing one or more comonomers selected from the group consisting of acryloylethanesulfonic acid, 2-hydroxyethyl (meth)acrylate, and styrenesulfonic acid.
  • the superabsorbent polymer may have a water absorption amount of 10 g/g to 500 g/g, preferably 50 g/g to 200 g/g, but is not limited thereto. That is, 10 g to 500 g of water, preferably 50 g to 200 g, can be absorbed per 1 g of superabsorbent polymer.
  • the greater the amount of water absorbed by the superabsorbent polymer the longer the cooling effect can be improved.
  • it exceeds 500 g/g the fluidity of the superabsorbent polymer increases and it is difficult to maintain its shape, making effective cooling impossible.
  • it is less than 10 g/g the duration of the cooling effect may be too short and ineffective.
  • the liquid impregnated in the absorbent material 310 may be water.
  • Water is the substance with the greatest sensible and latent heat among readily available liquids. Therefore, the water contained in the absorbent material 310 is suitable for application to the cooling unit 300 of the present invention because it absorbs a large amount of heat during the phase change process from the liquid state to gas.
  • the cooling unit 300 is a cover attached to the front and rear of the heat-conducting body 320 with respect to the flow direction of the gas generated in the battery cell 200 and moving to the venting hole 410 of the fixed body 400.
  • 330 may be included.
  • the cover 330 is a membrane member to prevent the liquid impregnated in the absorbent material 310 from being lost through natural evaporation, and is melted by the heat of the gas flowing into the cooling unit 300 to expose the absorbent material 310 at an appropriate time. I do it.
  • the electrode lead 210 of the battery cell 200 may protrude toward one side of the case where the cooling unit 300 is disposed. Since the electrode lead 210 is a part where current is concentrated and overheating is likely to occur, arranging the electrode lead 210 to face the cooling unit 300 has an advantage in that cooling and discharge of high-temperature gas occurs immediately. .
  • the prismatic secondary battery 10 of the present invention includes a side case 120 that is coupled to one end of the case, that is, the side of the main case 110 and covers the fixed body 400, the fixed body 400, and the side case 120. ) may include a bus bar 500 provided between the.
  • the bus bar 500 is a component electrically connected to the electrode lead 210, and a portion of it is exposed to the outside through a cut in the side case 120.
  • the bus bar 500 When the bus bar 500 is placed in the side case 120, the bus bar 500 may block the venting hole 410 of the fixed body 400.
  • a bus bar hole 510 that communicates with the venting hole 410 and is open to the outside of the side case 120 is formed in the bus bar 500.
  • FIG. 5 is a diagram showing the cooling unit 300 in the second embodiment of the present invention
  • Figure 6 is a state in which the end filter 420 is provided in the venting hole 410 in the second embodiment of the present invention. This is a drawing showing.
  • the second embodiment of the present invention prevents particles contained in high-temperature gas from being discharged to the outside by installing a filter means inside the square secondary battery 10. Particles of a certain size or larger that are not sufficiently cooled even after passing through the cooling unit 300 may become a high-temperature ignition source and cause an external fire.
  • the second embodiment of the present invention reduces the risk of fire caused by such high-temperature particles.
  • the second embodiment includes at least one of two filter means.
  • the cooling unit 300 is disposed on at least one of the front and rear sides of the heat-conducting body 320 with respect to the flow direction of the gas generated in the battery cell 200 and moving to the venting hole 410, and is included in the gas. It includes a filter 340 that filters particles of a predetermined size or larger.
  • the filter 340 is installed in front and/or behind the heat-conducting body 320 and filters particles in the gas flowing into and out of the cooling unit 300.
  • the filter 340 may be integrally laminated with a membrane member to prevent loss of the liquid impregnated in the absorbent material 310, and the membrane member, like the cover 330 described above, is resistant to heat from the gas. It can be melted and removed.
  • an end filter 420 that filters particles of a predetermined size or larger contained in the gas that has passed through the cooling unit 300 may be provided in the venting hole 410 of the fixed body 400.
  • the cooling unit 300 is provided with a filter 340
  • the end filter 420 of the venting hole 410 serves to secondary filter particles.
  • the filter 340 of the cooling unit 300 and the end filter 420 of the venting hole 410 may be designed so that the sizes of particles they filter are different. there is.
  • the filter 340 of the cooling unit 300 which has a relatively large area, can be configured to filter particles of relatively smaller size.
  • FIG. 7 is a side perspective view showing the cooling unit 300 and the venting hole 410 provided with the end filter 420.
  • the embodiment of FIG. 7 shows the filter 340 and the venting hole 410 of the cooling unit 300.
  • Figure 7 shows the state in which the end filter 420 is fully equipped.
  • Figure 7 shows a heat absorbing pouch 600 interposed between two pouch-type battery cells 200.
  • the heat absorbing pouch 600 has an absorbent material that is the same or similar to the absorbent material 310 provided in the cooling unit 300 built into the pouch, and generates a heat absorbing action by directly contacting the battery cell 200.
  • the heat absorbing pouch 600 may have weak portions with local low strength (joint strength, tensile strength, etc.). The liquid in the absorbent absorbs heat and is evaporated, and the weak part is broken by the internal pressure raised by the gas, causing a strong cooling and/or extinguishing effect by spewing out high-pressure gas.
  • the end filter 420 may be broken, or the end filter 420 may be separated from the venting hole 410. . If the end filter 420, which has a relatively narrow filtering area, is clogged, the structure of the square secondary battery 10 may collapse as the pressure inside the case rises beyond the limit.
  • FIG. 8 is a diagram illustrating a structure in which the end filter 420 can be separated due to excessive internal pressure.
  • venting hole 420 end filter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

개시되는 발명은 각형 이차전지에 관한 것으로서, 하나의 예에서, 금속 재질의 케이스와, 상기 케이스 내에 수용된 적어도 하나 이상의 전지 셀과, 상기 케이스의 적어도 일측에 배치된 쿨링부 및 상기 쿨링부를 고정시키고 상기 전지 셀에서 발생하여 상기 쿨링부를 통과한 가스를 상기 케이스의 외부로 안내하는 벤팅 홀이 형성된 고정 바디를 포함한다.

Description

각형 이차전지
본 발명은 열 폭주 발생시에 주변의 다른 이차전지가 연속적으로 과열되는 열 전파 현상을 억제할 수 있는 각형 이차전지에 관한 것이다.
본 출원은 2022. 05. 20일자 대한민국 특허출원 제10-2022-0061752호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
이차전지는 일차전지와는 달리 재충전이 가능하고, 또 소형 및 대용량화 가능성으로 인해 근래에 많이 연구 개발되고 있다. 모바일 기기에 대한 기술 개발과 수요가 증가하고, 또한 환경보호의 시대적 요구에 맞춰 부각되는 전기 차량과 에너지 저장 시스템 등으로 인해 에너지원으로서의 이차전지의 수요는 더욱 급격하게 증가하고 있다.
이차전지는 전지 케이스의 형상에 따라, 코인형 전지, 원통형 전지, 각형 전지, 및 파우치형 전지로 분류된다. 이차전지에서 전지 케이스 내부에 장착되는 전극 조립체는 전극 및 분리막의 적층 구조로 이루어진 충방전이 가능한 발전소자이다.
이차전지는 장기간 동안 연속적인 사용이 요구되므로, 충방전 과정 중에 발생하는 열을 효과적으로 제어할 필요가 있다. 이차전지의 냉각이 원활히 이루어지지 못할 경우에는 온도상승이 전류의 증가를 야기하고, 전류의 증가가 또다시 온도상승의 원인이 되는 정귀환의 연쇄반응이 일어나, 결국 열 폭주(Thermal Runaway)의 파국상태에 이르게 된다.
또한, 이차전지가 모듈이나 팩의 형태로서 집단을 이루고 있는 경우에는 어느 하나의 이차전지에 발생한 열 폭주에 의해 주변의 다른 이차전지가 연속적으로 과열되는 열 전파(Thermal Propagation) 현상이 일어나게 된다. 나아가 과열된 이차전지에서 방출되는 가연성 가스와 가열전극 등의 점화원으로 인해 화재 발생의 위험이 높으므로, 이러한 발화 위험을 억제할 필요가 있다.
[선행기술문헌]
(특허문헌 1) 한국등록특허 제10-1270796호(2013.06.05 공고)
본 발명은 이차전지에서 발생한 열 폭주에 의한 열 전파 현상을 효과적으로 억제 및 방지할 수 있는 이차전지를 제공하는 것에 그 목적이 있다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명은 각형 이차전지에 관한 것으로서, 하나의 예에서, 금속 재질의 케이스와, 상기 케이스 내에 수용된 적어도 하나 이상의 전지 셀과, 상기 케이스의 적어도 일측에 배치된 쿨링부 및 상기 쿨링부를 고정시키고 상기 전지 셀에서 발생하여 상기 쿨링부를 통과한 가스를 상기 케이스의 외부로 안내하는 벤팅 홀이 형성된 고정 바디를 포함한다.
상기 쿨링부는, 상기 전지 셀에서 발생하는 열에 의해 기화되는 액체가 함침된 흡수재 및 상기 흡수재가 삽입되는 삽입홀이 형성된 열전도 바디를 포함한다.
본 발명의 일 실시형태에서, 상기 흡수재는 고흡수성 매트릭스로서, 상기 고흡수성 매트릭스는 고흡수성 폴리머(SAP) 또는 고흡수성 섬유(SAF)를 포함할 수 있다.
그리고, 흡수재에 함침된 액체는 물일 수 있다.
그리고, 상기 쿨링부는, 상기 전지 셀에서 발생하여 상기 벤팅 홀로 이동하는 가스의 유동방향에 대해 상기 열전도 바디의 전방 및 후방에 접합되고, 상기 가스의 열에 의해 용융되는 커버를 포함할 수 있다.
본 발명의 일 실시형태에서, 상기 전지 셀은 전극 리드가 외부로 돌출된 파우치형 전지 셀이고, 상기 전극 리드는 상기 쿨링부가 배치된 상기 케이스의 일측 방향으로 돌출될 수 있다.
그리고, 본 발명의 각형 이차전지는, 상기 케이스의 일측 단부에 결합되며 상기 고정 바디를 덮는 사이드 케이스 및 상기 고정 바디와 상기 사이드 케이스의 사이에 구비되고 상기 전극 리드와 전기적으로 연결된 버스바를 포함할 수 있다.
상기 버스바에는 상기 벤팅 홀과 연통되어 상기 사이드 케이스의 외부를 향해 개방된 버스바 홀이 형성되어 있다.
한편, 본 발명의 다른 실시형태에 따르면, 상기 쿨링부는, 상기 전지 셀에서 발생하여 상기 벤팅 홀로 이동하는 가스의 유동방향에 대해 상기 열전도 바디의 전방과 후방 중 적어도 어느 한 쪽에 배치되고, 상기 가스에 포함된 소정 크기 이상의 파티클을 여과하는 필터를 포함한다.
그리고, 상기 고정 바디의 벤팅 홀에는, 상기 쿨링부를 통과한 가스에 포함된 소정 크기 이상의 파티클을 여과하는 엔드 필터가 구비될 수 있다.
그리고, 상기 엔드 필터는 사전에 정해진 값을 초과하는 압력이 작용하면 파단되거나, 또는 상기 벤팅 홀에서 분리될 수도 있다.
상기와 같은 구성을 가진 본 발명의 각형 이차전지에 의하면, 열 폭주 현상에 의해 발생한 고온 가스와 파티클은 냉각 액체를 내장한 쿨링부를 거쳐 외부로 배출된다. 따라서, 본 발명의 각형 이차전지는 과열된 전지 셀에서 방출되는 고온 점화원이 케이스 내부에서 냉각된 후에 배출됨으로써 열 전파 현상이 발생할 위험을 크게 감소시킨다.
또한, 본 발명은 각형 이차전지는 일정 크기를 초과하는 입자를 걸러내는 필터를 쿨링부와 벤팅 홀에 설치해 놓음으로써, 고온입자의 점화원에 의한 외부 화재 발생의 위험을 효과적으로 억제할 수 있다.
다만, 본 발명을 통해 얻을 수 있는 기술적 효과는 상술한 효과에 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래에 기재된 발명의 설명으로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시형태에 따른 각형 이차전지에 대한 사시도.
도 2는 도 1의 각형 이차전지에 대한 분해 사시도.
도 3은 도 1의 각형 이차전지에 포함된 쿨링부를 도시한 도면.
도 4는 열 폭주 상태에서의 쿨링부의 냉각작용을 도시한 도면.
도 5는 본 발명의 다른 실시형태에서의 쿨링부를 도시한 도면.
도 6은 본 발명의 다른 실시형태에서 벤팅 홀에 엔드 필터가 구비된 상태를 도시한 도면.
도 7은 쿨링부와 엔드 필터를 구비한 벤팅 홀을 도시한 측면 투시도.
도 8은 과도한 내압에 의해 엔드 필터가 분리될 수 있는 구조를 도시한 도면.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 이하에서 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명에서, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 기재된 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 기재된 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 "상에" 배치된다고 하는 것은 상부뿐만 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.
본 발명은 각형 이차전지에 관한 것으로서, 하나의 예에서, 본 발명의 긱형 이차전지는 금속 재질의 케이스와, 상기 케이스 내에 수용된 적어도 하나 이상의 전지 셀과, 상기 케이스의 적어도 일측에 배치된 쿨링부, 그리고 상기 쿨링부를 고정시키고 상기 전지 셀에서 발생하여 상기 쿨링부를 통과한 가스를 상기 케이스의 외부로 안내하는 벤팅 홀이 형성된 고정 바디를 포함한다.
여기서, 상기 쿨링부는 상기 전지 셀에서 발생하는 열에 의해 기화되는 액체가 함침된 흡수재 및 상기 흡수재가 삽입되는 삽입홀이 형성된 열전도 바디를 포함한다.
이러한 본 발명의 각형 이차전지는, 열 폭주 현상에 의해 발생한 고온 가스와 파티클이 냉각 액체를 내장한 쿨링부를 거쳐 외부로 배출되고, 이에 따라 과열된 전지 셀에서 방출되는 고온 점화원이 케이스에 내장된 쿨링부에서 냉각된 후에 배출됨으로써 열 전파 현상이 발생할 위험을 크게 감소시키게 된다.
이하, 첨부된 도면을 참조하여 본 발명의 구체적인 실시형태에 대해 상세히 설명한다. 여기서, 이하의 설명에서 사용되는 상대적인 위치를 지정하는 전후나 상하좌우의 방향은 발명의 이해를 돕기 위한 것으로서, 특별한 정의가 없는 한 도면에 도시된 방향을 기준으로 삼는다.
[제1 실시형태]
도 1은 본 발명의 일 실시형태에 따른 각형 이차전지(10)에 대한 사시도이고, 도 2는 도 1의 각형 이차전지(10)에 대한 분해 사시도이다.
첨부된 도면에 도시된 바와 같이, 본 발명의 각형 이차전지(10)는 금속 재질의 케이스와, 케이스 내에 수용된 적어도 하나의 전지 셀(200)을 포함한다. 하나의 예로서, 도시된 실시형태에서의 전지 셀(200)은 전극 리드(210)가 폭 방향의 양편으로 각각 돌출되어 있는 양방향 단자의 파우치형 전지 셀(200)이며, 두 개의 파우치형 전지 셀(200)이 케이스 안에 수납되어 있다.
케이스는 알루미늄이나 스테인리스스틸, 또는 이를 포함하는 합금 등의 금속 소재를 압출성형함으로써 만들어질 수 있다. 도시된 실시형태에서는, 전지 셀(200)의 용이한 수납과 압출성형의 비용 등을 고려하여, 케이스는 영문 알파벳 소문자 "n" 형상의 단면을 가진 메인 케이스(110)와 하방의 개방부에 결합하는 하부 플레이트(130)로 이루어져 있다.
그리고, 본 발명의 각형 이차전지(10)는 케이스의 적어도 일측에 배치된 쿨링부(300)와, 쿨링부(300)를 케이스에 대해 고정시키는 고정 바디(400)를 포함한다.
쿨링부(300)는 열 폭주 현상에 의해 과열된 전지 셀(200)에서 발생한 고온 가스를 외부로 배출하기 전에 발화온도 이하로 냉각하기 위한 것이다. 쿨링부(300)는 열 폭주에 의한 고온 가스가 발생한 비상상황에서 작동하는 것으로서, 정상상태에서는 냉각기능을 온전히 유지하고 있어야 한다.
이를 위해, 쿨링부(300)는 전지 셀(200)에서 발생하는 열에 의해 기화되는 액체가 함침된 흡수재(310)와, 흡수재(310)가 삽입되는 삽입홀(322)이 형성된 열전도 바디(320)를 포함한다. 과열된 전지 셀(200)에서 발생하는 열, 다시 말해 고온 가스의 열에 의해 흡수재(310)에 함침된 액체는 현열과 잠열에 대응하는 만큼의 열을 흡수하며, 이 과정에서 고온 가스의 온도는 떨어진다.
흡수재(310)를 삽입홀(322) 안에 내장하는 열전도 바디(320)는, 흡수재(310)를 지지하는 구조체인 동시에 흡수재(310)가 흡수한 열을 주변으로 발산하는 역할을 한다. 열전도 바디(320)가 주변으로 열을 발산하는 만큼 흡수재(310) 안의 액체가 기화하기까지의 시간이 지연되고, 이에 따라 액체의 흡열작용이 오래 지속된다.
고정 바디(400)는 쿨링부(300)를 케이스에 대해 고정하는 역할을 하며, 전지 셀(200)에서 발생하여 쿨링부(300)를 통과한 가스를 케이스의 외부로 안내하는 벤팅 홀(410)을 구비하고 있다. 고정 바디(400)에 고정된 쿨링부(300)의 전면과 후면(고온 가스의 유동방향 기준)은 막혀 있지 않으며, 고정 바디(400)의 안쪽으로 들어가는 쿨링부(300)의 후면과 벤팅 홀(410) 사이에는 유격이 형성되어 있어 가스의 흐름이 방해받지 않는다.
본 발명의 제1 실시형태에서, 흡수재(310)는 고흡수성 매트릭스, 예를 들어 고흡수성 폴리머(Super Absorbent Polymer, SAP) 또는 고흡수성 섬유(Super Absorbent Fiber, SAF)를 포함하는 흡수재(310)일 수 있다. 고흡수성 매트릭스는 다공질 또는 섬유질로 모세관 현상을 발현함으로써 다량의 액체를 흡수하는 것이 가능하며, 고흡수성 섬유는 고흡수성 폴리머를 가공하여 부직포와 같은 섬유의 형태로 제조할 수 있다.
본 발명에서 고흡수성 폴리머 및 이로부터 제조되는 고흡수성 섬유의 구체적인 종류는 특별히 제한되지 않고, 유체, 특히 물에 대한 흡수 능력이 뛰어난 것이라면 제한 없이 사용할 수 있다. 본 발명에서는 고흡수성 폴리머의 예로서, 폴리아크릴산, 폴리아크릴산염, 폴리아크릴산염 그래프트 중합체, 전분, 가교된 카르복시메틸화 셀룰로오스, 아크릴산 공중합체, 가수분해된 전분-아크릴니트릴 그래프트 공중합체, 전분-아크릴산 그래프트 공중합체, 비누화 비닐 아세테이트-아크릴산 에스테르 공중합체, 가수분해된 아크릴로니트릴 공중합체, 가수분해된 아크릴아미드 공중합체, 에틸렌-말레산 무수물 공중합체, 이소부틸렌-말레산 무수물 공중합체, 폴리비닐술폰산, 폴리비닐포스폰산, 폴리비닐인산, 폴리비닐황산, 술폰화 폴리스티렌, 폴리비닐아민, 폴리디알킬아미노알킬(메타)아크릴아미드, 폴리에틸렌이민, 폴리알릴아민, 폴리알릴구아니딘, 폴리디메틸디알릴암모늄 히드록시드, 4차화 폴리스티렌 유도체, 구아니딘-변성 폴리스티렌, 4차화 폴리(메타)아크릴아미드, 폴리비닐구아니딘 및 이들의 혼합물로 이루어진 군으로부터 선택되는 하나 이상을 들 수 있고, 바람직하게는 가교화된 폴리아크릴산 염, 가교화된 폴리아크릴산 및 가교화된 아크릴산 중공합체로 이루어진 군으로부터 선택되는 하나 이상을 들 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 고흡수성 폴리머로 사용되는 아크릴산 공중합체의 종류는 특별히 제한되지 않지만, 바람직하게는 아크릴산 단량체와 말레산, 이타콘산, 아크릴아미드, 2-아크릴아미드-2-메틸프로판술폰산, 2-(메타)아크릴로일에탄술폰산, 2-히드록시에틸(메타)아크릴레이트 및 스티렌술폰산으로 이루어진 군으로부터 선택되는 하나 이상의 공단량체를 포함하는 공중합체일 수 있다.
본 발명에서 고흡수성 폴리머는 물에 대한 흡수량이 10 g/g 내지 500 g/g, 바람직하게는 50 g/g 내지 200 g/g일 수 있으나, 이에 제한되는 것은 아니다. 즉, 고흡수성 폴리머 1 g당 물 10 g 내지 500 g, 바람직하게는 50 g 내지 200 g을 흡수할 수 있다.
본 발명에서 고흡수성 폴리머의 물에 대한 흡수량이 많을수록 냉각 효과의 지속 시간을 향상시킬 수 있으나, 500 g/g을 초과하면 고흡수성 폴리머의 유동성이 증가하여 형태를 유지하기 어려워 효과적인 냉각을 발휘할 수 없고, 10 g/g 미만이면 냉각 효과의 지속 시간이 너무 짧아 비효율적일 수 있다.
여기서, 흡수재(310)에 함침된 액체는 물일 수 있다. 물은 쉽게 구할 수 있는 액체 중에서 현열과 잠열이 가장 큰 물질에 해당한다. 따라서, 흡수재(310)에 담긴 물은 액체 상태에서부터 시작하여 기체로 상변화하는 과정 중에 흡수하는 열량이 많기 때문에 본 발명의 쿨링부(300)에 적용하기에 적합하다.
그리고, 쿨링부(300)는 전지 셀(200)에서 발생하여 고정 바디(400)의 벤팅 홀(410)로 이동하는 가스의 유동방향에 대해 열전도 바디(320)의 전방 및 후방에 접합되는 커버(330)를 포함할 수 있다. 커버(330)는 흡수재(310)에 함침된 액체가 자연증발로 손실되는 것을 방지하기 위한 막 부재로서, 쿨링부(300)로 유입되는 가스의 열에 의해 용융됨으로써 적절한 시점에 흡수재(310)를 노출하게 된다.
그리고, 전지 셀(200)의 전극 리드(210)는 쿨링부(300)가 배치된 케이스의 일측 방향을 향해 돌출되는 것이 바람직할 수 있다. 전극 리드(210)는 전류가 집중되어 과열이 발생하기 쉬운 부분이므로, 전극 리드(210)가 쿨링부(300)를 향하도록 배치하면 고온 가스의 냉각 및 배출이 즉각적으로 이루어진다는 측면에서 유리한 점이 있다.
본 발명의 각형 이차전지(10)는 케이스의 일측 단부, 즉 메인 케이스(110)의 측면에 결합되어 고정 바디(400)를 덮는 사이드 케이스(120)와, 고정 바디(400)와 사이드 케이스(120)의 사이에 구비되는 버스바(500)를 포함할 수 있다. 버스바(500)는 전극 리드(210)와 전기적으로 연결되는 부품이며, 사이드 케이스(120)의 절개구를 통해 그 일부가 외부에 노출되어 있다.
버스바(500)가 사이드 케이스(120) 안에 배치되면, 버스바(500)는 고정 바디(400)의 벤팅 홀(410)을 가로막을 수 있다. 이러한 경우에는, 버스바(500)에는 벤팅 홀(410)과 연통되어 사이드 케이스(120)의 외부를 향해 개방된 버스바 홀(510)이 형성된다.
[제2 실시형태]
도 5는 본 발명의 제2 실시형태에서의 쿨링부(300)를 도시한 도면이고, 도 6은 본 발명의 제2 실시형태에 있어서 벤팅 홀(410)에 엔드 필터(420)가 구비된 상태를 도시한 도면이다.
본 발명의 제2 실시형태는 각형 이차전지(10)의 내부에 필터수단을 설치함으로써 고온 가스에 포함된 파티클이 그대로 외부에 방출되는 것을 방지할 수 있도록 한 것이다. 쿨링부(300)를 거친 후에도 충분히 냉각되지 못한 어느 크기 이상의 파티클은 고온의 점화원이 되어 외부 화재를 유발할 수 있으며, 본 발명의 제2 실시형태는 이런 고온 파티클에 의한 화재 위험을 경감한다. 제2 실시형태는 두 가지 필터수단 중 어느 하나 이상을 포함한다.
먼저 쿨링부(300)는, 전지 셀(200)에서 발생하여 벤팅 홀(410)로 이동하는 가스의 유동방향에 대해 열전도 바디(320)의 전방과 후방 중 적어도 어느 한 쪽에 배치되고, 가스에 포함된 소정 크기 이상의 파티클을 여과하는 필터(340)를 포함한다.
필터(340)는 열전도 바디(320)의 전방 및/또는 후방에 설치되어 쿨링부(300)에 대해 유입, 유출하는 가스 중의 파티클을 여과한다. 참고로, 필터(340)에는 흡수재(310)에 함침된 액체가 손실되는 것을 방지하기 위한 막 부재가 일체로 적층되어 있을 수 있으며, 막 부재는, 전술한 커버(330)와 마찬가지로, 가스의 열에 의해 용융되어 제거될 수 있다.
다음으로, 쿨링부(300)를 통과한 가스에 포함된 소정 크기 이상의 파티클을 여과하는 엔드 필터(420)가 고정 바디(400)의 벤팅 홀(410)에 구비될 수 있다. 쿨링부(300)에 필터(340)가 구비되는 경우라면, 벤팅 홀(410)의 엔드 필터(420)는 파티클을 2차로 여과하는 역할을 한다. 필터링 효과와 압력 상승의 서로 상충하는 관계를 최적화하도록, 쿨링부(300)의 필터(340)와 벤팅 홀(410)의 엔드 필터(420)가 각기 여과하는 파티클의 사이즈가 서로 다르도록 설계할 수도 있다. 예를 들어, 면적이 상대적으로 넓은 쿨링부(300)의 필터(340)가 상대적으로 더 작은 사이즈의 파티클까지 여과할 수 있도록 구성할 수 있다.
도 7은 쿨링부(300)와 엔드 필터(420)를 구비한 벤팅 홀(410)을 도시한 측면 투시도로서, 도 7의 실시형태는 쿨링부(300)의 필터(340)와 벤팅 홀(410)의 엔드 필터(420)가 모구 구비된 상태를 보여주고 있다. 참고로, 도 7에는 두 개의 파우치형 전지 셀(200) 사이에 흡열 파우치(600)가 개재된 것으로 도시되어 있다. 흡열 파우치(600)는 쿨링부(300)에 구비된 흡수재(310)와 동일 또는 유사한 흡수재를 파우치 안에 내장한 것으로서, 전지 셀(200)에 직접 접촉하여 흡열작용을 일으킨다. 흡열 파우치(600)는 국부적으로 강도(접합강도나 인장강도 등)가 낮은 취약부를 구비할 수 있다. 흡수재 안의 액체는 열을 흡수하여 기화되고, 기체에 의해 상승한 내압에 의해 취약부가 파단되어 고압의 기체를 분출함으로써 강력한 냉각 및/또는 소화 작용을 일으키게 된다.
아울러 각형 이차전지(10)의 안전을 위해, 엔드 필터(420)에 사전에 정해진 값을 초과하는 압력이 작용하면 파단되거나, 또는 벤팅 홀(410)에서 엔드 필터(420)가 분리되도록 할 수도 있다. 상대적으로 필터링 면적이 좁은 엔드 필터(420)가 막히면 케이스 내부의 압력이 한계 이상으로 상승함에 따라 각형 이차전지(10)의 구조가 붕괴할 수 있다.
이런 경우를 대비한 안전책으로서, 과도한 압력이 작용하는 경우에 엔드 필터(420) 자체가 파단되도록 그 강도나 구조를 설계하거나, 또는 벤팅 홀(410)에서 엔드 필터(420)가 이탈하도록 만들 수 있다. 도 8은 과도한 내압에 의해 엔드 필터(420)가 분리될 수 있는 구조를 예시적으로 도시한 도면으로서, 엔드 필터(420)를 고정하는 돌기(422)에 노치를 형성하여 일정 이상의 압력이 작용하면 돌기(422)가 파단됨으로써 엔드 필터(420)가 외부로 배출되는 구조이다.
이상, 도면과 실시예 등을 통해 본 발명을 보다 상세히 설명하였다. 그러나, 본 명세서에 기재된 도면 또는 실시예 등에 기재된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
[부호의 설명]
10: 각형 이차전지 100: 케이스
110: 메인 케이스 120: 사이드 케이스
130: 하부 플레이트 200: 전지 셀
210: 전극 리드 300: 쿨링부
310: 흡수재 320: 열전도 바디
322: 삽입홀 330: 커버
340: 필터 400: 고정 바디
410: 벤팅 홀 420: 엔드 필터
422: 돌기 500: 버스바
510: 버스바 홀 600: 흡열 파우치

Claims (13)

  1. 금속 재질의 케이스;
    상기 케이스 내에 수용된 적어도 하나 이상의 전지 셀;
    상기 케이스의 적어도 일측에 배치된 쿨링부; 및
    상기 쿨링부를 고정시키고, 상기 전지 셀에서 발생하여 상기 쿨링부를 통과한 가스를 상기 케이스의 외부로 안내하는 벤팅 홀이 형성된 고정 바디;
    를 포함하는 각형 이차전지.
  2. 제1항에 있어서,
    상기 쿨링부는,
    상기 전지 셀에서 발생하는 열에 의해 기화되는 액체가 함침된 흡수재; 및
    상기 흡수재가 삽입되는 삽입홀이 형성된 열전도 바디;
    를 포함하는 각형 이차전지.
  3. 제2항에 있어서,
    상기 흡수재는,
    고흡수성 매트릭스인 것을 특징으로 하는 각형 이차전지.
  4. 제3항에 있어서,
    상기 고흡수성 매트릭스는 고흡수성 폴리머(SAP) 또는 고흡수성 섬유(SAF)를 포함하는 것을 특징으로 하는 각형 이차전지.
  5. 제4항에 있어서,
    상기 액체는 물인 것을 특징으로 하는 각형 이차전지.
  6. 제1항에 있어서,
    상기 쿨링부는,
    상기 전지 셀에서 발생하여 상기 벤팅 홀로 이동하는 가스의 유동방향에 대해 상기 열전도 바디의 전방 및 후방에 접합되고, 상기 가스의 열에 의해 용융되는 커버를 포함하는 각형 이차전지.
  7. 제1항에 있어서,
    상기 전지 셀은,
    전극 리드가 외부로 돌출된 파우치형 전지 셀인 것을 특징으로 하는 각형 이차전지.
  8. 제7항에 있어서,
    상기 전극 리드는,
    상기 쿨링부가 배치된 상기 케이스의 일측 방향으로 돌출된 것을 특징으로 하는 각형 이차전지.
  9. 제8항에 있어서,
    상기 케이스의 일측 단부에 결합되며, 상기 고정 바디를 덮는 사이드 케이스; 및
    상기 고정 바디와 상기 사이드 케이스의 사이에 구비되고, 상기 전극 리드와 전기적으로 연결된 버스바;
    를 포함하는 각형 이차전지.
  10. 제9항에 있어서,
    상기 버스바에는 상기 벤팅 홀과 연통되어 상기 사이드 케이스의 외부를 향해 개방된 버스바 홀이 형성된 것을 특징으로 하는 각형 이차전지.
  11. 제1항에 있어서,
    상기 쿨링부는,
    상기 전지 셀에서 발생하여 상기 벤팅 홀로 이동하는 가스의 유동방향에 대해 상기 열전도 바디의 전방과 후방 중 적어도 어느 한 쪽에 배치되고, 상기 가스에 포함된 소정 크기 이상의 파티클을 여과하는 필터를 포함하는 각형 이차전지.
  12. 제11항에 있어서,
    상기 고정 바디의 벤팅 홀에는,
    상기 쿨링부를 통과한 가스에 포함된 소정 크기 이상의 파티클을 여과하는 엔드 필터가 구비된 각형 이차전지.
  13. 제12항에 있어서,
    상기 엔드 필터는,
    사전에 정해진 값을 초과하는 압력이 작용하면 파단되거나 또는 상기 벤팅 홀에서 분리되는 것을 특징으로 하는 각형 이차전지.
PCT/KR2023/006678 2022-05-20 2023-05-17 각형 이차전지 WO2023224384A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23807903.2A EP4336626A1 (en) 2022-05-20 2023-05-17 Prismatic secondary battery
CN202380012391.6A CN117501516A (zh) 2022-05-20 2023-05-17 棱柱形二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0061752 2022-05-20
KR1020220061752A KR20230162850A (ko) 2022-05-20 2022-05-20 각형 이차전지

Publications (1)

Publication Number Publication Date
WO2023224384A1 true WO2023224384A1 (ko) 2023-11-23

Family

ID=88835787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006678 WO2023224384A1 (ko) 2022-05-20 2023-05-17 각형 이차전지

Country Status (4)

Country Link
EP (1) EP4336626A1 (ko)
KR (1) KR20230162850A (ko)
CN (1) CN117501516A (ko)
WO (1) WO2023224384A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101270796B1 (ko) 2011-06-20 2013-06-05 세방전지(주) 안전장치가 구비된 배터리
KR20150031611A (ko) * 2013-09-16 2015-03-25 주식회사 엘지화학 가스의 선택적 투과를 위한 벤팅 부재를 포함하고 있는 전지팩
KR20180006150A (ko) * 2016-07-08 2018-01-17 주식회사 엘지화학 안전성이 개선된 셀 모듈 어셈블리 및 이를 위한 팩 구조물
KR20180017695A (ko) * 2016-08-10 2018-02-21 주식회사 엘지화학 냉각 구조가 개선된 배터리 팩
EP3493295A1 (en) * 2017-12-04 2019-06-05 Kabushiki Kaisha Toshiba Battery
US10629869B2 (en) * 2015-10-28 2020-04-21 Murata Manufacturing Co., Ltd. Electronic apparatus case and battery pack including the same
KR20220061752A (ko) 2020-11-06 2022-05-13 삼성전자주식회사 플렉서블 디스플레이를 제어하는 방법 및 전자 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101270796B1 (ko) 2011-06-20 2013-06-05 세방전지(주) 안전장치가 구비된 배터리
KR20150031611A (ko) * 2013-09-16 2015-03-25 주식회사 엘지화학 가스의 선택적 투과를 위한 벤팅 부재를 포함하고 있는 전지팩
US10629869B2 (en) * 2015-10-28 2020-04-21 Murata Manufacturing Co., Ltd. Electronic apparatus case and battery pack including the same
KR20180006150A (ko) * 2016-07-08 2018-01-17 주식회사 엘지화학 안전성이 개선된 셀 모듈 어셈블리 및 이를 위한 팩 구조물
KR20180017695A (ko) * 2016-08-10 2018-02-21 주식회사 엘지화학 냉각 구조가 개선된 배터리 팩
EP3493295A1 (en) * 2017-12-04 2019-06-05 Kabushiki Kaisha Toshiba Battery
KR20220061752A (ko) 2020-11-06 2022-05-13 삼성전자주식회사 플렉서블 디스플레이를 제어하는 방법 및 전자 장치

Also Published As

Publication number Publication date
EP4336626A1 (en) 2024-03-13
KR20230162850A (ko) 2023-11-29
CN117501516A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2022203278A1 (ko) 냉각수를 활용한 배터리 셀의 열확산 방지 구조를 갖춘 배터리 모듈 및 이를 포함하는 배터리 팩
WO2022039442A1 (ko) 단열 부재를 포함하는 배터리 모듈
WO2023224384A1 (ko) 각형 이차전지
WO2021107319A1 (ko) 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
WO2020054955A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2022149923A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2023229280A1 (ko) 안전성이 향상된 이차전지
WO2023204523A1 (ko) 배터리 팩
WO2023033458A1 (ko) 열폭주 시 산소 유입 차단을 위한 구조가 적용된 배터리 모듈
WO2022149961A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2023243951A1 (ko) 이차전지용 흡열 파우치 어셈블리
WO2023204537A1 (ko) 각형 이차전지
WO2023211033A1 (ko) 냉각성능이 강화된 배터리 팩
WO2022055088A1 (ko) 배터리 모듈들 간의 열확산 방지구조를 적용한 배터리 팩
WO2023211011A1 (ko) 흡열체를 내장하는 각형 이차전지
WO2021177763A1 (ko) 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess
WO2023204536A1 (ko) 이차전지
WO2021172756A1 (ko) 스프링클러의 신속한 동작이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess
JP2024521647A (ja) バッテリーパック
WO2024029801A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2024025255A1 (ko) 안전성이 향상된 이차전지
WO2021172757A1 (ko) 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess
WO2023068659A1 (ko) 가스 벤팅 유도블록 및 이를 포함하는 파우치형 이차전지
WO2022149963A1 (ko) 배터리 모듈, 그리고 이를 포함하는 배터리 팩
WO2024010332A1 (ko) 배터리 모듈 부품

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023807903

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023576408

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202380012391.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2023807903

Country of ref document: EP

Effective date: 20231207

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807903

Country of ref document: EP

Kind code of ref document: A1